File size: 6,619 Bytes
d50c885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e099352
 
 
 
d50c885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e099352
d50c885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e099352
d50c885
 
 
 
 
 
e099352
 
d50c885
 
e099352
d50c885
 
 
 
 
 
 
 
 
e099352
d50c885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e099352
d50c885
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" IndQNER Dataset """

from pathlib import Path
from typing import List

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """\
@misc{,
author = {Ria Hari Gusmita, Asep Fajar Firmansyah, Khodijah Khuliyah},
title = {{IndQNER: a NER Benchmark Dataset on Indonesian Translation of Quran}},
url = {https://github.com/dice-group/IndQNER},
year = {2022}
}
"""

_LOCAL = False
_LANGUAGES = ["ind"]
_DATASETNAME = "IndQNER"
_DESCRIPTION = """\
IndQNER is a NER dataset created by manually annotating the Indonesian translation of Quran text.
The dataset contains 18 named entity categories as follow:
    "Allah": Allah (including synonim of Allah such as Yang maha mengetahui lagi mahabijaksana)
    "Throne": Throne of Allah (such as 'Arasy)
    "Artifact": Artifact (such as Ka'bah, Baitullah)
    "AstronomicalBody": Astronomical body (such as bumi, matahari)
    "Event": Event (such as hari akhir, kiamat)
    "HolyBook": Holy book (such as AlQur'an)
    "Language": Language (such as bahasa Arab
    "Angel": Angel (such as Jibril, Mikail)
    "Person": Person (such as Bani Israil, Fir'aun)
    "Messenger": Messenger (such as Isa, Muhammad, Musa)
    "Prophet": Prophet (such as Adam, Sulaiman)
    "AfterlifeLocation": Afterlife location (such as Jahanam, Jahim, Padang Mahsyar)
    "GeographicalLocation": Geographical location (such as Sinai, negeru Babilonia)
    "Color": Color (such as kuning tua)
    "Religion": Religion (such as Islam, Yahudi, Nasrani)
    "Food": Food (such as manna, salwa)
"""

_HOMEPAGE = "https://github.com/dice-group/IndQNER"
_LICENSE = "Unknown"
_URLs = {
    "train": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/train.txt",
    "validation": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/dev.txt",
    "test": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/test.txt",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class IndqnerDataset(datasets.GeneratorBasedBuilder):
    """IndQNER is an Named Entity Recognition benchmark dataset on a niche domain i.e. Indonesian Translation of Quran."""

    label_classes = [
        "B-Allah",
        "B-Throne",
        "B-Artifact",
        "B-AstronomicalBody",
        "B-Event",
        "B-HolyBook",
        "B-Language",
        "B-Angel",
        "B-Person",
        "B-Messenger",
        "B-Prophet",
        "B-AfterlifeLocation",
        "B-GeographicalLocation",
        "B-Color",
        "B-Religion",
        "B-Food",
        "I-Allah",
        "I-Throne",
        "I-Artifact",
        "I-AstronomicalBody",
        "I-Event",
        "I-HolyBook",
        "I-Language",
        "I-Angel",
        "I-Person",
        "I-Messenger",
        "I-Prophet",
        "I-AfterlifeLocation",
        "I-GeographicalLocation",
        "I-Color",
        "I-Religion",
        "I-Food",
        "O",
    ]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="indqner_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="NER dataset from Indonesian translation Quran source schema",
            schema="source",
            subset_id="indqner",
        ),
        SEACrowdConfig(
            name="indqner_seacrowd_seq_label",
            version=datasets.Version(_SOURCE_VERSION),
            description="NER dataset from Indonesian translation Quran Nusantara schema",
            schema="seacrowd_seq_label",
            subset_id="indqner",
        ),
    ]

    DEFAULT_CONFIG_NAME = "indqner_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]})
        elif self.config.schema == "seacrowd_seq_label":
            features = schemas.seq_label_features(self.label_classes)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
        validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
        test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
        data_files = {
            "train": train_tsv_path,
            "validation": validation_tsv_path,
            "test": test_tsv_path,
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": data_files["validation"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_files["test"]},
            ),
        ]

    def _generate_examples(self, filepath: Path):
        conll_dataset = load_conll_data(filepath)

        if self.config.schema == "source":
            for index, row in enumerate(conll_dataset):
                ex = {"index": str(index), "tokens": row["sentence"], "ner_tag": row["label"]}
                yield index, ex
        elif self.config.schema == "seacrowd_seq_label":
            for index, row in enumerate(conll_dataset):
                ex = {"id": str(index), "tokens": row["sentence"], "labels": row["label"]}
                yield index, ex
        else:
            raise ValueError(f"Invalid config: {self.config.name}")