File size: 5,302 Bytes
cc5ec32 fd3771b cc5ec32 9d71fea cc5ec32 9d71fea cc5ec32 9d71fea cc5ec32 9d71fea cc5ec32 03d34a5 cc5ec32 0dea37f cc5ec32 03d34a5 cc5ec32 396feb9 cc5ec32 9d71fea cc5ec32 9d71fea cc5ec32 396feb9 cc5ec32 9d71fea cc5ec32 396feb9 cc5ec32 9d71fea cc5ec32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search."""
import json
import os.path
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{pham2022PiC,
title={PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search},
author={Pham, Thang M and Yoon, Seunghyun and Bui, Trung and Nguyen, Anh},
journal={arXiv preprint arXiv:2207.09068},
year={2022}
}
"""
_DESCRIPTION = """\
Phrase in Context is a curated benchmark for phrase understanding and semantic search, consisting of three tasks of increasing difficulty: Phrase Similarity (PS), Phrase Retrieval (PR) and Phrase Sense Disambiguation (PSD). The datasets are annotated by 13 linguistic experts on Upwork and verified by two groups: ~1000 AMT crowdworkers and another set of 5 linguistic experts. PiC benchmark is distributed under CC-BY-NC 4.0.
"""
_HOMEPAGE = "https://phrase-in-context.github.io/"
_LICENSE = "CC-BY-NC-4.0"
_URL = "https://auburn.edu/~tmp0038/PiC/"
_SPLITS = {
"train": "train-v1.0.json",
"dev": "dev-v1.0.json",
"test": "test-v2.0.2.json",
}
_PSD = "PSD"
class PSDConfig(datasets.BuilderConfig):
"""BuilderConfig for Phrase Sense Disambiguation in PiC."""
def __init__(self, **kwargs):
"""BuilderConfig for Phrase Sense Disambiguation in PiC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(PSDConfig, self).__init__(**kwargs)
class PhraseSenseDisambiguation(datasets.GeneratorBasedBuilder):
"""Phrase Sense Disambiguation in PiC dataset. Version 2.0.1."""
BUILDER_CONFIGS = [
PSDConfig(
name=_PSD,
version=datasets.Version("2.0.2"),
description="The PiC Dataset for Phrase Sense Disambiguation at short passage level (~22 sentences)"
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"query": datasets.Value("string"),
"answers": datasets.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
)
}
),
# No default supervised_keys (as we have to pass both question and context as input).
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls_to_download = {
"train": os.path.join(_URL, self.config.name, _SPLITS["train"]),
"dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]),
"test": os.path.join(_URL, self.config.name, _SPLITS["test"])
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, encoding="utf-8") as f:
pic_psd = json.load(f)
for example in pic_psd["data"]:
title = example.get("title", "")
answer_starts = [answer["answer_start"] for answer in example["answers"]]
answers = [answer["text"] for answer in example["answers"]]
# Features currently used are "context", "query", and "answers".
# Others are extracted here for the ease of future expansions.
yield key, {
"title": title,
"context": example["context"],
"query": example["question"],
"id": example["id"],
"answers": {
"answer_start": answer_starts,
"text": answers,
}
}
key += 1
|