File size: 11,042 Bytes
323cefc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40e23d8
323cefc
 
 
 
 
 
 
 
40e23d8
323cefc
 
 
 
 
 
 
 
40e23d8
323cefc
 
 
40e23d8
 
 
 
 
 
 
 
323cefc
 
 
40e23d8
323cefc
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using custom data configuration default\n"
     ]
    },
    {
     "ename": "ValueError",
     "evalue": "Neither summary nor summary_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-4-f443a2b7597a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_dataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'tasnim_daily.py'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/load.py\u001b[0m in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, task, streaming, **config_kwargs)\u001b[0m\n\u001b[1;32m    825\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    826\u001b[0m     \u001b[0;31m# Create a dataset builder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 827\u001b[0;31m     builder_instance = load_dataset_builder(\n\u001b[0m\u001b[1;32m    828\u001b[0m         \u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    829\u001b[0m         \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/load.py\u001b[0m in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, script_version, use_auth_token, **config_kwargs)\u001b[0m\n\u001b[1;32m    694\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    695\u001b[0m     \u001b[0;31m# Instantiate the dataset builder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 696\u001b[0;31m     builder_instance: DatasetBuilder = builder_cls(\n\u001b[0m\u001b[1;32m    697\u001b[0m         \u001b[0mcache_dir\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcache_dir\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    698\u001b[0m         \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/builder.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, writer_batch_size, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1012\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1013\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwriter_batch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1014\u001b[0;31m         \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mGeneratorBasedBuilder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1015\u001b[0m         \u001b[0;31m# Batch size used by the ArrowWriter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1016\u001b[0m         \u001b[0;31m# It defines the number of samples that are kept in memory before writing them\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/builder.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, cache_dir, name, hash, base_path, features, **config_kwargs)\u001b[0m\n\u001b[1;32m    245\u001b[0m         \u001b[0;31m# Prefill datasetinfo\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    246\u001b[0m         \u001b[0minfo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_exported_dataset_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 247\u001b[0;31m         \u001b[0minfo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    248\u001b[0m         \u001b[0minfo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuilder_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    249\u001b[0m         \u001b[0minfo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/.cache/huggingface/modules/datasets_modules/datasets/tasnim_daily/85730461349dc7dc0ea5b03f8817ec347c91f479b8c133a660d30be1d21bd00a/tasnim_daily.py\u001b[0m in \u001b[0;36m_info\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m     28\u001b[0m                 {\n\u001b[1;32m     29\u001b[0m                     \u001b[0;34m\"text\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mValue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"string\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 30\u001b[0;31m                     \u001b[0;34m\"summary\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mValue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"summary\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     31\u001b[0m                 }\n\u001b[1;32m     32\u001b[0m             ),\n",
      "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/features.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, dtype, id)\u001b[0m\n",
      "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/features.py\u001b[0m in \u001b[0;36m__post_init__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    263\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"float\"\u001b[0m\u001b[0;34m:\u001b[0m  \u001b[0;31m# fix inferred type\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    264\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"float32\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 265\u001b[0;31m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpa_type\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstring_to_arrow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    266\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    267\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/features.py\u001b[0m in \u001b[0;36mstring_to_arrow\u001b[0;34m(datasets_dtype)\u001b[0m\n\u001b[1;32m    131\u001b[0m     \u001b[0;32melif\u001b[0m \u001b[0mdatasets_dtype\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__dict__\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    132\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdatasets_dtype\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\"_\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__dict__\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 133\u001b[0;31m             raise ValueError(\n\u001b[0m\u001b[1;32m    134\u001b[0m                 \u001b[0;34mf\"Neither {datasets_dtype} nor {datasets_dtype + '_'} seems to be a pyarrow data type. \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    135\u001b[0m                 \u001b[0;34mf\"Please make sure to use a correct data type, see: \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mValueError\u001b[0m: Neither summary nor summary_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
     ]
    }
   ],
   "source": [
    "dataset = load_dataset('tasnim_daily.py')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_csv(\"sampleForClean.csv_clean.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "str"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "type(df.text[1])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}