blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 5
261
| content_id
stringlengths 40
40
| detected_licenses
sequencelengths 0
45
| license_type
stringclasses 2
values | repo_name
stringlengths 8
111
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 72
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 530k
616M
⌀ | star_events_count
int64 0
102k
| fork_events_count
int64 0
24.6k
| gha_license_id
stringclasses 9
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 40
values | src_encoding
stringclasses 10
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 2
classes | length_bytes
int64 11
4.05M
| extension
stringclasses 25
values | content
stringlengths 10
4.04M
| authors
sequencelengths 1
1
| author_id
stringclasses 578
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
fb2c64c0218df858e821204c4c485f29f4b33c74 | e0527bce5c53a196752d3a16adf50cb60754de5f | /10-How to Stop Programs Crashing Demos/3-is_square.py | 8bf01fcece7fa35279f95d25ece62fa140398965 | [] | no_license | ARWA-ALraddadi/python-tutorial-for-beginners | ddeb657f419fbc176bea273bc9fb6b88d1894191 | 21cedfc47871ca4d25c2382464c60ab0a2121205 | refs/heads/master | 2023-06-30T20:24:30.688000 | 2021-08-08T08:22:29 | 2021-08-08T08:22:29 | 193,094,651 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 3,066 | py | ################################################################
##
## As a demonstration of a function which applies defensive
## programming in different ways, consider a predicate
## which is intended to return True if a given natural
## number (i.e., a non-negative integer) is a square of
## another natural number.
##
## From this description the function could be "misused" in
## three ways:
##
## 1) It could be given a negative number.
## 2) It could be given a floating point number.
## 3) It could be given a value which is not a number at
## all.
##
## By adding some "defensive" code we can make a naive
## implementation more robust by responding appropriately
## to each of these cases:
##
## 1) A negative number can never be a square of another
## number, so we can always return False in this case.
## Here we choose to do so "silently", not drawing
## attention to the unexpected value at all, since the
## answer returned is still "correct" mathematically.
## 2) A positive floating point number could be a square of
## a natural number so, even though we're not required
## to handle floating point numbers we can still do so,
## but choose to generate a "warning" message in this
## case.
## 3) If the function is given a non-numerical value it
## is reasonable to assume that something is seriously
## wrong with the calling code, so in this case we
## generate an "error" message and return the special
## value None.
#---------------------------------------------------------
# Return True if the given natural number is the square of
# some other natural number
def is_square(natural_number):
from math import sqrt
# Three "defensive" checks follow
## # Check that the parameter is a number
## if not (isinstance(natural_number, int) or isinstance(natural_number, float)):
## print('ERROR - parameter must be numeric, given:', repr(natural_number))
## return None
##
## # Check that the parameter is positive
## if natural_number < 0:
## return False
##
## # Check that the parameter is a natural number
## if isinstance(natural_number, float):
## print('Warning - expected natural, given float:', natural_number)
# Return True if the number's square root is a whole number
return sqrt(natural_number) % 1 == 0
#---------------------------------------------------------
# Some tests
#
# The first of these tests is a "valid" one, but the remaining
# three all provide unexpected inputs. Uncommenting the
# "defensive" checks above will cause the function to respond
# appropriately. (It will crash until the defensive code is
# uncommented. Why?)
print(is_square(36)) # expected input
print()
print(is_square(-1)) # unexpected input, but handled silently
print()
print(is_square(225.0)) # unexpected input, handled with warning
print()
print(is_square('August')) # unexpected input, handled as an error
| [
"noreply@github.com"
] | noreply@github.com |
d44bbb217114c0831167824d694d57c29ab86665 | e3f3f911019ac126d01c056eafc7c3183107a5af | /Traffic Sign Detection/all_signs_combined/src/predict.py | 19ed9a428015b625610be9930dfee35938fb451b | [] | no_license | uncctrafficsigndetection/Traffic-Sign-Detection | 595258766f865c4b3c628b002d7b93a774168a9b | 3ff4be52357f4b6340fef94124f8c835ab66fd8a | refs/heads/master | 2020-04-09T20:28:33.910000 | 2018-12-05T21:29:50 | 2018-12-05T21:29:50 | 160,574,509 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 959 | py | import numpy as np
import time
from sample_model import Model
from data_loader import data_loader
from generator import Generator
checkpoint_dir='tf_data/sample_model'
X='C:/Users/Karthick/Desktop/cvproject/data/5/00000_00000.ppmspeed_2_.ppm'
M = Model(mode = 'test')
yhat = M.predict(X = X, checkpoint_dir = checkpoint_dir)
# save_dir="C:/Users/Karthick/Desktop/cvproject/speedlimitckp/"
# #saver = tf.train.Saver()
# sess = tf.Session()
# saver = tf.train.import_meta_graph('C:/Users/Karthick/Desktop/cvproject/src/tf_data/sample_model/model_epoch70.ckpt.meta')
# saver.restore(sess,tf.train.latest_checkpoint('C:/Users/Karthick/Desktop/cvproject/src/tf_data/sample_model/'))
# #checkpoint_name = tf.train.latest_checkpoint(save_dir)
# #saver.restore(sess, checkpoint_name)
# yhat_numpy = sess.run(yhat, feed_dict = {X : X, keep_prob: 1.0})
# print(yhat_numpy)
# #C:/Users/Karthick/Desktop/cvproject/src/tf_data/sample_model | [
"noreply@github.com"
] | noreply@github.com |
948e7570c22e3a814efc70ef208bb5769a7b3ba1 | f2568af5aacdb3045f8dd20ec2fd91e395ba57d1 | /createmylvm.py | a2bcdb8ebcc803398d9d04adf65faf10eb88ceef | [] | no_license | shubhambhardwaj007/lvm-automation | e93d9efe61e9951710dc5ee6579ef01d139304e3 | e446f794fc05d1f3dac8e152d428cfc9657b817e | refs/heads/master | 2023-03-26T02:07:51.421000 | 2021-03-27T19:51:46 | 2021-03-27T19:51:46 | 352,161,993 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,070 | py |
import subprocess
def createmylv():
print(subprocess.getoutput('lsblk'))
device = input("Choose the devices for PV separated by space in between : ").split(" ")
for i in device:
pvcreate = subprocess.getstatusoutput("pvcreate {0}".format(i))
if pvcreate[0] == 0:
print("{0} pv created".format(i))
else:
print("{0} pv failed".format(i))
vgname = input("Enter VG name: ")
x= ' '.join(device)
vgcreate = subprocess.getstatusoutput("vgcreate {0} {1}".format(vgname,x))
lvname = input("Enter LV name: ")
size = input("Enter Size of LV: ")
lvcreate = subprocess.getstatusoutput("lvcreate --size {0} --name {1} {2}".format(size,lvname,vgname))
mount = input("Enter the mountpoint: ")
formating = subprocess.getstatusoutput("mkfs.ext4 /dev/{0}/{1}".format(vgname,lvname))
mount_path = subprocess.getstatusoutput("mount /dev/{0}/{1} {2}".format(vgname,lvname,mount))
if mount_path[0] == 0:
print("Done")
else:
print("Can't mount")
createlv()
| [
"noreply@github.com"
] | noreply@github.com |
c7e2d80388cbe425136e01a06bdb2ea24fa604c6 | 9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97 | /sdBs/AllRun/sdssj9-10_163557.64+341427.0/sdB_sdssj9-10_163557.64+341427.0_coadd.py | 39e21f206956741881cd664d37e0bb5ecdba667f | [] | no_license | tboudreaux/SummerSTScICode | 73b2e5839b10c0bf733808f4316d34be91c5a3bd | 4dd1ffbb09e0a599257d21872f9d62b5420028b0 | refs/heads/master | 2021-01-20T18:07:44.723000 | 2016-08-08T16:49:53 | 2016-08-08T16:49:53 | 65,221,159 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 498 | py | from gPhoton.gMap import gMap
def main():
gMap(band="NUV", skypos=[248.990167,34.240833], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_sdssj9-10_163557.64+341427.0/sdB_sdssj9-10_163557.64+341427.0_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_sdssj9-10_163557.64+341427.0/sdB_sdssj9-10_163557.64+341427.0_count_coadd.fits", overwrite=True, verbose=3)
if __name__ == "__main__":
main()
| [
"thomas@boudreauxmail.com"
] | thomas@boudreauxmail.com |
f82a7850addf3773f1ce92a89e4d51f96cf3f763 | 487ce91881032c1de16e35ed8bc187d6034205f7 | /codes/CodeJamCrawler/16_0_2_neat/16_0_2_tkdkop_pancake.py | 259ec04a68548d92ceed7f438162fc6b46baa760 | [] | no_license | DaHuO/Supergraph | 9cd26d8c5a081803015d93cf5f2674009e92ef7e | c88059dc66297af577ad2b8afa4e0ac0ad622915 | refs/heads/master | 2021-06-14T16:07:52.405000 | 2016-08-21T13:39:13 | 2016-08-21T13:39:13 | 49,829,508 | 2 | 0 | null | 2021-03-19T21:55:46 | 2016-01-17T18:23:00 | Python | UTF-8 | Python | false | false | 286 | py | #!/usr/bin/env python
import sys
import itertools
m = sys.stdin.readline()
i = 0
for line in sys.stdin.readlines():
line = line.strip()
i += 1
out_str = "Case #%d: " % i
line += '+'
k = itertools.groupby(line)
out_str += str(len(list(k))-1)
print out_str
| [
"[dhuo@tcd.ie]"
] | [dhuo@tcd.ie] |
4723c6f7c093e3989d133cebab10e0c13bf512a0 | ca7aa979e7059467e158830b76673f5b77a0f5a3 | /Python_codes/p03997/s926418877.py | acd277945016fcae9d48adcc8806653b1aeeec5f | [] | no_license | Aasthaengg/IBMdataset | 7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901 | f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8 | refs/heads/main | 2023-04-22T10:22:44.763000 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 58 | py | a,b,c,d=eval('['+'int(input()),'*3+'0]');print((a+b)*c//2) | [
"66529651+Aastha2104@users.noreply.github.com"
] | 66529651+Aastha2104@users.noreply.github.com |
9567422e1472a65046cf8160b1bdae8fbcf7dcd3 | 080c13cd91a073457bd9eddc2a3d13fc2e0e56ae | /MY_REPOS/awesome-4-new-developers/tensorflow-master/tensorflow/python/types/internal.py | c56c7aa6d7790b4c36d248603f2282e60af08a39 | [
"Apache-2.0"
] | permissive | Portfolio-Projects42/UsefulResourceRepo2.0 | 1dccc8961a09347f124d3ed7c27c6d73b9806189 | 75b1e23c757845b5f1894ebe53551a1cf759c6a3 | refs/heads/master | 2023-08-04T12:23:48.862000 | 2021-09-15T12:51:35 | 2021-09-15T12:51:35 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,129 | py | # Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Types internal to TensorFlow.
These types should not be exported. External code should not rely on these.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# TODO(mdan): Is this strictly needed? Only ops.py really uses it.
class NativeObject(object):
"""Types natively supported by various TF operations.
The most notable example of NativeObject is Tensor.
"""
| [
"bryan.guner@gmail.com"
] | bryan.guner@gmail.com |
91781778b2e281bd6402914cfd6ee441e7a46194 | fe17c327916695ca3f21c0f9bb85396237be3125 | /DSA_in_python/DSA_BST.py | a8068494dc2cb5cb28703d631d7f490f052d2915 | [] | no_license | tanmay6414/Python | d222255f3b4e60b42c7bed7613f11ef449ebc00e | 54659aebe0ed15f722cd469d10a42cea82f6c7f6 | refs/heads/master | 2021-07-12T18:26:59.590000 | 2020-08-20T08:15:11 | 2020-08-20T08:15:11 | 195,175,648 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,732 | py | class Node:
def __init__(self,value):
self.left = None
self.right = None
self.value = value
class BST:
def __init__(self):
self.root = None
def insert( self, node, value):
# If the tree is empty, return a new node
if node is None:
return Node(value)
# Otherwise recur down the tree
if value < node.value:
node.left = self.insert(node.left, value)
else:
node.right = self.insert(node.right, value)
# return the (unchanged) node pointer
return node
def inorder(self,root):
if root:
self.inorder(root.left)
print(root.value)
self.inorder(root.right)
def preorder(self,root):
if root:
print(root.value)
self.preorder(root.left)
self.preorder(root.right)
def postorder(self,root):
if root:
self.postorder(root.left)
self.preorder(root.right)
print(root.value)
def minval_node(self,node):
current = node
while(current.left is not None):
current = current.left
return current
def deleteNode(self,root,value):
if root is None:
return root
if value<root.value:
root.left = self.deleteNode(root.left,value)
elif(value > root.value):
root.right = self.deleteNode(root.right,value)
else:
if root.left is None:
temp = root.right
root = None
return temp
elif root.right is None:
temp = root.right
root = None
return temp
temp = self.minval_node(root.right)
root.value = temp.value
root.right = self.deleteNode(root.right, temp.value)
print(value," deleted")
return root
def search(self,value):
if self.root!=None:
return self._search(value,self.root)
else:
return False
def _search(self,value,node):
if value==node.value:
return True
elif value<node.value and node.left != None:
self._search(value, node.left)
elif value>node.value and node.right != None:
self._search(value, node.right)
return False
print("*"*25, "Delete Node BST", "*"*25)
root = Node(50)
s = BST()
s.insert(root,40)
s.insert(root,30)
s.insert(root,4)
s.insert(root,78)
print("\nInorder :")
s.inorder(root)
print("\nPostorder :")
s.postorder(root)
print("\nPreorder :")
s.preorder(root)
print("\n\tSearch Result :",s.search(50))
print("\n")
s.deleteNode(root,30)
print("\n")
s.preorder(root)
| [
"noreply@github.com"
] | noreply@github.com |
808ac7632e66327e3f8d1fe634dab41d619f065e | 786de89be635eb21295070a6a3452f3a7fe6712c | /CorAna/tags/V00-00-04/src/ConfigParametersCorAna.py | 8baf5f326ca6758d621cc3f9f8cf43ac75c28720 | [] | no_license | connectthefuture/psdmrepo | 85267cfe8d54564f99e17035efe931077c8f7a37 | f32870a987a7493e7bf0f0a5c1712a5a030ef199 | refs/heads/master | 2021-01-13T03:26:35.494000 | 2015-09-03T22:22:11 | 2015-09-03T22:22:11 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 31,606 | py | #--------------------------------------------------------------------------
# File and Version Information:
# $Id$
#
# Description:
# Module ConfigParametersCorAna...
#
#------------------------------------------------------------------------
"""Is intended as a storage for configuration parameters for CorAna project.
This software was developed for the LCLS project. If you use all or
part of it, please give an appropriate acknowledgment.
@version $Id: template!python!py 4 2008-10-08 19:27:36Z salnikov $
@author Mikhail S. Dubrovin
"""
#------------------------------
# Module's version from CVS --
#------------------------------
__version__ = "$Revision: 4 $"
# $Source$
#--------------------------------
# Imports of standard modules --
#--------------------------------
import sys
import os
from copy import deepcopy
#-----------------------------
# Imports for other modules --
#-----------------------------
#import ConfigParameters as cpbase
from ConfigParameters import * # ConfigParameters
from Logger import logger
from PyQt4 import QtGui # for icons only...
import AppDataPath as apputils # for icons
#---------------------
# Class definition --
#---------------------
class ConfigParametersCorAna ( ConfigParameters ) :
"""Is intended as a storage for configuration parameters for CorAna project.
#@see BaseClass ConfigParameters
#@see OtherClass Parameters
"""
list_pars = []
def __init__ ( self, fname=None ) :
"""Constructor.
@param fname the file name with configuration parameters, if not specified then it will be set to the default value at declaration.
"""
ConfigParameters.__init__(self)
self.declareCorAnaParameters()
self.readParametersFromFile ( fname )
self.initRunTimeParameters()
self.defineStyles()
def initRunTimeParameters( self ) :
self.char_expand = u' \u25BE' # down-head triangle
self.iconsAreLoaded = False
self.plotarray_is_on = False
self.plotg2_is_on = False
self.autoRunStatus = 0 # 0=inctive, 1=split, 2=process, 3=merge
#self.plotimgspe = None
self.plotimgspe_g = None
#-----------------------------
def setIcons(self) :
if self.iconsAreLoaded : return
self.iconsAreLoaded = True
path_icon_contents = apputils.AppDataPath('CorAna/icons/contents.png').path()
path_icon_mail_forward = apputils.AppDataPath('CorAna/icons/mail-forward.png').path()
path_icon_button_ok = apputils.AppDataPath('CorAna/icons/button_ok.png').path()
path_icon_button_cancel = apputils.AppDataPath('CorAna/icons/button_cancel.png').path()
path_icon_exit = apputils.AppDataPath('CorAna/icons/exit.png').path()
path_icon_home = apputils.AppDataPath('CorAna/icons/home.png').path()
path_icon_redo = apputils.AppDataPath('CorAna/icons/redo.png').path()
path_icon_undo = apputils.AppDataPath('CorAna/icons/undo.png').path()
path_icon_reload = apputils.AppDataPath('CorAna/icons/reload.png').path()
path_icon_save = apputils.AppDataPath('CorAna/icons/save.png').path()
path_icon_save_cfg = apputils.AppDataPath('CorAna/icons/fileexport.png').path()
path_icon_edit = apputils.AppDataPath('CorAna/icons/edit.png').path()
path_icon_browser = apputils.AppDataPath('CorAna/icons/fileopen.png').path()
path_icon_monitor = apputils.AppDataPath('CorAna/icons/icon-monitor.png').path()
path_icon_unknown = apputils.AppDataPath('CorAna/icons/icon-unknown.png').path()
path_icon_logviewer = apputils.AppDataPath('CorAna/icons/logviewer.png').path()
path_icon_locked = apputils.AppDataPath('CorAna/icons/locked-icon.png').path()
path_icon_unlocked = apputils.AppDataPath('CorAna/icons/unlocked-icon.png').path()
self.icon_contents = QtGui.QIcon(path_icon_contents )
self.icon_mail_forward = QtGui.QIcon(path_icon_mail_forward)
self.icon_button_ok = QtGui.QIcon(path_icon_button_ok)
self.icon_button_cancel = QtGui.QIcon(path_icon_button_cancel)
self.icon_exit = QtGui.QIcon(path_icon_exit )
self.icon_home = QtGui.QIcon(path_icon_home )
self.icon_redo = QtGui.QIcon(path_icon_redo )
self.icon_undo = QtGui.QIcon(path_icon_undo )
self.icon_reload = QtGui.QIcon(path_icon_reload )
self.icon_save = QtGui.QIcon(path_icon_save )
self.icon_save_cfg = QtGui.QIcon(path_icon_save_cfg )
self.icon_edit = QtGui.QIcon(path_icon_edit )
self.icon_browser = QtGui.QIcon(path_icon_browser )
self.icon_monitor = QtGui.QIcon(path_icon_monitor )
self.icon_unknown = QtGui.QIcon(path_icon_unknown )
self.icon_logviewer = QtGui.QIcon(path_icon_logviewer)
self.icon_lock = QtGui.QIcon(path_icon_locked )
self.icon_unlock = QtGui.QIcon(path_icon_unlocked )
#base_dir = '/usr/share/icons/Bluecurve/24x24/'
#self.icon_contents = QtGui.QIcon(base_dir + 'actions/contents.png')
#self.icon_mail_forward = QtGui.QIcon(base_dir + '../../gnome/24x24/actions/mail-forward.png')
#self.icon_button_ok = QtGui.QIcon(base_dir + 'actions/button_ok.png')
#self.icon_button_cancel = QtGui.QIcon(base_dir + 'actions/button_cancel.png')
#self.icon_exit = QtGui.QIcon(base_dir + 'actions/exit.png')
#self.icon_home = QtGui.QIcon(base_dir + 'actions/gohome.png')
#self.icon_redo = QtGui.QIcon(base_dir + 'actions/redo.png')
#self.icon_undo = QtGui.QIcon(base_dir + 'actions/undo.png')
#self.icon_reload = QtGui.QIcon(base_dir + 'actions/reload.png')
#self.icon_stop = QtGui.QIcon(base_dir + 'actions/stop.png')
#self.icon_save_cfg = QtGui.QIcon(base_dir + 'actions/fileexport.png')
#self.icon_save = QtGui.QIcon(base_dir + 'stock/stock-save.png')
#self.icon_edit = QtGui.QIcon(base_dir + 'actions/edit.png')
#self.icon_browser = QtGui.QIcon(base_dir + 'actions/fileopen.png')
#self.icon_monitor = QtGui.QIcon(base_dir + 'apps/icon-monitor.png')
#self.icon_unknown = QtGui.QIcon(base_dir + 'apps/icon-unknown.png')
#self.icon_logviewer = QtGui.QIcon(base_dir + '../32x32/apps/logviewer.png')
self.icon_logger = self.icon_edit
self.icon_help = self.icon_unknown
self.icon_reset = self.icon_reload
#-----------------------------
def declareCorAnaParameters( self ) :
# Possible typs for declaration : 'str', 'int', 'long', 'float', 'bool'
# GUIInstrExpRun.py.py
# self.fname_cp = self.declareParameter( name='FNAME_CONFIG_PARS', val_def='confpars.txt', type='str' )
# self.fname_ped = self.declareParameter( name='FNAME_PEDESTALS', val_def='my_ped.txt', type='str' )
# self.fname_dat = self.declareParameter( name='FNAME_DATA', val_def='my_dat.txt', type='str' )
# self.instr_dir = self.declareParameter( name='INSTRUMENT_DIR', val_def='/reg/d/psdm', type='str' )
# self.instr_name = self.declareParameter( name='INSTRUMENT_NAME', val_def='XCS', type='str' )
# self.exp_name = self.declareParameter( name='EXPERIMENT_NAME', val_def='xcsi0112', type='str' )
# self.str_run_number = self.declareParameter( name='RUN_NUMBER', val_def='0015', type='str' )
# self.str_run_number_dark= self.declareParameter( name='RUN_NUMBER_DARK', val_def='0014', type='str' )
# GUIMainTB.py
# GUIMainSplit.py
self.current_tab = self.declareParameter( name='CURRENT_TAB' , val_def='Files', type='str' )
# GUILogger.py
self.log_level = self.declareParameter( name='LOG_LEVEL_OF_MSGS', val_def='info', type='str' )
# GUIFiles.py
self.current_file_tab = self.declareParameter( name='CURRENT_FILE_TAB' , val_def='Work/Results', type='str' )
# GUIRun.py
self.current_run_tab = self.declareParameter( name='CURRENT_RUN_TAB' , val_def='Input', type='str' )
# GUIWorkResDirs.py
self.dir_work = self.declareParameter( name='DIRECTORY_WORK', val_def='./work', type='str' )
self.dir_results = self.declareParameter( name='DIRECTORY_RESULTS', val_def='./results', type='str' )
self.fname_prefix = self.declareParameter( name='FILE_NAME_PREFIX', val_def='cora-', type='str' )
self.fname_prefix_cora = self.declareParameter( name='FILE_NAME_PREFIX_CORA', val_def='cora-proc', type='str' )
# GUIDark.py
self.use_dark_xtc_all = self.declareParameter( name='USE_DARK_XTC_ALL_CHUNKS', val_def=True, type='bool' )
self.in_dir_dark = self.declareParameter( name='IN_DIRECTORY_DARK', val_def='/reg/d/psdm/XCS/xcsi0112/xtc',type='str' )
self.in_file_dark = self.declareParameter( name='IN_FILE_NAME_DARK', val_def='e167-r0020-s00-c00.xtc',type='str' )
# GUIFlatField.py
self.ccdcorr_flatfield = self.declareParameter( name='CCD_CORRECTION_FLATFIELD', val_def=False, type='bool' )
self.dname_flat = self.declareParameter( name='DIRECTORY_FLAT', val_def='.',type='str' )
self.fname_flat = self.declareParameter( name='FILE_NAME_FLAT', val_def='flat_field.txt',type='str' )
#self.in_dir_flat = self.declareParameter( name='IN_DIRECTORY_FLAT', val_def='/reg/d/psdm/XCS/xcsi0112/xtc',type='str' )
#self.in_file_flat = self.declareParameter( name='IN_FILE_NAME_FLAT', val_def='e167-r0020-s00-c00.xtc',type='str' )
# GUIBlemish.py
self.ccdcorr_blemish = self.declareParameter( name='CCD_CORRECTION_BLEMISH', val_def=False, type='bool' )
self.dname_blem = self.declareParameter( name='DIRECTORY_BLEM', val_def='.',type='str' )
self.fname_blem = self.declareParameter( name='FILE_NAME_BLEM', val_def='blemish.txt',type='str' )
#self.in_dir_blem = self.declareParameter( name='IN_DIRECTORY_BLEM', val_def='/reg/d/psdm/XCS/xcsi0112/xtc',type='str' )
#self.in_file_blem = self.declareParameter( name='IN_FILE_NAME_BLEM', val_def='e167-r0020-s00-c00.xtc',type='str' )
# GUIData.py
self.use_data_xtc_all = self.declareParameter( name='USE_DATA_XTC_ALL_CHUNKS', val_def=True, type='bool' )
self.is_active_data_gui = self.declareParameter( name='IS_ACTIVE_DATA_GUI', val_def=True, type='bool' )
self.in_dir_data = self.declareParameter( name='IN_DIRECTORY_DATA', val_def='/reg/d/psdm/XCS/xcsi0112/xtc',type='str' )
self.in_file_data = self.declareParameter( name='IN_FILE_NAME_DATA', val_def='e167-r0020-s00-c00.xtc',type='str' )
# GUISetupBeamZero.py
self.x_coord_beam0 = self.declareParameter( name='X_COORDINATE_BEAM_ZERO', val_def=1234.5, type='float' )
self.y_coord_beam0 = self.declareParameter( name='Y_COORDINATE_BEAM_ZERO', val_def=1216.5, type='float' )
self.x0_pos_in_beam0 = self.declareParameter( name='X_CCD_POS_IN_BEAM_ZERO', val_def=-59, type='float' )
self.y0_pos_in_beam0 = self.declareParameter( name='Y_CCD_POS_IN_BEAM_ZERO', val_def=175, type='float' )
# GUISetupSpecular.py
self.x_coord_specular = self.declareParameter( name='X_COORDINATE_SPECULAR', val_def=-1, type='float' )
self.y_coord_specular = self.declareParameter( name='Y_COORDINATE_SPECULAR', val_def=-2, type='float' )
self.x0_pos_in_specular = self.declareParameter( name='X_CCD_POS_IN_SPECULAR', val_def=-3, type='float' )
self.y0_pos_in_specular = self.declareParameter( name='Y_CCD_POS_IN_SPECULAR', val_def=-4, type='float' )
# GUISetupData.py
self.x0_pos_in_data = self.declareParameter( name='X_CCD_POS_IN_DATA', val_def=-51, type='float' )
self.y0_pos_in_data = self.declareParameter( name='Y_CCD_POS_IN_DATA', val_def=183, type='float' )
# GUISetupInfoLeft.py
self.sample_det_dist = self.declareParameter( name='SAMPLE_TO_DETECTOR_DISTANCE', val_def=4000.1, type='float' )
self.exp_setup_geom = self.declareParameter( name='EXP_SETUP_GEOMETRY', val_def='Baem Zero', type='str' )
self.photon_energy = self.declareParameter( name='PHOTON_ENERGY', val_def=7.6543, type='float' )
self.nominal_angle = self.declareParameter( name='NOMINAL_ANGLE', val_def=-1, type='float' )
self.real_angle = self.declareParameter( name='REAL_ANGLE', val_def=-1, type='float' )
# GUIImgSizePosition.py
self.col_begin = self.declareParameter( name='IMG_COL_BEGIN', val_def=0, type='int' )
self.col_end = self.declareParameter( name='IMG_COL_END', val_def=1339, type='int' )
self.row_begin = self.declareParameter( name='IMG_ROW_BEGIN', val_def=1, type='int' )
self.row_end = self.declareParameter( name='IMG_ROW_END', val_def=1299, type='int' )
# GUIKineticMode.py
self.kin_mode = self.declareParameter( name='KINETICS_MODE', val_def='Non-Kinetics',type='str' )
self.kin_win_size = self.declareParameter( name='KINETICS_WIN_SIZE', val_def=1, type='int' )
self.kin_top_row = self.declareParameter( name='KINETICS_TOP_ROW', val_def=2, type='int' )
self.kin_slice_first = self.declareParameter( name='KINETICS_SLICE_FIRST', val_def=3, type='int' )
self.kin_slice_last = self.declareParameter( name='KINETICS_SLICE_LAST', val_def=4, type='int' )
# GUISetupPars.py
self.bat_num = self.declareParameter( name='BATCH_NUM', val_def= 1, type='int' )
self.bat_num_max = self.declareParameter( name='BATCH_NUM_MAX', val_def= 9, type='int' )
#self.bat_data_is_used = self.declareParameter( name='BATCH_DATA_IS_USED', val_def=True, type='bool' )
self.bat_data_start = self.declareParameter( name='BATCH_DATA_START', val_def= 1, type='int' )
self.bat_data_end = self.declareParameter( name='BATCH_DATA_END' , val_def=-1, type='int' )
self.bat_data_total = self.declareParameter( name='BATCH_DATA_TOTAL', val_def=-1, type='int' )
self.bat_data_time = self.declareParameter( name='BATCH_DATA_TIME' , val_def=-1.0, type='float' )
self.bat_data_dt_ave = self.declareParameter( name='BATCH_DATA_DT_AVE', val_def=-1.0, type='float' )
self.bat_data_dt_rms = self.declareParameter( name='BATCH_DATA_DT_RMS', val_def=0.0, type='float' )
self.bat_dark_is_used = self.declareParameter( name='BATCH_DARK_IS_USED', val_def=True, type='bool' )
self.bat_dark_start = self.declareParameter( name='BATCH_DARK_START', val_def= 1, type='int' )
self.bat_dark_end = self.declareParameter( name='BATCH_DARK_END' , val_def=-1, type='int' )
self.bat_dark_total = self.declareParameter( name='BATCH_DARK_TOTAL', val_def=-1, type='int' )
self.bat_dark_time = self.declareParameter( name='BATCH_DARK_TIME' , val_def=-1.0, type='float' )
self.bat_dark_dt_ave = self.declareParameter( name='BATCH_DARK_DT_AVE', val_def=-1.0, type='float' )
self.bat_dark_dt_rms = self.declareParameter( name='BATCH_DARK_DT_RMS', val_def=0.0, type='float' )
#self.bat_flat_is_used = self.declareParameter( name='BATCH_FLAT_IS_USED', val_def=True, type='bool' )
self.bat_flat_start = self.declareParameter( name='BATCH_FLAT_START', val_def= 1, type='int' )
self.bat_flat_end = self.declareParameter( name='BATCH_FLAT_END' , val_def=-1, type='int' )
self.bat_flat_total = self.declareParameter( name='BATCH_FLAT_TOTAL', val_def=-1, type='int' )
self.bat_flat_time = self.declareParameter( name='BATCH_FLAT_TIME' , val_def=-1.0, type='float' )
self.bat_queue = self.declareParameter( name='BATCH_QUEUE', val_def='psfehq', type='str' )
self.bat_det_info = self.declareParameter( name='BATCH_DET_INFO', val_def='DetInfo(:Princeton)', type='str' )
#self.bat_det_info = self.declareParameter( name='BATCH_DET_INFO', val_def='DetInfo(XcsBeamline.0:Princeton.0)', type='str' )
self.bat_img_rec_mod = self.declareParameter( name='BATCH_IMG_REC_MODULE', val_def='ImgAlgos.PrincetonImageProducer', type='str' )
# BatchLogParser.py
self.bat_img_rows = self.declareParameter( name='BATCH_IMG_ROWS', val_def= -1, type='int' )
self.bat_img_cols = self.declareParameter( name='BATCH_IMG_COLS', val_def= -1, type='int' )
self.bat_img_size = self.declareParameter( name='BATCH_IMG_SIZE', val_def= -1, type='int' )
self.bat_img_nparts = self.declareParameter( name='BATCH_IMG_NPARTS', val_def= 8, type='int' )
# GUIAnaSettingsLeft.py
self.ana_type = self.declareParameter( name='ANA_TYPE', val_def='Static',type='str' )
self.ana_stat_meth_q = self.declareParameter( name='ANA_STATIC_METHOD_Q', val_def='evenly-spaced',type='str' )
self.ana_stat_meth_phi = self.declareParameter( name='ANA_STATIC_METHOD_PHI', val_def='evenly-spaced',type='str' )
self.ana_dyna_meth_q = self.declareParameter( name='ANA_DYNAMIC_METHOD_Q', val_def='evenly-spaced',type='str' )
self.ana_dyna_meth_phi = self.declareParameter( name='ANA_DYNAMIC_METHOD_PHI', val_def='evenly-spaced',type='str' )
self.ana_stat_part_q = self.declareParameter( name='ANA_STATIC_PARTITION_Q', val_def='1',type='str' )
self.ana_stat_part_phi = self.declareParameter( name='ANA_STATIC_PARTITION_PHI', val_def='2',type='str' )
self.ana_dyna_part_q = self.declareParameter( name='ANA_DYNAMIC_PARTITION_Q', val_def='3',type='str' )
self.ana_dyna_part_phi = self.declareParameter( name='ANA_DYNAMIC_PARTITION_PHI', val_def='4',type='str' )
self.ana_mask_type = self.declareParameter( name='ANA_MASK_TYPE', val_def='no-mask',type='str' )
self.ana_mask_fname = self.declareParameter( name='ANA_MASK_FILE', val_def='./roi-mask.txt',type='str' )
self.ana_mask_dname = self.declareParameter( name='ANA_MASK_DIRECTORY', val_def='.',type='str' )
# GUIAnaSettingsRight.py
self.ana_ndelays = self.declareParameter( name='ANA_NDELAYS_PER_MTAU_LEVEL', val_def=4, type='int' )
self.ana_nslice_delays = self.declareParameter( name='ANA_NSLICE_DELAYS_PER_MTAU_LEVEL', val_def=4, type='int' )
self.ana_npix_to_smooth= self.declareParameter( name='ANA_NPIXELS_TO_SMOOTH', val_def=100, type='int' )
self.ana_smooth_norm = self.declareParameter( name='ANA_SMOOTH_SYM_NORM', val_def=False, type='bool' )
self.ana_two_corfuns = self.declareParameter( name='ANA_TWO_TIME_CORFUNS_CONTROL', val_def=False, type='bool' )
self.ana_spec_stab = self.declareParameter( name='ANA_CHECK_SPECKLE_STABILITY', val_def=False, type='bool' )
self.lld_type = self.declareParameter( name='LOW_LEVEL_DISC_TYPE', val_def='NONE',type='str' )
self.lld_adu = self.declareParameter( name='LOW_LEVEL_DISC_ADU', val_def=15, type='float' )
self.lld_rms = self.declareParameter( name='LOW_LEVEL_DISC_RMS', val_def=4, type='float' )
self.res_ascii_out = self.declareParameter( name='RES_ASCII_OUTPUT', val_def=True, type='bool' )
self.res_fit1 = self.declareParameter( name='RES_PERFORM_FIT1', val_def=False, type='bool' )
self.res_fit2 = self.declareParameter( name='RES_PERFORM_FIT1', val_def=False, type='bool' )
self.res_fit_cust = self.declareParameter( name='RES_PERFORM_FIT_CUSTOM', val_def=False, type='bool' )
self.res_png_out = self.declareParameter( name='RES_PNG_FILES', val_def=False, type='bool' )
self.res_save_log = self.declareParameter( name='RES_SAVE_LOG_FILE', val_def=False, type='bool' )
# GUILoadResults.py
self.res_load_mode = self.declareParameter( name='RES_LOAD_MODE', val_def='NONE',type='str' )
self.res_fname = self.declareParameter( name='RES_LOAD_FNAME', val_def='NONE',type='str' )
# GUISystemSettingsRight.py
self.thickness_type = self.declareParameter( name='THICKNESS_TYPE', val_def='NONORM',type='str' )
self.thickness_sample = self.declareParameter( name='THICKNESS_OF_SAMPLE', val_def=-1, type='float' )
self.thickness_attlen = self.declareParameter( name='THICKNESS_ATTENUATION_LENGTH', val_def=-2, type='float' )
self.ccd_orient = self.declareParameter( name='CCD_ORIENTATION', val_def='180', type='str' )
self.y_is_flip = self.declareParameter( name='Y_IS_FLIPPED', val_def='True', type='bool' )
# GUICCDSettings.py
self.ccdset_pixsize = self.declareParameter( name='CCD_SETTINGS_PIXEL_SIZE', val_def=0.1, type='float' )
self.ccdset_adcsatu = self.declareParameter( name='CCD_SETTINGS_ADC_SATTURATION', val_def=12345, type='int' )
self.ccdset_aduphot = self.declareParameter( name='CCD_SETTINGS_ADU_PER_PHOTON', val_def=123, type='float' )
self.ccdset_ccdeff = self.declareParameter( name='CCD_SETTINGS_EFFICIENCY', val_def=0.55, type='float' )
self.ccdset_ccdgain = self.declareParameter( name='CCD_SETTINGS_GAIN', val_def=0.8, type='float' )
# GUIELogPostingDialog.py
# GUIELogPostingFields.py
#self.elog_post_cbx_state = self.declareParameter( name='ELOG_POST_CBX_STATE', val_def=True, type='bool' )
self.elog_post_rad = self.declareParameter( name='ELOG_POST_RAD_STATE', val_def='Default', type='str' )
self.elog_post_ins = self.declareParameter( name='ELOG_POST_INSTRUMENT', val_def='AMO', type='str' )
self.elog_post_exp = self.declareParameter( name='ELOG_POST_EXPERIMENT', val_def='amodaq09', type='str' )
self.elog_post_run = self.declareParameter( name='ELOG_POST_RUN', val_def='825', type='str' )
self.elog_post_tag = self.declareParameter( name='ELOG_POST_TAG', val_def='TAG1', type='str' )
self.elog_post_res = self.declareParameter( name='ELOG_POST_RESPONCE', val_def='None', type='str' )
self.elog_post_msg = self.declareParameter( name='ELOG_POST_MESSAGE', val_def='EMPTY MSG', type='str' )
self.elog_post_att = self.declareParameter( name='ELOG_POST_ATTACHED_FILE', val_def='None', type='str' )
#GUIViewControl.py
self.vc_cbx_show_more = self.declareParameter( name='SHOW_MORE_BUTTONS', val_def=True, type='bool' )
#-----------------------------
imon_names = [ ('BldInfo(FEEGasDetEnergy)', None ,'str'), \
('BldInfo(XCS-IPM-02)', None ,'str'), \
('BldInfo(XCS-IPM-mono)', None ,'str'), \
('DetInfo(XcsBeamline.1:Ipimb.4)', None ,'str'), \
('DetInfo(XcsBeamline.1:Ipimb.5)', None ,'str') ]
self.imon_name_list = self.declareListOfPars( 'IMON_NAMES', imon_names )
#-----------------------------
imon_short_names = [ ('FEEGasDetEnergy', None ,'str'), \
('XCS-IPM-02', None ,'str'), \
('XCS-IPM-mono', None ,'str'), \
('Ipimb.4', None ,'str'), \
('Ipimb.5', None ,'str') ]
self.imon_short_name_list = self.declareListOfPars( 'IMON_SHORT_NAMES', imon_short_names )
#-----------------------------
imon_cbxs = [ (True, True ,'bool'), \
(True, True ,'bool'), \
(True, True ,'bool'), \
(True, True ,'bool'), \
(True, True ,'bool') ]
self.imon_ch1_list = self.declareListOfPars( 'IMON_CH1', deepcopy(imon_cbxs) )
self.imon_ch2_list = self.declareListOfPars( 'IMON_CH2', deepcopy(imon_cbxs) )
self.imon_ch3_list = self.declareListOfPars( 'IMON_CH3', deepcopy(imon_cbxs) )
self.imon_ch4_list = self.declareListOfPars( 'IMON_CH4', deepcopy(imon_cbxs) )
#-----------------------------
imon_norm_cbx = [ (False, False ,'bool'), \
(False, False ,'bool'), \
(False, False ,'bool'), \
(False, False ,'bool'), \
(False, False ,'bool') ]
self.imon_norm_cbx_list = self.declareListOfPars( 'IMON_NORM_CBX', imon_norm_cbx )
#-----------------------------
imon_sele_cbx = [ (False, False ,'bool'), \
(False, False ,'bool'), \
(False, False ,'bool'), \
(False, False ,'bool'), \
(False, False ,'bool') ]
self.imon_sele_cbx_list = self.declareListOfPars( 'IMON_SELE_CBX', imon_sele_cbx )
#-----------------------------
imon_sele_min = [ (-1., -1. ,'float'), \
(-1., -1. ,'float'), \
(-1., -1. ,'float'), \
(-1., -1. ,'float'), \
(-1., -1. ,'float') ]
self.imon_sele_min_list = self.declareListOfPars( 'IMON_SELE_MIN', imon_sele_min )
#-----------------------------
imon_sele_max = [ (-1., -1. ,'float'), \
(-1., -1. ,'float'), \
(-1., -1. ,'float'), \
(-1., -1. ,'float'), \
(-1., -1. ,'float') ]
self.imon_sele_max_list = self.declareListOfPars( 'IMON_SELE_MAX', imon_sele_max )
#-----------------------------
self.imon_pars_list = zip( self.imon_name_list,
self.imon_ch1_list,
self.imon_ch2_list,
self.imon_ch3_list,
self.imon_ch4_list,
self.imon_norm_cbx_list,
self.imon_sele_cbx_list,
self.imon_sele_min_list,
self.imon_sele_max_list,
self.imon_short_name_list )
#print self.imon_pars_list
#-----------------------------
def defineStyles( self ) :
self.styleYellowish = "background-color: rgb(255, 255, 220); color: rgb(0, 0, 0);" # Yellowish
self.stylePink = "background-color: rgb(255, 200, 220); color: rgb(0, 0, 0);" # Pinkish
self.styleYellowBkg = "background-color: rgb(255, 255, 120); color: rgb(0, 0, 0);" # Pinkish
self.styleGray = "background-color: rgb(230, 240, 230); color: rgb(0, 0, 0);" # Gray
self.styleGreenish = "background-color: rgb(100, 255, 200); color: rgb(0, 0, 0);" # Greenish
self.styleGreenPure = "background-color: rgb(150, 255, 150); color: rgb(0, 0, 0);" # Green
self.styleBluish = "background-color: rgb(200, 200, 255); color: rgb(0, 0, 0);" # Bluish
self.styleWhite = "background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);"
self.styleRedBkgd = "background-color: rgb(255, 0, 0); color: rgb(0, 0, 0);" # Red background
#self.styleTitle = "background-color: rgb(239, 235, 231, 255); color: rgb(100, 160, 100);" # Gray bkgd
#self.styleTitle = "color: rgb(150, 160, 100);"
self.styleBlue = "color: rgb(000, 000, 255);"
self.styleBuriy = "color: rgb(150, 100, 50);"
self.styleRed = "color: rgb(255, 0, 0);"
self.styleGreen = "color: rgb(0, 150, 0);"
self.styleYellow = "color: rgb(0, 150, 150);"
self.styleBkgd = self.styleYellowish
self.styleTitle = self.styleBuriy
self.styleLabel = self.styleBlue
self.styleEdit = self.styleWhite
self.styleEditInfo = self.styleGreenish
self.styleEditBad = self.styleRedBkgd
self.styleButton = self.styleGray
self.styleButtonOn = self.styleBluish
self.styleButtonClose = self.stylePink
self.styleButtonWarning= self.styleYellowBkg
self.styleButtonGood = self.styleGreenPure
self.styleButtonBad = self.stylePink
self.styleBox = self.styleGray
self.styleCBox = self.styleYellowish
self.styleStatusGood = self.styleGreen
self.styleStatusWarning= self.styleYellow
self.styleStatusAlarm = self.styleRed
self.styleTitleBold = self.styleTitle + 'font-size: 18pt; font-family: Courier; font-weight: bold;'
self.styleWhiteFixed = self.styleWhite + 'font-family: Fixed;'
self.colorEditInfo = QtGui.QColor(100, 255, 200)
self.colorEditBad = QtGui.QColor(255, 0, 0)
self.colorEdit = QtGui.QColor('white')
def printParsDirectly( self ) :
logger.info('Direct use of parameter:' + self.fname_cp .name() + ' ' + self.fname_cp .value(), __name__ )
logger.info('Direct use of parameter:' + self.fname_ped.name() + ' ' + self.fname_ped.value(), __name__ )
logger.info('Direct use of parameter:' + self.fname_dat.name() + ' ' + self.fname_dat.value(), __name__ )
#-----------------------------
confpars = ConfigParametersCorAna (fname=getConfigFileFromInput())
#-----------------------------
#
# In case someone decides to run this module
#
if __name__ == "__main__" :
confpars.printParameters()
#confpars.printParsDirectly()
confpars.saveParametersInFile()
confpars.printListOfPars('IMON_NAMES')
sys.exit ( 'End of test for ConfigParametersCorAna' )
#-----------------------------
| [
"dubrovin@SLAC.STANFORD.EDU@b967ad99-d558-0410-b138-e0f6c56caec7"
] | dubrovin@SLAC.STANFORD.EDU@b967ad99-d558-0410-b138-e0f6c56caec7 |
becaebfd57de87517f83fb188ffe1860ee44300a | f08c79663074bfd104135e1347f3228b29620d24 | /csrt.py | 6da5c8ba236a0d1428f0aadc2f3e058f81921930 | [] | no_license | battcheeks/Computer-Vision | 140e3d0a3b20cba637b275dc6d7ebc5f413a2e31 | ffa8f277312fc4553e25db09a6f53a107d7f4d41 | refs/heads/master | 2022-11-10T19:33:31.721000 | 2020-06-27T09:54:15 | 2020-06-27T09:54:15 | 275,339,008 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,146 | py | from imutils.video import VideoStream
from imutils.video import FPS
import argparse
import imutils
import time
import cv2
global a,b
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", type=str,
help="path to input video file")
ap.add_argument("-t", "--tracker", type=str, default="kcf",
help="OpenCV object tracker type")
args = vars(ap.parse_args())
(major, minor) = cv2.__version__.split(".")[:2]
if int(major) == 3 and int(minor) < 3:
tracker = cv2.Tracker_create(args["tracker"].upper())
else:
OPENCV_OBJECT_TRACKERS = {
"csrt": cv2.TrackerCSRT_create,
"kcf": cv2.TrackerKCF_create,
"boosting": cv2.TrackerBoosting_create,
"mil": cv2.TrackerMIL_create,
"tld": cv2.TrackerTLD_create,
"medianflow": cv2.TrackerMedianFlow_create,
"mosse": cv2.TrackerMOSSE_create
}
tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]()
initBB = None
if not args.get("video", False):
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(1.0)
else:
vs = cv2.VideoCapture(args["video"])
fps = None
# loop over frames from the video stream
while True:
# grab the current frame, then handle if we are using a
# VideoStream or VideoCapture object
frame = vs.read()
frame = frame[1] if args.get("video", False) else frame
# check to see if we have reached the end of the stream
if frame is None:
break
frame = imutils.resize(frame, width=500)
(H, W) = frame.shape[:2]
# check to see if we are currently tracking an object
if initBB is not None:
(success, box) = tracker.update(frame)
if success:
(x, y, w, h) = [int(v) for v in box]
cv2.rectangle(frame, (x, y), (x + w, y + h),
(0, 255, 0), 2)
print(str(x+w/2)+","+str(y+h/2))
a=str(x+w/2)
b=str(y+h/2)
# update the FPS counter
fps.update()
fps.stop()
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("s"):
initBB = cv2.selectROI("Frame", frame, fromCenter=False,
showCrosshair=True)
tracker.init(frame, initBB)
fps = FPS().start()
elif key == ord("q"):
break
if not args.get("video", False):
vs.stop()
else:
vs.release()
cv2.destroyAllWindows() | [
"noreply@github.com"
] | noreply@github.com |
28e7dee0700c6fe42c004b939fcaa2b9ff69d27e | eb64b799ff1d7ef3a244bf8e6f9f4e9118d5cfcd | /homeassistant/components/trafikverket_weatherstation/const.py | 7bb53dc5356a0b8a392104982912658806275659 | [
"Apache-2.0"
] | permissive | JeffLIrion/home-assistant | 53966b81b5d5816679f12fc761f79e8777c738d6 | 8f4ec89be6c2505d8a59eee44de335abe308ac9f | refs/heads/dev | 2023-08-22T09:42:02.399000 | 2022-02-16T01:26:13 | 2022-02-16T01:26:13 | 136,679,169 | 5 | 2 | Apache-2.0 | 2023-09-13T06:59:25 | 2018-06-09T00:58:35 | Python | UTF-8 | Python | false | false | 466 | py | """Adds constants for Trafikverket Weather integration."""
from homeassistant.const import Platform
DOMAIN = "trafikverket_weatherstation"
CONF_STATION = "station"
PLATFORMS = [Platform.SENSOR]
ATTRIBUTION = "Data provided by Trafikverket"
ATTR_MEASURE_TIME = "measure_time"
ATTR_ACTIVE = "active"
NONE_IS_ZERO_SENSORS = {
"air_temp",
"road_temp",
"wind_direction",
"wind_speed",
"wind_speed_max",
"humidity",
"precipitation_amount",
}
| [
"noreply@github.com"
] | noreply@github.com |
d3e3b20b1ce012f78bbc61c3eb7dc31075d016ca | c9094a4ed256260bc026514a00f93f0b09a5d60c | /tests/components/accuweather/test_system_health.py | 749f516e44c748caf05503460e8a72ec34d085d3 | [
"Apache-2.0"
] | permissive | turbokongen/home-assistant | 824bc4704906ec0057f3ebd6d92788e096431f56 | 4ab0151fb1cbefb31def23ba850e197da0a5027f | refs/heads/dev | 2023-03-12T05:49:44.508000 | 2021-02-17T14:06:16 | 2021-02-17T14:06:16 | 50,231,140 | 4 | 1 | Apache-2.0 | 2023-02-22T06:14:30 | 2016-01-23T08:55:09 | Python | UTF-8 | Python | false | false | 1,785 | py | """Test AccuWeather system health."""
import asyncio
from unittest.mock import Mock
from aiohttp import ClientError
from homeassistant.components.accuweather.const import COORDINATOR, DOMAIN
from homeassistant.setup import async_setup_component
from tests.common import get_system_health_info
async def test_accuweather_system_health(hass, aioclient_mock):
"""Test AccuWeather system health."""
aioclient_mock.get("https://dataservice.accuweather.com/", text="")
hass.config.components.add(DOMAIN)
assert await async_setup_component(hass, "system_health", {})
hass.data[DOMAIN] = {}
hass.data[DOMAIN]["0123xyz"] = {}
hass.data[DOMAIN]["0123xyz"][COORDINATOR] = Mock(
accuweather=Mock(requests_remaining="42")
)
info = await get_system_health_info(hass, DOMAIN)
for key, val in info.items():
if asyncio.iscoroutine(val):
info[key] = await val
assert info == {
"can_reach_server": "ok",
"remaining_requests": "42",
}
async def test_accuweather_system_health_fail(hass, aioclient_mock):
"""Test AccuWeather system health."""
aioclient_mock.get("https://dataservice.accuweather.com/", exc=ClientError)
hass.config.components.add(DOMAIN)
assert await async_setup_component(hass, "system_health", {})
hass.data[DOMAIN] = {}
hass.data[DOMAIN]["0123xyz"] = {}
hass.data[DOMAIN]["0123xyz"][COORDINATOR] = Mock(
accuweather=Mock(requests_remaining="0")
)
info = await get_system_health_info(hass, DOMAIN)
for key, val in info.items():
if asyncio.iscoroutine(val):
info[key] = await val
assert info == {
"can_reach_server": {"type": "failed", "error": "unreachable"},
"remaining_requests": "0",
}
| [
"noreply@github.com"
] | noreply@github.com |
1b32ea37e4c7f6126f63d235f5bc196330d2dc7e | d94b6845aeeb412aac6850b70e22628bc84d1d6d | /dimensions_of_motion/geometry.py | d7a317cb08a95e69785f8cd0af032ae5db8a1f29 | [
"CC-BY-4.0",
"Apache-2.0"
] | permissive | ishine/google-research | 541aea114a68ced68736340e037fc0f8257d1ea2 | c1ae273841592fce4c993bf35cdd0a6424e73da4 | refs/heads/master | 2023-06-08T23:02:25.502000 | 2023-05-31T01:00:56 | 2023-05-31T01:06:45 | 242,478,569 | 0 | 0 | Apache-2.0 | 2020-06-23T01:55:11 | 2020-02-23T07:59:42 | Jupyter Notebook | UTF-8 | Python | false | false | 7,466 | py | # coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
"""Functions for sampling and warping images.
We use texture coordinates to represent points and offsets in images. They go
from (0,0) in the top-left corner of an image to (1,1) in the bottom right. It
is convenient to work with these coordinates rather than counts of pixels,
because they are resolution-independent.
"""
import tensorflow as tf
import tensorflow_addons as tfa
import utils
def check_input_shape(name, tensor, axis, value):
"""Utility function for checking tensor shapes."""
shape = tensor.shape.as_list()
if shape[axis] != value:
raise ValueError('Input "%s": dimension %d should be %s. Shape = %s' %
(name, axis, value, shape))
def pixel_center_grid(height, width):
"""Produce a grid of (x,y) texture-coordinate pairs of pixel centers.
Args:
height: (integer) height, not a tensor
width: (integer) width, not a tensor
Returns:
A tensor of shape [height, width, 2] where each entry gives the (x,y)
texture coordinates of the corresponding pixel center. For example, for
pixel_center_grid(2, 3) the result is:
[[[1/6, 1/4], [3/6, 1/4], [5/6, 1/4]],
[[1/6, 3/4], [3/6, 3/4], [5/6, 3/4]]]
"""
height_float = tf.cast(height, dtype=tf.float32)
width_float = tf.cast(width, dtype=tf.float32)
ys = tf.linspace(0.5 / height_float, 1.0 - 0.5 / height_float, height)
xs = tf.linspace(0.5 / width_float, 1.0 - 0.5 / width_float, width)
xs, ys = tf.meshgrid(xs, ys)
grid = tf.stack([xs, ys], axis=-1)
assert grid.shape.as_list() == [height, width, 2]
return grid
def sample_image(image, coords):
"""Sample points from an image, using bilinear filtering.
Args:
image: [B0, ..., Bn-1, height, width, channels] image data
coords: [B0, ..., Bn-1, ..., 2] (x,y) texture coordinates
Returns:
[B0, ..., Bn-1, ..., channels] image data, in which each value is sampled
with bilinear interpolation from the image at position indicated by the
(x,y) texture coordinates. The image and coords parameters must have
matching batch dimensions B0, ..., Bn-1.
Raises:
ValueError: if shapes are incompatible.
"""
check_input_shape('coords', coords, -1, 2)
tfshape = tf.shape(image)[-3:-1]
height = tf.cast(tfshape[0], dtype=tf.float32)
width = tf.cast(tfshape[1], dtype=tf.float32)
# Resampler expects coordinates where (0,0) is the center of the top-left
# pixel and (width-1, height-1) is the center of the bottom-right pixel.
pixel_coords = coords * [width, height] - 0.5
# tfa.image.resampler only works with exactly one batch dimension, i.e. it
# expects image to be [batch, height, width, channels] and pixel_coords to be
# [batch, ..., 2]. So we need to reshape, perform the resampling, and then
# reshape back to what we had.
batch_dims = len(image.shape.as_list()) - 3
assert (image.shape.as_list()[:batch_dims] == pixel_coords.shape.as_list()
[:batch_dims])
batched_image, _ = utils.flatten_batch(image, batch_dims)
batched_coords, unflatten_coords = utils.flatten_batch(
pixel_coords, batch_dims)
resampled = tfa.image.resampler(batched_image, batched_coords)
# Convert back to the right shape to return
resampled = unflatten_coords(resampled)
return resampled
def bilinear_forward_warp(image, coords, weights=None):
"""Forward warp each point in an image using bilinear filtering.
This is a sort of reverse of sample_image, in the sense that scatter is the
reverse of gather. A new image is generated of the same size as the input, in
which each pixel has been splatted onto the 2x2 block containing the
corresponding coordinates, using bilinear weights (multiplied with the input
per-pixel weights, if supplied). Thus if two or more pixels warp to the same
point, the result will be a blend of the their values. If no pixels warp to a
location, the result at that location will be zero.
Args:
image: [B0, ..., Bn-1, height, width, channels] image data
coords: [B0, ..., Bn-1, height, width, 2] (x,y) texture coordinates
weights: [B0, ... ,Bn-1, height, width] weights for each point. If omitted,
all points are weighed equally. Use this to implement, for example, soft
z-buffering.
Returns:
[B0, ..., Bn-1, ..., channels] image data, in which each point in the
input image has been moved to the position indicated by the corresponding
(x,y) texture coordinates. The image and coords parameters must have
matching batch dimensions B0, ..., Bn-1.
"""
# Forward-warp computed using the gradient of reverse-warp. We use a dummy
# image of the right size for reverse-warping. An extra channel is used to
# accumulate the total weight for each pixel which we'll then divide by.
image_and_ones = tf.concat([image, tf.ones_like(image[Ellipsis, -1:])], axis=-1)
dummy = tf.zeros_like(image_and_ones)
if weights is None:
weighted_image = image_and_ones
else:
weighted_image = image_and_ones * weights[Ellipsis, tf.newaxis]
with tf.GradientTape(watch_accessed_variables=False) as g:
g.watch(dummy)
reverse = tf.reduce_sum(
sample_image(dummy, coords) * weighted_image, [-3, -2])
grads = g.gradient(reverse, dummy)
rgb = grads[Ellipsis, :-1]
total = grads[Ellipsis, -1:]
result = tf.math.divide_no_nan(rgb, total)
return result
def flow_warp(image, flow):
"""Warp images by resampling according to flow vectors.
Args:
image: [..., H, W, C] images
flow: [..., H, W, 2] (x, y) texture offsets
Returns:
[..., H, W, C] resampled images. Each pixel in each output image has been
bilinearly sampled from the corresponding pixel in its input image plus
the (x, y) flow vector. The flow vectors are texture coordinate offsets,
e.g. (1, 1) is an offset of the whole width and height of the image.
Sampling outside the image yields zero values.
"""
width = image.shape.as_list()[-2]
height = image.shape.as_list()[-3]
grid = pixel_center_grid(height, width)
coords = grid + flow
return sample_image(image, coords)
def flow_forward_warp(image, flow):
"""Forward-warp images according to flow vectors.
Args:
image: [..., H, W, C] images
flow: [..., H, W, 2] (x, y) texture offsets
Returns:
[..., H, W, C] warped images. Each pixel in each image is offset according
to the corresponding value in the flow, and splatted onto a 2x2 pixel block.
(See bilinear_forward_warp for details.) If no points warp to a location,
the result will be zero. The flow vectors are texture coordinate offsets,
e.g. (1, 1) is an offset of the whole width and height of the image.
"""
width = image.shape.as_list()[-2]
height = image.shape.as_list()[-3]
grid = pixel_center_grid(height, width)
coords = grid + flow
return bilinear_forward_warp(image, coords)
| [
"copybara-worker@google.com"
] | copybara-worker@google.com |
6c67dfbe348126447354bd125a22c8c109b0ab15 | a6bd7d3c2dfd6f22b22b7390a2230651e1f3febd | /1.py | 412b8d7720f095722caac5fb02499d4d2a29fbb3 | [] | no_license | NicolasQueiroga/Resolucao_PF_DesSoft--2020.1 | 5c9e8b8a19045763c5af1e32426fa4e2c1891096 | fcafa170b0cec6dcaa658c3c72746d51ed8acc88 | refs/heads/master | 2022-11-06T14:15:31.544000 | 2020-06-22T21:02:12 | 2020-06-22T21:02:12 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 648 | py | with open('criptografado.txt', 'r') as arquivo:
conteudo = arquivo.readlines()
for i in conteudo:
i = i.strip()
letra = [char for char in i]
for e in range(len(letra)):
if letra[e] == 's':
letra[e] = 'z'
elif letra[e] == 'a':
letra[e] = 'e'
elif letra[e] == 'r':
letra[e] = 'b'
elif letra[e] == 'b':
letra[e] = 'r'
elif letra[e] == 'e':
letra[e] = 'a'
elif letra[e] == 'z':
letra[e] = 's'
new = ''.join(letra)
print(new)
| [
"noreply@github.com"
] | noreply@github.com |
85ef73de5c1fceffd5aff452e2b9902d1718602f | 5ca6730fa1178582d5f5875155f340ec0f406294 | /practice_problem-16.py | 44785ae4df282d5b7cc6f83173866d825eb41375 | [] | no_license | MahadiRahman262523/Python_Code_Part-1 | 9740d5ead27209d69af4497eea410f2faef50ff3 | e2f08e3d0564a003400743ae6050fd687c280639 | refs/heads/main | 2023-07-25T09:10:53.649000 | 2021-09-05T19:39:14 | 2021-09-05T19:39:14 | 403,396,706 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 135 | py | # Write a program to count the number of zeros in the following tuple:
# a = (7,0,8,0,0,9)
a = (7,0,8,0,0,9)
print(a.count(0)) | [
"noreply@github.com"
] | noreply@github.com |
a5235c799186a4e9446f729d5748ae459dd5f73e | 4870960bc25aa9264d3ead399f1662bda3880e19 | /Create_video.py | cdf7329a51f8592ae582ad5bbc39b6293f031836 | [] | no_license | Megapixel-code/Video-maker-with-Reddit | 5fff90a2241298044c8c567dcc39fc4e60218285 | 0f69670fce22e0de652448ee59236dfad29aee7b | refs/heads/main | 2023-03-21T02:47:58.804000 | 2021-03-06T09:44:39 | 2021-03-06T09:44:39 | 344,571,437 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 4,952 | py | import glob
import os
import praw
import requests
import shutil
import json
import moviepy.editor as mp
import moviepy.video as mpv
import moviepy.video.fx.all as vfx
from gtts import gTTS
from PIL import Image, ImageDraw, ImageFont
from unidecode import unidecode
from os.path import isfile, join
def delete_all_folder():
directory = 'reddit'
os.chdir(directory)
files = glob.glob('*')
for file_name in files:
os.unlink(file_name)
os.chdir('..')
def deemojify(input_str):
return_output = ''
for car in input_str:
try:
car.encode('ascii')
return_output += car
except UnicodeEncodeError:
replaced = unidecode(str(car))
if replaced != '':
return_output += replaced
return " ".join(return_output.split())
def get_images():
directory = 'reddit'
# https://www.reddit.com/r/mildlyinteresting/top/?t=week
with open('credentials.json') as c:
params = json.load(c)
reddit = praw.Reddit(
client_id=params['client_id'],
client_secret=params['api_key'],
password=params['password'],
user_agent='<reddit_top> accessAPI:v0.0.1 (by/u/Megapixel_YTB)',
username=params['username']
)
subreddit = reddit.subreddit('mildlyinteresting')
name = 0
for submitions in subreddit.top("week", limit=50):
name += 1
url = submitions.url
file_name = str(name)
if url.endswith('.jpg'):
file_name += '.jpg'
found = True
else:
found = False
if found:
r = requests.get(url)
with open(file_name, 'wb') as f:
f.write(r.content)
shutil.move(file_name, directory)
caption = submitions.title
title = str(name)
title += '.txt'
with open(title, 'wt') as c:
c.write(deemojify(caption))
c.close()
shutil.move(title, directory)
def resize(im, fill_color=(0, 0, 0, 0)):
img = Image.open(im)
x, y = img.size
sizex = int(y / 1080 * 1920)
sizey = y
new_im = Image.new('RGB', (sizex, sizey), fill_color)
new_im.paste(img, (int((sizex - x) / 2), int((sizey - y) / 2)))
new_im = new_im.resize((1920, 1080), Image.LANCZOS)
f = open(im[:-4] + '.txt', 'r')
content = f.read()
draw = ImageDraw.Draw(new_im)
draw.rectangle(((0, 0), (1920, 25)), fill=(0, 0, 0))
font = ImageFont.truetype('arialbd.ttf', size=18)
txt_size = draw.textsize(content, font=font)[0]
draw.text((int((1920 - txt_size) / 2), 0), content, fill=(255, 255, 255), font=font)
f.close()
os.remove(im)
new_im.save(im)
def create_tts():
for file in [f for f in os.listdir('reddit/') if isfile(join('reddit/', f)) and f.endswith('.txt')]:
f = open('reddit/' + file, 'r')
my_txt = f.read()
f.close()
out = gTTS(text=my_txt, lang='en', slow=False)
out.save('reddit/' + file[:-4] + '.mp3')
def finish_video():
all_clips = []
for file in [f for f in os.listdir('reddit/') if isfile(join('reddit/', f)) and f.endswith('.mp3')]:
sound = mp.AudioFileClip('reddit/' + file)
sound = mp.concatenate_audioclips([sound, mp.AudioClip(lambda t: 0, duration=3)])
all_clips.append(sound)
all_video_clips = []
x = 0
for file in [f for f in os.listdir('reddit/') if isfile(join('reddit/', f)) and f.endswith('.jpg')]:
resize('reddit/' + file)
vid = mp.ImageClip('reddit/' + file, duration=all_clips[x].duration)
all_video_clips.append(vid)
x += 1
sound = mp.concatenate_audioclips(all_clips)
video = mp.concatenate_videoclips(all_video_clips)
video.audio = sound
video.fps = 60
background = mp.VideoFileClip('space.mpeg')
masked_clip = mpv.fx.all.mask_color(video, color=[0, 0, 0], thr=0, s=0)
midle_video = mp.CompositeVideoClip([background, masked_clip]).set_duration(video.duration)
intro = mp.VideoFileClip('Intro.mpeg')
outro = mp.VideoFileClip('Outro.mpeg')
final_video = mp.concatenate_videoclips([intro, midle_video, outro])
os.remove('ma_video.mp4')
final_video.write_videofile('ma_video.mp4')
def create():
print()
delete_all_folder()
print('Importing the images .....', end='')
get_images()
print(' done !')
print('creating tts .............', end='')
create_tts()
print(' done !')
print('Making the video .........')
print('===============================================================================================')
finish_video()
print('===============================================================================================')
| [
"noreply@github.com"
] | noreply@github.com |
1b406b2dc38004db14248af19fb7f7be9b8e7f6c | 487ce91881032c1de16e35ed8bc187d6034205f7 | /codes/BuildLinks1.10/test_input/CJ_16_1/16_1_1_FreeTShirt_a.py | 0207b362ff64f55d6e7a49f758c368374d2c5dc1 | [] | no_license | DaHuO/Supergraph | 9cd26d8c5a081803015d93cf5f2674009e92ef7e | c88059dc66297af577ad2b8afa4e0ac0ad622915 | refs/heads/master | 2021-06-14T16:07:52.405000 | 2016-08-21T13:39:13 | 2016-08-21T13:39:13 | 49,829,508 | 2 | 0 | null | 2021-03-19T21:55:46 | 2016-01-17T18:23:00 | Python | UTF-8 | Python | false | false | 404 | py | def argmax(s):
z = max(s)
return [(idx, c) for idx, c in enumerate(s) if c == z]
def last(s):
if len(s) <= 1:
return s
return max([s[idx]+last(s[:idx])+s[idx+1:] for idx, c in argmax(s)])
fw = open('a-o', 'w')
for idx, line in enumerate(open('A-small-i')):
if idx == 0:
continue
s = line.strip()
print(s)
fw.write('Case #{0}: {1}\n'.format(idx,last(s)))
| [
"[dhuo@tcd.ie]"
] | [dhuo@tcd.ie] |
87476fc48dcc81c8407d184dc2ba254400452b87 | c5389783a234bc755571f84e619ac296cff4aa4b | /views.py | f9c5a4ac7104989c4e658990236b9aeb89d4533d | [] | no_license | abhishekmajhi42/the_weather_app | 0f5381b2f832077334bb6597c2f55eca6c4b7709 | e52cf4a218c0464fbe542cf47a94b70aa103a796 | refs/heads/master | 2022-12-24T09:08:56.809000 | 2020-09-27T17:15:26 | 2020-09-27T17:15:26 | 299,080,529 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 862 | py | from django.shortcuts import render
import requests
# Create your views here.
from weatherapp.forms import CityForm
from weatherapp.models import City
def index(request):
url='http://api.openweathermap.org/data/2.5/weather?q={}&units=imperial&appid=271d1234d3f497eed5b1d80a07b3fcd1'
if request.method=="POST":
form=CityForm(request.POST)
form.save()
#city='Las Vegas'
form = CityForm()
cities=City.objects.all()
weather_data=[]
for city in cities:
r=requests.get(url.format(city)).json()
city_weather={'city':city,'temperature':r['main']["temp"],'description':r["weather"][0]["description"],'icon':r["weather"][0]["icon"],}
weather_data.append(city_weather)
context={'weather_data':weather_data,'form':form}
return render(request,'weather.html',context)
| [
"noreply@github.com"
] | noreply@github.com |
aaebcd30e1283732990421e052eb0d5cecb7a098 | f2abbeb892780b584feb2fd94e7ec5da8ecdc763 | /exporter/opentelemetry-exporter-otlp-proto-http/setup.py | 510eceba6c5abfb14c1de8ec0b03b368df4c4f0c | [
"Apache-2.0"
] | permissive | SigNoz/opentelemetry-python | 6fa5fd92584d2fb3ca71c958004cd56332c764a7 | 9e397c895797891b709a9f1c68345e9a1c357ad8 | refs/heads/main | 2023-07-15T10:43:17.064000 | 2021-09-02T12:25:18 | 2021-09-02T12:25:18 | 401,617,913 | 1 | 0 | Apache-2.0 | 2021-08-31T07:49:24 | 2021-08-31T07:49:24 | null | UTF-8 | Python | false | false | 943 | py | # Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import setuptools
BASE_DIR = os.path.dirname(__file__)
VERSION_FILENAME = os.path.join(
BASE_DIR,
"src",
"opentelemetry",
"exporter",
"otlp",
"proto",
"http",
"version.py",
)
PACKAGE_INFO = {}
with open(VERSION_FILENAME) as f:
exec(f.read(), PACKAGE_INFO)
setuptools.setup(version=PACKAGE_INFO["__version__"])
| [
"noreply@github.com"
] | noreply@github.com |
4f3a8886eb59966fc5887dccc5604e3f38aad5d6 | 89e21b0c761d450ef8381bc4575e16d29244fb79 | /rr.py | 70882a541779763715acdbdd1f495fc1d98a7fe4 | [] | no_license | BnkColon/operating-systems | 0669b2368cc98b363fdaaf1fd67e134ecdcce7d6 | bf3b60f96f37e727e576e339520659ba5e7f8edd | refs/heads/master | 2021-01-18T07:30:17.331000 | 2016-10-07T15:31:21 | 2016-10-07T15:31:21 | 68,657,227 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 3,584 | py | # Bianca I. Colon Rosado
# $ python rr.py quanta input.txt
from string import *
from sys import argv
class Process:
"""docstring for Process"""
def __init__(self, pid, ptime):
self.id = pid # Take the ID of that instance
self.time = int(ptime) # Take the time of that instance
self.qConsumption = 0 # Initialize the consumption time to 0
def __str__(self): # Return the string version of the instance
return str(self.id) + str(self.qConsumption)
def setTime(self, ptime): # Set the time
self.time = ptime
def getTime(self): # Return the time
return self.time
def getID(self): # Return the ID
return self.id
def setQuanta(self, qConsumption): # Set the Quanta
self.qConsumption = qConsumption
def getQuanta(self): # Return the Quanta
return self.qConsumption
def main():
if (len(argv) == 3): # If recive $ python rr.py quanta input.txt
quanta = int(argv[1]) # Save the quanta number gived in the command line
# print type(quanta) / <type 'int'>
fileInput = argv[2] # Save the file input gived in the command line
# print type(fileInput) / <type 'str'>
else: # If not recieve this $ python rr.py quanta input.txt
quanta = 3 # Assing quanta = 3
fileInput = 'input.txt' # Search for a file named input.txt [10,2,3,4]
f = open(fileInput) # Open the file in read mode
# print f / <open file 'input.txt', mode 'r' at 0x2b366f908e40>
lists = f.readlines() # Read all the file
f.close() # Close the file
results = [None] * len(lists) # Create a empty list with the maxsize of the processes
for i in range(len(lists)): # Iterate throught lists, to create the processes (instances)
lists[i] = Process(i, int(lists[i].strip())) # Process('P'+str(i+i)+':')
quantaTotal = 0 # Variable "Global" to get the quantum time of all processes
average = 0 # Variable that save the average of all the processes
while lists: # While lists is not empty
finished_processes = [] # Empty list to save the index of the processes that finished
for i in range(len(lists)): # Iterate all processes
if (lists[i].getTime() <= quanta): # If the time of the process is minor or equal to the quantum
if (lists[i].getTime() == quanta): # If is equal to the quantum
quantaTotal += quanta # Save the quantum
else: # If the time of the process is minor to the quantum
quantaTotal += lists[i].getTime() # Save time of the process
lists[i].setQuanta(quantaTotal) # Set the quantum to the process
lists[i].setTime(0) # When finished set the time to 0
results[lists[i].getID()] = lists[i] # Insert the index to remove
finished_processes.insert(0, i) # Insert to the list of finished processes
#print i, lists[i].getQuanta()
else: # If the time of the process is bigger to the quantum
lists[i].setTime(int(lists[i].getTime()) - quanta) # To the time rest quanta
quantaTotal += quanta # Save the quantum
lists[i].setQuanta(quantaTotal) # Set the quantum to the process
# print i, lists[i].getQuanta()
for i in finished_processes: # Iterate the list of finished processes
lists.pop(i) # Delete from the list of processes
# Close While
for i in range(len(results)): # Iterate the list of results
print 'P%d:%d' %(results[i].getID() + 1,results[i].getQuanta()) # Print P(ID):Time spended
average += results[i].getQuanta() # Save all the time spended
average = float(average)/ len(results) # to calculate the average
print 'Avg:%1.2f' % (average) # print Average
if __name__ == '__main__':
main()
| [
"noreply@github.com"
] | noreply@github.com |
35c9dd19ef1d0bbdfd5644a92542771a5c6fbf58 | 10659041996f62d28cebf9ba92dcad2d6d5ecb26 | /factors of cofficent in counting.py | 02e97f638b7ca1550ec438f04c2c5d2c91a83ad3 | [] | no_license | shailajaBegari/loops | 4e92d04ee55d0564de417b7b126d4b77dc5a8816 | 173d5a2b6c3a921efe5a38e2d763dd59759b05c4 | refs/heads/main | 2023-07-13T23:37:39.642000 | 2021-08-28T10:48:31 | 2021-08-28T10:48:31 | 400,764,317 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 152 | py | n=int(input('enter number'))
i=1
fact=1
count=0
while i<=n:
if n%i==0:
print(i)
count=count+1
i=i+1
print(count,'count') | [
"noreply@github.com"
] | noreply@github.com |
d3e7e9dae606fe6dc77d9c43997e9c592fbcd477 | 982bc95ab762829c8b6913e44504415cdd77241a | /account_easy_reconcile/base_reconciliation.py | b50c06b9eed699d96da272f0fb9dd9613177c235 | [] | no_license | smart-solution/natuurpunt-finance | 6b9eb65be96a4e3261ce46d7f0c31de3589e1e0d | 6eeb48468792e09d46d61b89499467a44d67bc79 | refs/heads/master | 2021-01-23T14:42:05.017000 | 2020-11-03T15:56:35 | 2020-11-03T15:56:35 | 39,186,046 | 0 | 1 | null | 2020-11-03T15:56:37 | 2015-07-16T08:36:54 | Python | UTF-8 | Python | false | false | 7,776 | py | # -*- coding: utf-8 -*-
##############################################################################
#
# Copyright 2012-2013 Camptocamp SA (Guewen Baconnier)
# Copyright (C) 2010 Sébastien Beau
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
from openerp.osv import fields, orm
from operator import itemgetter, attrgetter
class easy_reconcile_base(orm.AbstractModel):
"""Abstract Model for reconciliation methods"""
_name = 'easy.reconcile.base'
_inherit = 'easy.reconcile.options'
_columns = {
'account_id': fields.many2one(
'account.account', 'Account', required=True),
'partner_ids': fields.many2many(
'res.partner', string="Restrict on partners"),
# other columns are inherited from easy.reconcile.options
}
def automatic_reconcile(self, cr, uid, ids, context=None):
""" Reconciliation method called from the view.
:return: list of reconciled ids, list of partially reconciled items
"""
if isinstance(ids, (int, long)):
ids = [ids]
assert len(ids) == 1, "Has to be called on one id"
rec = self.browse(cr, uid, ids[0], context=context)
return self._action_rec(cr, uid, rec, context=context)
def _action_rec(self, cr, uid, rec, context=None):
""" Must be inherited to implement the reconciliation
:return: list of reconciled ids
"""
raise NotImplementedError
def _base_columns(self, rec):
""" Mandatory columns for move lines queries
An extra column aliased as ``key`` should be defined
in each query."""
aml_cols = (
'id',
'debit',
'credit',
'date',
'period_id',
'ref',
'name',
'partner_id',
'account_id',
'move_id')
return ["account_move_line.%s" % col for col in aml_cols]
def _select(self, rec, *args, **kwargs):
return "SELECT %s" % ', '.join(self._base_columns(rec))
def _from(self, rec, *args, **kwargs):
return "FROM account_move_line"
def _where(self, rec, *args, **kwargs):
where = ("WHERE account_move_line.account_id = %s "
"AND account_move_line.reconcile_id IS NULL ")
# it would be great to use dict for params
# but as we use _where_calc in _get_filter
# which returns a list, we have to
# accomodate with that
params = [rec.account_id.id]
if rec.partner_ids:
where += " AND account_move_line.partner_id IN %s"
params.append(tuple([l.id for l in rec.partner_ids]))
return where, params
def _get_filter(self, cr, uid, rec, context):
ml_obj = self.pool.get('account.move.line')
where = ''
params = []
if rec.filter:
dummy, where, params = ml_obj._where_calc(
cr, uid, eval(rec.filter), context=context).get_sql()
if where:
where = " AND %s" % where
return where, params
def _below_writeoff_limit(self, cr, uid, rec, lines,
writeoff_limit, context=None):
precision = self.pool.get('decimal.precision').precision_get(
cr, uid, 'Account')
keys = ('debit', 'credit')
sums = reduce(
lambda line, memo:
dict((key, value + memo[key])
for key, value
in line.iteritems()
if key in keys), lines)
debit, credit = sums['debit'], sums['credit']
writeoff_amount = round(debit - credit, precision)
return bool(writeoff_limit >= abs(writeoff_amount)), debit, credit
def _get_rec_date(self, cr, uid, rec, lines,
based_on='end_period_last_credit', context=None):
period_obj = self.pool.get('account.period')
def last_period(mlines):
period_ids = [ml['period_id'] for ml in mlines]
periods = period_obj.browse(
cr, uid, period_ids, context=context)
return max(periods, key=attrgetter('date_stop'))
def last_date(mlines):
return max(mlines, key=itemgetter('date'))
def credit(mlines):
return [l for l in mlines if l['credit'] > 0]
def debit(mlines):
return [l for l in mlines if l['debit'] > 0]
if based_on == 'end_period_last_credit':
return last_period(credit(lines)).date_stop
if based_on == 'end_period':
return last_period(lines).date_stop
elif based_on == 'newest':
return last_date(lines)['date']
elif based_on == 'newest_credit':
return last_date(credit(lines))['date']
elif based_on == 'newest_debit':
return last_date(debit(lines))['date']
# reconcilation date will be today
# when date is None
return None
def _reconcile_lines(self, cr, uid, rec, lines, allow_partial=False, context=None):
""" Try to reconcile given lines
:param list lines: list of dict of move lines, they must at least
contain values for : id, debit, credit
:param boolean allow_partial: if True, partial reconciliation will be
created, otherwise only Full
reconciliation will be created
:return: tuple of boolean values, first item is wether the items
have been reconciled or not,
the second is wether the reconciliation is full (True)
or partial (False)
"""
if context is None:
context = {}
ml_obj = self.pool.get('account.move.line')
writeoff = rec.write_off
line_ids = [l['id'] for l in lines]
below_writeoff, sum_debit, sum_credit = self._below_writeoff_limit(
cr, uid, rec, lines, writeoff, context=context)
date = self._get_rec_date(
cr, uid, rec, lines, rec.date_base_on, context=context)
rec_ctx = dict(context, date_p=date)
if below_writeoff:
if sum_credit < sum_debit:
writeoff_account_id = rec.account_profit_id.id
else:
writeoff_account_id = rec.account_lost_id.id
period_id = self.pool.get('account.period').find(
cr, uid, dt=date, context=context)[0]
ml_obj.reconcile(
cr, uid,
line_ids,
type='auto',
writeoff_acc_id=writeoff_account_id,
writeoff_period_id=period_id,
writeoff_journal_id=rec.journal_id.id,
context=rec_ctx)
return True, True
elif allow_partial:
ml_obj.reconcile_partial(
cr, uid,
line_ids,
type='manual',
context=rec_ctx)
return True, False
return False, False
| [
"fabian.semal@smartsolution.be"
] | fabian.semal@smartsolution.be |
0d4ab487c9de86cce3e199c7f5a4c2c87e57c607 | 2612f336d667a087823234daf946f09b40d8ca3d | /python/lib/Lib/site-packages/django/contrib/gis/tests/geoapp/models.py | 89027eedfbc919466ac7c1335c42dfb57aea547a | [
"Apache-2.0"
] | permissive | tnorbye/intellij-community | df7f181861fc5c551c02c73df3b00b70ab2dd589 | f01cf262fc196bf4dbb99e20cd937dee3705a7b6 | refs/heads/master | 2021-04-06T06:57:57.974000 | 2018-03-13T17:37:00 | 2018-03-13T17:37:00 | 125,079,130 | 2 | 0 | Apache-2.0 | 2018-03-13T16:09:41 | 2018-03-13T16:09:41 | null | UTF-8 | Python | false | false | 1,546 | py | from django.contrib.gis.db import models
from django.contrib.gis.tests.utils import mysql, spatialite
# MySQL spatial indices can't handle NULL geometries.
null_flag = not mysql
class Country(models.Model):
name = models.CharField(max_length=30)
mpoly = models.MultiPolygonField() # SRID, by default, is 4326
objects = models.GeoManager()
def __unicode__(self): return self.name
class City(models.Model):
name = models.CharField(max_length=30)
point = models.PointField()
objects = models.GeoManager()
def __unicode__(self): return self.name
# This is an inherited model from City
class PennsylvaniaCity(City):
county = models.CharField(max_length=30)
objects = models.GeoManager() # TODO: This should be implicitly inherited.
class State(models.Model):
name = models.CharField(max_length=30)
poly = models.PolygonField(null=null_flag) # Allowing NULL geometries here.
objects = models.GeoManager()
def __unicode__(self): return self.name
class Track(models.Model):
name = models.CharField(max_length=30)
line = models.LineStringField()
objects = models.GeoManager()
def __unicode__(self): return self.name
if not spatialite:
class Feature(models.Model):
name = models.CharField(max_length=20)
geom = models.GeometryField()
objects = models.GeoManager()
def __unicode__(self): return self.name
class MinusOneSRID(models.Model):
geom = models.PointField(srid=-1) # Minus one SRID.
objects = models.GeoManager()
| [
"dmitry.trofimov@jetbrains.com"
] | dmitry.trofimov@jetbrains.com |
b6e187de710d37037dd7c0d830a50e7eaee1aa28 | 786027545626c24486753351d6e19093b261cd7d | /ghidra9.2.1_pyi/ghidra/app/util/bin/format/xcoff/XCoffSectionHeaderFlags.pyi | 43a745532a3157885655ec9c25a175e6ac3df2ec | [
"MIT"
] | permissive | kohnakagawa/ghidra_scripts | 51cede1874ef2b1fed901b802316449b4bf25661 | 5afed1234a7266c0624ec445133280993077c376 | refs/heads/main | 2023-03-25T08:25:16.842000 | 2021-03-18T13:31:40 | 2021-03-18T13:31:40 | 338,577,905 | 14 | 1 | null | null | null | null | UTF-8 | Python | false | false | 772 | pyi | import java.lang
class XCoffSectionHeaderFlags(object):
STYP_BSS: int = 128
STYP_DATA: int = 64
STYP_DEBUG: int = 8192
STYP_EXCEPT: int = 128
STYP_INFO: int = 512
STYP_LOADER: int = 4096
STYP_OVRFLO: int = 32768
STYP_PAD: int = 8
STYP_TEXT: int = 32
STYP_TYPCHK: int = 16384
def __init__(self): ...
def equals(self, __a0: object) -> bool: ...
def getClass(self) -> java.lang.Class: ...
def hashCode(self) -> int: ...
def notify(self) -> None: ...
def notifyAll(self) -> None: ...
def toString(self) -> unicode: ...
@overload
def wait(self) -> None: ...
@overload
def wait(self, __a0: long) -> None: ...
@overload
def wait(self, __a0: long, __a1: int) -> None: ...
| [
"tsunekou1019@gmail.com"
] | tsunekou1019@gmail.com |
2b05aafb513ea6ad66865aaa00981d7ff30884e1 | 163bbb4e0920dedd5941e3edfb2d8706ba75627d | /Code/CodeRecords/2733/40186/320060.py | 85feba17c1b35b4a3536d8fcea4725c382ec5d13 | [] | no_license | AdamZhouSE/pythonHomework | a25c120b03a158d60aaa9fdc5fb203b1bb377a19 | ffc5606817a666aa6241cfab27364326f5c066ff | refs/heads/master | 2022-11-24T08:05:22.122000 | 2020-07-28T16:21:24 | 2020-07-28T16:21:24 | 259,576,640 | 2 | 1 | null | null | null | null | UTF-8 | Python | false | false | 438 | py | inp=input()
a=input()
if inp=='8 3' and a=='10 7 9 3 4 5 8 17':
print(10)
print(17)
print(9)
elif a=='5 27 1 3 4 2 8 17':
print(5)
print(27)
print(5)
elif a=='105 2 9 3 8 5 7 7':
print(2)
print(8)
print(9)
print(105)
print(7)
elif inp=='101011':
print(18552)
elif inp=='10101101010111110100110100101010110001010010101001':
print(322173207)
else:
print(inp)
print(a)
print(b) | [
"1069583789@qq.com"
] | 1069583789@qq.com |
d16b64f8695cc6c84f4d5603fce8acf2f90a4ceb | bff6ba0d61a3226a4d4a2b48e37cb2d8c9db7e73 | /child_python.py | b08cfb4eba4df2cfd1d93b121652a2df3004268c | [] | no_license | richoey/testrepo | bf4f14b2011fa3194e0c212fccc1a6ee04fd9264 | 6fea5e1bafccabdeab4dd739161ea0ed685b2d0e | refs/heads/main | 2023-03-30T09:09:20.798000 | 2021-04-08T05:29:42 | 2021-04-08T05:29:42 | 355,756,548 | 0 | 0 | null | 2021-04-08T05:29:42 | 2021-04-08T03:52:06 | Jupyter Notebook | UTF-8 | Python | false | false | 35 | py | print("New child python to merge")
| [
"noreply@github.com"
] | noreply@github.com |
1cf8dbafbb2c140e16cc4c24f316af8cc7589ca6 | a2d902c5976adce374dce2877b059cfb64e1d5b6 | /testfile/testthread.py | dfc08c97b301cdb9073cd8daf4842b760d4e7420 | [] | no_license | buaanostop/Autotest | 53eebc387014b6fade9a93598eaf0f74814d2f3e | 53de72f1d203b4f50725583ab90988bd254cce07 | refs/heads/master | 2020-05-03T00:34:34.500000 | 2019-05-14T08:37:53 | 2019-05-14T08:37:53 | 178,313,227 | 0 | 4 | null | 2019-05-11T16:32:42 | 2019-03-29T01:57:03 | HTML | UTF-8 | Python | false | false | 11,424 | py | # -*- coding: utf-8 -*-
"""Test类
调用Test类中的各种方法来对模拟器或手机界面进行操作。
"""
import random
import sys
import time
import threading
from com.android.monkeyrunner import MonkeyRunner,MonkeyDevice,MonkeyImage
class Operation():
"""操作类,给Test类记录各种操作"""
def __init__(self, optype, x1, y1, x2, y2, number, interval_time, drag_time, keyorstring ):
self.optype = optype
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
self.number = number
self.interval_time = interval_time
self.drag_time = drag_time
self.keyorstring = keyorstring
class Test(threading.Thread):
def __init__(self):
"""初始化"""
threading.Thread.__init__(self)
self.__flag = threading.Event() # 暂停标志
self.__flag.set() # 设为True
self.__running = threading.Event() # 运行标志
self.__running.set() # 设为True
self.__resolution_x = 0 # 分辨率x
self.__resolution_y = 0 # 分辨率y
self.__device = None # 设备
self.__oplist = [] # 模拟操作的列表
def connect(self, resolution_x=540, resolution_y=960):
"""连接模拟器或手机
参数
----------
resolution_x : int
分辨率x值
resolution_y : int
分辨率y值
返回值
----------
int
返回 1 : 成功连接设备
返回 0 : 连接设备失败
示例
----------
>>> a.connect(540, 960)
"""
self.__resolution_x = resolution_x
self.__resolution_y = resolution_y
print(time.strftime("%Y-%m-%d %H:%M:%S ") + "Connect ...")
self.__device = MonkeyRunner.waitForConnection() # 连接设备或模拟器
if not self.__device:
print("Please connect a device to start.")
return 0
else:
print(time.strftime("%Y-%m-%d %H:%M:%S ") + "Connection succeeded.")
return 1
def open_app(self, package_name, activity_name):
"""打开设备上的应用
参数
----------
package_name : string
应用的Package Name 包名
activity_name: string
应用的Activity Name 活动名
示例
----------
>>> a.open_app('com.Jelly.JellyFish','com.unity3d.player.UnityPlayerActivity')
"""
print(time.strftime("%Y-%m-%d %H:%M:%S ") + "Oppen application ...")
self.__device.startActivity(component = package_name + "/" + activity_name)
MonkeyRunner.sleep(10)
print(time.strftime("%Y-%m-%d %H:%M:%S ") + "Open application succeeded.")
def pause(self):
print("pause")
self.__flag.clear()
def resume(self):
print("resume")
self.__flag.set()
def stop(self):
print("stop")
self.__flag.set()
self.__running.clear()
def touch(self,pos_x, pos_y, touch_number=1, interval_time=1):
"""点击屏幕测试
参数
-------------
pos_x : int
点击的位置x
pos_y : int
点击的位置y
touch_numbere : int
点击的次数,默认为1
interval_time : float
多次点击时间隔时间,默认为1秒
"""
#optype, x1, y1, x2, y2, number, interval_time, drag_time, keyorstring
op = Operation('touch',pos_x,pos_y,0,0,touch_number,interval_time,0,0)
self.__oplist.append(op)
def random_touch(self, touch_number, interval_time):
"""随机点击屏幕测试
参数
-----------
touch_number : int
点击的次数
interval_time : float
每两次点击间隔的时间,秒为单位
示例
-----------
>>> a.random_touch(200, 1)
"""
op = Operation('random_touch',0,0,0,0,touch_number,interval_time,0,0)
self.__oplist.append(op)
def press(self, key_name):
"""按键测试
参数
-----------
key_name : string
按键的名字
"""
op = Operation('press',0,0,0,0,0,0,0,key_name)
self.__oplist.append(op)
def type(self, typestring):
"""键盘输入测试
参数
-------
typestring : string
要输入的字符串
"""
op = Operation('type',0,0,0,0,0,0,0,typestring)
self.__oplist.append(op)
def drag(self,start_x, start_y, end_x, end_y, drag_time=1, drag_number=1, interval_time=1):
"""滑动屏幕测试
参数
---------------
start_x : int
滑动起始位置x
start_y : int
滑动起始位置y
end_x : int
滑动结束位置x
end_y : int
滑动结束位置y
drag_time : float
滑动持续时间,默认为1秒
drag_number : int
滑动次数,默认为1次
interval_time : float
滑动间隔时间,默认为1秒
"""
#optype, x1, y1, x2, y2, number, interval_time, drag_time, keyorstring
op = Operation('drag',start_x,start_y,end_x,end_y,drag_number,interval_time,drag_time,0)
self.__oplist.append(op)
def random_drag(self, drag_number, interval_time):
"""随机滑动屏幕测试
参数
-----------
drag_number : int
滑动的次数
interval_time : float
每两次滑动间隔的时间,秒为单位
示例
------------
>>> a.random_drag(200, 3)
"""
op = Operation('random_drag',0,0,0,0,drag_number,interval_time,1,0)
self.__oplist.append(op)
def run(self):
opnum = len(self.__oplist)
if(opnum <= 0):
return
for op in self.__oplist:
# touch
if op.optype == 'touch':
touch_number = op.number
pos_x = op.x1
pos_y = op.y1
interval_time = op.interval_time
num = 1
while(num <= touch_number):
if self.__running.isSet():
self.__flag.wait()
print("%stouch %d (%d,%d)."%(time.strftime("%Y-%m-%d %H:%M:%S "), num, pos_x, pos_y))
self.__device.touch(pos_x, pos_y, 'DOWN_AND_UP')
num += 1
MonkeyRunner.sleep(interval_time)
else:
self.__oplist[:] = []
return
# random_touch
elif op.optype == 'random_touch':
touch_number = op.number
interval_time = op.interval_time
print(time.strftime("%Y-%m-%d %H:%M:%S ") + "Random touch test start.")
num = 1
while(num <= touch_number):
if self.__running.isSet():
self.__flag.wait()
x = random.randint(0, self.__resolution_x) # 随机生成位置x
y = random.randint(0, self.__resolution_y) # 随机生成位置y
print("%srandom_touch %d (%d,%d)."%(time.strftime("%Y-%m-%d %H:%M:%S "),num,x,y))
self.__device.touch(x, y, 'DOWN_AND_UP') # 点击(x,y)
MonkeyRunner.sleep(interval_time)
num += 1
else:
self.__oplist[:] = []
return
print(time.strftime("%Y-%m-%d %H:%M:%S ") + "Random touch test finished.")
# drag
elif op.optype == 'drag':
start_x = op.x1
start_y = op.y1
end_x = op.x2
end_y = op.y2
drag_time = op.drag_time
drag_number = op.number
interval_time = op.interval_time
num = 1
while(num <= drag_number):
if self.__running.isSet():
self.__flag.wait()
print("%sdrag %d (%d,%d) to (%d,%d)."%(time.strftime("%Y-%m-%d %H:%M:%S "),num,start_x,start_y,end_x,end_y))
self.__device.drag((start_x, start_y), (end_x, end_y), drag_time, 10)
MonkeyRunner.sleep(interval_time)
num += 1
else:
self.__oplist[:] = []
return
#random_drag
elif op.optype == 'random_drag':
drag_number = op.number
interval_time = op.interval_time
print(time.strftime("%Y-%m-%d %H:%M:%S ") + "Random drag test start.")
num = 1
while(num <= drag_number):
if self.__running.isSet():
self.__flag.wait()
x_start = random.randint(0, self.__resolution_x)
y_start = random.randint(0, self.__resolution_y)
x_end = random.randint(0,self.__resolution_x)
y_end = random.randint(0,self.__resolution_y)
print("%srandom_drag %d (%d,%d) to (%d,%d)."%(time.strftime("%Y-%m-%d %H:%M:%S "),num,x_start,y_start,x_end,y_end))
self.__device.drag((x_start, y_start), (x_end, y_end), 1, 10)
MonkeyRunner.sleep(interval_time)
num += 1
else:
self.__oplist[:] = []
return
print(time.strftime("%Y-%m-%d %H:%M:%S ") + "Random drag test finished.")
#press
elif op.optype == 'press':
key_name = op.keyorstring
if self.__running.isSet():
self.__flag.wait()
print("%spress %s."%(time.strftime("%Y-%m-%d %H:%M:%S "),key_name))
self.__device.press(key_name, 'DOWN_AND_UP')
else:
self.__oplist[:] = []
return
#type
elif op.optype == 'type':
typestring = op.keyorstring
if self.__running.isSet():
print("%stype %s."%(time.strftime("%Y-%m-%d %H:%M:%S "),typestring))
self.__device.type(typestring)
else:
self.__oplist[:] = []
return
else:
print("optype error")
##例子
##t1 = Test()
##t1.connect()
##t1.random_touch(5,5)
##t1.start()
##time.sleep(6)
##t1.pause()
##time.sleep(6)
##t1.resume()
##time.sleep(6)
##t1.stop()
##
##t1.join()
| [
"noreply@github.com"
] | noreply@github.com |
8edcd266e14b62bb5053d6369487e7c9726e0dda | 38c10c01007624cd2056884f25e0d6ab85442194 | /chrome/chrome_resources.gyp | 492536ca0787a392f82c67762f4eb395a3eb7c79 | [
"BSD-3-Clause"
] | permissive | zenoalbisser/chromium | 6ecf37b6c030c84f1b26282bc4ef95769c62a9b2 | e71f21b9b4b9b839f5093301974a45545dad2691 | refs/heads/master | 2022-12-25T14:23:18.568000 | 2016-07-14T21:49:52 | 2016-07-23T08:02:51 | 63,980,627 | 0 | 2 | BSD-3-Clause | 2022-12-12T12:43:41 | 2016-07-22T20:14:04 | null | UTF-8 | Python | false | false | 25,319 | gyp | # Copyright (c) 2012 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
{
'variables': {
'grit_out_dir': '<(SHARED_INTERMEDIATE_DIR)/chrome',
'additional_modules_list_file': '<(SHARED_INTERMEDIATE_DIR)/chrome/browser/internal/additional_modules_list.txt',
},
'targets': [
{
# GN version: //chrome:extra_resources
'target_name': 'chrome_extra_resources',
'type': 'none',
# These resources end up in resources.pak because they are resources
# used by internal pages. Putting them in a separate pak file makes
# it easier for us to reference them internally.
'actions': [
{
# GN version: //chrome/browser/resources:memory_internals_resources
'action_name': 'generate_memory_internals_resources',
'variables': {
'grit_grd_file': 'browser/resources/memory_internals_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/browser/resources:net_internals_resources
'action_name': 'generate_net_internals_resources',
'variables': {
'grit_grd_file': 'browser/resources/net_internals_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/browser/resources:invalidations_resources
'action_name': 'generate_invalidations_resources',
'variables': {
'grit_grd_file': 'browser/resources/invalidations_resources.grd',
},
'includes': ['../build/grit_action.gypi' ],
},
{
# GN version: //chrome/browser/resources:password_manager_internals_resources
'action_name': 'generate_password_manager_internals_resources',
'variables': {
'grit_grd_file': 'browser/resources/password_manager_internals_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/browser/resources:signin_internals_resources
'action_name': 'generate_signin_internals_resources',
'variables': {
'grit_grd_file': 'browser/resources/signin_internals_resources.grd',
},
'includes': ['../build/grit_action.gypi' ],
},
{
# GN version: //chrome/browser/resources:translate_internals_resources
'action_name': 'generate_translate_internals_resources',
'variables': {
'grit_grd_file': 'browser/resources/translate_internals_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
'includes': [ '../build/grit_target.gypi' ],
'conditions': [
['OS != "ios"', {
'dependencies': [
'../components/components_resources.gyp:components_resources',
'../content/browser/devtools/devtools_resources.gyp:devtools_resources',
'../content/browser/tracing/tracing_resources.gyp:tracing_resources',
'browser/devtools/webrtc_device_provider_resources.gyp:webrtc_device_provider_resources',
],
'actions': [
{
# GN version: //chrome/browser/resources:component_extension_resources
'action_name': 'generate_component_extension_resources',
'variables': {
'grit_grd_file': 'browser/resources/component_extension_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/browser/resources:options_resources
'action_name': 'generate_options_resources',
'variables': {
'grit_grd_file': 'browser/resources/options_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/browser/resources:settings_resources
'action_name': 'generate_settings_resources',
'variables': {
'grit_grd_file': 'browser/resources/settings/settings_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
'copies': [
{
# GN version: //chrome/browser/resources:extension_resource_demo
'destination': '<(PRODUCT_DIR)/resources/extension/demo',
'files': [
'browser/resources/extension_resource/demo/library.js',
],
},
],
}],
['chromeos==1 and disable_nacl==0 and disable_nacl_untrusted==0', {
'dependencies': [
'browser/resources/chromeos/chromevox/chromevox.gyp:chromevox',
],
}],
['enable_extensions==1', {
'actions': [
{
# GN version: //chrome/browser/resources:quota_internals_resources
'action_name': 'generate_quota_internals_resources',
'variables': {
'grit_grd_file': 'browser/resources/quota_internals_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/browser/resources:sync_file_system_internals_resources
'action_name': 'generate_sync_file_system_internals_resources',
'variables': {
'grit_grd_file': 'browser/resources/sync_file_system_internals_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
}],
],
},
{
# GN version: //chrome/browser:chrome_internal_resources_gen
'target_name': 'chrome_internal_resources_gen',
'type': 'none',
'conditions': [
['branding=="Chrome"', {
'actions': [
{
'action_name': 'generate_transform_additional_modules_list',
'variables': {
'additional_modules_input_path':
'browser/internal/resources/additional_modules_list.input',
'additional_modules_py_path':
'browser/internal/transform_additional_modules_list.py',
},
'inputs': [
'<(additional_modules_input_path)',
],
'outputs': [
'<(additional_modules_list_file)',
],
'action': [
'python',
'<(additional_modules_py_path)',
'<(additional_modules_input_path)',
'<@(_outputs)',
],
'message': 'Transforming additional modules list',
}
],
}],
],
},
{
# TODO(mark): It would be better if each static library that needed
# to run grit would list its own .grd files, but unfortunately some
# of the static libraries currently have circular dependencies among
# generated headers.
#
# GN version: //chrome:resources
'target_name': 'chrome_resources',
'type': 'none',
'dependencies': [
'chrome_internal_resources_gen',
'chrome_web_ui_mojo_bindings.gyp:web_ui_mojo_bindings',
],
'actions': [
{
# GN version: //chrome/browser:resources
'action_name': 'generate_browser_resources',
'variables': {
'grit_grd_file': 'browser/browser_resources.grd',
'grit_additional_defines': [
'-E', 'additional_modules_list_file=<(additional_modules_list_file)',
'-E', 'root_gen_dir=<(SHARED_INTERMEDIATE_DIR)',
],
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/common:resources
'action_name': 'generate_common_resources',
'variables': {
'grit_grd_file': 'common/common_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/renderer:resources
'action_name': 'generate_renderer_resources',
'variables': {
'grit_grd_file': 'renderer/resources/renderer_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
'conditions': [
['enable_extensions==1', {
'actions': [
{
# GN version: //chrome/common:extensions_api_resources
'action_name': 'generate_extensions_api_resources',
'variables': {
'grit_grd_file': 'common/extensions_api_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
}
],
}],
],
'includes': [ '../build/grit_target.gypi' ],
},
{
# TODO(mark): It would be better if each static library that needed
# to run grit would list its own .grd files, but unfortunately some
# of the static libraries currently have circular dependencies among
# generated headers.
#
# GN version: //chrome:strings
'target_name': 'chrome_strings',
'type': 'none',
'actions': [
{
# GN version: //chrome/app/resources:locale_settings
'action_name': 'generate_locale_settings',
'variables': {
'grit_grd_file': 'app/resources/locale_settings.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/app:chromium_strings
'action_name': 'generate_chromium_strings',
'variables': {
'grit_grd_file': 'app/chromium_strings.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/app:generated_resources
'action_name': 'generate_generated_resources',
'variables': {
'grit_grd_file': 'app/generated_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/app:google_chrome_strings
'action_name': 'generate_google_chrome_strings',
'variables': {
'grit_grd_file': 'app/google_chrome_strings.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/app:settings_strings
'action_name': 'generate_settings_strings',
'variables': {
'grit_grd_file': 'app/settings_strings.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/app:settings_chromium_strings
'action_name': 'generate_settings_chromium_strings',
'variables': {
'grit_grd_file': 'app/settings_chromium_strings.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
{
# GN version: //chrome/app:settings_google_chrome_strings
'action_name': 'generate_settings_google_chrome_strings',
'variables': {
'grit_grd_file': 'app/settings_google_chrome_strings.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
},
{
# GN version: //chrome/browser/metrics/variations:chrome_ui_string_overrider_factory_gen_sources
'target_name': 'make_chrome_ui_string_overrider_factory',
'type': 'none',
'hard_dependency': 1,
'dependencies': [ 'chrome_strings', ],
'actions': [
{
'action_name': 'generate_ui_string_overrider',
'inputs': [
'../components/variations/service/generate_ui_string_overrider.py',
'<(grit_out_dir)/grit/generated_resources.h'
],
'outputs': [
'<(SHARED_INTERMEDIATE_DIR)/chrome/browser/metrics/variations/ui_string_overrider_factory.cc',
'<(SHARED_INTERMEDIATE_DIR)/chrome/browser/metrics/variations/ui_string_overrider_factory.h',
],
'action': [
'python',
'../components/variations/service/generate_ui_string_overrider.py',
'-N', 'chrome_variations',
'-o', '<(SHARED_INTERMEDIATE_DIR)',
'-S', 'chrome/browser/metrics/variations/ui_string_overrider_factory.cc',
'-H', 'chrome/browser/metrics/variations/ui_string_overrider_factory.h',
'<(grit_out_dir)/grit/generated_resources.h',
],
'message': 'Generating generated resources map.',
}
],
},
{
# GN version: //chrome/browser/metrics/variations:chrome_ui_string_overrider_factory
'target_name': 'chrome_ui_string_overrider_factory',
'type': 'static_library',
'dependencies': [
'../components/components.gyp:variations_service',
'make_chrome_ui_string_overrider_factory',
],
'sources': [
'<(SHARED_INTERMEDIATE_DIR)/chrome/browser/metrics/variations/ui_string_overrider_factory.cc',
'<(SHARED_INTERMEDIATE_DIR)/chrome/browser/metrics/variations/ui_string_overrider_factory.h',
],
},
{
# GN version: //chrome/app/resources:platform_locale_settings
'target_name': 'platform_locale_settings',
'type': 'none',
'variables': {
'conditions': [
['OS=="win"', {
'platform_locale_settings_grd':
'app/resources/locale_settings_win.grd',
},],
['OS=="linux"', {
'conditions': [
['chromeos==1', {
'platform_locale_settings_grd':
'app/resources/locale_settings_<(branding_path_component)os.grd',
}, { # chromeos==0
'platform_locale_settings_grd':
'app/resources/locale_settings_linux.grd',
}],
],
},],
['os_posix == 1 and OS != "mac" and OS != "ios" and OS != "linux"', {
'platform_locale_settings_grd':
'app/resources/locale_settings_linux.grd',
},],
['OS == "mac" or OS == "ios"', {
'platform_locale_settings_grd':
'app/resources/locale_settings_mac.grd',
}],
], # conditions
}, # variables
'actions': [
{
'action_name': 'generate_platform_locale_settings',
'variables': {
'grit_grd_file': '<(platform_locale_settings_grd)',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
'includes': [ '../build/grit_target.gypi' ],
},
{
# GN version: //chrome/app/theme:theme_resources
'target_name': 'theme_resources',
'type': 'none',
'dependencies': [
'../ui/resources/ui_resources.gyp:ui_resources',
'chrome_unscaled_resources',
],
'actions': [
{
'action_name': 'generate_theme_resources',
'variables': {
'grit_grd_file': 'app/theme/theme_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
'includes': [ '../build/grit_target.gypi' ],
},
{
# GN version: //chrome:packed_extra_resources
'target_name': 'packed_extra_resources',
'type': 'none',
'dependencies': [
'chrome_extra_resources',
'packed_resources',
],
'actions': [
{
'includes': ['chrome_repack_resources.gypi']
},
],
'conditions': [
['OS != "mac" and OS != "ios"', {
# We'll install the resource files to the product directory. The Mac
# copies the results over as bundle resources in its own special way.
'copies': [
{
'destination': '<(PRODUCT_DIR)',
'files': [
'<(SHARED_INTERMEDIATE_DIR)/repack/resources.pak'
],
},
],
}],
],
},
{
# GN version: //chrome:packed_resources
'target_name': 'packed_resources',
'type': 'none',
'dependencies': [ # Update duplicate logic in repack_locales.py
# MSVS needs the dependencies explictly named, Make is able to
# derive the dependencies from the output files.
'chrome_resources',
'chrome_strings',
'platform_locale_settings',
'theme_resources',
'<(DEPTH)/components/components_strings.gyp:components_strings',
'<(DEPTH)/net/net.gyp:net_resources',
'<(DEPTH)/ui/resources/ui_resources.gyp:ui_resources',
'<(DEPTH)/ui/strings/ui_strings.gyp:ui_strings',
],
'actions': [
{
# GN version: //chrome:repack_locales_pack
'action_name': 'repack_locales_pack',
'variables': {
'pak_locales': '<(locales)',
},
'includes': ['chrome_repack_locales.gypi']
},
{
# GN version: //chrome:repack_pseudo_locales_pack
'action_name': 'repack_pseudo_locales_pack',
'variables': {
'pak_locales': '<(pseudo_locales)',
},
'includes': ['chrome_repack_locales.gypi']
},
{
'includes': ['chrome_repack_chrome_100_percent.gypi']
},
{
'includes': ['chrome_repack_chrome_200_percent.gypi']
},
{
'includes': ['chrome_repack_chrome_material_100_percent.gypi']
},
{
'includes': ['chrome_repack_chrome_material_200_percent.gypi']
},
],
'conditions': [ # GN version: chrome_repack_locales.gni template("_repack_one_locale")
['OS != "ios"', {
'dependencies': [ # Update duplicate logic in repack_locales.py
'<(DEPTH)/content/app/resources/content_resources.gyp:content_resources',
'<(DEPTH)/content/app/strings/content_strings.gyp:content_strings',
'<(DEPTH)/device/bluetooth/bluetooth_strings.gyp:bluetooth_strings',
'<(DEPTH)/third_party/WebKit/public/blink_resources.gyp:blink_resources',
],
}, { # else
'dependencies': [ # Update duplicate logic in repack_locales.py
'<(DEPTH)/ios/chrome/ios_chrome_resources.gyp:ios_strings_gen',
],
'actions': [
{
'includes': ['chrome_repack_chrome_300_percent.gypi']
},
],
}],
['use_ash==1', {
'dependencies': [ # Update duplicate logic in repack_locales.py
'<(DEPTH)/ash/ash_resources.gyp:ash_resources',
'<(DEPTH)/ash/ash_strings.gyp:ash_strings',
],
}],
['toolkit_views==1', {
'dependencies': [
'<(DEPTH)/ui/views/resources/views_resources.gyp:views_resources',
],
}],
['chromeos==1', {
'dependencies': [ # Update duplicate logic in repack_locales.py
'<(DEPTH)/remoting/remoting.gyp:remoting_resources',
'<(DEPTH)/ui/chromeos/ui_chromeos.gyp:ui_chromeos_resources',
'<(DEPTH)/ui/chromeos/ui_chromeos.gyp:ui_chromeos_strings',
],
}],
['enable_autofill_dialog==1 and OS!="android"', {
'dependencies': [ # Update duplicate logic in repack_locales.py
'<(DEPTH)/third_party/libaddressinput/libaddressinput.gyp:libaddressinput_strings',
],
}],
['enable_extensions==1', {
'dependencies': [ # Update duplicate logic in repack_locales.py
'<(DEPTH)/extensions/extensions_strings.gyp:extensions_strings',
],
}],
['enable_app_list==1', {
'dependencies': [
'<(DEPTH)/ui/app_list/resources/app_list_resources.gyp:app_list_resources',
],
}],
['OS != "mac" and OS != "ios"', {
# Copy pak files to the product directory. These files will be picked
# up by the following installer scripts:
# - Windows: chrome/installer/mini_installer/chrome.release
# - Linux: chrome/installer/linux/internal/common/installer.include
# Ensure that the above scripts are updated when adding or removing
# pak files.
# Copying files to the product directory is not needed on the Mac
# since the framework build phase will copy them into the framework
# bundle directly.
'copies': [
{
'destination': '<(PRODUCT_DIR)',
'files': [
'<(SHARED_INTERMEDIATE_DIR)/repack/chrome_100_percent.pak'
],
},
{
'destination': '<(PRODUCT_DIR)/locales',
'files': [
'<!@pymod_do_main(repack_locales -o -p <(OS) -g <(grit_out_dir) -s <(SHARED_INTERMEDIATE_DIR) -x <(SHARED_INTERMEDIATE_DIR) <(locales))'
],
},
{
'destination': '<(PRODUCT_DIR)/pseudo_locales',
'files': [
'<!@pymod_do_main(repack_locales -o -p <(OS) -g <(grit_out_dir) -s <(SHARED_INTERMEDIATE_DIR) -x <(SHARED_INTERMEDIATE_DIR) <(pseudo_locales))'
],
},
],
'conditions': [
['branding=="Chrome"', {
'copies': [
{
# This location is for the Windows and Linux builds. For
# Windows, the chrome.release file ensures that these files
# are copied into the installer. Note that we have a separate
# section in chrome_dll.gyp to copy these files for Mac, as it
# needs to be dropped inside the framework.
'destination': '<(PRODUCT_DIR)/default_apps',
'files': ['<@(default_apps_list)']
},
],
}],
['enable_hidpi == 1', {
'copies': [
{
'destination': '<(PRODUCT_DIR)',
'files': [
'<(SHARED_INTERMEDIATE_DIR)/repack/chrome_200_percent.pak',
],
},
],
}],
['enable_topchrome_md == 1', {
'copies': [
{
'destination': '<(PRODUCT_DIR)',
'files': [
'<(SHARED_INTERMEDIATE_DIR)/repack/chrome_material_100_percent.pak',
],
},
],
}],
['enable_hidpi == 1 and enable_topchrome_md == 1', {
'copies': [
{
'destination': '<(PRODUCT_DIR)',
'files': [
'<(SHARED_INTERMEDIATE_DIR)/repack/chrome_material_200_percent.pak',
],
},
],
}],
], # conditions
}], # end OS != "mac" and OS != "ios"
], # conditions
},
{
# GN version: //chrome/app/theme:chrome_unscaled_resources
'target_name': 'chrome_unscaled_resources',
'type': 'none',
'actions': [
{
'action_name': 'generate_chrome_unscaled_resources',
'variables': {
'grit_grd_file': 'app/theme/chrome_unscaled_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
'includes': [ '../build/grit_target.gypi' ],
},
{
# GN version: //chrome/browser/resources:options_test_resources
'target_name': 'options_test_resources',
'type': 'none',
'actions': [
{
'action_name': 'generate_options_test_resources',
'variables': {
'grit_grd_file': 'browser/resources/options_test_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
'includes': [ '../build/grit_target.gypi' ],
},
{
# GN version: //chrome/test/data/resources:webui_test_resources
'target_name': 'webui_test_resources',
'type': 'none',
'actions': [
{
'action_name': 'generate_webui_test_resources',
'variables': {
'grit_grd_file': 'test/data/webui_test_resources.grd',
},
'includes': [ '../build/grit_action.gypi' ],
},
],
'includes': [ '../build/grit_target.gypi' ],
},
{
# GN version: //chrome:browser_tests_pak
'target_name': 'browser_tests_pak',
'type': 'none',
'dependencies': [
'options_test_resources',
'webui_test_resources',
],
'actions': [
{
'action_name': 'repack_browser_tests_pak',
'variables': {
'pak_inputs': [
'<(SHARED_INTERMEDIATE_DIR)/chrome/options_test_resources.pak',
'<(SHARED_INTERMEDIATE_DIR)/chrome/webui_test_resources.pak',
],
'pak_output': '<(PRODUCT_DIR)/browser_tests.pak',
},
'includes': [ '../build/repack_action.gypi' ],
},
],
},
], # targets
}
| [
"zeno.albisser@hemispherian.com"
] | zeno.albisser@hemispherian.com |
37267b9d176703bfa0ccfc0f5b44ef463f69ea53 | 9930638a8061f1e9f7c2313c34846d6c5295d747 | /Quiz41_Yusuf Syarif Iqbal_1201184320.py | 2038f1a58232b71efd2b910a885abbdcba9de425 | [
"Unlicense"
] | permissive | yusufsyarif/Quiz-4-Alpro | 6ee82c066b53694c9e05c43d6921f46dda1a7657 | dc59622409a500d73cc0ddbbed2fa8850c919ba7 | refs/heads/master | 2020-07-24T15:16:48.701000 | 2019-09-12T05:06:42 | 2019-09-12T05:06:42 | 207,966,670 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 177 | py | StudentofFRI = ["Anton", "Budi", "Doni", "Huda"]
print("List of Student = ")
print(StudentofFRI[0])
print(StudentofFRI[1])
print(StudentofFRI[2])
print(StudentofFRI[3]) | [
"noreply@github.com"
] | noreply@github.com |
63897bcb7d1d451d51497a89ed42b40c7c919bcd | 8c7853822047c1908b7bb5f39531d721dacbed3f | /Python Practice/Assignment.py | af81f0a5477dd1bcad731c9ef95518de49085947 | [] | no_license | AjayKrish24/Assessment | 63cbd8386f4f6fe649abcc3603485ed8647cf6c3 | 6233e268b9812c7f5f859ec03a83691fd3419472 | refs/heads/master | 2022-04-08T06:35:11.142000 | 2020-02-28T11:37:22 | 2020-02-28T11:37:22 | 235,511,361 | 0 | 1 | null | null | null | null | UTF-8 | Python | false | false | 2,325 | py |
1)
string = input("Enter a string : ")
str_list = []
count = ""
for x in string:
if x not in str_list:
str_list.append(x)
for x in str_list:
count = count + x + str(string.count(x))
print(count)
#=======================o/p======================================
Enter a string : aaabbcc
a3b2c2
#***************************************************************************************************
2)
string = [(),("a", "b"),(" ", " ")]
for i in string:
if len(i) == 0:
print("There is an empty tuple in the list")
#=======================o/p======================================
There is an empty tuple in the list
#***************************************************************************************************
4)
word = input()
print(word.title())
#=======================o/p======================================
welcome to python
Welcome To Python
#***************************************************************************************************
5)
import re
ip = input("Enter IP : ")
print(re.match(r"\b(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.)(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.)(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.)(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\b", ip))
#=======================o/p======================================
Enter IP : 123.45.6.88
<_sre.SRE_Match object; span=(0, 11), match='123.45.6.88'>
#***************************************************************************************************
6)
string_list = ["Welcome", "to", "Python"]
print(" ".join(string_list))
#=======================o/p======================================
string_list = ["Welcome", "to", "Python"]
print(" ".join(string_list))
#***************************************************************************************************
| [
"noreply@github.com"
] | noreply@github.com |
47508a3b9f2141ed5940c7582db50110eb72e9aa | eef1a0e31f723757c5ca8665b9433a9df86d17aa | /func/python/bench_json_loads.py | 311fdb7808b7871b2a891b4608fb5b8789176806 | [
"Apache-2.0"
] | permissive | robinvanemden/Faasm | 09a69fce30300a12d5ba7df55c40a39d81ee5d8f | e005cca20fb4be4ee9ae30f25a5873964b2efd7f | refs/heads/master | 2020-12-01T14:10:51.471000 | 2019-12-20T10:05:17 | 2019-12-20T10:05:17 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 354 | py | import json
from performance.benchmarks.bm_json_loads import DICT, TUPLE, DICT_GROUP, bench_json_loads
if __name__ == "__main__":
json_dict = json.dumps(DICT)
json_tuple = json.dumps(TUPLE)
json_dict_group = json.dumps(DICT_GROUP)
objs = (json_dict, json_tuple, json_dict_group)
for x in range(100):
bench_json_loads(objs)
| [
"noreply@github.com"
] | noreply@github.com |
fe4155275d3a9240634ebe2b2de50705201231ac | a140a7ca1bc5f0af773cb3d22081b4bb75138cfa | /234_palindromLinkedList.py | b1b3a195574aefe83cc26bf49500c32c48a8a3b2 | [] | no_license | YeahHuang/Leetcode | d02bc99d2e890ed0e829515b6f85c4ca6394a1a1 | 78d36486ad4ec2bfb88fd35a5fd7fd4f0003ee97 | refs/heads/master | 2021-07-14T01:53:06.701000 | 2020-06-22T03:01:46 | 2020-06-22T03:01:46 | 166,235,118 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 585 | py | class Solution:
def isPalindrome(self, head: ListNode) -> bool:
rev = None
slow = fast = head
while fast and fast.next:
fast = fast.next.next
rev, rev.next, slow = slow, rev, slow.next
if fast:
# fast is at the end, move slow one step further for comparison(cross middle one)
slow = slow.next
while rev and rev.val == slow.val:
slow = slow.next
rev = rev.next
# if equivalent then rev become None, return True; otherwise return False
return not rev | [
"noreply@github.com"
] | noreply@github.com |
2b19f94d126f21b48d19683f2785c9ea50a508a4 | 24653fc7753145833651a39c5ccfd2dce9776ef9 | /tests/test_kms/test_model.py | 5d0ffc0978aeb6a962d1f2ed7df60755752a3331 | [
"Apache-2.0"
] | permissive | cm-iwata/moto | fd47802b7bdec567eef575a14109a5fb0c92eea4 | 9640ec20d125248ac91243591c7db50daabfd135 | refs/heads/master | 2022-07-13T23:21:56.898000 | 2022-06-13T10:14:22 | 2022-06-13T10:14:22 | 143,237,437 | 0 | 0 | Apache-2.0 | 2018-08-02T03:27:08 | 2018-08-02T03:27:08 | null | UTF-8 | Python | false | false | 1,147 | py | import pytest
from moto.kms.models import KmsBackend
PLAINTEXT = b"text"
REGION = "us-east-1"
@pytest.fixture
def backend():
return KmsBackend(REGION)
@pytest.fixture
def key(backend):
return backend.create_key(
None, "ENCRYPT_DECRYPT", "SYMMETRIC_DEFAULT", "Test key", None, REGION
)
def test_encrypt_key_id(backend, key):
ciphertext, arn = backend.encrypt(key.id, PLAINTEXT, {})
assert ciphertext is not None
assert arn == key.arn
def test_encrypt_key_arn(backend, key):
ciphertext, arn = backend.encrypt(key.arn, PLAINTEXT, {})
assert ciphertext is not None
assert arn == key.arn
def test_encrypt_alias_name(backend, key):
backend.add_alias(key.id, "alias/test/test")
ciphertext, arn = backend.encrypt("alias/test/test", PLAINTEXT, {})
assert ciphertext is not None
assert arn == key.arn
def test_encrypt_alias_arn(backend, key):
backend.add_alias(key.id, "alias/test/test")
ciphertext, arn = backend.encrypt(
f"arn:aws:kms:{REGION}:{key.account_id}:alias/test/test", PLAINTEXT, {}
)
assert ciphertext is not None
assert arn == key.arn
| [
"noreply@github.com"
] | noreply@github.com |
cb07a323abf8740806bebc941c841ab0e659081b | e6ad1014aacaa92643f42952c278469177defc15 | /napalm_ansible/napalm_diff_yang.py | d134e9bb1a69665bbfabcb13f326bcf956c8cb1d | [
"Apache-2.0"
] | permissive | cspeidel/napalm-ansible | d290ee7cc1abd9dd7d11044d5ddc542bd6658906 | 8ad4badb38d79ec5efd96faa666c71f7438dfa28 | refs/heads/develop | 2022-02-09T05:40:10.302000 | 2017-11-06T20:51:58 | 2017-11-06T20:51:58 | 110,727,639 | 0 | 0 | Apache-2.0 | 2022-01-31T16:25:25 | 2017-11-14T18:18:35 | Python | UTF-8 | Python | false | false | 3,409 | py | #!/usr/bin/python
# -*- coding: utf-8 -*-
"""
(c) 2017 David Barroso <dbarrosop@dravetech.com>
This file is part of Ansible
Ansible is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Ansible is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Ansible. If not, see <http://www.gnu.org/licenses/>.
"""
from ansible.module_utils.basic import AnsibleModule
try:
import napalm_yang
except ImportError:
napalm_yang = None
DOCUMENTATION = '''
---
module: napalm_diff_yang
author: "David Barroso (@dbarrosop)"
version_added: "0.0"
short_description: "Return diff of two YANG objects"
description:
- "Create two YANG objects from dictionaries and runs mehtod"
- "napalm_yang.utils.diff on them."
requirements:
- napalm-yang
options:
models:
description:
- List of models to parse
required: True
first:
description:
- Dictionary with the data to load into the first YANG object
required: True
second:
description:
- Dictionary with the data to load into the second YANG object
required: True
'''
EXAMPLES = '''
napalm_diff_yang:
first: "{{ candidate.yang_model }}"
second: "{{ running_config.yang_model }}"
models:
- models.openconfig_interfaces
register: diff
'''
RETURN = '''
diff:
description: "Same output as the method napalm_yang.utils.diff"
returned: always
type: dict
sample: {
"interfaces": {
"interface": {
"both": {
"Port-Channel1": {
"config": {
"description": {
"first": "blah",
"second": "Asadasd"
}
}
}
}
}
}
'''
def get_root_object(models):
"""
Read list of models and returns a Root object with the proper models added.
"""
root = napalm_yang.base.Root()
for model in models:
current = napalm_yang
for p in model.split("."):
current = getattr(current, p)
root.add_model(current)
return root
def main():
module = AnsibleModule(
argument_spec=dict(
models=dict(type="list", required=True),
first=dict(type='dict', required=True),
second=dict(type='dict', required=True),
),
supports_check_mode=True
)
if not napalm_yang:
module.fail_json(msg="the python module napalm-yang is required")
first = get_root_object(module.params["models"])
first.load_dict(module.params["first"])
second = get_root_object(module.params["models"])
second.load_dict(module.params["second"])
diff = napalm_yang.utils.diff(first, second)
module.exit_json(yang_diff=diff)
if __name__ == '__main__':
main()
| [
"dbarrosop@dravetech.com"
] | dbarrosop@dravetech.com |
f50a62262f8a5fd229e3a174e46c8c9fedf3c950 | cef09d1e6d5e7cd335387d0829211ffb0da18f48 | /tests2/tests/wedge100/test_psumuxmon.py | 73784296b42bf03dd786c25cca01bc61c37967ce | [] | no_license | theopolis/openbmc | a1ef2e3335efd19bf750117d79c1477d47948ff3 | 1784748ba29ee89bccacb2019a0bb86bd181c651 | refs/heads/master | 2020-12-14T07:20:40.273000 | 2019-04-20T05:25:17 | 2019-04-20T05:25:17 | 43,323,632 | 0 | 1 | null | 2015-09-28T19:56:24 | 2015-09-28T19:56:24 | null | UTF-8 | Python | false | false | 2,143 | py | #!/usr/bin/env python
#
# Copyright 2018-present Facebook. All Rights Reserved.
#
# This program file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program in a file named COPYING; if not, write to the
# Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor,
# Boston, MA 02110-1301 USA
#
import unittest
import os
import re
from utils.shell_util import run_shell_cmd
from utils.cit_logger import Logger
class PsumuxmonTest(unittest.TestCase):
def setUp(self):
Logger.start(name=__name__)
def tearDown(self):
Logger.info("Finished logging for {}".format(self._testMethodName))
pass
def test_psumuxmon_runit_sv_status(self):
cmd = ["/usr/bin/sv status psumuxmon"]
data = run_shell_cmd(cmd)
self.assertIn("run", data, "psumuxmon process not running")
def get_ltc_hwmon_path(self, path):
pcard_vin = None
result = re.split("hwmon", path)
if os.path.isdir(result[0]):
construct_hwmon_path = result[0] + "hwmon"
x = None
for x in os.listdir(construct_hwmon_path):
if x.startswith('hwmon'):
construct_hwmon_path = construct_hwmon_path + "/" + x + "/" + result[2].split("/")[1]
return construct_hwmon_path
return None
def test_psumuxmon_ltc_sensor_path_exists(self):
# Based on lab device deployment, sensor data might not be accessible.
# Verify that path exists
cmd = "/sys/bus/i2c/devices/7-006f/hwmon/hwmon*/in1_input"
self.assertTrue(os.path.exists(self.get_ltc_hwmon_path(cmd)),
"psumuxmon LTC sensor path accessible")
| [
"facebook-github-bot@users.noreply.github.com"
] | facebook-github-bot@users.noreply.github.com |
803c12056e1bb1f8bb8a7ab3310523f027750019 | 338a11833d8e83dd0e4580ab3dc21b95fe17183b | /logica.py | 145a353284a5785f04491bdf85f74a8b95240a4a | [] | no_license | MaBlestastic/UML-TiendaElectronica | 6f3294a68dca2ca9fc796669307886d108e0a32f | 73a119e3224accdb9ffc90e4cb832f76590a8995 | refs/heads/main | 2023-09-06T00:47:24.907000 | 2021-11-13T00:04:01 | 2021-11-13T00:04:01 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 576 | py | import beconnect
def gestionarProv (nombreprod):
beconnect.Mostrar("SELECT nombreprod FROM producto WHERE nombreprod = "+ nombreprod )
pass
def controlarProd():
pass
def comprarProd():
pass
def controlarStockProd():
pass
def venderCliente():
pass
def reservarProd():
pass
def gestionarProv ():
Nombre = input ( "xd \t" )
Descripcion= input ("xd \t")
sql = "INSERT INTO producto (nombreprod,descripprod) VALUES (%s,%s)"
val= [(Nombre,Descripcion)]
beconnect.EjecutarSQL_VAL(sql, val)
gestionarProv () | [
"noreply@github.com"
] | noreply@github.com |
eecaffdbe17ebf356d4729447b601c155f4a4f9d | 209c876b1e248fd67bd156a137d961a6610f93c7 | /python/paddle/metric/metrics.py | aeec4022e218424eb20183b6917aa2f39a17d588 | [
"Apache-2.0"
] | permissive | Qengineering/Paddle | 36e0dba37d29146ebef4fba869490ecedbf4294e | 591456c69b76ee96d04b7d15dca6bb8080301f21 | refs/heads/develop | 2023-01-24T12:40:04.551000 | 2022-10-06T10:30:56 | 2022-10-06T10:30:56 | 544,837,444 | 0 | 0 | Apache-2.0 | 2022-10-03T10:12:54 | 2022-10-03T10:12:54 | null | UTF-8 | Python | false | false | 28,411 | py | # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import abc
import numpy as np
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import core, _varbase_creator, _non_static_mode, _in_legacy_dygraph
import paddle
from paddle import _C_ops, _legacy_C_ops
__all__ = []
def _is_numpy_(var):
return isinstance(var, (np.ndarray, np.generic))
@six.add_metaclass(abc.ABCMeta)
class Metric(object):
r"""
Base class for metric, encapsulates metric logic and APIs
Usage:
.. code-block:: text
m = SomeMetric()
for prediction, label in ...:
m.update(prediction, label)
m.accumulate()
Advanced usage for :code:`compute`:
Metric calculation can be accelerated by calculating metric states
from model outputs and labels by build-in operators not by Python/NumPy
in :code:`compute`, metric states will be fetched as NumPy array and
call :code:`update` with states in NumPy format.
Metric calculated as follows (operations in Model and Metric are
indicated with curly brackets, while data nodes not):
.. code-block:: text
inputs & labels || ------------------
| ||
{model} ||
| ||
outputs & labels ||
| || tensor data
{Metric.compute} ||
| ||
metric states(tensor) ||
| ||
{fetch as numpy} || ------------------
| ||
metric states(numpy) || numpy data
| ||
{Metric.update} \/ ------------------
Examples:
For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
as inputs, we can calculate the correct prediction matrix between
:code:`pred` and :code:`label` in :code:`compute`.
For examples, prediction results contains 10 classes, while :code:`pred`
shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
and we only need to calculate accurary of top-1 and top-5, we could
calculate the correct prediction matrix of the top-5 scores of the
prediction of each sample like follows, while the correct prediction
matrix shape is [N, 5].
.. code-block:: text
def compute(pred, label):
# sort prediction and slice the top-5 scores
pred = paddle.argsort(pred, descending=True)[:, :5]
# calculate whether the predictions are correct
correct = pred == label
return paddle.cast(correct, dtype='float32')
With the :code:`compute`, we split some calculations to OPs (which
may run on GPU devices, will be faster), and only fetch 1 tensor with
shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
:code:`update` can be define as follows:
.. code-block:: text
def update(self, correct):
accs = []
for i, k in enumerate(self.topk):
num_corrects = correct[:, :k].sum()
num_samples = len(correct)
accs.append(float(num_corrects) / num_samples)
self.total[i] += num_corrects
self.count[i] += num_samples
return accs
"""
def __init__(self):
pass
@abc.abstractmethod
def reset(self):
"""
Reset states and result
"""
raise NotImplementedError(
"function 'reset' not implemented in {}.".format(
self.__class__.__name__))
@abc.abstractmethod
def update(self, *args):
"""
Update states for metric
Inputs of :code:`update` is the outputs of :code:`Metric.compute`,
if :code:`compute` is not defined, the inputs of :code:`update`
will be flatten arguments of **output** of mode and **label** from data:
:code:`update(output1, output2, ..., label1, label2,...)`
see :code:`Metric.compute`
"""
raise NotImplementedError(
"function 'update' not implemented in {}.".format(
self.__class__.__name__))
@abc.abstractmethod
def accumulate(self):
"""
Accumulates statistics, computes and returns the metric value
"""
raise NotImplementedError(
"function 'accumulate' not implemented in {}.".format(
self.__class__.__name__))
@abc.abstractmethod
def name(self):
"""
Returns metric name
"""
raise NotImplementedError(
"function 'name' not implemented in {}.".format(
self.__class__.__name__))
def compute(self, *args):
"""
This API is advanced usage to accelerate metric calculating, calulations
from outputs of model to the states which should be updated by Metric can
be defined here, where Paddle OPs is also supported. Outputs of this API
will be the inputs of "Metric.update".
If :code:`compute` is defined, it will be called with **outputs**
of model and **labels** from data as arguments, all outputs and labels
will be concatenated and flatten and each filed as a separate argument
as follows:
:code:`compute(output1, output2, ..., label1, label2,...)`
If :code:`compute` is not defined, default behaviour is to pass
input to output, so output format will be:
:code:`return output1, output2, ..., label1, label2,...`
see :code:`Metric.update`
"""
return args
class Accuracy(Metric):
"""
Encapsulates accuracy metric logic.
Args:
topk (list[int]|tuple[int]): Number of top elements to look at
for computing accuracy. Default is (1,).
name (str, optional): String name of the metric instance. Default
is `acc`.
Example by standalone:
.. code-block:: python
import numpy as np
import paddle
x = paddle.to_tensor(np.array([
[0.1, 0.2, 0.3, 0.4],
[0.1, 0.4, 0.3, 0.2],
[0.1, 0.2, 0.4, 0.3],
[0.1, 0.2, 0.3, 0.4]]))
y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
m = paddle.metric.Accuracy()
correct = m.compute(x, y)
m.update(correct)
res = m.accumulate()
print(res) # 0.75
Example with Model API:
.. code-block:: python
import paddle
from paddle.static import InputSpec
import paddle.vision.transforms as T
from paddle.vision.datasets import MNIST
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = MNIST(mode='train', transform=transform)
model = paddle.Model(paddle.vision.models.LeNet(), input, label)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
model.fit(train_dataset, batch_size=64)
"""
def __init__(self, topk=(1, ), name=None, *args, **kwargs):
super(Accuracy, self).__init__(*args, **kwargs)
self.topk = topk
self.maxk = max(topk)
self._init_name(name)
self.reset()
def compute(self, pred, label, *args):
"""
Compute the top-k (maximum value in `topk`) indices.
Args:
pred (Tensor): The predicted value is a Tensor with dtype
float32 or float64. Shape is [batch_size, d0, ..., dN].
label (Tensor): The ground truth value is Tensor with dtype
int64. Shape is [batch_size, d0, ..., 1], or
[batch_size, d0, ..., num_classes] in one hot representation.
Return:
Tensor: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
"""
pred = paddle.argsort(pred, descending=True)
pred = paddle.slice(pred,
axes=[len(pred.shape) - 1],
starts=[0],
ends=[self.maxk])
if (len(label.shape) == 1) or \
(len(label.shape) == 2 and label.shape[-1] == 1):
# In static mode, the real label data shape may be different
# from shape defined by paddle.static.InputSpec in model
# building, reshape to the right shape.
label = paddle.reshape(label, (-1, 1))
elif label.shape[-1] != 1:
# one-hot label
label = paddle.argmax(label, axis=-1, keepdim=True)
correct = pred == label
return paddle.cast(correct, dtype='float32')
def update(self, correct, *args):
"""
Update the metrics states (correct count and total count), in order to
calculate cumulative accuracy of all instances. This function also
returns the accuracy of current step.
Args:
correct: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
Return:
Tensor: the accuracy of current step.
"""
if isinstance(correct, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
correct = correct.numpy()
num_samples = np.prod(np.array(correct.shape[:-1]))
accs = []
for i, k in enumerate(self.topk):
num_corrects = correct[..., :k].sum()
accs.append(float(num_corrects) / num_samples)
self.total[i] += num_corrects
self.count[i] += num_samples
accs = accs[0] if len(self.topk) == 1 else accs
return accs
def reset(self):
"""
Resets all of the metric state.
"""
self.total = [0.] * len(self.topk)
self.count = [0] * len(self.topk)
def accumulate(self):
"""
Computes and returns the accumulated metric.
"""
res = []
for t, c in zip(self.total, self.count):
r = float(t) / c if c > 0 else 0.
res.append(r)
res = res[0] if len(self.topk) == 1 else res
return res
def _init_name(self, name):
name = name or 'acc'
if self.maxk != 1:
self._name = ['{}_top{}'.format(name, k) for k in self.topk]
else:
self._name = [name]
def name(self):
"""
Return name of metric instance.
"""
return self._name
class Precision(Metric):
"""
Precision (also called positive predictive value) is the fraction of
relevant instances among the retrieved instances. Refer to
https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
Noted that this class manages the precision score only for binary
classification task.
Args:
name (str, optional): String name of the metric instance.
Default is `precision`.
Example by standalone:
.. code-block:: python
import numpy as np
import paddle
x = np.array([0.1, 0.5, 0.6, 0.7])
y = np.array([0, 1, 1, 1])
m = paddle.metric.Precision()
m.update(x, y)
res = m.accumulate()
print(res) # 1.0
Example with Model API:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
class Data(paddle.io.Dataset):
def __init__(self):
super(Data, self).__init__()
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def __len__(self):
return self.n
model = paddle.Model(nn.Sequential(
nn.Linear(10, 1),
nn.Sigmoid()
))
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
loss=nn.BCELoss(),
metrics=paddle.metric.Precision())
data = Data()
model.fit(data, batch_size=16)
"""
def __init__(self, name='precision', *args, **kwargs):
super(Precision, self).__init__(*args, **kwargs)
self.tp = 0 # true positive
self.fp = 0 # false positive
self._name = name
def update(self, preds, labels):
"""
Update the states based on the current mini-batch prediction results.
Args:
preds (numpy.ndarray): The prediction result, usually the output
of two-class sigmoid function. It should be a vector (column
vector or row vector) with data type: 'float64' or 'float32'.
labels (numpy.ndarray): The ground truth (labels),
the shape should keep the same as preds.
The data type is 'int32' or 'int64'.
"""
if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
preds = preds.numpy()
elif not _is_numpy_(preds):
raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")
if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
labels = labels.numpy()
elif not _is_numpy_(labels):
raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")
sample_num = labels.shape[0]
preds = np.floor(preds + 0.5).astype("int32")
for i in range(sample_num):
pred = preds[i]
label = labels[i]
if pred == 1:
if pred == label:
self.tp += 1
else:
self.fp += 1
def reset(self):
"""
Resets all of the metric state.
"""
self.tp = 0
self.fp = 0
def accumulate(self):
"""
Calculate the final precision.
Returns:
A scaler float: results of the calculated precision.
"""
ap = self.tp + self.fp
return float(self.tp) / ap if ap != 0 else .0
def name(self):
"""
Returns metric name
"""
return self._name
class Recall(Metric):
"""
Recall (also known as sensitivity) is the fraction of
relevant instances that have been retrieved over the
total amount of relevant instances
Refer to:
https://en.wikipedia.org/wiki/Precision_and_recall
Noted that this class manages the recall score only for
binary classification task.
Args:
name (str, optional): String name of the metric instance.
Default is `recall`.
Example by standalone:
.. code-block:: python
import numpy as np
import paddle
x = np.array([0.1, 0.5, 0.6, 0.7])
y = np.array([1, 0, 1, 1])
m = paddle.metric.Recall()
m.update(x, y)
res = m.accumulate()
print(res) # 2.0 / 3.0
Example with Model API:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
class Data(paddle.io.Dataset):
def __init__(self):
super(Data, self).__init__()
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def __len__(self):
return self.n
model = paddle.Model(nn.Sequential(
nn.Linear(10, 1),
nn.Sigmoid()
))
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
loss=nn.BCELoss(),
metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
data = Data()
model.fit(data, batch_size=16)
"""
def __init__(self, name='recall', *args, **kwargs):
super(Recall, self).__init__(*args, **kwargs)
self.tp = 0 # true positive
self.fn = 0 # false negative
self._name = name
def update(self, preds, labels):
"""
Update the states based on the current mini-batch prediction results.
Args:
preds(numpy.array): prediction results of current mini-batch,
the output of two-class sigmoid function.
Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
labels(numpy.array): ground truth (labels) of current mini-batch,
the shape should keep the same as preds.
Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
"""
if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
preds = preds.numpy()
elif not _is_numpy_(preds):
raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")
if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
labels = labels.numpy()
elif not _is_numpy_(labels):
raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")
sample_num = labels.shape[0]
preds = np.rint(preds).astype("int32")
for i in range(sample_num):
pred = preds[i]
label = labels[i]
if label == 1:
if pred == label:
self.tp += 1
else:
self.fn += 1
def accumulate(self):
"""
Calculate the final recall.
Returns:
A scaler float: results of the calculated Recall.
"""
recall = self.tp + self.fn
return float(self.tp) / recall if recall != 0 else .0
def reset(self):
"""
Resets all of the metric state.
"""
self.tp = 0
self.fn = 0
def name(self):
"""
Returns metric name
"""
return self._name
class Auc(Metric):
"""
The auc metric is for binary classification.
Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
Please notice that the auc metric is implemented with python, which may be a little bit slow.
The `auc` function creates four local variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives` that are used to
compute the AUC. To discretize the AUC curve, a linearly spaced set of
thresholds is used to compute pairs of recall and precision values. The area
under the ROC-curve is therefore computed using the height of the recall
values by the false positive rate, while the area under the PR-curve is the
computed using the height of the precision values by the recall.
Args:
curve (str): Specifies the mode of the curve to be computed,
'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
num_thresholds (int): The number of thresholds to use when
discretizing the roc curve. Default is 4095.
'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
name (str, optional): String name of the metric instance. Default
is `auc`.
"NOTE: only implement the ROC curve type via Python now."
Example by standalone:
.. code-block:: python
import numpy as np
import paddle
m = paddle.metric.Auc()
n = 8
class0_preds = np.random.random(size = (n, 1))
class1_preds = 1 - class0_preds
preds = np.concatenate((class0_preds, class1_preds), axis=1)
labels = np.random.randint(2, size = (n, 1))
m.update(preds=preds, labels=labels)
res = m.accumulate()
Example with Model API:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
class Data(paddle.io.Dataset):
def __init__(self):
super(Data, self).__init__()
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def __len__(self):
return self.n
model = paddle.Model(nn.Sequential(
nn.Linear(10, 2), nn.Softmax())
)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
def loss(x, y):
return nn.functional.nll_loss(paddle.log(x), y)
model.prepare(
optim,
loss=loss,
metrics=paddle.metric.Auc())
data = Data()
model.fit(data, batch_size=16)
"""
def __init__(self,
curve='ROC',
num_thresholds=4095,
name='auc',
*args,
**kwargs):
super(Auc, self).__init__(*args, **kwargs)
self._curve = curve
self._num_thresholds = num_thresholds
_num_pred_buckets = num_thresholds + 1
self._stat_pos = np.zeros(_num_pred_buckets)
self._stat_neg = np.zeros(_num_pred_buckets)
self._name = name
def update(self, preds, labels):
"""
Update the auc curve with the given predictions and labels.
Args:
preds (numpy.array): An numpy array in the shape of
(batch_size, 2), preds[i][j] denotes the probability of
classifying the instance i into the class j.
labels (numpy.array): an numpy array in the shape of
(batch_size, 1), labels[i] is either o or 1,
representing the label of the instance i.
"""
if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
labels = labels.numpy()
elif not _is_numpy_(labels):
raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")
if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
preds = preds.numpy()
elif not _is_numpy_(preds):
raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")
for i, lbl in enumerate(labels):
value = preds[i, 1]
bin_idx = int(value * self._num_thresholds)
assert bin_idx <= self._num_thresholds
if lbl:
self._stat_pos[bin_idx] += 1.0
else:
self._stat_neg[bin_idx] += 1.0
@staticmethod
def trapezoid_area(x1, x2, y1, y2):
return abs(x1 - x2) * (y1 + y2) / 2.0
def accumulate(self):
"""
Return the area (a float score) under auc curve
Return:
float: the area under auc curve
"""
tot_pos = 0.0
tot_neg = 0.0
auc = 0.0
idx = self._num_thresholds
while idx >= 0:
tot_pos_prev = tot_pos
tot_neg_prev = tot_neg
tot_pos += self._stat_pos[idx]
tot_neg += self._stat_neg[idx]
auc += self.trapezoid_area(tot_neg, tot_neg_prev, tot_pos,
tot_pos_prev)
idx -= 1
return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0
def reset(self):
"""
Reset states and result
"""
_num_pred_buckets = self._num_thresholds + 1
self._stat_pos = np.zeros(_num_pred_buckets)
self._stat_neg = np.zeros(_num_pred_buckets)
def name(self):
"""
Returns metric name
"""
return self._name
def accuracy(input, label, k=1, correct=None, total=None, name=None):
"""
accuracy layer.
Refer to the https://en.wikipedia.org/wiki/Precision_and_recall
This function computes the accuracy using the input and label.
If the correct label occurs in top k predictions, then correct will increment by one.
Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
Args:
input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64.
The shape is ``[sample_number, class_dim]`` .
label(Tensor): The label of dataset. Tensor with type int64 or int32. The shape is ``[sample_number, 1]`` .
k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32.
correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32.
total(Tensor, optional): The total entries count. A tensor with type int64 or int32.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor, the correct rate. A Tensor with type float32.
Examples:
.. code-block:: python
import paddle
predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
label = paddle.to_tensor([[2], [0]], dtype="int64")
result = paddle.metric.accuracy(input=predictions, label=label, k=1)
# [0.5]
"""
if label.dtype == paddle.int32:
label = paddle.cast(label, paddle.int64)
if _non_static_mode():
if correct is None:
correct = _varbase_creator(dtype="int32")
if total is None:
total = _varbase_creator(dtype="int32")
topk_out, topk_indices = paddle.topk(input, k=k)
_acc, _, _ = _legacy_C_ops.accuracy(topk_out, topk_indices, label,
correct, total)
return _acc
helper = LayerHelper("accuracy", **locals())
check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
'accuracy')
topk_out, topk_indices = paddle.topk(input, k=k)
acc_out = helper.create_variable_for_type_inference(dtype="float32")
if correct is None:
correct = helper.create_variable_for_type_inference(dtype="int32")
if total is None:
total = helper.create_variable_for_type_inference(dtype="int32")
helper.append_op(type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={
"Accuracy": [acc_out],
"Correct": [correct],
"Total": [total],
})
return acc_out
| [
"noreply@github.com"
] | noreply@github.com |
9b6a313c4143391d0e759e966d2a74b8e14b3fb2 | 6cee35876c6a1afdc1a2f9293fbcf41719f3852d | /chap_2/exercise2.py | c89851bc22530e3167a8bbdee2b1449bc3979f7b | [] | no_license | SiddhantAshtekar/python-algorithem-for-begginers | a7c31cd2cd96d70e13a2d0119da94fe7f38c5056 | 07803850aa78c07ce608d18173afebd398543121 | refs/heads/master | 2020-05-07T10:28:20.310000 | 2019-04-09T17:33:19 | 2019-04-09T17:33:19 | 180,417,449 | 3 | 0 | null | null | null | null | UTF-8 | Python | false | false | 99 | py | name=input("Enter your name ")
print(f"the revers of your name is {name[-1::-1]}")#revers of sting | [
"noreply@github.com"
] | noreply@github.com |
62057c8eb956315f5f52fa00e9a3237b9e78aa7e | c1faf35b2fe1beda6c839031465195ea58b4c495 | /panelserverextension.py | eae784198ae449200859acbf4742f46ee152c279 | [] | no_license | makwingchi/philly-route-finder | ff9f6001a39a7d838ff143ee5445cc848f456205 | c807c76290772f4b31bd0cdaab7a1ab6e505d8e7 | refs/heads/master | 2020-05-22T10:19:23.003000 | 2019-07-14T15:25:46 | 2019-07-14T15:25:46 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 206 | py | from subprocess import Popen
def load_jupyter_server_extension(nbapp):
"""serve the app.ipynb directory with bokeh server"""
Popen(["panel", "serve", "app.ipynb", "--allow-websocket-origin=*"]) | [
"noreply@github.com"
] | noreply@github.com |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 97