Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
dfurman commited on
Commit
f1389f8
1 Parent(s): 6d1ce12

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +173 -0
README.md CHANGED
@@ -1,3 +1,176 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - natural-language-understanding
5
+ language_creators:
6
+ - expert-generated
7
+ - machine-generated
8
+ language:
9
+ - en
10
+ multilinguality:
11
+ - multilingual
12
+ pretty_name: Fact Completion Benchmark for Text Models
13
+ size_categories:
14
+ - 100K<n<1M
15
+ task_categories:
16
+ - text-generation
17
+ - fill-mask
18
+ - text2text-generation
19
+ task_ids:
20
+ - fact-checking
21
+ dataset_info:
22
+ features:
23
+ - name: dataset_id
24
+ dtype: string
25
+ - name: stem
26
+ dtype: string
27
+ - name: 'true'
28
+ dtype: string
29
+ - name: 'false'
30
+ dtype: string
31
+ - name: relation
32
+ dtype: string
33
+ - name: subject
34
+ dtype: string
35
+ - name: object
36
+ dtype: string
37
+ splits:
38
+ - name: English
39
+ num_bytes: 4529851
40
+ num_examples: 33686
41
+ - name: French
42
+ num_bytes: 4529851
43
+ num_examples: 33686
44
+ download_size: 4379770
45
+ dataset_size: 9059702
46
  ---
47
+ # Dataset Card for Fact_Completion
48
+
49
+ ## Dataset Description
50
+
51
+ - **Homepage:**
52
+ - **Repository:**
53
+ - **Paper:**
54
+ - **Leaderboard:**
55
+ - **Point of Contact:**
56
+
57
+ ### Dataset Summary
58
+
59
+ This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
60
+
61
+ ### Supported Tasks and Leaderboards
62
+
63
+ [More Information Needed]
64
+
65
+ ### Languages
66
+
67
+ [More Information Needed]
68
+
69
+ ## Dataset Structure
70
+
71
+ ### Data Instances
72
+
73
+ [More Information Needed]
74
+
75
+ ### Data Fields
76
+
77
+ [More Information Needed]
78
+
79
+ ### Data Splits
80
+
81
+ [More Information Needed]
82
+
83
+ ## Dataset Creation
84
+
85
+ ### Curation Rationale
86
+
87
+ [More Information Needed]
88
+
89
+ ### Source Data
90
+
91
+ #### Initial Data Collection and Normalization
92
+
93
+ [More Information Needed]
94
+
95
+ #### Who are the source language producers?
96
+
97
+ [More Information Needed]
98
+
99
+ ### Annotations
100
+
101
+ #### Annotation process
102
+
103
+ [More Information Needed]
104
+
105
+ #### Who are the annotators?
106
+
107
+ [More Information Needed]
108
+
109
+ ### Personal and Sensitive Information
110
+
111
+ [More Information Needed]
112
+
113
+ ## Considerations for Using the Data
114
+
115
+ ### Social Impact of Dataset
116
+
117
+ [More Information Needed]
118
+
119
+ ### Discussion of Biases
120
+
121
+ [More Information Needed]
122
+
123
+ ### Other Known Limitations
124
+
125
+ [More Information Needed]
126
+
127
+ ## Additional Information
128
+
129
+ ### Dataset Curators
130
+
131
+ [More Information Needed]
132
+
133
+ ### Licensing Information
134
+
135
+ [More Information Needed]
136
+
137
+ ### Citation Information
138
+
139
+ ```
140
+ @misc{calibragpt,
141
+ author = {Shreshta Bhat and Daniel Furman and Tim Schott},
142
+ title = {CalibraGPT: The Search for (Mis)Information in Large Language Models},
143
+ year = {2023},
144
+ publisher = {GitHub},
145
+ journal = {GitHub repository},
146
+ howpublished = {\url{https://github.com/daniel-furman/Capstone}},
147
+ }
148
+ ```
149
+
150
+ ```
151
+ @misc{dong2022calibrating,
152
+ doi = {10.48550/arXiv.2210.03329},
153
+ title={Calibrating Factual Knowledge in Pretrained Language Models},
154
+ author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
155
+ year={2022},
156
+ eprint={2210.03329},
157
+ archivePrefix={arXiv},
158
+ primaryClass={cs.CL}
159
+ }
160
+ ```
161
+
162
+ ```
163
+ @misc{meng2022massediting,
164
+ doi = {10.48550/arXiv.2210.07229},
165
+ title={Mass-Editing Memory in a Transformer},
166
+ author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
167
+ year={2022},
168
+ eprint={2210.07229},
169
+ archivePrefix={arXiv},
170
+ primaryClass={cs.CL}
171
+ }
172
+ ```
173
+
174
+ ### Contributions
175
+
176
+ [More Information Needed]