Datasets:

ArXiv:
License:
File size: 3,008 Bytes
f31fa21
 
ed5afb0
 
 
 
 
0e2f653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: cc-by-4.0
task_categories:
- time-series-forecasting
pretty_name: cloud
size_categories:
- 100M<n<1B
---

# Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
[Paper](https://arxiv.org/abs/2310.05063) | [Code](https://github.com/SalesforceAIResearch/pretrain-time-series-cloudops)

Datasets accompanying the paper "Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain".

```python
from datasets import load_dataset

dataset = load_dataset('Salesforce/cloudops_tsf', 'azure_vm_traces_2017')
```

### azure_vm_traces_2017
```python
DatasetDict({
    train_test: Dataset({
        features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
        num_rows: 17568
    })
    pretrain: Dataset({
        features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
        num_rows: 159472
    })
})
```

### borg_cluster_data_2011
```python
DatasetDict({
    train_test: Dataset({
        features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
        num_rows: 11117
    })
    pretrain: Dataset({
        features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
        num_rows: 143386
    })
})
```

### alibaba_cluster_trace_2018
```python
DatasetDict({
    train_test: Dataset({
        features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
        num_rows: 6048
    })
    pretrain: Dataset({
        features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
        num_rows: 58409
    })
})
```

## Acknowledgements
The datasets were processed from the following original sources. Please cite the original sources if you use the datasets.
* Azure VM Traces 2017
  * Bianchini. Resource central: Understanding and predicting workloads for improved resource
  management in large cloud platforms. In Proceedings of the 26th Symposium on Operating Systems
  Principles, pp. 153–167, 2017.
  * https://github.com/Azure/AzurePublicDataset

* Borg Cluster Data 2011
  * John Wilkes. More Google cluster data. Google research blog, November 2011. Posted at http:
  //googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.
  * https://github.com/google/cluster-data

* Alibaba Cluster Trace 2018
  * Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang Bao. Who
  limits the resource efficiency of my datacenter: An analysis of alibaba datacenter traces. In
  Proceedings of the International Symposium on Quality of Service, pp. 1–10, 2019.
  * https://github.com/alibaba/clusterdata

## Citation
```
@article{woo2023pushing,
  title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain},
  author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen},
  journal={arXiv preprint arXiv:2310.05063},
  year={2023}
}
```