File size: 6,619 Bytes
d50c885 e099352 d50c885 e099352 d50c885 e099352 d50c885 e099352 d50c885 e099352 d50c885 e099352 d50c885 e099352 d50c885 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" IndQNER Dataset """
from pathlib import Path
from typing import List
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@misc{,
author = {Ria Hari Gusmita, Asep Fajar Firmansyah, Khodijah Khuliyah},
title = {{IndQNER: a NER Benchmark Dataset on Indonesian Translation of Quran}},
url = {https://github.com/dice-group/IndQNER},
year = {2022}
}
"""
_LOCAL = False
_LANGUAGES = ["ind"]
_DATASETNAME = "IndQNER"
_DESCRIPTION = """\
IndQNER is a NER dataset created by manually annotating the Indonesian translation of Quran text.
The dataset contains 18 named entity categories as follow:
"Allah": Allah (including synonim of Allah such as Yang maha mengetahui lagi mahabijaksana)
"Throne": Throne of Allah (such as 'Arasy)
"Artifact": Artifact (such as Ka'bah, Baitullah)
"AstronomicalBody": Astronomical body (such as bumi, matahari)
"Event": Event (such as hari akhir, kiamat)
"HolyBook": Holy book (such as AlQur'an)
"Language": Language (such as bahasa Arab
"Angel": Angel (such as Jibril, Mikail)
"Person": Person (such as Bani Israil, Fir'aun)
"Messenger": Messenger (such as Isa, Muhammad, Musa)
"Prophet": Prophet (such as Adam, Sulaiman)
"AfterlifeLocation": Afterlife location (such as Jahanam, Jahim, Padang Mahsyar)
"GeographicalLocation": Geographical location (such as Sinai, negeru Babilonia)
"Color": Color (such as kuning tua)
"Religion": Religion (such as Islam, Yahudi, Nasrani)
"Food": Food (such as manna, salwa)
"""
_HOMEPAGE = "https://github.com/dice-group/IndQNER"
_LICENSE = "Unknown"
_URLs = {
"train": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/train.txt",
"validation": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/dev.txt",
"test": "https://raw.githubusercontent.com/dice-group/IndQNER/master/datasets/test.txt",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IndqnerDataset(datasets.GeneratorBasedBuilder):
"""IndQNER is an Named Entity Recognition benchmark dataset on a niche domain i.e. Indonesian Translation of Quran."""
label_classes = [
"B-Allah",
"B-Throne",
"B-Artifact",
"B-AstronomicalBody",
"B-Event",
"B-HolyBook",
"B-Language",
"B-Angel",
"B-Person",
"B-Messenger",
"B-Prophet",
"B-AfterlifeLocation",
"B-GeographicalLocation",
"B-Color",
"B-Religion",
"B-Food",
"I-Allah",
"I-Throne",
"I-Artifact",
"I-AstronomicalBody",
"I-Event",
"I-HolyBook",
"I-Language",
"I-Angel",
"I-Person",
"I-Messenger",
"I-Prophet",
"I-AfterlifeLocation",
"I-GeographicalLocation",
"I-Color",
"I-Religion",
"I-Food",
"O",
]
BUILDER_CONFIGS = [
SEACrowdConfig(
name="indqner_source",
version=datasets.Version(_SOURCE_VERSION),
description="NER dataset from Indonesian translation Quran source schema",
schema="source",
subset_id="indqner",
),
SEACrowdConfig(
name="indqner_seacrowd_seq_label",
version=datasets.Version(_SOURCE_VERSION),
description="NER dataset from Indonesian translation Quran Nusantara schema",
schema="seacrowd_seq_label",
subset_id="indqner",
),
]
DEFAULT_CONFIG_NAME = "indqner_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]})
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(self.label_classes)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
data_files = {
"train": train_tsv_path,
"validation": validation_tsv_path,
"test": test_tsv_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": data_files["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]},
),
]
def _generate_examples(self, filepath: Path):
conll_dataset = load_conll_data(filepath)
if self.config.schema == "source":
for index, row in enumerate(conll_dataset):
ex = {"index": str(index), "tokens": row["sentence"], "ner_tag": row["label"]}
yield index, ex
elif self.config.schema == "seacrowd_seq_label":
for index, row in enumerate(conll_dataset):
ex = {"id": str(index), "tokens": row["sentence"], "labels": row["label"]}
yield index, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
|