Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
10K - 100K
License:
File size: 5,470 Bytes
b8d0108 88bec5e 08f31be 88bec5e 08f31be 93b3d1f 88bec5e a395436 7f26250 88bec5e b8d0108 88bec5e 7f26250 88bec5e ee8a2e0 88bec5e 474c156 cea1db2 88bec5e 7f26250 cea1db2 88bec5e 7f26250 88bec5e 7f26250 cea1db2 7f26250 cea1db2 7f26250 cea1db2 7f26250 88bec5e 7f26250 6bbb4e4 7f26250 88bec5e 7f26250 7470bdf 88bec5e 6e83ba9 88bec5e 6e83ba9 88bec5e 6e83ba9 88bec5e 6e83ba9 88bec5e dbb3927 a4d366e dbb3927 23ad17a 88bec5e ee67ffe 88bec5e dbb3927 1788447 dbb3927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
annotations_creators:
- expert-generated
language_creators:
- found
- expert-generated
language:
- en
license:
- cc-by-nc-4.0
multilinguality:
- monolingual
paperswithcode_id: phrase-in-context
pretty_name: 'PiC: Phrase Similarity (PS)'
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
---
# Dataset Card for "PiC: Phrase Similarity"
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://phrase-in-context.github.io/](https://phrase-in-context.github.io/)
- **Repository:** [https://github.com/phrase-in-context](https://github.com/phrase-in-context)
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Thang Pham](<thangpham@auburn.edu>)
- **Size of downloaded dataset files:** 4.60 MB
- **Size of the generated dataset:** 2.96 MB
- **Total amount of disk used:** 7.56 MB
### Dataset Summary
PS is a binary classification task with the goal of predicting whether two multi-word noun phrases are semantically similar or not given *the same context* sentence.
This dataset contains ~10K pairs of two phrases along with their contexts used for disambiguation, since two phrases are not enough for semantic comparison.
Our ~10K examples were annotated by linguistic experts on <upwork.com> and verified in two rounds by 1000 Mturkers and 5 linguistic experts.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English.
## Dataset Structure
### Data Instances
**PS**
* Size of downloaded dataset files: 4.60 MB
* Size of the generated dataset: 2.96 MB
* Total amount of disk used: 7.56 MB
```
{
"phrase1": "annual run",
"phrase2": "yearlong performance",
"sentence1": "since 2004, the club has been a sponsor of the annual run for rigby to raise money for off-campus housing safety awareness.",
"sentence2": "since 2004, the club has been a sponsor of the yearlong performance for rigby to raise money for off-campus housing safety awareness.",
"label": 0,
"idx": 0,
}
```
### Data Fields
The data fields are the same among all splits.
* phrase1: a string feature.
* phrase2: a string feature.
* sentence1: a string feature.
* sentence2: a string feature.
* label: a classification label, with negative (0) and positive (1).
* idx: an int32 feature.
### Data Splits
| name |train |validation|test |
|--------------------|----:|--------:|----:|
|PS |7362| 1052|2102|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The source passages + answers are from Wikipedia and the source of queries were produced by our hired linguistic experts from [Upwork.com](https://upwork.com).
#### Who are the source language producers?
We hired 13 linguistic experts from [Upwork.com](https://upwork.com) for annotation and more than 1000 human annotators on Mechanical Turk along with another set of 5 Upwork experts for 2-round verification.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
13 linguistic experts from [Upwork.com](https://upwork.com).
### Personal and Sensitive Information
No annotator identifying details are provided.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
This dataset is a joint work between Adobe Research and Auburn University.
Creators: [Thang M. Pham](https://scholar.google.com/citations?user=eNrX3mYAAAAJ), [David Seunghyun Yoon](https://david-yoon.github.io/), [Trung Bui](https://sites.google.com/site/trungbuistanford/), and [Anh Nguyen](https://anhnguyen.me).
[@PMThangXAI](https://twitter.com/pmthangxai) added this dataset to HuggingFace.
### Licensing Information
This dataset is distributed under [Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/)
### Citation Information
```
@article{pham2022PiC,
title={PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search},
author={Pham, Thang M and Yoon, Seunghyun and Bui, Trung and Nguyen, Anh},
journal={arXiv preprint arXiv:2207.09068},
year={2022}
}
``` |