File size: 5,470 Bytes
b8d0108
88bec5e
 
 
 
 
08f31be
88bec5e
08f31be
93b3d1f
88bec5e
 
a395436
7f26250
88bec5e
 
 
 
 
 
 
 
b8d0108
88bec5e
7f26250
88bec5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee8a2e0
 
88bec5e
 
474c156
cea1db2
 
 
88bec5e
 
 
7f26250
cea1db2
 
88bec5e
 
 
 
 
 
 
7f26250
88bec5e
 
 
 
 
7f26250
cea1db2
 
 
7f26250
 
 
cea1db2
 
 
 
7f26250
cea1db2
7f26250
 
88bec5e
 
 
7f26250
 
 
 
 
 
6bbb4e4
7f26250
88bec5e
 
 
7f26250
 
7470bdf
88bec5e
 
 
 
 
 
 
 
 
 
 
6e83ba9
88bec5e
 
 
6e83ba9
88bec5e
 
 
 
 
 
 
 
 
6e83ba9
88bec5e
 
 
6e83ba9
88bec5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbb3927
a4d366e
dbb3927
23ad17a
88bec5e
 
 
ee67ffe
88bec5e
 
 
dbb3927
 
 
1788447
 
dbb3927
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
annotations_creators:
- expert-generated
language_creators:
- found
- expert-generated
language:
- en
license:
- cc-by-nc-4.0
multilinguality:
- monolingual
paperswithcode_id: phrase-in-context
pretty_name: 'PiC: Phrase Similarity (PS)'
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
---

# Dataset Card for "PiC: Phrase Similarity"

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://phrase-in-context.github.io/](https://phrase-in-context.github.io/)
- **Repository:** [https://github.com/phrase-in-context](https://github.com/phrase-in-context)
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Thang Pham](<thangpham@auburn.edu>)
- **Size of downloaded dataset files:** 4.60 MB
- **Size of the generated dataset:** 2.96 MB
- **Total amount of disk used:** 7.56 MB

### Dataset Summary

PS is a binary classification task with the goal of predicting whether two multi-word noun phrases are semantically similar or not given *the same context* sentence.
This dataset contains ~10K pairs of two phrases along with their contexts used for disambiguation, since two phrases are not enough for semantic comparison.
Our ~10K examples were annotated by linguistic experts on <upwork.com> and verified in two rounds by 1000 Mturkers and 5 linguistic experts.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English.

## Dataset Structure

### Data Instances

**PS**
* Size of downloaded dataset files: 4.60 MB
* Size of the generated dataset: 2.96 MB
* Total amount of disk used: 7.56 MB

```
{
  "phrase1": "annual run",
  "phrase2": "yearlong performance",
  "sentence1": "since 2004, the club has been a sponsor of the annual run for rigby to raise money for off-campus housing safety awareness.",
  "sentence2": "since 2004, the club has been a sponsor of the yearlong performance for rigby to raise money for off-campus housing safety awareness.",
  "label": 0,
  "idx": 0,
}
```

### Data Fields

The data fields are the same among all splits.

* phrase1: a string feature.
* phrase2: a string feature.
* sentence1: a string feature.
* sentence2: a string feature.
* label: a classification label, with negative (0) and positive (1).
* idx: an int32 feature.

### Data Splits

|        name        |train |validation|test |
|--------------------|----:|--------:|----:|
|PS                  |7362|     1052|2102|

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

The source passages + answers are from Wikipedia and the source of queries were produced by our hired linguistic experts from [Upwork.com](https://upwork.com).

#### Who are the source language producers?

We hired 13 linguistic experts from [Upwork.com](https://upwork.com) for annotation and more than 1000 human annotators on Mechanical Turk along with another set of 5 Upwork experts for 2-round verification.

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

13 linguistic experts from [Upwork.com](https://upwork.com).

### Personal and Sensitive Information

No annotator identifying details are provided.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

This dataset is a joint work between Adobe Research and Auburn University.
Creators: [Thang M. Pham](https://scholar.google.com/citations?user=eNrX3mYAAAAJ), [David Seunghyun Yoon](https://david-yoon.github.io/), [Trung Bui](https://sites.google.com/site/trungbuistanford/), and [Anh Nguyen](https://anhnguyen.me).

[@PMThangXAI](https://twitter.com/pmthangxai) added this dataset to HuggingFace.

### Licensing Information

This dataset is distributed under [Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/)

### Citation Information

```
@article{pham2022PiC,
  title={PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search},
  author={Pham, Thang M and Yoon, Seunghyun and Bui, Trung and Nguyen, Anh},
  journal={arXiv preprint arXiv:2207.09068},
  year={2022}
}
```