Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 8,482 Bytes
f180f01
 
 
 
 
 
 
 
 
3a4a873
 
 
 
 
 
 
f180f01
 
 
 
 
3a4a873
 
f180f01
3a4a873
 
f180f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4a873
 
 
f180f01
 
3a4a873
 
 
f180f01
 
3a4a873
 
 
f180f01
 
 
3a4a873
 
 
f180f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4a873
 
f180f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""TODO(wikitext): Add a description here."""


import os

import datasets


_CITATION = """\
@misc{merity2016pointer,
      title={Pointer Sentinel Mixture Models},
      author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
      year={2016},
      eprint={1609.07843},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
 The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified
 Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike
 License.
"""
_HOMEPAGE = "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/"
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
_DATA_URL = "https://s3.amazonaws.com/research.metamind.io/wikitext"


class WikitextConfig(datasets.BuilderConfig):
    """BuilderConfig for GLUE."""

    def __init__(self, data_url, **kwargs):
        """BuilderConfig for Wikitext

        Args:
          data_url: `string`, url to the dataset (word or raw level)
          **kwargs: keyword arguments forwarded to super.
        """
        super(WikitextConfig, self).__init__(
            version=datasets.Version(
                "1.0.0",
            ),
            **kwargs,
        )
        self.data_url = data_url


class Wikitext(datasets.GeneratorBasedBuilder):
    """TODO(wikitext_103): Short description of my dataset."""

    # TODO(wikitext_103): Set up version.
    VERSION = datasets.Version("0.1.0")
    BUILDER_CONFIGS = [
        WikitextConfig(
            name="wikitext-103-v1",
            data_url=_DATA_URL + "/" + "wikitext-103-v1.zip",
            description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.",
        ),
        WikitextConfig(
            name="wikitext-2-v1",
            data_url=_DATA_URL + "/" + "wikitext-2-v1.zip",
            description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.",
        ),
        WikitextConfig(
            name="wikitext-103-raw-v1",
            data_url=_DATA_URL + "/" + "wikitext-103-raw-v1.zip",
            description="Raw level dataset: the raw tokens before the addition of <unk> tokens. "
            "They should only be used for character level work or for creating newly derived datasets.",
        ),
        WikitextConfig(
            name="wikitext-2-raw-v1",
            data_url=_DATA_URL + "/" + "wikitext-2-raw-v1.zip",
            description="Raw level dataset: the raw tokens before the addition of <unk> tokens. "
            "They should only be used for character level work or for creating newly derived datasets.",
        ),
    ]

    def _info(self):
        # TODO(wikitext): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "text": datasets.Value("string")
                    # These are the features of your dataset like images, labels ...
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(wikitext): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        if self.config.name == "wikitext-103-v1":
            data_file = dl_manager.download_and_extract(self.config.data_url)
            data_dir = os.path.join(data_file, "wikitext-103")
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"data_file": os.path.join(data_dir, "wiki.test.tokens"), "split": "test"},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"data_file": os.path.join(data_dir, "wiki.train.tokens"), "split": "train"},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={"data_file": os.path.join(data_dir, "wiki.valid.tokens"), "split": "valid"},
                ),
            ]
        else:
            if self.config.name == "wikitext-103-raw-v1":
                data_file = dl_manager.download_and_extract(self.config.data_url)
                data_dir = os.path.join(data_file, "wikitext-103-raw")
                return [
                    datasets.SplitGenerator(
                        name=datasets.Split.TEST,
                        gen_kwargs={"data_file": os.path.join(data_dir, "wiki.test.raw"), "split": "test"},
                    ),
                    datasets.SplitGenerator(
                        name=datasets.Split.TRAIN,
                        gen_kwargs={"data_file": os.path.join(data_dir, "wiki.train.raw"), "split": "train"},
                    ),
                    datasets.SplitGenerator(
                        name=datasets.Split.VALIDATION,
                        gen_kwargs={"data_file": os.path.join(data_dir, "wiki.valid.raw"), "split": "valid"},
                    ),
                ]
            else:
                if self.config.name == "wikitext-2-raw-v1":
                    data_file = dl_manager.download_and_extract(self.config.data_url)
                    data_dir = os.path.join(data_file, "wikitext-2-raw")
                    return [
                        datasets.SplitGenerator(
                            name=datasets.Split.TEST,
                            gen_kwargs={"data_file": os.path.join(data_dir, "wiki.test.raw"), "split": "test"},
                        ),
                        datasets.SplitGenerator(
                            name=datasets.Split.TRAIN,
                            gen_kwargs={"data_file": os.path.join(data_dir, "wiki.train.raw"), "split": "train"},
                        ),
                        datasets.SplitGenerator(
                            name=datasets.Split.VALIDATION,
                            gen_kwargs={"data_file": os.path.join(data_dir, "wiki.valid.raw"), "split": "valid"},
                        ),
                    ]
                else:
                    if self.config.name == "wikitext-2-v1":
                        data_file = dl_manager.download_and_extract(self.config.data_url)
                        data_dir = os.path.join(data_file, "wikitext-2")
                        return [
                            datasets.SplitGenerator(
                                name=datasets.Split.TEST,
                                gen_kwargs={"data_file": os.path.join(data_dir, "wiki.test.tokens"), "split": "test"},
                            ),
                            datasets.SplitGenerator(
                                name=datasets.Split.TRAIN,
                                gen_kwargs={
                                    "data_file": os.path.join(data_dir, "wiki.train.tokens"),
                                    "split": "train",
                                },
                            ),
                            datasets.SplitGenerator(
                                name=datasets.Split.VALIDATION,
                                gen_kwargs={
                                    "data_file": os.path.join(data_dir, "wiki.valid.tokens"),
                                    "split": "valid",
                                },
                            ),
                        ]

    def _generate_examples(self, data_file, split):

        """Yields examples."""
        # TODO(wikitext): Yields (key, example) tuples from the dataset
        with open(data_file, encoding="utf-8") as f:
            for idx, row in enumerate(f):
                if row.strip():
                    yield idx, {"text": row}
                else:
                    yield idx, {"text": ""}