Datasets:

Languages:
Thai
ArXiv:
License:
File size: 6,744 Bytes
b386b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import re
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{limkonchotiwat-etal-2021-handling,
    title = "Handling Cross- and Out-of-Domain Samples in {T}hai Word Segmentation",
    author = "Limkonchotiwat, Peerat  and
      Phatthiyaphaibun, Wannaphong  and
      Sarwar, Raheem  and
      Chuangsuwanich, Ekapol  and
      Nutanong, Sarana",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.86",
    doi = "10.18653/v1/2021.findings-acl.86",
    pages = "1003--1016",
}
"""

_DATASETNAME = "vistec_tp_th_21"

_DESCRIPTION = """\
The largest social media domain datasets for Thai text processing (word segmentation, 
misspell correction and detection, and named-entity boundary) called "VISTEC-TP-TH-2021" or VISTEC-2021. 
VISTEC corpus contains 49,997 sentences with 3.39M words where the collection was manually annotated by 
linguists on four tasks, namely word segmentation, misspelling detection and correction, 
and named entity recognition.
"""

_HOMEPAGE = "https://github.com/mrpeerat/OSKut/tree/main/VISTEC-TP-TH-2021"


_LANGUAGES = ["tha"]


_LICENSE = Licenses.CC_BY_SA_3_0.value

_LOCAL = False

_URLS = {
    "train": "https://raw.githubusercontent.com/mrpeerat/OSKut/main/VISTEC-TP-TH-2021/train/VISTEC-TP-TH-2021_train_proprocessed.txt",
    "test": "https://raw.githubusercontent.com/mrpeerat/OSKut/main/VISTEC-TP-TH-2021/test/VISTEC-TP-TH-2021_test_proprocessed.txt",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class VISTEC21Dataset(datasets.GeneratorBasedBuilder):
    """
    The largest social media domain datasets for Thai text processing (word segmentation,
    misspell correction and detection, and named-entity boundary) called "VISTEC-TP-TH-2021" or VISTEC-2021.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    SEACROWD_SCHEMA_NAME = "seq_label"
    LABEL_CLASSES = ["0", "1"]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=_DATASETNAME,
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.LABEL_CLASSES)),
                }
            )
        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            features = schemas.seq_label_features(self.LABEL_CLASSES)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        data_files = {
            "train": Path(dl_manager.download_and_extract(_URLS["train"])),
            "test": Path(dl_manager.download_and_extract(_URLS["test"])),
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_files["train"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_files["test"], "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        label_key = "ner_tags" if self.config.schema == "source" else "labels"

        with open(filepath, "r", encoding="utf-8") as f:
            lines = f.readlines()
            id = 0
            for line in lines:
                tokens = line.split("|")
                token_list = []
                ner_tag = []
                for token in tokens:
                    if "<ne>" in token:
                        token = token.replace("<ne>", "")
                        token = token.replace("</ne>", "")
                        token_list.append(token)
                        ner_tag.append(1)
                        continue
                    if "</msp>" in token and "<msp value=" in token:
                        token_list.append(re.findall(r"<msp value=([^>]*)>", token)[0])
                        ner_tag.append(0)
                        continue
                    if "<compound>" in token or "</compound>" in token:
                        token = token.replace("<compound>", "")
                        token = token.replace("</compound>", "")
                        token_list.append(token)
                        ner_tag.append(0)
                        continue
                    token_list.append(token)
                    ner_tag.append(0)
                id += 1
                yield id, {
                    "id": str(id),
                    "tokens": token_list,
                    label_key: ner_tag,
                }