File size: 5,566 Bytes
cc5ec32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d71fea
 
 
 
 
 
cc5ec32
 
 
9d71fea
cc5ec32
 
9d71fea
cc5ec32
9d71fea
cc5ec32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d71fea
cc5ec32
 
 
 
 
 
 
 
 
 
 
 
9d71fea
cc5ec32
 
 
 
 
9d71fea
cc5ec32
 
 
 
 
 
 
 
 
 
 
9d71fea
cc5ec32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d71fea
 
 
 
cc5ec32
 
 
 
 
 
9d71fea
cc5ec32
9d71fea
cc5ec32
 
 
 
9d71fea
cc5ec32
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search."""


import json
import os.path

import datasets
from datasets.tasks import QuestionAnsweringExtractive


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@article{pham2022PiC,
  title={PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search},
  author={Pham, Thang M and Yoon, Seunghyun and Bui, Trung and Nguyen, Anh},
  journal={arXiv preprint arXiv:2207.09068},
  year={2022}
}
"""

_DESCRIPTION = """\
Phrase in Context is a curated benchmark for phrase understanding and semantic search, consisting of three tasks of increasing difficulty: Phrase Similarity (PS), Phrase Retrieval (PR) and Phrase Sense Disambiguation (PSD). The datasets are annotated by 13 linguistic experts on Upwork and verified by two groups: ~1000 AMT crowdworkers and another set of 5 linguistic experts. PiC benchmark is distributed under CC-BY-NC 4.0.
"""

_HOMEPAGE = "https://phrase-in-context.github.io/"

_LICENSE = "CC-BY-NC-4.0"

_URL = "https://auburn.edu/~tmp0038/PiC/"
_SPLITS = {
    "train": "train-v1.0.json",
    "dev": "dev-v1.0.json",
    "test": "test-v1.0.json",
}

_PSD = "PSD"


class PSDConfig(datasets.BuilderConfig):
    """BuilderConfig for Phrase Sense Disambiguation in PiC."""

    def __init__(self, **kwargs):
        """BuilderConfig for Phrase Sense Disambiguation in PiC.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PSDConfig, self).__init__(**kwargs)


class PhraseSenseDisambiguation(datasets.GeneratorBasedBuilder):
    """Phrase Sense Disambiguation in PiC dataset. Version 1.0."""

    BUILDER_CONFIGS = [
        PSDConfig(
            name=_PSD,
            version=datasets.Version("1.0.2"),
            description="The PiC Dataset for Phrase Sense Disambiguation at short passage level (~22 sentences)"
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    )
                }
            ),
            # No default supervised_keys (as we have to pass both question and context as input).
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question", context_column="context", answers_column="answers"
                )
            ]
        )

    def _split_generators(self, dl_manager):
        urls_to_download = {
            "train": os.path.join(_URL, self.config.name, _SPLITS["train"]),
            "dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]),
            "test": os.path.join(_URL, self.config.name, _SPLITS["test"])
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="utf-8") as f:
            pic_psd = json.load(f)
            for example in pic_psd["data"]:
                title = example.get("title", "")

                answer_starts = [answer["answer_start"] for answer in example["answers"]]
                answers = [answer["text"] for answer in example["answers"]]

                # Features currently used are "context", "question", and "answers".
                # Others are extracted here for the ease of future expansions.
                yield key, {
                    "title": title,
                    "context": example["context"],
                    "question": example["question"],
                    "id": example["id"],
                    "answers": {
                        "answer_start": answer_starts,
                        "text": answers,
                    }
                }
                key += 1