holylovenia
commited on
Commit
•
b386b9a
1
Parent(s):
25a4788
Upload vistec_tp_th_21.py with huggingface_hub
Browse files- vistec_tp_th_21.py +183 -0
vistec_tp_th_21.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Dict, List, Tuple
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
from seacrowd.utils import schemas
|
25 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
26 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@inproceedings{limkonchotiwat-etal-2021-handling,
|
30 |
+
title = "Handling Cross- and Out-of-Domain Samples in {T}hai Word Segmentation",
|
31 |
+
author = "Limkonchotiwat, Peerat and
|
32 |
+
Phatthiyaphaibun, Wannaphong and
|
33 |
+
Sarwar, Raheem and
|
34 |
+
Chuangsuwanich, Ekapol and
|
35 |
+
Nutanong, Sarana",
|
36 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
|
37 |
+
month = aug,
|
38 |
+
year = "2021",
|
39 |
+
address = "Online",
|
40 |
+
publisher = "Association for Computational Linguistics",
|
41 |
+
url = "https://aclanthology.org/2021.findings-acl.86",
|
42 |
+
doi = "10.18653/v1/2021.findings-acl.86",
|
43 |
+
pages = "1003--1016",
|
44 |
+
}
|
45 |
+
"""
|
46 |
+
|
47 |
+
_DATASETNAME = "vistec_tp_th_21"
|
48 |
+
|
49 |
+
_DESCRIPTION = """\
|
50 |
+
The largest social media domain datasets for Thai text processing (word segmentation,
|
51 |
+
misspell correction and detection, and named-entity boundary) called "VISTEC-TP-TH-2021" or VISTEC-2021.
|
52 |
+
VISTEC corpus contains 49,997 sentences with 3.39M words where the collection was manually annotated by
|
53 |
+
linguists on four tasks, namely word segmentation, misspelling detection and correction,
|
54 |
+
and named entity recognition.
|
55 |
+
"""
|
56 |
+
|
57 |
+
_HOMEPAGE = "https://github.com/mrpeerat/OSKut/tree/main/VISTEC-TP-TH-2021"
|
58 |
+
|
59 |
+
|
60 |
+
_LANGUAGES = ["tha"]
|
61 |
+
|
62 |
+
|
63 |
+
_LICENSE = Licenses.CC_BY_SA_3_0.value
|
64 |
+
|
65 |
+
_LOCAL = False
|
66 |
+
|
67 |
+
_URLS = {
|
68 |
+
"train": "https://raw.githubusercontent.com/mrpeerat/OSKut/main/VISTEC-TP-TH-2021/train/VISTEC-TP-TH-2021_train_proprocessed.txt",
|
69 |
+
"test": "https://raw.githubusercontent.com/mrpeerat/OSKut/main/VISTEC-TP-TH-2021/test/VISTEC-TP-TH-2021_test_proprocessed.txt",
|
70 |
+
}
|
71 |
+
|
72 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
73 |
+
|
74 |
+
_SOURCE_VERSION = "1.0.0"
|
75 |
+
|
76 |
+
_SEACROWD_VERSION = "2024.06.20"
|
77 |
+
|
78 |
+
|
79 |
+
class VISTEC21Dataset(datasets.GeneratorBasedBuilder):
|
80 |
+
"""
|
81 |
+
The largest social media domain datasets for Thai text processing (word segmentation,
|
82 |
+
misspell correction and detection, and named-entity boundary) called "VISTEC-TP-TH-2021" or VISTEC-2021.
|
83 |
+
"""
|
84 |
+
|
85 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
86 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
87 |
+
|
88 |
+
SEACROWD_SCHEMA_NAME = "seq_label"
|
89 |
+
LABEL_CLASSES = ["0", "1"]
|
90 |
+
|
91 |
+
BUILDER_CONFIGS = [
|
92 |
+
SEACrowdConfig(
|
93 |
+
name=f"{_DATASETNAME}_source",
|
94 |
+
version=SOURCE_VERSION,
|
95 |
+
description=f"{_DATASETNAME} source schema",
|
96 |
+
schema="source",
|
97 |
+
subset_id=_DATASETNAME,
|
98 |
+
),
|
99 |
+
SEACrowdConfig(
|
100 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
101 |
+
version=SEACROWD_VERSION,
|
102 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
103 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
104 |
+
subset_id=_DATASETNAME,
|
105 |
+
),
|
106 |
+
]
|
107 |
+
|
108 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
109 |
+
|
110 |
+
def _info(self) -> datasets.DatasetInfo:
|
111 |
+
if self.config.schema == "source":
|
112 |
+
features = datasets.Features(
|
113 |
+
{
|
114 |
+
"id": datasets.Value("string"),
|
115 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
116 |
+
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.LABEL_CLASSES)),
|
117 |
+
}
|
118 |
+
)
|
119 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
120 |
+
features = schemas.seq_label_features(self.LABEL_CLASSES)
|
121 |
+
|
122 |
+
return datasets.DatasetInfo(
|
123 |
+
description=_DESCRIPTION,
|
124 |
+
features=features,
|
125 |
+
homepage=_HOMEPAGE,
|
126 |
+
license=_LICENSE,
|
127 |
+
citation=_CITATION,
|
128 |
+
)
|
129 |
+
|
130 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
131 |
+
"""Returns SplitGenerators."""
|
132 |
+
data_files = {
|
133 |
+
"train": Path(dl_manager.download_and_extract(_URLS["train"])),
|
134 |
+
"test": Path(dl_manager.download_and_extract(_URLS["test"])),
|
135 |
+
}
|
136 |
+
|
137 |
+
return [
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=datasets.Split.TRAIN,
|
140 |
+
gen_kwargs={"filepath": data_files["train"], "split": "train"},
|
141 |
+
),
|
142 |
+
datasets.SplitGenerator(
|
143 |
+
name=datasets.Split.TEST,
|
144 |
+
gen_kwargs={"filepath": data_files["test"], "split": "test"},
|
145 |
+
),
|
146 |
+
]
|
147 |
+
|
148 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
149 |
+
"""Yields examples as (key, example) tuples."""
|
150 |
+
label_key = "ner_tags" if self.config.schema == "source" else "labels"
|
151 |
+
|
152 |
+
with open(filepath, "r", encoding="utf-8") as f:
|
153 |
+
lines = f.readlines()
|
154 |
+
id = 0
|
155 |
+
for line in lines:
|
156 |
+
tokens = line.split("|")
|
157 |
+
token_list = []
|
158 |
+
ner_tag = []
|
159 |
+
for token in tokens:
|
160 |
+
if "<ne>" in token:
|
161 |
+
token = token.replace("<ne>", "")
|
162 |
+
token = token.replace("</ne>", "")
|
163 |
+
token_list.append(token)
|
164 |
+
ner_tag.append(1)
|
165 |
+
continue
|
166 |
+
if "</msp>" in token and "<msp value=" in token:
|
167 |
+
token_list.append(re.findall(r"<msp value=([^>]*)>", token)[0])
|
168 |
+
ner_tag.append(0)
|
169 |
+
continue
|
170 |
+
if "<compound>" in token or "</compound>" in token:
|
171 |
+
token = token.replace("<compound>", "")
|
172 |
+
token = token.replace("</compound>", "")
|
173 |
+
token_list.append(token)
|
174 |
+
ner_tag.append(0)
|
175 |
+
continue
|
176 |
+
token_list.append(token)
|
177 |
+
ner_tag.append(0)
|
178 |
+
id += 1
|
179 |
+
yield id, {
|
180 |
+
"id": str(id),
|
181 |
+
"tokens": token_list,
|
182 |
+
label_key: ner_tag,
|
183 |
+
}
|