File size: 6,134 Bytes
9df545b
 
15a919f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439e5fc
15a919f
 
439e5fc
15a919f
 
 
 
 
 
 
 
 
 
 
 
439e5fc
 
 
 
 
 
 
 
9df545b
439e5fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---

license: cc-by-nc-nd-4.0
dataset_info:
  features:
  - name: file_path
    dtype: string
  - name: task
    dtype: string
  - name: variety
    dtype: string
  - name: dataset
    dtype: string
  - name: accent
    dtype: string
  - name: speech_genre
    dtype: string
  - name: speech_style
    dtype: string
  - name: up_votes
    dtype: int64
  - name: down_votes
    dtype: int64
  - name: votes_for_hesitation
    dtype: float64
  - name: votes_for_filled_pause
    dtype: float64
  - name: votes_for_noise_or_low_voice
    dtype: float64
  - name: votes_for_second_voice
    dtype: float64
  - name: votes_for_no_identified_problem
    dtype: float64
  - name: text
    dtype: string
  - name: audio
    dtype: audio
  splits:
  - name: train
    num_bytes: 63113404687.162
    num_examples: 382258
  - name: dev
    num_bytes: 1363924625
    num_examples: 7522
  - name: test
    num_bytes: 2594334946
    num_examples: 12676
  download_size: 66914186143
  dataset_size: 67071664258.162
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: dev
    path: data/dev-*
  - split: test
    path: data/test-*
task_categories:
- automatic-speech-recognition
- text-to-speech
language:
- pt
pretty_name: coraa
size_categories:
- 1K<n<10K
---


# CORAA-v1.1

[CORAA-v1.1](https://github.com/nilc-nlp/CORAA) is a publicly available dataset for Automatic Speech Recognition (ASR) in the Brazilian Portuguese language containing 290.77 hours of audios and their respective transcriptions (400k+ segmented audios). The dataset is composed of audios of 5 original projects:

- ALIP (Gonçalves, 2019)
- C-ORAL Brazil (Raso and Mello, 2012)
- NURC-Recife (Oliviera Jr., 2016)
- SP-2010 (Mendes and Oushiro, 2012)
- TEDx talks (talks in Portuguese)

The audios were either validated by annotators or transcripted for the first time aiming at the ASR task.

## LICENSE
[Attribution-NonCommercial-NoDerivatives 4.0 International](https://raw.githubusercontent.com/nilc-nlp/CORAA/main/LICENSE)


## Metadata

- file_path: the path to an audio file
- task: transcription (annotators revised original transcriptions); annotation (annotators classified the audio-transcription pair according to votes_for_* metrics); annotation_and_transcription (both tasks were performed)
- variety: European Portuguese (PT_PT) or Brazilian Portuguese (PT_BR)
- dataset: one of five datasets (ALIP, C-oral Brasil, NURC-RE, SP2010, TEDx Portuguese)
- accent: one of four accents (Minas Gerais, Recife, Sao Paulo cities, Sao Paulo capital) or the value "miscellaneous"
- speech_genre: Interviews, Dialogues, Monologues, Conversations, Interviews, Conference, Class Talks, Stage Talks or Reading
- speech_style: Spontaneous Speech or Prepared Speech or Read Speech
- up_votes: for annotation, the number of votes to valid the audio (most audios were revewed by one annotor, but some of the audios were analyzed by more than one).
- down_votes: for annotation, the number of votes do invalid the audio (always smaller than up_votes)
- votes_for_hesitation: for annotation, votes categorizing the audio as having the hesitation phenomenon
- votes_for_filled_pause: for annotation, votes categorizing the audio as having the filled pause phenomenon
- votes_for_noise_or_low_voice: for annotation, votes categorizing the audio as either having noise or low voice, without impairing the audio compression.
- votes_for_second_voice: for annotation, votes categorizing the audio as having a second voice, without impairing the audio compression
- votes_for_no_identified_problem: without impairing the audio as having no identified phenomenon (of the four described above)
- text: the transcription for the audio

## Experiments:

- [Checkpoints ](https://drive.google.com/drive/folders/10JkbCzYypZtCz1nHY5rBoBM1r66P3p3j?usp=sharing)
- [Code](https://github.com/Edresson/Wav2Vec-Wrapper)

Model trained in this corpus: Wav2Vec 2.0 XLSR-53 (multilingual pretraining)

## Citation

- [Preprint](https://arxiv.org/abs/2110.15731): 
```
@misc{c2021coraa,
    title={CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese},
    author={Arnaldo Candido Junior and Edresson Casanova and Anderson Soares and Frederico Santos de Oliveira and Lucas Oliveira and Ricardo Corso Fernandes Junior and Daniel Peixoto Pinto da Silva and Fernando Gorgulho Fayet and Bruno Baldissera Carlotto and Lucas Rafael Stefanel Gris and Sandra Maria Aluísio},
    year={2021},
    eprint={2110.15731},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

- Full Paper: coming soon
- Oficial site: [Tarsila Project](https://sites.google.com/view/tarsila-c4ai/)

## Partners / Sponsors / Funding

- [C4AI](https://c4ai.inova.usp.br/pt/home-2/)
- [CEIA](https://centrodeia.org/)
- [UFG](https://www.ufg.br/)
- [USP](https://www5.usp.br/)
- [UTFPR](http://www.utfpr.edu.br/)

## References

- Gonçalves SCL (2019) Projeto ALIP (amostra linguística do interior paulista) e banco de dados iboruna: 10 anos de contribuição com a descrição do Português Brasileiro. Revista Estudos Linguísticos 48(1):276–297.
- Raso T, Mello H, Mittmann MM (2012) The C-ORAL-BRASIL I: Reference corpus for spoken Brazilian Portuguese. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), European Language Resources Association (ELRA), Istanbul, Turkey, pp 106–113, URL http://www.lrec-conf.org/proceedings/lrec2012/pdf/624_Paper.pdf
- Oliviera Jr M (2016) Nurc digital um protocolo para a digitalização, anotação, arquivamento e disseminação do material do projeto da norma urbana linguística culta (NURC). CHIMERA: Revista de Corpus de Lenguas Romances y Estudios Linguísticos 3(2):149–174, URL https://revistas.uam.es/chimera/article/view/6519
- Mendes RB, Oushiro L (2012) Mapping Paulistano Portuguese: the SP2010 Project. In: Proceedings of the VIIth GSCP International Conference: Speech and Corpora, Fizenze University Press, Firenze, Italy, pp 459–463.