Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 7,292 Bytes
0d48a97
7ff77b3
 
6f6eb20
7ff77b3
 
 
 
0d48a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ff77b3
 
0d48a97
7ff77b3
 
0d48a97
7ff77b3
0d48a97
 
7ff77b3
0d48a97
 
7ff77b3
0d48a97
 
7ff77b3
0d48a97
 
7ff77b3
0d48a97
 
7ff77b3
0d48a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ff77b3
 
0d48a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd78250
 
0d48a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a86210
0d48a97
 
 
 
 
6f4f0fc
 
0d48a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366f00d
0d48a97
 
 
 
2dfae30
 
 
 
 
 
0d48a97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
language:
- en
license: cc-by-nc-4.0
size_categories:
- 10M<n<100M
task_categories:
- question-answering
dataset_info:
  features:
  - name: data_path
    sequence: string
  - name: generator
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: options
    sequence: string
  - name: metadata
    dtype: string
  splits:
  - name: dcs_sa
    num_bytes: 1201564580
    num_examples: 2310331
  - name: dcs_mc
    num_bytes: 1323422399
    num_examples: 2310331
  - name: dcm_sa_2_img
    num_bytes: 858391411
    num_examples: 1400000
  - name: dcm_mc_2_img
    num_bytes: 931146637
    num_examples: 1400000
  - name: dcm_sa_3_img
    num_bytes: 1168447812
    num_examples: 1400000
  - name: dcm_mc_3_img
    num_bytes: 1298813542
    num_examples: 1400000
  - name: dcm_sa_4_img
    num_bytes: 1436354373
    num_examples: 1400000
  - name: dcm_mc_4_img
    num_bytes: 1598496962
    num_examples: 1400000
  - name: vgs_sa
    num_bytes: 595577425
    num_examples: 1537630
  - name: vgs_mc
    num_bytes: 671343503
    num_examples: 1537630
  - name: vgm_sa_2_img
    num_bytes: 536078137
    num_examples: 1400000
  - name: vgm_mc_2_img
    num_bytes: 612895409
    num_examples: 1400000
  - name: vgm_sa_3_img
    num_bytes: 693450488
    num_examples: 1400000
  - name: vgm_mc_3_img
    num_bytes: 830159021
    num_examples: 1400000
  - name: vgm_sa_4_img
    num_bytes: 802710456
    num_examples: 1400000
  - name: vgm_mc_4_img
    num_bytes: 972149375
    num_examples: 1400000
  download_size: 5914822167
  dataset_size: 15531001530
configs:
- config_name: default
  data_files:
  - split: dcs_sa
    path: data/dcs_sa-*
  - split: dcs_mc
    path: data/dcs_mc-*
  - split: dcm_sa_2_img
    path: data/dcm_sa_2_img-*
  - split: dcm_mc_2_img
    path: data/dcm_mc_2_img-*
  - split: dcm_sa_3_img
    path: data/dcm_sa_3_img-*
  - split: dcm_mc_3_img
    path: data/dcm_mc_3_img-*
  - split: dcm_sa_4_img
    path: data/dcm_sa_4_img-*
  - split: dcm_mc_4_img
    path: data/dcm_mc_4_img-*
  - split: vgs_sa
    path: data/vgs_sa-*
  - split: vgs_mc
    path: data/vgs_mc-*
  - split: vgm_sa_2_img
    path: data/vgm_sa_2_img-*
  - split: vgm_mc_2_img
    path: data/vgm_mc_2_img-*
  - split: vgm_sa_3_img
    path: data/vgm_sa_3_img-*
  - split: vgm_mc_3_img
    path: data/vgm_mc_3_img-*
  - split: vgm_sa_4_img
    path: data/vgm_sa_4_img-*
  - split: vgm_mc_4_img
    path: data/vgm_mc_4_img-*
tags:
- multimodal
---


<h1 align="center">  
  ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models
</h1>

ProVision is an extendable data generation engine which produces instruction data for large multimodal language models (MLMs).

In particular, it synthesizes instruction data via data generators (Python programs) and scene graphs rather than proprietary models. It also includes a scene graph generation pipeline consisting of various state-of-the-art models (eg, object detection model). Thus, one can generate instruction data for any given image by first generating the scene graph and then apply data generators.

Provision supports generation of both single-image and multi-image instruction data. One can also extend the engine by adding new data generators.

**You are currently viewing the ProVision-10M dataset.**

![pipeline](pipeline.png)

## Dataset Details

### Dataset Sources

- **Repository**: https://github.com/JieyuZ2/ProVision
- **Paper:** https://arxiv.org/abs/2412.07012
- **Blog:**
- **Source Data:**  [Visual Genome](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html)/[GQA](https://cs.stanford.edu/people/dorarad/gqa/about.html) and [DataComp](https://www.datacomp.ai/dcclip/index.html#home)

## Uses

Users need to make their own assessment regarding any obligations or responsibilities under the corresponding licenses or terms and conditions pertaining to the original datasets and data. This repository is being released for research purposes only.

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

ProVision-10M is designed to facilitate research in training multimodal language models.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

ProVision-10M was built to make research into large multimodal models more accessible. Using
the dataset to train models that ingest or generate personally identifying information (such
as images of people’s faces and other sensitive content) as well as military applications are all inappropriate use cases of ProVision-10M.

## Dataset Creation

### Curation Rationale

ProVision-10M was created to demonstrate the potential of programmatically synthesizing instruction data for training multimodal language models.

### Source Data

The dataset is built upon two data sources:

- we use 74,289 images and scene graphs from Visual Genome(the GQA version)
- we use 126,106 images from DataComp

### Dataset summary

**We do not release the images, please download the images from their original sources (GQA/DataComp)**

| Split        | Size     | Format          | Description  |
| :------------| :------  | :------         | :---- |
| vgs_sa       |  1537630 | short answer    | single-image instruction data based on Visual Genome |
| vgs_mc       |  1537630 | multiple choice | single-image instruction data based on Visual Genome |
| vgm_sa_2_img |  1400000 | short answer    | 2-image instruction data based on Visual Genome |
| vgm_mc_2_img |  1400000 | multiple choice | 2-image instruction data based on Visual Genome |
| vgm_sa_3_img |  1400000 | short answer    | 3-image instruction data based on Visual Genome |
| vgm_mc_3_img |  1400000 | multiple choice | 3-image instruction data based on Visual Genome |
| vgm_sa_4_img |  1400000 | short answer    | 4-image instruction data based on Visual Genome |
| vgm_mc_4_img |  1400000 | multiple choice | 4-image instruction data based on Visual Genome |
| dcs_sa       |  2294572 | short answer    | single-image instruction data based on DataComp images |
| dcs_mc       |  2294572 | multiple choice | single-image instruction data based on DataComp images |
| dcm_sa_2_img |  1400000 | short answer    | 2-image instruction data based on DataComp images |
| dcm_mc_2_img |  1400000 | multiple choice | 2-image instruction data based on DataComp images |
| dcm_sa_3_img |  1400000 | short answer    | 3-image instruction data based on DataComp images |
| dcm_mc_3_img |  1400000 | multiple choice | 3-image instruction data based on DataComp images |
| dcm_sa_4_img |  1400000 | short answer    | 4-image instruction data based on DataComp images |
| dcm_mc_4_img |  1400000 | multiple choice | 4-image instruction data based on DataComp images |

## License
We release ProVision-10M under a CC-BY-NC-4.0 license.

## Citation

```
@article{zhang2024provision,
  title={ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models},
  author={Zhang, Jieyu and Xue, Le and Song, Linxin and Wang, Jun and Huang, Weikai and Shu, Manli and Yan, An and Ma, Zixian and Niebles, Juan Carlos and Xiong, Caiming and others},
  journal={arXiv preprint arXiv:2412.07012},
  year={2024}
}
```