Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,292 Bytes
6d1ce12
20ac86e
f1389f8
 
 
 
 
 
 
 
 
 
 
 
 
 
48300bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2ead31
 
 
2cb26b7
9c99884
 
e2ead31
 
 
 
 
 
6005e03
995c57e
 
2cb26b7
4b8204a
 
e2ead31
 
 
2cb26b7
e7dbc39
 
e2ead31
c2958b7
 
e2ead31
a1c47d8
 
f3c9eae
 
 
2cb26b7
9a19bd6
 
e2ead31
 
 
 
 
 
 
 
 
2cb26b7
9a19bd6
 
e2ead31
 
 
 
 
 
 
 
 
f3c9eae
 
e4d1343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ea854
6d1ce12
c14929e
f1389f8
 
 
 
e677ed6
 
f1389f8
 
e3a855b
f1389f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2da4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1389f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
---
license: apache-2.0
tags:
- natural-language-understanding
language_creators:
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Fact Completion Benchmark for Text Models
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text2text-generation
dataset_info:
  features:
  - name: dataset_id
    dtype: string
  - name: stem
    dtype: string
  - name: 'true'
    dtype: string
  - name: 'false'
    dtype: string
  - name: relation
    dtype: string
  - name: subject
    dtype: string
  - name: object
    dtype: string
  splits:
  - name: English
    num_bytes: 3474255
    num_examples: 26254
  - name: Spanish
    num_bytes: 3175733
    num_examples: 18786
  - name: French
    num_bytes: 3395566
    num_examples: 18395
  - name: Russian
    num_bytes: 659526
    num_examples: 3289
  - name: Portuguese
    num_bytes: 4158146
    num_examples: 22974
  - name: German
    num_bytes: 2611160
    num_examples: 16287
  - name: Italian
    num_bytes: 3709786
    num_examples: 20448
  - name: Ukrainian
    num_bytes: 1868358
    num_examples: 7918
  - name: Romanian
    num_bytes: 2846002
    num_examples: 17568
  - name: Czech
    num_bytes: 1631582
    num_examples: 9427
  - name: Bulgarian
    num_bytes: 4597410
    num_examples: 20577
  - name: Swedish
    num_bytes: 3226502
    num_examples: 21576
  - name: Serbian
    num_bytes: 3048
    num_examples: 16
  - name: Hungarian
    num_bytes: 2251
    num_examples: 14
  - name: Croatian
    num_bytes: 2454
    num_examples: 19
  - name: Danish
    num_bytes: 11392
    num_examples: 87
  - name: Slovenian
    num_bytes: 3418
    num_examples: 27
  - name: Polish
    num_bytes: 4472
    num_examples: 29
  - name: Dutch
    num_bytes: 12067
    num_examples: 81
  - name: Catalan
    num_bytes: 11514
    num_examples: 77
  download_size: 18322313
  dataset_size: 35404642
language:
- en
- fr
- es
- de
- uk
- bg
- ca
- da
- hr
- hu
- it
- nl
- pl
- pt
- ro
- ru
- sl
- sr
- sv
- cs
---

# Dataset Card for Fact_Completion

## Dataset Description

- **Homepage:** https://bit.ly/ischool-berkeley-capstone
- **Repository:** https://github.com/daniel-furman/Capstone
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** daniel_furman@berkeley.edu

### Dataset Summary

This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@misc{calibragpt,
  author = {Shreshta Bhat and Daniel Furman and Tim Schott},
  title = {CalibraGPT: The Search for (Mis)Information in Large Language Models},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/daniel-furman/Capstone}},
}
```

```
@misc{dong2022calibrating,
      doi = {10.48550/arXiv.2210.03329},
      title={Calibrating Factual Knowledge in Pretrained Language Models}, 
      author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
      year={2022},
      eprint={2210.03329},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@misc{meng2022massediting,
      doi = {10.48550/arXiv.2210.07229},
      title={Mass-Editing Memory in a Transformer}, 
      author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
      year={2022},
      eprint={2210.07229},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@inproceedings{elsahar-etal-2018-rex,
    title = "{T}-{RE}x: A Large Scale Alignment of Natural Language with Knowledge Base Triples",
    author = "Elsahar, Hady  and
      Vougiouklis, Pavlos  and
      Remaci, Arslen  and
      Gravier, Christophe  and
      Hare, Jonathon  and
      Laforest, Frederique  and
      Simperl, Elena",
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L18-1544",
}

```

### Contributions

[More Information Needed]