hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
48d433d2eef1def8671d48845197a3a897af756f
2,242
py
Python
qiskit/test/mock/backends/boeblingen/fake_boeblingen.py
romainfd/qiskit-terra
b5285ccc5cb1d17b7c73402833f2750b93652426
[ "Apache-2.0" ]
2
2020-12-26T21:12:30.000Z
2021-05-18T12:53:42.000Z
qiskit/test/mock/backends/boeblingen/fake_boeblingen.py
romainfd/qiskit-terra
b5285ccc5cb1d17b7c73402833f2750b93652426
[ "Apache-2.0" ]
1
2020-03-29T19:57:14.000Z
2020-03-29T21:49:25.000Z
qiskit/test/mock/backends/boeblingen/fake_boeblingen.py
romainfd/qiskit-terra
b5285ccc5cb1d17b7c73402833f2750b93652426
[ "Apache-2.0" ]
1
2020-07-13T17:56:46.000Z
2020-07-13T17:56:46.000Z
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Fake Boeblingen device (20 qubit). """ import os import json from qiskit.providers.models import (PulseBackendConfiguration, BackendProperties, PulseDefaults) from qiskit.test.mock.fake_backend import FakeBackend class FakeBoeblingen(FakeBackend): """A fake Boeblingen backend.""" def __init__(self): """ 00 ↔ 01 ↔ 02 ↔ 03 ↔ 04 ↕ ↕ 05 ↔ 06 ↔ 07 ↔ 08 ↔ 09 ↕ ↕ ↕ 10 ↔ 11 ↔ 12 ↔ 13 ↔ 14 ↕ ↕ 15 ↔ 16 ↔ 17 ↔ 18 ↔ 19 """ dirname = os.path.dirname(__file__) filename = "conf_boeblingen.json" with open(os.path.join(dirname, filename), "r") as f_conf: conf = json.load(f_conf) configuration = PulseBackendConfiguration.from_dict(conf) configuration.backend_name = 'fake_boeblingen' self._defaults = None self._properties = None super().__init__(configuration) def properties(self): """Returns a snapshot of device properties""" dirname = os.path.dirname(__file__) filename = "props_boeblingen.json" with open(os.path.join(dirname, filename), "r") as f_prop: props = json.load(f_prop) return BackendProperties.from_dict(props) def defaults(self): """Returns a snapshot of device defaults""" if not self._defaults: dirname = os.path.dirname(__file__) filename = "defs_boeblingen.json" with open(os.path.join(dirname, filename), "r") as f_defs: defs = json.load(f_defs) self._defaults = PulseDefaults.from_dict(defs) return self._defaults
33.462687
77
0.610169
cd513aa3055be59ab3bd7838923516a9f8ad3f01
382
py
Python
credentials.sample.py
Lincest/Badminton-Due
09be77c7ce2edba923bab9d39fea4e377377f777
[ "Apache-2.0" ]
1
2020-10-14T15:14:16.000Z
2020-10-14T15:14:16.000Z
credentials.sample.py
Lincest/Badminton-Due
09be77c7ce2edba923bab9d39fea4e377377f777
[ "Apache-2.0" ]
null
null
null
credentials.sample.py
Lincest/Badminton-Due
09be77c7ce2edba923bab9d39fea4e377377f777
[ "Apache-2.0" ]
null
null
null
# 填写完毕后文件名改为credentials.py class Credentials(): def __init__(self): self.IDS_USERNAME = "" # 学号 self.IDS_PASSWORD = "" # 一站式登录密码 self.phone = "13000000000" # 手机电话 self.stu_name_1 = "张三" # 你的名字 self.stu_id_1 = self.IDS_USERNAME # 你的学号 self.stu_name_2 = "18000000000" # 小伙伴的名字 self.stu_id_2 = "18000000000" # 小伙伴的学号
31.833333
49
0.604712
cc23a7d6dd6d6440a0b18f1bbd0fa52f323f4e38
2,160
py
Python
doc/source/TCP.py
sunrise-cubesat/AIT-DSN
6c600c2a585a373aa9e2290842a4f412469810f4
[ "MIT" ]
null
null
null
doc/source/TCP.py
sunrise-cubesat/AIT-DSN
6c600c2a585a373aa9e2290842a4f412469810f4
[ "MIT" ]
null
null
null
doc/source/TCP.py
sunrise-cubesat/AIT-DSN
6c600c2a585a373aa9e2290842a4f412469810f4
[ "MIT" ]
null
null
null
AIT SLE User Guide ================== The TCP forwarding plugin facilitates forwarding pipeline data over TCP. The plugin can be configured for an arbitrary number of server or clients for each PUB/SUB topic. Configuration ^^^^^^^^^^^^^ Customize the template within the config.yaml plugin block: .. code-block:: none - plugin: name: ait.dsn.plugins.TCP.TCP_Manager inputs: - PUB_SUB_TOPIC_1 - PUB_SUB_TOPIC_2 subscriptions: PUB_SUB_TOPIC_1: Server_Name1: port: 42401 timeout: 1 mode: TRANSMIT Server_Name2: port: 42401 hostname: someserver.xyz mode: TRANSMIT PUB_SUB_TOPIC_2_RECEIVE: Server_Name3: port: 12345 receive_size_bytes: 1024 mode: RECEIVE Server_Name4: port: 12346 host: localhost receive_size_bytes: 512 mode: RECEIVE * The value *PUB_SUB_TOPIC_1* corresponds to a PUB/SUB topic that should be subscribed to (i.e. another plugin). * The value *Server_Name1* is an arbitrary nickname for the connection. * The *port* option is mandatory for all connections. * The *hostname* field is optional. + When defined, the plugin will attempt to establish connection to this server (Client Mode). + When undefined, the plugin will start its own server that clients can receieve data from (Server Mode). * The *mode* field is mandatory. + *mode:TRANSMIT* specifies that the connection will forward data from the PUB/SUB topic to the specified TCP client/server. + *mode:RECEIVE* specifies that the connection will forward data from the specified TCP client/server to the specified PUB/SUB topic. * The *timeout_seconds* field is mandatory and specifies how long a Server Mode connection should wait for a client before giving up and dropping the data. * *receive_size_bytes* specifies how much data to receive from the Server/Client when operating in RECEIVE mode.
39.272727
155
0.642593
b1323d6b4b1ac193f86107fe058b9879206da881
3,368
py
Python
plugins/hello_world/hello_world_filter.py
Kitware/VAIME
47b24b9d8a208cf8c621e5bb1088c61fcf507af6
[ "BSD-3-Clause" ]
127
2019-05-23T10:05:25.000Z
2022-03-28T05:14:11.000Z
plugins/hello_world/hello_world_filter.py
Kitware/VAIME
47b24b9d8a208cf8c621e5bb1088c61fcf507af6
[ "BSD-3-Clause" ]
39
2019-06-18T21:44:58.000Z
2022-01-12T14:47:01.000Z
plugins/hello_world/hello_world_filter.py
Kitware/VAIME
47b24b9d8a208cf8c621e5bb1088c61fcf507af6
[ "BSD-3-Clause" ]
40
2016-08-23T21:44:17.000Z
2019-04-20T23:39:53.000Z
#ckwg +28 # Copyright 2017 by Kitware, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither name of Kitware, Inc. nor the names of any contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from kwiver.sprokit.processes.kwiver_process import KwiverProcess from kwiver.sprokit.pipeline import process from kwiver.vital.types import Image from kwiver.vital.types import ImageContainer class hello_world_filter(KwiverProcess): """ This process gets an image as input, does some stuff to it and sends the modified version to the output port. """ # ---------------------------------------------- def __init__(self, conf): KwiverProcess.__init__(self, conf) self.add_config_trait("text", "text", 'Hello World', 'Text to display to user.') self.declare_config_using_trait('text') self.add_port_trait('out_image', 'image', 'Processed image') # set up required flags optional = process.PortFlags() required = process.PortFlags() required.add(self.flag_required) # declare our input port ( port-name,flags) self.declare_input_port_using_trait('image', required) self.declare_output_port_using_trait('out_image', optional ) # ---------------------------------------------- def _configure(self): print( "[DEBUG] ----- configure" ) self.text = self.config_value('text') self._base_configure() # ---------------------------------------------- def _step(self): print( "[DEBUG] ----- start step" ) # grab image container from port using traits in_img_c = self.grab_input_using_trait('image') # Get python image from conatiner (just for show) in_img = in_img_c.get_image() # Print out text to screen print( "Text: " + str( self.text ) ) # push dummy image object (same as input) to output port self.push_to_port_using_trait('out_image', ImageContainer(in_img)) self._base_step()
40.095238
80
0.683492
0df0a81ec8b1473fb270de74e66e58e87dabfece
2,519
py
Python
setup.py
RhinosF1/google-auth-library-python
c556f6fcc131f496ac3ec2ea50f2f61cefc34b9f
[ "Apache-2.0" ]
null
null
null
setup.py
RhinosF1/google-auth-library-python
c556f6fcc131f496ac3ec2ea50f2f61cefc34b9f
[ "Apache-2.0" ]
null
null
null
setup.py
RhinosF1/google-auth-library-python
c556f6fcc131f496ac3ec2ea50f2f61cefc34b9f
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io from setuptools import find_packages from setuptools import setup DEPENDENCIES = ( "cachetools>=2.0.0,<5.0", "pyasn1-modules>=0.2.1", # rsa==4.5 is the last version to support 2.7 # https://github.com/sybrenstuvel/python-rsa/issues/152#issuecomment-643470233 'rsa<4.6; python_version < "3.6"', 'rsa>=3.1.4,<5; python_version >= "3.6"', "setuptools>=40.3.0", "six>=1.9.0", ) extras = {"aiohttp": "aiohttp >= 3.6.2, < 4.0.0dev; python_version>='3.6'"} with io.open("README.rst", "r") as fh: long_description = fh.read() version = "1.26.1" setup( name="google-auth", version=version, author="Google Cloud Platform", author_email="googleapis-packages@google.com", description="Google Authentication Library", long_description=long_description, url="https://github.com/googleapis/google-auth-library-python", packages=find_packages(exclude=("tests*", "system_tests*")), namespace_packages=("google",), install_requires=DEPENDENCIES, extras_require=extras, python_requires=">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*", license="Apache 2.0", keywords="google auth oauth client", classifiers=[ "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX", "Operating System :: Microsoft :: Windows", "Operating System :: MacOS :: MacOS X", "Operating System :: OS Independent", "Topic :: Internet :: WWW/HTTP", ], )
34.986111
82
0.650655
8e1c73196f7c76fb73088c3f1a2f86898018cf92
10,673
py
Python
lvsfunc/util.py
RivenSkaye/lvsfunc
8e284b1a9c0fa670b614bcb7f42cb48144d1a67b
[ "MIT" ]
null
null
null
lvsfunc/util.py
RivenSkaye/lvsfunc
8e284b1a9c0fa670b614bcb7f42cb48144d1a67b
[ "MIT" ]
null
null
null
lvsfunc/util.py
RivenSkaye/lvsfunc
8e284b1a9c0fa670b614bcb7f42cb48144d1a67b
[ "MIT" ]
null
null
null
""" Helper functions for module functions and wrapper. Some of these may also be useful for regular scripting or other modules. """ from __future__ import annotations from typing import Any, Callable, List, Sequence, Tuple, Type, TypeVar, Union import vapoursynth as vs from vsutil import (depth, disallow_variable_format, disallow_variable_resolution, get_depth, get_subsampling) from .types import Coefs, Range core = vs.core @disallow_variable_format def quick_resample(clip: vs.VideoNode, function: Callable[[vs.VideoNode], vs.VideoNode] ) -> vs.VideoNode: """ A function to quickly resample to 32/16/8 bit and back to the original depth in a one-liner. Useful for filters that only work in 16 bit or lower when you're working in float. :param clip: Input clip :param function: Filter to run after resampling (accepts and returns clip) :return: Filtered clip in original depth """ assert clip.format try: # Excepts all generic because >plugin/script writers being consistent >_> dither = depth(clip, 32) filtered = function(dither) except: # noqa: E722 try: dither = depth(clip, 16) filtered = function(dither) except: # noqa: E722 dither = depth(clip, 8) filtered = function(dither) return depth(filtered, clip.format.bits_per_sample) @disallow_variable_format def pick_repair(clip: vs.VideoNode) -> Callable[..., vs.VideoNode]: """ Returns rgvs.Repair if the clip is 16 bit or lower, else rgsf.Repair. This is done because rgvs doesn't work with float, but rgsf does for whatever reason. Dependencies: rgsf :param clip: Input clip :return: Appropriate repair function for input clip's depth """ assert clip.format return core.rgvs.Repair if clip.format.bits_per_sample < 32 else core.rgsf.Repair @disallow_variable_format @disallow_variable_resolution def pick_removegrain(clip: vs.VideoNode) -> Callable[..., vs.VideoNode]: """ Returns rgvs.RemoveGrain if the clip is 16 bit or lower, else rgsf.RemoveGrain. This is done because rgvs doesn't work with float, but rgsf does for whatever reason. Dependencies: * RGSF :param clip: Input clip :return: Appropriate RemoveGrain function for input clip's depth """ assert clip.format return core.rgvs.RemoveGrain if clip.format.bits_per_sample < 32 else core.rgsf.RemoveGrain VideoProp = Union[ int, Sequence[int], float, Sequence[float], str, Sequence[str], vs.VideoNode, Sequence[vs.VideoNode], vs.VideoFrame, Sequence[vs.VideoFrame], Callable[..., Any], Sequence[Callable[..., Any]] ] T = TypeVar("T", bound=VideoProp) def get_prop(frame: vs.VideoFrame, key: str, t: Type[T]) -> T: """ Gets FrameProp ``prop`` from frame ``frame`` with expected type ``t`` to satisfy the type checker. :param frame: Frame containing props :param key: Prop to get :param t: Type of prop :return: frame.prop[key] """ try: prop = frame.props[key] except KeyError: raise KeyError(f"get_prop: 'Key {key} not present in props'") if not isinstance(prop, t): raise ValueError(f"get_prop: 'Key {key} did not contain expected type: Expected {t} got {type(prop)}'") return prop def normalize_ranges(clip: vs.VideoNode, ranges: Range | List[Range]) -> List[Tuple[int, int]]: """ Normalize ``Range``\\(s) to a list of inclusive positive integer ranges. :param clip: Reference clip used for length. :param ranges: Single ``Range`` or list of ``Range``\\s. :return: List of inclusive positive ranges. """ ranges = ranges if isinstance(ranges, list) else [ranges] out = [] for r in ranges: if isinstance(r, tuple): start, end = r if start is None: start = 0 if end is None: end = clip.num_frames - 1 elif r is None: start = clip.num_frames - 1 end = clip.num_frames - 1 else: start = r end = r if start < 0: start = clip.num_frames - 1 + start if end < 0: end = clip.num_frames - 1 + end out.append((start, end)) return out def replace_ranges(clip_a: vs.VideoNode, clip_b: vs.VideoNode, ranges: Range | List[Range] | None) -> vs.VideoNode: """ A replacement for ReplaceFramesSimple that uses ints and tuples rather than a string. Frame ranges are inclusive. Examples with clips ``black`` and ``white`` of equal length: * ``replace_ranges(black, white, [(0, 1)])``: replace frames 0 and 1 with ``white`` * ``replace_ranges(black, white, [(None, None)])``: replace the entire clip with ``white`` * ``replace_ranges(black, white, [(0, None)])``: same as previous * ``replace_ranges(black, white, [(200, None)])``: replace 200 until the end with ``white`` * ``replace_ranges(black, white, [(200, -1)])``: replace 200 until the end with ``white``, leaving 1 frame of ``black`` :param clip_a: Original clip :param clip_b: Replacement clip :param ranges: Ranges to replace clip_a (original clip) with clip_b (replacement clip). Integer values in the list indicate single frames, Tuple values indicate inclusive ranges. Negative integer values will be wrapped around based on clip_b's length. None values are context dependent: * None provided as sole value to ranges: no-op * Single None value in list: Last frame in clip_b * None as first value of tuple: 0 * None as second value of tuple: Last frame in clip_b :return: Clip with ranges from clip_a replaced with clip_b """ if ranges is None: return clip_a out = clip_a nranges = normalize_ranges(clip_b, ranges) for start, end in nranges: tmp = clip_b[start:end + 1] if start != 0: tmp = out[: start] + tmp if end < out.num_frames - 1: tmp = tmp + out[end + 1:] out = tmp return out def scale_thresh(thresh: float, clip: vs.VideoNode, assume: int | None = None) -> float: """ Scale binarization thresholds from float to int. :param thresh: Threshold [0, 1]. If greater than 1, assumed to be in native clip range :param clip: Clip to scale to :param assume: Assume input is this depth when given input >1. If ``None``\\, assume ``clip``\\'s format. (Default: None) :return: Threshold scaled to [0, 2^clip.depth - 1] (if vs.INTEGER) """ if clip.format is None: raise ValueError("scale_thresh: 'Variable-format clips not supported'") if thresh < 0: raise ValueError("scale_thresh: 'Thresholds must be positive.'") if thresh > 1: return thresh if not assume \ else round(thresh/((1 << assume) - 1) * ((1 << clip.format.bits_per_sample) - 1)) return thresh if clip.format.sample_type == vs.FLOAT or thresh > 1 \ else round(thresh * ((1 << clip.format.bits_per_sample) - 1)) def scale_peak(value: float, peak: float) -> float: """ Full-range scale function that scales a value from [0, 255] to [0, peak] """ return value * peak / 255 def force_mod(x: float, mod: int = 4) -> int: """ Force output to fit a specific MOD. Minimum returned value will always be mod². """ return mod ** 2 if x < mod ** 2 else int(x / mod + 0.5) * mod def clamp_values(x: float, max_val: float, min_val: float) -> float: """ Forcibly clamps the given value x to a max and/or min value. """ return min_val if x < min_val else max_val if x > max_val else x @disallow_variable_format def get_neutral_value(clip: vs.VideoNode, chroma: bool = False) -> float: """ Taken from vsutil. This isn't in any new versions yet, so mypy complains. Will remove once vsutil does another version bump. Returns the neutral value for the combination of the plane type and bit depth/type of the clip as float. :param clip: Input clip. :param chroma: Whether to get luma or chroma plane value :return: Neutral value. """ assert clip.format is_float = clip.format.sample_type == vs.FLOAT return (0. if chroma else 0.5) if is_float else float(1 << (get_depth(clip) - 1)) @disallow_variable_format @disallow_variable_resolution def padder(clip: vs.VideoNode, left: int = 32, right: int = 32, top: int = 32, bottom: int = 32) -> vs.VideoNode: """ Pads out the pixels on the side by the given amount of pixels. For a 4:2:0 clip, the output must be an even resolution. :param clip: Input clip :param left: Padding added to the left side of the clip :param right: Padding added to the right side of the clip :param top: Padding added to the top side of the clip :param bottom: Padding added to the bottom side of the clip :return: Padded clip """ width = clip.width+left+right height = clip.height+top+bottom if get_subsampling(clip) == '420' and ((width % 2 != 0) or (height % 2 != 0)): raise ValueError("padder: 'Values must result in an even resolution when passing a YUV420 clip!'") scaled = core.resize.Point(clip, width, height, src_top=-1*top, src_left=-1*left, src_width=width, src_height=height) return core.fb.FillBorders(scaled, left=left, right=right, top=top, bottom=bottom) def get_coefs(curve: vs.TransferCharacteristics) -> Coefs: srgb = Coefs(0.04045, 12.92, 0.055, 2.4) bt709 = Coefs(0.08145, 4.5, 0.0993, 2.22222) smpte240m = Coefs(0.0912, 4.0, 0.1115, 2.22222) bt2020 = Coefs(0.08145, 4.5, 0.0993, 2.22222) gamma_linear_map = { vs.TransferCharacteristics.TRANSFER_IEC_61966_2_1: srgb, vs.TransferCharacteristics.TRANSFER_BT709: bt709, vs.TransferCharacteristics.TRANSFER_BT601: bt709, vs.TransferCharacteristics.TRANSFER_ST240_M: smpte240m, vs.TransferCharacteristics.TRANSFER_BT2020_10: bt2020, vs.TransferCharacteristics.TRANSFER_BT2020_12: bt2020 } return gamma_linear_map[curve]
33.990446
111
0.625597
28397bef3f7fe6bef8a42ce9f589b3990189d6aa
1,795
py
Python
src/backend/web/handlers/tests/conftest.py
guineawheek/ftc-data-take-2
337bff2077eadb3bd6bbebd153cbb6181c99516f
[ "MIT" ]
null
null
null
src/backend/web/handlers/tests/conftest.py
guineawheek/ftc-data-take-2
337bff2077eadb3bd6bbebd153cbb6181c99516f
[ "MIT" ]
null
null
null
src/backend/web/handlers/tests/conftest.py
guineawheek/ftc-data-take-2
337bff2077eadb3bd6bbebd153cbb6181c99516f
[ "MIT" ]
null
null
null
import pytest @pytest.fixture def setup_full_team(test_data_importer) -> None: test_data_importer.import_team(__file__, "data/frc148.json") test_data_importer.import_event_list( __file__, "data/frc148_events_2019.json", "frc148" ) test_data_importer.import_match_list(__file__, "data/frc148_matches_2019.json") test_data_importer.import_media_list( __file__, "data/frc148_media_2019.json", 2019, "frc148" ) test_data_importer.import_media_list( __file__, "data/frc148_social_media.json", team_key="frc148" ) test_data_importer.import_award_list(__file__, "data/frc148_awards_2019.json") test_data_importer.import_district_list( __file__, "data/frc148_districts.json", "frc148" ) test_data_importer.import_robot_list(__file__, "data/frc148_robots.json") @pytest.fixture def setup_full_event(test_data_importer): # So we can import different event keys, return a function def import_event(event_key) -> None: test_data_importer.import_event(__file__, f"data/{event_key}.json") test_data_importer.import_match_list(__file__, f"data/{event_key}_matches.json") test_data_importer.import_event_alliances( __file__, f"data/{event_key}_alliances.json", event_key ) return import_event @pytest.fixture def setup_full_match(test_data_importer): def import_match(match_key) -> None: event_key = match_key.split("_")[0] test_data_importer.import_event(__file__, f"data/{event_key}.json") test_data_importer.import_match(__file__, f"data/{match_key}.json") return import_match @pytest.fixture def setup_full_year_events(test_data_importer) -> None: test_data_importer.import_event_list(__file__, "data/all_events_2019.json")
35.196078
88
0.748189
002a0b5b44bf504da15814b44221ec339eedf3ba
540
py
Python
venv/Lib/site-packages/PyOpenGL-3.0.1/OpenGL/raw/GL/EXT/rescale_normal.py
temelkirci/Motion_Editor
a8b8d4c4d2dcc9be28385600f56066cef92a38ad
[ "MIT" ]
1
2022-03-02T17:07:20.000Z
2022-03-02T17:07:20.000Z
venv/Lib/site-packages/PyOpenGL-3.0.1/OpenGL/raw/GL/EXT/rescale_normal.py
temelkirci/RealTime_6DOF_Motion_Editor
a8b8d4c4d2dcc9be28385600f56066cef92a38ad
[ "MIT" ]
null
null
null
venv/Lib/site-packages/PyOpenGL-3.0.1/OpenGL/raw/GL/EXT/rescale_normal.py
temelkirci/RealTime_6DOF_Motion_Editor
a8b8d4c4d2dcc9be28385600f56066cef92a38ad
[ "MIT" ]
null
null
null
'''OpenGL extension EXT.rescale_normal Automatically generated by the get_gl_extensions script, do not edit! ''' from OpenGL import platform, constants, constant, arrays from OpenGL import extensions from OpenGL.GL import glget import ctypes EXTENSION_NAME = 'GL_EXT_rescale_normal' _DEPRECATED = False GL_RESCALE_NORMAL_EXT = constant.Constant( 'GL_RESCALE_NORMAL_EXT', 0x803A ) def glInitRescaleNormalEXT(): '''Return boolean indicating whether this extension is available''' return extensions.hasGLExtension( EXTENSION_NAME )
31.764706
76
0.809259
c0a7ff9f8d5c5cd2e35e9c1ee5a982027091e39b
1,316
py
Python
manager.py
flaxandteal/dp-conceptual-search
16c6383a61ba5b7069337c2626a0dc243bfe9d35
[ "MIT" ]
3
2018-05-10T16:49:27.000Z
2022-03-29T15:23:04.000Z
manager.py
flaxandteal/dp-conceptual-search
16c6383a61ba5b7069337c2626a0dc243bfe9d35
[ "MIT" ]
2
2018-09-20T06:37:27.000Z
2018-11-12T12:05:08.000Z
manager.py
flaxandteal/dp-conceptual-search
16c6383a61ba5b7069337c2626a0dc243bfe9d35
[ "MIT" ]
3
2018-06-25T10:48:43.000Z
2021-04-11T08:01:27.000Z
import os import sys from subprocess import check_output from dp_conceptual_search.app.app import create_app from dp4py_sanic.api.protocol.ons_http_protocol import ONSHttpProtocol def test(): """ Launches unit tests :return: """ print( check_output(['nosetests', '-v', '-s', 'unit/', '--exclude-dir=./unit/integration', '--exclude-dir=./unit/regression']) ) def run(app_host: str='0.0.0.0', app_port: int=5000, app_workers: int=1): """ Runs the Sanic api on the given host and port address. :param app_host: :param app_port: :param app_workers: Number of worker threads to use (defaults to 1) :return: """ # Create the app app = create_app() # Run the api with our custom HttpProtocol (for more control over access log) app.run(host=app_host, port=app_port, workers=app_workers, protocol=ONSHttpProtocol) if __name__ == "__main__": if len(sys.argv) > 1 and sys.argv[1] == "test": test() else: host = os.getenv("BIND_HOST", '0.0.0.0') port = int(os.getenv("BIND_PORT", 5000)) workers = int(os.getenv("SANIC_WORKERS", 1)) run(app_host=host, app_port=port, app_workers=workers)
28.608696
88
0.600304
07977855604a71287d210d29d679498216906ef4
4,842
py
Python
test/functional/wallet_reorgsrestore.py
fpanettieri/bitcoin
1189b6acab115a7fe7bd67f8b4c6e3f55e53274e
[ "MIT" ]
1
2021-03-17T08:24:51.000Z
2021-03-17T08:24:51.000Z
test/functional/wallet_reorgsrestore.py
fpanettieri/bitcoin
1189b6acab115a7fe7bd67f8b4c6e3f55e53274e
[ "MIT" ]
null
null
null
test/functional/wallet_reorgsrestore.py
fpanettieri/bitcoin
1189b6acab115a7fe7bd67f8b4c6e3f55e53274e
[ "MIT" ]
4
2018-05-16T09:52:06.000Z
2018-05-17T07:14:48.000Z
#!/usr/bin/env python3 # Copyright (c) 2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test tx status in case of reorgs while wallet being shutdown. Wallet txn status rely on block connection/disconnection for its accuracy. In case of reorgs happening while wallet being shutdown block updates are not going to be received. At wallet loading, we check against chain if confirmed txn are still in chain and change their status if block in which they have been included has been disconnected. """ from decimal import Decimal import os import shutil from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, disconnect_nodes, ) class ReorgsRestoreTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.supports_cli = False def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Send a tx from which to conflict outputs later txid_conflict_from = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), Decimal("10")) self.nodes[0].generate(1) self.sync_blocks() # Disconnect node1 from others to reorg its chain later disconnect_nodes(self.nodes[0], 1) disconnect_nodes(self.nodes[1], 2) connect_nodes(self.nodes[0], 2) # Send a tx to be unconfirmed later txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), Decimal("10")) tx = self.nodes[0].gettransaction(txid) self.nodes[0].generate(4) tx_before_reorg = self.nodes[0].gettransaction(txid) assert_equal(tx_before_reorg["confirmations"], 4) # Disconnect node0 from node2 to broadcast a conflict on their respective chains disconnect_nodes(self.nodes[0], 2) nA = next(tx_out["vout"] for tx_out in self.nodes[0].gettransaction(txid_conflict_from)["details"] if tx_out["amount"] == Decimal("10")) inputs = [] inputs.append({"txid": txid_conflict_from, "vout": nA}) outputs_1 = {} outputs_2 = {} # Create a conflicted tx broadcast on node0 chain and conflicting tx broadcast on node1 chain. Both spend from txid_conflict_from outputs_1[self.nodes[0].getnewaddress()] = Decimal("9.99998") outputs_2[self.nodes[0].getnewaddress()] = Decimal("9.99998") conflicted = self.nodes[0].signrawtransactionwithwallet(self.nodes[0].createrawtransaction(inputs, outputs_1)) conflicting = self.nodes[0].signrawtransactionwithwallet(self.nodes[0].createrawtransaction(inputs, outputs_2)) conflicted_txid = self.nodes[0].sendrawtransaction(conflicted["hex"]) self.nodes[0].generate(1) conflicting_txid = self.nodes[2].sendrawtransaction(conflicting["hex"]) self.nodes[2].generate(9) # Reconnect node0 and node2 and check that conflicted_txid is effectively conflicted connect_nodes(self.nodes[0], 2) self.sync_blocks([self.nodes[0], self.nodes[2]]) conflicted = self.nodes[0].gettransaction(conflicted_txid) conflicting = self.nodes[0].gettransaction(conflicting_txid) assert_equal(conflicted["confirmations"], -9) assert_equal(conflicted["walletconflicts"][0], conflicting["txid"]) # Node0 wallet is shutdown self.stop_node(0) self.start_node(0) # The block chain re-orgs and the tx is included in a different block self.nodes[1].generate(9) self.nodes[1].sendrawtransaction(tx["hex"]) self.nodes[1].generate(1) self.nodes[1].sendrawtransaction(conflicted["hex"]) self.nodes[1].generate(1) # Node0 wallet file is loaded on longest sync'ed node1 self.stop_node(1) self.nodes[0].backupwallet(os.path.join(self.nodes[0].datadir, 'wallet.bak')) shutil.copyfile(os.path.join(self.nodes[0].datadir, 'wallet.bak'), os.path.join(self.nodes[1].datadir, 'regtest', 'wallet.dat')) self.start_node(1) tx_after_reorg = self.nodes[1].gettransaction(txid) # Check that normal confirmed tx is confirmed again but with different blockhash assert_equal(tx_after_reorg["confirmations"], 2) assert(tx_before_reorg["blockhash"] != tx_after_reorg["blockhash"]) conflicted_after_reorg = self.nodes[1].gettransaction(conflicted_txid) # Check that conflicted tx is confirmed again with blockhash different than previously conflicting tx assert_equal(conflicted_after_reorg["confirmations"], 1) assert(conflicting["blockhash"] != conflicted_after_reorg["blockhash"]) if __name__ == '__main__': ReorgsRestoreTest().main()
45.252336
144
0.699298
0004e3b4b968d2fd2baad670d2cd74ed2433f445
283,509
py
Python
src/sage/combinat/partition.py
swewers/mein_sage
0e4e2d14aab0a1a2e63292939a9baa997f0e986b
[ "BSL-1.0" ]
null
null
null
src/sage/combinat/partition.py
swewers/mein_sage
0e4e2d14aab0a1a2e63292939a9baa997f0e986b
[ "BSL-1.0" ]
1
2020-04-18T16:30:43.000Z
2020-04-18T16:30:43.000Z
src/sage/combinat/partition.py
dimpase/sage
468f23815ade42a2192b0a9cd378de8fdc594dcd
[ "BSL-1.0" ]
null
null
null
# -*- coding: utf-8 -*- r""" Integer partitions A partition `p` of a nonnegative integer `n` is a non-increasing list of positive integers (the *parts* of the partition) with total sum `n`. A partition can be depicted by a diagram made of rows of cells, where the number of cells in the `i^{th}` row starting from the top is the `i^{th}` part of the partition. The coordinate system related to a partition applies from the top to the bottom and from left to right. So, the corners of the partition `[5, 3, 1]` are `[[0,4], [1,2], [2,0]]`. For display options, see :obj:`Partitions.options`. .. NOTE:: - Boxes is a synonym for cells. All methods will use 'cell' and 'cells' instead of 'box' and 'boxes'. - Partitions are 0 based with coordinates in the form of (row-index, column-index). - If given coordinates of the form ``(r, c)``, then use Python's \*-operator. - Throughout this documentation, for a partition `\lambda` we will denote its conjugate partition by `\lambda^{\prime}`. For more on conjugate partitions, see :meth:`Partition.conjugate()`. - The comparisons on partitions use lexicographic order. .. NOTE:: We use the convention that lexicographic ordering is read from left-to-right. That is to say `[1, 3, 7]` is smaller than `[2, 3, 4]`. AUTHORS: - Mike Hansen (2007): initial version - Dan Drake (2009-03-28): deprecate RestrictedPartitions and implement Partitions_parts_in - Travis Scrimshaw (2012-01-12): Implemented latex function to Partition_class - Travis Scrimshaw (2012-05-09): Fixed Partitions(-1).list() infinite recursion loop by saying Partitions_n is the empty set. - Travis Scrimshaw (2012-05-11): Fixed bug in inner where if the length was longer than the length of the inner partition, it would include 0's. - Andrew Mathas (2012-06-01): Removed deprecated functions and added compatibility with the PartitionTuple classes. See :trac:`13072` - Travis Scrimshaw (2012-10-12): Added options. Made ``Partition_class`` to the element ``Partition``. ``Partitions*`` are now all in the category framework except ``PartitionsRestricted`` (which will eventually be removed). Cleaned up documentation. - Matthew Lancellotti (2018-09-14): Added a bunch of "k" methods to Partition. EXAMPLES: There are `5` partitions of the integer `4`:: sage: Partitions(4).cardinality() 5 sage: Partitions(4).list() [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] We can use the method ``.first()`` to get the 'first' partition of a number:: sage: Partitions(4).first() [4] Using the method ``.next(p)``, we can calculate the 'next' partition after `p`. When we are at the last partition, ``None`` will be returned:: sage: Partitions(4).next([4]) [3, 1] sage: Partitions(4).next([1,1,1,1]) is None True We can use ``iter`` to get an object which iterates over the partitions one by one to save memory. Note that when we do something like ``for part in Partitions(4)`` this iterator is used in the background:: sage: g = iter(Partitions(4)) sage: next(g) [4] sage: next(g) [3, 1] sage: next(g) [2, 2] sage: for p in Partitions(4): print(p) [4] [3, 1] [2, 2] [2, 1, 1] [1, 1, 1, 1] We can add constraints to the type of partitions we want. For example, to get all of the partitions of `4` of length `2`, we'd do the following:: sage: Partitions(4, length=2).list() [[3, 1], [2, 2]] Here is the list of partitions of length at least `2` and the list of ones with length at most `2`:: sage: Partitions(4, min_length=2).list() [[3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] sage: Partitions(4, max_length=2).list() [[4], [3, 1], [2, 2]] The options ``min_part`` and ``max_part`` can be used to set constraints on the sizes of all parts. Using ``max_part``, we can select partitions having only 'small' entries. The following is the list of the partitions of `4` with parts at most `2`:: sage: Partitions(4, max_part=2).list() [[2, 2], [2, 1, 1], [1, 1, 1, 1]] The ``min_part`` options is complementary to ``max_part`` and selects partitions having only 'large' parts. Here is the list of all partitions of `4` with each part at least `2`:: sage: Partitions(4, min_part=2).list() [[4], [2, 2]] The options ``inner`` and ``outer`` can be used to set part-by-part constraints. This is the list of partitions of `4` with ``[3, 1, 1]`` as an outer bound (that is, partitions of `4` contained in the partition ``[3, 1, 1]``):: sage: Partitions(4, outer=[3,1,1]).list() [[3, 1], [2, 1, 1]] ``outer`` sets ``max_length`` to the length of its argument. Moreover, the parts of ``outer`` may be infinite to clear constraints on specific parts. Here is the list of the partitions of `4` of length at most `3` such that the second and third part are `1` when they exist:: sage: Partitions(4, outer=[oo,1,1]).list() [[4], [3, 1], [2, 1, 1]] Finally, here are the partitions of `4` with ``[1,1,1]`` as an inner bound (i. e., the partitions of `4` containing the partition ``[1,1,1]``). Note that ``inner`` sets ``min_length`` to the length of its argument:: sage: Partitions(4, inner=[1,1,1]).list() [[2, 1, 1], [1, 1, 1, 1]] The options ``min_slope`` and ``max_slope`` can be used to set constraints on the slope, that is on the difference ``p[i+1]-p[i]`` of two consecutive parts. Here is the list of the strictly decreasing partitions of `4`:: sage: Partitions(4, max_slope=-1).list() [[4], [3, 1]] The constraints can be combined together in all reasonable ways. Here are all the partitions of `11` of length between `2` and `4` such that the difference between two consecutive parts is between `-3` and `-1`:: sage: Partitions(11,min_slope=-3,max_slope=-1,min_length=2,max_length=4).list() [[7, 4], [6, 5], [6, 4, 1], [6, 3, 2], [5, 4, 2], [5, 3, 2, 1]] Partition objects can also be created individually with :class:`Partition`:: sage: Partition([2,1]) [2, 1] Once we have a partition object, then there are a variety of methods that we can use. For example, we can get the conjugate of a partition. Geometrically, the conjugate of a partition is the reflection of that partition through its main diagonal. Of course, this operation is an involution:: sage: Partition([4,1]).conjugate() [2, 1, 1, 1] sage: Partition([4,1]).conjugate().conjugate() [4, 1] If we create a partition with extra zeros at the end, they will be dropped:: sage: Partition([4,1,0,0]) [4, 1] sage: Partition([0]) [] sage: Partition([0,0]) [] The idea of a partition being followed by infinitely many parts of size `0` is consistent with the ``get_part`` method:: sage: p = Partition([5, 2]) sage: p.get_part(0) 5 sage: p.get_part(10) 0 We can go back and forth between the standard and the exponential notations of a partition. The exponential notation can be padded with extra zeros:: sage: Partition([6,4,4,2,1]).to_exp() [1, 1, 0, 2, 0, 1] sage: Partition(exp=[1,1,0,2,0,1]) [6, 4, 4, 2, 1] sage: Partition([6,4,4,2,1]).to_exp(5) [1, 1, 0, 2, 0, 1] sage: Partition([6,4,4,2,1]).to_exp(7) [1, 1, 0, 2, 0, 1, 0] sage: Partition([6,4,4,2,1]).to_exp(10) [1, 1, 0, 2, 0, 1, 0, 0, 0, 0] We can get the (zero-based!) coordinates of the corners of a partition:: sage: Partition([4,3,1]).corners() [(0, 3), (1, 2), (2, 0)] We can compute the core and quotient of a partition and build the partition back up from them:: sage: Partition([6,3,2,2]).core(3) [2, 1, 1] sage: Partition([7,7,5,3,3,3,1]).quotient(3) ([2], [1], [2, 2, 2]) sage: p = Partition([11,5,5,3,2,2,2]) sage: p.core(3) [] sage: p.quotient(3) ([2, 1], [4], [1, 1, 1]) sage: Partition(core=[],quotient=([2, 1], [4], [1, 1, 1])) [11, 5, 5, 3, 2, 2, 2] We can compute the `0-1` sequence and go back and forth:: sage: Partitions().from_zero_one([1, 1, 1, 1, 0, 1, 0]) [5, 4] sage: all(Partitions().from_zero_one(mu.zero_one_sequence()) ....: == mu for n in range(5) for mu in Partitions(n)) True We can compute the Frobenius coordinates and go back and forth:: sage: Partition([7,3,1]).frobenius_coordinates() ([6, 1], [2, 0]) sage: Partition(frobenius_coordinates=([6,1],[2,0])) [7, 3, 1] sage: all(mu == Partition(frobenius_coordinates=mu.frobenius_coordinates()) ....: for n in range(12) for mu in Partitions(n)) True We use the lexicographic ordering:: sage: pl = Partition([4,1,1]) sage: ql = Partitions()([3,3]) sage: pl > ql True sage: PL = Partitions() sage: pl = PL([4,1,1]) sage: ql = PL([3,3]) sage: pl > ql True """ # **************************************************************************** # Copyright (C) 2007 Mike Hansen <mhansen@gmail.com>, # # Distributed under the terms of the GNU General Public License (GPL) # https://www.gnu.org/licenses/ # **************************************************************************** from __future__ import print_function, absolute_import from copy import copy from sage.libs.all import pari from sage.libs.flint.arith import number_of_partitions as flint_number_of_partitions from sage.arith.misc import multinomial from sage.structure.global_options import GlobalOptions from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation from sage.symbolic.ring import var from sage.misc.lazy_import import lazy_import lazy_import('sage.combinat.skew_partition', 'SkewPartition') lazy_import('sage.combinat.partition_tuple', 'PartitionTuple') from sage.misc.all import prod from sage.misc.prandom import randrange from sage.misc.cachefunc import cached_method, cached_function from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.sets.non_negative_integers import NonNegativeIntegers from sage.rings.all import QQ, ZZ, NN, IntegerModRing from sage.arith.all import factorial, gcd from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.integer import Integer from sage.rings.infinity import infinity from .combinat import CombinatorialElement from . import tableau from . import permutation from . import composition from sage.combinat.partitions import ZS1_iterator, ZS1_iterator_nk from sage.combinat.integer_vector import IntegerVectors from sage.combinat.integer_lists import IntegerListsLex from sage.combinat.combinat_cython import conjugate from sage.combinat.root_system.weyl_group import WeylGroup from sage.combinat.combinatorial_map import combinatorial_map from sage.groups.perm_gps.permgroup import PermutationGroup from sage.graphs.dot2tex_utils import have_dot2tex from sage.functions.other import binomial class Partition(CombinatorialElement): r""" A partition `p` of a nonnegative integer `n` is a non-increasing list of positive integers (the *parts* of the partition) with total sum `n`. A partition is often represented as a diagram consisting of **cells**, or **boxes**, placed in rows on top of each other such that the number of cells in the `i^{th}` row, reading from top to bottom, is the `i^{th}` part of the partition. The rows are left-justified (and become shorter and shorter the farther down one goes). This diagram is called the **Young diagram** of the partition, or more precisely its Young diagram in English notation. (French and Russian notations are variations on this representation.) The coordinate system related to a partition applies from the top to the bottom and from left to right. So, the corners of the partition ``[5, 3, 1]`` are ``[[0,4], [1,2], [2,0]]``. For display options, see :meth:`Partitions.options`. .. NOTE:: Partitions are 0 based with coordinates in the form of (row-index, column-index). For example consider the partition ``mu=Partition([4,3,2,2])``, the first part is ``mu[0]`` (which is 4), the second is ``mu[1]``, and so on, and the upper-left cell in English convention is ``(0, 0)``. A partition can be specified in one of the following ways: - a list (the default) - using exponential notation - by Frobenius coordinates - specifying its `0-1` sequence - specifying the core and the quotient See the examples below. EXAMPLES: Creating partitions though parents:: sage: mu = Partitions(8)([3,2,1,1,1]); mu [3, 2, 1, 1, 1] sage: nu = Partition([3,2,1,1,1]); nu [3, 2, 1, 1, 1] sage: mu == nu True sage: mu is nu False sage: mu in Partitions() True sage: mu.parent() Partitions of the integer 8 sage: mu.size() 8 sage: mu.category() Category of elements of Partitions of the integer 8 sage: nu.parent() Partitions sage: nu.category() Category of elements of Partitions sage: mu[0] 3 sage: mu[1] 2 sage: mu[2] 1 sage: mu.pp() *** ** * * * sage: mu.removable_cells() [(0, 2), (1, 1), (4, 0)] sage: mu.down_list() [[2, 2, 1, 1, 1], [3, 1, 1, 1, 1], [3, 2, 1, 1]] sage: mu.addable_cells() [(0, 3), (1, 2), (2, 1), (5, 0)] sage: mu.up_list() [[4, 2, 1, 1, 1], [3, 3, 1, 1, 1], [3, 2, 2, 1, 1], [3, 2, 1, 1, 1, 1]] sage: mu.conjugate() [5, 2, 1] sage: mu.dominates(nu) True sage: nu.dominates(mu) True Creating partitions using ``Partition``:: sage: Partition([3,2,1]) [3, 2, 1] sage: Partition(exp=[2,1,1]) [3, 2, 1, 1] sage: Partition(core=[2,1], quotient=[[2,1],[3],[1,1,1]]) [11, 5, 5, 3, 2, 2, 2] sage: Partition(frobenius_coordinates=([3,2],[4,0])) [4, 4, 1, 1, 1] sage: Partitions().from_zero_one([1, 1, 1, 1, 0, 1, 0]) [5, 4] sage: [2,1] in Partitions() True sage: [2,1,0] in Partitions() True sage: Partition([1,2,3]) Traceback (most recent call last): ... ValueError: [1, 2, 3] is not an element of Partitions Sage ignores trailing zeros at the end of partitions:: sage: Partition([3,2,1,0]) [3, 2, 1] sage: Partitions()([3,2,1,0]) [3, 2, 1] sage: Partitions(6)([3,2,1,0]) [3, 2, 1] TESTS: Check that only trailing zeros are stripped:: sage: TestSuite( Partition([]) ).run() sage: TestSuite( Partition([4,3,2,2,2,1]) ).run() sage: Partition([3,2,2,2,1,0,0,0]) [3, 2, 2, 2, 1] sage: Partition([3,0,2,2,2,1,0]) Traceback (most recent call last): ... ValueError: [3, 0, 2, 2, 2, 1, 0] is not an element of Partitions sage: Partition([0,7,3]) Traceback (most recent call last): ... ValueError: [0, 7, 3] is not an element of Partitions """ @staticmethod def __classcall_private__(cls, mu=None, **keyword): """ This constructs a list from optional arguments and delegates the construction of a :class:`Partition` to the ``element_class()`` call of the appropriate parent. EXAMPLES:: sage: Partition([3,2,1]) [3, 2, 1] sage: Partition(exp=[2,1,1]) [3, 2, 1, 1] sage: Partition(core=[2,1], quotient=[[2,1],[3],[1,1,1]]) [11, 5, 5, 3, 2, 2, 2] """ l = len(keyword) if l == 0: if mu is not None: if isinstance(mu, Partition): return mu return _Partitions(list(mu)) if l == 1: if 'beta_numbers' in keyword: return _Partitions.from_beta_numbers(keyword['beta_numbers']) elif 'exp' in keyword: return _Partitions.from_exp(keyword['exp']) elif 'frobenius_coordinates' in keyword: return _Partitions.from_frobenius_coordinates(keyword['frobenius_coordinates']) elif 'zero_one' in keyword: return _Partitions.from_zero_one(keyword['zero_one']) if l == 2 and 'core' in keyword and 'quotient' in keyword: return _Partitions.from_core_and_quotient(keyword['core'], keyword['quotient']) raise ValueError('incorrect syntax for Partition()') def __setstate__(self, state): r""" In order to maintain backwards compatibility and be able to unpickle a old pickle from ``Partition_class`` we have to override the default ``__setstate__``. EXAMPLES:: sage: loads(b'x\x9ck`J.NLO\xd5K\xce\xcfM\xca\xccK,\xd1+H,*\xc9,\xc9\xcc\xcf\xe3\n\x80\xb1\xe2\x93s\x12\x8b\x8b\xb9\n\x195\x1b\x0b\x99j\x0b\x995BY\xe33\x12\x8b3\nY\xfc\x80\xac\x9c\xcc\xe2\x92B\xd6\xd8B6\r\x88IE\x99y\xe9\xc5z\x99y%\xa9\xe9\xa9E\\\xb9\x89\xd9\xa9\xf10N!{(\xa3qkP!G\x06\x90a\x04dp\x82\x18\x86@\x06Wji\x92\x1e\x00x0.\xb5') [3, 2, 1] sage: loads(dumps( Partition([3,2,1]) )) # indirect doctest [3, 2, 1] """ if isinstance(state, dict): # for old pickles from Partition_class self._set_parent(_Partitions) self.__dict__ = state else: self._set_parent(state[0]) self.__dict__ = state[1] def __init__(self, parent, mu): """ Initialize ``self``. We assume that ``mu`` is a weakly decreasing list of non-negative elements in ``ZZ``. EXAMPLES:: sage: p = Partition([3,1]) sage: TestSuite(p).run() TESTS: Fix that tuples raise the correct error:: sage: Partition((3,1,7)) Traceback (most recent call last): ... ValueError: [3, 1, 7] is not an element of Partitions """ if isinstance(mu, Partition): # since we are (suppose to be) immutable, we can share the underlying data CombinatorialElement.__init__(self, parent, mu._list) else: if mu and not mu[-1]: # direct callers might assume that mu is not modified mu = mu[:-1] while mu and not mu[-1]: mu.pop() CombinatorialElement.__init__(self, parent, mu) @cached_method def __hash__(self): r""" Return the hash of ``self``. TESTS:: sage: P = Partition([4,2,2,1]) sage: hash(P) == hash(P) True """ return hash(tuple(self._list)) def _repr_(self): r""" Return a string representation of ``self`` depending on :meth:`Partitions.options`. EXAMPLES:: sage: mu=Partition([7,7,7,3,3,2,1,1,1,1,1,1,1]); mu # indirect doctest [7, 7, 7, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1] sage: Partitions.options.display="diagram"; mu ******* ******* ******* *** *** ** * * * * * * * sage: Partitions.options.display="list"; mu [7, 7, 7, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1] sage: Partitions.options.display="compact_low"; mu 1^7,2,3^2,7^3 sage: Partitions.options.display="compact_high"; mu 7^3,3^2,2,1^7 sage: Partitions.options.display="exp_low"; mu 1^7, 2, 3^2, 7^3 sage: Partitions.options.display="exp_high"; mu 7^3, 3^2, 2, 1^7 sage: Partitions.options.convention="French" sage: mu = Partition([7,7,7,3,3,2,1,1,1,1,1,1,1]); mu # indirect doctest 7^3, 3^2, 2, 1^7 sage: Partitions.options.display="diagram"; mu * * * * * * * ** *** *** ******* ******* ******* sage: Partitions.options.display="list"; mu [7, 7, 7, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1] sage: Partitions.options.display="compact_low"; mu 1^7,2,3^2,7^3 sage: Partitions.options.display="compact_high"; mu 7^3,3^2,2,1^7 sage: Partitions.options.display="exp_low"; mu 1^7, 2, 3^2, 7^3 sage: Partitions.options.display="exp_high"; mu 7^3, 3^2, 2, 1^7 sage: Partitions.options._reset() """ return self.parent().options._dispatch(self, '_repr_', 'display') def _ascii_art_(self): """ TESTS:: sage: ascii_art(Partitions(5).list()) [ * ] [ ** * ] [ *** ** * * ] [ **** *** * ** * * ] [ *****, * , ** , * , * , * , * ] """ from sage.typeset.ascii_art import AsciiArt return AsciiArt(self._repr_diagram().splitlines(), baseline=0) def _unicode_art_(self): """ TESTS:: sage: unicode_art(Partitions(5).list()) ⎡ ┌┐ ⎤ ⎢ ┌┬┐ ├┤ ⎥ ⎢ ┌┬┬┐ ┌┬┐ ├┼┘ ├┤ ⎥ ⎢ ┌┬┬┬┐ ┌┬┬┐ ├┼┴┘ ├┼┤ ├┤ ├┤ ⎥ ⎢ ┌┬┬┬┬┐ ├┼┴┴┘ ├┼┼┘ ├┤ ├┼┘ ├┤ ├┤ ⎥ ⎣ └┴┴┴┴┘, └┘ , └┴┘ , └┘ , └┘ , └┘ , └┘ ⎦ sage: Partitions.options.convention = "French" sage: unicode_art(Partitions(5).list()) ⎡ ┌┐ ⎤ ⎢ ┌┐ ├┤ ⎥ ⎢ ┌┐ ┌┐ ├┤ ├┤ ⎥ ⎢ ┌┐ ┌┬┐ ├┤ ├┼┐ ├┤ ├┤ ⎥ ⎢ ┌┬┬┬┬┐ ├┼┬┬┐ ├┼┼┐ ├┼┬┐ ├┼┤ ├┼┐ ├┤ ⎥ ⎣ └┴┴┴┴┘, └┴┴┴┘, └┴┴┘, └┴┴┘, └┴┘, └┴┘, └┘ ⎦ sage: Partitions.options._reset() """ from sage.typeset.unicode_art import UnicodeArt if not self._list: return UnicodeArt(u'∅', baseline=0) if self.parent().options.convention == "English": data = list(self) else: data = list(reversed(self)) txt = [u'┌' + u'┬' * (data[0] - 1) + u'┐'] for i in range(len(data) - 1): p = data[i] q = data[i + 1] if p < q: txt += [u'├' + u'┼' * p + u'┬' * (q - p - 1) + u'┐'] elif p == q: txt += [u'├' + u'┼' * (p - 1) + u'┤'] else: txt += [u'├' + u'┼' * q + u'┴' * (p - q - 1) + u'┘'] txt += [u'└' + u'┴' * (data[-1] - 1) + u'┘'] return UnicodeArt(txt, baseline=0) def _repr_list(self): """ Return a string representation of ``self`` as a list. EXAMPLES:: sage: print(Partition([7,7,7,3,3,2,1,1,1,1,1,1,1])._repr_list()) [7, 7, 7, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1] """ return '[%s]' % ', '.join('%s' % m for m in self) def _repr_exp_low(self): """ Return a string representation of ``self`` in exponential form (lowest first). EXAMPLES:: sage: print(Partition([7,7,7,3,3,2,1,1,1,1,1,1,1])._repr_exp_low()) 1^7, 2, 3^2, 7^3 sage: print(Partition([])._repr_exp_low()) - """ if not self._list: return '-' exp = self.to_exp() return '%s' % ', '.join('%s%s' % (m+1, '' if e==1 else '^%s'%e) for (m,e) in enumerate(exp) if e > 0) def _repr_exp_high(self): """ Return a string representation of ``self`` in exponential form (highest first). EXAMPLES:: sage: print(Partition([7,7,7,3,3,2,1,1,1,1,1,1,1])._repr_exp_high()) 7^3, 3^2, 2, 1^7 sage: print(Partition([])._repr_exp_high()) - """ if not self._list: return '-' exp = self.to_exp()[::-1] # reversed list of exponents M=max(self) return '%s' % ', '.join('%s%s' % (M-m, '' if e==1 else '^%s'%e) for (m,e) in enumerate(exp) if e>0) def _repr_compact_low(self): """ Return a string representation of ``self`` in compact form (exponential form with lowest first). EXAMPLES:: sage: print(Partition([7,7,7,3,3,2,1,1,1,1,1,1,1])._repr_compact_low()) 1^7,2,3^2,7^3 sage: print(Partition([])._repr_compact_low()) - """ if not self._list: return '-' exp = self.to_exp() return '%s' % ','.join('%s%s' % (m+1, '' if e==1 else '^%s'%e) for (m,e) in enumerate(exp) if e > 0) def _repr_compact_high(self): """ Return a string representation of ``self`` in compact form (exponential form with highest first). EXAMPLES:: sage: print(Partition([7,7,7,3,3,2,1,1,1,1,1,1,1])._repr_compact_high()) 7^3,3^2,2,1^7 sage: print(Partition([])._repr_compact_low()) - """ if not self._list: return '-' exp = self.to_exp()[::-1] # reversed list of exponents M=max(self) return '%s' % ','.join('%s%s' % (M-m, '' if e==1 else '^%s'%e) for (m,e) in enumerate(exp) if e>0) def _repr_diagram(self): r""" Return a representation of ``self`` as a Ferrers diagram. EXAMPLES:: sage: print(Partition([7,7,7,3,3,2,1,1,1,1,1,1,1])._repr_diagram()) ******* ******* ******* *** *** ** * * * * * * * """ return self.ferrers_diagram() def level(self): """ Return the level of ``self``, which is always 1. This method exists only for compatibility with :class:`PartitionTuples`. EXAMPLES:: sage: Partition([4,3,2]).level() 1 """ return 1 def components(self): """ Return a list containing the shape of ``self``. This method exists only for compatibility with :class:`PartitionTuples`. EXAMPLES:: sage: Partition([3,2]).components() [[3, 2]] """ return [ self ] def _latex_(self): r""" Return a LaTeX version of ``self``. For more on the latex options, see :meth:`Partitions.options`. EXAMPLES:: sage: mu = Partition([2, 1]) sage: Partitions.options.latex='diagram'; latex(mu) # indirect doctest {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\\ \lr{\ast}&\lr{\ast}\\ \lr{\ast}\\ \end{array}$} } sage: Partitions.options.latex='exp_high'; latex(mu) # indirect doctest 2,1 sage: Partitions.options.latex='exp_low'; latex(mu) # indirect doctest 1,2 sage: Partitions.options.latex='list'; latex(mu) # indirect doctest [2, 1] sage: Partitions.options.latex='young_diagram'; latex(mu) # indirect doctest {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\cline{1-2} \lr{\phantom{x}}&\lr{\phantom{x}}\\\cline{1-2} \lr{\phantom{x}}\\\cline{1-1} \end{array}$} } sage: Partitions.options(latex="young_diagram", convention="french") sage: Partitions.options.latex='exp_high'; latex(mu) # indirect doctest 2,1 sage: Partitions.options.latex='exp_low'; latex(mu) # indirect doctest 1,2 sage: Partitions.options.latex='list'; latex(mu) # indirect doctest [2, 1] sage: Partitions.options.latex='young_diagram'; latex(mu) # indirect doctest {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{2}c}\cline{1-1} \lr{\phantom{x}}\\\cline{1-2} \lr{\phantom{x}}&\lr{\phantom{x}}\\\cline{1-2} \end{array}$} } sage: Partitions.options._reset() """ return self.parent().options._dispatch(self, '_latex_', 'latex') def _latex_young_diagram(self): r""" LaTeX output as a Young diagram. EXAMPLES:: sage: print(Partition([2, 1])._latex_young_diagram()) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\cline{1-2} \lr{\phantom{x}}&\lr{\phantom{x}}\\\cline{1-2} \lr{\phantom{x}}\\\cline{1-1} \end{array}$} } sage: print(Partition([])._latex_young_diagram()) {\emptyset} """ if not self._list: return "{\\emptyset}" from sage.combinat.output import tex_from_array return tex_from_array([ ["\\phantom{x}"]*row_size for row_size in self._list ]) def _latex_diagram(self): r""" LaTeX output as a Ferrers' diagram. EXAMPLES:: sage: print(Partition([2, 1])._latex_diagram()) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\\ \lr{\ast}&\lr{\ast}\\ \lr{\ast}\\ \end{array}$} } sage: print(Partition([])._latex_diagram()) {\emptyset} """ if not self._list: return "{\\emptyset}" entry = self.parent().options("latex_diagram_str") from sage.combinat.output import tex_from_array return tex_from_array([ [entry]*row_size for row_size in self._list ], False) def _latex_list(self): r""" LaTeX output as a list. EXAMPLES:: sage: print(Partition([2, 1])._latex_list()) [2, 1] sage: print(Partition([])._latex_list()) [] """ return repr(self._list) def _latex_exp_low(self): r""" LaTeX output in exponential notation (lowest first). EXAMPLES:: sage: print(Partition([2,2,1])._latex_exp_low()) 1,2^{2} sage: print(Partition([])._latex_exp_low()) {\emptyset} """ if not self._list: return "{\\emptyset}" exp = self.to_exp() return '%s' % ','.join('%s%s' % (m+1, '' if e==1 else '^{%s}'%e) for (m,e) in enumerate(exp) if e > 0) def _latex_exp_high(self): r""" LaTeX output in exponential notation (highest first). EXAMPLES:: sage: print(Partition([2,2,1])._latex_exp_high()) 2^{2},1 sage: print(Partition([])._latex_exp_high()) {\emptyset} """ if not self._list: return "{\\emptyset}" exp = self.to_exp()[::-1] # reversed list of exponents M = max(self) return '%s' % ','.join('%s%s' % (M-m, '' if e==1 else '^{%s}'%e) for (m,e) in enumerate(exp) if e>0) def ferrers_diagram(self): r""" Return the Ferrers diagram of ``self``. EXAMPLES:: sage: mu = Partition([5,5,2,1]) sage: Partitions.options(diagram_str='*', convention="english") sage: print(mu.ferrers_diagram()) ***** ***** ** * sage: Partitions.options(diagram_str='#') sage: print(mu.ferrers_diagram()) ##### ##### ## # sage: Partitions.options.convention="french" sage: print(mu.ferrers_diagram()) # ## ##### ##### sage: print(Partition([]).ferrers_diagram()) - sage: Partitions.options(diagram_str='-') sage: print(Partition([]).ferrers_diagram()) (/) sage: Partitions.options._reset() """ diag_str = self.parent().options.diagram_str if not self._list: return '-' if diag_str != '-' else "(/)" if self.parent().options.convention == "English": return '\n'.join(diag_str * p for p in self) else: return '\n'.join(diag_str * p for p in reversed(self)) def pp(self): r""" Print the Ferrers diagram. See :meth:`ferrers_diagram` for more on the Ferrers diagram. EXAMPLES:: sage: Partition([5,5,2,1]).pp() ***** ***** ** * sage: Partitions.options.convention='French' sage: Partition([5,5,2,1]).pp() * ** ***** ***** sage: Partitions.options._reset() """ print(self.ferrers_diagram()) def __truediv__(self, p): """ Returns the skew partition ``self / p``. EXAMPLES:: sage: p = Partition([3,2,1]) sage: p/[1,1] [3, 2, 1] / [1, 1] sage: p/[3,2,1] [3, 2, 1] / [3, 2, 1] sage: p/Partition([1,1]) [3, 2, 1] / [1, 1] sage: p/[2,2,2] Traceback (most recent call last): ... ValueError: To form a skew partition p/q, q must be contained in p. """ if not self.contains(p): raise ValueError("To form a skew partition p/q, q must be contained in p.") return SkewPartition([self[:], p]) def power(self, k): r""" Return the cycle type of the `k`-th power of any permutation with cycle type ``self`` (thus describes the powermap of symmetric groups). Equivalent to GAP's ``PowerPartition``. EXAMPLES:: sage: p = Partition([5,3]) sage: p.power(1) [5, 3] sage: p.power(2) [5, 3] sage: p.power(3) [5, 1, 1, 1] sage: p.power(4) [5, 3] Now let us compare this to the power map on `S_8`:: sage: G = SymmetricGroup(8) sage: g = G([(1,2,3,4,5),(6,7,8)]) sage: g (1,2,3,4,5)(6,7,8) sage: g^2 (1,3,5,2,4)(6,8,7) sage: g^3 (1,4,2,5,3) sage: g^4 (1,5,4,3,2)(6,7,8) :: sage: Partition([3,2,1]).power(3) [2, 1, 1, 1, 1] """ res = [] for i in self: g = gcd(i, k) res.extend( [ZZ(i//g)]*int(g) ) res.sort(reverse=True) return Partition(res) def __next__(self): """ Return the partition that lexicographically follows ``self``, of the same size. If ``self`` is the last partition, then return ``False``. EXAMPLES:: sage: next(Partition([4])) [3, 1] sage: next(Partition([1,1,1,1])) False """ p = self n = 0 m = 0 for i in p: n += i m += 1 next_p = p[:] + [1]*(n - len(p)) #Check to see if we are at the last (all ones) partition if p == [1]*n: return False # #If we are not, then run the ZS1 algorithm. # #Let h be the number of non-one entries in the #partition h = 0 for i in next_p: if i != 1: h += 1 if next_p[h-1] == 2: m += 1 next_p[h-1] = 1 h -= 1 else: r = next_p[h-1] - 1 t = m - h + 1 next_p[h-1] = r while t >= r: h += 1 next_p[h-1] = r t -= r if t == 0: m = h else: m = h + 1 if t > 1: h += 1 next_p[h-1] = t return self.parent()(next_p[:m]) next = __next__ def size(self): """ Return the size of ``self``. EXAMPLES:: sage: Partition([2,2]).size() 4 sage: Partition([3,2,1]).size() 6 """ return sum(self) def sign(self): r""" Return the sign of any permutation with cycle type ``self``. This function corresponds to a homomorphism from the symmetric group `S_n` into the cyclic group of order 2, whose kernel is exactly the alternating group `A_n`. Partitions of sign `1` are called even partitions while partitions of sign `-1` are called odd. EXAMPLES:: sage: Partition([5,3]).sign() 1 sage: Partition([5,2]).sign() -1 Zolotarev's lemma states that the Legendre symbol `\left(\frac{a}{p}\right)` for an integer `a \pmod p` (`p` a prime number), can be computed as sign(p_a), where sign denotes the sign of a permutation and p_a the permutation of the residue classes `\pmod p` induced by modular multiplication by `a`, provided `p` does not divide `a`. We verify this in some examples. :: sage: F = GF(11) sage: a = F.multiplicative_generator();a 2 sage: plist = [int(a*F(x)) for x in range(1,11)]; plist [2, 4, 6, 8, 10, 1, 3, 5, 7, 9] This corresponds to the permutation (1, 2, 4, 8, 5, 10, 9, 7, 3, 6) (acting the set `\{1,2,...,10\}`) and to the partition [10]. :: sage: p = PermutationGroupElement('(1, 2, 4, 8, 5, 10, 9, 7, 3, 6)') sage: p.sign() -1 sage: Partition([10]).sign() -1 sage: kronecker_symbol(11,2) -1 Now replace `2` by `3`:: sage: plist = [int(F(3*x)) for x in range(1,11)]; plist [3, 6, 9, 1, 4, 7, 10, 2, 5, 8] sage: list(range(1, 11)) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: p = PermutationGroupElement('(3,4,8,7,9)') sage: p.sign() 1 sage: kronecker_symbol(3,11) 1 sage: Partition([5,1,1,1,1,1]).sign() 1 In both cases, Zolotarev holds. REFERENCES: - :wikipedia:`Zolotarev%27s_lemma` """ return (-1)**(self.size()-self.length()) def k_size(self, k): r""" Given a partition ``self`` and a ``k``, return the size of the `k`-boundary. This is the same as the length method :meth:`sage.combinat.core.Core.length` of the :class:`sage.combinat.core.Core` object, with the exception that here we don't require ``self`` to be a `k+1`-core. EXAMPLES:: sage: Partition([2, 1, 1]).k_size(1) 2 sage: Partition([2, 1, 1]).k_size(2) 3 sage: Partition([2, 1, 1]).k_size(3) 3 sage: Partition([2, 1, 1]).k_size(4) 4 .. SEEALSO:: :meth:`k_boundary`, :meth:`SkewPartition.size` """ return self.k_boundary(k).size() def boundary(self): r""" Return the integer coordinates of points on the boundary of ``self``. For the following description, picture the Ferrer's diagram of ``self`` using the French convention. Recall that the French convention puts the longest row on the bottom and the shortest row on the top. In addition, interpret the Ferrer's diagram as 1 x 1 cells in the Euclidean plane. So if ``self`` was the partition [3, 1], the lower-left vertices of the 1 x 1 cells in the Ferrer's diagram would be (0, 0), (1, 0), (2, 0), and (0, 1). The boundary of a partition is the set `\{ \text{NE}(d) \mid \forall d\:\text{diagonal} \}`. That is, for every diagonal line `y = x + b` where `b \in \mathbb{Z}`, we find the northeasternmost (NE) point on that diagonal which is also in the Ferrer's diagram. The boundary will go from bottom-right to top-left. EXAMPLES: Consider the partition (1) depicted as a square on a cartesian plane with vertices (0, 0), (1, 0), (1, 1), and (0, 1). Three of those vertices in the appropriate order form the boundary:: sage: Partition([1]).boundary() [(1, 0), (1, 1), (0, 1)] The partition (3, 1) can be visualized as three squares on a cartesian plane. The coordinates of the appropriate vertices form the boundary:: sage: Partition([3, 1]).boundary() [(3, 0), (3, 1), (2, 1), (1, 1), (1, 2), (0, 2)] TESTS:: sage: Partition([1]).boundary() [(1, 0), (1, 1), (0, 1)] sage: Partition([2, 1]).boundary() [(2, 0), (2, 1), (1, 1), (1, 2), (0, 2)] sage: Partition([3, 1]).boundary() [(3, 0), (3, 1), (2, 1), (1, 1), (1, 2), (0, 2)] sage: Partition([2, 1, 1]).boundary() [(2, 0), (2, 1), (1, 1), (1, 2), (1, 3), (0, 3)] .. SEEALSO:: :meth:`k_rim`. You might have been looking for :meth:`k_boundary` instead. """ def horizontal_piece(xy, bdy): (start_x, start_y) = xy if not bdy: h_piece = [(start_x, start_y)] else: stop_x = bdy[-1][0] y = start_y # y never changes h_piece = [(x, y) for x in range(start_x, stop_x)] h_piece = list(reversed(h_piece)) return h_piece bdy = [] for i, part in enumerate(self): (cell_x, cell_y) = (part - 1, i) (x, y) = (cell_x + 1, cell_y + 1) bdy += horizontal_piece((x, y - 1), bdy) bdy.append((x, y)) # add final "top-left" horizontal piece (top_left_x, top_left_y) = (0, len(self)) bdy += horizontal_piece((top_left_x, top_left_y), bdy) return bdy def k_rim(self, k): r""" Return the ``k``-rim of ``self`` as a list of integer coordinates. The `k`-rim of a partition is the "line between" (or "intersection of") the `k`-boundary and the `k`-interior. (Section 2.3 of [HM2011]_) It will be output as an ordered list of integer coordinates, where the origin is `(0, 0)`. It will start at the top-left of the `k`-rim (using French convention) and end at the bottom-right. EXAMPLES: Consider the partition (3, 1) split up into its 1-interior and 1-boundary: .. image:: ../../media/k-rim.JPG :height: 180px :align: center The line shown in bold is the 1-rim, and that information is equivalent to the integer coordinates of the points that occur along that line:: sage: Partition([3, 1]).k_rim(1) [(3, 0), (2, 0), (2, 1), (1, 1), (0, 1), (0, 2)] TESTS:: sage: Partition([1]).k_rim(0) [(1, 0), (1, 1), (0, 1)] sage: Partition([3, 1]).k_rim(0) [(3, 0), (3, 1), (2, 1), (1, 1), (1, 2), (0, 2)] sage: Partition([3, 1]).k_rim(1) [(3, 0), (2, 0), (2, 1), (1, 1), (0, 1), (0, 2)] sage: Partition([3, 1]).k_rim(2) [(3, 0), (2, 0), (1, 0), (1, 1), (0, 1), (0, 2)] sage: Partition([3, 1]).k_rim(3) [(3, 0), (2, 0), (1, 0), (1, 1), (0, 1), (0, 2)] .. SEEALSO:: :meth:`k_interior`, :meth:`k_boundary`, :meth:`boundary` """ interior_rim = self.k_interior(k).boundary() # get leftmost vertical line interior_top_left_y = interior_rim[-1][1] v_piece = [(0, y) for y in range(interior_top_left_y+1, len(self)+1)] # get bottommost horizontal line interior_bottom_right_x = interior_rim[0][0] if self: ptn_bottom_right_x = self[0] else: ptn_bottom_right_x = 0 h_piece = [(x, 0) for x in range(ptn_bottom_right_x, interior_bottom_right_x, -1)] # glue together with boundary rim = h_piece + interior_rim + v_piece return rim def k_row_lengths(self, k): r""" Return the ``k``-row-shape of the partition ``self``. This is equivalent to taking the `k`-boundary of the partition and then returning the row-shape of that. We do *not* discard rows of length 0. (Section 2.2 of [LLMS2013]_) EXAMPLES:: sage: Partition([6, 1]).k_row_lengths(2) [2, 1] sage: Partition([4, 4, 4, 3, 2]).k_row_lengths(2) [0, 1, 1, 1, 2] .. SEEALSO:: :meth:`k_column_lengths`, :meth:`k_boundary`, :meth:`SkewPartition.row_lengths`, :meth:`SkewPartition.column_lengths` """ return self.k_boundary(k).row_lengths() def k_column_lengths(self, k): r""" Return the ``k``-column-shape of the partition ``self``. This is the 'column' analog of :meth:`k_row_lengths`. EXAMPLES:: sage: Partition([6, 1]).k_column_lengths(2) [1, 0, 0, 0, 1, 1] sage: Partition([4, 4, 4, 3, 2]).k_column_lengths(2) [1, 1, 1, 2] .. SEEALSO:: :meth:`k_row_lengths`, :meth:`k_boundary`, :meth:`SkewPartition.row_lengths`, :meth:`SkewPartition.column_lengths` """ return self.k_boundary(k).column_lengths() def has_rectangle(self, h, w): r""" Return ``True`` if the Ferrer's diagram of ``self`` has ``h`` (*or more*) rows of length ``w`` (*exactly*). INPUT: - ``h`` -- An integer `h \geq 1`. The (*minimum*) height of the rectangle. - ``w`` -- An integer `w \geq 1`. The width of the rectangle. EXAMPLES:: sage: Partition([3, 3, 3, 3]).has_rectangle(2, 3) True sage: Partition([3, 3]).has_rectangle(2, 3) True sage: Partition([4, 3]).has_rectangle(2, 3) False sage: Partition([3]).has_rectangle(2, 3) False TESTS:: sage: Partition([1, 1, 1]).has_rectangle(4, 1) False sage: Partition([1, 1, 1]).has_rectangle(3, 1) True sage: Partition([1, 1, 1]).has_rectangle(2, 1) True sage: Partition([1, 1, 1]).has_rectangle(1, 2) False sage: Partition([3]).has_rectangle(1, 3) True sage: Partition([3]).has_rectangle(1, 2) False sage: Partition([3]).has_rectangle(2, 3) False .. SEEALSO:: :meth:`has_k_rectangle` """ assert h >= 1 assert w >= 1 num_rows_of_len_w = self.to_exp(w)[w - 1] return num_rows_of_len_w >= h def has_k_rectangle(self, k): r""" Return ``True`` if the Ferrer's diagram of ``self`` contains `k-i+1` rows (*or more*) of length `i` (*exactly*) for any `i` in `[1, k]`. This is mainly a helper function for :meth:`is_k_reducible` and :meth:`is_k_irreducible`, the only difference between this function and :meth:`is_k_reducible` being that this function allows any partition as input while :meth:`is_k_reducible` requires the input to be `k`-bounded. EXAMPLES: The partition [1, 1, 1] has at least 2 rows of length 1:: sage: Partition([1, 1, 1]).has_k_rectangle(2) True The partition [1, 1, 1] does *not* have 4 rows of length 1, 3 rows of length 2, 2 rows of length 3, nor 1 row of length 4:: sage: Partition([1, 1, 1]).has_k_rectangle(4) False TESTS:: sage: Partition([1]).has_k_rectangle(1) True sage: Partition([1]).has_k_rectangle(2) False sage: Partition([1, 1, 1]).has_k_rectangle(3) True sage: Partition([1, 1, 1]).has_k_rectangle(2) True sage: Partition([1, 1, 1]).has_k_rectangle(4) False sage: Partition([3]).has_k_rectangle(3) True sage: Partition([3]).has_k_rectangle(2) False sage: Partition([3]).has_k_rectangle(4) False .. SEEALSO:: :meth:`is_k_irreducible`, :meth:`is_k_reducible`, :meth:`has_rectangle` """ return any(self.has_rectangle(a, b) for (a, b) in [(k-i+1, i) for i in range(1, k+1)]) def is_k_bounded(self, k): r""" Return ``True`` if the partition ``self`` is bounded by ``k``. EXAMPLES:: sage: Partition([4, 3, 1]).is_k_bounded(4) True sage: Partition([4, 3, 1]).is_k_bounded(7) True sage: Partition([4, 3, 1]).is_k_bounded(3) False """ assert k >= 0 if self.is_empty(): return True else: return self[0] <= k def is_k_reducible(self, k): r""" Return ``True`` if the partition ``self`` is ``k``-reducible. A `k`-bounded partition is `k`-*reducible* if its Ferrer's diagram contains `k-i+1` rows (or more) of length `i` (exactly) for some `i \in [1, k]`. (Also, a `k`-bounded partition is `k`-reducible if and only if it is not `k`-irreducible.) EXAMPLES: The partition [1, 1, 1] has at least 2 rows of length 1:: sage: Partition([1, 1, 1]).is_k_reducible(2) True The partition [1, 1, 1] does *not* have 4 rows of length 1, 3 rows of length 2, 2 rows of length 3, nor 1 row of length 4:: sage: Partition([1, 1, 1]).is_k_reducible(4) False .. SEEALSO:: :meth:`is_k_irreducible`, :meth:`has_k_rectangle` """ if not self.is_k_bounded(k): raise ValueError('we only talk about k-reducible / k-irreducible for k-bounded partitions') return self.has_k_rectangle(k) def is_k_irreducible(self, k): r""" Return ``True`` if the partition ``self`` is ``k``-irreducible. A `k`-bounded partition is `k`-*irreducible* if its Ferrer's diagram does *not* contain `k-i+1` rows (or more) of length `i` (exactly) for every `i \in [1, k]`. (Also, a `k`-bounded partition is `k`-irreducible if and only if it is not `k`-reducible.) EXAMPLES: The partition [1, 1, 1] has at least 2 rows of length 1:: sage: Partition([1, 1, 1]).is_k_irreducible(2) False The partition [1, 1, 1] does *not* have 4 rows of length 1, 3 rows of length 2, 2 rows of length 3, nor 1 row of length 4:: sage: Partition([1, 1, 1]).is_k_irreducible(4) True .. SEEALSO:: :meth:`is_k_reducible`, :meth:`has_k_rectangle` """ return not self.is_k_reducible(k) def is_symmetric(self): r""" Return ``True`` if the partition ``self`` equals its own transpose. EXAMPLES:: sage: Partition([2, 1]).is_symmetric() True sage: Partition([3, 1]).is_symmetric() False """ return self == self.conjugate() def next_within_bounds(self, min=[], max=None, partition_type=None): r""" Get the next partition lexicographically that contains ``min`` and is contained in ``max``. INPUT: - ``min`` -- (default ``[]``, the empty partition) The 'minimum partition' that ``next_within_bounds(self)`` must contain. - ``max`` -- (default ``None``) The 'maximum partition' that ``next_within_bounds(self)`` must be contained in. If set to ``None``, then there is no restriction. - ``partition_type`` -- (default ``None``) The type of partitions allowed. For example, 'strict' for strictly decreasing partitions, or ``None`` to allow any valid partition. EXAMPLES:: sage: m = [1, 1] sage: M = [3, 2, 1] sage: Partition([1, 1]).next_within_bounds(min=m, max=M) [1, 1, 1] sage: Partition([1, 1, 1]).next_within_bounds(min=m, max=M) [2, 1] sage: Partition([2, 1]).next_within_bounds(min=m, max=M) [2, 1, 1] sage: Partition([2, 1, 1]).next_within_bounds(min=m, max=M) [2, 2] sage: Partition([2, 2]).next_within_bounds(min=m, max=M) [2, 2, 1] sage: Partition([2, 2, 1]).next_within_bounds(min=m, max=M) [3, 1] sage: Partition([3, 1]).next_within_bounds(min=m, max=M) [3, 1, 1] sage: Partition([3, 1, 1]).next_within_bounds(min=m, max=M) [3, 2] sage: Partition([3, 2]).next_within_bounds(min=m, max=M) [3, 2, 1] sage: Partition([3, 2, 1]).next_within_bounds(min=m, max=M) == None True .. SEEALSO:: :meth:`next` """ # make sure min <= self <= max if max is not None: assert _Partitions(max).contains(_Partitions(self)) assert _Partitions(self).contains(_Partitions(min)) # check for empty max if max is not None and _Partitions(max).is_empty(): return None # convert partitions to lists to make them mutable p = list(self) min = list(min) # if there is no max, the next partition just tacks a '1' on to the end! if max is None: return _Partitions(p + [1]) # extend p and min to include 0's at the end p = p + [0] * (len(max) - len(p)) min = min + [0] * (len(max) - len(min)) # finally, run the algo to find next_p next_p = copy(p) def condition(a, b): if partition_type in ('strict', 'strictly decreasing'): return a < b - 1 elif partition_type in (None, 'weak', 'weakly decreasing'): return a < b else: raise ValueError('unrecognized partition type') for r in range(len(p) - 1, -1, -1): if r == 0: if (max is None or p[r] < max[r]): next_p[r] += 1 break else: return None else: if (max is None or p[r] < max[r]) and condition(p[r], p[r-1]): next_p[r] += 1 break else: next_p[r] = min[r] continue return _Partitions(next_p) def row_standard_tableaux(self): """ Return the :class:`row standard tableaux <sage.combinat.tableau.RowStandardTableaux>` of shape ``self``. EXAMPLES:: sage: Partition([3,2,2,1]).row_standard_tableaux() Row standard tableaux of shape [3, 2, 2, 1] """ return tableau.RowStandardTableaux(self) def standard_tableaux(self): """ Return the :class:`standard tableaux<StandardTableaux>` of shape ``self``. EXAMPLES:: sage: Partition([3,2,2,1]).standard_tableaux() Standard tableaux of shape [3, 2, 2, 1] """ return tableau.StandardTableaux(self) def up(self): r""" Return a generator for partitions that can be obtained from ``self`` by adding a cell. EXAMPLES:: sage: list(Partition([2,1,1]).up()) [[3, 1, 1], [2, 2, 1], [2, 1, 1, 1]] sage: list(Partition([3,2]).up()) [[4, 2], [3, 3], [3, 2, 1]] sage: [p for p in Partition([]).up()] [[1]] """ p = self previous = p.get_part(0) + 1 for i, current in enumerate(p): if current < previous: yield Partition(p[:i] + [current + 1] + p[i + 1:]) previous = current yield Partition(p + [1]) def up_list(self): """ Return a list of the partitions that can be formed from ``self`` by adding a cell. EXAMPLES:: sage: Partition([2,1,1]).up_list() [[3, 1, 1], [2, 2, 1], [2, 1, 1, 1]] sage: Partition([3,2]).up_list() [[4, 2], [3, 3], [3, 2, 1]] sage: Partition([]).up_list() [[1]] """ return list(self.up()) def down(self): r""" Return a generator for partitions that can be obtained from ``self`` by removing a cell. EXAMPLES:: sage: [p for p in Partition([2,1,1]).down()] [[1, 1, 1], [2, 1]] sage: [p for p in Partition([3,2]).down()] [[2, 2], [3, 1]] sage: [p for p in Partition([3,2,1]).down()] [[2, 2, 1], [3, 1, 1], [3, 2]] TESTS: We check that :trac:`11435` is fixed:: sage: Partition([]).down_list() #indirect doctest [] """ p = self l = len(p) for i in range(l-1): if p[i] > p[i+1]: yield Partition(p[:i] + [ p[i]-1 ] + p[i+1:]) if l >= 1: last = p[-1] if last == 1: yield Partition(p[:-1]) else: yield Partition(p[:-1] + [ p[-1] - 1 ]) def down_list(self): """ Return a list of the partitions that can be obtained from ``self`` by removing a cell. EXAMPLES:: sage: Partition([2,1,1]).down_list() [[1, 1, 1], [2, 1]] sage: Partition([3,2]).down_list() [[2, 2], [3, 1]] sage: Partition([3,2,1]).down_list() [[2, 2, 1], [3, 1, 1], [3, 2]] sage: Partition([]).down_list() #checks :trac:`11435` [] """ return [p for p in self.down()] @combinatorial_map(name="cell poset") def cell_poset(self, orientation="SE"): """ Return the Young diagram of ``self`` as a poset. The optional keyword variable ``orientation`` determines the order relation of the poset. The poset always uses the set of cells of the Young diagram of ``self`` as its ground set. The order relation of the poset depends on the ``orientation`` variable (which defaults to ``"SE"``). Concretely, ``orientation`` has to be specified to one of the strings ``"NW"``, ``"NE"``, ``"SW"``, and ``"SE"``, standing for "northwest", "northeast", "southwest" and "southeast", respectively. If ``orientation`` is ``"SE"``, then the order relation of the poset is such that a cell `u` is greater or equal to a cell `v` in the poset if and only if `u` lies weakly southeast of `v` (this means that `u` can be reached from `v` by a sequence of south and east steps; the sequence is allowed to consist of south steps only, or of east steps only, or even be empty). Similarly the order relation is defined for the other three orientations. The Young diagram is supposed to be drawn in English notation. The elements of the poset are the cells of the Young diagram of ``self``, written as tuples of zero-based coordinates (so that `(3, 7)` stands for the `8`-th cell of the `4`-th row, etc.). EXAMPLES:: sage: p = Partition([3,3,1]) sage: Q = p.cell_poset(); Q Finite poset containing 7 elements sage: sorted(Q) [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0)] sage: sorted(Q.maximal_elements()) [(1, 2), (2, 0)] sage: Q.minimal_elements() [(0, 0)] sage: sorted(Q.upper_covers((1, 0))) [(1, 1), (2, 0)] sage: Q.upper_covers((1, 1)) [(1, 2)] sage: P = p.cell_poset(orientation="NW"); P Finite poset containing 7 elements sage: sorted(P) [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0)] sage: sorted(P.minimal_elements()) [(1, 2), (2, 0)] sage: P.maximal_elements() [(0, 0)] sage: P.upper_covers((2, 0)) [(1, 0)] sage: sorted(P.upper_covers((1, 2))) [(0, 2), (1, 1)] sage: sorted(P.upper_covers((1, 1))) [(0, 1), (1, 0)] sage: sorted([len(P.upper_covers(v)) for v in P]) [0, 1, 1, 1, 1, 2, 2] sage: R = p.cell_poset(orientation="NE"); R Finite poset containing 7 elements sage: sorted(R) [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0)] sage: R.maximal_elements() [(0, 2)] sage: R.minimal_elements() [(2, 0)] sage: sorted([len(R.upper_covers(v)) for v in R]) [0, 1, 1, 1, 1, 2, 2] sage: R.is_isomorphic(P) False sage: R.is_isomorphic(P.dual()) False Linear extensions of ``p.cell_poset()`` are in 1-to-1 correspondence with standard Young tableaux of shape `p`:: sage: all( len(p.cell_poset().linear_extensions()) ....: == len(p.standard_tableaux()) ....: for n in range(8) for p in Partitions(n) ) True This is not the case for northeast orientation:: sage: q = Partition([3, 1]) sage: q.cell_poset(orientation="NE").is_chain() True TESTS: We check that the posets are really what they should be for size up to `7`:: sage: def check_NW(n): ....: for p in Partitions(n): ....: P = p.cell_poset(orientation="NW") ....: for c in p.cells(): ....: for d in p.cells(): ....: if P.le(c, d) != (c[0] >= d[0] ....: and c[1] >= d[1]): ....: return False ....: return True sage: all( check_NW(n) for n in range(8) ) True sage: def check_NE(n): ....: for p in Partitions(n): ....: P = p.cell_poset(orientation="NE") ....: for c in p.cells(): ....: for d in p.cells(): ....: if P.le(c, d) != (c[0] >= d[0] ....: and c[1] <= d[1]): ....: return False ....: return True sage: all( check_NE(n) for n in range(8) ) True sage: def test_duality(n, ori1, ori2): ....: for p in Partitions(n): ....: P = p.cell_poset(orientation=ori1) ....: Q = p.cell_poset(orientation=ori2) ....: for c in p.cells(): ....: for d in p.cells(): ....: if P.lt(c, d) != Q.lt(d, c): ....: return False ....: return True sage: all( test_duality(n, "NW", "SE") for n in range(8) ) True sage: all( test_duality(n, "NE", "SW") for n in range(8) ) True sage: all( test_duality(n, "NE", "SE") for n in range(4) ) False """ from sage.combinat.posets.posets import Poset covers = {} if orientation == "NW": for i, row in enumerate(self): if i == 0: covers[(0, 0)] = [] for j in range(1, row): covers[(0, j)] = [(0, j - 1)] else: covers[(i, 0)] = [(i - 1, 0)] for j in range(1, row): covers[(i, j)] = [(i - 1, j), (i, j - 1)] elif orientation == "NE": for i, row in enumerate(self): if i == 0: covers[(0, row - 1)] = [] for j in range(row - 1): covers[(0, j)] = [(0, j + 1)] else: covers[(i, row - 1)] = [(i - 1, row - 1)] for j in range(row - 1): covers[(i, j)] = [(i - 1, j), (i, j + 1)] elif orientation == "SE": l = len(self) - 1 for i, row in enumerate(self): if i == l: covers[(i, row - 1)] = [] for j in range(row - 1): covers[(i, j)] = [(i, j + 1)] else: next_row = self[i + 1] if row == next_row: covers[(i, row - 1)] = [(i + 1, row - 1)] for j in range(row - 1): covers[(i, j)] = [(i + 1, j), (i, j + 1)] else: covers[(i, row - 1)] = [] for j in range(next_row): covers[(i, j)] = [(i + 1, j), (i, j + 1)] for j in range(next_row, row - 1): covers[(i, j)] = [(i, j + 1)] elif orientation == "SW": l = len(self) - 1 for i, row in enumerate(self): if i == l: covers[(i, 0)] = [] for j in range(1, row): covers[(i, j)] = [(i, j - 1)] else: covers[(i, 0)] = [(i + 1, 0)] next_row = self[i + 1] for j in range(1, next_row): covers[(i, j)] = [(i + 1, j), (i, j - 1)] for j in range(next_row, row): covers[(i, j)] = [(i, j - 1)] return Poset(covers) def frobenius_coordinates(self): """ Return a pair of sequences of Frobenius coordinates aka beta numbers of the partition. These are two strictly decreasing sequences of nonnegative integers of the same length. EXAMPLES:: sage: Partition([]).frobenius_coordinates() ([], []) sage: Partition([1]).frobenius_coordinates() ([0], [0]) sage: Partition([3,3,3]).frobenius_coordinates() ([2, 1, 0], [2, 1, 0]) sage: Partition([9,1,1,1,1,1,1]).frobenius_coordinates() ([8], [6]) """ mu = self muconj = mu.conjugate() # Naive implementation if len(mu) <= len(muconj): a = [x for x in (val-i-1 for i, val in enumerate(mu)) if x>=0] b = [x for x in (muconj[i]-i-1 for i in range(len(a))) if x>=0] else: b = [x for x in (val-i-1 for i, val in enumerate(muconj)) if x>=0] a = [x for x in (mu[i]-i-1 for i in range(len(b))) if x>=0] return (a,b) def frobenius_rank(self): r""" Return the Frobenius rank of the partition ``self``. The Frobenius rank of a partition `\lambda = (\lambda_1, \lambda_2, \lambda_3, \cdots)` is defined to be the largest `i` such that `\lambda_i \geq i`. In other words, it is the number of cells on the main diagonal of `\lambda`. In yet other words, it is the size of the largest square fitting into the Young diagram of `\lambda`. EXAMPLES:: sage: Partition([]).frobenius_rank() 0 sage: Partition([1]).frobenius_rank() 1 sage: Partition([3,3,3]).frobenius_rank() 3 sage: Partition([9,1,1,1,1,1]).frobenius_rank() 1 sage: Partition([2,1,1,1,1,1]).frobenius_rank() 1 sage: Partition([2,2,1,1,1,1]).frobenius_rank() 2 sage: Partition([3,2]).frobenius_rank() 2 sage: Partition([3,2,2]).frobenius_rank() 2 sage: Partition([8,4,4,4,4]).frobenius_rank() 4 sage: Partition([8,4,1]).frobenius_rank() 2 sage: Partition([3,3,1]).frobenius_rank() 2 """ for i, x in enumerate(self): if x <= i: return i return len(self) def beta_numbers(self, length=None): """ Return the set of beta numbers corresponding to ``self``. The optional argument ``length`` specifies the length of the beta set (which must be at least the length of ``self``). For more on beta numbers, see :meth:`frobenius_coordinates`. EXAMPLES:: sage: Partition([4,3,2]).beta_numbers() [6, 4, 2] sage: Partition([4,3,2]).beta_numbers(5) [8, 6, 4, 1, 0] sage: Partition([]).beta_numbers() [] sage: Partition([]).beta_numbers(3) [2, 1, 0] sage: Partition([6,4,1,1]).beta_numbers() [9, 6, 2, 1] sage: Partition([6,4,1,1]).beta_numbers(6) [11, 8, 4, 3, 1, 0] sage: Partition([1,1,1]).beta_numbers() [3, 2, 1] sage: Partition([1,1,1]).beta_numbers(4) [4, 3, 2, 0] """ true_length = len(self) if length is None: length = true_length elif length < true_length: raise ValueError("length must be at least the length of the partition") beta = [l + length - i - 1 for (i, l) in enumerate(self)] if length > true_length: beta.extend(list(range(length-true_length-1,-1,-1))) return beta def crank(self): r""" Return the Dyson crank of ``self``. The Dyson crank of a partition `\lambda` is defined as follows: If `\lambda` contains at least one `1`, then the crank is `\mu(\lambda) - \omega(\lambda)`, where `\omega(\lambda)` is the number of `1`s in `\lambda`, and `\mu(\lambda)` is the number of parts of `\lambda` larger than `\omega(\lambda)`. If `\lambda` contains no `1`, then the crank is simply the largest part of `\lambda`. REFERENCES: - [AG1988]_ EXAMPLES:: sage: Partition([]).crank() 0 sage: Partition([3,2,2]).crank() 3 sage: Partition([5,4,2,1,1]).crank() 0 sage: Partition([1,1,1]).crank() -3 sage: Partition([6,4,4,3]).crank() 6 sage: Partition([6,3,3,1,1]).crank() 1 sage: Partition([6]).crank() 6 sage: Partition([5,1]).crank() 0 sage: Partition([4,2]).crank() 4 sage: Partition([4,1,1]).crank() -1 sage: Partition([3,3]).crank() 3 sage: Partition([3,2,1]).crank() 1 sage: Partition([3,1,1,1]).crank() -3 sage: Partition([2,2,2]).crank() 2 sage: Partition([2,2,1,1]).crank() -2 sage: Partition([2,1,1,1,1]).crank() -4 sage: Partition([1,1,1,1,1,1]).crank() -6 """ l = len(self) if l == 0: return 0 if self[-1] > 1: return self[0] ind_1 = self.index(1) w = l - ind_1 # w is omega(self). m = len([x for x in self if x > w]) return m - w def t_completion(self, t): r""" Return the ``t``-completion of the partition ``self``. If `\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)` is a partition and `t` is an integer greater or equal to `\left\lvert \lambda \right\rvert + \lambda_1`, then the `t`-*completion of* `\lambda` is defined as the partition `(t - \left\lvert \lambda \right\rvert, \lambda_1, \lambda_2, \lambda_3, \ldots)` of `t`. This partition is denoted by `\lambda[t]` in [BOR2009]_, by `\lambda_{[t]}` in [BdVO2012]_, and by `\lambda(t)` in [CO2010]_. EXAMPLES:: sage: Partition([]).t_completion(0) [] sage: Partition([]).t_completion(1) [1] sage: Partition([]).t_completion(2) [2] sage: Partition([]).t_completion(3) [3] sage: Partition([2, 1]).t_completion(5) [2, 2, 1] sage: Partition([2, 1]).t_completion(6) [3, 2, 1] sage: Partition([4, 2, 2, 1]).t_completion(13) [4, 4, 2, 2, 1] sage: Partition([4, 2, 2, 1]).t_completion(19) [10, 4, 2, 2, 1] sage: Partition([4, 2, 2, 1]).t_completion(10) Traceback (most recent call last): ... ValueError: 10-completion is not defined sage: Partition([4, 2, 2, 1]).t_completion(5) Traceback (most recent call last): ... ValueError: 5-completion is not defined """ if self._list and t < self.size() + self._list[0]: raise ValueError("{}-completion is not defined".format(t)) return Partition([t - self.size()] + self._list) def larger_lex(self, rhs): """ Return ``True`` if ``self`` is larger than ``rhs`` in lexicographic order. Otherwise return ``False``. EXAMPLES:: sage: p = Partition([3,2]) sage: p.larger_lex([3,1]) True sage: p.larger_lex([1,4]) True sage: p.larger_lex([3,2,1]) False sage: p.larger_lex([3]) True sage: p.larger_lex([5]) False sage: p.larger_lex([3,1,1,1,1,1,1,1]) True """ return CombinatorialElement.__gt__(self, rhs) def dominates(self, p2): r""" Return ``True`` if ``self`` dominates the partition ``p2``. Otherwise it returns ``False``. EXAMPLES:: sage: p = Partition([3,2]) sage: p.dominates([3,1]) True sage: p.dominates([2,2]) True sage: p.dominates([2,1,1]) True sage: p.dominates([3,3]) False sage: p.dominates([4]) False sage: Partition([4]).dominates(p) False sage: Partition([]).dominates([1]) False sage: Partition([]).dominates([]) True sage: Partition([1]).dominates([]) True """ p1 = self sum1 = 0 sum2 = 0 min_length = min(len(p1), len(p2)) if min_length == 0: return not p2 # equivalent to len(p1) >= len(p2) = 0 for i in range(min_length): sum1 += p1[i] sum2 += p2[i] if sum2 > sum1: return False return sum(p1) >= sum(p2) def cells(self): """ Return the coordinates of the cells of ``self``. EXAMPLES:: sage: Partition([2,2]).cells() [(0, 0), (0, 1), (1, 0), (1, 1)] sage: Partition([3,2]).cells() [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)] """ res = [] for i in range(len(self)): for j in range(self[i]): res.append( (i,j) ) return res def generalized_pochhammer_symbol(self, a, alpha): r""" Return the generalized Pochhammer symbol `(a)_{self}^{(\alpha)}`. This is the product over all cells `(i,j)` in ``self`` of `a - (i-1) / \alpha + j - 1`. EXAMPLES:: sage: Partition([2,2]).generalized_pochhammer_symbol(2,1) 12 """ res = 1 for (i,j) in self.cells(): res *= (a - (i-1)/alpha + j-1) return res def get_part(self, i, default=Integer(0)): r""" Return the `i^{th}` part of ``self``, or ``default`` if it does not exist. EXAMPLES:: sage: p = Partition([2,1]) sage: p.get_part(0), p.get_part(1), p.get_part(2) (2, 1, 0) sage: p.get_part(10,-1) -1 sage: Partition([]).get_part(0) 0 """ if i < len(self._list): return self._list[i] else: return default @combinatorial_map(name="partition to minimal Dyck word") def to_dyck_word(self, n=None): r""" Return the ``n``-Dyck word whose corresponding partition is ``self`` (or, if ``n`` is not specified, the `n`-Dyck word with smallest `n` to satisfy this property). If `w` is an `n`-Dyck word (that is, a Dyck word with `n` open symbols and `n` close symbols), then the Dyck path corresponding to `w` can be regarded as a lattice path in the northeastern half of an `n \times n`-square. The region to the northeast of this Dyck path can be regarded as a partition. It is called the partition corresponding to the Dyck word `w`. (See :meth:`~sage.combinat.dyck_word.DyckWord.to_partition`.) For every partition `\lambda` and every nonnegative integer `n`, there exists at most one `n`-Dyck word `w` such that the partition corresponding to `w` is `\lambda` (in fact, such `w` exists if and only if `\lambda_i + i \leq n` for every `i`, where `\lambda` is written in the form `(\lambda_1, \lambda_2, \ldots, \lambda_k)` with `\lambda_k > 0`). This method computes this `w` for a given `\lambda` and `n`. If `n` is not specified, this method computes the `w` for the smallest possible `n` for which such an `w` exists. (The minimality of `n` means that the partition demarcated by the Dyck path touches the diagonal.) EXAMPLES:: sage: Partition([2,2]).to_dyck_word() [1, 1, 0, 0, 1, 1, 0, 0] sage: Partition([2,2]).to_dyck_word(4) [1, 1, 0, 0, 1, 1, 0, 0] sage: Partition([2,2]).to_dyck_word(5) [1, 1, 1, 0, 0, 1, 1, 0, 0, 0] sage: Partition([6,3,1]).to_dyck_word() [1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0] sage: Partition([]).to_dyck_word() [] sage: Partition([]).to_dyck_word(3) [1, 1, 1, 0, 0, 0] The partition corresponding to ``self.dyck_word()`` is ``self`` indeed:: sage: all( p.to_dyck_word().to_partition() == p ....: for p in Partitions(5) ) True """ from sage.combinat.dyck_word import DyckWord if not self._list: if n is None: return DyckWord([]) return DyckWord([1]*n + [0]*n) list_of_word = [] if n is None: n = max(i + l + 1 for (i, l) in enumerate(self)) # This n is also max(i+j for (i,j) in self.cells()) + 2. list_of_word.extend([1]*(n-self.length())) copy_part = list(self) while copy_part: c = copy_part.pop() list_of_word.extend([0]*c) for i in range(len(copy_part)): copy_part[i] -= c list_of_word.append(1) list_of_word.extend([0]*(n-self[0])) return DyckWord(list_of_word) @combinatorial_map(order=2, name="conjugate partition") def conjugate(self): """ Return the conjugate partition of the partition ``self``. This is also called the associated partition or the transpose in the literature. EXAMPLES:: sage: Partition([2,2]).conjugate() [2, 2] sage: Partition([6,3,1]).conjugate() [3, 2, 2, 1, 1, 1] The conjugate partition is obtained by transposing the Ferrers diagram of the partition (see :meth:`.ferrers_diagram`):: sage: print(Partition([6,3,1]).ferrers_diagram()) ****** *** * sage: print(Partition([6,3,1]).conjugate().ferrers_diagram()) *** ** ** * * * """ if not self: par = Partitions_n(0) return par.element_class(par, []) par = Partitions_n(sum(self)) return par.element_class(par, conjugate(self)) def suter_diagonal_slide(self, n, exp=1): r""" Return the image of ``self`` in `Y_n` under Suter's diagonal slide `\sigma_n`, where the notations used are those defined in [Sut2002]_. The set `Y_n` is defined as the set of all partitions `\lambda` such that the hook length of the `(0, 0)`-cell (i.e. the northwestern most cell in English notation) of `\lambda` is less than `n`, including the empty partition. The map `\sigma_n` sends a partition (with non-zero entries) `(\lambda_1, \lambda_2, \ldots, \lambda_m) \in Y_n` to the partition `(\lambda_2 + 1, \lambda_3 + 1, \ldots, \lambda_m + 1, \underbrace{1, 1, \ldots, 1}_{n - m - \lambda_1\text{ ones}})`. In other words, it pads the partition with trailing zeroes until it has length `n - \lambda_1`, then removes its first part, and finally adds `1` to each part. By Theorem 2.1 of [Sut2002]_, the dihedral group `D_n` with `2n` elements acts on `Y_n` by letting the primitive rotation act as `\sigma_n` and the reflection act as conjugation of partitions (:meth:`conjugate()`). This action is faithful if `n \geq 3`. INPUT: - ``n`` -- nonnegative integer - ``exp`` -- (default: 1) how many times `\sigma_n` should be applied OUTPUT: The result of applying Suter's diagonal slide `\sigma_n` to ``self``, assuming that ``self`` lies in `Y_n`. If the optional argument ``exp`` is set, then the slide `\sigma_n` is applied not just once, but ``exp`` times (note that ``exp`` is allowed to be negative, since the slide has finite order). EXAMPLES:: sage: Partition([5,4,1]).suter_diagonal_slide(8) [5, 2] sage: Partition([5,4,1]).suter_diagonal_slide(9) [5, 2, 1] sage: Partition([]).suter_diagonal_slide(7) [1, 1, 1, 1, 1, 1] sage: Partition([]).suter_diagonal_slide(1) [] sage: Partition([]).suter_diagonal_slide(7, exp=-1) [6] sage: Partition([]).suter_diagonal_slide(1, exp=-1) [] sage: P7 = Partitions(7) sage: all( p == p.suter_diagonal_slide(9, exp=-1).suter_diagonal_slide(9) ....: for p in P7 ) True sage: all( p == p.suter_diagonal_slide(9, exp=3) ....: .suter_diagonal_slide(9, exp=3) ....: .suter_diagonal_slide(9, exp=3) ....: for p in P7 ) True sage: all( p == p.suter_diagonal_slide(9, exp=6) ....: .suter_diagonal_slide(9, exp=6) ....: .suter_diagonal_slide(9, exp=6) ....: for p in P7 ) True sage: all( p == p.suter_diagonal_slide(9, exp=-1) ....: .suter_diagonal_slide(9, exp=1) ....: for p in P7 ) True Check of the assertion in [Sut2002]_ that `\sigma_n\bigl( \sigma_n( \lambda^{\prime})^{\prime} \bigr) = \lambda`:: sage: all( p.suter_diagonal_slide(8).conjugate() ....: == p.conjugate().suter_diagonal_slide(8, exp=-1) ....: for p in P7 ) True Check of Claim 1 in [Sut2002]_:: sage: P5 = Partitions(5) sage: all( all( (p.suter_diagonal_slide(6) in q.suter_diagonal_slide(6).down()) ....: or (q.suter_diagonal_slide(6) in p.suter_diagonal_slide(6).down()) ....: for p in q.down() ) ....: for q in P5 ) True TESTS: Check for ``exp = 0``:: sage: P = Partitions(4) sage: all(p == p.suter_diagonal_slide(7, 0) for p in P) True Check for invalid input:: sage: p = Partition([2,1]) sage: p.hook_length(0, 0) 3 sage: p.suter_diagonal_slide(2) Traceback (most recent call last): ... ValueError: the hook length must be less than n """ # Check for valid input if len(self) > 0 and len(self) + self._list[0] > n: # >, not >=, since we double count the (0,0) cell raise ValueError("the hook length must be less than n") ret = self # Arbitrary exp exp = exp % n # It is at most order n if exp > n / 2: exp -= n while exp != 0: leng = len(ret) if exp > 0: # Suter's map \sigma_n if leng == 0: # Taking extra care about the empty partition. ret = Partition([1] * (n - 1)) exp -= 1 continue res = [i + 1 for i in ret._list[1:]] res += [1] * (n - leng - ret._list[0]) ret = Partition(res) exp -= 1 else: # exp < 0 since if exp == 0, we would exit the while loop # inverse map \sigma_n^{-1} if leng == 0: # Taking extra care about the empty partition. ret = Partition([n - 1]) exp += 1 continue res = [n - leng - 1] res.extend([i - 1 for i in ret._list if i > 1]) ret = Partition(res) exp += 1 return ret @combinatorial_map(name="reading tableau") def reading_tableau(self): r""" Return the RSK recording tableau of the reading word of the (standard) tableau `T` labeled down (in English convention) each column to the shape of ``self``. For an example of the tableau `T`, consider the partition `\lambda = (3,2,1)`, then we have:: 1 4 6 2 5 3 For more, see :func:`~sage.combinat.rsk.RSK()`. EXAMPLES:: sage: Partition([3,2,1]).reading_tableau() [[1, 3, 6], [2, 5], [4]] """ st = tableau.StandardTableaux(self).first() return st.reading_word_permutation().right_tableau() @combinatorial_map(name="initial tableau") def initial_tableau(self): r""" Return the :class:`standard tableau<StandardTableau>` which has the numbers `1, 2, \ldots, n` where `n` is the :meth:`size` of ``self`` entered in order from left to right along the rows of each component, where the components are ordered from left to right. EXAMPLES:: sage: Partition([3,2,2]).initial_tableau() [[1, 2, 3], [4, 5], [6, 7]] """ mu = self._list # In Python 3, improve this using itertools.accumulate tab = [list(range(1+sum(mu[:i]), 1+sum(mu[:(i+1)]))) for i in range(len(mu))] return tableau.StandardTableau(tab) def initial_column_tableau(self): r""" Return the initial column tableau of shape ``self``. The initial column tableau of shape self is the standard tableau that has the numbers `1` to `n`, where `n` is the :meth:`size` of ``self``, entered in order from top to bottom and then left to right down the columns of ``self``. EXAMPLES:: sage: Partition([3,2]).initial_column_tableau() [[1, 3, 5], [2, 4]] """ return self.conjugate().initial_tableau().conjugate() def garnir_tableau(self, *cell): r""" Return the Garnir tableau of shape ``self`` corresponding to the cell ``cell``. If ``cell`` `= (a,c)` then `(a+1,c)` must belong to the diagram of ``self``. The Garnir tableaux play an important role in integral and non-semisimple representation theory because they determine the "straightening" rules for the Specht modules over an arbitrary ring. The Garnir tableaux are the "first" non-standard tableaux which arise when you act by simple transpositions. If `(a,c)` is a cell in the Young diagram of a partition, which is not at the bottom of its column, then the corresponding Garnir tableau has the integers `1, 2, \ldots, n` entered in order from left to right along the rows of the diagram up to the cell `(a,c-1)`, then along the cells `(a+1,1)` to `(a+1,c)`, then `(a,c)` until the end of row `a` and then continuing from left to right in the remaining positions. The examples below probably make this clearer! .. NOTE:: The function also sets ``g._garnir_cell``, where ``g`` is the resulting Garnir tableau, equal to ``cell`` which is used by some other functions. EXAMPLES:: sage: g = Partition([5,3,3,2]).garnir_tableau((0,2)); g.pp() 1 2 6 7 8 3 4 5 9 10 11 12 13 sage: g.is_row_strict(); g.is_column_strict() True False sage: Partition([5,3,3,2]).garnir_tableau(0,2).pp() 1 2 6 7 8 3 4 5 9 10 11 12 13 sage: Partition([5,3,3,2]).garnir_tableau(2,1).pp() 1 2 3 4 5 6 7 8 9 12 13 10 11 sage: Partition([5,3,3,2]).garnir_tableau(2,2).pp() Traceback (most recent call last): ... ValueError: (row+1, col) must be inside the diagram .. SEEALSO:: - :meth:`top_garnir_tableau` """ try: (row, col) = cell except ValueError: (row, col) = cell[0] if row + 1 >= len(self) or col >= self[row+1]: raise ValueError('(row+1, col) must be inside the diagram') g=self.initial_tableau().to_list() a=g[row][col] g[row][col:] = list(range(a+col+1,g[row+1][col]+1)) g[row+1][:col+1] = list(range(a,a+col+1)) g=tableau.Tableau(g) g._garnir_cell = (row, col) return g def top_garnir_tableau(self,e,cell): r""" Return the most dominant *standard* tableau which dominates the corresponding Garnir tableau and has the same ``e``-residue. The Garnir tableau play an important role in integral and non-semisimple representation theory because they determine the "straightening" rules for the Specht modules. The *top Garnir tableaux* arise in the graded representation theory of the symmetric groups and higher level Hecke algebras. They were introduced in [KMR2012]_. If the Garnir node is ``cell=(r,c)`` and `m` and `M` are the entries in the cells ``(r,c)`` and ``(r+1,c)``, respectively, in the initial tableau then the top ``e``-Garnir tableau is obtained by inserting the numbers `m, m+1, \ldots, M` in order from left to right first in the cells in row ``r+1`` which are not in the ``e``-Garnir belt, then in the cell in rows ``r`` and ``r+1`` which are in the Garnir belt and then, finally, in the remaining cells in row ``r`` which are not in the Garnir belt. All other entries in the tableau remain unchanged. If ``e = 0``, or if there are no ``e``-bricks in either row ``r`` or ``r+1``, then the top Garnir tableau is the corresponding Garnir tableau. EXAMPLES:: sage: Partition([5,4,3,2]).top_garnir_tableau(2,(0,2)).pp() 1 2 4 5 8 3 6 7 9 10 11 12 13 14 sage: Partition([5,4,3,2]).top_garnir_tableau(3,(0,2)).pp() 1 2 3 4 5 6 7 8 9 10 11 12 13 14 sage: Partition([5,4,3,2]).top_garnir_tableau(4,(0,2)).pp() 1 2 6 7 8 3 4 5 9 10 11 12 13 14 sage: Partition([5,4,3,2]).top_garnir_tableau(0,(0,2)).pp() 1 2 6 7 8 3 4 5 9 10 11 12 13 14 TESTS:: sage: Partition([5,4,3,2]).top_garnir_tableau(0,(3,2)).pp() Traceback (most recent call last): ... ValueError: (4,2)=(row+1,col) must be inside the diagram REFERENCES: - [KMR2012]_ """ (row,col)=cell if row+1>=len(self) or col>=self[row+1]: raise ValueError('(%s,%s)=(row+1,col) must be inside the diagram' %(row+1,col)) g=self.garnir_tableau(cell) # start with the Garnir tableau and modify if e==0: return g # no more dominant tableau of the same residue a=e*int((self[row]-col)/e) # number of cells in the e-bricks in row `row` b=e*int((col+1)/e) # number of cells in the e-bricks in row `row+1` if a==0 or b==0: return g t=g.to_list() m=g[row+1][0] # smallest number in 0-Garnir belt # now we will put the number m,m+1,...,t[row+1][col] in order into t t[row][col:a+col]=[m+col-b+1+i for i in range(a)] t[row+1][col-b+1:col+1]=[m+a+col-b+1+i for i in range(b)] return tableau.StandardTableau(t) @cached_method def young_subgroup(self): r""" Return the corresponding Young, or parabolic, subgroup of the symmetric group. The Young subgroup of a partition `\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{\ell})` of `n` is the group: .. MATH:: S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_{\ell}} embedded into `S_n` in the standard way (i.e., the `S_{\lambda_i}` factor acts on the numbers from `\lambda_1 + \lambda_2 + \cdots + \lambda_{i-1} + 1` to `\lambda_1 + \lambda_2 + \cdots + \lambda_i`). EXAMPLES:: sage: Partition([4,2]).young_subgroup() Permutation Group with generators [(), (5,6), (3,4), (2,3), (1,2)] """ gens=[] m=0 for row in self: gens.extend([ (c,c+1) for c in range(m+1,m+row)]) m+=row gens.append(list(range(1,self.size() + 1))) # to ensure we get a subgroup of Sym_n return PermutationGroup( gens ) def young_subgroup_generators(self): r""" Return an indexing set for the generators of the corresponding Young subgroup. Here the generators correspond to the simple adjacent transpositions `s_i = (i \; i+1)`. EXAMPLES:: sage: Partition([4,2]).young_subgroup_generators() [1, 2, 3, 5] sage: Partition([1,1,1]).young_subgroup_generators() [] sage: Partition([2,2]).young_subgroup_generators() [1, 3] .. SEEALSO:: :meth:`young_subgroup` """ gens = [] m = 0 for row in self: gens.extend(list(range(m + 1, m + row))) m += row return gens @cached_method def _initial_degree(self, e, multicharge=(0,)): r""" Return the Brundan-Kleshchev-Wang degree of the initial row tableau of shape ``self``. This degree depends only the shape of the tableau and it is used as the base case for computing the degrees of all tableau of shape ``self``, which is why this method is cached. See :meth:`sage.combinat.tableau.Tableau.degree` for more information. EXAMPLES:: sage: Partition([5,3,2])._initial_degree(0) 0 sage: Partition([5,3,2])._initial_degree(2) 4 sage: Partition([5,3,2])._initial_degree(3) 2 sage: Partition([5,3,2])._initial_degree(4) 1 """ if e == 0: return ZZ.zero() else: return sum(m // e for m in self) def degree(self, e): r""" Return the ``e``-th degree of ``self``. The `e`-th degree of a partition `\lambda` is the sum of the `e`-th degrees of the standard tableaux of shape `\lambda`. The `e`-th degree is the exponent of `\Phi_e(q)` in the Gram determinant of the Specht module for a semisimple Iwahori-Hecke algebra of type `A` with parameter `q`. INPUT: - ``e`` -- an integer `e > 1` OUTPUT: A non-negative integer. EXAMPLES:: sage: Partition([4,3]).degree(2) 28 sage: Partition([4,3]).degree(3) 15 sage: Partition([4,3]).degree(4) 8 sage: Partition([4,3]).degree(5) 13 sage: Partition([4,3]).degree(6) 0 sage: Partition([4,3]).degree(7) 0 Therefore, the Gram determinant of `S(5,3)` when the Hecke parameter `q` is "generic" is .. MATH:: q^N \Phi_2(q)^{28} \Phi_3(q)^{15} \Phi_4(q)^8 \Phi_5(q)^{13} for some integer `N`. Compare with :meth:`prime_degree`. """ return sum(t.degree(e) for t in self.standard_tableaux()) def prime_degree(self, p): r""" Return the prime degree for the prime integer``p`` for ``self``. INPUT: - ``p`` -- a prime integer OUTPUT: A non-negative integer The degree of a partition `\lambda` is the sum of the `e`-:meth:`degree` of the standard tableaux of shape `\lambda`, for `e` a poer of the prime `p`. The prime degree gives the exponent of `p` in the Gram determinant of the integral Specht module of the symmetric group. EXAMPLES:: sage: Partition([4,3]).prime_degree(2) 36 sage: Partition([4,3]).prime_degree(3) 15 sage: Partition([4,3]).prime_degree(5) 13 sage: Partition([4,3]).prime_degree(7) 0 Therefore, the Gram determinant of `S(5,3)` when `q = 1` is `2^{36} 3^{15} 5^{13}`. Compare with :meth:`degree`. """ ps = [p] while ps[-1] * p < self.size(): ps.append(ps[-1] * p) return sum(t.degree(pk) for pk in ps for t in self.standard_tableaux()) def arm_length(self, i, j): r""" Return the length of the arm of cell `(i,j)` in ``self``. The arm of cell `(i,j)` is the cells that appear to the right of cell `(i,j)`. The cell coordinates are zero-based, i. e., the northwesternmost cell is `(0,0)`. INPUT: - ``i, j`` -- two integers OUTPUT: An integer or a ``ValueError`` EXAMPLES:: sage: p = Partition([2,2,1]) sage: p.arm_length(0, 0) 1 sage: p.arm_length(0, 1) 0 sage: p.arm_length(2, 0) 0 sage: Partition([3,3]).arm_length(0, 0) 2 sage: Partition([3,3]).arm_length(*[0,0]) 2 """ p = self if i < len(p) and j < p[i]: return p[i]-(j+1) else: raise ValueError("The cell is not in the diagram") def arm_lengths(self, flat=False): """ Return a tableau of shape ``self`` where each cell is filled with its arm length. The optional boolean parameter ``flat`` provides the option of returning a flat list. EXAMPLES:: sage: Partition([2,2,1]).arm_lengths() [[1, 0], [1, 0], [0]] sage: Partition([2,2,1]).arm_lengths(flat=True) [1, 0, 1, 0, 0] sage: Partition([3,3]).arm_lengths() [[2, 1, 0], [2, 1, 0]] sage: Partition([3,3]).arm_lengths(flat=True) [2, 1, 0, 2, 1, 0] """ p = self if not flat: return [[pi - (j + 1) for j in range(pi)] for pi in p] return [pi - (j + 1) for pi in p for j in range(pi)] def arm_cells(self, i, j): r""" Return the list of the cells of the arm of cell `(i,j)` in ``self``. The arm of cell `c = (i,j)` is the boxes that appear to the right of `c`. The cell coordinates are zero-based, i. e., the northwesternmost cell is `(0,0)`. INPUT: - ``i, j`` -- two integers OUTPUT: A list of pairs of integers EXAMPLES:: sage: Partition([4,4,3,1]).arm_cells(1,1) [(1, 2), (1, 3)] sage: Partition([]).arm_cells(0,0) Traceback (most recent call last): ... ValueError: The cell is not in the diagram """ p = self if i < len(p) and j < p[i]: return [ (i, x) for x in range(j+1, p[i]) ] else: raise ValueError("The cell is not in the diagram") def leg_length(self, i, j): """ Return the length of the leg of cell `(i,j)` in ``self``. The leg of cell `c = (i,j)` is defined to be the cells below `c` (in English convention). The cell coordinates are zero-based, i. e., the northwesternmost cell is `(0,0)`. INPUT: - ``i, j`` -- two integers OUTPUT: An integer or a ``ValueError`` EXAMPLES:: sage: p = Partition([2,2,1]) sage: p.leg_length(0, 0) 2 sage: p.leg_length(0,1) 1 sage: p.leg_length(2,0) 0 sage: Partition([3,3]).leg_length(0, 0) 1 sage: cell = [0,0]; Partition([3,3]).leg_length(*cell) 1 """ conj = self.conjugate() if j < len(conj) and i < conj[j]: return conj[j]-(i+1) else: raise ValueError("The cell is not in the diagram") def leg_lengths(self, flat=False): """ Return a tableau of shape ``self`` with each cell filled in with its leg length. The optional boolean parameter ``flat`` provides the option of returning a flat list. EXAMPLES:: sage: Partition([2,2,1]).leg_lengths() [[2, 1], [1, 0], [0]] sage: Partition([2,2,1]).leg_lengths(flat=True) [2, 1, 1, 0, 0] sage: Partition([3,3]).leg_lengths() [[1, 1, 1], [0, 0, 0]] sage: Partition([3,3]).leg_lengths(flat=True) [1, 1, 1, 0, 0, 0] """ p = self conj = p.conjugate() if not flat: return [[conj[j] - (i + 1) for j in range(pi)] for i, pi in enumerate(p)] return [conj[j] - (i + 1) for i, pi in enumerate(p) for j in range(pi)] def leg_cells(self, i, j): r""" Return the list of the cells of the leg of cell `(i,j)` in ``self``. The leg of cell `c = (i,j)` is defined to be the cells below `c` (in English convention). The cell coordinates are zero-based, i. e., the northwesternmost cell is `(0,0)`. INPUT: - ``i, j`` -- two integers OUTPUT: A list of pairs of integers EXAMPLES:: sage: Partition([4,4,3,1]).leg_cells(1,1) [(2, 1)] sage: Partition([4,4,3,1]).leg_cells(0,1) [(1, 1), (2, 1)] sage: Partition([]).leg_cells(0,0) Traceback (most recent call last): ... ValueError: The cell is not in the diagram """ l = self.leg_length(i, j) return [(x, j) for x in range(i+1, i+l+1)] def attacking_pairs(self): """ Return a list of the attacking pairs of the Young diagram of ``self``. A pair of cells `(c, d)` of a Young diagram (in English notation) is said to be attacking if one of the following conditions holds: 1. `c` and `d` lie in the same row with `c` strictly to the west of `d`. 2. `c` is in the row immediately to the south of `d`, and `c` lies strictly east of `d`. This particular method returns each pair `(c, d)` as a tuple, where each of `c` and `d` is given as a tuple `(i, j)` with `i` and `j` zero-based (so `i = 0` means that the cell lies in the topmost row). EXAMPLES:: sage: p = Partition([3, 2]) sage: p.attacking_pairs() [((0, 0), (0, 1)), ((0, 0), (0, 2)), ((0, 1), (0, 2)), ((1, 0), (1, 1)), ((1, 1), (0, 0))] sage: Partition([]).attacking_pairs() [] """ attacking_pairs = [] for i, r in enumerate(self): for j in range(r): #c is in position (i,j) #Find the d that satisfy condition 1 for k in range(j+1, r): attacking_pairs.append( ((i,j),(i,k)) ) #Find the d that satisfy condition 2 if i == 0: continue for k in range(j): attacking_pairs.append( ((i,j),(i-1,k)) ) return attacking_pairs def dominated_partitions(self, rows=None): """ Return a list of the partitions dominated by `n`. If ``rows`` is specified, then it only returns the ones whose number of rows is at most ``rows``. EXAMPLES:: sage: Partition([3,2,1]).dominated_partitions() [[3, 2, 1], [3, 1, 1, 1], [2, 2, 2], [2, 2, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]] sage: Partition([3,2,1]).dominated_partitions(rows=3) [[3, 2, 1], [2, 2, 2]] """ #Naive implementation because iteration is so fast n = sum(self) P = Partitions_n(n) if rows: return [P(x) for x in ZS1_iterator_nk(n, rows) if self.dominates(x)] else: return [P(x) for x in ZS1_iterator(n) if self.dominates(x)] def contains(self, x): """ Return ``True`` if ``x`` is a partition whose Ferrers diagram is contained in the Ferrers diagram of ``self``. EXAMPLES:: sage: p = Partition([3,2,1]) sage: p.contains([2,1]) True sage: all(p.contains(mu) for mu in Partitions(3)) True sage: all(p.contains(mu) for mu in Partitions(4)) False """ return len(self) >= len(x) and all(self[i] >= x[i] for i in range(len(x))) def hook_product(self, a): """ Return the Jack hook-product. EXAMPLES:: sage: Partition([3,2,1]).hook_product(x) (2*x + 3)*(x + 2)^2 sage: Partition([2,2]).hook_product(x) 2*(x + 2)*(x + 1) """ nu = self.conjugate() res = 1 for i in range(len(self)): for j in range(self[i]): res *= a*(self[i]-j-1)+nu[j]-i return res def hook_polynomial(self, q, t): """ Return the two-variable hook polynomial. EXAMPLES:: sage: R.<q,t> = PolynomialRing(QQ) sage: a = Partition([2,2]).hook_polynomial(q,t) sage: a == (1 - t)*(1 - q*t)*(1 - t^2)*(1 - q*t^2) True sage: a = Partition([3,2,1]).hook_polynomial(q,t) sage: a == (1 - t)^3*(1 - q*t^2)^2*(1 - q^2*t^3) True """ nu = self.conjugate() res = 1 for i in range(len(self)): for j in range(self[i]): res *= 1-q**(self[i]-j-1)*t**(nu[j]-i) return res def hook_length(self, i, j): r""" Return the length of the hook of cell `(i,j)` in ``self``. The (length of the) hook of cell `(i,j)` of a partition `\lambda` is .. MATH:: \lambda_i + \lambda^{\prime}_j - i - j + 1 where `\lambda^{\prime}` is the conjugate partition. In English convention, the hook length is the number of cells horizontally to the right and vertically below the cell `(i,j)` (including that cell). EXAMPLES:: sage: p = Partition([2,2,1]) sage: p.hook_length(0, 0) 4 sage: p.hook_length(0, 1) 2 sage: p.hook_length(2, 0) 1 sage: Partition([3,3]).hook_length(0, 0) 4 sage: cell = [0,0]; Partition([3,3]).hook_length(*cell) 4 """ return self.leg_length(i,j)+self.arm_length(i,j)+1 def hooks(self): """ Return a sorted list of the hook lengths in ``self``. EXAMPLES:: sage: Partition([3,2,1]).hooks() [5, 3, 3, 1, 1, 1] """ res = [] for row in self.hook_lengths(): res += row res.sort(reverse=True) return res def hook_lengths(self): r""" Return a tableau of shape ``self`` with the cells filled in with the hook lengths. In each cell, put the sum of one plus the number of cells horizontally to the right and vertically below the cell (the hook length). For example, consider the partition ``[3,2,1]`` of 6 with Ferrers diagram:: # # # # # # When we fill in the cells with the hook lengths, we obtain:: 5 3 1 3 1 1 EXAMPLES:: sage: Partition([2,2,1]).hook_lengths() [[4, 2], [3, 1], [1]] sage: Partition([3,3]).hook_lengths() [[4, 3, 2], [3, 2, 1]] sage: Partition([3,2,1]).hook_lengths() [[5, 3, 1], [3, 1], [1]] sage: Partition([2,2]).hook_lengths() [[3, 2], [2, 1]] sage: Partition([5]).hook_lengths() [[5, 4, 3, 2, 1]] REFERENCES: - http://mathworld.wolfram.com/HookLengthFormula.html """ p = self conj = p.conjugate() return [[p[i]-(i+1)+conj[j]-(j+1)+1 for j in range(p[i])] for i in range(len(p))] def upper_hook(self, i, j, alpha): r""" Return the upper hook length of the cell `(i,j)` in ``self``. When ``alpha = 1``, this is just the normal hook length. The upper hook length of a cell `(i,j)` in a partition `\kappa` is defined by .. MATH:: h^*_\kappa(i,j) = \kappa^\prime_j - i + \alpha(\kappa_i - j + 1). EXAMPLES:: sage: p = Partition([2,1]) sage: p.upper_hook(0,0,1) 3 sage: p.hook_length(0,0) 3 sage: [ p.upper_hook(i,j,x) for i,j in p.cells() ] [2*x + 1, x, x] """ p = self conj = self.conjugate() return conj[j] - (i+1) + alpha*(p[i]-j) def upper_hook_lengths(self, alpha): r""" Return a tableau of shape ``self`` with the cells filled in with the upper hook lengths. When ``alpha = 1``, these are just the normal hook lengths. The upper hook length of a cell `(i,j)` in a partition `\kappa` is defined by .. MATH:: h^*_\kappa(i,j) = \kappa^\prime_j - i + \alpha(\kappa_i - j + 1). EXAMPLES:: sage: Partition([3,2,1]).upper_hook_lengths(x) [[3*x + 2, 2*x + 1, x], [2*x + 1, x], [x]] sage: Partition([3,2,1]).upper_hook_lengths(1) [[5, 3, 1], [3, 1], [1]] sage: Partition([3,2,1]).hook_lengths() [[5, 3, 1], [3, 1], [1]] """ p = self conj = p.conjugate() return [[conj[j] - (i+1) + alpha*(p[i]-j) for j in range(p[i])] for i in range(len(p))] def lower_hook(self, i, j, alpha): r""" Return the lower hook length of the cell `(i,j)` in ``self``. When ``alpha = 1``, this is just the normal hook length. The lower hook length of a cell `(i,j)` in a partition `\kappa` is defined by .. MATH:: h_*^\kappa(i,j) = \kappa^\prime_j - i + 1 + \alpha(\kappa_i - j). EXAMPLES:: sage: p = Partition([2,1]) sage: p.lower_hook(0,0,1) 3 sage: p.hook_length(0,0) 3 sage: [ p.lower_hook(i,j,x) for i,j in p.cells() ] [x + 2, 1, 1] """ p = self conj = self.conjugate() return conj[j] - i + alpha*(p[i] - (j+1)) def lower_hook_lengths(self, alpha): r""" Return a tableau of shape ``self`` with the cells filled in with the lower hook lengths. When ``alpha = 1``, these are just the normal hook lengths. The lower hook length of a cell `(i,j)` in a partition `\kappa` is defined by .. MATH:: h_*^\kappa(i,j) = \kappa^\prime_j - i + 1 + \alpha(\kappa_i - j). EXAMPLES:: sage: Partition([3,2,1]).lower_hook_lengths(x) [[2*x + 3, x + 2, 1], [x + 2, 1], [1]] sage: Partition([3,2,1]).lower_hook_lengths(1) [[5, 3, 1], [3, 1], [1]] sage: Partition([3,2,1]).hook_lengths() [[5, 3, 1], [3, 1], [1]] """ p = self conj = p.conjugate() return [[conj[j] - i + alpha*(p[i]-(j+1)) for j in range(p[i])] for i in range(len(p))] def weighted_size(self): r""" Return the weighted size of ``self``. The weighted size of a partition `\lambda` is .. MATH:: \sum_i i \cdot \lambda_i, where `\lambda = (\lambda_0, \lambda_1, \lambda_2, \cdots )`. This also the sum of the leg length of every cell in `\lambda`, or .. MATH:: \sum_i \binom{\lambda^{\prime}_i}{2} where `\lambda^{\prime}` is the conjugate partition of `\lambda`. EXAMPLES:: sage: Partition([2,2]).weighted_size() 2 sage: Partition([3,3,3]).weighted_size() 9 sage: Partition([5,2]).weighted_size() 2 sage: Partition([]).weighted_size() 0 """ p = self return sum([i*p[i] for i in range(len(p))]) def is_empty(self): """ Return ``True`` if ``self`` is the empty partition. EXAMPLES:: sage: Partition([]).is_empty() True sage: Partition([2,1,1]).is_empty() False """ return len(self) == 0 def length(self): """ Return the number of parts in ``self``. EXAMPLES:: sage: Partition([3,2]).length() 2 sage: Partition([2,2,1]).length() 3 sage: Partition([]).length() 0 """ return len(self) def to_exp(self, k=0): """ Return a list of the multiplicities of the parts of a partition. Use the optional parameter ``k`` to get a return list of length at least ``k``. EXAMPLES:: sage: Partition([3,2,2,1]).to_exp() [1, 2, 1] sage: Partition([3,2,2,1]).to_exp(5) [1, 2, 1, 0, 0] TESTS:: sage: [parent(x) for x in Partition([3,2,2,1]).to_exp(5)] [Integer Ring, Integer Ring, Integer Ring, Integer Ring, Integer Ring] """ p = self if len(p) > 0: k = max(k, p[0]) a = [ZZ.zero()] * k for i in p: a[i-1] += 1 return a def evaluation(self): r""" Return the evaluation of ``self``. The **commutative evaluation**, often shortened to **evaluation**, of a word (we think of a partition as a word in `\{1, 2, 3, \ldots\}`) is its image in the free commutative monoid. In other words, this counts how many occurrences there are of each letter. This is also is known as **Parikh vector** and **abelianization** and has the same output as :meth:`to_exp()`. EXAMPLES:: sage: Partition([4,3,1,1]).evaluation() [2, 0, 1, 1] """ return self.to_exp() def to_exp_dict(self): """ Return a dictionary containing the multiplicities of the parts of ``self``. EXAMPLES:: sage: p = Partition([4,2,2,1]) sage: d = p.to_exp_dict() sage: d[4] 1 sage: d[2] 2 sage: d[1] 1 sage: 5 in d False """ d = {} for part in self: d[part] = d.get(part, 0) + 1 return d def centralizer_size(self, t=0, q=0): r""" Return the size of the centralizer of any permutation of cycle type ``self``. If `m_i` is the multiplicity of `i` as a part of `p`, this is given by .. MATH:: \prod_i m_i! i^{m_i}. Including the optional parameters `t` and `q` gives the `q,t` analog, which is the former product times .. MATH:: \prod_{i=1}^{\mathrm{length}(p)} \frac{1 - q^{p_i}}{1 - t^{p_i}}. See Section 1.3, p. 24, in [Ke1991]_. EXAMPLES:: sage: Partition([2,2,1]).centralizer_size() 8 sage: Partition([2,2,2]).centralizer_size() 48 sage: Partition([2,2,1]).centralizer_size(q=2, t=3) 9/16 sage: Partition([]).centralizer_size() 1 sage: Partition([]).centralizer_size(q=2, t=4) 1 TESTS:: sage: Partition([2,2,2]).aut() 48 """ size = prod(i**mi * factorial(mi) for i, mi in self.to_exp_dict().items()) if t or q: size *= prod((ZZ.one() - q ** j) / (ZZ.one() - t ** j) for j in self) return size aut = centralizer_size def content(self, r, c, multicharge=(0,)): r""" Return the content of the cell at row `r` and column `c`. The content of a cell is `c - r`. For consistency with partition tuples there is also an optional ``multicharge`` argument which is an offset to the usual content. By setting the ``multicharge`` equal to the 0-element of the ring `\ZZ/e\ZZ`, the corresponding `e`-residue will be returned. This is the content modulo `e`. The content (and residue) do not strictly depend on the partition, however, this method is included because it is often useful in the context of partitions. EXAMPLES:: sage: Partition([2,1]).content(1,0) -1 sage: p = Partition([3,2]) sage: sum([p.content(*c) for c in p.cells()]) 2 and now we return the 3-residue of a cell:: sage: Partition([2,1]).content(1,0, multicharge=[IntegerModRing(3)(0)]) 2 """ return c - r + multicharge[0] def residue(self, r, c, l): r""" Return the ``l``-residue of the cell at row ``r`` and column ``c``. The `\ell`-residue of a cell is `c - r` modulo `\ell`. This does not strictly depend upon the partition, however, this method is included because it is often useful in the context of partitions. EXAMPLES:: sage: Partition([2,1]).residue(1, 0, 3) 2 """ return (c - r) % l @cached_method def block(self, e, multicharge=(0,)): r""" Return a dictionary `\beta` that determines the block associated to the partition ``self`` and the :meth:`~sage.combinat.tableau_residues.ResidueSequence.quantum_characteristic` ``e``. INPUT: - ``e`` -- the quantum characteristic - ``multicharge`` -- the multicharge (default `(0,)`) OUTPUT: - A dictionary giving the multiplicities of the residues in the partition tuple ``self`` In more detail, the value ``beta[i]`` is equal to the number of nodes of residue ``i``. This corresponds to the positive root .. MATH:: \sum_{i\in I} \beta_i \alpha_i \in Q^+, a element of the positive root lattice of the corresponding Kac-Moody algebra. See [DJM1998]_ and [BK2009]_ for more details. This is a useful statistics because two Specht modules for a Hecke algebra of type `A` belong to the same block if and only if they correspond to same element `\beta` of the root lattice, given above. We return a dictionary because when the quantum characteristic is `0`, the Cartan type is `A_{\infty}`, in which case the simple roots are indexed by the integers. EXAMPLES:: sage: Partition([4,3,2]).block(0) {-2: 1, -1: 2, 0: 2, 1: 2, 2: 1, 3: 1} sage: Partition([4,3,2]).block(2) {0: 4, 1: 5} sage: Partition([4,3,2]).block(2, multicharge=(1,)) {0: 5, 1: 4} sage: Partition([4,3,2]).block(3) {0: 3, 1: 3, 2: 3} sage: Partition([4,3,2]).block(4) {0: 2, 1: 2, 2: 2, 3: 3} """ block = {} Ie = IntegerModRing(e) for (r,c) in self.cells(): i = Ie(multicharge[0] + c - r) block[i] = block.get(i, 0) + 1 return block def defect(self, e, multicharge=(0,)): r""" Return the ``e``-defect or the ``e``-weight of ``self``. The `e`-defect is the number of (connected) `e`-rim hooks that can be removed from the partition. The defect of a partition is given by .. MATH:: \text{defect}(\beta) = (\Lambda, \beta) - \tfrac12(\beta, \beta), where `\Lambda = \sum_r \Lambda_{\kappa_r}` for the multicharge `(\kappa_1, \ldots, \kappa_{\ell})` and `\beta = \sum_{(r,c)} \alpha_{(c-r) \pmod e}`, with the sum being over the cells in the partition. INPUT: - ``e`` -- the quantum characteristic - ``multicharge`` -- the multicharge (default `(0,)`) OUTPUT: - a non-negative integer, which is the defect of the block containing the partition ``self`` EXAMPLES:: sage: Partition([4,3,2]).defect(2) 3 sage: Partition([0]).defect(2) 0 sage: Partition([3]).defect(2) 1 sage: Partition([6]).defect(2) 3 sage: Partition([9]).defect(2) 4 sage: Partition([12]).defect(2) 6 sage: Partition([4,3,2]).defect(3) 3 sage: Partition([0]).defect(3) 0 sage: Partition([3]).defect(3) 1 sage: Partition([6]).defect(3) 2 sage: Partition([9]).defect(3) 3 sage: Partition([12]).defect(3) 4 TESTS:: sage: all(mu.core(e).size() + e * mu.defect(e) == 9 ....: for mu in Partitions(9) for e in [2,3,4]) True """ beta = self.block(e, multicharge) Ie = IntegerModRing(e) return beta.get(multicharge[0], 0) - sum(beta[r]**2 - beta[r] * beta.get(Ie(r+1), 0) for r in beta) def contents_tableau(self, multicharge=(0,)): """ Return the tableau which has ``(k,r,c)``-th cell equal to the content ``multicharge[k] - r + c`` of the cell. EXAMPLES:: sage: Partition([2,1]).contents_tableau() [[0, 1], [-1]] sage: Partition([3,2,1,1]).contents_tableau().pp() 0 1 2 -1 0 -2 -3 sage: Partition([3,2,1,1]).contents_tableau([ IntegerModRing(3)(0)] ).pp() 0 1 2 2 0 1 0 """ return tableau.Tableau([[multicharge[0]-r+c for c in range(self[r])] for r in range(len(self))]) def is_restricted(self, e, multicharge=(0,)): """ Return ``True`` is this is an ``e``-restricted partition. An `e`-restricted partition is a partition such that the difference of consecutive parts is always strictly less than `e`, where partitions are considered to have an infinite number of `0` parts. I.e., the last part must be strictly less than `e`. EXAMPLES:: sage: Partition([4,3,3,2]).is_restricted(2) False sage: Partition([4,3,3,2]).is_restricted(3) True sage: Partition([4,3,3,2]).is_restricted(4) True sage: Partition([4]).is_restricted(4) False """ return (not self or ( self[-1] < e and all(self[r]-self[r+1] < e for r in range(len(self)-1)) )) def is_regular(self, e, multicharge=(0,)): """ Return ``True`` is this is an ``e``-regular partition. A partition is `e`-regular if it does not have `e` equal non-zero parts. EXAMPLES:: sage: Partition([4,3,3,3]).is_regular(2) False sage: Partition([4,3,3,3]).is_regular(3) False sage: Partition([4,3,3,3]).is_regular(4) True """ return all(self[r] > self[r+e-1] for r in range(len(self)-e+1)) def conjugacy_class_size(self): """ Return the size of the conjugacy class of the symmetric group indexed by ``self``. EXAMPLES:: sage: Partition([2,2,2]).conjugacy_class_size() 15 sage: Partition([2,2,1]).conjugacy_class_size() 15 sage: Partition([2,1,1]).conjugacy_class_size() 6 """ return factorial(sum(self))/self.centralizer_size() def corners(self): r""" Return a list of the corners of the partition ``self``. A corner of a partition `\lambda` is a cell of the Young diagram of `\lambda` which can be removed from the Young diagram while still leaving a straight shape behind. The entries of the list returned are pairs of the form `(i,j)`, where `i` and `j` are the coordinates of the respective corner. The coordinates are counted from `0`. EXAMPLES:: sage: Partition([3,2,1]).corners() [(0, 2), (1, 1), (2, 0)] sage: Partition([3,3,1]).corners() [(1, 2), (2, 0)] sage: Partition([]).corners() [] """ p = self if p.is_empty(): return [] lcors = [[0,p[0]-1]] nn = len(p) if nn == 1: return [tuple(_) for _ in lcors] lcors_index = 0 for i in range(1, nn): if p[i] == p[i-1]: lcors[lcors_index][0] += 1 else: lcors.append([i,p[i]-1]) lcors_index += 1 return [tuple(_) for _ in lcors] inside_corners = corners removable_cells = corners # for compatibility with partition tuples def corners_residue(self, i, l): r""" Return a list of the corners of the partition ``self`` having ``l``-residue ``i``. A corner of a partition `\lambda` is a cell of the Young diagram of `\lambda` which can be removed from the Young diagram while still leaving a straight shape behind. See :meth:`residue` for the definition of the ``l``-residue. The entries of the list returned are pairs of the form `(i,j)`, where `i` and `j` are the coordinates of the respective corner. The coordinates are counted from `0`. EXAMPLES:: sage: Partition([3,2,1]).corners_residue(0, 3) [(1, 1)] sage: Partition([3,2,1]).corners_residue(1, 3) [(2, 0)] sage: Partition([3,2,1]).corners_residue(2, 3) [(0, 2)] """ return [x for x in self.corners() if self.residue(*x, l=l) == i] inside_corners_residue = corners_residue removable_cells_residue = corners_residue def outside_corners(self): r""" Return a list of the outside corners of the partition ``self``. An outside corner (also called a cocorner) of a partition `\lambda` is a cell on `\ZZ^2` which does not belong to the Young diagram of `\lambda` but can be added to this Young diagram to still form a straight-shape Young diagram. The entries of the list returned are pairs of the form `(i,j)`, where `i` and `j` are the coordinates of the respective corner. The coordinates are counted from `0`. EXAMPLES:: sage: Partition([2,2,1]).outside_corners() [(0, 2), (2, 1), (3, 0)] sage: Partition([2,2]).outside_corners() [(0, 2), (2, 0)] sage: Partition([6,3,3,1,1,1]).outside_corners() [(0, 6), (1, 3), (3, 1), (6, 0)] sage: Partition([]).outside_corners() [(0, 0)] """ p = self if p.is_empty(): return [(0,0)] res = [ (0, p[0]) ] for i in range(1, len(p)): if p[i-1] != p[i]: res.append((i,p[i])) res.append((len(p), 0)) return res addable_cells = outside_corners # for compatibility with partition tuples def outside_corners_residue(self, i, l): r""" Return a list of the outside corners of the partition ``self`` having ``l``-residue ``i``. An outside corner (also called a cocorner) of a partition `\lambda` is a cell on `\ZZ^2` which does not belong to the Young diagram of `\lambda` but can be added to this Young diagram to still form a straight-shape Young diagram. See :meth:`residue` for the definition of the ``l``-residue. The entries of the list returned are pairs of the form `(i,j)`, where `i` and `j` are the coordinates of the respective corner. The coordinates are counted from `0`. EXAMPLES:: sage: Partition([3,2,1]).outside_corners_residue(0, 3) [(0, 3), (3, 0)] sage: Partition([3,2,1]).outside_corners_residue(1, 3) [(1, 2)] sage: Partition([3,2,1]).outside_corners_residue(2, 3) [(2, 1)] """ return [x for x in self.outside_corners() if self.residue(*x, l=l) == i] addable_cells_residue = outside_corners_residue def rim(self): r""" Return the rim of ``self``. The rim of a partition `\lambda` is defined as the cells which belong to `\lambda` and which are adjacent to cells not in `\lambda`. EXAMPLES: The rim of the partition `[5,5,2,1]` consists of the cells marked with ``#`` below:: ****# *#### ## # sage: Partition([5,5,2,1]).rim() [(3, 0), (2, 0), (2, 1), (1, 1), (1, 2), (1, 3), (1, 4), (0, 4)] sage: Partition([2,2,1]).rim() [(2, 0), (1, 0), (1, 1), (0, 1)] sage: Partition([2,2]).rim() [(1, 0), (1, 1), (0, 1)] sage: Partition([6,3,3,1,1]).rim() [(4, 0), (3, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2), (0, 3), (0, 4), (0, 5)] sage: Partition([]).rim() [] """ p = self res = [] prevLen = 1 for i in range(len(p)-1, -1, -1): for c in range(prevLen-1, p[i]): res.append((i,c)) prevLen = p[i] return res def outer_rim(self): r""" Return the outer rim of ``self``. The outer rim of a partition `\lambda` is defined as the cells which do not belong to `\lambda` and which are adjacent to cells in `\lambda`. EXAMPLES: The outer rim of the partition `[4,1]` consists of the cells marked with ``#`` below:: ****# *#### ## :: sage: Partition([4,1]).outer_rim() [(2, 0), (2, 1), (1, 1), (1, 2), (1, 3), (1, 4), (0, 4)] sage: Partition([2,2,1]).outer_rim() [(3, 0), (3, 1), (2, 1), (2, 2), (1, 2), (0, 2)] sage: Partition([2,2]).outer_rim() [(2, 0), (2, 1), (2, 2), (1, 2), (0, 2)] sage: Partition([6,3,3,1,1]).outer_rim() [(5, 0), (5, 1), (4, 1), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (1, 4), (1, 5), (1, 6), (0, 6)] sage: Partition([]).outer_rim() [(0, 0)] """ p = self res = [] prevLen = 0 for i in range(len(p)-1, -1, -1): for c in range(prevLen, p[i]+1): res.append((i+1,c)) prevLen = p[i] res.append((0, prevLen)) return res def zero_one_sequence(self): r""" Compute the finite `0-1` sequence of the partition. The full `0-1` sequence is the sequence (infinite in both directions) indicating the steps taken when following the outer rim of the diagram of the partition. We use the convention that in English convention, a 1 corresponds to an East step, and a 0 corresponds to a North step. Note that every full `0-1` sequence starts with infinitely many 0's and ends with infinitely many 1's. One place where these arise is in the affine symmetric group where one takes an affine permutation `w` and every `i` such that `w(i) \leq 0` corresponds to a 1 and `w(i) > 0` corresponds to a 0. See pages 24-25 of [LLMSSZ2013]_ for connections to affine Grassmannian elements (note there they use the French convention for their partitions). These are also known as **path sequences**, **Maya diagrams**, **plus-minus diagrams**, **Comet code** [Sta-EC2]_, among others. OUTPUT: The finite `0-1` sequence is obtained from the full `0-1` sequence by omitting all heading 0's and trailing 1's. The output sequence is finite, starts with a 1 and ends with a 0 (unless it is empty, for the empty partition). Its length is the sum of the first part of the partition with the length of the partition. EXAMPLES:: sage: Partition([5,4]).zero_one_sequence() [1, 1, 1, 1, 0, 1, 0] sage: Partition([]).zero_one_sequence() [] sage: Partition([2]).zero_one_sequence() [1, 1, 0] TESTS:: sage: all(Partitions().from_zero_one(mu.zero_one_sequence()) == mu for n in range(10) for mu in Partitions(n)) True """ tmp = [self[i]-i for i in range(len(self))] return ([Integer(not (i in tmp)) for i in range(-len(self)+1,self.get_part(0)+1)]) def core(self, length): r""" Return the ``length``-core of the partition -- in the literature the core is commonly referred to as the `k`-core, `p`-core, `r`-core, ... . The `r`-core of a partition `\lambda` can be obtained by repeatedly removing rim hooks of size `r` from (the Young diagram of) `\lambda` until this is no longer possible. The remaining partition is the core. EXAMPLES:: sage: Partition([6,3,2,2]).core(3) [2, 1, 1] sage: Partition([]).core(3) [] sage: Partition([8,7,7,4,1,1,1,1,1]).core(3) [2, 1, 1] TESTS:: sage: Partition([3,3,3,2,1]).core(3) [] sage: Partition([10,8,7,7]).core(4) [] sage: Partition([21,15,15,9,6,6,6,3,3]).core(3) [] """ p = self #Normalize the length remainder = len(p) % length part = p[:] + [0]*remainder #Add the canonical vector to the partition part = [part[i-1] + len(part)-i for i in range(1, len(part)+1)] for e in range(length): k = e for i in reversed(range(1,len(part)+1)): if part[i-1] % length == e: part[i-1] = k k += length part.sort() part.reverse() #Remove the canonical vector part = [part[i-1]-len(part)+i for i in range(1, len(part)+1)] #Select the r-core return Partition([x for x in part if x != 0]) def quotient(self, length): r""" Return the quotient of the partition -- in the literature the quotient is commonly referred to as the `k`-quotient, `p`-quotient, `r`-quotient, ... . The `r`-quotient of a partition `\lambda` is a list of `r` partitions (labelled from `0` to `r-1`), constructed in the following way. Label each cell in the Young diagram of `\lambda` with its content modulo `r`. Let `R_i` be the set of rows ending in a cell labelled `i`, and `C_i` be the set of columns ending in a cell labelled `i`. Then the `j`-th component of the quotient of `\lambda` is the partition defined by intersecting `R_j` with `C_{j+1}`. (See Theorem 2.7.37 in [JK1981]_.) EXAMPLES:: sage: Partition([7,7,5,3,3,3,1]).quotient(3) ([2], [1], [2, 2, 2]) TESTS:: sage: Partition([8,7,7,4,1,1,1,1,1]).quotient(3) ([2, 1], [2, 2], [2]) sage: Partition([10,8,7,7]).quotient(4) ([2], [3], [2], [1]) sage: Partition([6,3,3]).quotient(3) ([1], [1], [2]) sage: Partition([3,3,3,2,1]).quotient(3) ([1], [1, 1], [1]) sage: Partition([6,6,6,3,3,3]).quotient(3) ([2, 1], [2, 1], [2, 1]) sage: Partition([21,15,15,9,6,6,6,3,3]).quotient(3) ([5, 2, 1], [5, 2, 1], [7, 3, 2]) sage: Partition([21,15,15,9,6,6,3,3]).quotient(3) ([5, 2], [5, 2, 1], [7, 3, 1]) sage: Partition([14,12,11,10,10,10,10,9,6,4,3,3,2,1]).quotient(5) ([3, 3], [2, 2, 1], [], [3, 3, 3], [1]) sage: all(p == Partition(core=p.core(k), quotient=p.quotient(k)) ....: for i in range(10) for p in Partitions(i) ....: for k in range(1,6)) True """ p = self #Normalize the length remainder = len(p) % length part = p[:] + [0]*(length-remainder) #Add the canonical vector to the partition part = [part[i-1] + len(part)-i for i in range(1, len(part)+1)] result = [None]*length #Reducing vector for e in range(length): k = e tmp = [] for i in reversed(range(len(part))): if part[i] % length == e: tmp.append(ZZ((part[i]-k)//length)) k += length a = [i for i in tmp if i != 0] a.reverse() result[e] = a from .partition_tuple import PartitionTuple return PartitionTuple(result) #tuple(map(Partition, result)) def is_core(self, k): r""" Return ``True`` if the Partition ``self`` is a ``k``-core. A partition is said to be a *`k`-core* if it has no hooks of length `k`. Equivalently, a partition is said to be a `k`-core if it is its own `k`-core (where the latter is defined as in :meth:`core`). Visually, this can be checked by trying to remove border strips of size `k` from ``self``. If this is not possible, then ``self`` is a `k`-core. EXAMPLES: In the partition (2, 1), a hook length of 2 does not occur, but a hook length of 3 does:: sage: p = Partition([2, 1]) sage: p.is_core(2) True sage: p.is_core(3) False sage: q = Partition([12, 8, 5, 5, 2, 2, 1]) sage: q.is_core(4) False sage: q.is_core(5) True sage: q.is_core(0) True .. SEEALSO:: :meth:`core`, :class:`Core` """ return k not in self.hooks() def k_interior(self, k): r""" Return the partition consisting of the cells of ``self`` whose hook lengths are greater than ``k``. EXAMPLES:: sage: p = Partition([3,2,1]) sage: p.hook_lengths() [[5, 3, 1], [3, 1], [1]] sage: p.k_interior(2) [2, 1] sage: p.k_interior(3) [1] sage: p = Partition([]) sage: p.k_interior(3) [] """ return Partition([len([i for i in row if i > k]) for row in self.hook_lengths()]) def k_boundary(self, k): r""" Return the skew partition formed by removing the cells of the ``k``-interior, see :meth:`k_interior`. EXAMPLES:: sage: p = Partition([3,2,1]) sage: p.k_boundary(2) [3, 2, 1] / [2, 1] sage: p.k_boundary(3) [3, 2, 1] / [1] sage: p = Partition([12,8,5,5,2,2,1]) sage: p.k_boundary(4) [12, 8, 5, 5, 2, 2, 1] / [8, 5, 2, 2] """ return SkewPartition([self, self.k_interior(k)]) def add_cell(self, i, j = None): r""" Return a partition corresponding to ``self`` with a cell added in row ``i``. (This does not change ``self``.) EXAMPLES:: sage: Partition([3, 2, 1, 1]).add_cell(0) [4, 2, 1, 1] sage: cell = [4, 0]; Partition([3, 2, 1, 1]).add_cell(*cell) [3, 2, 1, 1, 1] """ if j is None: if i >= len(self): j = 0 else: j = self[i] if (i,j) in self.outside_corners(): pl = self.to_list() if i == len(pl): pl.append(1) else: pl[i] += 1 return Partition(pl) raise ValueError("[%s, %s] is not an addable cell"%(i,j)) def remove_cell(self, i, j = None): """ Return the partition obtained by removing a cell at the end of row ``i`` of ``self``. EXAMPLES:: sage: Partition([2,2]).remove_cell(1) [2, 1] sage: Partition([2,2,1]).remove_cell(2) [2, 2] sage: #Partition([2,2]).remove_cell(0) :: sage: Partition([2,2]).remove_cell(1,1) [2, 1] sage: #Partition([2,2]).remove_cell(1,0) """ if i >= len(self): raise ValueError("i must be less than the length of the partition") if j is None: j = self[i] - 1 if (i,j) not in self.corners(): raise ValueError("[%d,%d] is not a corner of the partition" % (i,j)) if self[i] == 1: return Partition(self[:-1]) else: return Partition(self[:i] + [ self[i:i+1][0] - 1 ] + self[i+1:]) def k_irreducible(self, k): r""" Return the partition with all `r \times (k+1-r)` rectangles removed. If ``self`` is a `k`-bounded partition, then this method will return the partition where all rectangles of dimension `r \times (k+1-r)` for `1 \leq r \leq k` have been deleted. If ``self`` is not a `k`-bounded partition then the method will raise an error. INPUT: - ``k`` -- a non-negative integer OUTPUT: - a partition EXAMPLES:: sage: Partition([3,2,2,1,1,1]).k_irreducible(4) [3, 2, 2, 1, 1, 1] sage: Partition([3,2,2,1,1,1]).k_irreducible(3) [] sage: Partition([3,3,3,2,2,2,2,2,1,1,1,1]).k_irreducible(3) [2, 1] """ pexp = self.to_exp() return Partition(sum(([r+1] for r in range(len(pexp)-1,-1,-1) for m in range(pexp[r] % (k-r))),[])) def k_skew(self, k): r""" Return the `k`-skew partition. The `k`-skew diagram of a `k`-bounded partition is the skew diagram denoted `\lambda/^k` satisfying the conditions: 1. row `i` of `\lambda/^k` has length `\lambda_i`, 2. no cell in `\lambda/^k` has hook-length exceeding `k`, 3. every square above the diagram of `\lambda/^k` has hook length exceeding `k`. REFERENCES: - [LM2004]_ EXAMPLES:: sage: p = Partition([4,3,2,2,1,1]) sage: p.k_skew(4) [9, 5, 3, 2, 1, 1] / [5, 2, 1] """ if len(self) == 0: return SkewPartition([[],[]]) if self[0] > k: raise ValueError("the partition must be %d-bounded" % k) #Find the k-skew diagram of the partition formed #by removing the first row s = Partition(self[1:]).k_skew(k) s_inner = list(s.inner()) s_outer = list(s.outer()) s_conj_rl = s.conjugate().row_lengths() #Find the leftmost column with less than # or equal to kdiff cells kdiff = k - self[0] if s_outer == []: spot = 0 else: spot = s_outer[0] for i in range(len(s_conj_rl)): if s_conj_rl[i] <= kdiff: spot = i break outer = [ self[0] + spot ] + s_outer[:] if spot > 0: inner = [ spot ] + s_inner[:] else: inner = s_inner[:] return SkewPartition([outer, inner]) def to_core(self, k): r""" Maps the `k`-bounded partition ``self`` to its corresponding `k+1`-core. See also :meth:`k_skew`. EXAMPLES:: sage: p = Partition([4,3,2,2,1,1]) sage: c = p.to_core(4); c [9, 5, 3, 2, 1, 1] sage: type(c) <class 'sage.combinat.core.Cores_length_with_category.element_class'> sage: c.to_bounded_partition() == p True """ from sage.combinat.core import Core return Core(self.k_skew(k)[0],k+1) def from_kbounded_to_reduced_word(self, k): r""" Maps a `k`-bounded partition to a reduced word for an element in the affine permutation group. This uses the fact that there is a bijection between `k`-bounded partitions and `(k+1)`-cores and an action of the affine nilCoxeter algebra of type `A_k^{(1)}` on `(k+1)`-cores as described in [LM2006b]_. EXAMPLES:: sage: p=Partition([2,1,1]) sage: p.from_kbounded_to_reduced_word(2) [2, 1, 2, 0] sage: p=Partition([3,1]) sage: p.from_kbounded_to_reduced_word(3) [3, 2, 1, 0] sage: p.from_kbounded_to_reduced_word(2) Traceback (most recent call last): ... ValueError: the partition must be 2-bounded sage: p=Partition([]) sage: p.from_kbounded_to_reduced_word(2) [] """ p=self.k_skew(k)[0] result = [] while not p.is_empty(): corners = p.corners() c = p.content(corners[0][0],corners[0][1])%(k+1) result.append(Integer(c)) list = [x for x in corners if p.content(x[0],x[1])%(k+1) ==c] for x in list: p = p.remove_cell(x[0]) return result def from_kbounded_to_grassmannian(self, k): r""" Maps a `k`-bounded partition to a Grassmannian element in the affine Weyl group of type `A_k^{(1)}`. For details, see the documentation of the method :meth:`from_kbounded_to_reduced_word` . EXAMPLES:: sage: p=Partition([2,1,1]) sage: p.from_kbounded_to_grassmannian(2) [-1 1 1] [-2 2 1] [-2 1 2] sage: p=Partition([]) sage: p.from_kbounded_to_grassmannian(2) [1 0 0] [0 1 0] [0 0 1] """ return WeylGroup(['A',k,1]).from_reduced_word(self.from_kbounded_to_reduced_word(k)) def to_list(self): r""" Return ``self`` as a list. EXAMPLES:: sage: p = Partition([2,1]).to_list(); p [2, 1] sage: type(p) <... 'list'> TESTS:: sage: p = Partition([2,1]) sage: pl = p.to_list() sage: pl[0] = 0; p [2, 1] """ return self._list[:] def add_vertical_border_strip(self, k): """ Return a list of all the partitions that can be obtained by adding a vertical border strip of length ``k`` to ``self``. EXAMPLES:: sage: Partition([]).add_vertical_border_strip(0) [[]] sage: Partition([]).add_vertical_border_strip(2) [[1, 1]] sage: Partition([2,2]).add_vertical_border_strip(2) [[3, 3], [3, 2, 1], [2, 2, 1, 1]] sage: Partition([3,2,2]).add_vertical_border_strip(2) [[4, 3, 2], [4, 2, 2, 1], [3, 3, 3], [3, 3, 2, 1], [3, 2, 2, 1, 1]] """ return [p.conjugate() for p in self.conjugate().add_horizontal_border_strip(k)] def add_horizontal_border_strip(self, k): """ Return a list of all the partitions that can be obtained by adding a horizontal border strip of length ``k`` to ``self``. EXAMPLES:: sage: Partition([]).add_horizontal_border_strip(0) [[]] sage: Partition([]).add_horizontal_border_strip(2) [[2]] sage: Partition([2,2]).add_horizontal_border_strip(2) [[2, 2, 2], [3, 2, 1], [4, 2]] sage: Partition([3,2,2]).add_horizontal_border_strip(2) [[3, 2, 2, 2], [3, 3, 2, 1], [4, 2, 2, 1], [4, 3, 2], [5, 2, 2]] .. TODO:: Reimplement like ``remove_horizontal_border_strip`` using :class:`IntegerListsLex` """ conj = self.conjugate().to_list() shelf = [] res = [] i = 0 while i < len(conj): tmp = 1 while i+1 < len(conj) and conj[i] == conj[i+1]: tmp += 1 i += 1 if i == len(conj)-1 and i > 0 and conj[i] != conj[i-1]: tmp = 1 shelf.append(tmp) i += 1 #added the last shelf on the right side of #the first line shelf.append(k) #list all of the positions for cells #filling each self from the left to the right for iv in IntegerVectors(k, len(shelf), outer=shelf): iv = list(iv) # Make a mutable list tmp = conj + [0]*k j = 0 for t in range(len(iv)): while iv[t] > 0: tmp[j] += 1 iv[t] -= 1 j += 1 j = sum(shelf[:t+1]) res.append(Partition([u for u in tmp if u != 0]).conjugate()) return res def remove_horizontal_border_strip(self, k): """ Return the partitions obtained from ``self`` by removing an horizontal border strip of length ``k``. EXAMPLES:: sage: Partition([5,3,1]).remove_horizontal_border_strip(0).list() [[5, 3, 1]] sage: Partition([5,3,1]).remove_horizontal_border_strip(1).list() [[5, 3], [5, 2, 1], [4, 3, 1]] sage: Partition([5,3,1]).remove_horizontal_border_strip(2).list() [[5, 2], [5, 1, 1], [4, 3], [4, 2, 1], [3, 3, 1]] sage: Partition([5,3,1]).remove_horizontal_border_strip(3).list() [[5, 1], [4, 2], [4, 1, 1], [3, 3], [3, 2, 1]] sage: Partition([5,3,1]).remove_horizontal_border_strip(4).list() [[4, 1], [3, 2], [3, 1, 1]] sage: Partition([5,3,1]).remove_horizontal_border_strip(5).list() [[3, 1]] sage: Partition([5,3,1]).remove_horizontal_border_strip(6).list() [] The result is returned as an instance of :class:`Partitions_with_constraints`:: sage: Partition([5,3,1]).remove_horizontal_border_strip(5) The subpartitions of [5, 3, 1] obtained by removing an horizontal border strip of length 5 TESTS:: sage: Partition([3,2,2]).remove_horizontal_border_strip(2).list() [[3, 2], [2, 2, 1]] sage: Partition([3,2,2]).remove_horizontal_border_strip(2).first().parent() The subpartitions of [3, 2, 2] obtained by removing an horizontal border strip of length 2 sage: Partition([]).remove_horizontal_border_strip(0).list() [[]] sage: Partition([]).remove_horizontal_border_strip(6).list() [] """ return Partitions_with_constraints(n = self.size()-k, min_length = len(self)-1, max_length = len(self), floor = self[1:]+[0], ceiling = self[:], max_slope = 0, name = "The subpartitions of {} obtained by removing an horizontal border strip of length {}".format(self,k)) def k_conjugate(self, k): r""" Return the ``k``-conjugate of ``self``. The `k`-conjugate is the partition that is given by the columns of the `k`-skew diagram of the partition. We can also define the `k`-conjugate in the following way. Let `P` denote the bijection from `(k+1)`-cores to `k`-bounded partitions. The `k`-conjugate of a `(k+1)`-core `\lambda` is .. MATH:: \lambda^{(k)} = P^{-1}\left( (P(\lambda))^{\prime} \right). EXAMPLES:: sage: p = Partition([4,3,2,2,1,1]) sage: p.k_conjugate(4) [3, 2, 2, 1, 1, 1, 1, 1, 1] """ return Partition(self.k_skew(k).conjugate().row_lengths()) def arms_legs_coeff(self, i, j): r""" This is a statistic on a cell `c = (i,j)` in the diagram of partition `p` given by .. MATH:: \frac{ 1 - q^a \cdot t^{\ell + 1} }{ 1 - q^{a + 1} \cdot t^{\ell} } where `a` is the arm length of `c` and `\ell` is the leg length of `c`. The coordinates ``i`` and ``j`` of the cell are understood to be `0`-based, so that ``(0, 0)`` is the northwesternmost cell (in English notation). EXAMPLES:: sage: Partition([3,2,1]).arms_legs_coeff(1,1) (-t + 1)/(-q + 1) sage: Partition([3,2,1]).arms_legs_coeff(0,0) (-q^2*t^3 + 1)/(-q^3*t^2 + 1) sage: Partition([3,2,1]).arms_legs_coeff(*[0,0]) (-q^2*t^3 + 1)/(-q^3*t^2 + 1) """ QQqt = PolynomialRing(QQ, ['q', 't']) (q, t) = QQqt.gens() if i < len(self) and j < self[i]: res = (1-q**self.arm_length(i,j) * t**(self.leg_length(i,j)+1)) res /= (1-q**(self.arm_length(i,j)+1) * t**self.leg_length(i,j)) return res return ZZ.one() def atom(self): """ Return a list of the standard tableaux of size ``self.size()`` whose atom is equal to ``self``. EXAMPLES:: sage: Partition([2,1]).atom() [[[1, 2], [3]]] sage: Partition([3,2,1]).atom() [[[1, 2, 3, 6], [4, 5]], [[1, 2, 3], [4, 5], [6]]] """ res = [] for tab in tableau.StandardTableaux_size(self.size()): if tab.atom() == self: res.append(tab) return res def k_atom(self, k): """ Return a list of the standard tableaux of size ``self.size()`` whose ``k``-atom is equal to ``self``. EXAMPLES:: sage: p = Partition([3,2,1]) sage: p.k_atom(1) [] sage: p.k_atom(3) [[[1, 1, 1], [2, 2], [3]], [[1, 1, 1, 2], [2], [3]], [[1, 1, 1, 3], [2, 2]], [[1, 1, 1, 2, 3], [2]]] sage: Partition([3,2,1]).k_atom(4) [[[1, 1, 1], [2, 2], [3]], [[1, 1, 1, 3], [2, 2]]] TESTS:: sage: Partition([1]).k_atom(1) [[[1]]] sage: Partition([1]).k_atom(2) [[[1]]] sage: Partition([]).k_atom(1) [[]] """ res = [ tableau.Tableau([]) ] for i in range(len(self)): res = [ x.promotion_operator( self[-i-1] ) for x in res] res = sum(res, []) res = [ y.catabolism_projector(Partition(self[-i-1:]).k_split(k)) for y in res] res = [ i for i in res if i !=0 and i != [] ] return res def k_split(self, k): """ Return the ``k``-split of ``self``. EXAMPLES:: sage: Partition([4,3,2,1]).k_split(3) [] sage: Partition([4,3,2,1]).k_split(4) [[4], [3, 2], [1]] sage: Partition([4,3,2,1]).k_split(5) [[4, 3], [2, 1]] sage: Partition([4,3,2,1]).k_split(6) [[4, 3, 2], [1]] sage: Partition([4,3,2,1]).k_split(7) [[4, 3, 2, 1]] sage: Partition([4,3,2,1]).k_split(8) [[4, 3, 2, 1]] """ if self == []: return [] elif k < self[0]: return [] else: res = [] part = list(self) while part != [] and part[0]+len(part)-1 >= k: p = k - part[0] res.append( part[:p+1] ) part = part[p+1:] if part != []: res.append(part) return res def jacobi_trudi(self): """ Return the Jacobi-Trudi matrix of ``self`` thought of as a skew partition. See :meth:`SkewPartition.jacobi_trudi() <sage.combinat.skew_partition.SkewPartition.jacobi_trudi>`. EXAMPLES:: sage: part = Partition([3,2,1]) sage: jt = part.jacobi_trudi(); jt [h[3] h[1] 0] [h[4] h[2] h[]] [h[5] h[3] h[1]] sage: s = SymmetricFunctions(QQ).schur() sage: h = SymmetricFunctions(QQ).homogeneous() sage: h( s(part) ) h[3, 2, 1] - h[3, 3] - h[4, 1, 1] + h[5, 1] sage: jt.det() h[3, 2, 1] - h[3, 3] - h[4, 1, 1] + h[5, 1] """ return SkewPartition([ self, [] ]).jacobi_trudi() def character_polynomial(self): r""" Return the character polynomial associated to the partition ``self``. The character polynomial `q_\mu` associated to a partition `\mu` is defined by .. MATH:: q_\mu(x_1, x_2, \ldots, x_k) = \downarrow \sum_{\alpha \vdash k} \frac{ \chi^\mu_\alpha }{1^{a_1}2^{a_2}\cdots k^{a_k}a_1!a_2!\cdots a_k!} \prod_{i=1}^{k} (ix_i-1)^{a_i} where `k` is the size of `\mu`, and `a_i` is the multiplicity of `i` in `\alpha`. It is computed in the following manner: 1. Expand the Schur function `s_\mu` in the power-sum basis, 2. Replace each `p_i` with `ix_i-1`, 3. Apply the umbral operator `\downarrow` to the resulting polynomial. EXAMPLES:: sage: Partition([1]).character_polynomial() x - 1 sage: Partition([1,1]).character_polynomial() 1/2*x0^2 - 3/2*x0 - x1 + 1 sage: Partition([2,1]).character_polynomial() 1/3*x0^3 - 2*x0^2 + 8/3*x0 - x2 """ #Create the polynomial ring we will use k = self.size() P = PolynomialRing(QQ, k, 'x') x = P.gens() #Expand s_mu in the power sum basis from sage.combinat.sf.sf import SymmetricFunctions Sym = SymmetricFunctions(QQ) s = Sym.schur() p = Sym.power() ps_mu = p(s(self)) #Replace each p_i by i*x_i-1 items = ps_mu.monomial_coefficients().items() #items contains a list of (partition, coeff) pairs partition_to_monomial = lambda part: prod([ (i*x[i-1]-1) for i in part ]) res = [ [partition_to_monomial(mc[0]), mc[1]] for mc in items ] #Write things in the monomial basis res = [ prod(pair) for pair in res ] res = sum( res ) #Apply the umbral operator and return the result from sage.combinat.misc import umbral_operation return umbral_operation(res) def dimension(self, smaller = [], k = 1): r""" Return the number of paths from the ``smaller`` partition to the partition ``self``, where each step consists of adding a `k`-ribbon while keeping a partition. Note that a 1-ribbon is just a single cell, so this counts paths in the Young graph when `k = 1`. Note also that the default case (`k = 1` and ``smaller = []``) gives the dimension of the irreducible representation of the symmetric group corresponding to ``self``. INPUT: - ``smaller`` -- a partition (default: an empty list ``[]``) - `k` -- a positive integer (default: 1) OUTPUT: The number of such paths EXAMPLES: Looks at the number of ways of getting from ``[5,4]`` to the empty partition, removing one cell at a time:: sage: mu = Partition([5,4]) sage: mu.dimension() 42 Same, but removing one 3-ribbon at a time. Note that the 3-core of ``mu`` is empty:: sage: mu.dimension(k=3) 3 The 2-core of ``mu`` is not the empty partition:: sage: mu.dimension(k=2) 0 Indeed, the 2-core of ``mu`` is ``[1]``:: sage: mu.dimension(Partition([1]),k=2) 2 TESTS: Checks that the sum of squares of dimensions of characters of the symmetric group is the order of the group:: sage: all(sum(mu.dimension()^2 for mu in Partitions(i))==factorial(i) for i in range(10)) True A check coming from the theory of `k`-differentiable posets:: sage: k=2; core = Partition([2,1]) sage: all(sum(mu.dimension(core,k=2)^2 ....: for mu in Partitions(3+i*2) if mu.core(2) == core) ....: == 2^i*factorial(i) for i in range(10)) True Checks that the dimension satisfies the obvious recursion relation:: sage: test = lambda larger, smaller: larger.dimension(smaller) == sum(mu.dimension(smaller) for mu in larger.down()) sage: all(test(larger,smaller) for l in range(1,10) for s in range(0,10) ....: for larger in Partitions(l) for smaller in Partitions(s) if smaller != larger) True ALGORITHM: Depending on the parameters given, different simplifications occur. When `k=1` and ``smaller`` is empty, this function uses the hook formula. When `k=1` and ``smaller`` is not empty, it uses a formula from [ORV]_. When `k \neq 1`, we first check that both ``self`` and ``smaller`` have the same `k`-core, then use the `k`-quotients and the same algorithm on each of the `k`-quotients. AUTHORS: - Paul-Olivier Dehaye (2011-06-07) """ larger = self if smaller == []: smaller = Partition([]) if k == 1: if smaller == Partition([]): # In this case, use the hook dimension formula return factorial(larger.size())/prod(larger.hooks()) else: if not larger.contains(smaller): # easy case return 0 else: # relative dimension # Uses a formula of Olshanski, Regev, Vershik (see reference) def inv_factorial(i): if i < 0: return 0 else: return 1/factorial(i) len_range = list(range(larger.length())) from sage.matrix.constructor import matrix M = matrix(QQ,[[inv_factorial(larger.get_part(i)-smaller.get_part(j)-i+j) for i in len_range] for j in len_range]) return factorial(larger.size()-smaller.size())*M.determinant() else: larger_core = larger.core(k) smaller_core = smaller.core(k) if smaller_core != larger_core: # easy case return 0 larger_quotients = larger.quotient(k) smaller_quotients = smaller.quotient(k) def multinomial_with_partitions(sizes,path_counts): # count the number of ways of performing the k paths in parallel, # if we know the total length alloted for each of the paths (sizes), and the number # of paths for each component. A multinomial picks the ordering of the components where # each step is taken. return prod(path_counts) * multinomial(sizes) sizes = [larger_quotients[i].size()-smaller_quotients[i].size() for i in range(k)] path_counts = [larger_quotients[i].dimension(smaller_quotients[i]) for i in range(k)] return multinomial_with_partitions(sizes,path_counts) def plancherel_measure(self): r""" Return the probability of ``self`` under the Plancherel probability measure on partitions of the same size. This probability distribution comes from the uniform distribution on permutations via the Robinson-Schensted correspondence. See :wikipedia:`Plancherel\_measure` and :meth:`Partitions_n.random_element_plancherel`. EXAMPLES:: sage: Partition([]).plancherel_measure() 1 sage: Partition([1]).plancherel_measure() 1 sage: Partition([2]).plancherel_measure() 1/2 sage: [mu.plancherel_measure() for mu in Partitions(3)] [1/6, 2/3, 1/6] sage: Partition([5,4]).plancherel_measure() 7/1440 TESTS:: sage: all(sum(mu.plancherel_measure() for mu in Partitions(n))==1 for n in range(10)) True """ return self.dimension()**2/factorial(self.size()) def outline(self, variable=None): r""" Return the outline of the partition ``self``. This is a piecewise linear function, normalized so that the area under the partition ``[1]`` is 2. INPUT: - variable -- a variable (default: ``'x'`` in the symbolic ring) EXAMPLES:: sage: [Partition([5,4]).outline()(x=i) for i in range(-10,11)] [10, 9, 8, 7, 6, 5, 6, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: Partition([]).outline() abs(x) sage: Partition([1]).outline() abs(x + 1) + abs(x - 1) - abs(x) sage: y=sage.symbolic.ring.var("y") sage: Partition([6,5,1]).outline(variable=y) abs(y + 6) - abs(y + 5) + abs(y + 4) - abs(y + 3) + abs(y - 1) - abs(y - 2) + abs(y - 3) TESTS:: sage: integrate(Partition([1]).outline()-abs(x),(x,-10,10)) 2 """ if variable is None: variable = var('x') outside_contents = [self.content(*c) for c in self.outside_corners()] inside_contents = [self.content(*c) for c in self.corners()] return sum(abs(variable+c) for c in outside_contents)\ -sum(abs(variable+c) for c in inside_contents) def dual_equivalence_graph(self, directed=False, coloring=None): r""" Return the dual equivalence graph of ``self``. Two permutations `p` and `q` in the symmetric group `S_n` differ by an `i`-*elementary dual equivalence (or dual Knuth) relation* (where `i` is an integer with `1 < i < n`) when the following two conditions are satisfied: - In the one-line notation of the permutation `p`, the letter `i` does not appear inbetween `i-1` and `i+1`. - The permutation `q` is obtained from `p` by switching two of the three letters `i-1, i, i+1` (in its one-line notation) -- namely, the leftmost and the rightmost one in order of their appearance in `p`. Notice that this is equivalent to the statement that the permutations `p^{-1}` and `q^{-1}` differ by an elementary Knuth equivalence at positions `i-1, i, i+1`. Two standard Young tableaux of shape `\lambda` differ by an `i`-elementary dual equivalence relation (of color `i`), if their reading words differ by an `i`-elementary dual equivalence relation. The *dual equivalence graph* of the partition `\lambda` is the edge-colored graph whose vertices are the standard Young tableaux of shape `\lambda`, and whose edges colored by `i` are given by the `i`-elementary dual equivalences. INPUT: - ``directed`` -- (default: ``False``) whether to have the dual equivalence graph be directed (where we have a directed edge `S \to T` if `i` appears to the left of `i+1` in the reading word of `T`; otherwise we have the directed edge `T \to S`) - ``coloring`` -- (optional) a function which sends each integer `i > 1` to a color (as a string, e.g., ``'red'`` or ``'black'``) to be used when visually representing the resulting graph using dot2tex; the default choice is ``2 -> 'red', 3 -> 'blue', 4 -> 'green', 5 -> 'purple', 6 -> 'brown', 7 -> 'orange', 8 -> 'yellow', anything greater than 8 -> 'black'``. REFERENCES: - [As2008b]_ EXAMPLES:: sage: P = Partition([3,1,1]) sage: G = P.dual_equivalence_graph() sage: sorted(G.edges()) [([[1, 2, 3], [4], [5]], [[1, 2, 4], [3], [5]], 3), ([[1, 2, 4], [3], [5]], [[1, 2, 5], [3], [4]], 4), ([[1, 2, 4], [3], [5]], [[1, 3, 4], [2], [5]], 2), ([[1, 2, 5], [3], [4]], [[1, 3, 5], [2], [4]], 2), ([[1, 3, 4], [2], [5]], [[1, 3, 5], [2], [4]], 4), ([[1, 3, 5], [2], [4]], [[1, 4, 5], [2], [3]], 3)] sage: G = P.dual_equivalence_graph(directed=True) sage: sorted(G.edges()) [([[1, 2, 4], [3], [5]], [[1, 2, 3], [4], [5]], 3), ([[1, 2, 5], [3], [4]], [[1, 2, 4], [3], [5]], 4), ([[1, 3, 4], [2], [5]], [[1, 2, 4], [3], [5]], 2), ([[1, 3, 5], [2], [4]], [[1, 2, 5], [3], [4]], 2), ([[1, 3, 5], [2], [4]], [[1, 3, 4], [2], [5]], 4), ([[1, 4, 5], [2], [3]], [[1, 3, 5], [2], [4]], 3)] TESTS:: sage: G = Partition([1]).dual_equivalence_graph() sage: G.vertices() [[[1]]] sage: G = Partition([]).dual_equivalence_graph() sage: G.vertices() [[]] sage: P = Partition([3,1,1]) sage: G = P.dual_equivalence_graph(coloring=lambda x: 'red') sage: G2 = P.dual_equivalence_graph(coloring={2: 'black', 3: 'blue', 4: 'cyan', 5: 'grey'}) sage: G is G2 False sage: G == G2 True """ # We do some custom caching to not recreate the graph, but to make # copies with the desired coloring (i.e., act like a factory). try: if directed: G = self._DDEG.copy(immutable=False) else: G = self._DEG.copy(immutable=False) if have_dot2tex(): if coloring is None: d = {2: 'red', 3: 'blue', 4: 'green', 5: 'purple', 6: 'brown', 7: 'orange', 8: 'yellow'} def coloring(i): if i in d: return d[i] return 'black' elif isinstance(coloring, dict): d = coloring coloring = lambda x: d[x] G.set_latex_options(format="dot2tex", edge_labels=True, color_by_label=coloring) return G except AttributeError: pass T = list(tableau.StandardTableaux(self)) n = sum(self) edges = [] to_perms = {t: t.reading_word_permutation() for t in T} to_tab = {to_perms[k]: k for k in to_perms} Perm = permutation.Permutations() for t in T: pt = list(to_perms[t]) for i in range(2, n): ii = pt.index(i) iip = pt.index(i+1) iim = pt.index(i-1) l = sorted([iim, ii, iip]) if l[0] != ii: continue x = pt[:] x[l[0]], x[l[2]] = x[l[2]], x[l[0]] if ii < iip: e = [t, to_tab[Perm(x)], i] edges.append(e) else: e = [to_tab[Perm(x)], t, i] edges.append(e) if directed: from sage.graphs.digraph import DiGraph self._DDEG = DiGraph([T, edges], format="vertices_and_edges", immutable=True, multiedges=True) else: from sage.graphs.graph import Graph self._DEG = Graph([T, edges], format="vertices_and_edges", immutable=True, multiedges=True) return self.dual_equivalence_graph(directed, coloring) ############## # Partitions # ############## class Partitions(UniqueRepresentation, Parent): r""" ``Partitions(n, **kwargs)`` returns the combinatorial class of integer partitions of `n` subject to the constraints given by the keywords. Valid keywords are: ``starting``, ``ending``, ``min_part``, ``max_part``, ``max_length``, ``min_length``, ``length``, ``max_slope``, ``min_slope``, ``inner``, ``outer``, ``parts_in``, ``regular``, and ``restricted``. They have the following meanings: - ``starting=p`` specifies that the partitions should all be less than or equal to `p` in lex order. This argument cannot be combined with any other (see :trac:`15467`). - ``ending=p`` specifies that the partitions should all be greater than or equal to `p` in lex order. This argument cannot be combined with any other (see :trac:`15467`). - ``length=k`` specifies that the partitions have exactly `k` parts. - ``min_length=k`` specifies that the partitions have at least `k` parts. - ``min_part=k`` specifies that all parts of the partitions are at least `k`. - ``inner=p`` specifies that the partitions must contain the partition `p`. - ``outer=p`` specifies that the partitions be contained inside the partition `p`. - ``min_slope=k`` specifies that the partitions have slope at least `k`; the slope at position `i` is the difference between the `(i+1)`-th part and the `i`-th part. - ``parts_in=S`` specifies that the partitions have parts in the set `S`, which can be any sequence of pairwise distinct positive integers. This argument cannot be combined with any other (see :trac:`15467`). - ``regular=ell`` specifies that the partitions are `\ell`-regular, and can only be combined with the ``max_length`` or ``max_part``, but not both, keywords if `n` is not specified - ``restricted=ell`` specifies that the partitions are `\ell`-restricted, and cannot be combined with any other keywords The ``max_*`` versions, along with ``inner`` and ``ending``, work analogously. Right now, the ``parts_in``, ``starting``, ``ending``, ``regular``, and ``restricted`` keyword arguments are mutually exclusive, both of each other and of other keyword arguments. If you specify, say, ``parts_in``, all other keyword arguments will be ignored; ``starting``, ``ending``, ``regular``, and ``restricted`` work the same way. EXAMPLES: If no arguments are passed, then the combinatorial class of all integer partitions is returned:: sage: Partitions() Partitions sage: [2,1] in Partitions() True If an integer `n` is passed, then the combinatorial class of integer partitions of `n` is returned:: sage: Partitions(3) Partitions of the integer 3 sage: Partitions(3).list() [[3], [2, 1], [1, 1, 1]] If ``starting=p`` is passed, then the combinatorial class of partitions greater than or equal to `p` in lexicographic order is returned:: sage: Partitions(3, starting=[2,1]) Partitions of the integer 3 starting with [2, 1] sage: Partitions(3, starting=[2,1]).list() [[2, 1], [1, 1, 1]] If ``ending=p`` is passed, then the combinatorial class of partitions at most `p` in lexicographic order is returned:: sage: Partitions(3, ending=[2,1]) Partitions of the integer 3 ending with [2, 1] sage: Partitions(3, ending=[2,1]).list() [[3], [2, 1]] Using ``max_slope=-1`` yields partitions into distinct parts -- each part differs from the next by at least 1. Use a different ``max_slope`` to get parts that differ by, say, 2:: sage: Partitions(7, max_slope=-1).list() [[7], [6, 1], [5, 2], [4, 3], [4, 2, 1]] sage: Partitions(15, max_slope=-1).cardinality() 27 The number of partitions of `n` into odd parts equals the number of partitions into distinct parts. Let's test that for `n` from 10 to 20:: sage: test = lambda n: Partitions(n, max_slope=-1).cardinality() == Partitions(n, parts_in=[1,3..n]).cardinality() sage: all(test(n) for n in [10..20]) True The number of partitions of `n` into distinct parts that differ by at least 2 equals the number of partitions into parts that equal 1 or 4 modulo 5; this is one of the Rogers-Ramanujan identities:: sage: test = lambda n: Partitions(n, max_slope=-2).cardinality() == Partitions(n, parts_in=([1,6..n] + [4,9..n])).cardinality() sage: all(test(n) for n in [10..20]) True Here are some more examples illustrating ``min_part``, ``max_part``, and ``length``:: sage: Partitions(5,min_part=2) Partitions of the integer 5 satisfying constraints min_part=2 sage: Partitions(5,min_part=2).list() [[5], [3, 2]] :: sage: Partitions(3,max_length=2).list() [[3], [2, 1]] :: sage: Partitions(10, min_part=2, length=3).list() [[6, 2, 2], [5, 3, 2], [4, 4, 2], [4, 3, 3]] Some examples using the ``regular`` keyword:: sage: Partitions(regular=4) 4-Regular Partitions sage: Partitions(regular=4, max_length=3) 4-Regular Partitions with max length 3 sage: Partitions(regular=4, max_part=3) 4-Regular 3-Bounded Partitions sage: Partitions(3, regular=4) 4-Regular Partitions of the integer 3 Some examples using the ``restricted`` keyword:: sage: Partitions(restricted=4) 4-Restricted Partitions sage: Partitions(3, restricted=4) 4-Restricted Partitions of the integer 3 Here are some further examples using various constraints:: sage: [x for x in Partitions(4)] [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] sage: [x for x in Partitions(4, length=2)] [[3, 1], [2, 2]] sage: [x for x in Partitions(4, min_length=2)] [[3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] sage: [x for x in Partitions(4, max_length=2)] [[4], [3, 1], [2, 2]] sage: [x for x in Partitions(4, min_length=2, max_length=2)] [[3, 1], [2, 2]] sage: [x for x in Partitions(4, max_part=2)] [[2, 2], [2, 1, 1], [1, 1, 1, 1]] sage: [x for x in Partitions(4, min_part=2)] [[4], [2, 2]] sage: [x for x in Partitions(4, outer=[3,1,1])] [[3, 1], [2, 1, 1]] sage: [x for x in Partitions(4, outer=[infinity, 1, 1])] [[4], [3, 1], [2, 1, 1]] sage: [x for x in Partitions(4, inner=[1,1,1])] [[2, 1, 1], [1, 1, 1, 1]] sage: [x for x in Partitions(4, max_slope=-1)] [[4], [3, 1]] sage: [x for x in Partitions(4, min_slope=-1)] [[4], [2, 2], [2, 1, 1], [1, 1, 1, 1]] sage: [x for x in Partitions(11, max_slope=-1, min_slope=-3, min_length=2, max_length=4)] [[7, 4], [6, 5], [6, 4, 1], [6, 3, 2], [5, 4, 2], [5, 3, 2, 1]] sage: [x for x in Partitions(11, max_slope=-1, min_slope=-3, min_length=2, max_length=4, outer=[6,5,2])] [[6, 5], [6, 4, 1], [6, 3, 2], [5, 4, 2]] Note that if you specify ``min_part=0``, then it will treat the minimum part as being 1 (see :trac:`13605`):: sage: [x for x in Partitions(4, length=3, min_part=0)] [[2, 1, 1]] sage: [x for x in Partitions(4, min_length=3, min_part=0)] [[2, 1, 1], [1, 1, 1, 1]] Except for very special cases, counting is done by brute force iteration through all the partitions. However the iteration itself has a reasonable complexity (see :class:`IntegerListsLex`), which allows for manipulating large partitions:: sage: Partitions(1000, max_length=1).list() [[1000]] In particular, getting the first element is also constant time:: sage: Partitions(30, max_part=29).first() [29, 1] TESTS:: sage: TestSuite(Partitions(0)).run() sage: TestSuite(Partitions(5)).run() sage: TestSuite(Partitions(5, min_part=2)).run() sage: repr( Partitions(5, min_part=2) ) 'Partitions of the integer 5 satisfying constraints min_part=2' sage: P = Partitions(5, min_part=2) sage: P.first().parent() Partitions... sage: [2,1] in P False sage: [2,2,1] in P False sage: [3,2] in P True sage: Partitions(5, inner=[2,1], min_length=3).list() [[3, 1, 1], [2, 2, 1], [2, 1, 1, 1]] sage: Partitions(5, inner=Partition([2,2]), min_length=3).list() [[2, 2, 1]] sage: Partitions(7, inner=(2, 2), min_length=3).list() [[4, 2, 1], [3, 3, 1], [3, 2, 2], [3, 2, 1, 1], [2, 2, 2, 1], [2, 2, 1, 1, 1]] sage: Partitions(5, inner=[2,0,0,0,0,0]).list() [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1]] sage: Partitions(6, length=2, max_slope=-1).list() [[5, 1], [4, 2]] sage: Partitions(length=2, max_slope=-1).list() Traceback (most recent call last): ... ValueError: the size must be specified with any keyword argument sage: Partitions(max_part = 3) 3-Bounded Partitions Check that :trac:`14145` has been fixed:: sage: 1 in Partitions() False Check :trac:`15467`:: sage: Partitions(5,parts_in=[1,2,3,4], length=4) Traceback (most recent call last): ... ValueError: The parameters 'parts_in', 'starting' and 'ending' cannot be combined with anything else. sage: Partitions(5,starting=[3,2], length=2) Traceback (most recent call last): ... ValueError: The parameters 'parts_in', 'starting' and 'ending' cannot be combined with anything else. sage: Partitions(5,ending=[3,2], length=2) Traceback (most recent call last): ... ValueError: The parameters 'parts_in', 'starting' and 'ending' cannot be combined with anything else. sage: Partitions(NN, length=2) Traceback (most recent call last): ... ValueError: the size must be specified with any keyword argument sage: Partitions(('la','la','laaaa'), max_part=8) Traceback (most recent call last): ... ValueError: n must be an integer or be equal to one of None, NN, NonNegativeIntegers() Check that calling ``Partitions`` with ``outer=a`` no longer mutates ``a`` (:trac:`16234`):: sage: a = [4,3,2,1,1,1,1] sage: for p in Partitions(8, outer=a, min_slope=-1): ....: print(p) [3, 3, 2] [3, 2, 2, 1] [3, 2, 1, 1, 1] [2, 2, 2, 1, 1] [2, 2, 1, 1, 1, 1] [2, 1, 1, 1, 1, 1, 1] sage: a [4, 3, 2, 1, 1, 1, 1] Check that ``inner`` and ``outer`` indeed accept a partition as argument (:trac:`18423`):: sage: P = Partitions(5, inner=Partition([2,1]), outer=Partition([3,2])); P Partitions of the integer 5 satisfying constraints inner=[2, 1], outer=[3, 2] sage: P.list() [[3, 2]] """ @staticmethod def __classcall_private__(cls, n=None, **kwargs): """ Return the correct parent based upon the input. TESTS:: sage: P = Partitions() sage: P2 = Partitions(NN) sage: P is P2 True sage: P2 = Partitions(NonNegativeIntegers()) sage: P is P2 True sage: P = Partitions(4) sage: P2 = Partitions(int(4)) sage: P is P2 True Check that :trac:`17898` is fixed:: sage: P = Partitions(5, min_slope=0) sage: list(P) [[5], [1, 1, 1, 1, 1]] """ if n == infinity: raise ValueError("n cannot be infinite") if n is None or n is NN or n is NonNegativeIntegers(): if len(kwargs) > 0: if len(kwargs) == 1: if 'max_part' in kwargs: return Partitions_all_bounded(kwargs['max_part']) if 'regular' in kwargs: return RegularPartitions_all(kwargs['regular']) if 'restricted' in kwargs: return RestrictedPartitions_all(kwargs['restricted']) elif len(kwargs) == 2: if 'regular' in kwargs: if kwargs['regular'] < 1 or kwargs['regular'] not in ZZ: raise ValueError("the regularity must be a positive integer") if 'max_part' in kwargs: return RegularPartitions_bounded(kwargs['regular'], kwargs['max_part']) if 'max_length' in kwargs: return RegularPartitions_truncated(kwargs['regular'], kwargs['max_length']) raise ValueError("the size must be specified with any keyword argument") return Partitions_all() elif isinstance(n, (int,Integer)): if len(kwargs) == 0: return Partitions_n(n) if len(kwargs) == 1: if 'max_part' in kwargs: return PartitionsGreatestLE(n, kwargs['max_part']) if 'length' in kwargs: return Partitions_nk(n, kwargs['length']) if (len(kwargs) > 1 and ('parts_in' in kwargs or 'starting' in kwargs or 'ending' in kwargs)): raise ValueError("The parameters 'parts_in', 'starting' and "+ "'ending' cannot be combined with anything else.") if 'parts_in' in kwargs: return Partitions_parts_in(n, kwargs['parts_in']) elif 'starting' in kwargs: return Partitions_starting(n, kwargs['starting']) elif 'ending' in kwargs: return Partitions_ending(n, kwargs['ending']) elif 'regular' in kwargs: return RegularPartitions_n(n, kwargs['regular']) elif 'restricted' in kwargs: return RestrictedPartitions_n(n, kwargs['restricted']) # FIXME: should inherit from IntegerListLex, and implement repr, or _name as a lazy attribute kwargs['name'] = "Partitions of the integer %s satisfying constraints %s"%(n, ", ".join( ["%s=%s"%(key, kwargs[key]) for key in sorted(kwargs)] )) # min_part is at least 1, and it is 1 by default kwargs['min_part'] = max(1,kwargs.get('min_part',1)) # max_slope is at most 0, and it is 0 by default kwargs['max_slope'] = min(0,kwargs.get('max_slope',0)) if kwargs.get('min_slope', -float('inf')) > 0: raise ValueError("the minimum slope must be non-negative") if 'outer' in kwargs: kwargs['max_length'] = min(len(kwargs['outer']), kwargs.get('max_length', infinity)) kwargs['ceiling'] = tuple(kwargs['outer']) del kwargs['outer'] if 'inner' in kwargs: inner = [x for x in kwargs['inner'] if x > 0] kwargs['floor'] = inner kwargs['min_length'] = max(len(inner), kwargs.get('min_length',0)) del kwargs['inner'] return Partitions_with_constraints(n, **kwargs) raise ValueError("n must be an integer or be equal to one of " "None, NN, NonNegativeIntegers()") def __init__(self, is_infinite=False): """ Initialize ``self``. INPUT: - ``is_infinite`` -- (Default: ``False``) If ``True``, then the number of partitions in this set is infinite. EXAMPLES:: sage: Partitions() Partitions sage: Partitions(2) Partitions of the integer 2 """ if is_infinite: Parent.__init__(self, category=InfiniteEnumeratedSets()) else: Parent.__init__(self, category=FiniteEnumeratedSets()) Element = Partition # add options to class class options(GlobalOptions): r""" Sets and displays the global options for elements of the partition, skew partition, and partition tuple classes. If no parameters are set, then the function returns a copy of the options dictionary. The ``options`` to partitions can be accessed as the method :obj:`Partitions.options` of :class:`Partitions` and related parent classes. @OPTIONS@ EXAMPLES:: sage: P = Partition([4,2,2,1]) sage: P [4, 2, 2, 1] sage: Partitions.options.display="exp" sage: P 1, 2^2, 4 sage: Partitions.options.display="exp_high" sage: P 4, 2^2, 1 It is also possible to use user defined functions for the ``display`` and ``latex`` options:: sage: Partitions.options(display=lambda mu: '<%s>' % ','.join('%s'%m for m in mu._list)); P <4,2,2,1> sage: Partitions.options(latex=lambda mu: '\\Diagram{%s}' % ','.join('%s'%m for m in mu._list)); latex(P) \Diagram{4,2,2,1} sage: Partitions.options(display="diagram", diagram_str="#") sage: P #### ## ## # sage: Partitions.options(diagram_str="*", convention="french") sage: print(P.ferrers_diagram()) * ** ** **** Changing the ``convention`` for partitions also changes the ``convention`` option for tableaux and vice versa:: sage: T = Tableau([[1,2,3],[4,5]]) sage: T.pp() 4 5 1 2 3 sage: Tableaux.options.convention="english" sage: print(P.ferrers_diagram()) **** ** ** * sage: T.pp() 1 2 3 4 5 sage: Partitions.options._reset() """ NAME = 'Partitions' module = 'sage.combinat.partition' display = dict(default="list", description='Specifies how partitions should be printed', values=dict(list='displayed as a list', exp_low='in exponential form (lowest first)', exp_high='in exponential form (highest first)', diagram='as a Ferrers diagram', compact_low='compact form of ``exp_low``', compact_high='compact form of ``exp_high``'), alias=dict(exp="exp_low", compact="compact_low", array="diagram", ferrers_diagram="diagram", young_diagram="diagram"), case_sensitive=False) latex = dict(default="young_diagram", description='Specifies how partitions should be latexed', values=dict(diagram='latex as a Ferrers diagram', young_diagram='latex as a Young diagram', list='latex as a list', exp_high='latex as a list in exponential notation (highest first)', exp_low='as a list latex in exponential notation (lowest first)'), alias=dict(exp="exp_low", array="diagram", ferrers_diagram="diagram"), case_sensitive=False) diagram_str = dict(default="*", description='The character used for the cells when printing Ferrers diagrams', checker=lambda char: isinstance(char,str)) latex_diagram_str = dict(default="\\ast", description='The character used for the cells when latexing Ferrers diagrams', checker=lambda char: isinstance(char,str)) convention = dict(link_to=(tableau.Tableaux.options,'convention')) notation = dict(alt_name='convention') def __reversed__(self): """ A reversed iterator. EXAMPLES:: sage: [x for x in reversed(Partitions(4))] [[1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4]] """ if not self.is_finite(): raise NotImplementedError("The set is infinite. This needs a custom reverse iterator") for i in reversed(range(self.cardinality())): yield self[i] def _element_constructor_(self, lst): """ Construct an element with ``self`` as parent. EXAMPLES:: sage: P = Partitions() sage: p = P([3,3,1]); p [3, 3, 1] sage: P(p) is p True sage: P([3, 2, 1, 0]) [3, 2, 1] sage: PT = PartitionTuples() sage: elt = PT([[4,4,2,2,1]]); elt ([4, 4, 2, 2, 1]) sage: P(elt) [4, 4, 2, 2, 1] TESTS:: sage: Partition([3/2]) Traceback (most recent call last): ... ValueError: all parts of [3/2] should be nonnegative integers """ if isinstance(lst, PartitionTuple): if lst.level() != 1: raise ValueError('%s is not an element of %s' % (lst, self)) lst = lst[0] if lst.parent() is self: return lst try: lst = list(map(ZZ, lst)) except TypeError: raise ValueError('all parts of %s should be nonnegative integers' % repr(lst)) if lst in self: # trailing zeros are removed in Partition.__init__ return self.element_class(self, lst) raise ValueError('%s is not an element of %s' % (lst, self)) def __contains__(self, x): """ Check if ``x`` is contained in ``self``. TESTS:: sage: P = Partitions() sage: Partition([2,1]) in P True sage: [2,1] in P True sage: [3,2,1] in P True sage: [1,2] in P False sage: [] in P True sage: [0] in P True Check that types that represent integers are not excluded:: sage: P = Partitions() sage: [3/1, 2/2] in P True sage: Partition([3/1, 2]) in P True Check that non-integers and non-lists are excluded:: sage: P = Partitions() sage: [2,1.5] in P False sage: 0 in P False """ if isinstance(x, Partition): return True if isinstance(x, (list, tuple)): return not x or (all((a in ZZ) and (a >= b) for a, b in zip(x, x[1:])) and (x[-1] in ZZ) and (x[-1] >= 0)) return False def subset(self, *args, **kwargs): r""" Return ``self`` if no arguments are given, otherwise raises a ``ValueError``. EXAMPLES:: sage: P = Partitions(5, starting=[3,1]); P Partitions of the integer 5 starting with [3, 1] sage: P.subset() Partitions of the integer 5 starting with [3, 1] sage: P.subset(ending=[3,1]) Traceback (most recent call last): ... ValueError: Invalid combination of arguments """ if len(args) != 0 or len(kwargs) != 0: raise ValueError("Invalid combination of arguments") return self class Partitions_all(Partitions): """ Class of all partitions. TESTS:: sage: TestSuite( sage.combinat.partition.Partitions_all() ).run() """ def __init__(self): """ Initialize ``self``. TESTS:: sage: P = Partitions() sage: P.category() Category of infinite enumerated sets sage: Partitions().cardinality() +Infinity sage: TestSuite(P).run() """ Partitions.__init__(self, is_infinite=True) def subset(self, size=None, **kwargs): """ Returns the subset of partitions of a given size and additional keyword arguments. EXAMPLES:: sage: P = Partitions() sage: P.subset(4) Partitions of the integer 4 """ if size is None: return self return Partitions(size, **kwargs) def _repr_(self): """ Return a string representation of ``self``. TESTS:: sage: Partitions() # indirect doctest Partitions """ return "Partitions" def __iter__(self): """ An iterator for all partitions. EXAMPLES:: sage: p = Partitions() sage: it = p.__iter__() sage: [next(it) for i in range(10)] [[], [1], [2], [1, 1], [3], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2]] """ n = 0 while True: for p in ZS1_iterator(n): yield self.element_class(self, p) n += 1 def __reversed__(self): """ A reversed iterator for all partitions. This reverse iterates through partitions of fixed `n` and incrementing `n` after reaching the end. EXAMPLES:: sage: p = Partitions() sage: revit = p.__reversed__() sage: [next(revit) for i in range(10)] [[], [1], [1, 1], [2], [1, 1, 1], [2, 1], [3], [1, 1, 1, 1], [2, 1, 1], [2, 2]] """ n = 0 while True: for p in reversed(list(ZS1_iterator(n))): yield self.element_class(self, p) n += 1 def from_frobenius_coordinates(self, frobenius_coordinates): """ Returns a partition from a pair of sequences of Frobenius coordinates. EXAMPLES:: sage: Partitions().from_frobenius_coordinates(([],[])) [] sage: Partitions().from_frobenius_coordinates(([0],[0])) [1] sage: Partitions().from_frobenius_coordinates(([1],[1])) [2, 1] sage: Partitions().from_frobenius_coordinates(([6,3,2],[4,1,0])) [7, 5, 5, 1, 1] """ if len(frobenius_coordinates) != 2: raise ValueError('%s is not a valid partition, two sequences of coordinates are needed'%str(frobenius_coordinates)) else: a = frobenius_coordinates[0] b = frobenius_coordinates[1] if len(a) != len(b): raise ValueError('%s is not a valid partition, the sequences of coordinates need to be the same length'%str(frobenius_coordinates)) # should add tests to see if a and b are sorted down, nonnegative and strictly decreasing r = len(a) if r == 0: return self.element_class(self, []) tmp = [a[i]+i+1 for i in range(r)] # should check that a is strictly decreasing if a[-1] < 0: raise ValueError('%s is not a partition, no coordinate can be negative'%str(frobenius_coordinates)) if b[-1] >= 0: tmp.extend([r]*b[r-1]) else: raise ValueError('%s is not a partition, no coordinate can be negative'%str(frobenius_coordinates)) for i in range(r-1,0,-1): if b[i-1]-b[i] > 0: tmp.extend([i]*(b[i-1]-b[i]-1)) else: raise ValueError('%s is not a partition, the coordinates need to be strictly decreasing'%str(frobenius_coordinates)) return self.element_class(self, tmp) def from_beta_numbers(self, beta): r""" Return a partition corresponding to a sequence of beta numbers. A sequence of beta numbers is a strictly increasing sequence `0 \leq b_1 < \cdots < b_k` of non-negative integers. The corresponding partition `\mu = (\mu_k, \ldots, \mu_1)` is given by `\mu_i = [1,i) \setminus \{ b_1, \ldots, b_i \}`. This gives a bijection from the set of partitions with at most `k` non-zero parts to the set of strictly increasing sequences of non-negative integers of length `k`. EXAMPLES:: sage: Partitions().from_beta_numbers([0,1,2,4,5,8]) [3, 1, 1] sage: Partitions().from_beta_numbers([0,2,3,6]) [3, 1, 1] """ beta.sort() # put them into increasing order just in case offset = 0 while offset < len(beta)-1 and beta[offset] == offset: offset+=1 beta = beta[offset:] mu = [beta[i]-offset-i for i in range(len(beta))] return self.element_class(self, list(reversed(mu))) def from_exp(self, exp): """ Returns a partition from its list of multiplicities. EXAMPLES:: sage: Partitions().from_exp([2,2,1]) [3, 2, 2, 1, 1] """ p = [] for i in reversed(range(len(exp))): p += [i+1]*exp[i] return self.element_class(self, p) def from_zero_one(self, seq): r""" Return a partition from its `0-1` sequence. The full `0-1` sequence is the sequence (infinite in both directions) indicating the steps taken when following the outer rim of the diagram of the partition. We use the convention that in English convention, a 1 corresponds to an East step, and a 0 corresponds to a North step. Note that every full `0-1` sequence starts with infinitely many 0's and ends with infinitely many 1's. .. SEEALSO:: :meth:`Partition.zero_one_sequence()` INPUT: The input should be a finite sequence of 0's and 1's. The heading 0's and trailing 1's will be discarded. EXAMPLES:: sage: Partitions().from_zero_one([]) [] sage: Partitions().from_zero_one([1,0]) [1] sage: Partitions().from_zero_one([1, 1, 1, 1, 0, 1, 0]) [5, 4] Heading 0's and trailing 1's are correctly handled:: sage: Partitions().from_zero_one([0,0,1,1,1,1,0,1,0,1,1,1]) [5, 4] TESTS:: sage: all(Partitions().from_zero_one(mu.zero_one_sequence()) == mu for n in range(10) for mu in Partitions(n)) True """ tmp = [i for i in range(len(seq)) if seq[i] == 0] return self.element_class(self,[tmp[i]-i for i in range(len(tmp)-1,-1,-1)]) def from_core_and_quotient(self, core, quotient): """ Returns a partition from its core and quotient. Algorithm from mupad-combinat. EXAMPLES:: sage: Partitions().from_core_and_quotient([2,1], [[2,1],[3],[1,1,1]]) [11, 5, 5, 3, 2, 2, 2] TESTS:: sage: Partitions().from_core_and_quotient([2,1], [[2,1],[2,3,1],[1,1,1]]) Traceback (most recent call last): ... ValueError: the quotient [[2, 1], [2, 3, 1], [1, 1, 1]] must be a tuple of partitions We check that :trac:`11412` is actually fixed:: sage: test = lambda x, k: x == Partition(core=x.core(k), ....: quotient=x.quotient(k)) sage: all(test(mu,k) for k in range(1,5) ....: for n in range(10) for mu in Partitions(n)) True sage: test2 = lambda core, mus: ( ....: Partition(core=core, quotient=mus).core(mus.level()) == core ....: and ....: Partition(core=core, quotient=mus).quotient(mus.level()) == mus) sage: all(test2(core,mus) # long time (5s on sage.math, 2011) ....: for k in range(1,10) ....: for n_core in range(10-k) ....: for core in Partitions(n_core) ....: if core.core(k) == core ....: for n_mus in range(10-k) ....: for mus in PartitionTuples(k,n_mus)) True """ from .partition_tuple import PartitionTuple, PartitionTuples if quotient not in PartitionTuples(): raise ValueError('the quotient %s must be a tuple of partitions'%quotient) components = PartitionTuple(quotient).components() length = len(components) k = length*max(len(q) for q in components) + len(core) # k needs to be large enough. this seems to me like the smallest it can be v = [core[i]-i for i in range(len(core))] + [ -i for i in range(len(core),k) ] w = [ [x for x in v if (x-i) % length == 0] for i in range(1, length+1) ] new_w = [] for i in range(length): lw = len(w[i]) lq = len(components[i]) # k needs to be chosen so lw >= lq new_w += [ w[i][j] + length*components[i][j] for j in range(lq)] new_w += [ w[i][j] for j in range(lq,lw)] new_w.sort(reverse=True) return self.element_class(self, [new_w[i]+i for i in range(len(new_w))]) class Partitions_all_bounded(Partitions): def __init__(self, k): """ TESTS:: sage: TestSuite( sage.combinat.partition.Partitions_all_bounded(3) ).run() # long time """ self.k = k Partitions.__init__(self, is_infinite=True) def __contains__(self, x): """ TESTS:: sage: P = Partitions(max_part=3) sage: Partition([2,1]) in P True sage: [2,1] in P True sage: [3,2,1] in P True sage: [1,2] in P False sage: [5,1] in P False sage: [0] in P True sage: [] in P True """ return not x or (x[0] <= self.k and x in _Partitions) def _repr_(self): """ TESTS:: sage: from sage.combinat.partition import Partitions_all_bounded sage: Partitions_all_bounded(3) 3-Bounded Partitions """ return "%d-Bounded Partitions"%self.k def __iter__(self): """ An iterator for all `k`-bounded partitions. EXAMPLES:: sage: p = Partitions(max_part=3) sage: it = p.__iter__() sage: [next(it) for i in range(10)] [[], [1], [2], [1, 1], [3], [2, 1], [1, 1, 1], [3, 1], [2, 2], [2, 1, 1]] """ n = 0 while True: for p in Partitions(n, max_part=self.k): yield self.element_class(self, p) n += 1 class Partitions_n(Partitions): """ Partitions of the integer `n`. TESTS:: sage: TestSuite( sage.combinat.partition.Partitions_n(0) ).run() sage: TestSuite( sage.combinat.partition.Partitions_n(0) ).run() """ def __init__(self, n): """ Initialize ``self``. TESTS:: sage: TestSuite( Partitions(5) ).run() """ Partitions.__init__(self) self.n = n def __contains__(self, x): """ Check if ``x`` is contained in ``self``. TESTS:: sage: p = Partitions(5) sage: [2,1] in p False sage: [2,2,1] in p True sage: [3,2] in p True sage: [2,3] in p False """ return x in _Partitions and sum(x) == self.n def _repr_(self): """ Return a string representation of ``self``. TESTS:: sage: Partitions(5) # indirect doctest Partitions of the integer 5 """ return "Partitions of the integer %s"%self.n def _an_element_(self): """ Returns a partition in ``self``. EXAMPLES:: sage: Partitions(4).an_element() # indirect doctest [3, 1] sage: Partitions(0).an_element() [] sage: Partitions(1).an_element() [1] """ if self.n == 0: lst = [] elif self.n == 1: lst = [1] else: lst = [self.n-1, 1] return self.element_class(self, lst) def cardinality(self, algorithm='flint'): r""" Return the number of partitions of the specified size. INPUT: - ``algorithm`` - (default: ``'flint'``) - ``'flint'`` -- use FLINT (currently the fastest) - ``'gap'`` -- use GAP (VERY *slow*) - ``'pari'`` -- use PARI. Speed seems the same as GAP until `n` is in the thousands, in which case PARI is faster. It is possible to associate with every partition of the integer `n` a conjugacy class of permutations in the symmetric group on `n` points and vice versa. Therefore the number of partitions `p_n` is the number of conjugacy classes of the symmetric group on `n` points. EXAMPLES:: sage: v = Partitions(5).list(); v [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]] sage: len(v) 7 sage: Partitions(5).cardinality(algorithm='gap') 7 sage: Partitions(5).cardinality(algorithm='pari') 7 sage: number_of_partitions(5, algorithm='flint') 7 The input must be a nonnegative integer or a ``ValueError`` is raised. :: sage: Partitions(10).cardinality() 42 sage: Partitions(3).cardinality() 3 sage: Partitions(10).cardinality() 42 sage: Partitions(3).cardinality(algorithm='pari') 3 sage: Partitions(10).cardinality(algorithm='pari') 42 sage: Partitions(40).cardinality() 37338 sage: Partitions(100).cardinality() 190569292 A generating function for `p_n` is given by the reciprocal of Euler's function: .. MATH:: \sum_{n=0}^{\infty} p_n x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}. We use Sage to verify that the first several coefficients do indeed agree:: sage: q = PowerSeriesRing(QQ, 'q', default_prec=9).gen() sage: prod([(1-q^k)^(-1) for k in range(1,9)]) ## partial product of 1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + 15*q^7 + 22*q^8 + O(q^9) sage: [Partitions(k).cardinality() for k in range(2,10)] [2, 3, 5, 7, 11, 15, 22, 30] Another consistency test for ``n`` up to 500:: sage: len([n for n in [1..500] if Partitions(n).cardinality() != Partitions(n).cardinality(algorithm='pari')]) 0 REFERENCES: - :wikipedia:`Partition\_(number\_theory)` """ if algorithm == 'flint': return cached_number_of_partitions(self.n) elif algorithm == 'gap': from sage.libs.gap.libgap import libgap return ZZ(libgap.NrPartitions(ZZ(self.n))) elif algorithm == 'pari': return ZZ(pari(ZZ(self.n)).numbpart()) raise ValueError("unknown algorithm '%s'" % algorithm) def random_element(self, measure = 'uniform'): """ Return a random partitions of `n` for the specified measure. INPUT: - ``measure`` -- ``'uniform'`` or ``'Plancherel'`` (default: ``'uniform'``) .. SEEALSO:: - :meth:`random_element_uniform` - :meth:`random_element_plancherel` EXAMPLES:: sage: Partitions(5).random_element() # random [2, 1, 1, 1] sage: Partitions(5).random_element(measure='Plancherel') # random [2, 1, 1, 1] """ if measure == 'uniform': return self.random_element_uniform() elif measure == 'Plancherel': return self.random_element_plancherel() else: raise ValueError("Unkown measure: %s" % (measure)) def random_element_uniform(self): """ Return a random partition of `n` with uniform probability. EXAMPLES:: sage: Partitions(5).random_element_uniform() # random [2, 1, 1, 1] sage: Partitions(20).random_element_uniform() # random [9, 3, 3, 2, 2, 1] TESTS:: sage: all(Part.random_element_uniform() in Part ....: for Part in map(Partitions, range(10))) True Check that :trac:`18752` is fixed:: sage: P = Partitions(5) sage: la = P.random_element_uniform() sage: la.parent() is P True ALGORITHM: - It is a python Implementation of RANDPAR, see [NW1978]_. The complexity is unknown, there may be better algorithms. .. TODO:: Check in Knuth AOCP4. - There is also certainly a lot of room for optimizations, see comments in the code. AUTHOR: - Florent Hivert (2009-11-23) """ n = self.n res = [] # A dictionary of multiplicities could be faster. while n > 0: # Choose a pair d,j = 1,2..., with d*j <= n with probability # d*numpart(n-d*j) / n / numpart(n) # and add d^j to the result partition. The resulting partitions is # equiprobable. # The following could be made faster by a clever use of floats rand = randrange(0, n*cached_number_of_partitions(n)) # cached number_of_partition # It is better to start by the j = 1 pairs because they are the # most probable. Maybe there is an even more clever order. for j in range(1, n+1): d = 1 r = n-j # n - d*j while r >= 0: rand -= d * cached_number_of_partitions(r) if rand < 0: break d +=1 r -= j else: continue break res.extend([d]*j) n = r res.sort(reverse=True) return self.element_class(self, res) def random_element_plancherel(self): r""" Return a random partition of `n` (for the Plancherel measure). This probability distribution comes from the uniform distribution on permutations via the Robinson-Schensted correspondence. See :wikipedia:`Plancherel\_measure` and :meth:`Partition.plancherel_measure`. EXAMPLES:: sage: Partitions(5).random_element_plancherel() # random [2, 1, 1, 1] sage: Partitions(20).random_element_plancherel() # random [9, 3, 3, 2, 2, 1] TESTS:: sage: all(Part.random_element_plancherel() in Part ....: for Part in map(Partitions, range(10))) True Check that :trac:`18752` is fixed:: sage: P = Partitions(5) sage: la = P.random_element_plancherel() sage: la.parent() is P True ALGORITHM: - insert by Robinson-Schensted a uniform random permutations of n and returns the shape of the resulting tableau. The complexity is `O(n\ln(n))` which is likely optimal. However, the implementation could be optimized. AUTHOR: - Florent Hivert (2009-11-23) """ T = permutation.Permutations(self.n).random_element().left_tableau() return self.element_class(self, [len(row) for row in T]) def first(self): """ Returns the lexicographically first partition of a positive integer `n`. This is the partition ``[n]``. EXAMPLES:: sage: Partitions(4).first() [4] """ return self.element_class(self, [self.n]) def next(self, p): """ Return the lexicographically next partition after the partition ``p``. EXAMPLES:: sage: Partitions(4).next([4]) [3, 1] sage: Partitions(4).next([1,1,1,1]) is None True """ found = False for i in self: if found: return i if i == p: found = True return None def last(self): """ Return the lexicographically last partition of the positive integer `n`. This is the all-ones partition. EXAMPLES:: sage: Partitions(4).last() [1, 1, 1, 1] """ return self.element_class(self, [1]*self.n) def __iter__(self): """ An iterator for the partitions of `n`. EXAMPLES:: sage: [x for x in Partitions(4)] [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] """ for p in ZS1_iterator(self.n): yield self.element_class(self, p) def subset(self, **kwargs): r""" Return a subset of ``self`` with the additional optional arguments. EXAMPLES:: sage: P = Partitions(5); P Partitions of the integer 5 sage: P.subset(starting=[3,1]) Partitions of the integer 5 starting with [3, 1] """ return Partitions(self.n, **kwargs) class Partitions_nk(Partitions): """ Partitions of the integer `n` of length equal to `k`. TESTS:: sage: TestSuite( sage.combinat.partition.Partitions_nk(0,0) ).run() sage: TestSuite( sage.combinat.partition.Partitions_nk(0,0) ).run() """ def __init__(self, n, k): """ Initialize ``self``. TESTS:: sage: TestSuite( Partitions(5, length=2) ).run() """ Partitions.__init__(self) self.n = n self.k = k def __contains__(self, x): """ Check if ``x`` is contained in ``self``. TESTS:: sage: p = Partitions(5, length=2) sage: [2,1] in p False sage: [2,2,1] in p False sage: [3,2] in p True sage: [2,3] in p False sage: [4,1] in p True sage: [1,1,1,1,1] in p False sage: [5] in p False """ return x in _Partitions and sum(x) == self.n and len(x) == self.k def _repr_(self): """ Return a string representation of ``self``. TESTS:: sage: Partitions(5, length=2) # indirect doctest Partitions of the integer 5 of length 2 """ return "Partitions of the integer {} of length {}".format(self.n, self.k) def _an_element_(self): """ Returns a partition in ``self``. EXAMPLES:: sage: Partitions(4, length=1).an_element() # indirect doctest [4] sage: Partitions(4, length=2).an_element() [3, 1] sage: Partitions(4, length=3).an_element() [2, 1, 1] sage: Partitions(4, length=4).an_element() [1, 1, 1, 1] sage: Partitions(1, length=1).an_element() [1] sage: Partitions(0, length=0).an_element() [] """ if self.n == 0: if self.k == 0: lst = [] else: from sage.categories.sets_cat import EmptySetError raise EmptySetError elif self.n >= self.k > 0: lst = [self.n - self.k + 1] + [1] * (self.k-1) else: from sage.categories.sets_cat import EmptySetError raise EmptySetError return self.element_class(self, lst) def __iter__(self): """ An iterator for all partitions of `n` of length `k`. EXAMPLES:: sage: p = Partitions(9, length=3) sage: it = p.__iter__() sage: list(it) [[7, 1, 1], [6, 2, 1], [5, 3, 1], [5, 2, 2], [4, 4, 1], [4, 3, 2], [3, 3, 3]] sage: p = Partitions(9, length=10) sage: list(p.__iter__()) [] sage: p = Partitions(0, length=0) sage: list(p.__iter__()) [[]] sage: from sage.combinat.partition import number_of_partitions_length sage: all( len(Partitions(n, length=k).list()) ....: == number_of_partitions_length(n, k) ....: for n in range(9) for k in range(n+2) ) True """ for p in ZS1_iterator_nk(self.n - self.k, self.k): v = [i + 1 for i in p] adds = [1] * (self.k - len(v)) yield self.element_class(self, v + adds) def cardinality(self, algorithm='hybrid'): r""" Return the number of partitions of the specified size with the specified length. INPUT: - ``algorithm`` -- (default: ``'hybrid'``) the algorithm to compute the cardinality and can be one of the following: * ``'hybrid'`` - use a hybrid algorithm which uses heuristics to reduce the complexity * ``'gap'`` - use GAP EXAMPLES:: sage: v = Partitions(5, length=2).list(); v [[4, 1], [3, 2]] sage: len(v) 2 sage: Partitions(5, length=2).cardinality() 2 More generally, the number of partitions of `n` of length `2` is `\left\lfloor \frac{n}{2} \right\rfloor`:: sage: all( Partitions(n, length=2).cardinality() ....: == n // 2 for n in range(10) ) True The number of partitions of `n` of length `1` is `1` for `n` positive:: sage: all( Partitions(n, length=1).cardinality() == 1 ....: for n in range(1, 10) ) True Further examples:: sage: Partitions(5, length=3).cardinality() 2 sage: Partitions(6, length=3).cardinality() 3 sage: Partitions(8, length=4).cardinality() 5 sage: Partitions(8, length=5).cardinality() 3 sage: Partitions(15, length=6).cardinality() 26 sage: Partitions(0, length=0).cardinality() 1 sage: Partitions(0, length=1).cardinality() 0 sage: Partitions(1, length=0).cardinality() 0 sage: Partitions(1, length=4).cardinality() 0 TESTS: We check the hybrid approach gives the same results as GAP:: sage: N = [0, 1, 2, 3, 5, 10, 20, 500, 850] sage: K = [0, 1, 2, 3, 5, 10, 11, 20, 21, 250, 499, 500] sage: all(Partitions(n,length=k).cardinality() == Partitions(n,length=k).cardinality('gap') ....: for n in N for k in K) True sage: P = Partitions(4562, length=2800) sage: P.cardinality() == P.cardinality('gap') True """ return number_of_partitions_length(self.n, self.k, algorithm) def subset(self, **kwargs): r""" Return a subset of ``self`` with the additional optional arguments. EXAMPLES:: sage: P = Partitions(5, length=2); P Partitions of the integer 5 of length 2 sage: P.subset(max_part=3) Partitions of the integer 5 satisfying constraints length=2, max_part=3 """ return Partitions(self.n, length=self.k, **kwargs) class Partitions_parts_in(Partitions): """ Partitions of `n` with parts in a given set `S`. This is invoked indirectly when calling ``Partitions(n, parts_in=parts)``, where ``parts`` is a list of pairwise distinct integers. TESTS:: sage: TestSuite( sage.combinat.partition.Partitions_parts_in(6, parts=[2,1]) ).run() """ @staticmethod def __classcall_private__(cls, n, parts): """ Normalize the input to ensure a unique representation. TESTS:: sage: P = Partitions(4, parts_in=[2,1]) sage: P2 = Partitions(4, parts_in=(1,2)) sage: P is P2 True """ parts = tuple(sorted(parts)) return super(Partitions_parts_in, cls).__classcall__(cls, Integer(n), parts) def __init__(self, n, parts): """ Initialize ``self``. TESTS:: sage: TestSuite(Partitions(5, parts_in=[1,2,3])).run() """ Partitions.__init__(self) self.n = n self.parts = list(parts) def __contains__(self, x): """ TESTS:: sage: p = Partitions(5, parts_in=[1,2]) sage: [2,1,1,1] in p True sage: [4,1] in p False """ return (x in _Partitions and sum(x) == self.n and all(p in self.parts for p in x)) def _repr_(self): """ TESTS:: sage: Partitions(5, parts_in=[1,2,3]) # indirect doctest Partitions of the integer 5 with parts in [1, 2, 3] """ return "Partitions of the integer %s with parts in %s" % (self.n, self.parts) def cardinality(self): r""" Return the number of partitions with parts in ``self``. Wraps GAP's ``NrRestrictedPartitions``. EXAMPLES:: sage: Partitions(15, parts_in=[2,3,7]).cardinality() 5 If you can use all parts 1 through `n`, we'd better get `p(n)`:: sage: Partitions(20, parts_in=[1..20]).cardinality() == Partitions(20).cardinality() True TESTS: Let's check the consistency of GAP's function and our own algorithm that actually generates the partitions:: sage: ps = Partitions(15, parts_in=[1,2,3]) sage: ps.cardinality() == len(ps.list()) True sage: ps = Partitions(15, parts_in=[]) sage: ps.cardinality() == len(ps.list()) True sage: ps = Partitions(3000, parts_in=[50,100,500,1000]) sage: ps.cardinality() == len(ps.list()) True sage: ps = Partitions(10, parts_in=[3,6,9]) sage: ps.cardinality() == len(ps.list()) True sage: ps = Partitions(0, parts_in=[1,2]) sage: ps.cardinality() == len(ps.list()) True """ # GAP complains if you give it an empty list if self.parts: from sage.libs.gap.libgap import libgap return ZZ(libgap.NrRestrictedPartitions(ZZ(self.n), self.parts)) return Integer(self.n == 0) def first(self): """ Return the lexicographically first partition of a positive integer `n` with the specified parts, or ``None`` if no such partition exists. EXAMPLES:: sage: Partitions(9, parts_in=[3,4]).first() [3, 3, 3] sage: Partitions(6, parts_in=[1..6]).first() [6] sage: Partitions(30, parts_in=[4,7,8,10,11]).first() [11, 11, 8] """ try: return self.element_class(self, self._findfirst(self.n, self.parts[:])) except TypeError: return None def _findfirst(self, n, parts): """ TESTS:: sage: p = Partitions(9, parts_in=[3,4]) sage: p._findfirst(p.n, p.parts[:]) [3, 3, 3] sage: p._findfirst(0, p.parts[:]) [] sage: p._findfirst(p.n, [10]) """ if n == 0: return [] else: while parts: p = parts.pop() for k in range(n.quo_rem(p)[0], 0, -1): try: return k * [p] + self._findfirst(n - k * p, parts[:]) except TypeError: pass def last(self): """ Return the lexicographically last partition of the positive integer `n` with the specified parts, or ``None`` if no such partition exists. EXAMPLES:: sage: Partitions(15, parts_in=[2,3]).last() [3, 2, 2, 2, 2, 2, 2] sage: Partitions(30, parts_in=[4,7,8,10,11]).last() [7, 7, 4, 4, 4, 4] sage: Partitions(10, parts_in=[3,6]).last() is None True sage: Partitions(50, parts_in=[11,12,13]).last() [13, 13, 12, 12] sage: Partitions(30, parts_in=[4,7,8,10,11]).last() [7, 7, 4, 4, 4, 4] TESTS:: sage: Partitions(6, parts_in=[1..6]).last() [1, 1, 1, 1, 1, 1] sage: Partitions(0, parts_in=[]).last() [] sage: Partitions(50, parts_in=[11,12]).last() is None True """ try: return self.element_class(self, self._findlast(self.n, self.parts)) except TypeError: return None def _findlast(self, n, parts): """ Return the lexicographically largest partition of `n` using the given parts, or ``None`` if no such partition exists. This function is not intended to be called directly. INPUT: - ``n`` -- nonnegative integer - ``parts`` -- a sorted list of positive integers. OUTPUT: A list of integers in weakly decreasing order, or ``None``. The output is just a list, not a partition object. EXAMPLES:: sage: ps = Partitions(1, parts_in=[1]) sage: ps._findlast(15, [2,3]) [3, 2, 2, 2, 2, 2, 2] sage: ps._findlast(9, [2,4]) is None True sage: ps._findlast(0, []) [] sage: ps._findlast(100, [9,17,31]) [31, 17, 17, 17, 9, 9] """ if n < 0: return None elif n == 0: return [] elif parts != []: p = parts[0] q, r = n.quo_rem(p) if r == 0: return [p] * q # If the smallest part doesn't divide n, try using the next # largest part else: for i, p in enumerate(parts[1:]): rest = self._findlast(n - p, parts[:i+2]) if rest is not None: return [p] + rest # If we get to here, nothing ever worked, so there's no such # partitions, and we return None. return None def __iter__(self): """ An iterator through the partitions of `n` with all parts belonging to a particular set. EXAMPLES:: sage: [x for x in Partitions(4)] [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] """ for p in self._fast_iterator(self.n, self.parts[:]): yield self.element_class(self, p) def _fast_iterator(self, n, parts): """ A fast iterator for the partitions of ``n`` which returns lists and not partition types. This function is not intended to be called directly. INPUT: - ``n`` -- nonnegative integer. - ``parts`` -- a list of parts to use. This list will be destroyed, so pass things here with ``foo[:]`` (or something equivalent) if you want to preserve your list. In particular, the ``__iter__`` method needs to use ``self.parts[:]``, or else we forget which parts we're using! OUTPUT: A generator object for partitions of `n` with parts in ``parts``. If the parts in ``parts`` are sorted in increasing order, this function returns weakly decreasing lists. If ``parts`` is not sorted, your lists won't be, either. EXAMPLES:: sage: P = Partitions(4, parts_in=[2,4]) sage: it = P._fast_iterator(4, [2,4]) sage: next(it) [4] sage: type(_) <... 'list'> """ if n == 0: yield [] else: while parts: p = parts.pop() for k in range(n.quo_rem(p)[0], 0, -1): for q in self._fast_iterator(n - k * p, parts[:]): yield k * [p] + q class Partitions_starting(Partitions): """ All partitions with a given start. """ @staticmethod def __classcall_private__(cls, n, starting_partition): """ Normalize the input to ensure a unique representation. TESTS:: sage: P = Partitions(4, starting=[2,1]) sage: P2 = Partitions(4, starting=[2,1]) sage: P is P2 True """ starting_partition = Partition(starting_partition) return super(Partitions_starting, cls).__classcall__(cls, Integer(n), starting_partition) def __init__(self, n, starting_partition): """ Initilizes ``self``. EXAMPLES:: sage: Partitions(3, starting=[2,1]) Partitions of the integer 3 starting with [2, 1] sage: Partitions(3, starting=[2,1]).list() [[2, 1], [1, 1, 1]] TESTS:: sage: p = Partitions(3, starting=[2,1]) sage: TestSuite(p).run() """ Partitions.__init__(self) self.n = n self._starting = starting_partition def _repr_(self): """ Return a string representation of ``self``. EXAMPLES:: sage: Partitions(3, starting=[2,1]) # indirect doctest Partitions of the integer 3 starting with [2, 1] """ return "Partitions of the integer %s starting with %s"%(self.n, self._starting) def __contains__(self, x): """ Checks if ``x`` is contained in ``self``. EXAMPLES:: sage: p = Partitions(3, starting=[2,1]) sage: [1,1] in p False sage: [2,1] in p True sage: [1,1,1] in p True sage: [3] in p False """ return x in Partitions_n(self.n) and x <= self._starting def first(self): """ Return the first partition in ``self``. EXAMPLES:: sage: Partitions(3, starting=[2,1]).first() [2, 1] """ return self._starting def next(self, part): """ Return the next partition after ``part`` in ``self``. EXAMPLES:: sage: Partitions(3, starting=[2,1]).next(Partition([2,1])) [1, 1, 1] """ return next(part) class Partitions_ending(Partitions): """ All partitions with a given ending. """ @staticmethod def __classcall_private__(cls, n, ending_partition): """ Normalize the input to ensure a unique representation. TESTS:: sage: P = Partitions(4) sage: P2 = Partitions(4) sage: P is P2 True """ ending_partition = Partition(ending_partition) return super(Partitions_ending, cls).__classcall__(cls, Integer(n), ending_partition) def __init__(self, n, ending_partition): """ Initializes ``self``. EXAMPLES:: sage: Partitions(4, ending=[1,1,1,1]).list() [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] sage: Partitions(4, ending=[2,2]).list() [[4], [3, 1], [2, 2]] sage: Partitions(4, ending=[4]).list() [[4]] TESTS:: sage: p = Partitions(4, ending=[1,1,1,1]) sage: TestSuite(p).run() """ Partitions.__init__(self) self.n = n self._ending = ending_partition def _repr_(self): """ Return a string representation of ``self``. EXAMPLES:: sage: Partitions(4, ending=[1,1,1,1]) # indirect doctest Partitions of the integer 4 ending with [1, 1, 1, 1] """ return "Partitions of the integer %s ending with %s"%(self.n, self._ending) def __contains__(self, x): """ Checks if ``x`` is contained in ``self``. EXAMPLES:: sage: p = Partitions(4, ending=[2,2]) sage: [4] in p True sage: [2,1,1] in p False sage: [2,1] in p False """ return x in Partitions_n(self.n) and x >= self._ending def first(self): """ Return the first partition in ``self``. EXAMPLES:: sage: Partitions(4, ending=[1,1,1,1]).first() [4] """ return self.element_class(self, [self.n]) def next(self, part): """ Return the next partition after ``part`` in ``self``. EXAMPLES:: sage: Partitions(4, ending=[1,1,1,1]).next(Partition([4])) [3, 1] sage: Partitions(4, ending=[1,1,1,1]).next(Partition([1,1,1,1])) is None True """ if part == self._ending: return None else: return next(part) class PartitionsInBox(Partitions): r""" All partitions which fit in an `h \times w` box. EXAMPLES:: sage: PartitionsInBox(2,2) Integer partitions which fit in a 2 x 2 box sage: PartitionsInBox(2,2).list() [[], [1], [1, 1], [2], [2, 1], [2, 2]] """ def __init__(self, h, w): """ Initialize ``self``. TESTS:: sage: p = PartitionsInBox(2,2) sage: TestSuite(p).run() """ Partitions.__init__(self) self.h = h self.w = w def _repr_(self): """ Return a string representation of ``self``. EXAMPLES:: sage: PartitionsInBox(2,2) # indirect doctest Integer partitions which fit in a 2 x 2 box """ return "Integer partitions which fit in a %s x %s box" % (self.h, self.w) def __contains__(self, x): """ Checks if ``x`` is contained in ``self``. EXAMPLES:: sage: [] in PartitionsInBox(2,2) True sage: [2,1] in PartitionsInBox(2,2) True sage: [3,1] in PartitionsInBox(2,2) False sage: [2,1,1] in PartitionsInBox(2,2) False sage: [3,1] in PartitionsInBox(3, 2) False sage: [3,1] in PartitionsInBox(2, 3) True """ return x in _Partitions and len(x) <= self.h \ and (len(x) == 0 or x[0] <= self.w) def list(self): """ Return a list of all the partitions inside a box of height `h` and width `w`. EXAMPLES:: sage: PartitionsInBox(2,2).list() [[], [1], [1, 1], [2], [2, 1], [2, 2]] sage: PartitionsInBox(2,3).list() [[], [1], [1, 1], [2], [2, 1], [2, 2], [3], [3, 1], [3, 2], [3, 3]] TESTS: Check :trac:`10890`:: sage: type(PartitionsInBox(0,0)[0]) <class 'sage.combinat.partition.PartitionsInBox_with_category.element_class'> """ h = self.h w = self.w if h == 0: return [self.element_class(self, [])] else: l = [[i] for i in range(0, w+1)] add = lambda x: [ x+[i] for i in range(0, x[-1]+1)] for i in range(h-1): new_list = [] for element in l: new_list += add(element) l = new_list return [self.element_class(self, [x for x in p if x!=0]) for p in l] def cardinality(self): """ Return the cardinality of ``self``. EXAMPLES:: sage: PartitionsInBox(2, 3).cardinality() 10 TESTS: Check the corner case:: sage: PartitionsInBox(0, 0).cardinality() 1 sage: PartitionsInBox(0, 1).cardinality() 1 sage: all(PartitionsInBox(a, b).cardinality() == ....: len(PartitionsInBox(a, b).list()) ....: for a in range(6) for b in range(6)) True """ return binomial(self.h + self.w, self.w) class Partitions_constraints(IntegerListsLex): """ For unpickling old constrained ``Partitions_constraints`` objects created with sage <= 3.4.1. See :class:`Partitions`. """ def __setstate__(self, data): r""" TESTS:: sage: dmp = b'x\x9ck`J.NLO\xd5K\xce\xcfM\xca\xccK,\xd1+H,*\xc9,\xc9\xcc\xcf\xe3\n\x80\xb1\x8a\xe3\x93\x81DIQbf^I1W!\xa3fc!Sm!\xb3F(7\x92x!Km!k(GnbE<\xc8\x88B6\x88\xb9E\x99y\xe9\xc5z@\x05\xa9\xe9\xa9E\\\xb9\x89\xd9\xa9\xf10N!{(\xa3QkP!Gq(c^\x06\x90c\x0c\xe4p\x96&\xe9\x01\x00\xc2\xe53\xfd' sage: sp = loads(dmp); sp Integer lists of sum 3 satisfying certain constraints sage: sp.list() [[2, 1], [1, 1, 1]] """ n = data['n'] self.__class__ = Partitions_with_constraints constraints = {'max_slope' : 0, 'min_part' : 1} constraints.update(data['constraints']) self.__init__(n, **constraints) class Partitions_with_constraints(IntegerListsLex): """ Partitions which satisfy a set of constraints. EXAMPLES:: sage: P = Partitions(6, inner=[1,1], max_slope=-1) sage: list(P) [[5, 1], [4, 2], [3, 2, 1]] TESTS:: sage: P = Partitions(6, min_part=2, max_slope=-1) sage: TestSuite(P).run() Test that :trac:`15525` is fixed:: sage: loads(dumps(P)) == P True """ # def __init__(self, n, **kwargs): # """ # Initialize ``self``. # """ # IntegerListsLex.__init__(self, n, **kwargs) Element = Partition options = Partitions.options ###################### # Regular Partitions # ###################### class RegularPartitions(Partitions): r""" Base class for `\ell`-regular partitions. Let `\ell` be a positive integer. A partition `\lambda` is `\ell`-*regular* if `m_i < \ell` for all `i`, where `m_i` is the multiplicity of `i` in `\lambda`. .. NOTE:: This is conjugate to the notion of `\ell`-*restricted* partitions, where the difference between any two consecutive parts is `< \ell`. INPUT: - ``ell`` -- the positive integer `\ell` - ``is_infinite`` -- boolean; if the subset of `\ell`-regular partitions is infinite """ def __init__(self, ell, is_infinite=False): """ Initialize ``self``. EXAMPLES:: sage: P = Partitions(regular=2) sage: TestSuite(P).run() """ self._ell = ell Partitions.__init__(self, is_infinite) def ell(self): r""" Return the value `\ell`. EXAMPLES:: sage: P = Partitions(regular=2) sage: P.ell() 2 """ return self._ell def __contains__(self, x): """ TESTS:: sage: P = Partitions(regular=3) sage: [5] in P True sage: [] in P True sage: [3, 3, 2, 2] in P True sage: [3, 3, 3, 1] in P False sage: [4, 0, 0, 0, 0, 0] in P True sage: Partition([4,2,2,1]) in P True sage: Partition([4,2,2,2]) in P False sage: Partition([10,1]) in P True """ if not Partitions.__contains__(self, x): return False if isinstance(x, Partition): return max(x.to_exp() + [0]) < self._ell return all(x.count(i) < self._ell for i in set(x) if i > 0) def _fast_iterator(self, n, max_part): """ A fast (recursive) iterator which returns a list. EXAMPLES:: sage: P = Partitions(regular=3) sage: list(P._fast_iterator(5, 5)) [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1]] sage: list(P._fast_iterator(5, 3)) [[3, 2], [3, 1, 1], [2, 2, 1]] sage: list(P._fast_iterator(5, 6)) [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1]] """ if n == 0: yield [] return if n < max_part: max_part = n bdry = self._ell - 1 for i in reversed(range(1, max_part+1)): for p in self._fast_iterator(n-i, i): if p.count(i) < bdry: yield [i] + p class RegularPartitions_all(RegularPartitions): r""" The class of all `\ell`-regular partitions. INPUT: - ``ell`` -- the positive integer `\ell` .. SEEALSO:: :class:`~sage.combinat.partition.RegularPartitions` """ def __init__(self, ell): """ Initialize ``self``. EXAMPLES:: sage: P = Partitions(regular=4) sage: TestSuite(P).run() 1-regular partitions:: sage: P = Partitions(regular=1) sage: P in FiniteEnumeratedSets() True sage: TestSuite(P).run() """ RegularPartitions.__init__(self, ell, bool(ell > 1)) def _repr_(self): """ TESTS:: sage: from sage.combinat.partition import RegularPartitions_all sage: RegularPartitions_all(3) 3-Regular Partitions """ return "{}-Regular Partitions".format(self._ell) def __iter__(self): """ Iterate over ``self``. EXAMPLES:: sage: P = Partitions(regular=3) sage: it = P.__iter__() sage: [next(it) for x in range(10)] [[], [1], [2], [1, 1], [3], [2, 1], [4], [3, 1], [2, 2], [2, 1, 1]] Check that 1-regular partitions works (:trac:`20584`):: sage: P = Partitions(regular=1) sage: list(P) [[]] """ if self._ell == 1: yield self.element_class(self, []) return n = 0 while True: for p in self._fast_iterator(n, n): yield self.element_class(self, p) n += 1 class RegularPartitions_truncated(RegularPartitions): r""" The class of `\ell`-regular partitions with max length `k`. INPUT: - ``ell`` -- the integer `\ell` - ``max_len`` -- integer; the maximum length .. SEEALSO:: :class:`~sage.combinat.partition.RegularPartitions` """ def __init__(self, ell, max_len): """ Initialize ``self``. EXAMPLES:: sage: P = Partitions(regular=4, max_length=3) sage: TestSuite(P).run() """ self._max_len = max_len RegularPartitions.__init__(self, ell, bool(ell > 1)) def max_length(self): """ Return the maximum length of the partitions of ``self``. EXAMPLES:: sage: P = Partitions(regular=4, max_length=3) sage: P.max_length() 3 """ return self._max_len def __contains__(self, x): """ TESTS:: sage: P = Partitions(regular=4, max_length=3) sage: [3, 3, 3] in P True sage: [] in P True sage: [4, 2, 1, 1] in P False """ return len(x) <= self._max_len and RegularPartitions.__contains__(self, x) def _repr_(self): """ TESTS:: sage: from sage.combinat.partition import RegularPartitions_truncated sage: RegularPartitions_truncated(4, 3) 4-Regular Partitions with max length 3 """ return "{}-Regular Partitions with max length {}".format(self._ell, self._max_len) def __iter__(self): """ Iterate over ``self``. EXAMPLES:: sage: P = Partitions(regular=3, max_length=2) sage: it = P.__iter__() sage: [next(it) for x in range(10)] [[], [1], [2], [1, 1], [3], [2, 1], [4], [3, 1], [2, 2], [5]] Check that 1-regular partitions works (:trac:`20584`):: sage: P = Partitions(regular=1, max_length=2) sage: list(P) [[]] """ if self._ell == 1: yield self.element_class(self, []) return n = 0 while True: for p in self._fast_iterator(n, n): yield self.element_class(self, p) n += 1 def _fast_iterator(self, n, max_part, depth=0): """ A fast (recursive) iterator which returns a list. EXAMPLES:: sage: P = Partitions(regular=2, max_length=2) sage: list(P._fast_iterator(5, 5)) [[5], [4, 1], [3, 2]] sage: list(P._fast_iterator(5, 3)) [[3, 2]] sage: list(P._fast_iterator(5, 6)) [[5], [4, 1], [3, 2]] """ if n == 0 or depth >= self._max_len: yield [] return # Special case if depth + 1 == self._max_len: if max_part >= n: yield [n] return if n < max_part: max_part = n bdry = self._ell - 1 for i in reversed(range(1, max_part+1)): for p in self._fast_iterator(n-i, i, depth+1): if p.count(i) < bdry: yield [i] + p class RegularPartitions_bounded(RegularPartitions): r""" The class of `\ell`-regular `k`-bounded partitions. INPUT: - ``ell`` -- the integer `\ell` - ``k`` -- integer; the value `k` .. SEEALSO:: :class:`~sage.combinat.partition.RegularPartitions` """ def __init__(self, ell, k): """ Initialize ``self``. EXAMPLES:: sage: P = Partitions(regular=4, max_part=3) sage: TestSuite(P).run() 1-regular partitions:: sage: P = Partitions(regular=1, max_part=3) sage: P in FiniteEnumeratedSets() True sage: TestSuite(P).run() """ self.k = k RegularPartitions.__init__(self, ell, False) def __contains__(self, x): """ TESTS:: sage: P = Partitions(regular=4, max_part=3) sage: [3, 3, 3] in P True sage: [] in P True sage: [4, 2, 1] in P False """ return len(x) == 0 or (x[0] <= self.k and RegularPartitions.__contains__(self, x)) def _repr_(self): """ TESTS:: sage: from sage.combinat.partition import RegularPartitions_bounded sage: RegularPartitions_bounded(4, 3) 4-Regular 3-Bounded Partitions """ return "{}-Regular {}-Bounded Partitions".format(self._ell, self.k) def __iter__(self): """ Iterate over ``self``. EXAMPLES:: sage: P = Partitions(regular=2, max_part=3) sage: list(P) [[3, 2, 1], [3, 2], [3, 1], [3], [2, 1], [2], [1], []] Check that 1-regular partitions works (:trac:`20584`):: sage: P = Partitions(regular=1, max_part=3) sage: list(P) [[]] """ k = self.k for n in reversed(range(k*(k+1)/2 * self._ell)): for p in self._fast_iterator(n, k): yield self.element_class(self, p) class RegularPartitions_n(RegularPartitions, Partitions_n): r""" The class of `\ell`-regular partitions of `n`. INPUT: - ``n`` -- the integer `n` to partition - ``ell`` -- the integer `\ell` .. SEEALSO:: :class:`~sage.combinat.partition.RegularPartitions` """ def __init__(self, n, ell): """ Initialize ``self``. EXAMPLES:: sage: P = Partitions(5, regular=3) sage: TestSuite(P).run() 1-regular partitions:: sage: P = Partitions(5, regular=1) sage: TestSuite(P).run() """ RegularPartitions.__init__(self, ell) Partitions_n.__init__(self, n) def _repr_(self): """ TESTS:: sage: from sage.combinat.partition import RegularPartitions_n sage: RegularPartitions_n(3, 5) 5-Regular Partitions of the integer 3 """ return "{}-Regular Partitions of the integer {}".format(self._ell, self.n) def __contains__(self, x): """ TESTS:: sage: P = Partitions(5, regular=3) sage: [3, 1, 1] in P True sage: [3, 2, 1] in P False """ return RegularPartitions.__contains__(self, x) and sum(x) == self.n def __iter__(self): """ Iterate over ``self``. EXAMPLES:: sage: P = Partitions(5, regular=3) sage: list(P) [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1]] """ for p in self._fast_iterator(self.n, self.n): yield self.element_class(self, p) def cardinality(self): """ Return the cardinality of ``self``. EXAMPLES:: sage: P = Partitions(5, regular=3) sage: P.cardinality() 5 sage: P = Partitions(5, regular=6) sage: P.cardinality() 7 sage: P.cardinality() == Partitions(5).cardinality() True TESTS: Check the corner case:: sage: P = Partitions(0, regular=3) sage: P.cardinality() 1 Check for 1-regular partitions:: sage: P = Partitions(0, regular=1) sage: P.cardinality() 1 sage: P = Partitions(5, regular=1) sage: P.cardinality() 0 """ if self._ell > self.n: return Partitions_n.cardinality(self) return ZZ.sum(1 for x in self) def _an_element_(self): """ Returns a partition in ``self``. EXAMPLES:: sage: P = Partitions(5, regular=2) sage: P._an_element_() [4, 1] sage: P = Partitions(0, regular=1) sage: P._an_element_() [] sage: P = Partitions(5, regular=1) sage: P._an_element_() Traceback (most recent call last): ... EmptySetError """ if self._ell == 1 and self.n > 0: from sage.categories.sets_cat import EmptySetError raise EmptySetError return Partitions_n._an_element_(self) ###################### # Ordered Partitions # ###################### class OrderedPartitions(Partitions): """ The class of ordered partitions of `n`. If `k` is specified, then this contains only the ordered partitions of length `k`. An *ordered partition* of a nonnegative integer `n` means a list of positive integers whose sum is `n`. This is the same as a composition of `n`. .. NOTE:: It is recommended that you use :meth:`Compositions` instead as :meth:`OrderedPartitions` wraps GAP. EXAMPLES:: sage: OrderedPartitions(3) Ordered partitions of 3 sage: OrderedPartitions(3).list() [[3], [2, 1], [1, 2], [1, 1, 1]] sage: OrderedPartitions(3,2) Ordered partitions of 3 of length 2 sage: OrderedPartitions(3,2).list() [[2, 1], [1, 2]] sage: OrderedPartitions(10,k=2).list() [[9, 1], [8, 2], [7, 3], [6, 4], [5, 5], [4, 6], [3, 7], [2, 8], [1, 9]] sage: OrderedPartitions(4).list() [[4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]] """ @staticmethod def __classcall_private__(cls, n, k=None): """ Normalize the input to ensure a unique representation. TESTS:: sage: P = OrderedPartitions(3,2) sage: P2 = OrderedPartitions(3,2) sage: P is P2 True """ if k is not None: k = Integer(k) return super(OrderedPartitions, cls).__classcall__(cls, Integer(n), k) def __init__(self, n, k): """ Initialize ``self``. EXAMPLES:: sage: o = OrderedPartitions(4,2) TESTS:: sage: TestSuite( OrderedPartitions(5,3) ).run() """ Partitions.__init__(self) self.n = n self.k = k def __contains__(self, x): """ Check to see if ``x`` is an element of ``self``. EXAMPLES:: sage: o = OrderedPartitions(4,2) sage: [2,1] in o False sage: [2,2] in o True sage: [1,2,1] in o False """ C = composition.Compositions(self.n, length=self.k) return C(x) in composition.Compositions(self.n, length=self.k) def _repr_(self): """ Return a string representation of ``self``. EXAMPLES:: sage: OrderedPartitions(3) # indirect doctest Ordered partitions of 3 sage: OrderedPartitions(3,2) # indirect doctest Ordered partitions of 3 of length 2 """ string = "Ordered partitions of %s" % self.n if self.k is not None: string += " of length %s" % self.k return string def list(self): """ Return a list of partitions in ``self``. EXAMPLES:: sage: OrderedPartitions(3).list() [[3], [2, 1], [1, 2], [1, 1, 1]] sage: OrderedPartitions(3,2).list() [[2, 1], [1, 2]] """ from sage.libs.gap.libgap import libgap n = self.n k = self.k if k is None: ans = libgap.OrderedPartitions(ZZ(n)) else: ans = libgap.OrderedPartitions(ZZ(n), ZZ(k)) result = ans.sage() result.reverse() return result def cardinality(self): """ Return the cardinality of ``self``. EXAMPLES:: sage: OrderedPartitions(3).cardinality() 4 sage: OrderedPartitions(3,2).cardinality() 2 sage: OrderedPartitions(10,2).cardinality() 9 sage: OrderedPartitions(15).cardinality() 16384 """ from sage.libs.gap.libgap import libgap n = self.n k = self.k if k is None: ans = libgap.NrOrderedPartitions(n) else: ans = libgap.NrOrderedPartitions(n, k) return ZZ(ans) ########################## # Partitions Greatest LE # ########################## class PartitionsGreatestLE(UniqueRepresentation, IntegerListsLex): """ The class of all (unordered) "restricted" partitions of the integer `n` having parts less than or equal to the integer `k`. EXAMPLES:: sage: PartitionsGreatestLE(10, 2) Partitions of 10 having parts less than or equal to 2 sage: PartitionsGreatestLE(10, 2).list() [[2, 2, 2, 2, 2], [2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] sage: [4,3,2,1] in PartitionsGreatestLE(10, 2) False sage: [2,2,2,2,2] in PartitionsGreatestLE(10, 2) True sage: PartitionsGreatestLE(10, 2).first().parent() Partitions... """ def __init__(self, n, k): """ Initialize ``self``. TESTS:: sage: p = PartitionsGreatestLE(10, 2) sage: p.n, p.k (10, 2) sage: TestSuite(p).run() """ IntegerListsLex.__init__(self, n, max_slope=0, min_part=1, max_part=k) self.n = n self.k = k def _repr_(self): """ Return a string representation of ``self``. TESTS:: sage: PartitionsGreatestLE(10, 2) # indirect doctest Partitions of 10 having parts less than or equal to 2 """ return "Partitions of %s having parts less than or equal to %s" % (self.n, self.k) def cardinality(self): """ Return the cardinality of ``self``. EXAMPLES:: sage: PartitionsGreatestLE(9, 5).cardinality() 23 TESTS:: sage: all(PartitionsGreatestLE(n, a).cardinality() == ....: len(PartitionsGreatestLE(n, a).list()) ....: for n in range(20) for a in range(6)) True """ return sum(number_of_partitions_length(self.n, i) for i in range(self.k+1)) Element = Partition options = Partitions.options ########################## # Partitions Greatest EQ # ########################## class PartitionsGreatestEQ(UniqueRepresentation, IntegerListsLex): """ The class of all (unordered) "restricted" partitions of the integer `n` having all its greatest parts equal to the integer `k`. EXAMPLES:: sage: PartitionsGreatestEQ(10, 2) Partitions of 10 having greatest part equal to 2 sage: PartitionsGreatestEQ(10, 2).list() [[2, 2, 2, 2, 2], [2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1]] sage: [4,3,2,1] in PartitionsGreatestEQ(10, 2) False sage: [2,2,2,2,2] in PartitionsGreatestEQ(10, 2) True The empty partition has no maximal part, but it is contained in the set of partitions with any specified maximal part:: sage: PartitionsGreatestEQ(0, 2).list() [[]] TESTS:: sage: [1]*10 in PartitionsGreatestEQ(10, 2) False sage: PartitionsGreatestEQ(10, 2).first().parent() Partitions... """ def __init__(self, n, k): """ Initialize ``self``. TESTS:: sage: p = PartitionsGreatestEQ(10, 2) sage: p.n, p.k (10, 2) sage: TestSuite(p).run() """ IntegerListsLex.__init__(self, n, max_slope=0, max_part=k, floor=[k]) self.n = n self.k = k def _repr_(self): """ Return a string representation of ``self``. TESTS:: sage: PartitionsGreatestEQ(10, 2) # indirect doctest Partitions of 10 having greatest part equal to 2 """ return "Partitions of %s having greatest part equal to %s" % (self.n, self.k) def cardinality(self): """ Return the cardinality of ``self``. EXAMPLES:: sage: PartitionsGreatestEQ(10, 2).cardinality() 5 TESTS:: sage: all(PartitionsGreatestEQ(n, a).cardinality() == ....: len(PartitionsGreatestEQ(n, a).list()) ....: for n in range(20) for a in range(6)) True """ if not self.n: return 1 return number_of_partitions_length(self.n, self.k) Element = Partition options = Partitions.options ######################### # Restricted Partitions # ######################### class RestrictedPartitions_generic(Partitions): r""" Base class for `\ell`-restricted partitions. Let `\ell` be a positive integer. A partition `\lambda` is `\ell`-*restricted* if `\lambda_i - \lambda_{i+1} < \ell` for all `i`, including rows of length 0. .. NOTE:: This is conjugate to the notion of `\ell`-*regular* partitions, where the multiplicity of any parts is at most `\ell`. INPUT: - ``ell`` -- the positive integer `\ell` - ``is_infinite`` -- boolean; if the subset of `\ell`-restricted partitions is infinite """ def __init__(self, ell, is_infinite=False): """ Initialize ``self``. EXAMPLES:: sage: P = Partitions(restricted=2) sage: TestSuite(P).run() """ self._ell = ell Partitions.__init__(self, is_infinite) def ell(self): r""" Return the value `\ell`. EXAMPLES:: sage: P = Partitions(restricted=2) sage: P.ell() 2 """ return self._ell def __contains__(self, x): """ TESTS:: sage: P = Partitions(restricted=3) sage: [5] in P False sage: [2] in P True sage: [] in P True sage: [3, 3, 3, 3, 2, 2] in P True sage: [3, 3, 3, 1] in P True sage: [8, 3, 3, 1] in P False sage: [2, 0, 0, 0, 0, 0] in P True sage: Partition([4,2,2,1]) in P True sage: Partition([4,2,2,2]) in P True sage: Partition([6,6,6,6,4,3,2]) in P True sage: Partition([7,6,6,2]) in P False sage: Partition([6,5]) in P False sage: Partition([10,1]) in P False sage: Partition([3,3] + [1]*10) in P True """ if not Partitions.__contains__(self, x): return False if x == []: return True return (all(x[i] - x[i+1] < self._ell for i in range(len(x)-1)) and x[-1] < self._ell) def _fast_iterator(self, n, max_part): """ A fast (recursive) iterator which returns a list. EXAMPLES:: sage: P = Partitions(restricted=3) sage: list(P._fast_iterator(5, 5)) [[3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]] sage: list(P._fast_iterator(5, 2)) [[2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]] TESTS:: sage: for n in range(10): ....: for ell in range(2, n): ....: Pres = Partitions(n, restricted=ell) ....: Preg = Partitions(n, regular=ell) ....: assert set(Pres) == set(p.conjugate() for p in Preg) """ if n == 0: yield [] return if n < max_part: max_part = n for i in range(max_part, 0, -1): for p in self._fast_iterator(n-i, i): if (p and i - p[0] >= self._ell) or (not p and i >= self._ell): break yield [i] + p class RestrictedPartitions_all(RestrictedPartitions_generic): r""" The class of all `\ell`-restricted partitions. INPUT: - ``ell`` -- the positive integer `\ell` .. SEEALSO:: :class:`~sage.combinat.partition.RestrictedPartitions_generic` """ def __init__(self, ell): """ Initialize ``self``. EXAMPLES:: sage: P = Partitions(restricted=4) sage: TestSuite(P).run() """ RestrictedPartitions_generic.__init__(self, ell, True) def _repr_(self): """ TESTS:: sage: from sage.combinat.partition import RestrictedPartitions_all sage: RestrictedPartitions_all(3) 3-Restricted Partitions """ return "{}-Restricted Partitions".format(self._ell) def __iter__(self): """ Iterate over ``self``. EXAMPLES:: sage: P = Partitions(restricted=3) sage: it = P.__iter__() sage: [next(it) for x in range(10)] [[], [1], [2], [1, 1], [2, 1], [1, 1, 1], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] """ n = 0 while True: for p in self._fast_iterator(n, n): yield self.element_class(self, p) n += 1 class RestrictedPartitions_n(RestrictedPartitions_generic, Partitions_n): r""" The class of `\ell`-restricted partitions of `n`. INPUT: - ``n`` -- the integer `n` to partition - ``ell`` -- the integer `\ell` .. SEEALSO:: :class:`~sage.combinat.partition.RestrictedPartitions_generic` """ def __init__(self, n, ell): """ Initialize ``self``. EXAMPLES:: sage: P = Partitions(5, restricted=3) sage: TestSuite(P).run() """ RestrictedPartitions_generic.__init__(self, ell) Partitions_n.__init__(self, n) def _repr_(self): """ TESTS:: sage: from sage.combinat.partition import RestrictedPartitions_n sage: RestrictedPartitions_n(3, 5) 5-Restricted Partitions of the integer 3 """ return "{}-Restricted Partitions of the integer {}".format(self._ell, self.n) def __contains__(self, x): """ TESTS:: sage: P = Partitions(5, regular=3) sage: [3, 1, 1] in P True sage: [3, 2, 1] in P False """ return RestrictedPartitions_generic.__contains__(self, x) and sum(x) == self.n def __iter__(self): """ Iterate over ``self``. EXAMPLES:: sage: P = Partitions(5, restricted=3) sage: list(P) [[3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]] """ for p in self._fast_iterator(self.n, self.n): yield self.element_class(self, p) def cardinality(self): """ Return the cardinality of ``self``. EXAMPLES:: sage: P = Partitions(5, restricted=3) sage: P.cardinality() 5 sage: P = Partitions(5, restricted=6) sage: P.cardinality() 7 sage: P.cardinality() == Partitions(5).cardinality() True """ if self._ell > self.n: return Partitions_n.cardinality(self) return ZZ.sum(ZZ.one() for x in self) def _an_element_(self): """ Return an element of ``self``. EXAMPLES:: sage: P = Partitions(5, restricted=3) sage: P.an_element() [2, 1, 1, 1] sage: Partitions(0, restricted=3).an_element() [] sage: Partitions(1, restricted=3).an_element() [1] """ return self.element_class(self, Partitions_n._an_element_(self).conjugate()) ######################################################################### #### partitions def number_of_partitions(n, algorithm='default'): r""" Returns the number of partitions of `n` with, optionally, at most `k` parts. The options of :meth:`number_of_partitions()` are being deprecated :trac:`13072` in favour of :meth:`Partitions_n.cardinality()` so that :meth:`number_of_partitions()` can become a stripped down version of the fastest algorithm available (currently this is using FLINT). INPUT: - ``n`` -- an integer - ``algorithm`` -- (default: 'default') [Will be deprecated except in Partition().cardinality() ] - ``'default'`` -- If ``k`` is not ``None``, then use Gap (very slow). If ``k`` is ``None``, use FLINT. - ``'flint'`` -- use FLINT EXAMPLES:: sage: v = Partitions(5).list(); v [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]] sage: len(v) 7 The input must be a nonnegative integer or a ``ValueError`` is raised. :: sage: number_of_partitions(-5) Traceback (most recent call last): ... ValueError: n (=-5) must be a nonnegative integer :: sage: number_of_partitions(10) 42 sage: number_of_partitions(3) 3 sage: number_of_partitions(10) 42 sage: number_of_partitions(40) 37338 sage: number_of_partitions(100) 190569292 sage: number_of_partitions(100000) 27493510569775696512677516320986352688173429315980054758203125984302147328114964173055050741660736621590157844774296248940493063070200461792764493033510116079342457190155718943509725312466108452006369558934464248716828789832182345009262853831404597021307130674510624419227311238999702284408609370935531629697851569569892196108480158600569421098519 A generating function for the number of partitions `p_n` is given by the reciprocal of Euler's function: .. MATH:: \sum_{n=0}^{\infty} p_n x^n = \prod_{k=1}^{\infty} \left( \frac{1}{1-x^k} \right). We use Sage to verify that the first several coefficients do instead agree:: sage: q = PowerSeriesRing(QQ, 'q', default_prec=9).gen() sage: prod([(1-q^k)^(-1) for k in range(1,9)]) ## partial product of 1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + 15*q^7 + 22*q^8 + O(q^9) sage: [number_of_partitions(k) for k in range(2,10)] [2, 3, 5, 7, 11, 15, 22, 30] REFERENCES: - :wikipedia:`Partition\_(number\_theory)` TESTS:: sage: n = 500 + randint(0,500) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 True sage: n = 1500 + randint(0,1500) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 True sage: n = 1000000 + randint(0,1000000) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 True sage: n = 1000000 + randint(0,1000000) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 True sage: n = 1000000 + randint(0,1000000) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 True sage: n = 1000000 + randint(0,1000000) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 True sage: n = 1000000 + randint(0,1000000) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 True sage: n = 1000000 + randint(0,1000000) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 True sage: n = 100000000 + randint(0,100000000) sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 # long time (4s on sage.math, 2011) True """ n = ZZ(n) if n < 0: raise ValueError("n (=%s) must be a nonnegative integer"%n) elif n == 0: return ZZ.one() if algorithm == 'default': algorithm = 'flint' if algorithm == 'flint': return cached_number_of_partitions(n) raise ValueError("unknown algorithm '%s'"%algorithm) def number_of_partitions_length(n, k, algorithm='hybrid'): r""" Return the number of partitions of `n` with length `k`. This is a wrapper for GAP's ``NrPartitions`` function. EXAMPLES:: sage: from sage.combinat.partition import number_of_partitions_length sage: number_of_partitions_length(5, 2) 2 sage: number_of_partitions_length(10, 2) 5 sage: number_of_partitions_length(10, 4) 9 sage: number_of_partitions_length(10, 0) 0 sage: number_of_partitions_length(10, 1) 1 sage: number_of_partitions_length(0, 0) 1 sage: number_of_partitions_length(0, 1) 0 """ if algorithm == 'hybrid': # Do the hybrid algorithm # Special relations between n and k if n < k: return ZZ.zero() if n == k and n >= 0: return ZZ.one() # Special case of n if n <= 0: # Note: we've already checked the case when n == k == 0 return ZZ.zero() # Small values of k if k <= 0: return ZZ.zero() if k == 1: return ZZ.one() if k == 2: return n // 2 # We have one column of length `k` and all (inner) partitions of # size `n-k` can't have length more than `k` if n <= k*2: return number_of_partitions(n - k) # Fall back to GAP from sage.libs.gap.libgap import libgap return ZZ(libgap.NrPartitions(ZZ(n), ZZ(k))) ########## # trac 14225: Partitions() is frequently used, but only weakly cached. Hence, # establish a strong reference to it. _Partitions = Partitions() # Rather than caching an under-used function I have cached the default # number_of_partitions functions which is currently using FLINT. # AM trac #13072 cached_number_of_partitions = cached_function( flint_number_of_partitions ) # October 2012: fixing outdated pickles which use classes being deprecated from sage.misc.persist import register_unpickle_override from sage.combinat.partition_tuple import PartitionTuples_level_size register_unpickle_override('sage.combinat.partition', 'PartitionTuples_nk', PartitionTuples_level_size) register_unpickle_override('sage.combinat.partition', 'Partition_class', Partition) register_unpickle_override('sage.combinat.partition', 'OrderedPartitions_nk', OrderedPartitions) register_unpickle_override('sage.combinat.partition', 'PartitionsInBox_hw', PartitionsInBox) register_unpickle_override('sage.combinat.partition', 'PartitionsGreatestLE_nk', PartitionsGreatestLE) register_unpickle_override('sage.combinat.partition', 'PartitionsGreatestEQ_nk', PartitionsGreatestEQ)
32.194981
355
0.506121
7c213e6cb69d098604bf0835e3ea1c318af1588e
10,546
py
Python
hoomd/integrate.py
kmoskovtsev/HOOMD-Blue-fork
99560563a5ba9e082b513764bae51a84f48fdc70
[ "BSD-3-Clause" ]
null
null
null
hoomd/integrate.py
kmoskovtsev/HOOMD-Blue-fork
99560563a5ba9e082b513764bae51a84f48fdc70
[ "BSD-3-Clause" ]
null
null
null
hoomd/integrate.py
kmoskovtsev/HOOMD-Blue-fork
99560563a5ba9e082b513764bae51a84f48fdc70
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2009-2016 The Regents of the University of Michigan # This file is part of the HOOMD-blue project, released under the BSD 3-Clause License. # Maintainer: joaander / All Developers are free to add commands for new features ## \package hoomd.integrate # \brief Commands that integrate the equations of motion # # To integrate the system forward in time, an integration mode must be set. Only one integration mode can be active at # a time, and the last \c integrate.mode_* command before the run() command is the one that will take effect. It is # possible to set one mode, run() for a certain number of steps and then switch to another mode before the next run() # command. # # The most commonly used mode is integrate.mode_standard . It specifies a standard mode where, at each time # step, all of the specified forces are evaluated and used in moving the system forward to the next step. # integrate.mode_standard doesn't integrate any particles by itself, one or more compatible integration methods must # be specified before the run() command. Like commands that specify forces, integration methods are \b persistent and # remain set until they are disabled (this differs greatly from HOOMD-blue behavior in all versions prior to 0.9.0). # The benefit and reason for this change is that now multiple integration methods can be specified on different particle # groups, allowing portions of the system to be fixed, integrated at a different temperature, etc... # # To clarify, the following series of commands will run for 1000 time steps in the NVT ensemble and then switch to # NVE for another 1000 steps. # # \code # all = group.all() # integrate.mode_standard(dt=0.005) # nvt = integrate.nvt(group=all, T=1.2, tau=0.5) # run(1000) # nvt.disable() # integrate.nve(group=all) # run(1000) # \endcode # # For more detailed information on the interaction of integration methods and integration modes, see # integrate.mode_standard. # # Some integrators provide parameters that can be changed between runs. # In order to access the integrator to change it, it needs to be saved # in a variable. For example: # \code # integrator = integrate.nvt(group=all, T=1.2, tau=0.5) # run(100) # integrator.set_params(T=1.0) # run(100) # \endcode # This code snippet runs the first 100 time steps with T=1.2 and the next 100 with T=1.0 from hoomd import _hoomd; import hoomd; import copy; import sys; ## \internal # \brief Base class for integrators # # An integrator in hoomd_script reflects an Integrator in c++. It is responsible # for all high-level management that happens behind the scenes for hoomd_script # writers. 1) The instance of the c++ integrator itself is tracked 2) All # forces created so far in the simulation are updated in the cpp_integrator # whenever run() is called. class _integrator(hoomd.meta._metadata): ## \internal # \brief Constructs the integrator # # This doesn't really do much bet set some member variables to None def __init__(self): # check if initialization has occured if not hoomd.init.is_initialized(): hoomd.context.msg.error("Cannot create integrator before initialization\n"); raise RuntimeError('Error creating integrator'); # by default, integrators do not support methods self.cpp_integrator = None; self.supports_methods = False; # save ourselves in the global variable hoomd.context.current.integrator = self; # base class constructor hoomd.meta._metadata.__init__(self) ## \var cpp_integrator # \internal # \brief Stores the C++ side Integrator managed by this class ## \var supports_methods # \internal # \brief True if this integrator supports integration methods # \note If hoomd ever needs to support multiple TYPES of methods, we could just change this to a string naming the # type that is supported and add a type string to each of the integration_methods. ## \internal # \brief Checks that proper initialization has completed def check_initialization(self): # check that we have been initialized properly if self.cpp_integrator is None: hoomd.context.msg.error('Bug in hoomd_script: cpp_integrator not set, please report\n'); raise RuntimeError(); ## \internal # \brief Updates the integrators in the reflected c++ class def update_forces(self): self.check_initialization(); # set the forces self.cpp_integrator.removeForceComputes(); for f in hoomd.context.current.forces: if f.cpp_force is None: hoomd.context.msg.error('Bug in hoomd_script: cpp_force not set, please report\n'); raise RuntimeError('Error updating forces'); if f.log or f.enabled: f.update_coeffs(); if f.enabled: self.cpp_integrator.addForceCompute(f.cpp_force); # set the constraint forces for f in hoomd.context.current.constraint_forces: if f.cpp_force is None: hoomd.context.msg.error('Bug in hoomd_script: cpp_force not set, please report\n'); raise RuntimeError('Error updating forces'); if f.enabled: self.cpp_integrator.addForceConstraint(f.cpp_force); # register any composite body forces if f.composite: self.cpp_integrator.addForceComposite(f.cpp_force); f.update_coeffs(); ## \internal # \brief Updates the integration methods in the reflected c++ class def update_methods(self): self.check_initialization(); # if we support methods, add them all to the list if self.supports_methods: self.cpp_integrator.removeAllIntegrationMethods(); if len(hoomd.context.current.integration_methods) == 0: hoomd.context.msg.error('This integrator requires that one or more integration methods be specified.\n'); raise RuntimeError('Error initializing integrator methods'); for m in hoomd.context.current.integration_methods: self.cpp_integrator.addIntegrationMethod(m.cpp_method); else: if len(hoomd.context.current.integration_methods) > 0: hoomd.context.msg.error("This integrator does not support the use of integration methods,\n"); hoomd.context.msg.error("but some have been specified in the script. Remove them or use\n"); hoomd.context.msg.error("a different integrator.\n"); raise RuntimeError('Error initializing integrator methods'); ## \internal # \brief Counts the number of degrees of freedom and updates each hoomd.compute.thermo specified def update_thermos(self): self.check_initialization(); for t in hoomd.context.current.thermos: ndof = self.cpp_integrator.getNDOF(t.group.cpp_group); t.cpp_compute.setNDOF(ndof); ndof_rot = self.cpp_integrator.getRotationalNDOF(t.group.cpp_group); t.cpp_compute.setRotationalNDOF(ndof_rot); ## \internal # \brief Base class for integration methods # # An integration_method in hoomd_script reflects an IntegrationMethod in c++. It is responsible for all high-level # management that happens behind the scenes for hoomd_script writers. 1) The instance of the c++ integration method # itself is tracked and added to the integrator and 2) methods are provided for disabling the integration method from # being active for the next run() # # The design of integration_method exactly mirrors that of _force for consistency class _integration_method(hoomd.meta._metadata): ## \internal # \brief Constructs the integration_method # # Initializes the cpp_method to None. def __init__(self): # check if initialization has occured if not hoomd.init.is_initialized(): hoomd.context.msg.error("Cannot create an integration method before initialization\n"); raise RuntimeError('Error creating integration method'); self.cpp_method = None; self.enabled = True; hoomd.context.current.integration_methods.append(self); # base class constructor hoomd.meta._metadata.__init__(self) ## \var enabled # \internal # \brief True if the integration method is enabled ## \var cpp_method # \internal # \brief Stores the C++ side IntegrationMethod managed by this class ## \internal # \brief Checks that proper initialization has completed def check_initialization(self): # check that we have been initialized properly if self.cpp_method is None: hoomd.context.msg.error('Bug in hoomd_script: cpp_method not set, please report\n'); raise RuntimeError(); def disable(self): R""" Disables the integration method. Examples:: method.disable() Executing the disable command will remove the integration method from the simulation. Any :py:func:`hoomd.run()` command executed after disabling an integration method will not apply the integration method to the particles during the simulation. A disabled integration method can be re-enabled with :py:meth:`enable()`. """ hoomd.util.print_status_line(); self.check_initialization() # check if we are already disabled if not self.enabled: hoomd.context.msg.warning("Ignoring command to disable an integration method that is already disabled"); return; self.enabled = False; hoomd.context.current.integration_methods.remove(self); def enable(self): R""" Enables the integration method. Examples:: method.enable() See Also: :py:meth:`disable()`. """ hoomd.util.print_status_line(); self.check_initialization(); # check if we are already disabled if self.enabled: hoomd.context.msg.warning("Ignoring command to enable an integration method that is already enabled"); return; self.enabled = True; hoomd.context.current.integration_methods.append(self); ## \internal # \brief Override get_metadata() to add 'enabled' field def get_metadata(self): data = hoomd.meta._metadata.get_metadata(self) data['enabled'] = self.enabled return data
39.796226
121
0.687085
e38ad8a4ab24f7ce8ef7cfca494f5c5602e44bba
392
py
Python
config/wsgi.py
jackxu-eb/hello-umi
7ad6482cf2e130474ee0330d2581cee423c7b7aa
[ "MIT" ]
null
null
null
config/wsgi.py
jackxu-eb/hello-umi
7ad6482cf2e130474ee0330d2581cee423c7b7aa
[ "MIT" ]
null
null
null
config/wsgi.py
jackxu-eb/hello-umi
7ad6482cf2e130474ee0330d2581cee423c7b7aa
[ "MIT" ]
null
null
null
""" WSGI config for hello_umi project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings') application = get_wsgi_application()
23.058824
78
0.785714
e482d58e2bdaa536968b34194d4de9c11e965a00
17,574
py
Python
main.py
thanassi360/grimoire-guide
b777fddf1a285c04af48e22ba165e43fc74b37cb
[ "MIT" ]
1
2016-04-12T23:00:13.000Z
2016-04-12T23:00:13.000Z
main.py
thanassi360/grimoire-guide
b777fddf1a285c04af48e22ba165e43fc74b37cb
[ "MIT" ]
null
null
null
main.py
thanassi360/grimoire-guide
b777fddf1a285c04af48e22ba165e43fc74b37cb
[ "MIT" ]
null
null
null
import webapp2 import urllib2 import json import re import datetime from uuid import uuid4 from api_data import * from google.appengine.ext import ndb from google.appengine.api import users class TimeEncoder(json.JSONEncoder): # Defines time format def default(self, obj): if isinstance(obj, datetime.datetime): return obj.strftime('%d/%m/%Y %H:%M') elif isinstance(obj, datetime.date): return obj.strftime('%d/%m/%Y') class Manifest(ndb.Model): # Defines Manifest entities version = ndb.StringProperty(required=True) checked = ndb.DateTimeProperty(auto_now=True, required=True) class Collection(ndb.Model): # Defines Collection entities name = ndb.StringProperty() img = ndb.StringProperty() x = ndb.IntegerProperty() y = ndb.IntegerProperty() order = ndb.IntegerProperty() class Set(ndb.Model): # Defines Set entities collection = ndb.StringProperty() shortname = ndb.StringProperty() name = ndb.StringProperty() img = ndb.StringProperty() x = ndb.IntegerProperty() y = ndb.IntegerProperty() order = ndb.IntegerProperty() class Card(ndb.Model): # Defines Card entities set = ndb.StringProperty() cardid = ndb.IntegerProperty() id = ndb.IntegerProperty() name = ndb.StringProperty() quote = ndb.StringProperty() body = ndb.TextProperty() icon = ndb.StringProperty() iconx = ndb.IntegerProperty() icony = ndb.IntegerProperty() img = ndb.StringProperty() x = ndb.IntegerProperty() y = ndb.IntegerProperty() order = ndb.IntegerProperty() class User(ndb.Model): # Defines User entities userid = ndb.StringProperty(required=True) name = ndb.StringProperty(required=True) email = ndb.StringProperty(required=True) index = ndb.StringProperty(required=True) gamertag = ndb.StringProperty() platform = ndb.StringProperty() joined = ndb.DateTimeProperty(auto_now_add=True, indexed=False) def tojson(self): return '{"user": "%s",' \ '"name": "%s",' \ '"email": "%s",' \ '"gamertag": "%s",' \ '"platform": "%s",' \ '"joined": "%s"}' % (self.userid, self.name, self.email, self.gamertag, self.platform, self.joined.strftime("%d/%m/%Y")) class Guide(ndb.Model): # Defines Guide entities userid = ndb.KeyProperty(kind=User, required=True) cardid = ndb.IntegerProperty(required=True) content = ndb.StringProperty() gid = ndb.StringProperty() youtube = ndb.StringProperty() created = ndb.DateTimeProperty(auto_now_add=True, required=True) class CollectionHandler(webapp2.RequestHandler): # Checks user and gets collection data def get(self): collections = Collection.query().fetch() user = users.get_current_user() if not user: current = "NotLoggedIn" else: currentuser = User.get_by_id(user.user_id()) current = currentuser.name query = [i.to_dict() for i in collections] query = sorted(query, key=lambda k: k.get('order', 0)) collections_json = json.dumps({"type": "collectionfeed", "name": current, "data": query}) self.response.write(collections_json) class SetHandler(webapp2.RequestHandler): # Gets set data def post(self): data = self.request.body query = [i.to_dict() for i in Set.query(Set.collection == data).fetch()] query = sorted(query, key=lambda k: k.get('order', 0)) set_json = json.dumps({"type": "setfeed", "set": data, "data": query}) self.response.write(set_json) class CardHandler(webapp2.RequestHandler): # Gets card data def post(self): data = self.request.body query = [i.to_dict() for i in Card.query(Card.set == data).fetch()] query = sorted(query, key=lambda k: k.get('order', 0)) card_json = json.dumps({"type": "cardfeed", "card": data, "data": query}) self.response.write(card_json) class CardViewHandler(webapp2.RequestHandler): # Gets guide data for a card def post(self): data = int(self.request.body) guides = Guide.query(Guide.cardid == data).fetch() guidelist = [] currentuser = users.get_current_user() if currentuser: username = users.get_current_user().user_id() else: username = "NotAUser" for guide in guides: if guide.userid.get().userid == username: current = "true" else: current = "false" name = guide.userid.get().name response = { 'user': name, 'content': guide.content, 'youtube': guide.youtube, 'created': guide.created.strftime("%H:%M %d/%m/%Y"), 'id': guide.gid, 'current': current } guidelist.append(response) self.response.write(json.dumps(guidelist)) class LoginHandler(webapp2.RequestHandler): # Logs a user in or registers new user def get(self): currentuser = users.get_current_user() if currentuser: find = User.query(User.userid == currentuser.user_id()).fetch() if find: user = users.get_current_user().user_id() callback = self.request.get("callback") self.request.headers["Content-Type"] = 'application/json' current = User.query(User.userid == user) sresponse = "" jsonop = None for user in current: sresponse += user.tojson() if callback is '': jsonop = sresponse else: jsonop = callback+"("+sresponse+")" self.response.write(jsonop) else: guid = str(uuid4()) user = User(userid=currentuser.user_id(), email=currentuser.email(), name=guid, index=guid.lower()) user.key = ndb.Key(User, currentuser.user_id()) user.put() else: self.redirect(users.create_login_url('/loggedin')) class LogoutHandler(webapp2.RequestHandler): # Logs user out def post(self): self.redirect(users.create_logout_url('/')) class UpdateHandler(webapp2.RequestHandler): # Updates users details def post(self): data = json.loads(self.request.body) name = data["name"] gamertag = data["gamertag"] platform = data["platform"] min_len = 4 max_len = 15 pattern = r"^(?i)[a-z0-9_-]{%s,%s}$" % (min_len, max_len) user = users.get_current_user().user_id() currentuser = User.get_by_id(user) checkavail = User.query(User.index == name.lower()).fetch() if checkavail: currentuser.gamertag = gamertag currentuser.platform = platform currentuser.put() stat = "userexists" msg = "Profile updated, except Username (already in use)." usr = currentuser.name else: if re.match(pattern, name): # regular expression to ensure that the username entered is valid currentuser.name = name currentuser.index = name.lower() currentuser.platform = platform currentuser.gamertag = gamertag currentuser.put() stat = "updated" msg = "Profile updated successfully." usr = name else: stat = "failed" msg = "Please check the details you inputted." usr = currentuser.name status = json.dumps({"status": stat, "msg": msg, "user": usr}) self.response.write(status) class GuideHandler(webapp2.RedirectHandler): # Saves users guide for a card def post(self): data = json.loads(self.request.body) cardid = data["card"] guide = data["body"] url = data["link"] user = users.get_current_user().user_id() userid = ndb.Key(User, user) ident = "G"+str(cardid) + str(user) guideobj = Guide(gid=ident, userid=userid, cardid=cardid, content=guide, youtube=url) guideobj.key = ndb.Key(Guide, ident) guideobj.put() stat = "Guide Saved" status = json.dumps({"status": stat}) self.response.write(status) class ManifestCollectionHandler(webapp2.RequestHandler): # Cron jobs is set to check Bungie.net DB version for Collections def get(self): request = urllib2.Request(mani, headers={"x-api-key": api_key}) doc = urllib2.urlopen(request).read() json_object = json.loads(doc) server = json_object['Response']['version'] # 1 finds the latest version online database = Manifest.get_by_id(101) # 2 looks for the version entry manifest_data = Manifest(id=101, version=server) if database: # 3 if local version exists, moves on pass else: # 4 if local version doesn't exist, manifest_data.put() # write entry with current server version populatecollections(define) # and trigger definition storage local = database.version # 5 gets local version from entry if server == local: # 6 if local and server match, moves on del local del server pass else: # 7 if local and server don't match, del local # deletes local version variable, del server # deletes server version variable populatecollections(define) # and trigger definition storage manifest_data.put() # 8 writes version (updates checked date) class ManifestSetHandler(webapp2.RequestHandler): # Cron jobs is set to check Bungie.net DB version for Sets def get(self): request = urllib2.Request(mani, headers={"x-api-key": api_key}) doc = urllib2.urlopen(request).read() json_object = json.loads(doc) server = json_object['Response']['version'] # 1 finds the latest version online database = Manifest.get_by_id(102) # 2 looks for the version entry manifest_data = Manifest(id=102, version=server) if database: # 3 if local version exists, moves on pass else: # 4 if local version doesn't exist, manifest_data.put() # write entry with current server version populatesets(define) # and trigger definition storage local = database.version # 5 gets local version from entry if server == local: # 6 if local and server match, moves on del local del server pass else: # 7 if local and server don't match, del local # deletes local version variable, del server # deletes server version variable populatesets(define) # and trigger definition storage manifest_data.put() # 8 writes version (updates checked date) class ManifestCardHandler(webapp2.RequestHandler): # Cron jobs is set to check Bungie.net DB version for Cards def get(self): request = urllib2.Request(mani, headers={"x-api-key": api_key}) doc = urllib2.urlopen(request).read() json_object = json.loads(doc) server = json_object['Response']['version'] # 1 finds the latest version online database = Manifest.get_by_id(103) # 2 looks for the version entry manifest_data = Manifest(id=103, version=server) if database: # 3 if local version exists, moves on pass else: # 4 if local version doesn't exist, manifest_data.put() # write entry with current server version populatecards(define) # and trigger definition storage local = database.version # 5 gets local version from entry if server == local: # 6 if local and server match, moves on del local del server pass else: # 7 if local and server don't match, del local # deletes local version variable, del server # deletes server version variable populatecards(define) # and trigger definition storage manifest_data.put() # 8 writes version (updates checked date) def populatecollections(self): # Populates Collections request = urllib2.Request(self, headers={"x-api-key": api_key}) doc = urllib2.urlopen(request).read() json_object = json.loads(doc) order = 1 for c in json_object['Response']['themeCollection']: cname = c['themeName'] cid = c['themeId'] cimg = c['normalResolution']['smallImage']['sheetPath'] cx = c['normalResolution']['smallImage']['rect']['x'] cy = c['normalResolution']['smallImage']['rect']['y'] col1 = Collection(name=cname, img=cimg, x=cx, y=cy, order=order) col1.key = ndb.Key(Collection, cid) col1.put() order += 1 def populatesets(self): # Populates Sets request = urllib2.Request(self, headers={"x-api-key": api_key}) doc = urllib2.urlopen(request).read() json_object = json.loads(doc) for c in json_object['Response']['themeCollection']: cid = c['themeId'] order = 1 for s in c['pageCollection']: colid = cid sname = s['pageName'] sid = s['pageId'] simg = s['normalResolution']['smallImage']['sheetPath'] sx = s['normalResolution']['smallImage']['rect']['x'] sy = s['normalResolution']['smallImage']['rect']['y'] set1 = Set(collection=colid, name=sname, shortname=sid, img=simg, x=sx, y=sy, order=order) set1.key = ndb.Key(Set, sid) set1.put() order += 1 def populatecards(self): # Populates Cards request = urllib2.Request(self, headers={"x-api-key": api_key}) doc = urllib2.urlopen(request).read() json_object = json.loads(doc) for c in json_object['Response']['themeCollection']: for s in c['pageCollection']: sid = s['pageId'] order = 1 for ca in s['cardCollection']: setid = sid caid = ca['cardId'] caname = ca['cardName'] cabody = ca['cardDescription'] caicon = ca['normalResolution']['smallImage']['sheetPath'] caix = ca['normalResolution']['smallImage']['rect']['x'] caiy = ca['normalResolution']['smallImage']['rect']['y'] caimg = ca['normalResolution']['image']['sheetPath'] cax = ca['normalResolution']['image']['rect']['x'] cay = ca['normalResolution']['image']['rect']['y'] if 'cardIntro' not in ca: caquote = '&nbsp;' else: caquote = ca['cardIntro'] card1 = Card(set=setid, id=caid, cardid=caid, name=caname, quote=caquote, body=cabody, icon=caicon, iconx=caix, icony=caiy, img=caimg, x=cax, y=cay, order=order) card1.key = ndb.Key(Card, str(caid)) card1.put() order += 1 app = webapp2.WSGIApplication([ ('/grim', CollectionHandler), ('/set', SetHandler), ('/card', CardHandler), ('/getcollections', ManifestCollectionHandler), ('/getsets', ManifestSetHandler), ('/getcards', ManifestCardHandler), ('/cardview', CardViewHandler), ('/login', LoginHandler), ('/logout', LogoutHandler), ('/guide', GuideHandler), ('/update', UpdateHandler) ], debug=True)
44.267003
123
0.53141
9cfd2ea0e6f55b474e2a5939cee65dca74cc8453
1,258
py
Python
DataValidation.py
Minituff/SSH-Tools
0998db5b462b09779a0f02c886caca95989e0dee
[ "MIT" ]
null
null
null
DataValidation.py
Minituff/SSH-Tools
0998db5b462b09779a0f02c886caca95989e0dee
[ "MIT" ]
null
null
null
DataValidation.py
Minituff/SSH-Tools
0998db5b462b09779a0f02c886caca95989e0dee
[ "MIT" ]
null
null
null
import re def is_valid_ipv4(address): # Validates IPv4 addresses. pattern = re.compile(r""" (?: # Dotted variants: (?: # Decimal 1-255 (no leading 0's) [3-9]\d?|2(?:5[0-5]|[0-4]?\d)?|1\d{0,2} | 0x0*[0-9a-f]{1,2} # Hexadecimal 0x0 - 0xFF (possible leading 0's) | 0+[1-3]?[0-7]{0,2} # Octal 0 - 0377 (possible leading 0's) ) (?: # Repeat 0-3 times, separated by a dot \. (?: [3-9]\d?|2(?:5[0-5]|[0-4]?\d)?|1\d{0,2} | 0x0*[0-9a-f]{1,2} | 0+[1-3]?[0-7]{0,2} ) ){0,3} | 0x0*[0-9a-f]{1,8} # Hexadecimal notation, 0x0 - 0xffffffff | 0+[0-3]?[0-7]{0,10} # Octal notation, 0 - 037777777777 | # Decimal notation, 1-4294967295: 429496729[0-5]|42949672[0-8]\d|4294967[01]\d\d|429496[0-6]\d{3}| 42949[0-5]\d{4}|4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}| 4[01]\d{8}|[1-3]\d{0,9}|[4-9]\d{0,8} ) $ """, re.VERBOSE | re.IGNORECASE) return pattern.match(address) is not None
33.105263
79
0.399046
5d4628242bf76a5c65726daeb094e5c313d13c58
2,671
py
Python
zhaquirks/xiaomi/mija/motion.py
peterVorman/zha-device-handlers
a2ab1ffd866d2b3b640e2b4b2a8b93bef98d6747
[ "Apache-2.0" ]
null
null
null
zhaquirks/xiaomi/mija/motion.py
peterVorman/zha-device-handlers
a2ab1ffd866d2b3b640e2b4b2a8b93bef98d6747
[ "Apache-2.0" ]
null
null
null
zhaquirks/xiaomi/mija/motion.py
peterVorman/zha-device-handlers
a2ab1ffd866d2b3b640e2b4b2a8b93bef98d6747
[ "Apache-2.0" ]
null
null
null
"""Xiaomi mija body sensor.""" import logging from zigpy.profiles import zha from zigpy.zcl.clusters.general import ( Basic, Groups, Identify, LevelControl, OnOff, Ota, Scenes, ) from .. import ( LUMI, XIAOMI_NODE_DESC, BasicCluster, MotionCluster, OccupancyCluster, PowerConfigurationCluster, XiaomiQuickInitDevice, ) from ... import Bus from ...const import ( DEVICE_TYPE, ENDPOINTS, INPUT_CLUSTERS, MODELS_INFO, NODE_DESCRIPTOR, OUTPUT_CLUSTERS, PROFILE_ID, SKIP_CONFIGURATION, ) XIAOMI_CLUSTER_ID = 0xFFFF _LOGGER = logging.getLogger(__name__) class Motion(XiaomiQuickInitDevice): """Custom device representing mija body sensors.""" def __init__(self, *args, **kwargs): """Init.""" self.battery_size = 9 self.motion_bus = Bus() super().__init__(*args, **kwargs) signature = { # <SimpleDescriptor endpoint=1 profile=260 device_type=263 # device_version=1 # input_clusters=[0, 65535, 3, 25] # output_clusters=[0, 3, 4, 5, 6, 8, 25]> MODELS_INFO: [(LUMI, "lumi.sensor_motion")], NODE_DESCRIPTOR: XIAOMI_NODE_DESC, ENDPOINTS: { 1: { PROFILE_ID: zha.PROFILE_ID, DEVICE_TYPE: zha.DeviceType.DIMMER_SWITCH, INPUT_CLUSTERS: [ Basic.cluster_id, XIAOMI_CLUSTER_ID, Ota.cluster_id, Identify.cluster_id, ], OUTPUT_CLUSTERS: [ Basic.cluster_id, Ota.cluster_id, Identify.cluster_id, Groups.cluster_id, OnOff.cluster_id, LevelControl.cluster_id, Scenes.cluster_id, Ota.cluster_id, ], } }, } replacement = { SKIP_CONFIGURATION: True, ENDPOINTS: { 1: { DEVICE_TYPE: zha.DeviceType.OCCUPANCY_SENSOR, INPUT_CLUSTERS: [ BasicCluster, PowerConfigurationCluster, Identify.cluster_id, OccupancyCluster, MotionCluster, XIAOMI_CLUSTER_ID, ], OUTPUT_CLUSTERS: [ Basic.cluster_id, Identify.cluster_id, Groups.cluster_id, Scenes.cluster_id, Ota.cluster_id, ], } }, }
25.932039
67
0.508798
60b31eccfd38be1a07c6707b24c55231d11de9d8
2,364
py
Python
src/features/pca_latent_space_feature.py
hyzhak/zalando-research-fashionmnist-analyze
5dfff74f80982769c7ffae746abc58fc7113113b
[ "MIT" ]
1
2020-05-29T22:04:52.000Z
2020-05-29T22:04:52.000Z
src/features/pca_latent_space_feature.py
hyzhak/zalando-research-fashionmnist-analyze
5dfff74f80982769c7ffae746abc58fc7113113b
[ "MIT" ]
null
null
null
src/features/pca_latent_space_feature.py
hyzhak/zalando-research-fashionmnist-analyze
5dfff74f80982769c7ffae746abc58fc7113113b
[ "MIT" ]
null
null
null
import luigi import os import pandas as pd from sklearn.decomposition import PCA import numpy as np from src.features.latent_space_features import LatentSpaceFeature from src.utils.params_to_filename import get_task_path # should I use @inherits instead? # https://luigi.readthedocs.io/en/stable/api/luigi.util.html class PCALatentSpaceFeature(luigi.Task): model = luigi.Parameter( default='vgg16' ) random_seed = luigi.IntParameter( default=12345 ) def requires(self): return LatentSpaceFeature(model=self.model) def output(self): task_dir = os.path.join( 'data', 'interim', get_task_path(self) ) return { 'test': { 'features': luigi.LocalTarget( os.path.join(task_dir, 'test.features.parquet.gzip') ), 'explained_variance_ratio': luigi.LocalTarget( os.path.join(task_dir, 'test.evr.npy'), format=luigi.format.Nop ), }, 'train': { 'features': luigi.LocalTarget( os.path.join(task_dir, 'train.features.parquet.gzip') ), 'explained_variance_ratio': luigi.LocalTarget( os.path.join(task_dir, 'train.evr.npy'), format=luigi.format.Nop ), }, } def run(self): # TODO: could be done in parallel self._process(self.input()['train'], self.output()['train']) self._process(self.input()['test'], self.output()['test']) def _process(self, input_file, output_file): X = pd.read_parquet(input_file.open('r')) pca = PCA(random_state=self.random_seed) pca.fit(X) np.save( output_file['explained_variance_ratio'].open('w'), pca.explained_variance_ratio_.cumsum() ) pca = PCA(random_state=self.random_seed, n_components=2) embedded = pca.fit_transform(X) df = pd.DataFrame(embedded, columns=['x1', 'x2'], dtype=np.float32) output_file['features'].makedirs() df.to_parquet(output_file['features'].path, compression='brotli') if __name__ == '__main__': luigi.run()
29.185185
73
0.56176
1bea4fc2ce5b14ef5515ab89a63ba2ae3a08bad5
188
py
Python
inbm/dispatcher-agent/dispatcher/aota/aota_error.py
ahameedx/intel-inb-manageability
aca445fa4cef0b608e6e88e74476547e10c06073
[ "Apache-2.0" ]
5
2021-12-13T21:19:31.000Z
2022-01-18T18:29:43.000Z
inbm/dispatcher-agent/dispatcher/aota/aota_error.py
ahameedx/intel-inb-manageability
aca445fa4cef0b608e6e88e74476547e10c06073
[ "Apache-2.0" ]
45
2021-12-30T17:21:09.000Z
2022-03-29T22:47:32.000Z
inbm/dispatcher-agent/dispatcher/aota/aota_error.py
ahameedx/intel-inb-manageability
aca445fa4cef0b608e6e88e74476547e10c06073
[ "Apache-2.0" ]
4
2022-01-26T17:42:54.000Z
2022-03-30T04:48:04.000Z
""" AOTA update tool Copyright (C) 2017-2022 Intel Corporation SPDX-License-Identifier: Apache-2.0 """ class AotaError(Exception): """Class exception Module""" pass
15.666667
45
0.659574
e62bf9c1c48ac3d4453239297c66b473411e5568
3,685
py
Python
as11fixity.py
joshuatj/IFIscripts
2817d53f82a447bb4cbb84bdbc7a87b9b2506de5
[ "MIT" ]
null
null
null
as11fixity.py
joshuatj/IFIscripts
2817d53f82a447bb4cbb84bdbc7a87b9b2506de5
[ "MIT" ]
null
null
null
as11fixity.py
joshuatj/IFIscripts
2817d53f82a447bb4cbb84bdbc7a87b9b2506de5
[ "MIT" ]
1
2020-07-09T06:14:31.000Z
2020-07-09T06:14:31.000Z
''' WORK IN PROGRESS WORKSHOP SCRIPT!!! ''' import sys import subprocess import os from glob import glob import csv from lxml import etree import hashlib #1 starting_dir = sys.argv[1] #2 csv_report_filename = os.path.basename(starting_dir) + "_report" csv_report = os.path.expanduser("~/Desktop/%s.csv") % csv_report_filename print csv_report print os.path.isfile(csv_report) #5 checkfile = os.path.isfile(csv_report) #3 def create_csv(csv_file, *args): f = open(csv_file, 'wb') try: writer = csv.writer(f) writer.writerow(*args) finally: f.close() #6 create_csv(csv_report, ('Filename' , 'Title' , 'Episode_Number' , 'Md5_From_Xml' , 'Md5_from_Mxf' , 'Checksum_Result')) #6 if checkfile == True: print "CSV file already exists." if checkfile == False: print "No CSV file exists." #3 for dirpath, dirnames, filenames in os.walk(starting_dir): for filename in [f for f in filenames if f.endswith(".mxf")]: full_path = os.path.join(dirpath, filename) print dirpath + ' ---DIR PATH' print filename + ' ---THIS IS FILEAME' print full_path + ' ---THIS IS THE FULL_PATH' #7 file_no_path = os.path.basename(full_path) print file_no_path + ' ---THIS IS FILE_NO_PATH' #8.1 file_no_extension = os.path.splitext(os.path.basename(file_no_path))[0] print file_no_extension + ' ---THIS IS FILE_NO_EXTENSION' #8.2 xml_file = file_no_extension + '.xml' print xml_file + ' ---This is xml file' full_xml_path = os.path.join(dirpath,xml_file) print full_xml_path + ' ---This id the full xml path' checkfile = os.path.isfile(os.path.join(dirpath,xml_file)) if checkfile == True: print 'XML file already exists.' if checkfile == False: print 'No XML file exists.' #8.3 dpp_xml_parse = etree.parse(full_xml_path) print dpp_xml_parse, 'hahaha' dpp_xml_namespace = dpp_xml_parse.xpath('namespace-uri(.)') print dpp_xml_namespace, 'lol' checksum = dpp_xml_parse.findtext('//ns:MediaChecksumValue', namespaces={'ns':dpp_xml_namespace }) print checksum #12 def md5(full_path): hash_md5 = hashlib.md5() with open(full_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() print md5(full_path) #13 if md5(full_path)==checksum: print 'Checksum matches!' else: print 'CHECKSUM DONT MATCH' #14 """ As-11 Fixity 1. Import all relevant modules x 2. Define path to starting folder x 3. Check if CSV report already exists x 4. Allow option to overwrite ? 5. Define name for CSv file x 6. Create CSV file with headings x 7. Search through subfolders to verify mxf file exists x 8.1 harvest filname eg GAA.MXF, remove extension eg MXF x 8.2 store new filname eg GAA x 8.3 make new filename variable x 8.4 check if GAA with .XML extension exists 9. Check if same filename 10. Check if folder is empty, note in CSV report 11. If only MXF, note in CSV report. MXF FILENAME + "No sidecar" 12. Extract MD5 from xml file and store as variable x 13. Generate MD5 checksum on MXF file x 14. Compare the 2 MD5s x 15. Write to CSV report 15.1 xml parse title 15.2 xml parse episode title/number 15.3 xml parse programme title 15.4 append list with all findings 8.1 harvest filname eg GAA.MXF, - file_no_path = 8.2 remove extension eg MXF store new filname eg GAA filename_no_extention 8.3 check if GAA with .XML extension exists - xml_filename """
27.296296
119
0.664858
25a12ec62f574552fae1f71a467f458e2e9aaf5c
345
py
Python
py/cn/config.py
sonya/eea
b09502354eb6ce7975a21aa97dd3c812852b0626
[ "Apache-2.0" ]
1
2020-08-12T19:42:45.000Z
2020-08-12T19:42:45.000Z
py/cn/config.py
sonya/eea
b09502354eb6ce7975a21aa97dd3c812852b0626
[ "Apache-2.0" ]
null
null
null
py/cn/config.py
sonya/eea
b09502354eb6ce7975a21aa97dd3c812852b0626
[ "Apache-2.0" ]
null
null
null
# # 33 sector io tables exist for 1987, 1990, 1992, 1995 # 40 sectors for 1997 # 17 sectors for 2000 # 42 and 122 sectors for 2002 # 42 sectors for 2005 # for 2007: # 42 sectors (010* - io, 020* - intemediate only, 030* - supply/use) # 135 sectors (040*) # # env tables: 1999, 2003-2009 inclusive SCHEMA = "cn" STUDY_YEARS = [2005, 2007]
20.294118
70
0.669565
dad119814ce9591a60c63dabefdc6e0f9a132154
482
py
Python
2020/day03/one.py
geberl/advent-of-code
152ac94676830ac920bf06a1a3f1aa88377cd775
[ "MIT" ]
null
null
null
2020/day03/one.py
geberl/advent-of-code
152ac94676830ac920bf06a1a3f1aa88377cd775
[ "MIT" ]
null
null
null
2020/day03/one.py
geberl/advent-of-code
152ac94676830ac920bf06a1a3f1aa88377cd775
[ "MIT" ]
null
null
null
tree_count = 0 with open("input.txt") as file_handler: for n, line in enumerate(file_handler): if n == 0: continue if len(line.strip()) == 0: continue charPos = n*3 if charPos > len(line.strip()): multiples = int(charPos / len(line.strip())) charPos = charPos - (multiples * len(line.strip())) char = line[charPos] if char == "#": tree_count += 1 print(tree_count)
22.952381
63
0.518672
ee4ba67a3b6574de943abf4f79dcd139404de52e
5,984
py
Python
src/python/pants/backend/jvm/tasks/bundle_create.py
areitz/pants
9bfb3feb0272c05f36e190c9147091b97ee1950d
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/jvm/tasks/bundle_create.py
areitz/pants
9bfb3feb0272c05f36e190c9147091b97ee1950d
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/jvm/tasks/bundle_create.py
areitz/pants
9bfb3feb0272c05f36e190c9147091b97ee1950d
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os from twitter.common.collections import OrderedSet from pants.backend.jvm.targets.jvm_app import JvmApp from pants.backend.jvm.targets.jvm_binary import JvmBinary from pants.backend.jvm.tasks.jvm_binary_task import JvmBinaryTask from pants.base.build_environment import get_buildroot from pants.base.exceptions import TaskError from pants.fs import archive from pants.util.dirutil import safe_mkdir class BundleCreate(JvmBinaryTask): @classmethod def register_options(cls, register): super(BundleCreate, cls).register_options(register) register('--deployjar', action='store_true', default=False, fingerprint=True, help="Expand 3rdparty jars into loose classfiles in the bundle's root dir. " "If unset, the root will contain internal classfiles only, and 3rdparty jars " "will go into the bundle's libs dir.") register('--archive', choices=list(archive.TYPE_NAMES), fingerprint=True, help='Create an archive of this type from the bundle.') register('--archive-prefix', action='store_true', default=False, fingerprint=True, help='If --archive is specified, use the target basename as the path prefix.') @classmethod def product_types(cls): return ['jvm_bundles'] def __init__(self, *args, **kwargs): super(BundleCreate, self).__init__(*args, **kwargs) self._outdir = self.get_options().pants_distdir self._prefix = self.get_options().archive_prefix self._archiver_type = self.get_options().archive self._create_deployjar = self.get_options().deployjar class App(object): """A uniform interface to an app.""" @staticmethod def is_app(target): return isinstance(target, (JvmApp, JvmBinary)) def __init__(self, target): assert self.is_app(target), '{} is not a valid app target'.format(target) self.address = target.address self.binary = target if isinstance(target, JvmBinary) else target.binary self.bundles = [] if isinstance(target, JvmBinary) else target.payload.bundles self.basename = target.basename def execute(self): archiver = archive.archiver(self._archiver_type) if self._archiver_type else None for target in self.context.target_roots: for app in map(self.App, filter(self.App.is_app, [target])): basedir = self.bundle(app) # NB(Eric Ayers): Note that this product is not housed/controlled under .pants.d/ Since # the bundle is re-created every time, this shouldn't cause a problem, but if we ever # expect the product to be cached, a user running an 'rm' on the dist/ directory could # cause inconsistencies. jvm_bundles_product = self.context.products.get('jvm_bundles') jvm_bundles_product.add(target, os.path.dirname(basedir)).append(os.path.basename(basedir)) if archiver: archivepath = archiver.create( basedir, self._outdir, app.basename, prefix=app.basename if self._prefix else None ) self.context.log.info('created {}'.format(os.path.relpath(archivepath, get_buildroot()))) def bundle(self, app): """Create a self-contained application bundle. The bundle will contain the target classes, dependencies and resources. """ assert(isinstance(app, BundleCreate.App)) def verbose_symlink(src, dst): try: os.symlink(src, dst) except OSError as e: self.context.log.error("Unable to create symlink: {0} -> {1}".format(src, dst)) raise e bundle_dir = os.path.join(self._outdir, '{}-bundle'.format(app.basename)) self.context.log.info('creating {}'.format(os.path.relpath(bundle_dir, get_buildroot()))) safe_mkdir(bundle_dir, clean=True) classpath = OrderedSet() # If creating a deployjar, we add the external dependencies to the bundle as # loose classes, and have no classpath. Otherwise we add the external dependencies # to the bundle as jars in a libs directory. if not self._create_deployjar: lib_dir = os.path.join(bundle_dir, 'libs') os.mkdir(lib_dir) jarmap = self.context.products.get('jars') def add_jars(target): generated = jarmap.get(target) if generated: for base_dir, internal_jars in generated.items(): for internal_jar in internal_jars: verbose_symlink(os.path.join(base_dir, internal_jar), os.path.join(lib_dir, internal_jar)) classpath.add(internal_jar) app.binary.walk(add_jars, lambda t: t != app.binary) # Add external dependencies to the bundle. for basedir, external_jar in self.list_external_jar_dependencies(app.binary): path = os.path.join(basedir, external_jar) verbose_symlink(path, os.path.join(lib_dir, external_jar)) classpath.add(external_jar) bundle_jar = os.path.join(bundle_dir, '{}.jar'.format(app.binary.basename)) with self.monolithic_jar(app.binary, bundle_jar, with_external_deps=self._create_deployjar) as jar: self.add_main_manifest_entry(jar, app.binary) if classpath: jar.classpath([os.path.join('libs', jar) for jar in classpath]) for bundle in app.bundles: for path, relpath in bundle.filemap.items(): bundle_path = os.path.join(bundle_dir, relpath) if not os.path.exists(path): raise TaskError('Given path: {} does not exist in target {}'.format( path, app.address.spec)) safe_mkdir(os.path.dirname(bundle_path)) verbose_symlink(path, bundle_path) return bundle_dir
40.707483
104
0.68516
b474a116d7251fa2ed16be8606e871bba1c8f205
9,156
py
Python
transformer/model_concat.py
muqiaoy/dl_signal
3a30d14982016644bfc96a7d1ca0109b441f17fd
[ "MIT" ]
54
2019-10-24T06:32:07.000Z
2022-03-23T01:56:10.000Z
transformer/model_concat.py
muqiaoy/dl_signal
3a30d14982016644bfc96a7d1ca0109b441f17fd
[ "MIT" ]
null
null
null
transformer/model_concat.py
muqiaoy/dl_signal
3a30d14982016644bfc96a7d1ca0109b441f17fd
[ "MIT" ]
6
2019-10-24T06:17:54.000Z
2021-07-12T01:54:48.000Z
import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) import torch from torch import nn import torch.nn.functional as F import numpy as np from modules.transformer import TransformerConcatEncoder, TransformerConcatDecoder from models import * from utils import count_parameters device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class TransformerModel(nn.Module): def __init__(self, time_step, input_dims, hidden_size, embed_dim, output_dim, num_heads, attn_dropout, relu_dropout, res_dropout, out_dropout, layers, attn_mask=False): """ Construct a basic Transfomer model. :param input_dims: The input dimensions of the various modalities. :param hidden_size: The hidden dimensions of the fc layer. :param embed_dim: The dimensions of the embedding layer. :param output_dim: The dimensions of the output (128 in MuiscNet). :param num_heads: The number of heads to use in the multi-headed attention. :param attn_dropout: The dropout following self-attention sm((QK)^T/d)V. :param relu_droput: The dropout for ReLU in residual block. :param res_dropout: The dropout of each residual block. :param out_dropout: The dropout of output layer. :param layers: The number of transformer blocks. :param attn_mask: A boolean indicating whether to use attention mask (for transformer decoder). """ super(TransformerModel, self).__init__() self.conv = nn.Sequential( nn.Conv1d(in_channels=1, out_channels=16, kernel_size=6, stride=1), nn.BatchNorm1d(16), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1), nn.BatchNorm1d(32), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3, stride=1), nn.BatchNorm1d(64), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(in_channels=64, out_channels=64, kernel_size=3, stride=1), nn.BatchNorm1d(64), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1), nn.BatchNorm1d(128), nn.ReLU(), nn.MaxPool1d(2, stride=2), ) [self.orig_d_a, self.orig_d_b] = input_dims assert self.orig_d_a == self.orig_d_b channels = ((((((((((self.orig_d_a + self.orig_d_b -6)//1+1 -2)//2+1 -3)//1+1 -2)//2+1 -3)//1+1 -2)//2+1 -3)//1+1 -2)//2+1 -3)//1+1 -2)//2+1 self.d_x = 128*channels final_out = embed_dim h_out = hidden_size self.num_heads = num_heads self.layers = layers self.attn_dropout = attn_dropout self.relu_dropout = relu_dropout self.res_dropout = res_dropout self.attn_mask = attn_mask self.embed_dim = embed_dim # Transformer networks self.trans = self.get_network() print("Encoder Model size: {0}".format(count_parameters(self.trans))) # Projection layers self.proj = nn.Linear(self.d_x, self.embed_dim) self.out_fc1 = nn.Linear(final_out, h_out) self.out_fc2 = nn.Linear(h_out, output_dim) self.out_dropout = nn.Dropout(out_dropout) def get_network(self): return TransformerConcatEncoder(embed_dim=self.embed_dim, num_heads=self.num_heads, layers=self.layers, attn_dropout=self.attn_dropout, relu_dropout=self.relu_dropout, res_dropout=self.res_dropout, attn_mask=self.attn_mask) def forward(self, x): """ x should have dimension [seq_len, batch_size, n_features] (i.e., L, N, C). """ time_step, batch_size, n_features = x.shape x = x.view(-1, 1, n_features) x = self.conv(x) x = x.reshape(time_step, batch_size, self.d_x) x = self.proj(x) # Pass the input through individual transformers h_x = self.trans(x) h_concat = torch.cat([h_x], dim=-1) output = self.out_fc2(self.out_dropout(F.relu(self.out_fc1(h_concat)))) # No sigmoid because we use BCEwithlogitis which contains sigmoid layer and more stable return output class TransformerGenerationModel(nn.Module): def __init__(self, input_dims, hidden_size, embed_dim, output_dim, num_heads, attn_dropout, relu_dropout, res_dropout, out_dropout, layers, attn_mask=False, src_mask=False, tgt_mask=False): super(TransformerGenerationModel, self).__init__() [orig_d_a, orig_d_b] = input_dims self.orig_d_x = orig_d_a + orig_d_b self.conv = nn.Sequential( nn.Conv1d(in_channels=1, out_channels=16, kernel_size=6, stride=1), nn.BatchNorm1d(16), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1), nn.BatchNorm1d(32), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3, stride=1), nn.BatchNorm1d(64), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(in_channels=64, out_channels=64, kernel_size=3, stride=1), nn.BatchNorm1d(64), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1), nn.BatchNorm1d(128), nn.ReLU(), nn.MaxPool1d(2, stride=2), ) channels = ((((((((((self.orig_d_x -6)//1+1 -2)//2+1 -3)//1+1 -2)//2+1 -3)//1+1 -2)//2+1 -3)//1+1 -2)//2+1 -3)//1+1 -2)//2+1 self.d_x = 128*channels final_out = embed_dim h_out = hidden_size self.num_heads = num_heads self.layers = layers self.attn_dropout = attn_dropout self.relu_dropout = relu_dropout self.res_dropout = res_dropout self.attn_mask = attn_mask self.embed_dim = embed_dim # Transformer networks self.trans_encoder = self.get_encoder_network() self.trans_decoder = self.get_decoder_network() print("Encoder Model size: {0}".format(count_parameters(self.trans_encoder))) print("Decoder Model size: {0}".format(count_parameters(self.trans_decoder))) # Projection layers self.proj_enc = nn.Linear(self.d_x, self.embed_dim) self.proj_dec = nn.Linear(self.orig_d_x, self.embed_dim) self.out_fc1 = nn.Linear(final_out, h_out) self.out_fc2 = nn.Linear(h_out, output_dim) self.out_dropout = nn.Dropout(out_dropout) def get_encoder_network(self): return TransformerConcatEncoder(embed_dim=self.embed_dim, num_heads=self.num_heads, layers=self.layers, attn_dropout=self.attn_dropout, relu_dropout=self.relu_dropout, res_dropout=self.res_dropout, attn_mask=self.attn_mask) def get_decoder_network(self): return TransformerConcatDecoder(embed_dim=self.embed_dim, num_heads=self.num_heads, layers=self.layers, src_attn_dropout=self.attn_dropout, relu_dropout=self.relu_dropout, res_dropout=self.res_dropout, tgt_attn_dropout=self.attn_dropout) def forward(self, x, y=None, max_len=None): """ x should have dimension [seq_len, batch_size, n_features] (i.e., L, N, C). """ time_step, batch_size, n_features = x.shape # encoder x = x.view(-1, 1, n_features) x = self.conv(x) x = x.reshape(time_step, batch_size, self.d_x) x = self.proj_enc(x) h_x = self.trans_encoder(x) # decoder if y is not None: seq_len, batch_size, n_features2 = y.shape y = y[:-1, :, :] sos = torch.zeros(1, batch_size, n_features2).cuda() y = torch.cat([sos, y], dim=0) # add <sos> to front y = self.proj_dec(y) out = self.trans_decoder(input=y, enc=h_x) out_concat = torch.cat([out], dim=-1) output = self.out_fc2(self.out_dropout(F.relu(self.out_fc1(out_concat)))) elif max_len is not None: dec_x = torch.zeros(1, batch_size, n_features).cuda() dec_x = self.proj_dec(dec_x) dec_x = self.trans_decoder(input=dec_x, enc=h_x) y = dec_x for i in range(max_len - 1): dec_x = self.trans_decoder(input=y, enc=h_x) y = torch.cat([y, dec_x[-1].unsqueeze(0)], dim=0) out_concat = torch.cat([y], dim=-1) output = self.out_fc2(self.out_dropout(F.relu(self.out_fc1(out_concat)))) else: print("Only one of y and max_len should be input.") assert False return output
41.808219
193
0.614788
52a5b34cd25e768bd8552fdcff40d6f2726eaebd
910
py
Python
run.py
RafaelCenzano/backer
695607462e1362307986c2d3c34dfbb2b1a816cd
[ "Apache-2.0" ]
null
null
null
run.py
RafaelCenzano/backer
695607462e1362307986c2d3c34dfbb2b1a816cd
[ "Apache-2.0" ]
null
null
null
run.py
RafaelCenzano/backer
695607462e1362307986c2d3c34dfbb2b1a816cd
[ "Apache-2.0" ]
null
null
null
import os import backer import config import logging import datetime from time import sleep as delay ''' Run file ''' # Create config object configurations = config.Config() # create logger logger = logging.getLogger(__name__) # create console and file handler term = logging.StreamHandler() logfile = logging.FileHandler('/' + os.path.join(configurations.BACKUP_FOLDER, 'data', 'backer.log')) # create formatter and add to term and logfile formatter = logging.Formatter('%(asctime)s %(name)s - %(levelname)s : %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') term.setFormatter(formatter) logfile.setFormatter(formatter) # add term and logfile to logger logger.addHandler(term) logger.addHandler(logfile) logger.setLevel(logging.INFO) # Create the run object runObject = backer.Core(configurations) # Create archive logger.info('Begin zip archive') runObject.zipArchive() logger.info('Complete program')
22.75
115
0.758242
c260940d982de86c357fc3989b6bb79cf3e90664
1,145
py
Python
google/ads/googleads/v8/googleads-py/google/ads/googleads/v8/errors/types/currency_code_error.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
7
2021-02-21T10:39:41.000Z
2021-12-07T07:31:28.000Z
google/ads/googleads/v8/googleads-py/google/ads/googleads/v8/errors/types/currency_code_error.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
6
2021-02-02T23:46:11.000Z
2021-11-15T01:46:02.000Z
google/ads/googleads/v8/googleads-py/google/ads/googleads/v8/errors/types/currency_code_error.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
4
2021-01-28T23:25:45.000Z
2021-08-30T01:55:16.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package='google.ads.googleads.v8.errors', marshal='google.ads.googleads.v8', manifest={ 'CurrencyCodeErrorEnum', }, ) class CurrencyCodeErrorEnum(proto.Message): r"""Container for enum describing possible currency code errors. """ class CurrencyCodeError(proto.Enum): r"""Enum describing possible currency code errors.""" UNSPECIFIED = 0 UNKNOWN = 1 UNSUPPORTED = 2 __all__ = tuple(sorted(__protobuf__.manifest))
29.358974
74
0.710917
140047202fea270ea19be6ab36957ba3d908ad7b
2,866
py
Python
BaseGame.py
DariHernandez/sports-scraper
15a535d7f42e514551122edd46c5fd045804f0ef
[ "MIT" ]
null
null
null
BaseGame.py
DariHernandez/sports-scraper
15a535d7f42e514551122edd46c5fd045804f0ef
[ "MIT" ]
null
null
null
BaseGame.py
DariHernandez/sports-scraper
15a535d7f42e514551122edd46c5fd045804f0ef
[ "MIT" ]
null
null
null
import datetime class BaseGame(object): def __init__( self, home: str, away: str, home_odds: int, away_odds: int ): self.home_team = home self.away_team = away self.key = f"{away}@{home}" self.home_odds = home_odds self.away_odds = away_odds self.game_date = None self.home_spread = None self.home_spread_odds = None self.away_spread = None self.away_spread_odds = None self.over_under = None self.over_odds = None self.under_odds = None self.date = None self.sport = None self.day:str = '' self._set_date_to_now() def _set_date_to_now(self): date = datetime.datetime.now() date_ymd = date.strftime("%Y-%m-%d",) self.date = date self.day = date_ymd def set_game_date(self, date:datetime.datetime): self.game_date = date # split date int mon-day string date_m_d = date.strftime("%m-%d",) #reset key to include team-team-month-day? self.key += f"-{date_m_d}" def add_spread(self, home_spread:float, home_s_odds:int, away_spread:float, away_s_odds:int): self.home_spread = home_spread self.home_spread_odds = home_s_odds self.away_spread = away_spread self.away_spread_odds = away_s_odds def add_over_under(self, over_total:float, over_odds:int, under_total:float, under_odds:int): self.over_total = over_total self.over_odds = over_odds self.under_total = under_total self.under_odds = under_odds def set_sport(self, sport): self.sport = sport def set_site(self, site): self.site = site def __repr__(self) -> str: return f"<{self.key}, {self.home_team}:{self.home_odds}, {self.away_team}:{self.away_odds}>" def to_dict(self) -> dict: return { "home_team": self.home_team, "home_odds": self.home_odds, "home_spread": self.home_spread, "home_spread_odds": self.home_spread_odds, "away_team": self.away_team, "away_odds": self.away_odds, "away_spread": self.away_spread, "away_spread_odds": self.away_spread_odds, "over_total": self.over_total, "over_odds": self.over_odds, "under_total": self.under_total, "under_odds": self.under_odds, "key": self.key, "date": self.date, "day": self.day, "game_date": self.game_date, "sport": self.sport, "site": self.site } # comment to change file if __name__ == "__main__": print(BaseGame("the BARES", "fuootball team ", 0, -143).to_dict()) print(BaseGame("the BARES", "fuootball team ", 270, -330).to_dict())
29.244898
100
0.591068
14223e4ffcfce0d251f9f3d6a1c567f48de98f33
3,920
py
Python
selfdrive/car/car_helpers.py
johnwaynerobot/openpilot
b63de593824562b35e08f15b31a762e76b062640
[ "MIT" ]
null
null
null
selfdrive/car/car_helpers.py
johnwaynerobot/openpilot
b63de593824562b35e08f15b31a762e76b062640
[ "MIT" ]
null
null
null
selfdrive/car/car_helpers.py
johnwaynerobot/openpilot
b63de593824562b35e08f15b31a762e76b062640
[ "MIT" ]
1
2018-09-05T16:29:40.000Z
2018-09-05T16:29:40.000Z
import os import time from common.basedir import BASEDIR from common.realtime import sec_since_boot from common.fingerprints import eliminate_incompatible_cars, all_known_cars from selfdrive.swaglog import cloudlog import selfdrive.messaging as messaging def load_interfaces(x): ret = {} for interface in x: try: imp = __import__('selfdrive.car.%s.interface' % interface, fromlist=['CarInterface']).CarInterface except ImportError: imp = None for car in x[interface]: ret[car] = imp return ret def _get_interface_names(): # read all the folders in selfdrive/car and return a dict where: # - keys are all the car names that which we have an interface for # - values are lists of spefic car models for a given car interface_names = {} for car_folder in [x[0] for x in os.walk(BASEDIR + '/selfdrive/car')]: try: car_name = car_folder.split('/')[-1] model_names = __import__('selfdrive.car.%s.values' % car_name, fromlist=['CAR']).CAR model_names = [getattr(model_names, c) for c in model_names.__dict__.keys() if not c.startswith("__")] interface_names[car_name] = model_names except (ImportError, IOError): pass return interface_names # imports from directory selfdrive/car/<name>/ interfaces = load_interfaces(_get_interface_names()) # **** for use live only **** def fingerprint(logcan, timeout): if os.getenv("SIMULATOR2") is not None: return ("simulator2", None) elif os.getenv("SIMULATOR") is not None: return ("simulator", None) cloudlog.warning("waiting for fingerprint...") candidate_cars = all_known_cars() finger = {} st = None st_passive = sec_since_boot() # only relevant when passive can_seen = False while 1: for a in messaging.drain_sock(logcan): for can in a.can: can_seen = True # ignore everything not on bus 0 and with more than 11 bits, # which are ussually sporadic and hard to include in fingerprints if can.src == 0 and can.address < 0x800: finger[can.address] = len(can.dat) candidate_cars = eliminate_incompatible_cars(can, candidate_cars) if st is None and can_seen: st = sec_since_boot() # start time ts = sec_since_boot() # if we only have one car choice and the time_fingerprint since we got our first # message has elapsed, exit. Toyota needs higher time_fingerprint, since DSU does not # broadcast immediately if len(candidate_cars) == 1 and st is not None: # TODO: better way to decide to wait more if Toyota time_fingerprint = 1.0 if ("TOYOTA" in candidate_cars[0] or "LEXUS" in candidate_cars[0]) else 0.1 if (ts-st) > time_fingerprint: break # bail if no cars left or we've been waiting too long elif len(candidate_cars) == 0 or (timeout and (ts - st_passive) > timeout): return None, finger time.sleep(0.01) cloudlog.warning("fingerprinted %s", candidate_cars[0]) return (candidate_cars[0], finger) def get_car(logcan, sendcan=None, passive=True): # TODO: timeout only useful for replays so controlsd can start before unlogger timeout = 2. if passive else None candidate, fingerprints = fingerprint(logcan, timeout) if candidate is None: cloudlog.warning("car doesn't match any fingerprints: %r", fingerprints) if passive: candidate = "mock" else: return None, None interface_cls = interfaces[candidate] if interface_cls is None: cloudlog.warning("car matched %s, but interface wasn't available or failed to import" % candidate) return None, None #2018.09.07 11:48AM add debug print helper print("car_helpers.py file print candidate and fingerprint") print(candidate) print(fingerprints) params = interface_cls.get_params(candidate, fingerprints) print("car_helpers.py print params") print(params) return interface_cls(params, sendcan), params
34.385965
108
0.703316
185c5c72c2f8c35a766736de4b61be79b81b7d01
135
py
Python
GUI.py
Mostafa-Shalaby/PyATM
f0e7cac15df03c8cd4492ed87e8dfe34a82337ff
[ "MIT" ]
null
null
null
GUI.py
Mostafa-Shalaby/PyATM
f0e7cac15df03c8cd4492ed87e8dfe34a82337ff
[ "MIT" ]
null
null
null
GUI.py
Mostafa-Shalaby/PyATM
f0e7cac15df03c8cd4492ed87e8dfe34a82337ff
[ "MIT" ]
null
null
null
# Imports Interface and tkinter modules from Interface.AppWindow import Window # Run this code to see magic happen Window().mainloop()
27
39
0.8
0808f6a03b7ca683638e419173ce6d0f18ae8669
3,123
py
Python
Project/serve/predict.py
kawano8811/sagemaker-deployment
d9647cf4cf3015ee337b4d9275cb2de2bf3e9cd6
[ "MIT" ]
null
null
null
Project/serve/predict.py
kawano8811/sagemaker-deployment
d9647cf4cf3015ee337b4d9275cb2de2bf3e9cd6
[ "MIT" ]
null
null
null
Project/serve/predict.py
kawano8811/sagemaker-deployment
d9647cf4cf3015ee337b4d9275cb2de2bf3e9cd6
[ "MIT" ]
null
null
null
import argparse import json import os import pickle import sys import sagemaker_containers import pandas as pd import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.utils.data from model import LSTMClassifier from utils import review_to_words, convert_and_pad def model_fn(model_dir): """Load the PyTorch model from the `model_dir` directory.""" print("Loading model.") # First, load the parameters used to create the model. model_info = {} model_info_path = os.path.join(model_dir, 'model_info.pth') with open(model_info_path, 'rb') as f: model_info = torch.load(f) print("model_info: {}".format(model_info)) # Determine the device and construct the model. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = LSTMClassifier(model_info['embedding_dim'], model_info['hidden_dim'], model_info['vocab_size']) # Load the store model parameters. model_path = os.path.join(model_dir, 'model.pth') with open(model_path, 'rb') as f: model.load_state_dict(torch.load(f)) # Load the saved word_dict. word_dict_path = os.path.join(model_dir, 'word_dict.pkl') with open(word_dict_path, 'rb') as f: model.word_dict = pickle.load(f) model.to(device).eval() print("Done loading model.") return model def input_fn(serialized_input_data, content_type): print('Deserializing the input data.') if content_type == 'text/plain': data = serialized_input_data.decode('utf-8') return data raise Exception('Requested unsupported ContentType in content_type: ' + content_type) def output_fn(prediction_output, accept): print('Serializing the generated output.') return str(prediction_output) def predict_fn(input_data, model): print('Inferring sentiment of input data.') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if model.word_dict is None: raise Exception('Model has not been loaded properly, no word_dict.') # TODO: Process input_data so that it is ready to be sent to our model. # You should produce two variables: # data_X - A sequence of length 500 which represents the converted review # data_len - The length of the review data_X, data_len = convert_and_pad(model.word_dict, review_to_words(input_data)) # Using data_X and data_len we construct an appropriate input tensor. Remember # that our model expects input data of the form 'len, review[500]'. data_pack = np.hstack((data_len, data_X)) data_pack = data_pack.reshape(1, -1) data = torch.from_numpy(data_pack) data = data.to(device) # Make sure to put the model into evaluation mode model.eval() # TODO: Compute the result of applying the model to the input data. The variable `result` should # be a numpy array which contains a single integer which is either 1 or 0 with torch.no_grad(): prediction = model(data).detach().cpu().numpy() result = np.round(prediction).astype(int) return result
33.945652
107
0.701889
d7541a3d3a27732cba56d41f43273251c89fc3f0
1,728
py
Python
app/middleware/correlation.py
uptimedog/Roadmap
e6cebe70c53041799343505aa296af939371a3da
[ "Apache-2.0" ]
1
2022-01-26T10:04:00.000Z
2022-01-26T10:04:00.000Z
app/middleware/correlation.py
uptimedog/Roadmap
e6cebe70c53041799343505aa296af939371a3da
[ "Apache-2.0" ]
57
2021-06-12T23:28:50.000Z
2022-03-25T09:27:43.000Z
app/middleware/correlation.py
uptimedog/roadmap
57b68eaace463a99cfac151bff75e4baee2edaa0
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Uptimedog # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from threading import local import uuid _locals = local() class Correlation(): """ Correlation Middleware Add a unique correlation ID to all incoming requests Attributes: get_response: a callable function """ def __init__(self, get_response): """Inits Correlation""" self.get_response = get_response def __call__(self, request): """Execute Middleware Args: request: request instance """ request.META["X-Correlation-ID"] = str(uuid.uuid4()) _locals.correlation_id = request.META["X-Correlation-ID"] response = self.get_response(request) response['X-Correlation-ID'] = request.META["X-Correlation-ID"] return response class CorrelationFilter(logging.Filter): """ Correlation Filter Append the correlation ID to all log records """ def filter(self, record): if not hasattr(record, 'correlation_id'): record.correlation_id = "" if hasattr(_locals, 'correlation_id'): record.correlation_id = _locals.correlation_id return True
24.685714
74
0.677083
e114f2177c44058cb78c0b7696986470533d86ed
459
py
Python
src/rapidpro_community_portal/apps/portal_pages/migrations/0017_auto_20150504_1517.py
rapidpro/rapidpro-community-portal
db86e757a24888bebc4d30f451189a2b743396da
[ "Apache-2.0" ]
19
2015-09-15T09:17:54.000Z
2021-07-13T06:09:49.000Z
src/rapidpro_community_portal/apps/portal_pages/migrations/0017_auto_20150504_1517.py
rapidpro/rapidpro-community-portal
db86e757a24888bebc4d30f451189a2b743396da
[ "Apache-2.0" ]
222
2015-03-13T15:52:20.000Z
2021-04-08T19:18:41.000Z
src/rapidpro_community_portal/apps/portal_pages/migrations/0017_auto_20150504_1517.py
rapidpro/rapidpro-community-portal
db86e757a24888bebc4d30f451189a2b743396da
[ "Apache-2.0" ]
11
2016-03-01T19:56:52.000Z
2021-07-04T22:42:14.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('portal_pages', '0016_marketplaceindexpage'), ] operations = [ migrations.AlterField( model_name='focusarea', name='name', field=models.CharField(max_length=255, unique=True), preserve_default=True, ), ]
21.857143
64
0.614379
b3366cca376171285d92d6772ba364f49db1f348
41,244
py
Python
pandas/core/base.py
lrusnac/pandas
a170e977dc8cc270bdcdee904658f9b6e20c8e86
[ "BSD-3-Clause" ]
1
2020-09-01T12:13:29.000Z
2020-09-01T12:13:29.000Z
pandas/core/base.py
lrusnac/pandas
a170e977dc8cc270bdcdee904658f9b6e20c8e86
[ "BSD-3-Clause" ]
null
null
null
pandas/core/base.py
lrusnac/pandas
a170e977dc8cc270bdcdee904658f9b6e20c8e86
[ "BSD-3-Clause" ]
1
2022-03-08T15:07:11.000Z
2022-03-08T15:07:11.000Z
""" Base and utility classes for pandas objects. """ import builtins import textwrap from typing import ( TYPE_CHECKING, Any, Callable, Dict, FrozenSet, Optional, TypeVar, Union, cast, ) import numpy as np import pandas._libs.lib as lib from pandas._typing import DtypeObj, IndexLabel from pandas.compat import PYPY from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError from pandas.util._decorators import cache_readonly, doc from pandas.core.dtypes.common import ( is_categorical_dtype, is_dict_like, is_extension_array_dtype, is_object_dtype, is_scalar, ) from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries from pandas.core.dtypes.missing import isna, remove_na_arraylike from pandas.core import algorithms from pandas.core.accessor import DirNamesMixin from pandas.core.algorithms import duplicated, unique1d, value_counts from pandas.core.arraylike import OpsMixin from pandas.core.arrays import ExtensionArray from pandas.core.construction import create_series_with_explicit_dtype import pandas.core.nanops as nanops if TYPE_CHECKING: from pandas import Categorical _shared_docs: Dict[str, str] = dict() _indexops_doc_kwargs = dict( klass="IndexOpsMixin", inplace="", unique="IndexOpsMixin", duplicated="IndexOpsMixin", ) _T = TypeVar("_T", bound="IndexOpsMixin") class PandasObject(DirNamesMixin): """ Baseclass for various pandas objects. """ _cache: Dict[str, Any] @property def _constructor(self): """ Class constructor (for this class it's just `__class__`. """ return type(self) def __repr__(self) -> str: """ Return a string representation for a particular object. """ # Should be overwritten by base classes return object.__repr__(self) def _reset_cache(self, key: Optional[str] = None) -> None: """ Reset cached properties. If ``key`` is passed, only clears that key. """ if getattr(self, "_cache", None) is None: return if key is None: self._cache.clear() else: self._cache.pop(key, None) def __sizeof__(self): """ Generates the total memory usage for an object that returns either a value or Series of values """ if hasattr(self, "memory_usage"): # pandas\core\base.py:84: error: "PandasObject" has no attribute # "memory_usage" [attr-defined] mem = self.memory_usage(deep=True) # type: ignore[attr-defined] return int(mem if is_scalar(mem) else mem.sum()) # no memory_usage attribute, so fall back to object's 'sizeof' return super().__sizeof__() class NoNewAttributesMixin: """ Mixin which prevents adding new attributes. Prevents additional attributes via xxx.attribute = "something" after a call to `self.__freeze()`. Mainly used to prevent the user from using wrong attributes on an accessor (`Series.cat/.str/.dt`). If you really want to add a new attribute at a later time, you need to use `object.__setattr__(self, key, value)`. """ def _freeze(self): """ Prevents setting additional attributes. """ object.__setattr__(self, "__frozen", True) # prevent adding any attribute via s.xxx.new_attribute = ... def __setattr__(self, key: str, value): # _cache is used by a decorator # We need to check both 1.) cls.__dict__ and 2.) getattr(self, key) # because # 1.) getattr is false for attributes that raise errors # 2.) cls.__dict__ doesn't traverse into base classes if getattr(self, "__frozen", False) and not ( key == "_cache" or key in type(self).__dict__ or getattr(self, key, None) is not None ): raise AttributeError(f"You cannot add any new attribute '{key}'") object.__setattr__(self, key, value) class DataError(Exception): pass class SpecificationError(Exception): pass class SelectionMixin: """ mixin implementing the selection & aggregation interface on a group-like object sub-classes need to define: obj, exclusions """ _selection: Optional[IndexLabel] = None _internal_names = ["_cache", "__setstate__"] _internal_names_set = set(_internal_names) _builtin_table = {builtins.sum: np.sum, builtins.max: np.max, builtins.min: np.min} _cython_table = { builtins.sum: "sum", builtins.max: "max", builtins.min: "min", np.all: "all", np.any: "any", np.sum: "sum", np.nansum: "sum", np.mean: "mean", np.nanmean: "mean", np.prod: "prod", np.nanprod: "prod", np.std: "std", np.nanstd: "std", np.var: "var", np.nanvar: "var", np.median: "median", np.nanmedian: "median", np.max: "max", np.nanmax: "max", np.min: "min", np.nanmin: "min", np.cumprod: "cumprod", np.nancumprod: "cumprod", np.cumsum: "cumsum", np.nancumsum: "cumsum", } @property def _selection_name(self): """ Return a name for myself; This would ideally be called the 'name' property, but we cannot conflict with the Series.name property which can be set. """ return self._selection @property def _selection_list(self): if not isinstance( self._selection, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray) ): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): # pandas\core\base.py:195: error: "SelectionMixin" has no attribute # "obj" [attr-defined] if self._selection is None or isinstance( self.obj, ABCSeries # type: ignore[attr-defined] ): # pandas\core\base.py:194: error: "SelectionMixin" has no attribute # "obj" [attr-defined] return self.obj # type: ignore[attr-defined] else: # pandas\core\base.py:204: error: "SelectionMixin" has no attribute # "obj" [attr-defined] return self.obj[self._selection] # type: ignore[attr-defined] @cache_readonly def ndim(self) -> int: return self._selected_obj.ndim @cache_readonly def _obj_with_exclusions(self): # pandas\core\base.py:209: error: "SelectionMixin" has no attribute # "obj" [attr-defined] if self._selection is not None and isinstance( self.obj, ABCDataFrame # type: ignore[attr-defined] ): # pandas\core\base.py:217: error: "SelectionMixin" has no attribute # "obj" [attr-defined] return self.obj.reindex( # type: ignore[attr-defined] columns=self._selection_list ) # pandas\core\base.py:207: error: "SelectionMixin" has no attribute # "exclusions" [attr-defined] if len(self.exclusions) > 0: # type: ignore[attr-defined] # pandas\core\base.py:208: error: "SelectionMixin" has no attribute # "obj" [attr-defined] # pandas\core\base.py:208: error: "SelectionMixin" has no attribute # "exclusions" [attr-defined] return self.obj.drop(self.exclusions, axis=1) # type: ignore[attr-defined] else: # pandas\core\base.py:210: error: "SelectionMixin" has no attribute # "obj" [attr-defined] return self.obj # type: ignore[attr-defined] def __getitem__(self, key): if self._selection is not None: raise IndexError(f"Column(s) {self._selection} already selected") if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): # pandas\core\base.py:217: error: "SelectionMixin" has no attribute # "obj" [attr-defined] if len( self.obj.columns.intersection(key) # type: ignore[attr-defined] ) != len(key): # pandas\core\base.py:218: error: "SelectionMixin" has no # attribute "obj" [attr-defined] bad_keys = list( set(key).difference(self.obj.columns) # type: ignore[attr-defined] ) raise KeyError(f"Columns not found: {str(bad_keys)[1:-1]}") return self._gotitem(list(key), ndim=2) elif not getattr(self, "as_index", False): if key not in self.obj.columns: raise KeyError(f"Column not found: {key}") return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError(f"Column not found: {key}") return self._gotitem(key, ndim=1) def _gotitem(self, key, ndim: int, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : str / list of selections ndim : {1, 2} requested ndim of result subset : object, default None subset to act on """ raise AbstractMethodError(self) def aggregate(self, func, *args, **kwargs): raise AbstractMethodError(self) agg = aggregate def _try_aggregate_string_function(self, arg: str, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert isinstance(arg, str) f = getattr(self, arg, None) if f is not None: if callable(f): return f(*args, **kwargs) # people may try to aggregate on a non-callable attribute # but don't let them think they can pass args to it assert len(args) == 0 assert len([kwarg for kwarg in kwargs if kwarg not in ["axis"]]) == 0 return f f = getattr(np, arg, None) if f is not None: if hasattr(self, "__array__"): # in particular exclude Window return f(self, *args, **kwargs) raise AttributeError( f"'{arg}' is not a valid function for '{type(self).__name__}' object" ) def _get_cython_func(self, arg: Callable) -> Optional[str]: """ if we define an internal function for this argument, return it """ return self._cython_table.get(arg) def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return self._builtin_table.get(arg, arg) class IndexOpsMixin(OpsMixin): """ Common ops mixin to support a unified interface / docs for Series / Index """ # ndarray compatibility __array_priority__ = 1000 _hidden_attrs: FrozenSet[str] = frozenset( ["tolist"] # tolist is not deprecated, just suppressed in the __dir__ ) @property def dtype(self) -> DtypeObj: # must be defined here as a property for mypy raise AbstractMethodError(self) @property def _values(self) -> Union[ExtensionArray, np.ndarray]: # must be defined here as a property for mypy raise AbstractMethodError(self) def transpose(self: _T, *args, **kwargs) -> _T: """ Return the transpose, which is by definition self. Returns ------- %(klass)s """ nv.validate_transpose(args, kwargs) return self T = property( transpose, doc=""" Return the transpose, which is by definition self. """, ) @property def shape(self): """ Return a tuple of the shape of the underlying data. """ return self._values.shape def __len__(self) -> int: # We need this defined here for mypy raise AbstractMethodError(self) @property def ndim(self) -> int: """ Number of dimensions of the underlying data, by definition 1. """ return 1 def item(self): """ Return the first element of the underlying data as a Python scalar. Returns ------- scalar The first element of %(klass)s. Raises ------ ValueError If the data is not length-1. """ if len(self) == 1: return next(iter(self)) raise ValueError("can only convert an array of size 1 to a Python scalar") @property def nbytes(self) -> int: """ Return the number of bytes in the underlying data. """ return self._values.nbytes @property def size(self) -> int: """ Return the number of elements in the underlying data. """ return len(self._values) @property def array(self) -> ExtensionArray: """ The ExtensionArray of the data backing this Series or Index. .. versionadded:: 0.24.0 Returns ------- ExtensionArray An ExtensionArray of the values stored within. For extension types, this is the actual array. For NumPy native types, this is a thin (no copy) wrapper around :class:`numpy.ndarray`. ``.array`` differs ``.values`` which may require converting the data to a different form. See Also -------- Index.to_numpy : Similar method that always returns a NumPy array. Series.to_numpy : Similar method that always returns a NumPy array. Notes ----- This table lays out the different array types for each extension dtype within pandas. ================== ============================= dtype array type ================== ============================= category Categorical period PeriodArray interval IntervalArray IntegerNA IntegerArray string StringArray boolean BooleanArray datetime64[ns, tz] DatetimeArray ================== ============================= For any 3rd-party extension types, the array type will be an ExtensionArray. For all remaining dtypes ``.array`` will be a :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray stored within. If you absolutely need a NumPy array (possibly with copying / coercing data), then use :meth:`Series.to_numpy` instead. Examples -------- For regular NumPy types like int, and float, a PandasArray is returned. >>> pd.Series([1, 2, 3]).array <PandasArray> [1, 2, 3] Length: 3, dtype: int64 For extension types, like Categorical, the actual ExtensionArray is returned >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.array ['a', 'b', 'a'] Categories (2, object): ['a', 'b'] """ raise AbstractMethodError(self) def to_numpy(self, dtype=None, copy=False, na_value=lib.no_default, **kwargs): """ A NumPy ndarray representing the values in this Series or Index. .. versionadded:: 0.24.0 Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. na_value : Any, optional The value to use for missing values. The default value depends on `dtype` and the type of the array. .. versionadded:: 1.0.0 **kwargs Additional keywords passed through to the ``to_numpy`` method of the underlying array (for extension arrays). .. versionadded:: 1.0.0 Returns ------- numpy.ndarray See Also -------- Series.array : Get the actual data stored within. Index.array : Get the actual data stored within. DataFrame.to_numpy : Similar method for DataFrame. Notes ----- The returned array will be the same up to equality (values equal in `self` will be equal in the returned array; likewise for values that are not equal). When `self` contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Series, ``to_numpy()`` will return a NumPy array and the categorical dtype will be lost. For NumPy dtypes, this will be a reference to the actual data stored in this Series or Index (assuming ``copy=False``). Modifying the result in place will modify the data stored in the Series or Index (not that we recommend doing that). For extension types, ``to_numpy()`` *may* require copying data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-copy reference to the underlying data, :attr:`Series.array` should be used instead. This table lays out the different dtypes and default return types of ``to_numpy()`` for various dtypes within pandas. ================== ================================ dtype array type ================== ================================ category[T] ndarray[T] (same dtype as input) period ndarray[object] (Periods) interval ndarray[object] (Intervals) IntegerNA ndarray[object] datetime64[ns] datetime64[ns] datetime64[ns, tz] ndarray[object] (Timestamps) ================== ================================ Examples -------- >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) Specify the `dtype` to control how datetime-aware data is represented. Use ``dtype=object`` to return an ndarray of pandas :class:`Timestamp` objects, each with the correct ``tz``. >>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> ser.to_numpy(dtype=object) array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or ``dtype='datetime64[ns]'`` to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is dropped. >>> ser.to_numpy(dtype="datetime64[ns]") ... # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'], dtype='datetime64[ns]') """ if is_extension_array_dtype(self.dtype): # pandas\core\base.py:837: error: Too many arguments for "to_numpy" # of "ExtensionArray" [call-arg] return self.array.to_numpy( # type: ignore[call-arg] dtype, copy=copy, na_value=na_value, **kwargs ) elif kwargs: bad_keys = list(kwargs.keys())[0] raise TypeError( f"to_numpy() got an unexpected keyword argument '{bad_keys}'" ) result = np.asarray(self._values, dtype=dtype) # TODO(GH-24345): Avoid potential double copy if copy or na_value is not lib.no_default: result = result.copy() if na_value is not lib.no_default: result[self.isna()] = na_value return result @property def empty(self) -> bool: return not self.size def max(self, axis=None, skipna: bool = True, *args, **kwargs): """ Return the maximum value of the Index. Parameters ---------- axis : int, optional For compatibility with NumPy. Only 0 or None are allowed. skipna : bool, default True Exclude NA/null values when showing the result. *args, **kwargs Additional arguments and keywords for compatibility with NumPy. Returns ------- scalar Maximum value. See Also -------- Index.min : Return the minimum value in an Index. Series.max : Return the maximum value in a Series. DataFrame.max : Return the maximum values in a DataFrame. Examples -------- >>> idx = pd.Index([3, 2, 1]) >>> idx.max() 3 >>> idx = pd.Index(['c', 'b', 'a']) >>> idx.max() 'c' For a MultiIndex, the maximum is determined lexicographically. >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.max() ('b', 2) """ nv.validate_minmax_axis(axis) nv.validate_max(args, kwargs) return nanops.nanmax(self._values, skipna=skipna) @doc(op="max", oppose="min", value="largest") def argmax(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """ Return int position of the {value} value in the Series. If the {op}imum is achieved in multiple locations, the first row position is returned. Parameters ---------- axis : {{None}} Dummy argument for consistency with Series. skipna : bool, default True Exclude NA/null values when showing the result. *args, **kwargs Additional arguments and keywords for compatibility with NumPy. Returns ------- int Row position of the {op}imum value. See Also -------- Series.arg{op} : Return position of the {op}imum value. Series.arg{oppose} : Return position of the {oppose}imum value. numpy.ndarray.arg{op} : Equivalent method for numpy arrays. Series.idxmax : Return index label of the maximum values. Series.idxmin : Return index label of the minimum values. Examples -------- Consider dataset containing cereal calories >>> s = pd.Series({{'Corn Flakes': 100.0, 'Almond Delight': 110.0, ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}}) >>> s Corn Flakes 100.0 Almond Delight 110.0 Cinnamon Toast Crunch 120.0 Cocoa Puff 110.0 dtype: float64 >>> s.argmax() 2 >>> s.argmin() 0 The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed. """ nv.validate_minmax_axis(axis) nv.validate_argmax_with_skipna(skipna, args, kwargs) return nanops.nanargmax(self._values, skipna=skipna) def min(self, axis=None, skipna: bool = True, *args, **kwargs): """ Return the minimum value of the Index. Parameters ---------- axis : {None} Dummy argument for consistency with Series. skipna : bool, default True Exclude NA/null values when showing the result. *args, **kwargs Additional arguments and keywords for compatibility with NumPy. Returns ------- scalar Minimum value. See Also -------- Index.max : Return the maximum value of the object. Series.min : Return the minimum value in a Series. DataFrame.min : Return the minimum values in a DataFrame. Examples -------- >>> idx = pd.Index([3, 2, 1]) >>> idx.min() 1 >>> idx = pd.Index(['c', 'b', 'a']) >>> idx.min() 'a' For a MultiIndex, the minimum is determined lexicographically. >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.min() ('a', 1) """ nv.validate_minmax_axis(axis) nv.validate_min(args, kwargs) return nanops.nanmin(self._values, skipna=skipna) @doc(argmax, op="min", oppose="max", value="smallest") def argmin(self, axis=None, skipna=True, *args, **kwargs) -> int: nv.validate_minmax_axis(axis) nv.validate_argmax_with_skipna(skipna, args, kwargs) return nanops.nanargmin(self._values, skipna=skipna) def tolist(self): """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns ------- list See Also -------- numpy.ndarray.tolist : Return the array as an a.ndim-levels deep nested list of Python scalars. """ if not isinstance(self._values, np.ndarray): # check for ndarray instead of dtype to catch DTA/TDA return list(self._values) return self._values.tolist() to_list = tolist def __iter__(self): """ Return an iterator of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns ------- iterator """ # We are explicitly making element iterators. if not isinstance(self._values, np.ndarray): # Check type instead of dtype to catch DTA/TDA return iter(self._values) else: return map(self._values.item, range(self._values.size)) @cache_readonly def hasnans(self): """ Return if I have any nans; enables various perf speedups. """ return bool(isna(self).any()) def isna(self): return isna(self._values) def _reduce( self, op, name: str, *, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds, ): """ Perform the reduction type operation if we can. """ func = getattr(self, name, None) if func is None: raise TypeError( f"{type(self).__name__} cannot perform the operation {name}" ) return func(skipna=skipna, **kwds) def _map_values(self, mapper, na_action=None): """ An internal function that maps values using the input correspondence (which can be a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series The input correspondence object na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping function Returns ------- Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ # we can fastpath dict/Series to an efficient map # as we know that we are not going to have to yield # python types if is_dict_like(mapper): if isinstance(mapper, dict) and hasattr(mapper, "__missing__"): # If a dictionary subclass defines a default value method, # convert mapper to a lookup function (GH #15999). dict_with_default = mapper mapper = lambda x: dict_with_default[x] else: # Dictionary does not have a default. Thus it's safe to # convert to an Series for efficiency. # we specify the keys here to handle the # possibility that they are tuples # The return value of mapping with an empty mapper is # expected to be pd.Series(np.nan, ...). As np.nan is # of dtype float64 the return value of this method should # be float64 as well mapper = create_series_with_explicit_dtype( mapper, dtype_if_empty=np.float64 ) if isinstance(mapper, ABCSeries): # Since values were input this means we came from either # a dict or a series and mapper should be an index if is_categorical_dtype(self.dtype): # use the built in categorical series mapper which saves # time by mapping the categories instead of all values # pandas\core\base.py:893: error: Incompatible types in # assignment (expression has type "Categorical", variable has # type "IndexOpsMixin") [assignment] self = cast("Categorical", self) # type: ignore[assignment] # pandas\core\base.py:894: error: Item "ExtensionArray" of # "Union[ExtensionArray, Any]" has no attribute "map" # [union-attr] return self._values.map(mapper) # type: ignore[union-attr] values = self._values indexer = mapper.index.get_indexer(values) new_values = algorithms.take_1d(mapper._values, indexer) return new_values # we must convert to python types if is_extension_array_dtype(self.dtype) and hasattr(self._values, "map"): # GH#23179 some EAs do not have `map` values = self._values if na_action is not None: raise NotImplementedError map_f = lambda values, f: values.map(f) else: # pandas\core\base.py:1142: error: "IndexOpsMixin" has no attribute # "astype" [attr-defined] values = self.astype(object)._values # type: ignore[attr-defined] if na_action == "ignore": def map_f(values, f): return lib.map_infer_mask(values, f, isna(values).view(np.uint8)) elif na_action is None: map_f = lib.map_infer else: msg = ( "na_action must either be 'ignore' or None, " f"{na_action} was passed" ) raise ValueError(msg) # mapper is a function new_values = map_f(values, mapper) return new_values def value_counts( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins=None, dropna: bool = True, ): """ Return a Series containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : bool, default False If True then the object returned will contain the relative frequencies of the unique values. sort : bool, default True Sort by frequencies. ascending : bool, default False Sort in ascending order. bins : int, optional Rather than count values, group them into half-open bins, a convenience for ``pd.cut``, only works with numeric data. dropna : bool, default True Don't include counts of NaN. Returns ------- Series See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.count: Number of non-NA elements in a DataFrame. DataFrame.value_counts: Equivalent method on DataFrames. Examples -------- >>> index = pd.Index([3, 1, 2, 3, 4, np.nan]) >>> index.value_counts() 3.0 2 2.0 1 4.0 1 1.0 1 dtype: int64 With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> s = pd.Series([3, 1, 2, 3, 4, np.nan]) >>> s.value_counts(normalize=True) 3.0 0.4 2.0 0.2 4.0 0.2 1.0 0.2 dtype: float64 **bins** Bins can be useful for going from a continuous variable to a categorical variable; instead of counting unique apparitions of values, divide the index in the specified number of half-open bins. >>> s.value_counts(bins=3) (0.996, 2.0] 2 (2.0, 3.0] 2 (3.0, 4.0] 1 dtype: int64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> s.value_counts(dropna=False) 3.0 2 2.0 1 NaN 1 4.0 1 1.0 1 dtype: int64 """ result = value_counts( self, sort=sort, ascending=ascending, normalize=normalize, bins=bins, dropna=dropna, ) return result def unique(self): values = self._values if not isinstance(values, np.ndarray): result = values.unique() if self.dtype.kind in ["m", "M"] and isinstance(self, ABCSeries): # GH#31182 Series._values returns EA, unpack for backward-compat if getattr(self.dtype, "tz", None) is None: result = np.asarray(result) else: result = unique1d(values) return result def nunique(self, dropna: bool = True) -> int: """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- dropna : bool, default True Don't include NaN in the count. Returns ------- int See Also -------- DataFrame.nunique: Method nunique for DataFrame. Series.count: Count non-NA/null observations in the Series. Examples -------- >>> s = pd.Series([1, 3, 5, 7, 7]) >>> s 0 1 1 3 2 5 3 7 4 7 dtype: int64 >>> s.nunique() 4 """ obj = remove_na_arraylike(self) if dropna else self return len(obj.unique()) @property def is_unique(self) -> bool: """ Return boolean if values in the object are unique. Returns ------- bool """ return self.nunique(dropna=False) == len(self) @property def is_monotonic(self) -> bool: """ Return boolean if values in the object are monotonic_increasing. Returns ------- bool """ from pandas import Index return Index(self).is_monotonic @property def is_monotonic_increasing(self) -> bool: """ Alias for is_monotonic. """ # mypy complains if we alias directly return self.is_monotonic @property def is_monotonic_decreasing(self) -> bool: """ Return boolean if values in the object are monotonic_decreasing. Returns ------- bool """ from pandas import Index return Index(self).is_monotonic_decreasing def memory_usage(self, deep=False): """ Memory usage of the values. Parameters ---------- deep : bool, default False Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption. Returns ------- bytes used See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False or if used on PyPy """ if hasattr(self.array, "memory_usage"): # pandas\core\base.py:1379: error: "ExtensionArray" has no # attribute "memory_usage" [attr-defined] return self.array.memory_usage(deep=deep) # type: ignore[attr-defined] v = self.array.nbytes if deep and is_object_dtype(self) and not PYPY: v += lib.memory_usage_of_objects(self._values) return v @doc( algorithms.factorize, values="", order="", size_hint="", sort=textwrap.dedent( """\ sort : bool, default False Sort `uniques` and shuffle `codes` to maintain the relationship. """ ), ) def factorize(self, sort: bool = False, na_sentinel: Optional[int] = -1): return algorithms.factorize(self, sort=sort, na_sentinel=na_sentinel) _shared_docs[ "searchsorted" ] = """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted {klass} `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. .. note:: The {klass} *must* be monotonically sorted, otherwise wrong locations will likely be returned. Pandas does *not* check this for you. Parameters ---------- value : array_like Values to insert into `self`. side : {{'left', 'right'}}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- int or array of int A scalar or array of insertion points with the same shape as `value`. .. versionchanged:: 0.24.0 If `value` is a scalar, an int is now always returned. Previously, scalar inputs returned an 1-item array for :class:`Series` and :class:`Categorical`. See Also -------- sort_values : Sort by the values along either axis. numpy.searchsorted : Similar method from NumPy. Notes ----- Binary search is used to find the required insertion points. Examples -------- >>> ser = pd.Series([1, 2, 3]) >>> ser 0 1 1 2 2 3 dtype: int64 >>> ser.searchsorted(4) 3 >>> ser.searchsorted([0, 4]) array([0, 3]) >>> ser.searchsorted([1, 3], side='left') array([0, 2]) >>> ser.searchsorted([1, 3], side='right') array([1, 3]) >>> ser = pd.Series(pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000'])) >>> ser 0 2000-03-11 1 2000-03-12 2 2000-03-13 dtype: datetime64[ns] >>> ser.searchsorted('3/14/2000') 3 >>> ser = pd.Categorical( ... ['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True ... ) >>> ser ['apple', 'bread', 'bread', 'cheese', 'milk'] Categories (4, object): ['apple' < 'bread' < 'cheese' < 'milk'] >>> ser.searchsorted('bread') 1 >>> ser.searchsorted(['bread'], side='right') array([3]) If the values are not monotonically sorted, wrong locations may be returned: >>> ser = pd.Series([2, 1, 3]) >>> ser 0 2 1 1 2 3 dtype: int64 >>> ser.searchsorted(1) # doctest: +SKIP 0 # wrong result, correct would be 1 """ @doc(_shared_docs["searchsorted"], klass="Index") def searchsorted(self, value, side="left", sorter=None) -> np.ndarray: return algorithms.searchsorted(self._values, value, side=side, sorter=sorter) def drop_duplicates(self, keep="first"): duplicated = self.duplicated(keep=keep) # pandas\core\base.py:1507: error: Value of type "IndexOpsMixin" is not # indexable [index] result = self[np.logical_not(duplicated)] # type: ignore[index] return result def duplicated(self, keep="first"): return duplicated(self._values, keep=keep)
31.677419
87
0.559984
12c3cc5f8f023c8c99fc1f82d99e16cb3a10ae6c
505
py
Python
VENV/lib/python3.6/site-packages/PyInstaller/loader/rthooks/pyi_rth_gi.py
workingyifei/display-pattern-generator
b27be84c6221fa93833f283109870737b05bfbf6
[ "MIT" ]
3
2018-11-27T06:30:23.000Z
2021-05-30T15:56:32.000Z
VENV/lib/python3.6/site-packages/PyInstaller/loader/rthooks/pyi_rth_gi.py
workingyifei/display-pattern-generator
b27be84c6221fa93833f283109870737b05bfbf6
[ "MIT" ]
1
2018-11-15T02:00:31.000Z
2021-12-06T02:20:32.000Z
VENV/lib/python3.6/site-packages/PyInstaller/loader/rthooks/pyi_rth_gi.py
workingyifei/display-pattern-generator
b27be84c6221fa93833f283109870737b05bfbf6
[ "MIT" ]
1
2020-11-06T18:46:35.000Z
2020-11-06T18:46:35.000Z
#----------------------------------------------------------------------------- # Copyright (c) 2015-2017, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License with exception # for distributing bootloader. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import os import sys os.environ['GI_TYPELIB_PATH'] = os.path.join(sys._MEIPASS, 'gi_typelibs')
36.071429
78
0.532673
06a9ce927bbf34482346da6559a32a390d9f9078
24,137
py
Python
smt/veriT/proof.py
crisperdue/holpy
fe88eb91a8db8386184329e3f51a80d11ecdb316
[ "BSD-3-Clause" ]
22
2021-06-15T00:01:27.000Z
2022-03-15T11:22:25.000Z
smt/veriT/proof.py
crisperdue/holpy
fe88eb91a8db8386184329e3f51a80d11ecdb316
[ "BSD-3-Clause" ]
null
null
null
smt/veriT/proof.py
crisperdue/holpy
fe88eb91a8db8386184329e3f51a80d11ecdb316
[ "BSD-3-Clause" ]
2
2021-11-30T08:56:03.000Z
2022-01-24T10:46:39.000Z
""" Basic proof rules in veriT solver. """ from smt.veriT.verit_macro import * from kernel.proofterm import ProofTerm, Thm from logic import basic, matcher, logic, conv from kernel import term import functools from prover.proofrec import int_th_lemma_1_omega basic.load_theory("verit") class Concl(object): def __init__(self, *tms): self.tms = tms def __len__(self): return len(self.tms) class Input(object): def __init__(self, seq_num, concl): self.seq_num = seq_num self.concl = concl class Rule(object): def __init__(self, seq_num, proof_name, concl, assms=[], args=None): self.seq_num = seq_num self.proof_name = str(proof_name) arity = len(concl) if arity > 1: self.concl = Or(*concl.tms) elif arity == 1: self.concl = concl.tms[0] else: self.concl = term.false self.arity = arity self.assms = assms self.args = args def __str__(self): return "%s: %s: %s: %s: %s" % ( self.seq_num, self.proof_name, self.concl, self.assms, self.args ) class ProofReconstruction(object): def __init__(self, steps): # A list of proof steps. self.steps = steps # map seq number to proof number self.proof = dict() def main(self): step_num = len(self.steps) for step in self.steps: try: self.reconstruct(step) except: self.not_imp(step) print("%s/%s" % (step.seq_num, step_num)) print("finished") return self.proof[len(self.steps)] def reconstruct(self, step): name = step.proof_name if name == "input": self.input_rule(step) elif name == "true": self.true_rule(step) elif name == "false": self.false_rule(step) elif name == "tmp_betared": self.tmp_betared(step) elif name == "tmp_qnt_tidy": self.tmp_qnt_tidy(step) elif name == "or_pos": self.or_pos(step) elif name == "or": self.or_rule(step) elif name == "resolution" or name == "th_resolution": self.resolution(step) elif name == "forall_inst": self.forall_inst(step) elif name == "eq_reflexive": self.eq_reflexive(step) elif name == "eq_transitive": self.eq_transitive(step) elif name == "and": self.and_rule(step) elif name == "and_pos": self.and_pos(step) elif name == "eq_congruent": self.eq_congruent(step) elif name == "equiv1": self.equiv1(step) elif name == "equiv2": self.equiv2(step) elif name == "not_equiv1": self.not_equiv1(step) elif name == "not_equiv2": self.not_equiv2(step) elif name == "equiv_pos1": self.equiv_pos1(step) elif name == "equiv_pos2": self.equiv_pos2(step) elif name == "equiv_neg1": self.equiv_neg1(step) elif name == "equiv_neg2": self.equiv_neg2(step) elif name == "tmp_distinct_elim": self.tmp_distinct_elim(step) elif name == "and_neg": self.and_neg(step) elif name == "tmp_LA_pre": self.tmp_LA_pre(step) elif name == "not_or": self.not_or_rule(step) elif name == "or_neg": self.or_neg(step) elif name == "not_and": self.not_and(step) elif name == "implies": self.implies_rule(step) elif name == "not_implies1": self.not_implies1(step) elif name == "not_implies2": self.not_implies2(step) elif name == "ite1": self.ite1(step) elif name == "ite2": self.ite2(step) elif name == "not_ite1": self.not_ite1(step) elif name == "not_ite2": self.not_ite2(step) elif name == "ite_pos1": self.ite_pos1(step) elif name == "ite_pos2": self.ite_pos2(step) elif name == "ite_neg1": self.ite_neg1(step) elif name == "ite_neg2": self.ite_neg2(step) elif name == "la_generic": self.la_generic(step) elif name == "la_disequality": self.la_disequality(step) elif name == "eq_congruent_pred": self.eq_congruent_pred(step) # elif name == "tmp_ite_elim": # self.tmp_ite_elim(step) else: self.not_imp(step) def not_imp(self, step): print(step.seq_num, step.proof_name) if step.proof_name != "tmp_ite_elim": print(step) self.proof[step.seq_num] = ProofTerm.sorry(Thm([hyp for i in step.assms for hyp in self.proof[i].hyps], step.concl)) def schematic_rule1(self, th_name, pt): """ The th is in a ⊢ A --> B form, pt is ⊢ A, return ⊢ B. """ pt_th = ProofTerm.theorem(th_name) inst = matcher.first_order_match(pt_th.prop.arg1, pt.prop) pt_th_inst = pt_th.substitution(inst=inst) return pt_th_inst.implies_elim(pt).on_prop(conv.top_conv(conv.rewr_conv("double_neg"))) def schematic_rule2(self, th_name, tm): """ The th is in ⊢ A, A is a tautology, instantiate th by tm. """ pt_th = ProofTerm.theorem(th_name) inst = matcher.first_order_match(pt_th.prop.arg1, tm.arg1) return pt_th.substitution(inst=inst).on_prop(conv.top_conv(conv.rewr_conv("double_neg"))) def input_rule(self, step): """ Verit will give each (sub-)expression a name in input rule, hence it is not a proof. """ self.proof[step.seq_num] = ProofTerm.assume(step.concl) def true_rule(self, step): """|- true""" self.proof[step.seq_num] = ProofTerm.theorem("trueI") def false_rule(self, step): """|- ~false""" self.proof[step.seq_num] = ProofTerm.theorem("not_false_res") def tmp_betared(self, step): """ Assume that tmp_betared rules are only followed by input rules, For now, we only return the conclusion as input. """ self.proof[step.seq_num] = ProofTerm.assume(step.concl) def tmp_qnt_tidy(self, step): """ Normalize quantifiers, but we don't know the mechanism now, so only return the formula waited for normalizing. """ self.proof[step.seq_num] = self.proof[step.assms[0]] def forall_inst(self, step): """⊢ (¬∀x. P (x)) ∨ P(x0) Bugs: ⊢ ~(!x. A --> B) | ~A | B """ T = step.concl.arg1.arg.arg.var_T if step.args.type == "NAME": inst_var = term.Var(step.args.value, T) elif step.args.type == "NUMBER": if T == term.IntType: inst_var = term.Int(int(step.args)) elif T == term.RealType: inst_var = term.Real(float(step.args)) elif T == term.BoolType: if step.args.value == "true": inst_var = term.true elif step.args.value == "false": inst_var = term.false else: raise ValueError(str(step.args)) else: raise ValueError(str(step.args)) else: raise NotImplementedError(step.args) forall_tm = step.concl.arg1.arg pt_assume = ProofTerm.assume(forall_tm) pt_inst = pt_assume.forall_elim(inst_var) pt_implies_hyp = pt_inst.implies_intr(pt_inst.hyps[0]).on_prop(conv.rewr_conv("imp_disj_eq")) if pt_implies_hyp.prop == step.concl: self.proof[step.seq_num] = pt_implies_hyp else: # ⊢ ¬(∀x. A --> B) ∨ ¬A ∨ B is_implicit_conv = step.concl.arg1.arg.arg.body.is_implies()\ and step.concl.arg.is_disj() if not is_implicit_conv: return self.not_imp(step) pt_final = pt_implies_hyp.on_prop(conv.arg_conv(conv.rewr_conv("imp_disj_eq"))) assert pt_final.prop == step.concl, "%s != %s" % (str(pt_final.prop), str(step.concl)) self.proof[step.seq_num] = pt_final def or_pos(self, step): """⊢ ¬(a_1 ∨ ... ∨ a_n) ∨ a_1 ∨ ... ∨ a_n""" # self.proof[step.seq_num] = self.schematic_rule2("or_pos", step.concl) self.proof[step.seq_num] = ProofTerm("or_pos", step.concl) def or_rule(self, step): """ {(or a_1 ... a_n)} --> {a_1 ... a_n} this rule doesn't have effect in HOL, so return the assms[0] """ self.proof[step.seq_num] = self.proof[step.assms[0]] def resolution(self, step): """Given a sequence of proof terms, take resolution on them one by one.""" res_pts = [self.proof[num] for num in step.assms] pt_0 = self.proof[step.assms[0]] arity1 = self.steps[step.assms[0]-1].arity for i in step.assms[1:]: arity2 = self.steps[i-1].arity assert self.proof[i].prop == self.steps[i-1].concl, i pt_1 = pt_0 pt_0, arity1 = verit_resolution(pt_0, self.proof[i], arity1, arity2) if pt_0.prop == step.concl: self.proof[step.seq_num] = pt_0 else: concl_disjs = strip_num(step.concl, step.arity) pt_disjs = strip_num(pt_0.prop, step.arity) assert set(concl_disjs) == set(pt_disjs) implies_pt_norm = ProofTerm("imp_disj", term.Implies(pt_0.prop, Or(*concl_disjs))) self.proof[step.seq_num] = implies_pt_norm.implies_elim(pt_0) def eq_reflexive(self, step): """{(= x x)}""" self.proof[step.seq_num] = ProofTerm.reflexive(step.concl.lhs) def eq_transitive(self, step): """{(not (= x_1 x_2)) ... (not (= x_{n-1} x_n)) (= x_1 x_n)}""" self.proof[step.seq_num] = ProofTerm("verit_and_rule", step.concl) def and_rule(self, step): """{(and a_1 ... a_n)} --> {a_i} a_1 ∧ ... ∧ a_n --> a_i bug: ¬(m1_2 - m2_2 ≥ 0 ∧ m1_2 - m2_2 ≤ 0) ∨ s1_2 - s2_2 ≥ 4 ∨ s2_2 - s1_2 ≥ 4 ¬(0 ≤ m1_2 - m2_2 ∧ m1_2 - m2_2 ≤ 0) ∨ s1_2 - s2_2 ≥ 4 ∨ s2_2 - s1_2 ≥ 4 """ try: pt = ProofTerm("imp_conj", term.Implies(self.proof[step.assms[0]].prop, step.concl)) self.proof[step.seq_num] = pt.implies_elim(self.proof[step.assms[0]]) except: self.not_imp(step) def and_pos(self, step): """ ⊢ ¬(a_1 ∧ ... ∧ a_n) ∨ a_i """ pt = ProofTerm("imp_conj", term.Implies(step.concl.arg1.arg, step.concl.arg)) self.proof[step.seq_num] = pt.on_prop(conv.rewr_conv("imp_disj_eq")) def eq_congruent(self, step): self.proof[step.seq_num] = ProofTerm("verit_eq_congurent", step.concl) def equiv1(self, step): """a ⟷ b --> ¬a ∨ b """ self.proof[step.seq_num] = self.schematic_rule1("equiv1", self.proof[step.assms[0]]) def equiv2(self, step): """a ⟷ b --> a ∨ ¬b """ self.proof[step.seq_num] = self.schematic_rule1("equiv2", self.proof[step.assms[0]]) def not_equiv1(self, step): """¬(P ⟷ Q) ⟶ P ∨ Q""" self.proof[step.seq_num] = self.schematic_rule1("not_equiv1", self.proof[step.assms[0]]) def not_equiv2(self, step): """¬(P ⟷ Q) ⟶ ¬P ∨ ¬Q""" self.proof[step.seq_num] = self.schematic_rule1("not_equiv2", self.proof[step.assms[0]]) def equiv_pos1(self, step): """¬(a ⟷ b) ∨ a ∨ ¬b""" self.proof[step.seq_num] = self.schematic_rule2("equiv_pos1", step.concl) def equiv_pos2(self, step): """¬(a ⟷ b) ∨ a ∨ ¬b""" self.proof[step.seq_num] = self.schematic_rule2("equiv_pos2", step.concl) def equiv_neg1(self, step): """(a ⟷ b) ∨ ¬a ∨ ¬b""" self.proof[step.seq_num] = self.schematic_rule2("equiv_neg1", step.concl) def equiv_neg2(self, step): """(a ⟷ b) ∨ a ∨ b""" self.proof[step.seq_num] = self.schematic_rule2("equiv_neg2", step.concl) def tmp_distinct_elim(self, step): """formula where distinct have been eliminated, which have done in the parsing process.""" self.proof[step.seq_num] = self.proof[step.assms[0]] def and_neg(self, step): """⊢ (a_1 ∧ ... ∧ a_n) ∨ ¬a_1 ∨ ... ∨ ¬a_n""" self.proof[step.seq_num] = ProofTerm("and_neg", [step.arity, step.concl]) def tmp_LA_pre(self, step): """formula with = replaced by conjunction of two inequalities""" self.proof[step.seq_num] = self.proof[step.assms[0]].on_prop( conv.top_conv(conv.rewr_conv("tmp_LA_pre_int")), conv.top_conv(conv.rewr_conv("tmp_LA_pre_real")), ) def not_or_rule(self, step): """¬(a_1 ∨ ... ∨ a_n) --> ¬a_i""" self.proof[step.seq_num] = ProofTerm("not_or_rule", [step.concl], [self.proof[i] for i in step.assms]) def or_neg(self, step): """⊢ (a_1 ∨ ... ∨ a_n) ∨ ¬a_i""" concl = step.concl disj, atom = concl.arg1, concl.arg if atom.is_not(): pt0 = ProofTerm("imp_disj", term.Implies(atom.arg, disj)) else: pt0 = ProofTerm("imp_disj", term.Implies(term.Not(atom), disj)) pt1 = pt0.on_prop(conv.rewr_conv("imp_disj_eq"), conv.rewr_conv("disj_comm")) self.proof[step.seq_num] = pt1 def not_and(self, step): """⊢ ¬(a_1 ∧ ... ∧ a_n) --> ¬a_1 ∨ ... ∨ ¬a_n""" arity = len(step.concl.arg.strip_disj()) pt = ProofTerm("not_and", [step.concl], [self.proof[step.assms[0]]]) self.proof[step.seq_num] = pt def implies_rule(self, step): """{(implies a b)} --> {(not a) b}""" self.proof[step.seq_num] = self.proof[step.assms[0]].on_prop(conv.rewr_conv("imp_disj_eq")) def not_implies1(self, step): """¬(a --> b) --> a""" self.proof[step.seq_num] = self.schematic_rule1("not_implies1", self.proof[step.assms[0]]) def not_implies2(self, step): """¬(a --> b) --> ¬b""" self.proof[step.seq_num] = self.schematic_rule1("not_implies2", self.proof[step.assms[0]]) def ite1(self, step): """ite a b c --> a ∨ c""" self.proof[step.seq_num] = self.schematic_rule1("verit_ite1", self.proof[step.assms[0]]) def ite2(self, step): """ite a b c --> ¬a ∨ b""" self.proof[step.seq_num] = self.schematic_rule1("verit_ite2", self.proof[step.assms[0]]) def not_ite1(self, step): """¬(ite a b c) --> a ∨ ¬c""" self.proof[step.seq_num] = self.schematic_rule1("verit_not_ite1", self.proof[step.assms[0]]) def not_ite2(self, step): """¬(ite a b c) --> ¬a ∨ ¬b""" self.proof[step.seq_num] = self.schematic_rule1("verit_not_ite2", self.proof[step.assms[0]]) def la_generic(self, step): self.proof[step.seq_num] = ProofTerm("la_generic", step.concl) def eq_congruent_pred(self, step): """{(not (= x_1 y_1)) ... (not (= x_n y_n)) (not (p x_1 ... x_n)) (p y_1 ... y_n)}""" try: self.proof[step.seq_num] = ProofTerm("verit_eq_congurent_pred", step.concl) except: self.not_imp(step) def la_disequality(self, step): """ Two situtaions: the first is ?a = ?b ∨ ¬(?a ≤ ?b) ∨ ¬(?b ≤ ?a) the second is ?a = ?b ∨ ¬(?b ≤ ?a) ∨ ¬(?a ≤ ?b) """ if step.concl.arg1.lhs.get_type() == term.IntType: self.proof[step.seq_num] = self.schematic_rule2("la_disequality_int", step.concl) elif step.concl.arg1.lhs.get_type() == term.RealType: self.proof[step.seq_num] = self.schematic_rule2("la_disequality_real", step.concl) else: raise NotImplementedError assert self.proof[step.seq_num].prop == step.concl # class InputRule(Rule): # """Assertion.""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class TrueRule(Rule): # """⊢ true""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class FalseRule(Rule): # """⊢ ¬false""" # def __init__(self, seq_num): # super.__init__(self, seq_num, params, concl) # class AndPos(Rule): # """⊢ ¬(a_1 ∧ ... ∧ a_n) ∨ a_i""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class AndNeg(Rule): # """⊢ (a_1 ∧ ... ∧ a_n) ∨ ¬a_1 ∨ ... ∨ ¬a_n""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class OrPos(Rule): # """⊢ ¬(a_1 ∨ ... ∨ a_n) ∨ a_1 ∨ ... ∨ a_n""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class OrNeg(Rule): # """⊢ (a_1 ∨ ... ∨ a_n) ∨ ¬a_i""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ImpliesPos(Rule): # """⊢ ¬(a ⟶ b) ∨ ¬a ∨ b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ImpliesNeg1(Rule): # """⊢ (a ⟶ b) ∨ a""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ImpliesNeg2(Rule): # """⊢ (a ⟶ b) ∨ ¬b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EquivPos1(Rule): # """¬(a ⟷ b) ∨ a ∨ ¬b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EquivPos2(Rule): # """¬(a ⟷ b) ∨ ¬a ∨ b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EquivNeg1(Rule): # """(a ⟷ b) ∨ ¬a ∨ ¬b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EquivNeg2(Rule): # """(a ⟷ b) ∨ a ∨ b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ITEPos1(Rule): # """¬(ite a b c) ∨ a ∨ c""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ITEPos2(Rule): # """¬(ite a b c) ∨ ¬a ∨ b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ITENeg1(Rule): # """(ite a b c) ∨ a ∨ ¬c""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ITEPos2(Rule): # """(ite a b c) ∨ ¬a ∨ ¬b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EqReflexive(Rule): # """x = x""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EqTransitive(Rule): # """¬(x_1 = x_2 ∨ x_2 = x_3 ∨ ... ∨ x_{n-1} = x_n) ∨ x_1 = x_n""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EqCongurent(Rule): # """¬(x_1 = y_1 ∨ ... ∨ x_n = y_n) ∨ f x_1 ... x_n = f y_1 ... y_n""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EqCongurentPred(Rule): # """¬(x_1 = y_1) ∨ ... ∨ ¬(x_n = y_n) ∨ ¬(p x_1 ... x_n) ∨ (p y_1 ... y_n)""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class EqCongurentGeneral(Rule): # """¬(x_1 = y_1) ∨ ... ∨ ¬(x_n = y_n) ∨ # ¬(p t_1 ... x_1 ... t_m ... x_n) ∨ (p t_1 ... y_1 ... t_m ... y_n)""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class DistinctElim(Rule): # """DIST x y ⟷ x ≠ y""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class LaRwEq(Rule): # """x = y ⟷ x ≤ y ∧ x ≥ y""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class LaGeneric(Rule): # """Not defined.""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class LiaGeneric(Rule): # """Not defined.""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NlaGeneric(Rule): # """Not defined.""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class LaDisequality(Rule): # """Not defined.""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class LaTotality(Rule): # """t_1 ≤ t_2 ∨ t_2 ≤ t_1""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class LaTautology(Rule): # """Linear arithmetic tautology without variable.""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ForAllInst(Rule): # """∀x. A x --> A t""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ExistsInst(Rule): # """A t --> ∃x. A x""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class Resolution(Rule): # """Resolution.""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class AndRule(Rule): # """a_1 ∧ ... ∧ a_n --> a_i""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NotOrRule(Rule): # """¬(a_1 ∨ ... ∨ a_n) --> ¬a_i""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class OrRule(Rule): # """{(or a_1 ... a_n)} --> {a_1 ... a_n}""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NotAndRule(Rule): # """¬(a_1 ∧ ... ∧ a_n) --> ¬a_1 ∨ ... ∨ ¬a_n""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NotImplies1(Rule): # """¬(a --> b) ∨ a""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NotImplies2(Rule): # """¬(a --> b) ∨ ¬b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class Equiv1(Rule): # """a ⟷ b --> ¬a ∨ b """ # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class Equiv2(Rule): # """a ⟷ b --> a ∨ ¬b """ # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NotEquiv1(Rule): # """¬(a ⟷ b) --> a ∨ b """ # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NotEquiv2(Rule): # """¬(a ⟷ b) --> ¬a ∨ ¬b """ # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ITE1(Rule): # """ite a b c --> a ∨ c""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class ITE2(Rule): # """ite a b c --> ¬a ∨ b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NotITE1(Rule): # """¬(ite a b c) --> a ∨ ¬c""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl) # class NotITE2(Rule): # """¬(ite a b c) --> ¬a ∨ ¬b""" # def __init__(self, seq_num, params, concl): # super.__init__(self, seq_num, params, concl)
35.547865
124
0.559432
b69ab462ddb1421425c67bc79fe24b91964ffe2c
1,813
py
Python
tests/components/cloud/test_system_health.py
dlintott/core
a6c83cc46a34084fdc4c0e7221b6ba493f82cbac
[ "Apache-2.0" ]
2
2021-05-19T19:05:08.000Z
2021-06-06T06:51:05.000Z
tests/components/cloud/test_system_health.py
jrhubott/core
89fe232643134f283c041537e9f6841f47dc1c5e
[ "Apache-2.0" ]
56
2020-08-03T07:30:54.000Z
2022-03-31T06:02:04.000Z
tests/components/cloud/test_system_health.py
jrhubott/core
89fe232643134f283c041537e9f6841f47dc1c5e
[ "Apache-2.0" ]
2
2020-12-25T16:31:22.000Z
2020-12-30T20:53:56.000Z
"""Test cloud system health.""" import asyncio from aiohttp import ClientError from homeassistant.setup import async_setup_component from homeassistant.util.dt import utcnow from tests.async_mock import Mock from tests.common import get_system_health_info async def test_cloud_system_health(hass, aioclient_mock): """Test cloud system health.""" aioclient_mock.get("https://cloud.bla.com/status", text="") aioclient_mock.get("https://cert-server", text="") aioclient_mock.get( "https://cognito-idp.us-east-1.amazonaws.com/AAAA/.well-known/jwks.json", exc=ClientError, ) hass.config.components.add("cloud") assert await async_setup_component(hass, "system_health", {}) now = utcnow() hass.data["cloud"] = Mock( region="us-east-1", user_pool_id="AAAA", relayer="wss://cloud.bla.com/websocket_api", acme_directory_server="https://cert-server", is_logged_in=True, remote=Mock(is_connected=False), expiration_date=now, is_connected=True, client=Mock( prefs=Mock( remote_enabled=True, alexa_enabled=True, google_enabled=False, ) ), ) info = await get_system_health_info(hass, "cloud") for key, val in info.items(): if asyncio.iscoroutine(val): info[key] = await val assert info == { "logged_in": True, "subscription_expiration": now, "relayer_connected": True, "remote_enabled": True, "remote_connected": False, "alexa_enabled": True, "google_enabled": False, "can_reach_cert_server": "ok", "can_reach_cloud_auth": {"type": "failed", "error": "unreachable"}, "can_reach_cloud": "ok", }
29.721311
81
0.626034
25bc5b43a85ec91bc24bd46aed0fe7e306647ba3
155,866
py
Python
salt/modules/virt.py
joechainz/salt
ae6ca7e4de5d8b214f95e2df98a8346c55186333
[ "Apache-2.0" ]
5
2017-02-07T05:39:29.000Z
2020-06-13T02:07:33.000Z
salt/modules/virt.py
joechainz/salt
ae6ca7e4de5d8b214f95e2df98a8346c55186333
[ "Apache-2.0" ]
86
2017-01-27T11:54:46.000Z
2020-05-20T06:25:26.000Z
salt/modules/virt.py
joechainz/salt
ae6ca7e4de5d8b214f95e2df98a8346c55186333
[ "Apache-2.0" ]
11
2017-01-26T19:36:29.000Z
2021-12-11T07:54:16.000Z
# -*- coding: utf-8 -*- ''' Work with virtual machines managed by libvirt :depends: libvirt Python module Connection ========== The connection to the virtualization host can be either setup in the minion configuration, pillar data or overridden for each individual call. By default, the libvirt connection URL will be guessed: the first available libvirt hypervisor driver will be used. This can be overridden like this: .. code-block:: yaml virt: connection: uri: lxc:/// If the connection requires an authentication like for ESXi, this can be defined in the minion pillar data like this: .. code-block:: yaml virt: connection: uri: esx://10.1.1.101/?no_verify=1&auto_answer=1 auth: username: user password: secret Connecting with SSH protocol ---------------------------- Libvirt can connect to remote hosts using SSH using one of the ``ssh``, ``libssh`` and ``libssh2`` transports. Note that ``libssh2`` is likely to fail as it doesn't read the ``known_hosts`` file. Libvirt may also have been built without ``libssh`` or ``libssh2`` support. To use the SSH transport, on the minion setup an SSH agent with a key authorized on the remote libvirt machine. Per call connection setup ------------------------- .. versionadded:: 2019.2.0 All the calls requiring the libvirt connection configuration as mentioned above can override this configuration using ``connection``, ``username`` and ``password`` parameters. This means that the following will list the domains on the local LXC libvirt driver, whatever the ``virt:connection`` is. .. code-block:: bash salt 'hypervisor' virt.list_domains connection=lxc:/// The calls not using the libvirt connection setup are: - ``seed_non_shared_migrate`` - ``virt_type`` - ``is_*hyper`` - all migration functions - `libvirt ESX URI format <http://libvirt.org/drvesx.html#uriformat>`_ - `libvirt URI format <http://libvirt.org/uri.html#URI_config>`_ - `libvirt authentication configuration <http://libvirt.org/auth.html#Auth_client_config>`_ ''' # Special Thanks to Michael Dehann, many of the concepts, and a few structures # of his in the virt func module have been used # Import python libs from __future__ import absolute_import, print_function, unicode_literals import copy import os import re import sys import shutil import subprocess import string # pylint: disable=deprecated-module import logging import time import datetime from xml.etree import ElementTree # Import third party libs import jinja2 import jinja2.exceptions try: import libvirt # pylint: disable=import-error from libvirt import libvirtError HAS_LIBVIRT = True except ImportError: HAS_LIBVIRT = False # Import salt libs import salt.utils.files import salt.utils.json import salt.utils.network import salt.utils.path import salt.utils.stringutils import salt.utils.templates import salt.utils.validate.net import salt.utils.versions import salt.utils.yaml from salt.exceptions import CommandExecutionError, SaltInvocationError from salt.ext import six from salt.ext.six.moves import range # pylint: disable=import-error,redefined-builtin log = logging.getLogger(__name__) # Set up template environment JINJA = jinja2.Environment( loader=jinja2.FileSystemLoader( os.path.join(salt.utils.templates.TEMPLATE_DIRNAME, 'virt') ) ) VIRT_STATE_NAME_MAP = {0: 'running', 1: 'running', 2: 'running', 3: 'paused', 4: 'shutdown', 5: 'shutdown', 6: 'crashed'} def __virtual__(): if not HAS_LIBVIRT: return (False, 'Unable to locate or import python libvirt library.') return 'virt' def __get_request_auth(username, password): ''' Get libvirt.openAuth callback with username, password values overriding the configuration ones. ''' # pylint: disable=unused-argument def __request_auth(credentials, user_data): '''Callback method passed to libvirt.openAuth(). The credentials argument is a list of credentials that libvirt would like to request. An element of this list is a list containing 5 items (4 inputs, 1 output): - the credential type, e.g. libvirt.VIR_CRED_AUTHNAME - a prompt to be displayed to the user - a challenge - a default result for the request - a place to store the actual result for the request The user_data argument is currently not set in the openAuth call. ''' for credential in credentials: if credential[0] == libvirt.VIR_CRED_AUTHNAME: credential[4] = username if username else \ __salt__['config.get']('virt:connection:auth:username', credential[3]) elif credential[0] == libvirt.VIR_CRED_NOECHOPROMPT: credential[4] = password if password else \ __salt__['config.get']('virt:connection:auth:password', credential[3]) else: log.info('Unhandled credential type: %s', credential[0]) return 0 def __get_conn(**kwargs): ''' Detects what type of dom this node is and attempts to connect to the correct hypervisor via libvirt. :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults ''' # This has only been tested on kvm and xen, it needs to be expanded to # support all vm layers supported by libvirt username = kwargs.get('username', None) password = kwargs.get('password', None) conn_str = kwargs.get('connection', None) if not conn_str: conn_str = __salt__['config.get']('virt.connect', None) if conn_str is not None: salt.utils.versions.warn_until( 'Sodium', '\'virt.connect\' configuration property has been deprecated in favor ' 'of \'virt:connection:uri\'. \'virt.connect\' will stop being used in ' '{version}.' ) else: conn_str = __salt__['config.get']('libvirt:connection', None) if conn_str is not None: salt.utils.versions.warn_until( 'Sodium', '\'libvirt.connection\' configuration property has been deprecated in favor ' 'of \'virt:connection:uri\'. \'libvirt.connection\' will stop being used in ' '{version}.' ) conn_str = __salt__['config.get']('virt:connection:uri', conn_str) hypervisor = __salt__['config.get']('libvirt:hypervisor', None) if hypervisor is not None: salt.utils.versions.warn_until( 'Sodium', '\'libvirt.hypervisor\' configuration property has been deprecated. ' 'Rather use the \'virt:connection:uri\' to properly define the libvirt ' 'URI or alias of the host to connect to. \'libvirt:hypervisor\' will ' 'stop being used in {version}.' ) if hypervisor == 'esxi' and conn_str is None: salt.utils.versions.warn_until( 'Sodium', 'esxi hypervisor default with no default connection URI detected, ' 'please set \'virt:connection:uri\' to \'esx\' for keep the legacy ' 'behavior. Will default to libvirt guess once \'libvirt:hypervisor\' ' 'configuration is removed in {version}.' ) conn_str = 'esx' try: auth_types = [libvirt.VIR_CRED_AUTHNAME, libvirt.VIR_CRED_NOECHOPROMPT, libvirt.VIR_CRED_ECHOPROMPT, libvirt.VIR_CRED_PASSPHRASE, libvirt.VIR_CRED_EXTERNAL] conn = libvirt.openAuth(conn_str, [auth_types, __get_request_auth(username, password), None], 0) except Exception: raise CommandExecutionError( 'Sorry, {0} failed to open a connection to the hypervisor ' 'software at {1}'.format( __grains__['fqdn'], conn_str ) ) return conn def _get_domain(conn, *vms, **kwargs): ''' Return a domain object for the named VM or return domain object for all VMs. :params conn: libvirt connection object :param vms: list of domain names to look for :param iterable: True to return an array in all cases ''' ret = list() lookup_vms = list() all_vms = [] if kwargs.get('active', True): for id_ in conn.listDomainsID(): all_vms.append(conn.lookupByID(id_).name()) if kwargs.get('inactive', True): for id_ in conn.listDefinedDomains(): all_vms.append(id_) if not all_vms: raise CommandExecutionError('No virtual machines found.') if vms: for name in vms: if name not in all_vms: raise CommandExecutionError('The VM "{name}" is not present'.format(name=name)) else: lookup_vms.append(name) else: lookup_vms = list(all_vms) for name in lookup_vms: ret.append(conn.lookupByName(name)) return len(ret) == 1 and not kwargs.get('iterable') and ret[0] or ret def _parse_qemu_img_info(info): ''' Parse qemu-img info JSON output into disk infos dictionary ''' raw_infos = salt.utils.json.loads(info) disks = [] for disk_infos in raw_infos: disk = { 'file': disk_infos['filename'], 'file format': disk_infos['format'], 'disk size': disk_infos['actual-size'], 'virtual size': disk_infos['virtual-size'], 'cluster size': disk_infos['cluster-size'] if 'cluster-size' in disk_infos else None, } if 'full-backing-filename' in disk_infos.keys(): disk['backing file'] = format(disk_infos['full-backing-filename']) if 'snapshots' in disk_infos.keys(): disk['snapshots'] = [ { 'id': snapshot['id'], 'tag': snapshot['name'], 'vmsize': snapshot['vm-state-size'], 'date': datetime.datetime.fromtimestamp( float('{}.{}'.format(snapshot['date-sec'], snapshot['date-nsec']))).isoformat(), 'vmclock': datetime.datetime.utcfromtimestamp( float('{}.{}'.format(snapshot['vm-clock-sec'], snapshot['vm-clock-nsec']))).time().isoformat() } for snapshot in disk_infos['snapshots']] disks.append(disk) for disk in disks: if 'backing file' in disk.keys(): candidates = [info for info in disks if 'file' in info.keys() and info['file'] == disk['backing file']] if candidates: disk['backing file'] = candidates[0] return disks[0] def _get_uuid(dom): ''' Return a uuid from the named vm CLI Example: .. code-block:: bash salt '*' virt.get_uuid <domain> ''' return ElementTree.fromstring(get_xml(dom)).find('uuid').text def _get_on_poweroff(dom): ''' Return `on_poweroff` setting from the named vm CLI Example: .. code-block:: bash salt '*' virt.get_on_restart <domain> ''' node = ElementTree.fromstring(get_xml(dom)).find('on_poweroff') return node.text if node is not None else '' def _get_on_reboot(dom): ''' Return `on_reboot` setting from the named vm CLI Example: .. code-block:: bash salt '*' virt.get_on_reboot <domain> ''' node = ElementTree.fromstring(get_xml(dom)).find('on_reboot') return node.text if node is not None else '' def _get_on_crash(dom): ''' Return `on_crash` setting from the named vm CLI Example: .. code-block:: bash salt '*' virt.get_on_crash <domain> ''' node = ElementTree.fromstring(get_xml(dom)).find('on_crash') return node.text if node is not None else '' def _get_nics(dom): ''' Get domain network interfaces from a libvirt domain object. ''' nics = {} doc = ElementTree.fromstring(dom.XMLDesc(0)) for iface_node in doc.findall('devices/interface'): nic = {} nic['type'] = iface_node.get('type') for v_node in iface_node: if v_node.tag == 'mac': nic['mac'] = v_node.get('address') if v_node.tag == 'model': nic['model'] = v_node.get('type') if v_node.tag == 'target': nic['target'] = v_node.get('dev') # driver, source, and match can all have optional attributes if re.match('(driver|source|address)', v_node.tag): temp = {} for key, value in six.iteritems(v_node.attrib): temp[key] = value nic[v_node.tag] = temp # virtualport needs to be handled separately, to pick up the # type attribute of the virtualport itself if v_node.tag == 'virtualport': temp = {} temp['type'] = v_node.get('type') for key, value in six.iteritems(v_node.attrib): temp[key] = value nic['virtualport'] = temp if 'mac' not in nic: continue nics[nic['mac']] = nic return nics def _get_graphics(dom): ''' Get domain graphics from a libvirt domain object. ''' out = {'autoport': 'None', 'keymap': 'None', 'listen': 'None', 'port': 'None', 'type': 'None'} doc = ElementTree.fromstring(dom.XMLDesc(0)) for g_node in doc.findall('devices/graphics'): for key, value in six.iteritems(g_node.attrib): out[key] = value return out def _get_disks(dom): ''' Get domain disks from a libvirt domain object. ''' disks = {} doc = ElementTree.fromstring(dom.XMLDesc(0)) for elem in doc.findall('devices/disk'): source = elem.find('source') if source is None: continue target = elem.find('target') if target is None: continue if 'dev' in target.attrib: qemu_target = source.get('file', '') if not qemu_target: qemu_target = source.get('dev', '') if not qemu_target and 'protocol' in source.attrib and 'name' in source.attrib: # for rbd network qemu_target = '{0}:{1}'.format( source.get('protocol'), source.get('name')) if not qemu_target: continue disk = {'file': qemu_target, 'type': elem.get('device')} driver = elem.find('driver') if driver is not None and driver.get('type') == 'qcow2': try: stdout = subprocess.Popen( ['qemu-img', 'info', '--output', 'json', '--backing-chain', disk['file']], shell=False, stdout=subprocess.PIPE).communicate()[0] qemu_output = salt.utils.stringutils.to_str(stdout) output = _parse_qemu_img_info(qemu_output) disk.update(output) except TypeError: disk.update({'file': 'Does not exist'}) disks[target.get('dev')] = disk return disks def _libvirt_creds(): ''' Returns the user and group that the disk images should be owned by ''' g_cmd = 'grep ^\\s*group /etc/libvirt/qemu.conf' u_cmd = 'grep ^\\s*user /etc/libvirt/qemu.conf' try: stdout = subprocess.Popen(g_cmd, shell=True, stdout=subprocess.PIPE).communicate()[0] group = salt.utils.stringutils.to_str(stdout).split('"')[1] except IndexError: group = 'root' try: stdout = subprocess.Popen(u_cmd, shell=True, stdout=subprocess.PIPE).communicate()[0] user = salt.utils.stringutils.to_str(stdout).split('"')[1] except IndexError: user = 'root' return {'user': user, 'group': group} def _get_migrate_command(): ''' Returns the command shared by the different migration types ''' tunnel = __salt__['config.option']('virt.tunnel') if tunnel: salt.utils.versions.warn_until( 'Sodium', '\'virt.tunnel\' has been deprecated in favor of ' '\'virt:tunnel\'. \'virt.tunnel\' will stop ' 'being used in {version}.') else: tunnel = __salt__['config.get']('virt:tunnel') if tunnel: return ('virsh migrate --p2p --tunnelled --live --persistent ' '--undefinesource ') return 'virsh migrate --live --persistent --undefinesource ' def _get_target(target, ssh): ''' Compute libvirt URL for target migration host. ''' proto = 'qemu' if ssh: proto += '+ssh' return ' {0}://{1}/{2}'.format(proto, target, 'system') def _gen_xml(name, cpu, mem, diskp, nicp, hypervisor, os_type, arch, graphics=None, **kwargs): ''' Generate the XML string to define a libvirt VM ''' mem = int(mem) * 1024 # MB context = { 'hypervisor': hypervisor, 'name': name, 'cpu': six.text_type(cpu), 'mem': six.text_type(mem), } if hypervisor in ['qemu', 'kvm']: context['controller_model'] = False elif hypervisor == 'vmware': # TODO: make bus and model parameterized, this works for 64-bit Linux context['controller_model'] = 'lsilogic' # By default, set the graphics to listen to all addresses if graphics: if 'listen' not in graphics: graphics['listen'] = {'type': 'address', 'address': '0.0.0.0'} elif 'address' not in graphics['listen'] and graphics['listen']['type'] == 'address': graphics['listen']['address'] = '0.0.0.0' # Graphics of type 'none' means no graphics device at all if graphics.get('type', 'none') == 'none': graphics = None context['graphics'] = graphics if 'boot_dev' in kwargs: context['boot_dev'] = [] for dev in kwargs['boot_dev'].split(): context['boot_dev'].append(dev) else: context['boot_dev'] = ['hd'] if os_type == 'xen': # Compute the Xen PV boot method if __grains__['os_family'] == 'Suse': context['kernel'] = '/usr/lib/grub2/x86_64-xen/grub.xen' context['boot_dev'] = [] if 'serial_type' in kwargs: context['serial_type'] = kwargs['serial_type'] if 'serial_type' in context and context['serial_type'] == 'tcp': if 'telnet_port' in kwargs: context['telnet_port'] = kwargs['telnet_port'] else: context['telnet_port'] = 23023 # FIXME: use random unused port if 'serial_type' in context: if 'console' in kwargs: context['console'] = kwargs['console'] else: context['console'] = True context['disks'] = [] disk_bus_map = {'virtio': 'vd', 'xen': 'xvd', 'fdc': 'fd', 'ide': 'hd'} for i, disk in enumerate(diskp): prefix = disk_bus_map.get(disk['model'], 'sd') disk_context = { 'device': disk.get('device', 'disk'), 'target_dev': '{0}{1}'.format(prefix, string.ascii_lowercase[i]), 'disk_bus': disk['model'], 'type': disk['format'], 'index': six.text_type(i), } if 'source_file' and disk['source_file']: disk_context['source_file'] = disk['source_file'] if hypervisor in ['qemu', 'kvm', 'bhyve', 'xen']: disk_context['address'] = False disk_context['driver'] = True elif hypervisor in ['esxi', 'vmware']: disk_context['address'] = True disk_context['driver'] = False context['disks'].append(disk_context) context['nics'] = nicp context['os_type'] = os_type context['arch'] = arch fn_ = 'libvirt_domain.jinja' try: template = JINJA.get_template(fn_) except jinja2.exceptions.TemplateNotFound: log.error('Could not load template %s', fn_) return '' return template.render(**context) def _gen_vol_xml(vmname, diskname, disktype, size, pool): ''' Generate the XML string to define a libvirt storage volume ''' size = int(size) * 1024 # MB context = { 'name': vmname, 'filename': '{0}.{1}'.format(diskname, disktype), 'volname': diskname, 'disktype': disktype, 'size': six.text_type(size), 'pool': pool, } fn_ = 'libvirt_volume.jinja' try: template = JINJA.get_template(fn_) except jinja2.exceptions.TemplateNotFound: log.error('Could not load template %s', fn_) return '' return template.render(**context) def _gen_net_xml(name, bridge, forward, vport, tag=None): ''' Generate the XML string to define a libvirt network ''' context = { 'name': name, 'bridge': bridge, 'forward': forward, 'vport': vport, 'tag': tag, } fn_ = 'libvirt_network.jinja' try: template = JINJA.get_template(fn_) except jinja2.exceptions.TemplateNotFound: log.error('Could not load template %s', fn_) return '' return template.render(**context) def _gen_pool_xml(name, ptype, target=None, permissions=None, source_devices=None, source_dir=None, source_adapter=None, source_hosts=None, source_auth=None, source_name=None, source_format=None): ''' Generate the XML string to define a libvirt storage pool ''' hosts = [host.split(':') for host in source_hosts or []] context = { 'name': name, 'ptype': ptype, 'target': {'path': target, 'permissions': permissions}, 'source': { 'devices': source_devices or [], 'dir': source_dir, 'adapter': source_adapter, 'hosts': [{'name': host[0], 'port': host[1] if len(host) > 1 else None} for host in hosts], 'auth': source_auth, 'name': source_name, 'format': source_format } } fn_ = 'libvirt_pool.jinja' try: template = JINJA.get_template(fn_) except jinja2.exceptions.TemplateNotFound: log.error('Could not load template %s', fn_) return '' return template.render(**context) def _get_images_dir(): ''' Extract the images dir from the configuration. First attempts to find legacy virt.images, then tries virt:images. ''' img_dir = __salt__['config.option']('virt.images') if img_dir: salt.utils.versions.warn_until( 'Sodium', '\'virt.images\' has been deprecated in favor of ' '\'virt:images\'. \'virt.images\' will stop ' 'being used in {version}.') else: img_dir = __salt__['config.get']('virt:images') log.debug('Image directory from config option `virt:images`' ' is %s', img_dir) return img_dir def _qemu_image_create(disk, create_overlay=False, saltenv='base'): ''' Create the image file using specified disk_size or/and disk_image Return path to the created image file ''' disk_size = disk.get('size', None) disk_image = disk.get('image', None) if not disk_size and not disk_image: raise CommandExecutionError( 'Unable to create new disk {0}, please specify' ' disk size and/or disk image argument' .format(disk['filename']) ) img_dest = disk['source_file'] log.debug('Image destination will be %s', img_dest) img_dir = os.path.dirname(img_dest) log.debug('Image destination directory is %s', img_dir) if not os.path.exists(img_dir): os.makedirs(img_dir) if disk_image: log.debug('Create disk from specified image %s', disk_image) sfn = __salt__['cp.cache_file'](disk_image, saltenv) qcow2 = False if salt.utils.path.which('qemu-img'): res = __salt__['cmd.run']('qemu-img info "{}"'.format(sfn)) imageinfo = salt.utils.yaml.safe_load(res) qcow2 = imageinfo['file format'] == 'qcow2' try: if create_overlay and qcow2: log.info('Cloning qcow2 image %s using copy on write', sfn) __salt__['cmd.run']( 'qemu-img create -f qcow2 -o backing_file="{0}" "{1}"' .format(sfn, img_dest).split()) else: log.debug('Copying %s to %s', sfn, img_dest) salt.utils.files.copyfile(sfn, img_dest) mask = salt.utils.files.get_umask() if disk_size and qcow2: log.debug('Resize qcow2 image to %sM', disk_size) __salt__['cmd.run']( 'qemu-img resize "{0}" {1}M' .format(img_dest, disk_size) ) log.debug('Apply umask and remove exec bit') mode = (0o0777 ^ mask) & 0o0666 os.chmod(img_dest, mode) except (IOError, OSError) as err: raise CommandExecutionError( 'Problem while copying image. {0} - {1}' .format(disk_image, err) ) else: # Create empty disk try: mask = salt.utils.files.get_umask() if disk_size: log.debug('Create empty image with size %sM', disk_size) __salt__['cmd.run']( 'qemu-img create -f {0} "{1}" {2}M' .format(disk.get('format', 'qcow2'), img_dest, disk_size) ) else: raise CommandExecutionError( 'Unable to create new disk {0},' ' please specify <size> argument' .format(img_dest) ) log.debug('Apply umask and remove exec bit') mode = (0o0777 ^ mask) & 0o0666 os.chmod(img_dest, mode) except (IOError, OSError) as err: raise CommandExecutionError( 'Problem while creating volume {0} - {1}' .format(img_dest, err) ) return img_dest def _disk_profile(profile, hypervisor, disks=None, vm_name=None, image=None, pool=None, **kwargs): ''' Gather the disk profile from the config or apply the default based on the active hypervisor This is the ``default`` profile for KVM/QEMU, which can be overridden in the configuration: .. code-block:: yaml virt: disk: default: - system: size: 8192 format: qcow2 model: virtio Example profile for KVM/QEMU with two disks, first is created from specified image, the second is empty: .. code-block:: yaml virt: disk: two_disks: - system: size: 8192 format: qcow2 model: virtio image: http://path/to/image.qcow2 - lvm: size: 32768 format: qcow2 model: virtio The ``format`` and ``model`` parameters are optional, and will default to whatever is best suitable for the active hypervisor. ''' default = [{'system': {'size': 8192}}] if hypervisor == 'vmware': overlay = {'format': 'vmdk', 'model': 'scsi', 'device': 'disk', 'pool': '[{0}] '.format(pool if pool else '0')} elif hypervisor in ['qemu', 'kvm']: overlay = {'format': 'qcow2', 'device': 'disk', 'model': 'virtio'} elif hypervisor == 'xen': overlay = {'format': 'qcow2', 'device': 'disk', 'model': 'xen'} else: overlay = {} # Get the disks from the profile disklist = [] if profile: disklist = copy.deepcopy( __salt__['config.get']('virt:disk', {}).get(profile, default)) # Transform the list to remove one level of dictionnary and add the name as a property disklist = [dict(d, name=name) for disk in disklist for name, d in disk.items()] # Add the image to the first disk if there is one if image: # If image is specified in module arguments, then it will be used # for the first disk instead of the image from the disk profile log.debug('%s image from module arguments will be used for disk "%s"' ' instead of %s', image, disklist[0]['name'], disklist[0].get('image', "")) disklist[0]['image'] = image # Merge with the user-provided disks definitions if disks: for udisk in disks: if 'name' in udisk: found = [disk for disk in disklist if udisk['name'] == disk['name']] if found: found[0].update(udisk) else: disklist.append(udisk) for disk in disklist: # Add the missing properties that have defaults for key, val in six.iteritems(overlay): if key not in disk: disk[key] = val # We may have an already computed source_file (i.e. image not created by our module) if 'source_file' in disk and disk['source_file']: disk['filename'] = os.path.basename(disk['source_file']) elif 'source_file' not in disk: _fill_disk_filename(vm_name, disk, hypervisor, **kwargs) return disklist def _fill_disk_filename(vm_name, disk, hypervisor, **kwargs): ''' Compute the disk file name and update it in the disk value. ''' base_dir = disk.get('pool', None) if hypervisor in ['qemu', 'kvm', 'xen']: # Compute the base directory from the pool property. We may have either a path # or a libvirt pool name there. # If the pool is a known libvirt one with a target path, use it as target path if not base_dir: base_dir = _get_images_dir() else: if not base_dir.startswith('/'): # The pool seems not to be a path, lookup for pool infos infos = pool_info(base_dir, **kwargs) pool = infos[base_dir] if base_dir in infos else None if not pool or not pool['target_path'] or pool['target_path'].startswith('/dev'): raise CommandExecutionError( 'Unable to create new disk {0}, specified pool {1} does not exist ' 'or is unsupported'.format(disk['name'], base_dir)) base_dir = pool['target_path'] # Compute the filename and source file properties if possible if vm_name: disk['filename'] = '{0}_{1}.{2}'.format(vm_name, disk['name'], disk['format']) disk['source_file'] = os.path.join(base_dir, disk['filename']) def _complete_nics(interfaces, hypervisor, dmac=None): ''' Complete missing data for network interfaces. ''' vmware_overlay = {'type': 'bridge', 'source': 'DEFAULT', 'model': 'e1000'} kvm_overlay = {'type': 'bridge', 'source': 'br0', 'model': 'virtio'} xen_overlay = {'type': 'bridge', 'source': 'br0', 'model': None} overlays = { 'xen': xen_overlay, 'kvm': kvm_overlay, 'qemu': kvm_overlay, 'vmware': vmware_overlay, } def _normalize_net_types(attributes): ''' Guess which style of definition: bridge: br0 or network: net0 or type: network source: net0 ''' for type_ in ['bridge', 'network']: if type_ in attributes: attributes['type'] = type_ # we want to discard the original key attributes['source'] = attributes.pop(type_) attributes['type'] = attributes.get('type', None) attributes['source'] = attributes.get('source', None) def _apply_default_overlay(attributes): ''' Apply the default overlay to attributes ''' for key, value in six.iteritems(overlays[hypervisor]): if key not in attributes or not attributes[key]: attributes[key] = value def _assign_mac(attributes, hypervisor): ''' Compute mac address for NIC depending on hypervisor ''' if dmac is not None: log.debug('Default MAC address is %s', dmac) if salt.utils.validate.net.mac(dmac): attributes['mac'] = dmac else: msg = 'Malformed MAC address: {0}'.format(dmac) raise CommandExecutionError(msg) else: if hypervisor in ['qemu', 'kvm']: attributes['mac'] = salt.utils.network.gen_mac( prefix='52:54:00') else: attributes['mac'] = salt.utils.network.gen_mac() for interface in interfaces: _normalize_net_types(interface) if interface.get('mac', None) is None: _assign_mac(interface, hypervisor) if hypervisor in overlays: _apply_default_overlay(interface) return interfaces def _nic_profile(profile_name, hypervisor, dmac=None): ''' Compute NIC data based on profile ''' default = [{'eth0': {}}] # support old location config_data = __salt__['config.option']('virt.nic', {}).get( profile_name, None ) if config_data is not None: salt.utils.versions.warn_until( 'Sodium', '\'virt.nic\' has been deprecated in favor of \'virt:nic\'. ' '\'virt.nic\' will stop being used in {version}.' ) else: config_data = __salt__['config.get']('virt:nic', {}).get( profile_name, default ) interfaces = [] # pylint: disable=invalid-name def append_dict_profile_to_interface_list(profile_dict): ''' Append dictionary profile data to interfaces list ''' for interface_name, attributes in six.iteritems(profile_dict): attributes['name'] = interface_name interfaces.append(attributes) # old style dicts (top-level dicts) # # virt: # nic: # eth0: # bridge: br0 # eth1: # network: test_net if isinstance(config_data, dict): append_dict_profile_to_interface_list(config_data) # new style lists (may contain dicts) # # virt: # nic: # - eth0: # bridge: br0 # - eth1: # network: test_net # # virt: # nic: # - name: eth0 # bridge: br0 # - name: eth1 # network: test_net elif isinstance(config_data, list): for interface in config_data: if isinstance(interface, dict): if len(interface) == 1: append_dict_profile_to_interface_list(interface) else: interfaces.append(interface) # dmac can only be used from init() return _complete_nics(interfaces, hypervisor, dmac=dmac) def _get_merged_nics(hypervisor, profile, interfaces=None, dmac=None): ''' Get network devices from the profile and merge uer defined ones with them. ''' nicp = _nic_profile(profile, hypervisor, dmac=dmac) if profile else [] log.debug('NIC profile is %s', nicp) if interfaces: users_nics = _complete_nics(interfaces, hypervisor) for unic in users_nics: found = [nic for nic in nicp if nic['name'] == unic['name']] if found: found[0].update(unic) else: nicp.append(unic) log.debug('Merged NICs: %s', nicp) return nicp def init(name, cpu, mem, image=None, nic='default', interfaces=None, hypervisor=None, start=True, # pylint: disable=redefined-outer-name disk='default', disks=None, saltenv='base', seed=True, install=True, pub_key=None, priv_key=None, seed_cmd='seed.apply', enable_vnc=False, enable_qcow=False, graphics=None, os_type=None, arch=None, **kwargs): ''' Initialize a new vm :param name: name of the virtual machine to create :param cpu: Number of virtual CPUs to assign to the virtual machine :param mem: Amount of memory to allocate to the virtual machine in MiB. :param image: Path to a disk image to use as the first disk (Default: ``None``). Deprecated in favor of the ``disks`` parameter. To set (or change) the image of a disk, add the following to the disks definitions: .. code-block:: python { 'name': 'name_of_disk_to_change', 'image': '/path/to/the/image' } :param nic: NIC profile to use (Default: ``'default'``). The profile interfaces can be customized / extended with the interfaces parameter. If set to ``None``, no profile will be used. :param interfaces: List of dictionaries providing details on the network interfaces to create. These data are merged with the ones from the nic profile. The structure of each dictionary is documented in :ref:`init-nic-def`. .. versionadded:: 2019.2.0 :param hypervisor: the virtual machine type. By default the value will be computed according to the virtual host capabilities. :param start: ``True`` to start the virtual machine after having defined it (Default: ``True``) :param disk: Disk profile to use (Default: ``'default'``). If set to ``None``, no profile will be used. :param disks: List of dictionaries providing details on the disk devices to create. These data are merged with the ones from the disk profile. The structure of each dictionary is documented in :ref:`init-disk-def`. .. versionadded:: 2019.2.0 :param saltenv: Fileserver environment (Default: ``'base'``). See :mod:`cp module for more details <salt.modules.cp>` :param seed: ``True`` to seed the disk image. Only used when the ``image`` parameter is provided. (Default: ``True``) :param install: install salt minion if absent (Default: ``True``) :param pub_key: public key to seed with (Default: ``None``) :param priv_key: public key to seed with (Default: ``None``) :param seed_cmd: Salt command to execute to seed the image. (Default: ``'seed.apply'``) :param enable_vnc: ``True`` to setup a vnc display for the VM (Default: ``False``) Deprecated in favor of the ``graphics`` parameter. Could be replaced with the following: .. code-block:: python graphics={'type': 'vnc'} .. deprecated:: 2019.2.0 :param graphics: Dictionary providing details on the graphics device to create. (Default: ``None``) See :ref:`init-graphics-def` for more details on the possible values. .. versionadded:: 2019.2.0 :param os_type: type of virtualization as found in the ``//os/type`` element of the libvirt definition. The default value is taken from the host capabilities, with a preference for ``hvm``. .. versionadded:: 2019.2.0 :param arch: architecture of the virtual machine. The default value is taken from the host capabilities, but ``x86_64`` is prefed over ``i686``. .. versionadded:: 2019.2.0 :param enable_qcow: ``True`` to create a QCOW2 overlay image, rather than copying the image (Default: ``False``). Deprecated in favor of ``disks`` parameter. Add the following to the disks definitions to create an overlay image of a template disk image with an image set: .. code-block:: python { 'name': 'name_of_disk_to_change', 'overlay_image': True } .. deprecated:: 2019.2.0 :param pool: Path of the folder where the image files are located for vmware/esx hypervisors. Deprecated in favor of ``disks`` parameter. Add the following to the disks definitions to set the vmware datastore of a disk image: .. code-block:: python { 'name': 'name_of_disk_to_change', 'pool': 'mydatastore' } .. deprecated:: Flurorine :param dmac: Default MAC address to use for the network interfaces. By default MAC addresses are automatically generated. Deprecated in favor of ``interfaces`` parameter. Add the following to the interfaces definitions to force the mac address of a NIC: .. code-block:: python { 'name': 'name_of_nic_to_change', 'mac': 'MY:MA:CC:ADD:RE:SS' } .. deprecated:: 2019.2.0 :param config: minion configuration to use when seeding. See :mod:`seed module for more details <salt.modules.seed>` :param boot_dev: String of space-separated devices to boot from (Default: ``'hd'``) :param serial_type: Serial device type. One of ``'pty'``, ``'tcp'`` (Default: ``None``) :param telnet_port: Telnet port to use for serial device of type ``tcp``. :param console: ``True`` to add a console device along with serial one (Default: ``True``) :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. _init-nic-def: .. rubric:: Network Interfaces Definitions Network interfaces dictionaries can contain the following properties: name Name of the network interface. This is only used as a key to merge with the profile data type Network type. One of ``'bridge'``, ``'network'`` source The network source, typically the bridge or network name mac The desired mac address, computed if ``None`` (Default: ``None``). model The network card model (Default: depends on the hypervisor) .. _init-disk-def: .. rubric:: Disks Definitions Disk dictionaries can contain the following properties: name Name of the disk. This is mostly used in the name of the disk image and as a key to merge with the profile data. format Format of the disk image, like ``'qcow2'``, ``'raw'``, ``'vmdk'``. (Default: depends on the hypervisor) size Disk size in MiB pool Path to the folder or name of the pool where disks should be created. (Default: depends on hypervisor) model One of the disk busses allowed by libvirt (Default: depends on hypervisor) See the libvirt `disk element`_ documentation for the allowed bus types. image Path to the image to use for the disk. If no image is provided, an empty disk will be created (Default: ``None``) overlay_image ``True`` to create a QCOW2 disk image with ``image`` as backing file. If ``False`` the file pointed to by the ``image`` property will simply be copied. (Default: ``False``) source_file Absolute path to the disk image to use. Not to be confused with ``image`` parameter. This parameter is useful to use disk images that are created outside of this module. Can also be ``None`` for devices that have no associated image like cdroms. device Type of device of the disk. Can be one of 'disk', 'cdrom', 'floppy' or 'lun'. (Default: ``'disk'``) .. _init-graphics-def: .. rubric:: Graphics Definition The graphics dictionnary can have the following properties: type Graphics type. The possible values are ``none``, ``'spice'``, ``'vnc'`` and other values allowed as a libvirt graphics type (Default: ``None``) See the libvirt `graphics element`_ documentation for more details on the possible types. port Port to export the graphics on for ``vnc``, ``spice`` and ``rdp`` types. tls_port Port to export the graphics over a secured connection for ``spice`` type. listen Dictionary defining on what address to listen on for ``vnc``, ``spice`` and ``rdp``. It has a ``type`` property with ``address`` and ``None`` as possible values, and an ``address`` property holding the IP or hostname to listen on. By default, not setting the ``listen`` part of the dictionary will default to listen on all addresses. .. rubric:: CLI Example .. code-block:: bash salt 'hypervisor' virt.init vm_name 4 512 salt://path/to/image.raw salt 'hypervisor' virt.init vm_name 4 512 /var/lib/libvirt/images/img.raw salt 'hypervisor' virt.init vm_name 4 512 nic=profile disk=profile The disk images will be created in an image folder within the directory defined by the ``virt:images`` option. Its default value is ``/srv/salt-images/`` but this can changed with such a configuration: .. code-block:: yaml virt: images: /data/my/vm/images/ .. _disk element: https://libvirt.org/formatdomain.html#elementsDisks .. _graphics element: https://libvirt.org/formatdomain.html#elementsGraphics ''' caps = capabilities(**kwargs) os_types = sorted({guest['os_type'] for guest in caps['guests']}) arches = sorted({guest['arch']['name'] for guest in caps['guests']}) if not hypervisor: hypervisor = __salt__['config.get']('libvirt:hypervisor', hypervisor) if hypervisor is not None: salt.utils.versions.warn_until( 'Sodium', '\'libvirt:hypervisor\' configuration property has been deprecated. ' 'Rather use the \'virt:connection:uri\' to properly define the libvirt ' 'URI or alias of the host to connect to. \'libvirt:hypervisor\' will ' 'stop being used in {version}.' ) else: # Use the machine types as possible values # Prefer 'kvm' over the others if available hypervisors = sorted({x for y in [guest['arch']['domains'].keys() for guest in caps['guests']] for x in y}) hypervisor = 'kvm' if 'kvm' in hypervisors else hypervisors[0] # esxi used to be a possible value for the hypervisor: map it to vmware since it's the same hypervisor = 'vmware' if hypervisor == 'esxi' else hypervisor log.debug('Using hypervisor %s', hypervisor) # the NICs are computed as follows: # 1 - get the default NICs from the profile # 2 - Complete the users NICS # 3 - Update the default NICS list to the users one, matching key is the name dmac = kwargs.get('dmac', None) if dmac: salt.utils.versions.warn_until( 'Sodium', '\'dmac\' parameter has been deprecated. Rather use the \'interfaces\' parameter ' 'to properly define the desired MAC address. \'dmac\' will be removed in {version}.' ) nicp = _get_merged_nics(hypervisor, nic, interfaces, dmac=dmac) # the disks are computed as follows: # 1 - get the disks defined in the profile # 2 - set the image on the first disk (will be removed later) # 3 - update the disks from the profile with the ones from the user. The matching key is the name. pool = kwargs.get('pool', None) if pool: salt.utils.versions.warn_until( 'Sodium', '\'pool\' parameter has been deprecated. Rather use the \'disks\' parameter ' 'to properly define the vmware datastore of disks. \'pool\' will be removed in {version}.' ) if image: salt.utils.versions.warn_until( 'Sodium', '\'image\' parameter has been deprecated. Rather use the \'disks\' parameter ' 'to override or define the image. \'image\' will be removed in {version}.' ) diskp = _disk_profile(disk, hypervisor, disks, name, image=image, pool=pool, **kwargs) # Create multiple disks, empty or from specified images. for _disk in diskp: log.debug("Creating disk for VM [ %s ]: %s", name, _disk) if hypervisor == 'vmware': if 'image' in _disk: # TODO: we should be copying the image file onto the ESX host raise SaltInvocationError( 'virt.init does not support image ' 'template in conjunction with esxi hypervisor' ) else: # assume libvirt manages disks for us log.debug('Generating libvirt XML for %s', _disk) vol_xml = _gen_vol_xml( name, _disk['name'], _disk['format'], _disk['size'], _disk['pool'] ) define_vol_xml_str(vol_xml) elif hypervisor in ['qemu', 'kvm', 'xen']: create_overlay = enable_qcow if create_overlay: salt.utils.versions.warn_until( 'Sodium', '\'enable_qcow\' parameter has been deprecated. Rather use the \'disks\' ' 'parameter to override or define the image. \'enable_qcow\' will be removed ' 'in {version}.' ) else: create_overlay = _disk.get('overlay_image', False) if _disk['source_file']: if os.path.exists(_disk['source_file']): img_dest = _disk['source_file'] else: img_dest = _qemu_image_create(_disk, create_overlay, saltenv) else: img_dest = None # Seed only if there is an image specified if seed and img_dest and _disk.get('image', None): log.debug('Seed command is %s', seed_cmd) __salt__[seed_cmd]( img_dest, id_=name, config=kwargs.get('config'), install=install, pub_key=pub_key, priv_key=priv_key, ) else: # Unknown hypervisor raise SaltInvocationError( 'Unsupported hypervisor when handling disk image: {0}' .format(hypervisor) ) log.debug('Generating VM XML') if enable_vnc: salt.utils.versions.warn_until( 'Sodium', '\'enable_vnc\' parameter has been deprecated in favor of ' '\'graphics\'. Use graphics={\'type\': \'vnc\'} for the same behavior. ' '\'enable_vnc\' will be removed in {version}. ') graphics = {'type': 'vnc'} if os_type is None: os_type = 'hvm' if 'hvm' in os_types else os_types[0] if arch is None: arch = 'x86_64' if 'x86_64' in arches else arches[0] vm_xml = _gen_xml(name, cpu, mem, diskp, nicp, hypervisor, os_type, arch, graphics, **kwargs) conn = __get_conn(**kwargs) try: conn.defineXML(vm_xml) except libvirtError as err: # check if failure is due to this domain already existing if "domain '{}' already exists".format(name) in six.text_type(err): # continue on to seeding log.warning(err) else: conn.close() raise err # a real error we should report upwards if start: log.debug('Starting VM %s', name) _get_domain(conn, name).create() conn.close() return True def _disks_equal(disk1, disk2): ''' Test if two disk elements should be considered like the same device ''' target1 = disk1.find('target') target2 = disk2.find('target') source1 = ElementTree.tostring(disk1.find('source')) if disk1.find('source') is not None else None source2 = ElementTree.tostring(disk2.find('source')) if disk2.find('source') is not None else None return source1 == source2 and \ target1 is not None and target2 is not None and \ target1.get('bus') == target2.get('bus') and \ disk1.get('device', 'disk') == disk2.get('device', 'disk') and \ target1.get('dev') == target2.get('dev') def _nics_equal(nic1, nic2): ''' Test if two interface elements should be considered like the same device ''' def _filter_nic(nic): ''' Filter out elements to ignore when comparing nics ''' return { 'type': nic.attrib['type'], 'source': nic.find('source').attrib[nic.attrib['type']] if nic.find('source') is not None else None, 'mac': nic.find('mac').attrib['address'].lower() if nic.find('mac') is not None else None, 'model': nic.find('model').attrib['type'] if nic.find('model') is not None else None, } return _filter_nic(nic1) == _filter_nic(nic2) def _graphics_equal(gfx1, gfx2): ''' Test if two graphics devices should be considered the same device ''' def _filter_graphics(gfx): ''' When the domain is running, the graphics element may contain additional properties with the default values. This function will strip down the default values. ''' gfx_copy = copy.deepcopy(gfx) defaults = [{'node': '.', 'attrib': 'port', 'values': ['5900', '-1']}, {'node': '.', 'attrib': 'address', 'values': ['127.0.0.1']}, {'node': 'listen', 'attrib': 'address', 'values': ['127.0.0.1']}] for default in defaults: node = gfx_copy.find(default['node']) attrib = default['attrib'] if node is not None and (attrib not in node.attrib or node.attrib[attrib] in default['values']): node.set(attrib, default['values'][0]) return gfx_copy return ElementTree.tostring(_filter_graphics(gfx1)) == ElementTree.tostring(_filter_graphics(gfx2)) def _diff_lists(old, new, comparator): ''' Compare lists to extract the changes :param old: old list :param new: new list :return: a dictionary with ``unchanged``, ``new``, ``deleted`` and ``sorted`` keys The sorted list is the union of unchanged and new lists, but keeping the original order from the new list. ''' def _remove_indent(node): ''' Remove the XML indentation to compare XML trees more easily ''' node_copy = copy.deepcopy(node) node_copy.text = None for item in node_copy.iter(): item.tail = None return node_copy diff = {'unchanged': [], 'new': [], 'deleted': [], 'sorted': []} # We don't want to alter old since it may be used later by caller old_devices = copy.deepcopy(old) for new_item in new: found = [item for item in old_devices if comparator(_remove_indent(item), _remove_indent(new_item))] if found: old_devices.remove(found[0]) diff['unchanged'].append(found[0]) diff['sorted'].append(found[0]) else: diff['new'].append(new_item) diff['sorted'].append(new_item) diff['deleted'] = old_devices return diff def _diff_disk_lists(old, new): ''' Compare disk definitions to extract the changes and fix target devices :param old: list of ElementTree nodes representing the old disks :param new: list of ElementTree nodes representing the new disks ''' # Change the target device to avoid duplicates before diffing: this may lead # to additional changes. Think of unchanged disk 'hda' and another disk listed # before it becoming 'hda' too... the unchanged need to turn into 'hdb'. targets = [] prefixes = ['fd', 'hd', 'vd', 'sd', 'xvd', 'ubd'] for disk in new: target_node = disk.find('target') target = target_node.get('dev') prefix = [item for item in prefixes if target.startswith(item)][0] new_target = ['{0}{1}'.format(prefix, string.ascii_lowercase[i]) for i in range(len(new)) if '{0}{1}'.format(prefix, string.ascii_lowercase[i]) not in targets][0] target_node.set('dev', new_target) targets.append(new_target) return _diff_lists(old, new, _disks_equal) def _diff_interface_lists(old, new): ''' Compare network interface definitions to extract the changes :param old: list of ElementTree nodes representing the old interfaces :param new: list of ElementTree nodes representing the new interfaces ''' diff = _diff_lists(old, new, _nics_equal) # Remove duplicated addresses mac addresses and let libvirt generate them for us macs = [nic.find('mac').get('address') for nic in diff['unchanged']] for nic in diff['new']: mac = nic.find('mac') if mac.get('address') in macs: nic.remove(mac) return diff def _diff_graphics_lists(old, new): ''' Compare graphic devices definitions to extract the changes :param old: list of ElementTree nodes representing the old graphic devices :param new: list of ElementTree nodes representing the new graphic devices ''' return _diff_lists(old, new, _graphics_equal) def update(name, cpu=0, mem=0, disk_profile=None, disks=None, nic_profile=None, interfaces=None, graphics=None, live=True, **kwargs): ''' Update the definition of an existing domain. :param name: Name of the domain to update :param cpu: Number of virtual CPUs to assign to the virtual machine :param mem: Amount of memory to allocate to the virtual machine in MiB. :param disk_profile: disk profile to use :param disks: Disk definitions as documented in the :func:`init` function. If neither the profile nor this parameter are defined, the disk devices will not be changed. However to clear disks set this parameter to empty list. :param nic_profile: network interfaces profile to use :param interfaces: Network interface definitions as documented in the :func:`init` function. If neither the profile nor this parameter are defined, the interface devices will not be changed. However to clear network interfaces set this parameter to empty list. :param graphics: The new graphics definition as defined in :ref:`init-graphics-def`. If not set, the graphics will not be changed. To remove a graphics device, set this parameter to ``{'type': 'none'}``. :param live: ``False`` to avoid trying to live update the definition. In such a case, the new definition is applied at the next start of the virtual machine. If ``True``, not all aspects of the definition can be live updated, but as much as possible will be attempted. (Default: ``True``) :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults :return: Returns a dictionary indicating the status of what has been done. It is structured in the following way: .. code-block:: python { 'definition': True, 'cpu': True, 'mem': True, 'disks': {'attached': [list of actually attached disks], 'detached': [list of actually detached disks]}, 'nics': {'attached': [list of actually attached nics], 'detached': [list of actually detached nics]}, 'errors': ['error messages for failures'] } .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.update domain cpu=2 mem=1024 ''' status = { 'definition': False, 'disk': {'attached': [], 'detached': []}, 'interface': {'attached': [], 'detached': []} } conn = __get_conn(**kwargs) domain = _get_domain(conn, name) desc = ElementTree.fromstring(domain.XMLDesc(0)) need_update = False # Compute the XML to get the disks, interfaces and graphics hypervisor = desc.get('type') all_disks = _disk_profile(disk_profile, hypervisor, disks, name, **kwargs) new_desc = ElementTree.fromstring(_gen_xml(name, cpu, mem, all_disks, _get_merged_nics(hypervisor, nic_profile, interfaces), hypervisor, domain.OSType(), desc.find('.//os/type').get('arch'), graphics, **kwargs)) # Update the cpu cpu_node = desc.find('vcpu') if cpu and int(cpu_node.text) != cpu: cpu_node.text = six.text_type(cpu) cpu_node.set('current', six.text_type(cpu)) need_update = True # Update the memory, note that libvirt outputs all memory sizes in KiB for mem_node_name in ['memory', 'currentMemory']: mem_node = desc.find(mem_node_name) if mem and int(mem_node.text) != mem * 1024: mem_node.text = six.text_type(mem) mem_node.set('unit', 'MiB') need_update = True # Update the XML definition with the new disks and diff changes devices_node = desc.find('devices') parameters = {'disk': ['disks', 'disk_profile'], 'interface': ['interfaces', 'nic_profile'], 'graphics': ['graphics']} changes = {} for dev_type in parameters: changes[dev_type] = {} func_locals = locals() if [param for param in parameters[dev_type] if func_locals.get(param, None) is not None]: old = devices_node.findall(dev_type) new = new_desc.findall('devices/{0}'.format(dev_type)) changes[dev_type] = globals()['_diff_{0}_lists'.format(dev_type)](old, new) if changes[dev_type]['deleted'] or changes[dev_type]['new']: for item in old: devices_node.remove(item) devices_node.extend(changes[dev_type]['sorted']) need_update = True # Set the new definition if need_update: # Create missing disks if needed if changes['disk']: for idx, item in enumerate(changes['disk']['sorted']): source_file = all_disks[idx]['source_file'] if item in changes['disk']['new'] and source_file and not os.path.isfile(source_file): _qemu_image_create(all_disks[idx]) try: conn.defineXML(salt.utils.stringutils.to_str(ElementTree.tostring(desc))) status['definition'] = True except libvirt.libvirtError as err: conn.close() raise err # Do the live changes now that we know the definition has been properly set # From that point on, failures are not blocking to try to live update as much # as possible. commands = [] if domain.isActive() and live: if cpu: commands.append({'device': 'cpu', 'cmd': 'setVcpusFlags', 'args': [cpu, libvirt.VIR_DOMAIN_AFFECT_LIVE]}) if mem: commands.append({'device': 'mem', 'cmd': 'setMemoryFlags', 'args': [mem * 1024, libvirt.VIR_DOMAIN_AFFECT_LIVE]}) for dev_type in ['disk', 'interface']: for added in changes[dev_type].get('new', []): commands.append({'device': dev_type, 'cmd': 'attachDevice', 'args': [salt.utils.stringutils.to_str(ElementTree.tostring(added))]}) for removed in changes[dev_type].get('deleted', []): commands.append({'device': dev_type, 'cmd': 'detachDevice', 'args': [salt.utils.stringutils.to_str(ElementTree.tostring(removed))]}) for cmd in commands: try: ret = getattr(domain, cmd['cmd'])(*cmd['args']) device_type = cmd['device'] if device_type in ['cpu', 'mem']: status[device_type] = not bool(ret) else: actions = {'attachDevice': 'attached', 'detachDevice': 'detached'} status[device_type][actions[cmd['cmd']]].append(cmd['args'][0]) except libvirt.libvirtError as err: if 'errors' not in status: status['errors'] = [] status['errors'].append(six.text_type(err)) conn.close() return status def list_domains(**kwargs): ''' Return a list of available domains. :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.list_domains ''' vms = [] conn = __get_conn(**kwargs) for dom in _get_domain(conn, iterable=True): vms.append(dom.name()) conn.close() return vms def list_active_vms(**kwargs): ''' Return a list of names for active virtual machine on the minion :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.list_active_vms ''' vms = [] conn = __get_conn(**kwargs) for dom in _get_domain(conn, iterable=True, inactive=False): vms.append(dom.name()) conn.close() return vms def list_inactive_vms(**kwargs): ''' Return a list of names for inactive virtual machine on the minion :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.list_inactive_vms ''' vms = [] conn = __get_conn(**kwargs) for dom in _get_domain(conn, iterable=True, active=False): vms.append(dom.name()) conn.close() return vms def vm_info(vm_=None, **kwargs): ''' Return detailed information about the vms on this hyper in a list of dicts: :param vm_: name of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. code-block:: python [ 'your-vm': { 'cpu': <int>, 'maxMem': <int>, 'mem': <int>, 'state': '<state>', 'cputime' <int> }, ... ] If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_info ''' def _info(dom): ''' Compute the infos of a domain ''' raw = dom.info() return {'cpu': raw[3], 'cputime': int(raw[4]), 'disks': _get_disks(dom), 'graphics': _get_graphics(dom), 'nics': _get_nics(dom), 'uuid': _get_uuid(dom), 'on_crash': _get_on_crash(dom), 'on_reboot': _get_on_reboot(dom), 'on_poweroff': _get_on_poweroff(dom), 'maxMem': int(raw[1]), 'mem': int(raw[2]), 'state': VIRT_STATE_NAME_MAP.get(raw[0], 'unknown')} info = {} conn = __get_conn(**kwargs) if vm_: info[vm_] = _info(_get_domain(conn, vm_)) else: for domain in _get_domain(conn, iterable=True): info[domain.name()] = _info(domain) conn.close() return info def vm_state(vm_=None, **kwargs): ''' Return list of all the vms and their state. If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. :param vm_: name of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.vm_state <domain> ''' def _info(dom): ''' Compute domain state ''' state = '' raw = dom.info() state = VIRT_STATE_NAME_MAP.get(raw[0], 'unknown') return state info = {} conn = __get_conn(**kwargs) if vm_: info[vm_] = _info(_get_domain(conn, vm_)) else: for domain in _get_domain(conn, iterable=True): info[domain.name()] = _info(domain) conn.close() return info def _node_info(conn): ''' Internal variant of node_info taking a libvirt connection as parameter ''' raw = conn.getInfo() info = {'cpucores': raw[6], 'cpumhz': raw[3], 'cpumodel': six.text_type(raw[0]), 'cpus': raw[2], 'cputhreads': raw[7], 'numanodes': raw[4], 'phymemory': raw[1], 'sockets': raw[5]} return info def node_info(**kwargs): ''' Return a dict with information about this node :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.node_info ''' conn = __get_conn(**kwargs) info = _node_info(conn) conn.close() return info def get_nics(vm_, **kwargs): ''' Return info about the network interfaces of a named vm :param vm_: name of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.get_nics <domain> ''' conn = __get_conn(**kwargs) nics = _get_nics(_get_domain(conn, vm_)) conn.close() return nics def get_macs(vm_, **kwargs): ''' Return a list off MAC addresses from the named vm :param vm_: name of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.get_macs <domain> ''' doc = ElementTree.fromstring(get_xml(vm_, **kwargs)) return [node.get('address') for node in doc.findall('devices/interface/mac')] def get_graphics(vm_, **kwargs): ''' Returns the information on vnc for a given vm :param vm_: name of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.get_graphics <domain> ''' conn = __get_conn(**kwargs) graphics = _get_graphics(_get_domain(conn, vm_)) conn.close() return graphics def get_disks(vm_, **kwargs): ''' Return the disks of a named vm :param vm_: name of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.get_disks <domain> ''' conn = __get_conn(**kwargs) disks = _get_disks(_get_domain(conn, vm_)) conn.close() return disks def setmem(vm_, memory, config=False, **kwargs): ''' Changes the amount of memory allocated to VM. The VM must be shutdown for this to work. :param vm_: name of the domain :param memory: memory amount to set in MB :param config: if True then libvirt will be asked to modify the config as well :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.setmem <domain> <size> salt '*' virt.setmem my_domain 768 ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) if VIRT_STATE_NAME_MAP.get(dom.info()[0], 'unknown') != 'shutdown': return False # libvirt has a funny bitwise system for the flags in that the flag # to affect the "current" setting is 0, which means that to set the # current setting we have to call it a second time with just 0 set flags = libvirt.VIR_DOMAIN_MEM_MAXIMUM if config: flags = flags | libvirt.VIR_DOMAIN_AFFECT_CONFIG ret1 = dom.setMemoryFlags(memory * 1024, flags) ret2 = dom.setMemoryFlags(memory * 1024, libvirt.VIR_DOMAIN_AFFECT_CURRENT) conn.close() # return True if both calls succeeded return ret1 == ret2 == 0 def setvcpus(vm_, vcpus, config=False, **kwargs): ''' Changes the amount of vcpus allocated to VM. The VM must be shutdown for this to work. If config is True then we ask libvirt to modify the config as well :param vm_: name of the domain :param vcpus: integer representing the number of CPUs to be assigned :param config: if True then libvirt will be asked to modify the config as well :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.setvcpus <domain> <amount> salt '*' virt.setvcpus my_domain 4 ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) if VIRT_STATE_NAME_MAP.get(dom.info()[0], 'unknown') != 'shutdown': return False # see notes in setmem flags = libvirt.VIR_DOMAIN_VCPU_MAXIMUM if config: flags = flags | libvirt.VIR_DOMAIN_AFFECT_CONFIG ret1 = dom.setVcpusFlags(vcpus, flags) ret2 = dom.setVcpusFlags(vcpus, libvirt.VIR_DOMAIN_AFFECT_CURRENT) conn.close() return ret1 == ret2 == 0 def _freemem(conn): ''' Internal variant of freemem taking a libvirt connection as parameter ''' mem = conn.getInfo()[1] # Take off just enough to sustain the hypervisor mem -= 256 for dom in _get_domain(conn, iterable=True): if dom.ID() > 0: mem -= dom.info()[2] / 1024 return mem def freemem(**kwargs): ''' Return an int representing the amount of memory (in MB) that has not been given to virtual machines on this node :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.freemem ''' conn = __get_conn(**kwargs) mem = _freemem(conn) conn.close() return mem def _freecpu(conn): ''' Internal variant of freecpu taking a libvirt connection as parameter ''' cpus = conn.getInfo()[2] for dom in _get_domain(conn, iterable=True): if dom.ID() > 0: cpus -= dom.info()[3] return cpus def freecpu(**kwargs): ''' Return an int representing the number of unallocated cpus on this hypervisor :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.freecpu ''' conn = __get_conn(**kwargs) cpus = _freecpu(conn) conn.close() return cpus def full_info(**kwargs): ''' Return the node_info, vm_info and freemem :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.full_info ''' conn = __get_conn(**kwargs) info = {'freecpu': _freecpu(conn), 'freemem': _freemem(conn), 'node_info': _node_info(conn), 'vm_info': vm_info()} conn.close() return info def get_xml(vm_, **kwargs): ''' Returns the XML for a given vm :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.get_xml <domain> ''' conn = __get_conn(**kwargs) xml_desc = vm_.XMLDesc(0) if isinstance( vm_, libvirt.virDomain ) else _get_domain(conn, vm_).XMLDesc(0) conn.close() return xml_desc def get_profiles(hypervisor=None, **kwargs): ''' Return the virt profiles for hypervisor. Currently there are profiles for: - nic - disk :param hypervisor: override the default machine type. :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.get_profiles salt '*' virt.get_profiles hypervisor=esxi ''' ret = {} caps = capabilities(**kwargs) hypervisors = sorted({x for y in [guest['arch']['domains'].keys() for guest in caps['guests']] for x in y}) default_hypervisor = 'kvm' if 'kvm' in hypervisors else hypervisors[0] if not hypervisor: hypervisor = __salt__['config.get']('libvirt:hypervisor') if hypervisor is not None: salt.utils.versions.warn_until( 'Sodium', '\'libvirt:hypervisor\' configuration property has been deprecated. ' 'Rather use the \'virt:connection:uri\' to properly define the libvirt ' 'URI or alias of the host to connect to. \'libvirt:hypervisor\' will ' 'stop being used in {version}.' ) else: # Use the machine types as possible values # Prefer 'kvm' over the others if available hypervisor = default_hypervisor virtconf = __salt__['config.get']('virt', {}) for typ in ['disk', 'nic']: _func = getattr(sys.modules[__name__], '_{0}_profile'.format(typ)) ret[typ] = {'default': _func('default', hypervisor)} if typ in virtconf: ret.setdefault(typ, {}) for prf in virtconf[typ]: ret[typ][prf] = _func(prf, hypervisor) return ret def shutdown(vm_, **kwargs): ''' Send a soft shutdown signal to the named vm :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.shutdown <domain> ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) ret = dom.shutdown() == 0 conn.close() return ret def pause(vm_, **kwargs): ''' Pause the named vm :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.pause <domain> ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) ret = dom.suspend() == 0 conn.close() return ret def resume(vm_, **kwargs): ''' Resume the named vm :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.resume <domain> ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) ret = dom.resume() == 0 conn.close() return ret def start(name, **kwargs): ''' Start a defined domain :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.start <domain> ''' conn = __get_conn(**kwargs) ret = _get_domain(conn, name).create() == 0 conn.close() return ret def stop(name, **kwargs): ''' Hard power down the virtual machine, this is equivalent to pulling the power. :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.stop <domain> ''' conn = __get_conn(**kwargs) ret = _get_domain(conn, name).destroy() == 0 conn.close() return ret def reboot(name, **kwargs): ''' Reboot a domain via ACPI request :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.reboot <domain> ''' conn = __get_conn(**kwargs) ret = _get_domain(conn, name).reboot(libvirt.VIR_DOMAIN_REBOOT_DEFAULT) == 0 conn.close() return ret def reset(vm_, **kwargs): ''' Reset a VM by emulating the reset button on a physical machine :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.reset <domain> ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) # reset takes a flag, like reboot, but it is not yet used # so we just pass in 0 # see: http://libvirt.org/html/libvirt-libvirt.html#virDomainReset ret = dom.reset(0) == 0 conn.close() return ret def ctrl_alt_del(vm_, **kwargs): ''' Sends CTRL+ALT+DEL to a VM :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.ctrl_alt_del <domain> ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) ret = dom.sendKey(0, 0, [29, 56, 111], 3, 0) == 0 conn.close() return ret def create_xml_str(xml, **kwargs): # pylint: disable=redefined-outer-name ''' Start a domain based on the XML passed to the function :param xml: libvirt XML definition of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.create_xml_str <XML in string format> ''' conn = __get_conn(**kwargs) ret = conn.createXML(xml, 0) is not None conn.close() return ret def create_xml_path(path, **kwargs): ''' Start a domain based on the XML-file path passed to the function :param path: path to a file containing the libvirt XML definition of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.create_xml_path <path to XML file on the node> ''' try: with salt.utils.files.fopen(path, 'r') as fp_: return create_xml_str( salt.utils.stringutils.to_unicode(fp_.read()), **kwargs ) except (OSError, IOError): return False def define_xml_str(xml, **kwargs): # pylint: disable=redefined-outer-name ''' Define a domain based on the XML passed to the function :param xml: libvirt XML definition of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.define_xml_str <XML in string format> ''' conn = __get_conn(**kwargs) ret = conn.defineXML(xml) is not None conn.close() return ret def define_xml_path(path, **kwargs): ''' Define a domain based on the XML-file path passed to the function :param path: path to a file containing the libvirt XML definition of the domain :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.define_xml_path <path to XML file on the node> ''' try: with salt.utils.files.fopen(path, 'r') as fp_: return define_xml_str( salt.utils.stringutils.to_unicode(fp_.read()), **kwargs ) except (OSError, IOError): return False def define_vol_xml_str(xml, **kwargs): # pylint: disable=redefined-outer-name ''' Define a volume based on the XML passed to the function :param xml: libvirt XML definition of the storage volume :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.define_vol_xml_str <XML in string format> The storage pool where the disk image will be defined is ``default`` unless changed with a configuration like this: .. code-block:: yaml virt: storagepool: mine ''' poolname = __salt__['config.get']('libvirt:storagepool', None) if poolname is not None: salt.utils.versions.warn_until( 'Sodium', '\'libvirt:storagepool\' has been deprecated in favor of ' '\'virt:storagepool\'. \'libvirt:storagepool\' will stop ' 'being used in {version}.' ) else: poolname = __salt__['config.get']('virt:storagepool', 'default') conn = __get_conn(**kwargs) pool = conn.storagePoolLookupByName(six.text_type(poolname)) ret = pool.createXML(xml, 0) is not None conn.close() return ret def define_vol_xml_path(path, **kwargs): ''' Define a volume based on the XML-file path passed to the function :param path: path to a file containing the libvirt XML definition of the volume :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.define_vol_xml_path <path to XML file on the node> ''' try: with salt.utils.files.fopen(path, 'r') as fp_: return define_vol_xml_str( salt.utils.stringutils.to_unicode(fp_.read()), **kwargs ) except (OSError, IOError): return False def migrate_non_shared(vm_, target, ssh=False): ''' Attempt to execute non-shared storage "all" migration :param vm_: domain name :param target: target libvirt host name :param ssh: True to connect over ssh CLI Example: .. code-block:: bash salt '*' virt.migrate_non_shared <vm name> <target hypervisor> A tunnel data migration can be performed by setting this in the configuration: .. code-block:: yaml virt: tunnel: True For more details on tunnelled data migrations, report to https://libvirt.org/migration.html#transporttunnel ''' cmd = _get_migrate_command() + ' --copy-storage-all ' + vm_\ + _get_target(target, ssh) stdout = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).communicate()[0] return salt.utils.stringutils.to_str(stdout) def migrate_non_shared_inc(vm_, target, ssh=False): ''' Attempt to execute non-shared storage "all" migration :param vm_: domain name :param target: target libvirt host name :param ssh: True to connect over ssh CLI Example: .. code-block:: bash salt '*' virt.migrate_non_shared_inc <vm name> <target hypervisor> A tunnel data migration can be performed by setting this in the configuration: .. code-block:: yaml virt: tunnel: True For more details on tunnelled data migrations, report to https://libvirt.org/migration.html#transporttunnel ''' cmd = _get_migrate_command() + ' --copy-storage-inc ' + vm_\ + _get_target(target, ssh) stdout = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).communicate()[0] return salt.utils.stringutils.to_str(stdout) def migrate(vm_, target, ssh=False): ''' Shared storage migration :param vm_: domain name :param target: target libvirt host name :param ssh: True to connect over ssh CLI Example: .. code-block:: bash salt '*' virt.migrate <domain> <target hypervisor> A tunnel data migration can be performed by setting this in the configuration: .. code-block:: yaml virt: tunnel: True For more details on tunnelled data migrations, report to https://libvirt.org/migration.html#transporttunnel ''' cmd = _get_migrate_command() + ' ' + vm_\ + _get_target(target, ssh) stdout = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).communicate()[0] return salt.utils.stringutils.to_str(stdout) def seed_non_shared_migrate(disks, force=False): ''' Non shared migration requires that the disks be present on the migration destination, pass the disks information via this function, to the migration destination before executing the migration. :param disks: the list of disk data as provided by virt.get_disks :param force: skip checking the compatibility of source and target disk images if True. (default: False) CLI Example: .. code-block:: bash salt '*' virt.seed_non_shared_migrate <disks> ''' for _, data in six.iteritems(disks): fn_ = data['file'] form = data['file format'] size = data['virtual size'].split()[1][1:] if os.path.isfile(fn_) and not force: # the target exists, check to see if it is compatible pre = salt.utils.yaml.safe_load(subprocess.Popen('qemu-img info arch', shell=True, stdout=subprocess.PIPE).communicate()[0]) if pre['file format'] != data['file format']\ and pre['virtual size'] != data['virtual size']: return False if not os.path.isdir(os.path.dirname(fn_)): os.makedirs(os.path.dirname(fn_)) if os.path.isfile(fn_): os.remove(fn_) cmd = 'qemu-img create -f ' + form + ' ' + fn_ + ' ' + size subprocess.call(cmd, shell=True) creds = _libvirt_creds() cmd = 'chown ' + creds['user'] + ':' + creds['group'] + ' ' + fn_ subprocess.call(cmd, shell=True) return True def set_autostart(vm_, state='on', **kwargs): ''' Set the autostart flag on a VM so that the VM will start with the host system on reboot. :param vm_: domain name :param state: 'on' to auto start the pool, anything else to mark the pool not to be started when the host boots :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt "*" virt.set_autostart <domain> <on | off> ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) # return False if state is set to something other then on or off ret = False if state == 'on': ret = dom.setAutostart(1) == 0 elif state == 'off': ret = dom.setAutostart(0) == 0 conn.close() return ret def undefine(vm_, **kwargs): ''' Remove a defined vm, this does not purge the virtual machine image, and this only works if the vm is powered down :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.undefine <domain> ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) if getattr(libvirt, 'VIR_DOMAIN_UNDEFINE_NVRAM', False): # This one is only in 1.2.8+ ret = dom.undefineFlags(libvirt.VIR_DOMAIN_UNDEFINE_NVRAM) == 0 else: ret = dom.undefine() == 0 conn.close() return ret def purge(vm_, dirs=False, removables=None, **kwargs): ''' Recursively destroy and delete a virtual machine, pass True for dir's to also delete the directories containing the virtual machine disk images - USE WITH EXTREME CAUTION! Pass removables=False to avoid deleting cdrom and floppy images. To avoid disruption, the default but dangerous value is True. This will be changed to the safer False default value in Sodium. :param vm_: domain name :param dirs: pass True to remove containing directories :param removables: pass True to remove removable devices .. versionadded:: 2019.2.0 :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.purge <domain> removables=False ''' conn = __get_conn(**kwargs) dom = _get_domain(conn, vm_) disks = _get_disks(dom) if removables is None: salt.utils.versions.warn_until( 'Sodium', 'removables argument default value is True, but will be changed ' 'to False by default in {version}. Please set to True to maintain ' 'the current behavior in the future.' ) removables = True if VIRT_STATE_NAME_MAP.get(dom.info()[0], 'unknown') != 'shutdown' and dom.destroy() != 0: return False directories = set() for disk in disks: if not removables and disks[disk]['type'] in ['cdrom', 'floppy']: continue os.remove(disks[disk]['file']) directories.add(os.path.dirname(disks[disk]['file'])) if dirs: for dir_ in directories: shutil.rmtree(dir_) if getattr(libvirt, 'VIR_DOMAIN_UNDEFINE_NVRAM', False): # This one is only in 1.2.8+ try: dom.undefineFlags(libvirt.VIR_DOMAIN_UNDEFINE_NVRAM) except Exception: dom.undefine() else: dom.undefine() conn.close() return True def virt_type(): ''' Returns the virtual machine type as a string CLI Example: .. code-block:: bash salt '*' virt.virt_type ''' return __grains__['virtual'] def _is_kvm_hyper(): ''' Returns a bool whether or not this node is a KVM hypervisor ''' try: with salt.utils.files.fopen('/proc/modules') as fp_: if 'kvm_' not in salt.utils.stringutils.to_unicode(fp_.read()): return False except IOError: # No /proc/modules? Are we on Windows? Or Solaris? return False return 'libvirtd' in __salt__['cmd.run'](__grains__['ps']) def is_kvm_hyper(): ''' Returns a bool whether or not this node is a KVM hypervisor CLI Example: .. code-block:: bash salt '*' virt.is_kvm_hyper .. deprecated:: 2019.2.0 ''' salt.utils.versions.warn_until( 'Sodium', '\'is_kvm_hyper\' function has been deprecated. Use the \'get_hypervisor\' == "kvm" instead. ' '\'is_kvm_hyper\' will be removed in {version}.' ) return _is_kvm_hyper() def _is_xen_hyper(): ''' Returns a bool whether or not this node is a XEN hypervisor ''' try: if __grains__['virtual_subtype'] != 'Xen Dom0': return False except KeyError: # virtual_subtype isn't set everywhere. return False try: with salt.utils.files.fopen('/proc/modules') as fp_: if 'xen_' not in salt.utils.stringutils.to_unicode(fp_.read()): return False except (OSError, IOError): # No /proc/modules? Are we on Windows? Or Solaris? return False return 'libvirtd' in __salt__['cmd.run'](__grains__['ps']) def is_xen_hyper(): ''' Returns a bool whether or not this node is a XEN hypervisor CLI Example: .. code-block:: bash salt '*' virt.is_xen_hyper .. deprecated:: 2019.2.0 ''' salt.utils.versions.warn_until( 'Sodium', '\'is_xen_hyper\' function has been deprecated. Use the \'get_hypervisor\' == "xen" instead. ' '\'is_xen_hyper\' will be removed in {version}.' ) return _is_xen_hyper() def get_hypervisor(): ''' Returns the name of the hypervisor running on this node or ``None``. Detected hypervisors: - kvm - xen CLI Example: .. code-block:: bash salt '*' virt.get_hypervisor .. versionadded:: 2019.2.0 the function and the ``kvm`` and ``xen`` hypervisors support ''' # To add a new 'foo' hypervisor, add the _is_foo_hyper function, # add 'foo' to the list below and add it to the docstring with a .. versionadded:: hypervisors = ['kvm', 'xen'] result = [hyper for hyper in hypervisors if getattr(sys.modules[__name__], '_is_{}_hyper').format(hyper)()] return result[0] if result else None def is_hyper(): ''' Returns a bool whether or not this node is a hypervisor of any kind CLI Example: .. code-block:: bash salt '*' virt.is_hyper ''' if HAS_LIBVIRT: return is_xen_hyper() or is_kvm_hyper() return False def vm_cputime(vm_=None, **kwargs): ''' Return cputime used by the vms on this hyper in a list of dicts: :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. code-block:: python [ 'your-vm': { 'cputime' <int> 'cputime_percent' <int> }, ... ] If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_cputime ''' conn = __get_conn(**kwargs) host_cpus = conn.getInfo()[2] def _info(dom): ''' Compute cputime info of a domain ''' raw = dom.info() vcpus = int(raw[3]) cputime = int(raw[4]) cputime_percent = 0 if cputime: # Divide by vcpus to always return a number between 0 and 100 cputime_percent = (1.0e-7 * cputime / host_cpus) / vcpus return { 'cputime': int(raw[4]), 'cputime_percent': int('{0:.0f}'.format(cputime_percent)) } info = {} if vm_: info[vm_] = _info(_get_domain(conn, vm_)) else: for domain in _get_domain(conn, iterable=True): info[domain.name()] = _info(domain) conn.close() return info def vm_netstats(vm_=None, **kwargs): ''' Return combined network counters used by the vms on this hyper in a list of dicts: :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. code-block:: python [ 'your-vm': { 'rx_bytes' : 0, 'rx_packets' : 0, 'rx_errs' : 0, 'rx_drop' : 0, 'tx_bytes' : 0, 'tx_packets' : 0, 'tx_errs' : 0, 'tx_drop' : 0 }, ... ] If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_netstats ''' def _info(dom): ''' Compute network stats of a domain ''' nics = _get_nics(dom) ret = { 'rx_bytes': 0, 'rx_packets': 0, 'rx_errs': 0, 'rx_drop': 0, 'tx_bytes': 0, 'tx_packets': 0, 'tx_errs': 0, 'tx_drop': 0 } for attrs in six.itervalues(nics): if 'target' in attrs: dev = attrs['target'] stats = dom.interfaceStats(dev) ret['rx_bytes'] += stats[0] ret['rx_packets'] += stats[1] ret['rx_errs'] += stats[2] ret['rx_drop'] += stats[3] ret['tx_bytes'] += stats[4] ret['tx_packets'] += stats[5] ret['tx_errs'] += stats[6] ret['tx_drop'] += stats[7] return ret info = {} conn = __get_conn(**kwargs) if vm_: info[vm_] = _info(_get_domain(conn, vm_)) else: for domain in _get_domain(conn, iterable=True): info[domain.name()] = _info(domain) conn.close() return info def vm_diskstats(vm_=None, **kwargs): ''' Return disk usage counters used by the vms on this hyper in a list of dicts: :param vm_: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. code-block:: python [ 'your-vm': { 'rd_req' : 0, 'rd_bytes' : 0, 'wr_req' : 0, 'wr_bytes' : 0, 'errs' : 0 }, ... ] If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_blockstats ''' def get_disk_devs(dom): ''' Extract the disk devices names from the domain XML definition ''' doc = ElementTree.fromstring(get_xml(dom, **kwargs)) return [target.get('dev') for target in doc.findall('devices/disk/target')] def _info(dom): ''' Compute the disk stats of a domain ''' # Do not use get_disks, since it uses qemu-img and is very slow # and unsuitable for any sort of real time statistics disks = get_disk_devs(dom) ret = {'rd_req': 0, 'rd_bytes': 0, 'wr_req': 0, 'wr_bytes': 0, 'errs': 0 } for disk in disks: stats = dom.blockStats(disk) ret['rd_req'] += stats[0] ret['rd_bytes'] += stats[1] ret['wr_req'] += stats[2] ret['wr_bytes'] += stats[3] ret['errs'] += stats[4] return ret info = {} conn = __get_conn(**kwargs) if vm_: info[vm_] = _info(_get_domain(conn, vm_)) else: # Can not run function blockStats on inactive VMs for domain in _get_domain(conn, iterable=True, inactive=False): info[domain.name()] = _info(domain) conn.close() return info def _parse_snapshot_description(vm_snapshot, unix_time=False): ''' Parse XML doc and return a dict with the status values. :param xmldoc: :return: ''' ret = dict() tree = ElementTree.fromstring(vm_snapshot.getXMLDesc()) for node in tree: if node.tag == 'name': ret['name'] = node.text elif node.tag == 'creationTime': ret['created'] = datetime.datetime.fromtimestamp(float(node.text)).isoformat(' ') \ if not unix_time else float(node.text) elif node.tag == 'state': ret['running'] = node.text == 'running' ret['current'] = vm_snapshot.isCurrent() == 1 return ret def list_snapshots(domain=None, **kwargs): ''' List available snapshots for certain vm or for all. :param domain: domain name :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. versionadded:: 2016.3.0 CLI Example: .. code-block:: bash salt '*' virt.list_snapshots salt '*' virt.list_snapshots <domain> ''' ret = dict() conn = __get_conn(**kwargs) for vm_domain in _get_domain(conn, *(domain and [domain] or list()), iterable=True): ret[vm_domain.name()] = [_parse_snapshot_description(snap) for snap in vm_domain.listAllSnapshots()] or 'N/A' conn.close() return ret def snapshot(domain, name=None, suffix=None, **kwargs): ''' Create a snapshot of a VM. :param domain: domain name :param name: Name of the snapshot. If the name is omitted, then will be used original domain name with ISO 8601 time as a suffix. :param suffix: Add suffix for the new name. Useful in states, where such snapshots can be distinguished from manually created. :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. versionadded:: 2016.3.0 CLI Example: .. code-block:: bash salt '*' virt.snapshot <domain> ''' if name and name.lower() == domain.lower(): raise CommandExecutionError('Virtual Machine {name} is already defined. ' 'Please choose another name for the snapshot'.format(name=name)) if not name: name = "{domain}-{tsnap}".format(domain=domain, tsnap=time.strftime('%Y%m%d-%H%M%S', time.localtime())) if suffix: name = "{name}-{suffix}".format(name=name, suffix=suffix) doc = ElementTree.Element('domainsnapshot') n_name = ElementTree.SubElement(doc, 'name') n_name.text = name conn = __get_conn(**kwargs) _get_domain(conn, domain).snapshotCreateXML( salt.utils.stringutils.to_str(ElementTree.tostring(doc)) ) conn.close() return {'name': name} def delete_snapshots(name, *names, **kwargs): ''' Delete one or more snapshots of the given VM. :param name: domain name :param names: names of the snapshots to remove :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. versionadded:: 2016.3.0 CLI Example: .. code-block:: bash salt '*' virt.delete_snapshots <domain> all=True salt '*' virt.delete_snapshots <domain> <snapshot> salt '*' virt.delete_snapshots <domain> <snapshot1> <snapshot2> ... ''' deleted = dict() conn = __get_conn(**kwargs) domain = _get_domain(conn, name) for snap in domain.listAllSnapshots(): if snap.getName() in names or not names: deleted[snap.getName()] = _parse_snapshot_description(snap) snap.delete() conn.close() available = {name: [_parse_snapshot_description(snap) for snap in domain.listAllSnapshots()] or 'N/A'} return {'available': available, 'deleted': deleted} def revert_snapshot(name, vm_snapshot=None, cleanup=False, **kwargs): ''' Revert snapshot to the previous from current (if available) or to the specific. :param name: domain name :param vm_snapshot: name of the snapshot to revert :param cleanup: Remove all newer than reverted snapshots. Values: True or False (default False). :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 .. versionadded:: 2016.3.0 CLI Example: .. code-block:: bash salt '*' virt.revert <domain> salt '*' virt.revert <domain> <snapshot> ''' ret = dict() conn = __get_conn(**kwargs) domain = _get_domain(conn, name) snapshots = domain.listAllSnapshots() _snapshots = list() for snap_obj in snapshots: _snapshots.append({'idx': _parse_snapshot_description(snap_obj, unix_time=True)['created'], 'ptr': snap_obj}) snapshots = [w_ptr['ptr'] for w_ptr in sorted(_snapshots, key=lambda item: item['idx'], reverse=True)] del _snapshots if not snapshots: conn.close() raise CommandExecutionError('No snapshots found') elif len(snapshots) == 1: conn.close() raise CommandExecutionError('Cannot revert to itself: only one snapshot is available.') snap = None for p_snap in snapshots: if not vm_snapshot: if p_snap.isCurrent() and snapshots[snapshots.index(p_snap) + 1:]: snap = snapshots[snapshots.index(p_snap) + 1:][0] break elif p_snap.getName() == vm_snapshot: snap = p_snap break if not snap: conn.close() raise CommandExecutionError( snapshot and 'Snapshot "{0}" not found'.format(vm_snapshot) or 'No more previous snapshots available') elif snap.isCurrent(): conn.close() raise CommandExecutionError('Cannot revert to the currently running snapshot.') domain.revertToSnapshot(snap) ret['reverted'] = snap.getName() if cleanup: delete = list() for p_snap in snapshots: if p_snap.getName() != snap.getName(): delete.append(p_snap.getName()) p_snap.delete() else: break ret['deleted'] = delete else: ret['deleted'] = 'N/A' conn.close() return ret def _caps_add_machine(machines, node): ''' Parse the <machine> element of the host capabilities and add it to the machines list. ''' maxcpus = node.get('maxCpus') canonical = node.get('canonical') name = node.text alternate_name = "" if canonical: alternate_name = name name = canonical machine = machines.get(name) if not machine: machine = {'alternate_names': []} if maxcpus: machine['maxcpus'] = int(maxcpus) machines[name] = machine if alternate_name: machine['alternate_names'].append(alternate_name) def _parse_caps_guest(guest): ''' Parse the <guest> element of the connection capabilities XML ''' arch_node = guest.find('arch') result = { 'os_type': guest.find('os_type').text, 'arch': { 'name': arch_node.get('name'), 'machines': {}, 'domains': {} }, } for child in arch_node: if child.tag == 'wordsize': result['arch']['wordsize'] = int(child.text) elif child.tag == 'emulator': result['arch']['emulator'] = child.text elif child.tag == 'machine': _caps_add_machine(result['arch']['machines'], child) elif child.tag == 'domain': domain_type = child.get('type') domain = { 'emulator': None, 'machines': {} } emulator_node = child.find('emulator') if emulator_node is not None: domain['emulator'] = emulator_node.text for machine in child.findall('machine'): _caps_add_machine(domain['machines'], machine) result['arch']['domains'][domain_type] = domain # Note that some features have no default and toggle attributes. # This may not be a perfect match, but represent them as enabled by default # without possibility to toggle them. # Some guests may also have no feature at all (xen pv for instance) features_nodes = guest.find('features') if features_nodes is not None: result['features'] = {child.tag: {'toggle': True if child.get('toggle') == 'yes' else False, 'default': True if child.get('default') == 'no' else True} for child in features_nodes} return result def _parse_caps_cell(cell): ''' Parse the <cell> nodes of the connection capabilities XML output. ''' result = { 'id': int(cell.get('id')) } mem_node = cell.find('memory') if mem_node is not None: unit = mem_node.get('unit', 'KiB') memory = mem_node.text result['memory'] = "{} {}".format(memory, unit) pages = [{'size': "{} {}".format(page.get('size'), page.get('unit', 'KiB')), 'available': int(page.text)} for page in cell.findall('pages')] if pages: result['pages'] = pages distances = {int(distance.get('id')): int(distance.get('value')) for distance in cell.findall('distances/sibling')} if distances: result['distances'] = distances cpus = [] for cpu_node in cell.findall('cpus/cpu'): cpu = { 'id': int(cpu_node.get('id')) } socket_id = cpu_node.get('socket_id') if socket_id: cpu['socket_id'] = int(socket_id) core_id = cpu_node.get('core_id') if core_id: cpu['core_id'] = int(core_id) siblings = cpu_node.get('siblings') if siblings: cpu['siblings'] = siblings cpus.append(cpu) if cpus: result['cpus'] = cpus return result def _parse_caps_bank(bank): ''' Parse the <bank> element of the connection capabilities XML. ''' result = { 'id': int(bank.get('id')), 'level': int(bank.get('level')), 'type': bank.get('type'), 'size': "{} {}".format(bank.get('size'), bank.get('unit')), 'cpus': bank.get('cpus') } controls = [] for control in bank.findall('control'): unit = control.get('unit') result_control = { 'granularity': "{} {}".format(control.get('granularity'), unit), 'type': control.get('type'), 'maxAllocs': int(control.get('maxAllocs')) } minimum = control.get('min') if minimum: result_control['min'] = "{} {}".format(minimum, unit) controls.append(result_control) if controls: result['controls'] = controls return result def _parse_caps_host(host): ''' Parse the <host> element of the connection capabilities XML. ''' result = {} for child in host: if child.tag == 'uuid': result['uuid'] = child.text elif child.tag == 'cpu': cpu = { 'arch': child.find('arch').text if child.find('arch') is not None else None, 'model': child.find('model').text if child.find('model') is not None else None, 'vendor': child.find('vendor').text if child.find('vendor') is not None else None, 'features': [feature.get('name') for feature in child.findall('feature')], 'pages': [{'size': '{} {}'.format(page.get('size'), page.get('unit', 'KiB'))} for page in child.findall('pages')] } # Parse the cpu tag microcode = child.find('microcode') if microcode is not None: cpu['microcode'] = microcode.get('version') topology = child.find('topology') if topology is not None: cpu['sockets'] = int(topology.get('sockets')) cpu['cores'] = int(topology.get('cores')) cpu['threads'] = int(topology.get('threads')) result['cpu'] = cpu elif child.tag == "power_management": result['power_management'] = [node.tag for node in child] elif child.tag == "migration_features": result['migration'] = { 'live': child.find('live') is not None, 'transports': [node.text for node in child.findall('uri_transports/uri_transport')] } elif child.tag == "topology": result['topology'] = { 'cells': [_parse_caps_cell(cell) for cell in child.findall('cells/cell')] } elif child.tag == 'cache': result['cache'] = { 'banks': [_parse_caps_bank(bank) for bank in child.findall('bank')] } result['security'] = [{ 'model': secmodel.find('model').text if secmodel.find('model') is not None else None, 'doi': secmodel.find('doi').text if secmodel.find('doi') is not None else None, 'baselabels': [{'type': label.get('type'), 'label': label.text} for label in secmodel.findall('baselabel')] } for secmodel in host.findall('secmodel')] return result def capabilities(**kwargs): ''' Return the hypervisor connection capabilities. :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.capabilities ''' conn = __get_conn(**kwargs) caps = ElementTree.fromstring(conn.getCapabilities()) conn.close() return { 'host': _parse_caps_host(caps.find('host')), 'guests': [_parse_caps_guest(guest) for guest in caps.findall('guest')] } def _parse_caps_enum(node): ''' Return a tuple containing the name of the enum and the possible values ''' return (node.get('name'), [value.text for value in node.findall('value')]) def _parse_caps_cpu(node): ''' Parse the <cpu> element of the domain capabilities ''' result = {} for mode in node.findall('mode'): if not mode.get('supported') == 'yes': continue name = mode.get('name') if name == 'host-passthrough': result[name] = True elif name == 'host-model': host_model = {} model_node = mode.find('model') if model_node is not None: model = { 'name': model_node.text } vendor_id = model_node.get('vendor_id') if vendor_id: model['vendor_id'] = vendor_id fallback = model_node.get('fallback') if fallback: model['fallback'] = fallback host_model['model'] = model vendor = mode.find('vendor').text if mode.find('vendor') is not None else None if vendor: host_model['vendor'] = vendor features = {feature.get('name'): feature.get('policy') for feature in mode.findall('feature')} if features: host_model['features'] = features result[name] = host_model elif name == 'custom': custom_model = {} models = {model.text: model.get('usable') for model in mode.findall('model')} if models: custom_model['models'] = models result[name] = custom_model return result def _parse_caps_devices_features(node): ''' Parse the devices or features list of the domain capatilities ''' result = {} for child in node: if child.get('supported') == 'yes': enums = [_parse_caps_enum(node) for node in child.findall('enum')] result[child.tag] = {item[0]: item[1] for item in enums if item[0]} return result def _parse_caps_loader(node): ''' Parse the <loader> element of the domain capabilities. ''' enums = [_parse_caps_enum(enum) for enum in node.findall('enum')] result = {item[0]: item[1] for item in enums if item[0]} values = [child.text for child in node.findall('value')] if values: result['values'] = values return result def domain_capabilities(emulator=None, arch=None, machine=None, domain=None, **kwargs): ''' Return the domain capabilities given an emulator, architecture, machine or virtualization type. .. versionadded:: 2019.2.0 :param emulator: return the capabilities for the given emulator binary :param arch: return the capabilities for the given CPU architecture :param machine: return the capabilities for the given emulated machine type :param domain: return the capabilities for the given virtualization type. :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults The list of the possible emulator, arch, machine and domain can be found in the host capabilities output. If none of the parameters is provided the libvirt default domain capabilities will be returned. CLI Example: .. code-block:: bash salt '*' virt.domain_capabilities arch='x86_64' domain='kvm' ''' conn = __get_conn(**kwargs) caps = ElementTree.fromstring(conn.getDomainCapabilities(emulator, arch, machine, domain, 0)) conn.close() result = { 'emulator': caps.find('path').text if caps.find('path') is not None else None, 'domain': caps.find('domain').text if caps.find('domain') is not None else None, 'machine': caps.find('machine').text if caps.find('machine') is not None else None, 'arch': caps.find('arch').text if caps.find('arch') is not None else None } for child in caps: if child.tag == 'vcpu' and child.get('max'): result['max_vcpus'] = int(child.get('max')) elif child.tag == 'iothreads': result['iothreads'] = child.get('supported') == 'yes' elif child.tag == 'os': result['os'] = {} loader_node = child.find('loader') if loader_node is not None and loader_node.get('supported') == 'yes': loader = _parse_caps_loader(loader_node) result['os']['loader'] = loader elif child.tag == 'cpu': cpu = _parse_caps_cpu(child) if cpu: result['cpu'] = cpu elif child.tag == 'devices': devices = _parse_caps_devices_features(child) if devices: result['devices'] = devices elif child.tag == 'features': features = _parse_caps_devices_features(child) if features: result['features'] = features return result def cpu_baseline(full=False, migratable=False, out='libvirt', **kwargs): ''' Return the optimal 'custom' CPU baseline config for VM's on this minion .. versionadded:: 2016.3.0 :param full: Return all CPU features rather than the ones on top of the closest CPU model :param migratable: Exclude CPU features that are unmigratable (libvirt 2.13+) :param out: 'libvirt' (default) for usable libvirt XML definition, 'salt' for nice dict :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.cpu_baseline ''' conn = __get_conn(**kwargs) caps = ElementTree.fromstring(conn.getCapabilities()) cpu = caps.find('host/cpu') log.debug('Host CPU model definition: %s', salt.utils.stringutils.to_str(ElementTree.tostring(cpu))) flags = 0 if migratable: # This one is only in 1.2.14+ if getattr(libvirt, 'VIR_CONNECT_BASELINE_CPU_MIGRATABLE', False): flags += libvirt.VIR_CONNECT_BASELINE_CPU_MIGRATABLE else: conn.close() raise ValueError if full and getattr(libvirt, 'VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES', False): # This one is only in 1.1.3+ flags += libvirt.VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES cpu = ElementTree.fromstring(conn.baselineCPU([salt.utils.stringutils.to_str(ElementTree.tostring(cpu))], flags)) conn.close() if full and not getattr(libvirt, 'VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES', False): # Try do it by ourselves # Find the models in cpu_map.xml and iterate over them for as long as entries have submodels with salt.utils.files.fopen('/usr/share/libvirt/cpu_map.xml', 'r') as cpu_map: cpu_map = ElementTree.parse(cpu_map) cpu_model = cpu.find('model').text while cpu_model: cpu_map_models = cpu_map.findall('arch/model') cpu_specs = [el for el in cpu_map_models if el.get('name') == cpu_model and bool(len(el))] if not cpu_specs: raise ValueError('Model {0} not found in CPU map'.format(cpu_model)) elif len(cpu_specs) > 1: raise ValueError('Multiple models {0} found in CPU map'.format(cpu_model)) cpu_specs = cpu_specs[0] # libvirt's cpu map used to nest model elements, to point the parent model. # keep this code for compatibility with old libvirt versions model_node = cpu_specs.find('model') if model_node is None: cpu_model = None else: cpu_model = model_node.get('name') cpu.extend([feature for feature in cpu_specs.findall('feature')]) if out == 'salt': return { 'model': cpu.find('model').text, 'vendor': cpu.find('vendor').text, 'features': [feature.get('name') for feature in cpu.findall('feature')] } return cpu.toxml() def network_define(name, bridge, forward, **kwargs): ''' Create libvirt network. :param name: Network name :param bridge: Bridge name :param forward: Forward mode(bridge, router, nat) :param vport: Virtualport type :param tag: Vlan tag :param autostart: Network autostart (default True) :param start: Network start (default True) :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults CLI Example: .. code-block:: bash salt '*' virt.network_define network main bridge openvswitch .. versionadded:: 2019.2.0 ''' conn = __get_conn(**kwargs) vport = kwargs.get('vport', None) tag = kwargs.get('tag', None) autostart = kwargs.get('autostart', True) starting = kwargs.get('start', True) net_xml = _gen_net_xml( name, bridge, forward, vport, tag, ) try: conn.networkDefineXML(net_xml) except libvirtError as err: log.warning(err) conn.close() raise err # a real error we should report upwards try: network = conn.networkLookupByName(name) except libvirtError as err: log.warning(err) conn.close() raise err # a real error we should report upwards if network is None: conn.close() return False if (starting is True or autostart is True) and network.isActive() != 1: network.create() if autostart is True and network.autostart() != 1: network.setAutostart(int(autostart)) elif autostart is False and network.autostart() == 1: network.setAutostart(int(autostart)) conn.close() return True def list_networks(**kwargs): ''' List all virtual networks. :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.list_networks ''' conn = __get_conn(**kwargs) try: return [net.name() for net in conn.listAllNetworks()] finally: conn.close() def network_info(name=None, **kwargs): ''' Return informations on a virtual network provided its name. :param name: virtual network name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults If no name is provided, return the infos for all defined virtual networks. .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.network_info default ''' result = {} conn = __get_conn(**kwargs) def _net_get_leases(net): ''' Get all DHCP leases for a network ''' leases = net.DHCPLeases() for lease in leases: if lease['type'] == libvirt.VIR_IP_ADDR_TYPE_IPV4: lease['type'] = 'ipv4' elif lease['type'] == libvirt.VIR_IP_ADDR_TYPE_IPV6: lease['type'] = 'ipv6' else: lease['type'] = 'unknown' return leases try: nets = [net for net in conn.listAllNetworks() if name is None or net.name() == name] result = {net.name(): { 'uuid': net.UUIDString(), 'bridge': net.bridgeName(), 'autostart': net.autostart(), 'active': net.isActive(), 'persistent': net.isPersistent(), 'leases': _net_get_leases(net)} for net in nets} except libvirt.libvirtError as err: log.debug('Silenced libvirt error: %s', str(err)) finally: conn.close() return result def network_start(name, **kwargs): ''' Start a defined virtual network. :param name: virtual network name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.network_start default ''' conn = __get_conn(**kwargs) try: net = conn.networkLookupByName(name) return not bool(net.create()) finally: conn.close() def network_stop(name, **kwargs): ''' Stop a defined virtual network. :param name: virtual network name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.network_stop default ''' conn = __get_conn(**kwargs) try: net = conn.networkLookupByName(name) return not bool(net.destroy()) finally: conn.close() def network_undefine(name, **kwargs): ''' Remove a defined virtual network. This does not stop the virtual network. :param name: virtual network name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.network_undefine default ''' conn = __get_conn(**kwargs) try: net = conn.networkLookupByName(name) return not bool(net.undefine()) finally: conn.close() def network_set_autostart(name, state='on', **kwargs): ''' Set the autostart flag on a virtual network so that the network will start with the host system on reboot. :param name: virtual network name :param state: 'on' to auto start the network, anything else to mark the virtual network not to be started when the host boots :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt "*" virt.network_set_autostart <pool> <on | off> ''' conn = __get_conn(**kwargs) try: net = conn.networkLookupByName(name) return not bool(net.setAutostart(1 if state == 'on' else 0)) finally: conn.close() def pool_define(name, ptype, target=None, permissions=None, source_devices=None, source_dir=None, source_adapter=None, source_hosts=None, source_auth=None, source_name=None, source_format=None, transient=False, start=True, # pylint: disable=redefined-outer-name **kwargs): ''' Create libvirt pool. :param name: Pool name :param ptype: Pool type. See `libvirt documentation <https://libvirt.org/storage.html>`_ for the possible values. :param target: Pool full path target :param permissions: Permissions to set on the target folder. This is mostly used for filesystem-based pool types. See :ref:`pool-define-permissions` for more details on this structure. :param source_devices: List of source devices for pools backed by physical devices. (Default: ``None``) Each item in the list is a dictionary with ``path`` and optionally ``part_separator`` keys. The path is the qualified name for iSCSI devices. Report to `this libvirt page <https://libvirt.org/formatstorage.html#StoragePool>`_ for more informations on the use of ``part_separator`` :param source_dir: Path to the source directory for pools of type ``dir``, ``netfs`` or ``gluster``. (Default: ``None``) :param source_adapter: SCSI source definition. The value is a dictionary with ``type``, ``name``, ``parent``, ``managed``, ``parent_wwnn``, ``parent_wwpn``, ``parent_fabric_wwn``, ``wwnn``, ``wwpn`` and ``parent_address`` keys. The ``parent_address`` value is a dictionary with ``unique_id`` and ``address`` keys. The address represents a PCI address and is itself a dictionary with ``domain``, ``bus``, ``slot`` and ``function`` properties. Report to `this libvirt page <https://libvirt.org/formatstorage.html#StoragePool>`_ for the meaning and possible values of these properties. :param source_hosts: List of source for pools backed by storage from remote servers. Each item is the hostname optionally followed by the port separated by a colon. (Default: ``None``) :param source_auth: Source authentication details. (Default: ``None``) The value is a dictionary with ``type``, ``username`` and ``secret`` keys. The type can be one of ``ceph`` for Ceph RBD or ``chap`` for iSCSI sources. The ``secret`` value links to a libvirt secret object. It is a dictionary with ``type`` and ``value`` keys. The type value can be either ``uuid`` or ``usage``. Examples: .. code-block:: python source_auth={ 'type': 'ceph', 'username': 'admin', 'secret': { 'type': 'uuid', 'uuid': '2ec115d7-3a88-3ceb-bc12-0ac909a6fd87' } } .. code-block:: python source_auth={ 'type': 'chap', 'username': 'myname', 'secret': { 'type': 'usage', 'uuid': 'mycluster_myname' } } :param source_name: Identifier of name-based sources. :param source_format: String representing the source format. The possible values are depending on the source type. See `libvirt documentation <https://libvirt.org/storage.html>`_ for the possible values. :param start: Pool start (default True) :param transient: When ``True``, the pool will be automatically undefined after being stopped. Note that a transient pool will force ``start`` to ``True``. (Default: ``False``) :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. _pool-define-permissions: .. rubric:: Permissions definition The permissions are described by a dictionary containing the following keys: mode The octal representation of the permissions. (Default: `0711`) owner the numeric user ID of the owner. (Default: from the parent folder) group the numeric ID of the group. (Default: from the parent folder) label the SELinux label. (Default: `None`) .. rubric:: CLI Example: Local folder pool: .. code-block:: bash salt '*' virt.pool_define somepool dir target=/srv/mypool \ permissions="{'mode': '0744' 'ower': 107, 'group': 107 }" CIFS backed pool: .. code-block:: bash salt '*' virt.pool_define myshare netfs source_format=cifs \ source_dir=samba_share source_hosts="['example.com']" target=/mnt/cifs .. versionadded:: 2019.2.0 ''' conn = __get_conn(**kwargs) pool_xml = _gen_pool_xml( name, ptype, target, permissions=permissions, source_devices=source_devices, source_dir=source_dir, source_adapter=source_adapter, source_hosts=source_hosts, source_auth=source_auth, source_name=source_name, source_format=source_format ) try: if transient: pool = conn.storagePoolCreateXML(pool_xml) else: pool = conn.storagePoolDefineXML(pool_xml) if start: pool.create() except libvirtError as err: raise err # a real error we should report upwards finally: conn.close() # libvirt function will raise a libvirtError in case of failure return True def list_pools(**kwargs): ''' List all storage pools. :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.list_pools ''' conn = __get_conn(**kwargs) try: return [pool.name() for pool in conn.listAllStoragePools()] finally: conn.close() def pool_info(name=None, **kwargs): ''' Return informations on a storage pool provided its name. :param name: libvirt storage pool name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults If no name is provided, return the infos for all defined storage pools. .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.pool_info default ''' result = {} conn = __get_conn(**kwargs) def _pool_extract_infos(pool): ''' Format the pool info dictionary :param pool: the libvirt pool object ''' states = ['inactive', 'building', 'running', 'degraded', 'inaccessible'] infos = pool.info() state = states[infos[0]] if infos[0] < len(states) else 'unknown' desc = ElementTree.fromstring(pool.XMLDesc()) path_node = desc.find('target/path') return { 'uuid': pool.UUIDString(), 'state': state, 'capacity': infos[1], 'allocation': infos[2], 'free': infos[3], 'autostart': pool.autostart(), 'persistent': pool.isPersistent(), 'target_path': path_node.text if path_node is not None else None, 'type': desc.get('type') } try: pools = [pool for pool in conn.listAllStoragePools() if name is None or pool.name() == name] result = {pool.name(): _pool_extract_infos(pool) for pool in pools} except libvirt.libvirtError as err: log.debug('Silenced libvirt error: %s', str(err)) finally: conn.close() return result def pool_start(name, **kwargs): ''' Start a defined libvirt storage pool. :param name: libvirt storage pool name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.pool_start default ''' conn = __get_conn(**kwargs) try: pool = conn.storagePoolLookupByName(name) return not bool(pool.create()) finally: conn.close() def pool_build(name, **kwargs): ''' Build a defined libvirt storage pool. :param name: libvirt storage pool name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.pool_build default ''' conn = __get_conn(**kwargs) try: pool = conn.storagePoolLookupByName(name) return not bool(pool.build()) finally: conn.close() def pool_stop(name, **kwargs): ''' Stop a defined libvirt storage pool. :param name: libvirt storage pool name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.pool_stop default ''' conn = __get_conn(**kwargs) try: pool = conn.storagePoolLookupByName(name) return not bool(pool.destroy()) finally: conn.close() def pool_undefine(name, **kwargs): ''' Remove a defined libvirt storage pool. The pool needs to be stopped before calling. :param name: libvirt storage pool name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.pool_undefine default ''' conn = __get_conn(**kwargs) try: pool = conn.storagePoolLookupByName(name) return not bool(pool.undefine()) finally: conn.close() def pool_delete(name, fast=True, **kwargs): ''' Delete the resources of a defined libvirt storage pool. :param name: libvirt storage pool name :param fast: if set to False, zeroes out all the data. Default value is True. :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.pool_delete default ''' conn = __get_conn(**kwargs) try: pool = conn.storagePoolLookupByName(name) flags = libvirt.VIR_STORAGE_POOL_DELETE_NORMAL if fast: flags = libvirt.VIR_STORAGE_POOL_DELETE_ZEROED return not bool(pool.delete(flags)) finally: conn.close() def pool_refresh(name, **kwargs): ''' Refresh a defined libvirt storage pool. :param name: libvirt storage pool name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt '*' virt.pool_refresh default ''' conn = __get_conn(**kwargs) try: pool = conn.storagePoolLookupByName(name) return not bool(pool.refresh()) finally: conn.close() def pool_set_autostart(name, state='on', **kwargs): ''' Set the autostart flag on a libvirt storage pool so that the storage pool will start with the host system on reboot. :param name: libvirt storage pool name :param state: 'on' to auto start the pool, anything else to mark the pool not to be started when the host boots :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt "*" virt.pool_set_autostart <pool> <on | off> ''' conn = __get_conn(**kwargs) try: pool = conn.storagePoolLookupByName(name) return not bool(pool.setAutostart(1 if state == 'on' else 0)) finally: conn.close() def pool_list_volumes(name, **kwargs): ''' List the volumes contained in a defined libvirt storage pool. :param name: libvirt storage pool name :param connection: libvirt connection URI, overriding defaults :param username: username to connect with, overriding defaults :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 CLI Example: .. code-block:: bash salt "*" virt.pool_list_volumes <pool> ''' conn = __get_conn(**kwargs) try: pool = conn.storagePoolLookupByName(name) return pool.listVolumes() finally: conn.close()
31.507176
119
0.594228
804803d1e8782fe18761a6e9fdb13d6c11ded556
45,151
py
Python
sympy/physics/quantum/spin.py
Narsil/sympy
4d837e074b871af351b42591697fe126411a910f
[ "BSD-3-Clause" ]
1
2020-12-27T18:43:22.000Z
2020-12-27T18:43:22.000Z
sympy_old/physics/quantum/spin.py
curzel-it/KiPyCalc
909c783d5e6967ea58ca93f875106d8a8e3ca5db
[ "MIT" ]
null
null
null
sympy_old/physics/quantum/spin.py
curzel-it/KiPyCalc
909c783d5e6967ea58ca93f875106d8a8e3ca5db
[ "MIT" ]
1
2022-03-21T09:07:27.000Z
2022-03-21T09:07:27.000Z
"""Quantum mechanical angular momemtum.""" from sympy import ( Add, binomial, cos, diff, exp, Expr, factorial, I, Integer, Matrix, Mul, N, pi, Rational, S, sin, simplify, sqrt, Sum, Symbol, symbols, sympify ) from sympy.matrices.matrices import zeros from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.operator import ( HermitianOperator, Operator, UnitaryOperator ) from sympy.physics.quantum.state import Bra, Ket, State from sympy.physics.quantum.kronecker import KroneckerDelta from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.qapply import qapply __all__ = [ 'm_values', 'Jplus', 'Jminus', 'Jx', 'Jy', 'Jz', 'J2', 'JxKet', 'JxBra', 'JyKet', 'JyBra', 'JzKet', 'JzBra', 'JxKetCoupled', 'JxBraCoupled', 'JyKetCoupled', 'JyBraCoupled', 'JzKetCoupled', 'JzBraCoupled', 'Rotation', 'WignerD', 'couple', 'uncouple' ] def m_values(j): j = sympify(j) size = 2*j + 1 if not size.is_Integer or not size > 0: raise ValueError( 'Only integer or half-integer values allowed for j, got: : %r' % j ) return size, [j-i for i in range(int(2*j+1))] def couple(tp): """ Couple an uncoupled spin states This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It will return a linear combination of eigenstates that are subclasses of CoupledSpinState. Parameters ========== tp: TensorProduct TensorProduct of spin states to be coupled Examples ======== Couple a tensor product of numerical states: >>> from sympy.physics.quantum.spin import JzKet, couple >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> couple(TensorProduct(JzKet(1,0), JzKet(1,1))) -sqrt(2)*|1,1,1,1>/2 + sqrt(2)*|2,1,1,1>/2 Couple a tensor product of symbolic states: >>> from sympy import symbols >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2))) Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2>, (j, 0, j1 + j2)) """ states = tp.args evect = states[0].__class__ if not all([arg.__class__ is evect for arg in states]): raise TypeError('All operands must be of the same class') evect = evect.coupled_class() if all(state.j.is_number for state in states): # Numerical coupling vect = TensorProduct(*[state._represent() for state in states]) maxj = states[0].j + states[1].j j1, j2 = states[0].j, states[1].j if maxj == int(maxj): minj = 0 else: minj = S(1)/2 result = [] for i in range(maxj-minj+1): j = maxj-i for k in range(2*j+1): m = j-k max_m1 = min(j1, m+j2) min_m1 = max(-j1, m-j2) min_m2 = m-max_m1 result.append(Add(*[vect[(j1-(max_m1-l))*(2*j2+1)+(j2-(min_m2+l)),0] * CG(j1,max_m1-l,j2,min_m2+l,j,m) * evect(j,m,j1,j2) for l in range(max_m1-min_m1+1)])) if all(state.m.is_number for state in states): return Add(*result).doit() else: return Add(*result) else: # Symbolic coupling maxj = Add(*[state.j for state in states]) m = Add(*[state.m for state in states]) j = symbols('j') if not maxj.is_number or maxj == int(maxj): minj = 0 else: minj = S(1)/2 j1 = states[0].j j2 = states[1].j m1 = states[0].m m2 = states[1].m return Sum(CG(j1,m1,j2,m2,j,m) * evect(j,m), (j,minj,maxj)) def uncouple(*args): """ Uncouple a coupled spin state Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin state that is a subclass of SpinState and an array giving the j values of the spaces that are to be coupled Parameters ========== args: CoupledSpinState or SpinState The state that is to be coupled. If a subclass of SpinState is used, the state must be followed by the j values of the spaces that are to be coupled. Examples ======== Uncouple a numerical state using a CoupledSpinState state: >>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple >>> from sympy import S >>> uncouple(JzKetCoupled(1, 0, S(1)/2, S(1)/2)) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Perform the same calculation using a SpinState state: >>> from sympy.physics.quantum.spin import JzKet >>> uncouple(JzKet(1, 0), S(1)/2, S(1)/2) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Uncouple a symbolic state using a CoupledSpinState state: >>> from sympy import symbols >>> j,m,j1,j2 = symbols('j m j1 j2') >>> uncouple(JzKetCoupled(j, m, j1, j2)) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) Perform the same calculation using a SpinState state >>> uncouple(JzKet(j, m), j1, j2) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) """ if len(args) == 3: state, j1, j2 = args evect = state.__class__ elif len(args) == 1: state = args[0] evect = state.uncoupled_class() j1, j2 = state.jvals state = evect(state.j, state.m) else: raise TypeError j = state.j m = state.m if state.j.is_number and state.m.is_number: result = [] for i_m1 in range(2*j1+1): m1 = j1-i_m1 for i_m2 in range(2*j2+1): m2 = j2-i_m2 result.append(CG(j1,m1,j2,m2,j,m).doit() * TensorProduct(evect(j1,m1), evect(j2,m2))) return Add(*result) else: m1,m2,mi = symbols('m1 m2 mi') # Hack to get rotation angles angles = (evect(0,mi)._represent())[0].args[3:6] out_state = TensorProduct(evect(j1,m1),evect(j2,m2)) if angles == (0,0,0): lt = CG(j1,m1,j2,m2,state.j,state.m) return Sum(lt * out_state, (m1,-j1,j1), (m2,-j2,j2)) else: lt = CG(j1,m1,j2,m2,state.j,mi) * Rotation.D(state.j,mi,state.m,*angles) return Sum(lt * out_state, (mi,-state.j,state.j), (m1,-j1,j1), (m2,-j2,j2)) #----------------------------------------------------------------------------- # SpinOperators #----------------------------------------------------------------------------- class SpinOpBase(object): """Base class for spin operators.""" @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def name(self): return self.args[0] def _print_contents(self, printer, *args): return '%s%s' % (unicode(self.name), self._coord) # def _sympyrepr(self, printer, *args): # return '%s(%s)' % ( # self.__class__.__name__, printer._print(self.label,*args) # def _print_contents_pretty(self, printer, *args): a = stringPict(unicode(self.name)) b = stringPict(self._coord) return self._print_subscript_pretty(a, b) def _print_contents_latex(self, printer, *args): return r'%s_%s' % ((unicode(self.name), self._coord)) def _represent_base(self, basis, **options): j = options.get('j', Rational(1,2)) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) result[p, q] = me return result def _apply_op(self, ket, orig_basis, **options): state = ket.rewrite(self.basis) # If the state has only one term if isinstance(state, State): return self._apply_operator(state, **options) # state is a linear combination of states return qapply(self*state).rewrite(orig_basis) def _apply_operator_JxKet(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_TensorProduct(self, tp, **options): if isinstance(self, J2Op): raise NotImplementedError result = [] for n in range(len(tp.args)): arg = [] arg.extend(tp.args[:n]) arg.append(self._apply_operator(tp.args[n])) arg.extend(tp.args[n+1:]) result.append(tp.__class__(*arg)) return Add(*result).expand() class JplusOp(SpinOpBase, Operator): """The J+ operator.""" _coord = '+' basis = 'Jz' def _eval_commutator_JminusOp(self, other): return 2*hbar*JzOp(self.name) def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j+S.One)-m*(m+S.One))*JzKet(j, m+S.One) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j+S.One)-mp*(mp+S.One)) result *= KroneckerDelta(m, mp+1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args): return JxOp(args[0]) + I*JyOp(args[0]) class JminusOp(SpinOpBase, Operator): """The J- operator.""" _coord = '-' basis = 'Jz' def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j+S.One)-m*(m-S.One))*JzKet(j, m-S.One) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j+S.One)-mp*(mp-S.One)) result *= KroneckerDelta(m, mp-1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args): return JxOp(args[0]) - I*JyOp(args[0]) class JxOp(SpinOpBase, HermitianOperator): """The Jx operator.""" _coord = 'x' basis = 'Jx' def _eval_commutator_JyOp(self, other): return I*hbar*JzOp(self.name) def _eval_commutator_JzOp(self, other): return -I*hbar*JyOp(self.name) def _apply_operator_JxKet(self, ket, **options): return (hbar*ket.m)*ket def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp + jm)/Integer(2) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp + jm)/Integer(2) def _eval_rewrite_as_plusminus(self, *args): return (JplusOp(args[0]) + JminusOp(args[0]))/2 class JyOp(SpinOpBase, HermitianOperator): """The Jy operator.""" _coord = 'y' basis = 'Jy' def _eval_commutator_JzOp(self, other): return I*hbar*JxOp(self.name) def _eval_commutator_JxOp(self, other): return -I*hbar*J2Op(self.name) def _apply_operator_JyKet(self, ket, **options): return (hbar*ket.m)*ket def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp - jm)/(Integer(2)*I) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp - jm)/(Integer(2)*I) def _eval_rewrite_as_plusminus(self, *args): return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I) class JzOp(SpinOpBase, HermitianOperator): """The Jz operator.""" _coord = 'z' basis = 'Jz' def _eval_commutator_JxOp(self, other): return I*hbar*JyOp(self.name) def _eval_commutator_JyOp(self, other): return -I*hbar*JxOp(self.name) def _eval_commutator_JplusOp(self, other): return hbar*JplusOp(self.name) def _eval_commutator_JminusOp(self, other): return -hbar*JminusOp(self.name) def _apply_operator_JzKet(self, ket, **options): return (hbar*ket.m)*ket def matrix_element(self, j, m, jp, mp): result = hbar*mp result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) class J2Op(SpinOpBase, HermitianOperator): """The J^2 operator.""" _coord = '2' def _eval_commutator_JxOp(self, other): return S.Zero def _eval_commutator_JyOp(self, other): return S.Zero def _eval_commutator_JzOp(self, other): return S.Zero def _eval_commutator_JplusOp(self, other): return S.Zero def _eval_commutator_JminusOp(self, other): return S.Zero def _apply_operator_JzKet(self, ket, **options): j = ket.j return hbar**2*j*(j+1)*ket def matrix_element(self, j, m, jp, mp): result = (hbar**2)*j*(j+1) result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _pretty(self, printer, *args): a = stringPict('J') b = stringPict('2') top = stringPict(*b.left(' '*a.width())) bot = stringPict(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.above(top)) def _latex(self, printer, *args): return r'%s^2' % str(self.name) def _eval_rewrite_as_xyz(self, *args): return JxOp(args[0])**2 + JyOp(args[0])**2 + JzOp(args[0])**2 def _eval_rewrite_as_plusminus(self, *args): a = args[0] return JzOp(a)**2 +\ Rational(1,2)*(JplusOp(a)*JminusOp(a) + JminusOp(a)*JplusOp(a)) class Rotation(UnitaryOperator): """Wigner D operator in terms of Euler angles. Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate axes are rotated first about the z-axis, giving the new x'-y'-z' axes. Then this new coordinate system is rotated about the new y'-axis, giving new x''-y''-z'' axes. Then this new coordinate system is rotated about the z''-axis. Conventions follow those laid out in [1]. See the Wigner D-function, Rotation.D, and the Wigner small-d matrix for the evaluation of the rotation operator on spin states. Parameters ========== alpha : Number, Symbol First Euler Angle beta : Number, Symbol Second Euler angle gamma : Number, Symbol Third Euler angle Examples ======== A simple example rotation operator: >>> from sympy import pi >>> from sympy.physics.quantum.spin import Rotation >>> Rotation(pi, 0, pi/2) 'R'(pi,0,pi/2) With symbolic Euler angles and calculating the inverse rotation operator: >>> from sympy import symbols >>> a, b, c = symbols('a b c') >>> Rotation(a, b, c) 'R'(a,b,c) >>> Rotation(a, b, c).inverse() 'R'(-c,-b,-a) References ========== [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ @classmethod def _eval_args(cls, args): args = QExpr._eval_args(args) if len(args) != 3: raise ValueError('3 Euler angles required, got: %r' % args) return args @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def alpha(self): return self.label[0] @property def beta(self): return self.label[1] @property def gamma(self): return self.label[2] def _print_operator_name(self, printer, *args): return printer._print('R', *args) def _print_operator_name_pretty(self, printer, *args): return prettyForm(u"\u211B" + u" ") def _eval_inverse(self): return Rotation(-self.gamma, -self.beta, -self.alpha) @classmethod def D(cls, j, m, mp, alpha, beta, gamma): """Wigner D-function. Returns an instance of the WignerD class. See the corresponding docstring for more information on the Wigner-D matrix. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> alpha, beta, gamma = symbols('alpha beta gamma') >>> Rotation.D(1, 1, 0,pi, pi/2,-pi) WignerD(1, 1, 0, pi, pi/2, -pi) """ return WignerD(j,m,mp,alpha,beta,gamma) @classmethod def d(cls, j, m, mp, beta): """Wigner small-d function. Returns an instance of the WignerD class with the alpha and gamma angles given as 0. See the corresponding docstring for more information on the Wigner small-d matrix. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis beta : Number, Symbol Second Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> beta = symbols('beta') >>> Rotation.d(1, 1, 0, pi/2) WignerD(1, 1, 0, 0, pi/2, 0) """ return WignerD(j,m,mp,0,beta,0) def matrix_element(self, j, m, jp, mp): result = self.__class__.D( jp, m, mp, self.alpha, self.beta, self.gamma ) result *= KroneckerDelta(j,jp) return result def _represent_base(self, basis, **options): j = sympify(options.get('j', Rational(1,2))) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) result[p, q] = me return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) class WignerD(Expr): """Wigner-D function The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles alpha, beta, gamma, the D-function is defined such that: <j,m| R(alpha,beta,gamma) |j',m'> = delta_jj' * D(j, m, m', alpha, beta, gamma) Where the rotation operator is as defined by the Rotation class. The Wigner D-function defined in this way gives: D(j, m, m', alpha, beta, gamma) = exp(-i*m*alpha) * d(j, m, m', beta) * exp(-i*m'*gamma) Where d is the Wigner small-d function, which is given by Rotation.d. The Wigner small-d function gives the component of the Wigner D-function that is determined by the second Euler angle. That is the Wigner D-function is: D(j, m, m', alpha, beta, gamma) = exp(-i*m*alpha) * d(j, m, m', beta) * exp(-i*m'*gamma) Where d is the small-d function. The Wigner D-function is given by Rotation.D. Note that to evaluate the D-function, the j, m and mp parameters must be integer or half integer numbers. Parameters ========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Evaluate the Wigner-D matrix elements of a simple rotation: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi >>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0) >>> rot WignerD(1, 1, 0, pi, pi/2, 0) >>> rot.doit() sqrt(2)/2 Evaluate the Wigner-d matrix elements of a simple rotation >>> rot = Rotation.d(1, 1, 0, pi/2) >>> rot WignerD(1, 1, 0, 0, pi/2, 0) >>> rot.doit() -sqrt(2)/2 References ========== [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ def __new__(cls, *args, **hints): if not len(args) == 6: raise ValueError('6 parameters expected, got %s' % args) evaluate = hints.get('evaluate', False) if evaluate: return Expr.__new__(cls, *args)._eval_wignerd() return Expr.__new__(cls, *args, **{'evaluate': False}) @property def j(self): return self.args[0] @property def m(self): return self.args[1] @property def mp(self): return self.args[2] @property def alpha(self): return self.args[3] @property def beta(self): return self.args[4] @property def gamma(self): return self.args[5] def _latex(self, printer, *args): if self.alpha == 0 and self.gamma == 0: return r'd^{%s}_{%s,%s}\left(%s\right)' % \ ( printer._print(self.j), printer._print(self.m), printer._print(self.mp), printer._print(self.beta) ) return r'D^{%s}_{%s,%s}\left(%s,%s,%s\right)' % \ ( printer._print(self.j), printer._print(self.m), printer._print(self.mp), printer._print(self.alpha), printer._print(self.beta), printer._print(self.gamma) ) def _pretty(self, printer, *args): top = printer._print(self.j) bot = printer._print(self.m) bot = prettyForm(*bot.right(',')) bot = prettyForm(*bot.right(printer._print(self.mp))) pad = max(top.width(), bot.width()) top = prettyForm(*top.left(' ')) bot = prettyForm(*bot.left(' ')) if pad > top.width(): top = prettyForm(*top.right(' ' * (pad-top.width()))) if pad > bot.width(): bot = prettyForm(*bot.right(' ' * (pad-bot.width()))) if self.alpha == 0 and self.gamma == 0: args = printer._print(self.beta) s = stringPict('d' + ' '*pad) else: args = printer._print(self.alpha) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.beta))) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.gamma))) s = stringPict('D' + ' '*pad) args = prettyForm(*args.parens()) s = prettyForm(*s.above(top)) s = prettyForm(*s.below(bot)) s = prettyForm(*s.right(args)) return s def doit(self, **hints): hints['evaluate'] = True return WignerD(*self.args, **hints) def _eval_wignerd(self): j = sympify(self.j) m = sympify(self.m) mp = sympify(self.mp) alpha = sympify(self.alpha) beta = sympify(self.beta) gamma = sympify(self.gamma) if not j.is_number: raise ValueError("j parameter must be numerical to evaluate, got %s", j) r = 0 if beta == pi/2: # Varshalovich Equation (5), Section 4.16, page 113, setting # alpha=gamma=0. for k in range(2*j+1): if k > j+mp or k > j-m or k < mp-m: continue r += (-S(1))**k * binomial(j+mp, k) * binomial(j-mp, k+m-mp) r *= (-S(1))**(m-mp) / 2**j * sqrt(factorial(j+m) * \ factorial(j-m) / (factorial(j+mp) * factorial(j-mp))) else: # Varshalovich Equation(5), Section 4.7.2, page 87, where we set # beta1=beta2=pi/2, and we get alpha=gamma=pi/2 and beta=phi+pi, # then we use the Eq. (1), Section 4.4. page 79, to simplify: # d(j, m, mp, beta+pi) = (-1)**(j-mp) * d(j, m, -mp, beta) # This happens to be almost the same as in Eq.(10), Section 4.16, # except that we need to substitute -mp for mp. size, mvals = m_values(j) for mpp in mvals: r += Rotation.d(j, m, mpp, pi/2).doit() * (cos(-mpp*beta)+I*sin(-mpp*beta)) * \ Rotation.d(j, mpp, -mp, pi/2).doit() # Empirical normalization factor so results match Varshalovich # Tables 4.3-4.12 # Note that this exact normalization does not follow from the # above equations r = r * I**(2*j-m-mp) * (-1)**(2*m) # Finally, simplify the whole expression r = simplify(r) r *= exp(-I*m*alpha)*exp(-I*mp*gamma) return r Jx = JxOp('J') Jy = JyOp('J') Jz = JzOp('J') J2 = J2Op('J') Jplus = JplusOp('J') Jminus = JminusOp('J') #----------------------------------------------------------------------------- # Spin States #----------------------------------------------------------------------------- class SpinState(State): """Base class for angular momentum states.""" _label_separator = ',' def __new__(cls, j, m): if sympify(j).is_number and not 2*j == int(2*j): raise ValueError('j must be integer or half-integer, got %s' % j) if sympify(m).is_number and not 2*m == int(2*m): raise ValueError('m must be integer or half-integer, got %s' % m) if sympify(j).is_number and j < 0: raise ValueError('j must be < 0') if sympify(j).is_number and sympify(m).is_number and abs(m) > j: raise ValueError('Allowed values for m are -j <= m <= j') return State.__new__(cls, j, m) @property def j(self): return self.label[0] @property def m(self): return self.label[1] @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(2*label[0]+1) def _represent_base(self, **options): j = sympify(self.j) m = sympify(self.m) alpha = sympify(options.get('alpha', 0)) beta = sympify(options.get('beta', 0)) gamma = sympify(options.get('gamma', 0)) if self.j.is_number: size, mvals = m_values(j) result = zeros(size, 1) for p in range(size): if m.is_number and alpha.is_number and beta.is_number and gamma.is_number: result[p,0] = Rotation.D(self.j, mvals[p], self.m, alpha, beta, gamma).doit() else: result[p,0] = Rotation.D(self.j, mvals[p], self.m, alpha, beta, gamma) return result else: mi = symbols("mi") result = zeros(1, 1) result[0] = (Rotation.D(self.j, mi, self.m, alpha, beta, gamma), mi) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBra, **options) return self._rewrite_basis(Jx, JxKet, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBra, **options) return self._rewrite_basis(Jy, JyKet, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBra, **options) return self._rewrite_basis(Jz, JzKet, **options) def _rewrite_basis(self, basis, evect, **options): from sympy.physics.quantum.represent import represent j = sympify(self.j) if j.is_number: vect = represent(self, basis=basis, **options) return Add(*[vect[i] * evect(j,j-i) for i in range(2*j+1)]) else: # TODO: better way to get angles of rotation mi = symbols('mi') angles = represent(self.__class__(0,mi),basis=basis)[0].args[3:6] if angles == (0,0,0): return self else: state = evect(j, mi) lt = Rotation.D(j, mi, self.m, *angles) result = lt * state return Sum(lt * state, (mi,-j,j)) def _eval_innerproduct_JxBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if not bra.dual_class() is self.__class__: result *= self._represent_JxOp(None)[bra.j-bra.m] else: result *= KroneckerDelta(self.j, bra.j) * KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JyBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if not bra.dual_class() is self.__class__: result *= self._represent_JyOp(None)[bra.j-bra.m] else: result *= KroneckerDelta(self.j, bra.j) * KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JzBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if not bra.dual_class() is self.__class__: result *= self._represent_JzOp(None)[bra.j-bra.m] else: result *= KroneckerDelta(self.j, bra.j) * KroneckerDelta(self.m, bra.m) return result class JxKet(SpinState, Ket): """Eigenket of Jx. See JzKet for the usage of spin eigenstates. """ @classmethod def dual_class(self): return JxBra @classmethod def coupled_class(self): return JxKetCoupled def _represent_default_basis(self, **options): return self._represent_JxOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=3*pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(beta=pi/2, **options) class JxBra(SpinState, Bra): """Eigenbra of Jx. See JzKet for the usage of spin eigenstates. """ @classmethod def dual_class(self): return JxKet @classmethod def coupled_class(self): return JxBraCoupled class JyKet(SpinState, Ket): """Eigenket of Jy. See JzKet for the usage of spin eigenstates. """ @classmethod def dual_class(self): return JyBra @classmethod def coupled_class(self): return JyKetCoupled def _represent_default_basis(self, **options): return self._represent_JyOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_base(alpha=3*pi/2,beta=-pi/2,gamma=pi/2, **options) class JyBra(SpinState, Bra): """Eigenbra of Jy. See JzKet for the usage of spin eigenstates. """ @classmethod def dual_class(self): return JyKet @classmethod def coupled_class(self): return JyBraCoupled class JzKet(SpinState, Ket): """Eigenket of Jz. Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin states, are defined as a tensor product of states. See uncouple and couple for coupling of states and JzKetCoupled for coupled states. Parameters ========== j : Number, Symbol Total spin angular momentum m : Number, Symbol Eigenvalue of the Jz spin operator Examples ======== Normal States ------------- Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKet, JxKet >>> from sympy import symbols >>> JzKet(1, 0) |1,0> >>> j, m = symbols('j m') >>> JzKet(j, m) |j,m> Rewriting the JzKet in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKet's >>> JzKet(1,1).rewrite("Jx") |1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx, Jz >>> represent(JzKet(1,-1), basis=Jx) [ 1/2] [sqrt(2)/2] [ 1/2] Apply innerproducts between states: >>> from sympy.physics.quantum.innerproduct import InnerProduct >>> from sympy.physics.quantum.spin import JxBra >>> i = InnerProduct(JxBra(1,1), JzKet(1,1)) >>> i <1,1|1,1> >>> i.doit() 1/2 Uncoupled States --------------- Define an uncoupled state as a TensorProduct between two Jz eigenkets: >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> TensorProduct(JzKet(1,0), JzKet(1,1)) |1,0>x|1,1> >>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2)) |j1,m1>x|j2,m2> A TensorProduct can be rewritten, in which case the eigenstates that make up the tensor product is rewritten to the new basis: >>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz') |1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2 The represent method for TensorProduct's gives the vector representation of the state. Note that the state in the product basis is the equivalent of the tensor product of the vector representation of the component eigenstates: >>> represent(TensorProduct(JzKet(1,0),JzKet(1,1))) [0] [0] [0] [1] [0] [0] [0] [0] [0] >>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz) [ 1/2] [sqrt(2)/2] [ 1/2] [ 0] [ 0] [ 0] [ 0] [ 0] [ 0] """ @classmethod def dual_class(self): return JzBra @classmethod def coupled_class(self): return JzKetCoupled def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(beta=3*pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=3*pi/2,beta=pi/2,gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(**options) class JzBra(SpinState, Bra): """Eigenbra of Jz. See the JzKet for the usage of spin eigenstates. """ @classmethod def dual_class(self): return JzKet @classmethod def coupled_class(self): return JzBraCoupled class CoupledSpinState(SpinState): """Base class for coupled angular momentum states.""" def __new__(cls, j, m, *jvals): return State.__new__(cls, j, m, *jvals) @property def jvals(self): return self.label[2:] @classmethod def _eval_hilbert_space(cls, label): j = Add(*label[2:]) if j.is_number: ret = ComplexSpace(2*j+1) while j >= 1: j -= 1 ret += ComplexSpace(2*j+1) return ret else: # TODO # Need hilbert space fix #ji = symbols('ji') #ret = Sum(ComplexSpace(2*ji + 1), (ji, j, 0)) return ComplexSpace(2*j+1) def _represent_coupled_base(self, **options): evect = self.uncoupled_class() result = zeros(self.hilbert_space.dimension, 1) if self.j == int(self.j): start = self.j**2 else: start = (2*self.j-1)*(1+2*self.j)/4 result[start:start+2*self.j+1,0] = evect(self.j, self.m)._represent_base(**options) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBraCoupled, **options) return self._rewrite_basis(Jx, JxKetCoupled, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBraCoupled, **options) return self._rewrite_basis(Jy, JyKetCoupled, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBraCoupled, **options) return self._rewrite_basis(Jz, JzKetCoupled, **options) def _rewrite_basis(self, basis, evect, **options): from sympy.physics.quantum.represent import represent j = sympify(self.j) jvals = self.jvals if j.is_number: if j == int(j): start = j**2 else: start = (2*j-1)*(2*j+1)/4 vect = represent(self, basis=basis, **options) result = Add(*[vect[start+i] * evect(j,j-i,*jvals) for i in range(2*j+1)]) if options.get('coupled') is False: return uncouple(result) return result else: # TODO: better way to get angles of rotation mi = symbols('mi') angles = represent(self.__class__(0,mi),basis=basis)[0].args[3:6] if angles == (0,0,0): return self else: state = evect(j, mi, *jvals) lt = Rotation.D(j, mi, self.m, *angles) result = lt * state return Sum(lt * state, (mi,-j,j)) class JxKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. """ @classmethod def dual_class(self): return JxBraCoupled @classmethod def uncoupled_class(self): return JxKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=3*pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(beta=pi/2, **options) class JxBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. """ @classmethod def dual_class(self): return JxKetCoupled @classmethod def uncoupled_class(self): return JxBra class JyKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. """ @classmethod def dual_class(self): return JyBraCoupled @classmethod def uncoupled_class(self): return JyKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(alpha=3*pi/2,beta=-pi/2,gamma=pi/2, **options) class JyBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. """ @classmethod def dual_class(self): return JyKetCoupled @classmethod def uncoupled_class(self): return JyBra class JzKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jz Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces. See uncouple and couple for coupling of states and JzKetCoupled for coupled states. Parameters ========== j : Number, Symbol Total spin angular momentum m : Number, Symbol Eigenvalue of the Jz spin operator *jvals : tuple The j values of the spaces that are coupled Examples ======== Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKetCoupled >>> from sympy import symbols >>> JzKetCoupled(1, 0, 1, 1) |1,0,1,1> >>> j, m, j1, j2 = symbols('j m j1 j2') >>> JzKetCoupled(j, m, j1, j2) |j,m,j1,j2> Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKetCoupled >>> JzKetCoupled(1,1,1,1).rewrite("Jx") |1,-1,1,1>/2 - sqrt(2)*|1,0,1,1>/2 + |1,1,1,1>/2 The rewrite method can be used to convert a coupled state to an uncoupled state. This is done by passing coupled=False to the rewrite function: >>> JzKetCoupled(1, 0, 1, 1).rewrite('Jz', coupled=False) -sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx >>> from sympy import S >>> represent(JzKetCoupled(1,-1,S(1)/2,S(1)/2), basis=Jx) [ 0] [ 1/2] [sqrt(2)/2] [ 1/2] """ @classmethod def dual_class(self): return JzBraCoupled @classmethod def uncoupled_class(self): return JzKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(beta=3*pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=3*pi/2,beta=pi/2,gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(**options) class JzBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jz. See the JzKetCoupled for the usage of coupled spin eigenstates. """ @classmethod def dual_class(self): return JzKetCoupled @classmethod def uncoupled_class(self): return JzBra
30.735875
172
0.58703
5ba18c4a24c5831a19e3787e9c00b287ec86b5f9
16,247
py
Python
venv/Lib/site-packages/pythonwin/pywin/framework/intpyapp.py
Shuvayan007/Internship_project_heroku
560dcb8f0a4d182c262f72f589d14509d051336c
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/pythonwin/pywin/framework/intpyapp.py
Shuvayan007/Internship_project_heroku
560dcb8f0a4d182c262f72f589d14509d051336c
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/pythonwin/pywin/framework/intpyapp.py
Shuvayan007/Internship_project_heroku
560dcb8f0a4d182c262f72f589d14509d051336c
[ "Apache-2.0" ]
null
null
null
# intpyapp.py - Interactive Python application class # import win32con import win32api import win32ui import __main__ import sys import os from . import app import traceback from pywin.mfc import afxres, dialog import commctrl from . import dbgcommands lastLocateFileName = ".py" # used in the "File/Locate" dialog... # todo - _SetupSharedMenu should be moved to a framework class. def _SetupSharedMenu_(self): sharedMenu = self.GetSharedMenu() from pywin.framework import toolmenu toolmenu.SetToolsMenu(sharedMenu) from pywin.framework import help help.SetHelpMenuOtherHelp(sharedMenu) from pywin.mfc import docview docview.DocTemplate._SetupSharedMenu_=_SetupSharedMenu_ class MainFrame(app.MainFrame): def OnCreate(self, createStruct): self.closing = 0 if app.MainFrame.OnCreate(self, createStruct)==-1: return -1 style = win32con.WS_CHILD | afxres.CBRS_SIZE_DYNAMIC | afxres.CBRS_TOP | afxres.CBRS_TOOLTIPS | afxres.CBRS_FLYBY self.EnableDocking(afxres.CBRS_ALIGN_ANY) tb = win32ui.CreateToolBar (self, style | win32con.WS_VISIBLE) tb.ModifyStyle(0, commctrl.TBSTYLE_FLAT) tb.LoadToolBar(win32ui.IDR_MAINFRAME) tb.EnableDocking(afxres.CBRS_ALIGN_ANY) tb.SetWindowText("Standard") self.DockControlBar(tb) # Any other packages which use toolbars from pywin.debugger.debugger import PrepareControlBars PrepareControlBars(self) # Note "interact" also uses dockable windows, but they already happen # And a "Tools" menu on the main frame. menu = self.GetMenu() from . import toolmenu toolmenu.SetToolsMenu(menu, 2) # And fix the "Help" menu on the main frame from pywin.framework import help help.SetHelpMenuOtherHelp(menu) def OnClose(self): try: import pywin.debugger if pywin.debugger.currentDebugger is not None and pywin.debugger.currentDebugger.pumping: try: pywin.debugger.currentDebugger.close(1) except: traceback.print_exc() return except win32ui.error: pass self.closing = 1 self.SaveBarState("ToolbarDefault") self.SetActiveView(None) # Otherwise MFC's OnClose may _not_ prompt for save. from pywin.framework import help help.FinalizeHelp() self.DestroyControlBar(afxres.AFX_IDW_TOOLBAR) self.DestroyControlBar(win32ui.ID_VIEW_TOOLBAR_DBG) return self._obj_.OnClose() def DestroyControlBar(self, id): try: bar = self.GetControlBar(id) except win32ui.error: return bar.DestroyWindow() def OnCommand(self, wparam, lparam): # By default, the current MDI child frame will process WM_COMMAND # messages before any docked control bars - even if the control bar # has focus. This is a problem for the interactive window when docked. # Therefore, we detect the situation of a view having the main frame # as its parent, and assume it must be a docked view (which it will in an MDI app) try: v = self.GetActiveView() # Raise an exception if none - good - then we want default handling # Main frame _does_ have a current view (ie, a docking view) - see if it wants it. if v.OnCommand(wparam, lparam): return 1 except (win32ui.error, AttributeError): pass return self._obj_.OnCommand(wparam, lparam) class InteractivePythonApp(app.CApp): # This works if necessary - just we dont need to override the Run method. # def Run(self): # return self._obj_.Run() def HookCommands(self): app.CApp.HookCommands(self) dbgcommands.DebuggerCommandHandler().HookCommands() self.HookCommand(self.OnViewBrowse,win32ui.ID_VIEW_BROWSE) self.HookCommand(self.OnFileImport,win32ui.ID_FILE_IMPORT) self.HookCommand(self.OnFileCheck,win32ui.ID_FILE_CHECK) self.HookCommandUpdate(self.OnUpdateFileCheck, win32ui.ID_FILE_CHECK) self.HookCommand(self.OnFileRun,win32ui.ID_FILE_RUN) self.HookCommand(self.OnFileLocate,win32ui.ID_FILE_LOCATE) self.HookCommand(self.OnInteractiveWindow, win32ui.ID_VIEW_INTERACTIVE) self.HookCommandUpdate(self.OnUpdateInteractiveWindow, win32ui.ID_VIEW_INTERACTIVE) self.HookCommand(self.OnViewOptions, win32ui.ID_VIEW_OPTIONS) self.HookCommand(self.OnHelpIndex, afxres.ID_HELP_INDEX) self.HookCommand(self.OnFileSaveAll, win32ui.ID_FILE_SAVE_ALL) self.HookCommand(self.OnViewToolbarDbg, win32ui.ID_VIEW_TOOLBAR_DBG) self.HookCommandUpdate(self.OnUpdateViewToolbarDbg, win32ui.ID_VIEW_TOOLBAR_DBG) def CreateMainFrame(self): return MainFrame() def MakeExistingDDEConnection(self): # Use DDE to connect to an existing instance # Return None if no existing instance try: from . import intpydde except ImportError: # No dde support! return None conv = intpydde.CreateConversation(self.ddeServer) try: conv.ConnectTo("Pythonwin", "System") return conv except intpydde.error: return None def InitDDE(self): # Do all the magic DDE handling. # Returns TRUE if we have pumped the arguments to our # remote DDE app, and we should terminate. try: from . import intpydde except ImportError: self.ddeServer = None intpydde = None if intpydde is not None: self.ddeServer = intpydde.DDEServer(self) self.ddeServer.Create("Pythonwin", intpydde.CBF_FAIL_SELFCONNECTIONS ) try: # If there is an existing instance, pump the arguments to it. connection = self.MakeExistingDDEConnection() if connection is not None: connection.Exec("self.Activate()") if self.ProcessArgs(sys.argv, connection) is None: return 1 except: # It is too early to 'print' an exception - we # don't have stdout setup yet! win32ui.DisplayTraceback(sys.exc_info(), " - error in DDE conversation with Pythonwin") return 1 def InitInstance(self): # Allow "/nodde" and "/new" to optimize this! if ("/nodde" not in sys.argv and "/new" not in sys.argv and "-nodde" not in sys.argv and "-new" not in sys.argv): if self.InitDDE(): return 1 # A remote DDE client is doing it for us! else: self.ddeServer = None win32ui.SetRegistryKey("Python %s" % (sys.winver,)) # MFC automatically puts the main frame caption on! app.CApp.InitInstance(self) # Create the taskbar icon win32ui.CreateDebuggerThread() # Allow Pythonwin to host OCX controls. win32ui.EnableControlContainer() # Display the interactive window if the user wants it. from . import interact interact.CreateInteractiveWindowUserPreference() # Load the modules we use internally. self.LoadSystemModules() # Load additional module the user may want. self.LoadUserModules() # Load the ToolBar state near the end of the init process, as # there may be Toolbar IDs created by the user or other modules. # By now all these modules should be loaded, so all the toolbar IDs loaded. try: self.frame.LoadBarState("ToolbarDefault") except win32ui.error: # MFC sucks. It does essentially "GetDlgItem(x)->Something", so if the # toolbar with ID x does not exist, MFC crashes! Pythonwin has a trap for this # but I need to investigate more how to prevent it (AFAIK, ensuring all the # toolbars are created by now _should_ stop it!) pass # Finally process the command line arguments. try: self.ProcessArgs(sys.argv) except: # too early for printing anything. win32ui.DisplayTraceback(sys.exc_info(), " - error processing command line args") def ExitInstance(self): win32ui.DestroyDebuggerThread() try: from . import interact interact.DestroyInteractiveWindow() except: pass if self.ddeServer is not None: self.ddeServer.Shutdown() self.ddeServer = None return app.CApp.ExitInstance(self) def Activate(self): # Bring to the foreground. Mainly used when another app starts up, it asks # this one to activate itself, then it terminates. frame = win32ui.GetMainFrame() frame.SetForegroundWindow() if frame.GetWindowPlacement()[1]==win32con.SW_SHOWMINIMIZED: frame.ShowWindow(win32con.SW_RESTORE) def ProcessArgs(self, args, dde = None): # If we are going to talk to a remote app via DDE, then # activate it! if len(args)<1 or not args[0]: # argv[0]=='' when started without args, just like Python.exe! return i = 0 while i < len(args): argType = args[i] i += 1 if argType.startswith('-'): # Support dash options. Slash options are misinterpreted by python init # as path and not finding usually 'C:\\' ends up in sys.path[0] argType = '/' + argType[1:] if not argType.startswith('/'): argType = win32ui.GetProfileVal("Python","Default Arg Type","/edit").lower() i -= 1 # arg is /edit's parameter par = i < len(args) and args[i] or 'MISSING' if argType in ['/nodde', '/new', '-nodde', '-new']: # Already handled pass elif argType.startswith('/goto:'): gotoline = int(argType[len('/goto:'):]) if dde: dde.Exec("from pywin.framework import scriptutils\n" "ed = scriptutils.GetActiveEditControl()\n" "if ed: ed.SetSel(ed.LineIndex(%s - 1))" % gotoline) else: from . import scriptutils ed = scriptutils.GetActiveEditControl() if ed: ed.SetSel(ed.LineIndex(gotoline - 1)) elif argType == "/edit": # Load up the default application. i += 1 fname = win32api.GetFullPathName(par) if not os.path.isfile(fname): # if we don't catch this, OpenDocumentFile() (actually # PyCDocument.SetPathName() in # pywin.scintilla.document.CScintillaDocument.OnOpenDocument) # segfaults Pythonwin on recent PY3 builds (b228) win32ui.MessageBox( "No such file: %s\n\nCommand Line: %s" % ( fname, win32api.GetCommandLine()), "Open file for edit", win32con.MB_ICONERROR) continue if dde: dde.Exec("win32ui.GetApp().OpenDocumentFile(%s)" % (repr(fname))) else: win32ui.GetApp().OpenDocumentFile(par) elif argType=="/rundlg": if dde: dde.Exec("from pywin.framework import scriptutils;scriptutils.RunScript(%r, %r, 1)" % (par, ' '.join(args[i + 1:]))) else: from . import scriptutils scriptutils.RunScript(par, ' '.join(args[i + 1:])) return elif argType=="/run": if dde: dde.Exec("from pywin.framework import scriptutils;scriptutils.RunScript(%r, %r, 0)" % (par, ' '.join(args[i + 1:]))) else: from . import scriptutils scriptutils.RunScript(par, ' '.join(args[i + 1:]), 0) return elif argType=="/app": raise RuntimeError("/app only supported for new instances of Pythonwin.exe") elif argType=='/dde': # Send arbitary command if dde is not None: dde.Exec(par) else: win32ui.MessageBox("The /dde command can only be used\r\nwhen Pythonwin is already running") i += 1 else: raise ValueError("Command line argument not recognised: %s" % argType) def LoadSystemModules(self): self.DoLoadModules("pywin.framework.editor,pywin.framework.stdin") def LoadUserModules(self, moduleNames = None): # Load the users modules. if moduleNames is None: default = "pywin.framework.sgrepmdi,pywin.framework.mdi_pychecker" moduleNames=win32ui.GetProfileVal('Python','Startup Modules',default) self.DoLoadModules(moduleNames) def DoLoadModules(self, moduleNames): # ", sep string of module names. if not moduleNames: return modules = moduleNames.split(",") for module in modules: try: __import__(module) except: # Catch em all, else the app itself dies! 'ImportError: traceback.print_exc() msg = 'Startup import of user module "%s" failed' % module print(msg) win32ui.MessageBox(msg) # # DDE Callback # def OnDDECommand(self, command): try: exec(command + "\n") except: print("ERROR executing DDE command: ", command) traceback.print_exc() raise # # General handlers # def OnViewBrowse( self, id, code ): " Called when ViewBrowse message is received " from pywin.tools import browser obName = dialog.GetSimpleInput('Object', '__builtins__', 'Browse Python Object') if obName is None: return try: browser.Browse(eval(obName, __main__.__dict__, __main__.__dict__)) except NameError: win32ui.MessageBox('This is no object with this name') except AttributeError: win32ui.MessageBox('The object has no attribute of that name') except: traceback.print_exc() win32ui.MessageBox('This object can not be browsed') def OnFileImport( self, id, code ): " Called when a FileImport message is received. Import the current or specified file" from . import scriptutils scriptutils.ImportFile() def OnFileCheck( self, id, code ): " Called when a FileCheck message is received. Check the current file." from . import scriptutils scriptutils.CheckFile() def OnUpdateFileCheck(self, cmdui): from . import scriptutils cmdui.Enable( scriptutils.GetActiveFileName(0) is not None ) def OnFileRun( self, id, code ): " Called when a FileRun message is received. " from . import scriptutils showDlg = win32api.GetKeyState(win32con.VK_SHIFT) >= 0 scriptutils.RunScript(None, None, showDlg) def OnFileLocate( self, id, code ): from . import scriptutils global lastLocateFileName # save the new version away for next time... name = dialog.GetSimpleInput('File name', lastLocateFileName, 'Locate Python File') if name is None: # Cancelled. return lastLocateFileName = name # if ".py" supplied, rip it off! # should also check for .pys and .pyw if lastLocateFileName[-3:].lower()=='.py': lastLocateFileName = lastLocateFileName[:-3] lastLocateFileName = lastLocateFileName.replace(".","\\") newName = scriptutils.LocatePythonFile(lastLocateFileName) if newName is None: win32ui.MessageBox("The file '%s' can not be located" % lastLocateFileName) else: win32ui.GetApp().OpenDocumentFile(newName) # Display all the "options" proprety pages we can find def OnViewOptions(self, id, code): win32ui.InitRichEdit() sheet = dialog.PropertySheet("Pythonwin Options") # Add property pages we know about that need manual work. from pywin.dialogs import ideoptions sheet.AddPage( ideoptions.OptionsPropPage() ) from . import toolmenu sheet.AddPage( toolmenu.ToolMenuPropPage() ) # Get other dynamic pages from templates. pages = [] for template in self.GetDocTemplateList(): try: # Dont actually call the function with the exception handler. getter = template.GetPythonPropertyPages except AttributeError: # Template does not provide property pages! continue pages = pages + getter() # Debugger template goes at the end try: from pywin.debugger import configui except ImportError: configui = None if configui is not None: pages.append(configui.DebuggerOptionsPropPage()) # Now simply add the pages, and display the dialog. for page in pages: sheet.AddPage(page) if sheet.DoModal()==win32con.IDOK: win32ui.SetStatusText("Applying configuration changes...", 1) win32ui.DoWaitCursor(1) # Tell every Window in our app that win.ini has changed! win32ui.GetMainFrame().SendMessageToDescendants(win32con.WM_WININICHANGE, 0, 0) win32ui.DoWaitCursor(0) def OnInteractiveWindow(self, id, code): # toggle the existing state. from . import interact interact.ToggleInteractiveWindow() def OnUpdateInteractiveWindow(self, cmdui): try: interact=sys.modules['pywin.framework.interact'] state = interact.IsInteractiveWindowVisible() except KeyError: # Interactive module hasnt ever been imported. state = 0 cmdui.Enable() cmdui.SetCheck(state) def OnFileSaveAll(self, id, code): # Only attempt to save editor documents. from pywin.framework.editor import editorTemplate num = 0 for doc in editorTemplate.GetDocumentList(): if doc.IsModified() and doc.GetPathName(): num = num = 1 doc.OnSaveDocument(doc.GetPathName()) win32ui.SetStatusText("%d documents saved" % num, 1) def OnViewToolbarDbg(self, id, code): if code==0: return not win32ui.GetMainFrame().OnBarCheck(id) def OnUpdateViewToolbarDbg(self, cmdui): win32ui.GetMainFrame().OnUpdateControlBarMenu(cmdui) cmdui.Enable(1) def OnHelpIndex( self, id, code ): from . import help help.SelectAndRunHelpFile() # As per the comments in Algorithm Dashboard V-1.0.py, this use is depreciated. # app.AppBuilder = InteractivePythonApp # Now all we do is create the application thisApp = InteractivePythonApp()
33.98954
121
0.726473
6ed594b24e803d51e180f05d79f2395343dec30a
1,816
py
Python
modules/GeneralOptions.py
MuriloChianfa/SimpleChess
02619320f03a6d5bd30623f73056d8714276043e
[ "MIT" ]
2
2020-03-15T03:05:21.000Z
2020-03-18T17:24:56.000Z
modules/GeneralOptions.py
MuriloChianfa/SimpleTrueTable
02619320f03a6d5bd30623f73056d8714276043e
[ "MIT" ]
null
null
null
modules/GeneralOptions.py
MuriloChianfa/SimpleTrueTable
02619320f03a6d5bd30623f73056d8714276043e
[ "MIT" ]
null
null
null
from engine.GUI import * EnabledGeneralOptions = False class GeneralOptions: def __init__(self, root): self.GeneralOptions = GUI('GeneralOptions', 'Module: General Options') self.GeneralOptions.DefaultWindow('DefaultWindow') def SetGeneralOptions(): global EnabledGeneralOptions if not EnabledGeneralOptions: EnabledGeneralOptions = True ButtonEnabled.configure(text='GeneralOptions: ON') ScanGeneralOptions() else: EnabledGeneralOptions = False ButtonEnabled.configure(text='GeneralOptions: OFF') def ScanGeneralOptions(): if EnabledGeneralOptions: print("Try Lock GeneralOptions") print("Try This") root.after(300, ScanGeneralOptions) CheckPrint = tk.BooleanVar() LowMana = tk.BooleanVar() self.GeneralOptions.addButton('Ok', self.GeneralOptions.destroyWindow, [84, 29, 130, 504], [127, 17, 8], [123, 13, 5]) global EnabledGeneralOptions if not EnabledGeneralOptions: ButtonEnabled = self.GeneralOptions.addButton('GeneralOptions: OFF', SetGeneralOptions, [328, 29, 12, 469], [127, 17, 8], [123, 13, 5]) else: ButtonEnabled = self.GeneralOptions.addButton('GeneralOptions: ON', SetGeneralOptions, [328, 29, 12, 469], [127, 17, 8], [123, 13, 5]) ButtonPrint = self.GeneralOptions.addCheck(CheckPrint, [10, 408], [120, 98, 51], 0, "Print on Tibia's screen") ButtonLowMana = self.GeneralOptions.addCheck(LowMana, [10, 440], [120, 98, 51], 0, "Low Mana Warnings") self.GeneralOptions.loop()
38.638298
126
0.589758
a9356f5f99dd98251d06ac10b83874aec2020932
1,183
py
Python
RecoJets/JetProducers/python/PFClusterJetParameters_cfi.py
gputtley/cmssw
c1ef8454804e4ebea8b65f59c4a952a6c94fde3b
[ "Apache-2.0" ]
3
2018-08-24T19:10:26.000Z
2019-02-19T11:45:32.000Z
RecoJets/JetProducers/python/PFClusterJetParameters_cfi.py
gputtley/cmssw
c1ef8454804e4ebea8b65f59c4a952a6c94fde3b
[ "Apache-2.0" ]
8
2020-03-20T23:18:36.000Z
2020-05-27T11:00:06.000Z
RecoJets/JetProducers/python/PFClusterJetParameters_cfi.py
gputtley/cmssw
c1ef8454804e4ebea8b65f59c4a952a6c94fde3b
[ "Apache-2.0" ]
5
2018-08-21T16:37:52.000Z
2020-01-09T13:33:17.000Z
import FWCore.ParameterSet.Config as cms PFClusterJetParameters = cms.PSet( src = cms.InputTag('pfClusterRefsForJets'), srcPVs = cms.InputTag('offlinePrimaryVertices'), jetType = cms.string('PFClusterJet'), # minimum jet pt jetPtMin = cms.double(3.0), # minimum calo tower input et inputEtMin = cms.double(0.3), # minimum calo tower input energy inputEMin = cms.double(0.0), # primary vertex correction doPVCorrection = cms.bool(True), # pileup with offset correction doPUOffsetCorr = cms.bool(False), # if pileup is false, these are not read: nSigmaPU = cms.double(1.0), radiusPU = cms.double(0.5), # fastjet-style pileup doAreaFastjet = cms.bool( False), doRhoFastjet = cms.bool( False), doAreaDiskApprox = cms.bool( False), Active_Area_Repeats = cms.int32( 1), GhostArea = cms.double(0.01), Ghost_EtaMax = cms.double( 5.0), Rho_EtaMax = cms.double( 4.4), voronoiRfact = cms.double(-0.9), useDeterministicSeed= cms.bool( True ), minSeed = cms.uint32( 14327 ) )
35.848485
60
0.606932
29c6458926f960d14ff3ab02ccd8cdaeab7167b2
2,782
py
Python
control.py
gwisk/Control
beafebcdcb7b5131d1eef2ef022d11196486e26a
[ "MIT" ]
null
null
null
control.py
gwisk/Control
beafebcdcb7b5131d1eef2ef022d11196486e26a
[ "MIT" ]
null
null
null
control.py
gwisk/Control
beafebcdcb7b5131d1eef2ef022d11196486e26a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from time import sleep import board import busio import adafruit_ads1x15.ads1115 as ADS from adafruit_ads1x15.analog_in import AnalogIn import sys import random import cloud4rpi import ds18b20 import rpi i2c = busio.I2C(board.SCL, board.SDA) ads=ADS.ADS1115(i2c) efficacy = 21.856 area = 3.2*(10**-6) chan1=AnalogIn(ads, ADS.P0) chan2=AnalogIn(ads, ADS.P1) def sensor1(): voltage = chan1.voltage logLux = voltage * 5.0/3.0 lux = pow(10, logLux) return lux def senso2(): voltage = chan2.voltage logLux = voltage* 5.0/3.0 lux =pow(10, logLux) return lux # Put your device token here. To get the token, # sign up at https://cloud4rpi.io and create a device. DEVICE_TOKEN = 'AQ9zBj6KjdR2b761douGif4Ns' # Constants LED_PIN = 12 DATA_SENDING_INTERVAL = 30 # secs DIAG_SENDING_INTERVAL = 60 # secs POLL_INTERVAL = 0.5 # 500 ms def listen_for_events(): # Write your own logic here result = random.randint(1, 5) if result == 1: return 'RING' if result == 5: return 'BOOM!' return 'IDLE' def main(): # Put variable declarations here # Available types: 'bool', 'numeric', 'string' variables = { 'STATUS': { 'type': 'string', 'bind': listen_for_events }, 'SENSOR1': { 'type': 'numeric', 'bind': sensor1 } } diagnostics = { 'CPU Temp': rpi.cpu_temp, 'IP Address': rpi.ip_address, 'Host': rpi.host_name, 'Operating System': rpi.os_name } device = cloud4rpi.connect(DEVICE_TOKEN) # Use the following 'device' declaration # to enable the MQTT traffic encryption (TLS). # # tls = { # 'ca_certs': '/etc/ssl/certs/ca-certificates.crt' # } # device = cloud4rpi.connect(DEVICE_TOKEN, tls_config=tls) try: device.declare(variables) device.declare_diag(diagnostics) device.publish_config() # Adds a 1 second delay to ensure device variables are created sleep(1) data_timer = 0 diag_timer = 0 while True: if data_timer <= 0: device.publish_data() data_timer = DATA_SENDING_INTERVAL if diag_timer <= 0: device.publish_diag() diag_timer = DIAG_SENDING_INTERVAL sleep(POLL_INTERVAL) diag_timer -= POLL_INTERVAL data_timer -= POLL_INTERVAL except KeyboardInterrupt: cloud4rpi.log.info('Keyboard interrupt received. Stopping...') except Exception as e: error = cloud4rpi.get_error_message(e) cloud4rpi.log.exception("ERROR! %s %s", error, sys.exc_info()[0]) finally: sys.exit(0) if __name__ == '__main__': main()
22.079365
73
0.616822
b03ce5fa2f3ce6c2850a099120a1de44e48dc4ae
18,733
py
Python
src/test/tinc/tincrepo/mpp/gpdb/tests/utilities/recoverseg/gprecoverseg_tests/fault/fault.py
lintzc/GPDB
b48c8b97da18f495c10065d0853db87960aebae2
[ "PostgreSQL", "Apache-2.0" ]
1
2017-09-15T06:09:56.000Z
2017-09-15T06:09:56.000Z
src/test/tinc/tincrepo/mpp/gpdb/tests/utilities/recoverseg/gprecoverseg_tests/fault/fault.py
guofengrichard/gpdb
29bdd6ef38d8d9b9cb04ca31d44e279eb9f640d3
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
src/test/tinc/tincrepo/mpp/gpdb/tests/utilities/recoverseg/gprecoverseg_tests/fault/fault.py
guofengrichard/gpdb
29bdd6ef38d8d9b9cb04ca31d44e279eb9f640d3
[ "PostgreSQL", "Apache-2.0" ]
1
2018-12-04T09:13:57.000Z
2018-12-04T09:13:57.000Z
""" Copyright (C) 2004-2015 Pivotal Software, Inc. All rights reserved. This program and the accompanying materials are made available under the terms of the under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import tinctest import os from gppylib.commands.base import Command, REMOTE from mpp.lib.config import GPDBConfig from mpp.lib.PSQL import PSQL from time import sleep from tinctest import TINCTestCase from mpp.gpdb.tests.utilities.recoverseg.gprecoverseg_tests.fault.genFault import Fault from mpp.lib.config import GPDBConfig from mpp.lib.gprecoverseg import GpRecoverseg from utilities.gppersistentrebuild import PTTestCase # Environmental variable to be set priror to the gprecoverseg run. ENV_VAR="GP_MPP_12038_INJECT_DELAY" class FaultInjectorTestCase (TINCTestCase): """ @description Injects the specific faults in Primary or Mirror @created 2009-01-27 14:00:00 @modified 2013-09-12 17:10:15 @tags storage schema_topology @product_version gpdb:4.2.x,gpdb:main """ def test_kill_primary(self): """ [feature]: Kills primary gp0 segment """ newfault = Fault() hosts = newfault.get_segment_host(preferred_role='p',content=0) if not newfault.kill_primary_gp0(hosts): self.fail("Could not the kill the primary process, cannot proceed further!") rtrycnt = 0 while( not newfault.is_changetracking()): tinctest.logger.info("Waiting [%s] for DB to go into CT mode" %rtrycnt) rtrycnt = rtrycnt + 1 def test_kill_mirror(self): """ [feature]: Kills mirror gp0 segment """ newfault = Fault() hosts = newfault.get_segment_host(preferred_role='m',content=0) if not newfault.kill_mirror_gp0(hosts): self.fail("Could not the kill the mirror process, cannot proceed further!") rtrycnt = 0 while( not newfault.is_changetracking()): tinctest.logger.info("Waiting [%s] for DB to go in CT mode" %rtrycnt) rtrycnt = rtrycnt + 1 def test_kill_primary_group(self): """ [feature]: Kill a group of primary segments """ newfault = Fault() seglist = newfault.get_seginfo_for_primaries() seglist = seglist[:(len(seglist) + 1 ) / 2] for seg in seglist: tinctest.logger.info('Killing segment %s' % seg.getSegmentDataDirectory()) newfault.kill_primary(seg.getSegmentHostName(), seg.getSegmentDataDirectory(), seg.getSegmentPort()) rtrycnt = 0 while (not newfault.is_changetracking()): tinctest.logger.info('Waiting [%s] for DB to go in CT mode' % rtrycnt) rtrycnt += 1 def test_drop_pg_dirs_on_primary(self): """ [feature]: Drops primary gp0 folder """ newfault = Fault() (host, fileLoc) = newfault.get_segment_host_fileLoc() newfault.drop_pg_dirs_on_primary(host, fileLoc) rtrycnt = 0 max_rtrycnt = 300 while( not newfault.is_changetracking()): tinctest.logger.info("Waiting [%s] for DB to go into CT mode" %rtrycnt) rtrycnt = rtrycnt + 1 def test_use_gpfaultinjector_to_mark_segment_down(self): """ [feature]: Use gpfaultinjector to mark a segment down in the configuration, but the process is still running on the segment. """ newfault = Fault() seginfo = newfault.get_seginfo(preferred_role='m', content=1) newfault.inject_using_gpfaultinjector(fault_name='filerep_consumer', fault_mode='async', fault_type='fault', segdbid=seginfo.getSegmentDbId()) rtrycnt = 0 while (not newfault.is_changetracking()): tinctest.logger.info("Waiting [%s] for DB to go into CT mode" % rtrycnt) rtrycnt += 1 def test_create_symlink_for_seg(self): """ [feature]: Creates a symlink to the data directory for a given segment """ newfault = Fault() seginfo = newfault.get_seginfo(preferred_role='m', content=1) newfault.create_remote_symlink(seginfo.getSegmentHostName(), seginfo.getSegmentDataDirectory()) tinctest.logger.info('Creating symlink for seg %s on host %s' % (seginfo.getSegmentDataDirectory(), seginfo.getSegmentHostName())) def test_remove_symlink_for_seg(self): """ [feature]: Remove symlink for datadirectory and restore the orignal directory for a given segment. """ newfault = Fault() seginfo = newfault.get_seginfo(preferred_role='m', content=1) newfault.remove_remote_symlink(seginfo.getSegmentHostName(), seginfo.getSegmentDataDirectory()) tinctest.logger.info('Removed symlinks for seg %s on host %s' % (seginfo.getSegmentDataDirectory(), seginfo.getSegmentHostName())) def test_corrupt_persistent_tables(self): """ [feature]: corrupts PT tables for segment that has been marked down """ newfault = Fault() seginfo = newfault.get_seginfo(preferred_role='p', content=1) pt = PTTestCase('corrupt_persistent_table') pt.corrupt_persistent_table(seginfo.getSegmentHostName(), seginfo.getSegmentPort()) tinctest.logger.info('Finished corruption of PT tables') def test_rebuild_persistent_tables(self): """ [feature]: rebuilds PT tables for segment that has been marked down """ cmd = Command(name='Running gppersistentrebuild tool', cmdStr = 'echo "y\ny\n" | $GPHOME/sbin/gppersistentrebuild -c 1') cmd.run(validateAfter=True) tinctest.logger.info('Finished rebuild of PT tables') def test_shared_mem_is_cleaned(self): """ [feature]: Check if the shared memory is cleaned """ newfault = Fault() seginfo = newfault.get_seginfo(preferred_role='p',content=0) cmd = Command('check for shared memory', cmdStr="ipcs -a", ctxt=REMOTE, remoteHost=seginfo.getSegmentHostName()) cmd.run(validateAfter=True) result = cmd.get_results().stdout.split('\n') for r in result: if r and r.split()[-1] == '0': raise Exception('Shared memory not cleaned up for %s' % r) def test_wait_till_segments_in_change_tracking(self): """ [feature]: Wait until segments for into change tracking """ newfault = Fault() rtrycnt = 0 while( not newfault.is_changetracking()): tinctest.logger.info("Waiting [%s] for DB to go in CT mode" %rtrycnt) rtrycnt = rtrycnt + 1 class GprecoversegClass(TINCTestCase): """ @description Performs different types of Recovery process. @created 2009-01-27 14:00:00 @modified 2013-09-12 17:10:15 @tags storage schema_topology @product_version gpdb:4.2.x,gpdb:main """ def test_recovery_with_new_loc(self): """ [feature]: Performs recovery by creating a configuration file with new segment locations """ newfault = Fault() config = GPDBConfig() hosts = newfault.get_segment_host() newfault.create_new_loc_config(hosts, orig_filename='recovery.conf', new_filename='recovery_new.conf') if not newfault.run_recovery_with_config(filename='recovery_new.conf'): self.fail("*** Incremental recovery with config file recovery_new.conf failed") rtrycnt = 0 while (not config.is_not_insync_segments()): tinctest.logger.info("Waiting [%s] for DB to recover" %rtrycnt) rtrycnt = rtrycnt + 1 def test_do_incremental_recovery(self): """ [feature]: Performs Incremental Recovery """ config = GPDBConfig() recoverseg = GpRecoverseg() tinctest.logger.info('Running Incremental gprecoverseg...') recoverseg.run() rtrycnt = 0 while (not config.is_not_insync_segments()): tinctest.logger.info("Waiting [%s] for DB to recover" %rtrycnt) rtrycnt = rtrycnt + 1 def test_do_full_recovery(self): """ [feature]: Performs Full Recovery """ config = GPDBConfig() recoverseg = GpRecoverseg() tinctest.logger.info('Running Full gprecoverseg...') recoverseg.run(option = '-F') rtrycnt = 0 while (not config.is_not_insync_segments()): tinctest.logger.info("Waiting [%s] for DB to recover" %rtrycnt) rtrycnt = rtrycnt + 1 def test_invalid_state_recoverseg(self): """ [feature]: Sets the ENV_VAR and runs the incremental recoverseg """ ''' ''' # setting the ENV_VAR os.environ[ENV_VAR] = '1' recoverseg = GpRecoverseg() config = GPDBConfig() tinctest.logger.info('Running Incremental gprecoverseg...') recoverseg.run() rtrycnt = 0 while (not config.is_not_insync_segments()): tinctest.logger.info("Waiting [%s] for DB to recover" %rtrycnt) rtrycnt = rtrycnt + 1 def test_incremental_recovery_skip_persistent_tables_check(self): """ [feature]: Run incremental recoverseg with persistent tables check option """ config = GPDBConfig() recoverseg = GpRecoverseg() tinctest.logger.info('Running gprecoverseg...') recoverseg.run() self.assertNotIn('Performing persistent table check', recoverseg.stdout) rtrycnt = 0 while (not config.is_not_insync_segments()): tinctest.logger.info("Waiting [%s] for DB to recover" %rtrycnt) rtrycnt = rtrycnt + 1 def test_full_recovery_skip_persistent_tables_check(self): """ [feature]: Run recoverseg with persistent tables check option """ config = GPDBConfig() recoverseg = GpRecoverseg() tinctest.logger.info('Running gprecoverseg...') recoverseg.run(option='-F') self.assertNotIn('Performing persistent table check', recoverseg.stdout) rtrycnt = 0 while (not config.is_not_insync_segments()): tinctest.logger.info("Waiting [%s] for DB to recover" %rtrycnt) rtrycnt = rtrycnt + 1 def test_incremental_recovery_with_persistent_tables_corruption(self): """ [feature]: Run incremental recoverseg with persistent tables corruption """ recoverseg = GpRecoverseg() tinctest.logger.info('Running gprecoverseg...') try: recoverseg.run(option='--persistent-check', validate=False) except Exception as e: tinctest.logger.info('Encountered exception while running incremental recovery with corrupt persistent table') self.assertIn('Performing persistent table check', recoverseg.stdout) def test_full_recovery_with_persistent_tables_corruption(self): """ [feature]: Run recoverseg with persistent tables corruption """ recoverseg = GpRecoverseg() tinctest.logger.info('Running gprecoverseg...') try: recoverseg.run(option='-F --persistent-check', validate=False) except Exception as e: tinctest.logger.info('Encountered exception while running full recovery with corrupt persistent table') self.assertIn('Performing persistent table check', recoverseg.stdout) class GPDBdbOps(TINCTestCase): """ @description GPDB admin operations @created 2009-01-27 14:00:00 @modified 2013-09-12 17:10:15 @tags storage schema_topology @product_version gpdb:4.2.x,gpdb:main """ @classmethod def setUpClass(cls): super(GPDBdbOps,cls).setUpClass() tinctest.logger.info('GPDB Operations') def gprestartdb(self): ''' Restarts the Database ''' newfault = Fault() newfault.stop_db() newfault.start_db() sleep(30) def check_if_not_in_preferred_role(self): ''' Checks if the segments are in preferred role or not ''' newfault = Fault() result = newfault.check_if_not_in_preferred_role() if result == True: self.fail("Segments are not in preferred roles!!!") class SegmentConfigurations(TINCTestCase): """ @description Checks the segment's configuration for any invalid states @created 2009-01-27 14:00:00 @modified 2013-09-12 17:10:15 @tags storage schema_topology @product_version gpdb:4.2.x,gpdb:main """ @classmethod def setUpClass(cls): super(SegmentConfigurations,cls).setUpClass() tinctest.logger.info('Running all the invalid state tests...') # Sleep introduced so that the gprecoverseg starts before the invalid state tests tinctest.logger.info('Sleep introduced for 15 secs...') sleep(15) def test_if_primary_down(self): """ [feature]: Check for invalid state - Primary is marked down """ sql_stmt = "SELECT 'down_segment' FROM gp_segment_configuration " \ "WHERE role = 'p' " \ "AND status = 'd'" out = PSQL.run_sql_command(sql_stmt) if len(out) == 0: error_msg = 'Could not connect to the sever!!' tinctest.logger.error(error_msg) self.fail(error_msg) out = out.count('down_segment') - 1 if out == 0: tinctest.logger.info('Primary is marked down => 0 rows') else: error_msg = "%s down segments found" %out tinctest.logger.info(error_msg) self.fail(error_msg) def test_if_mirror_down_and_primary_in_CT(self): """ [feature]: Check for invalid state - Mirror is down but primary is not in change tracking """ sql_stmt = "SELECT p.content, p.dbid AS p_dbid, m.dbid AS m_dbid, " \ "p.role AS p_role, m.role AS m_role, " \ "p.preferred_role AS p_pref_role, m.preferred_role AS m_pref_role, " \ "p.address AS p_address, m.address AS m_address, " \ "p.status AS p_status, m.status AS m_status, " \ "p.mode AS p_mode, m.mode AS m_mode " \ "FROM gp_segment_configuration p, gp_segment_configuration m " \ "WHERE ( (p.content = m.content) AND (p.dbid <> m.dbid) ) " \ "AND p.status = 'u' and m.status = 'd' " \ "AND p.mode <> 'c'" out = PSQL.run_sql_command(sql_stmt) if len(out) == 0: error_msg = 'Could not connect to the sever!!' tinctest.logger.error(error_msg) self.fail(error_msg) out = out.split('\n')[3].find('0 rows') if out > 0: tinctest.logger.info('Mirror is down but primary is not in change tracking => 0 rows') else: error_msg = "%s down segments found" %out tinctest.logger.info(error_msg) self.fail(error_msg) def test_if_primary_in_CT_but_mirror_not_down(self): """ [feature]: Check for invalid state - Primary is in change tracking but mirror is not down """ sql_stmt = "SELECT p.content, p.dbid AS p_dbid, m.dbid AS m_dbid, " \ "p.role AS p_role, m.role AS m_role, " \ "p.preferred_role AS p_pref_role, m.preferred_role AS m_pref_role, " \ "p.address AS p_address, m.address AS m_address, " \ "p.status AS p_status, m.status AS m_status, " \ "p.mode AS p_mode, m.mode AS m_mode " \ "FROM gp_segment_configuration p, gp_segment_configuration m " \ "WHERE ( (p.content = m.content) AND (p.dbid <> m.dbid) ) " \ "AND p.status = 'u' and p.mode = 'c' " \ "AND m.status <> 'd'" out = PSQL.run_sql_command(sql_stmt) if len(out) == 0: error_msg = 'Could not connect to the sever!!' tinctest.logger.error(error_msg) self.fail(error_msg) out = out.split('\n')[3].find('0 rows') if out > 0: tinctest.logger.info('Primary is in change tracking but mirror is not down => 0 rows') else: error_msg = "%s down segments found" %out tinctest.logger.info(error_msg) self.fail(error_msg) def test_if_primary_up_resync_and_mirror_down_not_in_resync(self): """ [feature]: Check for invalid state - Primary is Up/In resync, Mirror is not in resync or is marked down """ sql_stmt = "SELECT p.content, p.dbid AS p_dbid, m.dbid AS m_dbid, " \ "p.role AS p_role, m.role AS m_role, " \ "p.preferred_role AS p_pref_role, m.preferred_role AS m_pref_role, " \ "p.address AS p_address, m.address AS m_address, " \ "p.status AS p_status, m.status AS m_status, " \ "p.mode AS p_mode, m.mode AS m_mode " \ "FROM gp_segment_configuration p, gp_segment_configuration m " \ "WHERE ( (p.content = m.content) AND (p.dbid <> m.dbid) ) " \ "AND p.status = 'u' and p.mode = 'r' " \ "AND ( (m.mode <> 'r') OR (m.status = 'd') )" out = PSQL.run_sql_command(sql_stmt) if len(out) == 0: error_msg = 'Could not connect to the sever!!' tinctest.logger.error(error_msg) self.fail(error_msg) out = out.split('\n')[3].find('0 rows') if out > 0: tinctest.logger.info('Primary is Up/In resync, Mirror is not in resync or is marked down => 0 rows') else: error_msg = "%s down segments found" %out tinctest.logger.info(error_msg) self.fail(error_msg)
39.190377
150
0.611541
4c76ce72a449c9bad0dd10b23da973452a1c32bf
7,282
py
Python
tests/functional/coercers/test_coercer_non_null_string_field.py
matt-koevort/tartiflette
5777866b133d846ce4f8aa03f735fa81832896cd
[ "MIT" ]
530
2019-06-04T11:45:36.000Z
2022-03-31T09:29:56.000Z
tests/functional/coercers/test_coercer_non_null_string_field.py
matt-koevort/tartiflette
5777866b133d846ce4f8aa03f735fa81832896cd
[ "MIT" ]
242
2019-06-04T11:53:08.000Z
2022-03-28T07:06:27.000Z
tests/functional/coercers/test_coercer_non_null_string_field.py
matt-koevort/tartiflette
5777866b133d846ce4f8aa03f735fa81832896cd
[ "MIT" ]
36
2019-06-21T06:40:27.000Z
2021-11-04T13:11:16.000Z
import pytest from tests.functional.coercers.common import resolve_unwrapped_field @pytest.mark.asyncio @pytest.mark.ttftt_engine( name="coercion", resolvers={"Query.nonNullStringField": resolve_unwrapped_field}, ) @pytest.mark.parametrize( "query,variables,expected", [ ( """query { nonNullStringField }""", None, { "data": None, "errors": [ { "message": "Missing mandatory argument < param > in field < Query.nonNullStringField >.", "path": ["nonNullStringField"], "locations": [{"line": 1, "column": 9}], "extensions": { "rule": "5.4.2.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Required-Arguments", "tag": "required-arguments", }, } ], }, ), ( """query { nonNullStringField(param: null) }""", None, { "data": None, "errors": [ { "message": "Argument < param > of non-null type < String! > must not be null.", "path": ["nonNullStringField"], "locations": [{"line": 1, "column": 28}], "extensions": { "rule": "5.6.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Values-of-Correct-Type", "tag": "values-of-correct-type", }, } ], }, ), ( """query { nonNullStringField(param: "paramDefaultValue") }""", None, { "data": { "nonNullStringField": "SUCCESS-paramdefaultvalue-scalar-nonNullStringField" } }, ), ( """query ($param: String!) { nonNullStringField(param: $param) }""", None, { "data": None, "errors": [ { "message": "Variable < $param > of required type < String! > was not provided.", "path": None, "locations": [{"line": 1, "column": 8}], } ], }, ), ( """query ($param: String!) { nonNullStringField(param: $param) }""", {"param": None}, { "data": None, "errors": [ { "message": "Variable < $param > of non-null type < String! > must not be null.", "path": None, "locations": [{"line": 1, "column": 8}], } ], }, ), ( """query ($param: String!) { nonNullStringField(param: $param) }""", {"param": "varValue"}, { "data": { "nonNullStringField": "SUCCESS-varvalue-scalar-nonNullStringField" } }, ), ( """query ($param: String! = null) { nonNullStringField(param: $param) }""", None, { "data": None, "errors": [ { "message": "Variable < $param > got invalid default value < null >.", "path": None, "locations": [{"line": 1, "column": 26}], } ], }, ), ( """query ($param: String! = null) { nonNullStringField(param: $param) }""", {"param": None}, { "data": None, "errors": [ { "message": "Variable < $param > of non-null type < String! > must not be null.", "path": None, "locations": [{"line": 1, "column": 8}], } ], }, ), ( """query ($param: String! = null) { nonNullStringField(param: $param) }""", {"param": "varValue"}, { "data": { "nonNullStringField": "SUCCESS-varvalue-scalar-nonNullStringField" } }, ), ( """query ($param: String! = "varDefault") { nonNullStringField(param: $param) }""", None, { "data": { "nonNullStringField": "SUCCESS-vardefault-scalar-nonNullStringField" } }, ), ( """query ($param: String! = "varDefault") { nonNullStringField(param: $param) }""", {"param": None}, { "data": None, "errors": [ { "message": "Variable < $param > of non-null type < String! > must not be null.", "path": None, "locations": [{"line": 1, "column": 8}], } ], }, ), ( """query ($param: String! = "varDefault") { nonNullStringField(param: $param) }""", {"param": "varValue"}, { "data": { "nonNullStringField": "SUCCESS-varvalue-scalar-nonNullStringField" } }, ), ( """query ($param: String!) { nonNullStringField(param: $param) }""", None, { "data": None, "errors": [ { "message": "Variable < $param > of required type < String! > was not provided.", "path": None, "locations": [{"line": 1, "column": 8}], } ], }, ), ( """query ($param: String!) { nonNullStringField(param: $param) }""", {"param": None}, { "data": None, "errors": [ { "message": "Variable < $param > of non-null type < String! > must not be null.", "path": None, "locations": [{"line": 1, "column": 8}], } ], }, ), ( """query ($param: String!) { nonNullStringField(param: $param) }""", {"param": "varValue"}, { "data": { "nonNullStringField": "SUCCESS-varvalue-scalar-nonNullStringField" } }, ), ], ) async def test_coercion_non_null_string_field( engine, query, variables, expected ): assert await engine.execute(query, variables=variables) == expected
34.349057
117
0.363087
26a56d6df98b3b8d73b50ffb02cd8ccc6e71fca5
2,478
py
Python
homeassistant/components/insteon/fan.py
VirtualL/home-assistant
301829d02be8d865ab46c8901ac046d060849320
[ "Apache-2.0" ]
2
2017-10-26T19:43:55.000Z
2017-12-30T23:29:00.000Z
homeassistant/components/insteon/fan.py
VirtualL/home-assistant
301829d02be8d865ab46c8901ac046d060849320
[ "Apache-2.0" ]
3
2021-09-08T03:34:57.000Z
2022-03-12T00:59:48.000Z
homeassistant/components/insteon/fan.py
VirtualL/home-assistant
301829d02be8d865ab46c8901ac046d060849320
[ "Apache-2.0" ]
1
2022-02-20T07:41:14.000Z
2022-02-20T07:41:14.000Z
"""Support for INSTEON fans via PowerLinc Modem.""" import logging from homeassistant.components.fan import ( SPEED_HIGH, SPEED_LOW, SPEED_MEDIUM, SPEED_OFF, SUPPORT_SET_SPEED, FanEntity) from homeassistant.const import STATE_OFF from . import InsteonEntity _LOGGER = logging.getLogger(__name__) DEPENDENCIES = ['insteon'] SPEED_TO_HEX = { SPEED_OFF: 0x00, SPEED_LOW: 0x3f, SPEED_MEDIUM: 0xbe, SPEED_HIGH: 0xff, } FAN_SPEEDS = [STATE_OFF, SPEED_LOW, SPEED_MEDIUM, SPEED_HIGH] async def async_setup_platform( hass, config, async_add_entities, discovery_info=None): """Set up the INSTEON device class for the hass platform.""" insteon_modem = hass.data['insteon'].get('modem') address = discovery_info['address'] device = insteon_modem.devices[address] state_key = discovery_info['state_key'] _LOGGER.debug('Adding device %s entity %s to Fan platform', device.address.hex, device.states[state_key].name) new_entity = InsteonFan(device, state_key) async_add_entities([new_entity]) class InsteonFan(InsteonEntity, FanEntity): """An INSTEON fan component.""" @property def speed(self) -> str: """Return the current speed.""" return self._hex_to_speed(self._insteon_device_state.value) @property def speed_list(self) -> list: """Get the list of available speeds.""" return FAN_SPEEDS @property def supported_features(self) -> int: """Flag supported features.""" return SUPPORT_SET_SPEED async def async_turn_on(self, speed: str = None, **kwargs) -> None: """Turn on the entity.""" if speed is None: speed = SPEED_MEDIUM await self.async_set_speed(speed) async def async_turn_off(self, **kwargs) -> None: """Turn off the entity.""" await self.async_set_speed(SPEED_OFF) async def async_set_speed(self, speed: str) -> None: """Set the speed of the fan.""" fan_speed = SPEED_TO_HEX[speed] if fan_speed == 0x00: self._insteon_device_state.off() else: self._insteon_device_state.set_level(fan_speed) @staticmethod def _hex_to_speed(speed: int): hex_speed = SPEED_OFF if speed > 0xfe: hex_speed = SPEED_HIGH elif speed > 0x7f: hex_speed = SPEED_MEDIUM elif speed > 0: hex_speed = SPEED_LOW return hex_speed
28.159091
71
0.655771
8ba9be9b246133af15fcde1fa3e6ba6ff33f1116
14,684
py
Python
main.py
JMax45/JMax-Encryption-Tools
a0f8b334077fc6d4196a4c1ebb106adf79cc9fa4
[ "MIT" ]
1
2019-07-22T14:48:43.000Z
2019-07-22T14:48:43.000Z
main.py
JMax45/JMax-Encryption-Tools
a0f8b334077fc6d4196a4c1ebb106adf79cc9fa4
[ "MIT" ]
2
2019-07-25T15:42:24.000Z
2019-07-30T06:45:28.000Z
main.py
JMax45/JMax-Encryption-Tools
a0f8b334077fc6d4196a4c1ebb106adf79cc9fa4
[ "MIT" ]
null
null
null
import sys import json from PyQt5 import QtWidgets, QtTest from PyQt5.Qt import QApplication, QClipboard, QFileDialog from design import design from design.popup.about_jet import Ui_popup_about_jet from design.popup.encryptTXT import Ui_encryptTXT from design.popup.pgen import Ui_pgen from methods.morse import * from methods.caesar import * from methods.vigenere import * from methods.substitution import * to_encrypt = ("") to_decrypt = ("") encryption_key = ("") save_encryption_method = ("") class ExampleApp(QtWidgets.QMainWindow, design.Ui_MainWindow): def crypt(self): caesar_radio = self.radioButton_2.isChecked() morse_radio = self.radioButton.isChecked() vigenere_radio = self.radioButton_3.isChecked() substitution_radio = self.radioButton_4.isChecked() if caesar_radio + morse_radio + vigenere_radio + substitution_radio == 0: self.textEdit_2.setText("Choose an encryption metod") QtTest.QTest.qWait(1000) self.textEdit_2.setText("") empty_check = self.textEdit.toPlainText() def empty_check_true(): self.textEdit_2.setText("The text field is empty") QtTest.QTest.qWait(1000) self.textEdit_2.setText("") if caesar_radio == True: if empty_check == "": empty_check_true() else: global to_encrypt to_encrypt = self.textEdit.toPlainText() caesar_crypt() from methods.caesar import encrypted_text self.textEdit_2.setText(encrypted_text) if morse_radio == True: if empty_check == "": empty_check_true() else: to_encrypt = self.textEdit.toPlainText() morse_crypt() from methods.morse import encrypted_text self.textEdit_2.setText(encrypted_text) if vigenere_radio == True: if empty_check == "": empty_check_true() else: to_encrypt = self.textEdit.toPlainText() vigenere_crypt() from methods.vigenere import encrypted_text,encryption_key self.textEdit_2.setText(encrypted_text) self.lineEdit.setText(encryption_key) if substitution_radio == True: if empty_check == "": empty_check_true() else: to_encrypt = self.textEdit.toPlainText().upper() substitution_crypt() from methods.substitution import encrypted_text self.textEdit_2.setText(encrypted_text) self.textEdit.setText("") def decrypt(self): caesar_radio = self.radioButton_2.isChecked() morse_radio = self.radioButton.isChecked() vigenere_radio = self.radioButton_3.isChecked() substitution_radio = self.radioButton_4.isChecked() if caesar_radio + morse_radio + vigenere_radio + substitution_radio == 0: self.textEdit_2.setText("Choose an encryption metod") QtTest.QTest.qWait(1000) self.textEdit_2.setText("") empty_check = self.textEdit.toPlainText() def empty_check_true(): self.textEdit_2.setText("The text field is empty") QtTest.QTest.qWait(1000) self.textEdit_2.setText("") if caesar_radio == True: if empty_check == "": empty_check_true() else: global to_decrypt to_decrypt = self.textEdit.toPlainText() caesar_decrypt() from methods.caesar import decrypted_text self.textEdit_2.setText(decrypted_text) if morse_radio == True: if empty_check == "": empty_check_true() else: to_decrypt = self.textEdit.toPlainText() morse_decrypt() from methods.morse import decrypted_text self.textEdit_2.setText(decrypted_text) if vigenere_radio == True: if empty_check == "": empty_check_true() else: to_decrypt = self.textEdit.toPlainText() global encryption_key encryption_key = self.lineEdit.text() vigenere_decrypt() from methods.vigenere import decrypted_text self.textEdit_2.setText(str(decrypted_text)) if substitution_radio == True: if empty_check == "": empty_check_true() else: to_decrypt = self.textEdit.toPlainText().upper() substitution_decrypt() from methods.substitution import decrypted_text self.textEdit_2.setText(decrypted_text) self.textEdit.setText("") self.lineEdit.setText("") def clear_encryption_key(self): self.lineEdit.setText("") def copy_encryption_key(self): copy_key = self.lineEdit.text() QApplication.clipboard().setText(copy_key) self.pushButton_3.setStyleSheet("background-color:#E75917;") self.pushButton_3.setText("COPIED") QtTest.QTest.qWait(1000) self.pushButton_3.setStyleSheet("background-color:#5858FA;") self.pushButton_3.setText("COPY") def show_vigenere_keys(self): self.lineEdit.show() self.pushButton_3.show() self.label.show() def hide_vigenere_keys(self): self.lineEdit.hide() self.pushButton_3.hide() self.label.hide() def on_click_radioButton(self): caesar_radio = self.radioButton_2.isChecked() morse_radio = self.radioButton.isChecked() vigenere_radio = self.radioButton_3.isChecked() if self.radioButton.isChecked() == True: self.hide_vigenere_keys() global save_encryption_method save_encryption_method = "morse" if self.radioButton_2.isChecked() == True: self.hide_vigenere_keys() save_encryption_method = "caesar" if self.radioButton_3.isChecked() == True: save_encryption_method = "vigenere" self.show_vigenere_keys() if self.radioButton_4.isChecked() == True: save_encryption_method = "substitution" self.hide_vigenere_keys() def open_about_jet(self): self.window = QtWidgets.QMainWindow() self.ui = Ui_popup_about_jet() self.ui.setupUi(self.window) self.window.show() def save_message2(self): file_name = self.lineEdit_2.text() file_name2 = ("saves/"+file_name+".txt") print(file_name2) with open(file_name2, 'w') as outfile: to_save = self.textEdit_2.toPlainText() encryption_key_save = self.lineEdit.text() data = {} data['encrypted_message'] = [] if save_encryption_method == 'vigenere': data['encrypted_message'].append({ 'message': to_save, 'encryption_method': save_encryption_method, 'encryption_key': encryption_key_save }) else: data['encrypted_message'].append({ 'message': to_save, 'encryption_method': save_encryption_method }) json.dump(data, outfile) self.check_save_message1 = "False" self.label_2.hide() self.lineEdit_2.hide() self.pushButton_4.hide() self.pushButton_5.setStyleSheet("") self.label_4.show() QtTest.QTest.qWait(3000) self.label_4.hide() def save_message(self): check_save_message2 = self.check_save_message1 check_save_message3 = self.check_save_message4 if check_save_message2 == "False": if check_save_message3 == "True": self.check_save_message4 = "False" self.pushButton_6.setStyleSheet("") self.toolButton.hide() self.lineEdit_3.hide() self.pushButton_7.hide() self.check_save_message1 = "True" self.label_2.show() self.lineEdit_2.show() self.pushButton_4.show() self.pushButton_5.setStyleSheet("background-color:#38A1CB") if check_save_message2 == "True": self.check_save_message1 = "False" self.label_2.hide() self.lineEdit_2.hide() self.pushButton_4.hide() self.pushButton_5.setStyleSheet("") def load_message(self): check_save_message3 = self.check_save_message4 check_save_message2 = self.check_save_message1 if check_save_message3 == "False": if check_save_message2 == "True": self.check_save_message1 = "False" self.label_2.hide() self.lineEdit_2.hide() self.pushButton_4.hide() self.pushButton_5.setStyleSheet("") self.check_save_message4 = "True" self.pushButton_6.setStyleSheet("background-color:#38A1CB") self.toolButton.show() self.lineEdit_3.show() self.pushButton_7.show() if check_save_message3 == "True": self.check_save_message4 = "False" self.pushButton_6.setStyleSheet("") self.toolButton.hide() self.lineEdit_3.hide() self.pushButton_7.hide() def choose_a_file_to_load(self): file_to_load1 = QFileDialog.getOpenFileName()[0] file_to_load2 = str(file_to_load1) self.lineEdit_3.setText(file_to_load2) def load_the_file(self): file_to_load = self.lineEdit_3.text() with open(file_to_load) as json_file: data = json.load(json_file) for p in data['encrypted_message']: print('Message: ' + p['message']) print('Encryption Method: ' + p['encryption_method']) print('') global to_decrypt to_decrypt = (p['message']) if p['encryption_method'] == 'caesar': caesar_decrypt() from methods.caesar import decrypted_text if p['encryption_method'] == 'morse': morse_decrypt() from methods.morse import decrypted_text if p['encryption_method'] == 'vigenere': global encryption_key encryption_key = p['encryption_key'] vigenere_decrypt() from methods.vigenere import decrypted_text if p['encryption_method'] == 'substitution': substitution_decrypt() from methods.substitution import decrypted_text self.textEdit_2.setText(decrypted_text) self.check_save_message4 = "False" self.pushButton_6.setStyleSheet("") self.toolButton.hide() self.lineEdit_3.hide() self.pushButton_7.hide() self.label_3.show() QtTest.QTest.qWait(3000) self.label_3.hide() def open_encrypt_txt(self): window1.hide() height = self.geometry().y() height2 = (height-30) self.window4 = QtWidgets.QMainWindow() global window4_global window4_global = self.window4 self.ui = Ui_encryptTXT() self.ui.setupUi(self.window4) self.window4.show() self.window4.move(self.geometry().x(), self.geometry().y()) def open_pgen(self): window1.hide() height = self.geometry().y() height2 = (height-30) self.window5 = QtWidgets.QMainWindow() global window5_global window5_global = self.window5 self.ui = Ui_pgen() self.ui.setupUi(self.window5) self.window5.show() self.window5.move(self.geometry().x(), self.geometry().y()) def __init__(self): # Это здесь нужно для доступа к переменным, методам # и т.д. в файле design.py super().__init__() self.setupUi(self) # Это нужно для инициализации нашего дизайна self.pushButton.clicked.connect(self.crypt) self.pushButton_2.clicked.connect(self.decrypt) self.pushButton_3.clicked.connect(self.copy_encryption_key) self.pushButton_4.clicked.connect(self.save_message2) self.pushButton_5.clicked.connect(self.save_message) self.pushButton_6.clicked.connect(self.load_message) self.radioButton.toggled.connect(self.on_click_radioButton) self.radioButton_2.toggled.connect(self.on_click_radioButton) self.radioButton_3.toggled.connect(self.on_click_radioButton) self.radioButton_4.toggled.connect(self.on_click_radioButton) self.toolButton.clicked.connect(self.choose_a_file_to_load) self.pushButton_7.clicked.connect(self.load_the_file) self.actionAbout_JET.triggered.connect(self.open_about_jet) self.actionEncryptTXT.triggered.connect(self.open_encrypt_txt) self.actionPGEN.triggered.connect(self.open_pgen) #hide and show stuff self.lineEdit.hide() self.lineEdit_2.hide() self.pushButton_3.hide() self.pushButton_7.hide() self.lineEdit_3.hide() self.label.hide() self.label_2.hide() self.label_3.hide() self.label_3.setStyleSheet("color:#0B610B;") self.label_4.hide() self.label_4.setStyleSheet("color:#0B610B;") self.toolButton.hide() self.pushButton_3.setStyleSheet("background-color:#5858FA;") self.pushButton_4.setStyleSheet("background-color:#5858FA;") self.pushButton_4.hide() self.lineEdit.setStyleSheet("background-color:#EFF2FB;") self.lineEdit_2.setStyleSheet("background-color:#EFF2FB;") self.textEdit.setStyleSheet("background-color:#EFF2FB;") self.textEdit_2.setStyleSheet("background-color:#EFF2FB;") self.check_save_message1 = ("False") self.check_save_message4 = ("False") def main(): app = QtWidgets.QApplication(sys.argv) # Новый экземпляр QApplication global window1 global window4 global window5 window4 = ("null") window1 = ExampleApp() # Создаём объект класса ExampleApp window1.setStyleSheet("background-color:#CED8F6;") window1.show() # Показываем окно app.exec_() # и запускаем приложение if __name__ == '__main__': # Если мы запускаем файл напрямую, а не импортируем main() # то запускаем функцию main()
42.439306
81
0.608554
2510cc93a4b929d0683508f9f020284608b53eae
13,713
py
Python
python/ql/test/experimental/dataflow/coverage/test.py
momyarp/codeql
50f2557dd21eb6e28f3e8a16b30d03c5aafbe9dc
[ "MIT" ]
null
null
null
python/ql/test/experimental/dataflow/coverage/test.py
momyarp/codeql
50f2557dd21eb6e28f3e8a16b30d03c5aafbe9dc
[ "MIT" ]
null
null
null
python/ql/test/experimental/dataflow/coverage/test.py
momyarp/codeql
50f2557dd21eb6e28f3e8a16b30d03c5aafbe9dc
[ "MIT" ]
null
null
null
# This should cover all the syntactical constructs that we hope to support. # Headings refer to https://docs.python.org/3/reference/expressions.html, # and are selected whenever they incur dataflow. # Intended sources should be the variable `SOURCE` and intended sinks should be # arguments to the function `SINK` (see python/ql/test/experimental/dataflow/testConfig.qll). # # Functions whose name ends with "_with_local_flow" will also be tested for local flow. # # All functions starting with "test_" should run and execute `print("OK")` exactly once. # This can be checked by running validTest.py. import sys import os sys.path.append(os.path.dirname(os.path.dirname((__file__)))) from testlib import * # These are defined so that we can evaluate the test code. NONSOURCE = "not a source" SOURCE = "source" def is_source(x): return x == "source" or x == b"source" or x == 42 or x == 42.0 or x == 42j def SINK(x): if is_source(x): print("OK") else: print("Unexpected flow", x) def SINK_F(x): if is_source(x): print("Unexpected flow", x) else: print("OK") def test_tuple_with_local_flow(): x = (NONSOURCE, SOURCE) y = x[1] SINK(y) #$ flow="SOURCE, l:-2 -> y" def test_tuple_negative(): x = (NONSOURCE, SOURCE) y = x[0] SINK_F(y) # 6.2.1. Identifiers (Names) def test_names(): x = SOURCE SINK(x) #$ flow="SOURCE, l:-1 -> x" # 6.2.2. Literals def test_string_literal(): x = "source" SINK(x) #$ flow="'source', l:-1 -> x" def test_bytes_literal(): x = b"source" SINK(x) #$ flow="b'source', l:-1 -> x" def test_integer_literal(): x = 42 SINK(x) #$ flow="42, l:-1 -> x" def test_floatnumber_literal(): x = 42.0 SINK(x) #$ flow="42.0, l:-1 -> x" def test_imagnumber_literal(): x = 42j SINK(x) #$ MISSING:flow="42j, l:-1 -> x" # 6.2.3. Parenthesized forms def test_parenthesized_form(): x = (SOURCE) SINK(x) #$ flow="SOURCE, l:-1 -> x" # 6.2.5. List displays def test_list_display(): x = [SOURCE] SINK(x[0]) #$ flow="SOURCE, l:-1 -> x[0]" def test_list_display_negative(): x = [SOURCE] SINK_F(x) def test_list_comprehension(): x = [SOURCE for y in [NONSOURCE]] SINK(x[0]) #$ flow="SOURCE, l:-1 -> x[0]" def test_list_comprehension_flow(): x = [y for y in [SOURCE]] SINK(x[0]) #$ flow="SOURCE, l:-1 -> x[0]" def test_list_comprehension_inflow(): l = [SOURCE] x = [y for y in l] SINK(x[0]) #$ flow="SOURCE, l:-2 -> x[0]" def test_nested_list_display(): x = [*[SOURCE]] SINK(x[0]) #$ MISSING:flow="SOURCE, l:-1 -> x[0]" # 6.2.6. Set displays def test_set_display(): x = {SOURCE} SINK(x.pop()) #$ flow="SOURCE, l:-1 -> x.pop()" def test_set_comprehension(): x = {SOURCE for y in [NONSOURCE]} SINK(x.pop()) #$ flow="SOURCE, l:-1 -> x.pop()" def test_set_comprehension_flow(): x = {y for y in [SOURCE]} SINK(x.pop()) #$ flow="SOURCE, l:-1 -> x.pop()" def test_set_comprehension_inflow(): l = {SOURCE} x = {y for y in l} SINK(x.pop()) #$ flow="SOURCE, l:-2 -> x.pop()" def test_nested_set_display(): x = {*{SOURCE}} SINK(x.pop()) #$ MISSING:flow="SOURCE, l:-1 -> x.pop()" # 6.2.7. Dictionary displays def test_dict_display(): x = {"s": SOURCE} SINK(x["s"]) #$ flow="SOURCE, l:-1 -> x['s']" def test_dict_display_pop(): x = {"s": SOURCE} SINK(x.pop("s")) #$ flow="SOURCE, l:-1 -> x.pop(..)" def test_dict_comprehension(): x = {y: SOURCE for y in ["s"]} SINK(x["s"]) #$ MISSING:flow="SOURCE, l:-1 -> x['s']" def test_dict_comprehension_pop(): x = {y: SOURCE for y in ["s"]} SINK(x.pop("s")) #$ MISSING:flow="SOURCE, l:-1 -> x.pop()" def test_nested_dict_display(): x = {**{"s": SOURCE}} SINK(x["s"]) #$ MISSING:flow="SOURCE, l:-1 -> x['s']" def test_nested_dict_display_pop(): x = {**{"s": SOURCE}} SINK(x.pop("s")) #$ MISSING:flow="SOURCE, l:-1 -> x.pop()" # Nested comprehensions def test_nested_comprehension(): x = [y for z in [[SOURCE]] for y in z] SINK(x[0]) #$ flow="SOURCE, l:-1 -> x[0]" def test_nested_comprehension_deep_with_local_flow(): x = [y for v in [[[[SOURCE]]]] for u in v for z in u for y in z] SINK(x[0]) #$ flow="SOURCE, l:-1 -> x[0]" def test_nested_comprehension_dict(): d = {"s": [SOURCE]} x = [y for k, v in d.items() for y in v] SINK(x[0]) #$ MISSING:flow="SOURCE, l:-1 -> x[0]" def test_nested_comprehension_paren(): x = [y for y in (z for z in [SOURCE])] SINK(x[0]) #$ flow="SOURCE, l:-1 -> x[0]" # 6.2.8. Generator expressions def test_generator(): x = (SOURCE for y in [NONSOURCE]) SINK([*x][0]) #$ MISSING:flow="SOURCE, l:-1 -> List[0]" # 6.2.9. Yield expressions def gen(x): yield x def test_yield(): g = gen(SOURCE) SINK(next(g)) #$ MISSING:flow="SOURCE, l:-1 -> next()" def gen_from(x): yield from gen(x) def test_yield_from(): g = gen_from(SOURCE) SINK(next(g)) #$ MISSING:flow="SOURCE, l:-1 -> next()" # a statement rather than an expression, but related to generators def test_for(): for x in gen(SOURCE): SINK(x) #$ MISSING:flow="SOURCE, l:-1 -> x" # 6.2.9.1. Generator-iterator methods def test___next__(): g = gen(SOURCE) SINK(g.__next__()) #$ MISSING:flow="SOURCE, l:-1 -> g.__next__()" def gen2(x): # argument of `send` has to flow to value of `yield x` (and so to `m`) m = yield x yield m def test_send(): g = gen2(NONSOURCE) n = next(g) SINK(g.send(SOURCE)) #$ MISSING:flow="SOURCE -> g.send()" def gen_ex(x): try: yield NONSOURCE except: yield x # `x` has to flow to call to `throw` def test_throw(): g = gen_ex(SOURCE) n = next(g) SINK(g.throw(TypeError)) #$ MISSING:flow="SOURCE, l:-2 -> g.throw()" # no `test_close` as `close` involves no data flow # 6.2.9.3. Asynchronous generator functions async def agen(x): yield x # 6.2.9.4. Asynchronous generator-iterator methods # helper to run async test functions def runa(a): import asyncio asyncio.run(a) async def atest___anext__(): g = agen(SOURCE) SINK(await g.__anext__()) #$ MISSING:flow="SOURCE, l:-1 -> g.__anext__()" def test___anext__(): runa(atest___anext__()) async def agen2(x): # argument of `send` has to flow to value of `yield x` (and so to `m`) m = yield x yield m async def atest_asend(): g = agen2(NONSOURCE) n = await g.__anext__() SINK(await g.asend(SOURCE)) #$ MISSING:flow="SOURCE -> g.asend()" def test_asend(): runa(atest_asend()) async def agen_ex(x): try: yield NONSOURCE except: yield x # `x` has to flow to call to `athrow` async def atest_athrow(): g = agen_ex(SOURCE) n = await g.__anext__() SINK(await g.athrow(TypeError)) #$ MISSING:flow="SOURCE, l:-2 -> g.athrow()" def test_athrow(): runa(atest_athrow()) # 6.3.1. Attribute references class C: a = SOURCE @expects(2) def test_attribute_reference(): SINK(C.a) #$ MISSING:flow="SOURCE, l:-4 -> C.a" c = C() SINK(c.a) #$ MISSING:flow="SOURCE, l:-6 -> c.a" # overriding __getattr__ should be tested by the class coverage tests # 6.3.2. Subscriptions def test_subscription_tuple(): SINK((SOURCE,)[0]) #$ flow="SOURCE -> Tuple[0]" def test_subscription_list(): SINK([SOURCE][0]) #$ flow="SOURCE -> List[0]" def test_subscription_mapping(): SINK({"s": SOURCE}["s"]) #$ flow="SOURCE -> Dict['s']" # overriding __getitem__ should be tested by the class coverage tests # 6.3.3. Slicings l = [SOURCE] def test_slicing(): s = l[0:1:1] SINK(s[0]) #$ MISSING:flow="SOURCE -> s[0]" # The grammar seems to allow `l[0:1:1, 0:1]`, but the interpreter does not like it # 6.3.4. Calls def second(a, b): return b def test_call_positional(): SINK(second(NONSOURCE, SOURCE)) #$ flow="SOURCE -> second(..)" def test_call_positional_negative(): SINK_F(second(SOURCE, NONSOURCE)) def test_call_keyword(): SINK(second(NONSOURCE, b=SOURCE)) #$ flow="SOURCE -> second(..)" def test_call_unpack_iterable(): SINK(second(NONSOURCE, *[SOURCE])) #$ MISSING:flow="SOURCE -> second(..)" def test_call_unpack_mapping(): SINK(second(NONSOURCE, **{"b": SOURCE})) #$ flow="SOURCE -> second(..)" def f_extra_pos(a, *b): return b[0] def test_call_extra_pos(): SINK(f_extra_pos(NONSOURCE, SOURCE)) #$ flow="SOURCE -> f_extra_pos(..)" def f_extra_keyword(a, **b): return b["b"] def test_call_extra_keyword(): SINK(f_extra_keyword(NONSOURCE, b=SOURCE)) #$ flow="SOURCE -> f_extra_keyword(..)" # return the name of the first extra keyword argument def f_extra_keyword_flow(**a): return [*a][0] # call the function with our source as the name of the keyword arguemnt def test_call_extra_keyword_flow(): SINK(f_extra_keyword_flow(**{SOURCE: None})) #$ MISSING:flow="SOURCE -> f_extra_keyword(..)" # 6.12. Assignment expressions def test_assignment_expression(): x = NONSOURCE SINK(x := SOURCE) #$ MISSING:flow="SOURCE -> x" # 6.13. Conditional expressions def test_conditional_true(): SINK(SOURCE if True else NONSOURCE) #$ flow="SOURCE -> IfExp" def test_conditional_true_guards(): SINK_F(NONSOURCE if True else SOURCE) def test_conditional_false(): SINK(NONSOURCE if False else SOURCE) #$ flow="SOURCE -> IfExp" def test_conditional_false_guards(): SINK_F(SOURCE if False else NONSOURCE) # Condition is evaluated first, so x is SOURCE once chosen def test_conditional_evaluation_true(): x = NONSOURCE SINK(x if (SOURCE == (x := SOURCE)) else NONSOURCE) #$ MISSING:flow="SOURCE -> IfExp" # Condition is evaluated first, so x is SOURCE once chosen def test_conditional_evaluation_false(): x = NONSOURCE SINK(NONSOURCE if (NONSOURCE == (x := SOURCE)) else x) #$ MISSING:flow="SOURCE -> IfExp" # 6.14. Lambdas def test_lambda(): def f(x): return x SINK(f(SOURCE)) #$ flow="SOURCE -> f(..)" def test_lambda_positional(): def second(a, b): return b SINK(second(NONSOURCE, SOURCE)) #$ flow="SOURCE -> second(..)" def test_lambda_positional_negative(): def second(a, b): return b SINK_F(second(SOURCE, NONSOURCE)) def test_lambda_keyword(): def second(a, b): return b SINK(second(NONSOURCE, b=SOURCE)) #$ flow="SOURCE -> second(..)" def test_lambda_unpack_iterable(): def second(a, b): return b SINK(second(NONSOURCE, *[SOURCE])) #$ MISSING:flow="SOURCE -> second(..)" # Flow missing def test_lambda_unpack_mapping(): def second(a, b): return b SINK(second(NONSOURCE, **{"b": SOURCE})) #$ flow="SOURCE -> second(..)" def test_lambda_extra_pos(): f_extra_pos = lambda a, *b: b[0] SINK(f_extra_pos(NONSOURCE, SOURCE)) #$ flow="SOURCE -> f_extra_pos(..)" def test_lambda_extra_keyword(): f_extra_keyword = lambda a, **b: b["b"] SINK(f_extra_keyword(NONSOURCE, b=SOURCE)) #$ flow="SOURCE -> f_extra_keyword(..)" # call the function with our source as the name of the keyword argument def test_lambda_extra_keyword_flow(): # return the name of the first extra keyword argument f_extra_keyword_flow = lambda **a: [*a][0] SINK(f_extra_keyword_flow(**{SOURCE: None})) #$ MISSING:flow="SOURCE -> f_extra_keyword(..)" @expects(4) def test_swap(): a = SOURCE b = NONSOURCE SINK(a) #$ flow="SOURCE, l:-2 -> a" SINK_F(b) a, b = b, a SINK_F(a) SINK(b) #$ flow="SOURCE, l:-7 -> b" def test_deep_callgraph(): # port of python/ql/test/library-tests/taint/general/deep.py def f1(arg): return arg def f2(arg): return f1(arg) def f3(arg): return f2(arg) def f4(arg): return f3(arg) def f5(arg): return f4(arg) def f6(arg): return f5(arg) x = f6(SOURCE) SINK(x) #$ MISSING:flow="SOURCE, l:-1 -> x" @expects(2) def test_dynamic_tuple_creation_1(): tup = tuple() tup += (SOURCE,) tup += (NONSOURCE,) SINK(tup[0]) #$ MISSING:flow="SOURCE, l:-3 -> tup[0]" SINK_F(tup[1]) @expects(2) def test_dynamic_tuple_creation_2(): tup = () tup += (SOURCE,) tup += (NONSOURCE,) SINK(tup[0]) #$ MISSING:flow="SOURCE, l:-3 -> tup[0]" SINK_F(tup[1]) @expects(2) def test_dynamic_tuple_creation_3(): tup1 = (SOURCE,) tup2 = (NONSOURCE,) tup = tup1 + tup2 SINK(tup[0]) #$ MISSING:flow="SOURCE, l:-4 -> tup[0]" SINK_F(tup[1]) # Inspired by FP-report https://github.com/github/codeql/issues/4239 @expects(2) def test_dynamic_tuple_creation_4(): tup = () for item in [SOURCE, NONSOURCE]: tup += (item,) SINK(tup[0]) #$ MISSING:flow="SOURCE, l:-3 -> tup[0]" SINK_F(tup[1]) def return_from_inner_scope(x): try: return x[0] except IndexError: return SOURCE def test_return_from_inner_scope(): SINK(return_from_inner_scope([])) #$ flow="SOURCE, l:-3 -> return_from_inner_scope(..)" # Inspired by reverse read inconsistency check def insertAtA(d): d["a"] = SOURCE def test_reverse_read_subscript(): d = {"a": NONSOURCE} l = [d] insertAtA(l[0]) SINK(d["a"]) #$ MISSING:flow="SOURCE, l-6 -> d['a']"" def test_reverse_read_dict_arg(): d = {"a": NONSOURCE} dd = {"d": d} insertAtA(**dd) SINK(d["a"]) #$ MISSING:flow="SOURCE, l-12 -> d['a']"" class WithA: def setA(self, v): self.a = v def __init__(self): self.a = "" def test_reverse_read_subscript_cls(): withA = WithA() l = [withA] l[0].setA(SOURCE) SINK(withA.a) #$ MISSING:flow="SOURCE, l:-1 -> self.a"
21.905751
96
0.617297
a8f38f552de944bc7af9312bb63037fc862b1330
1,726
py
Python
manimlib/animation/numbers.py
aDotInTheVoid/manim
eb3e5f419cb164f12b253cf885e19c35c62a2f31
[ "MIT" ]
null
null
null
manimlib/animation/numbers.py
aDotInTheVoid/manim
eb3e5f419cb164f12b253cf885e19c35c62a2f31
[ "MIT" ]
null
null
null
manimlib/animation/numbers.py
aDotInTheVoid/manim
eb3e5f419cb164f12b253cf885e19c35c62a2f31
[ "MIT" ]
null
null
null
import warnings from manimlib.animation.animation import Animation from manimlib.mobject.numbers import DecimalNumber from manimlib.utils.bezier import interpolate class ChangingDecimal(Animation): CONFIG = { "suspend_mobject_updating": False, } def __init__(self, decimal_mob, number_update_func, **kwargs): self.check_validity_of_input(decimal_mob) self.yell_about_depricated_configuration(**kwargs) self.number_update_func = number_update_func super().__init__(decimal_mob, **kwargs) def check_validity_of_input(self, decimal_mob): if not isinstance(decimal_mob, DecimalNumber): raise Exception( "ChangingDecimal can only take " "in a DecimalNumber" ) def yell_about_depricated_configuration(self, **kwargs): # Obviously this would optimally be removed at # some point. for attr in ["tracked_mobject", "position_update_func"]: if attr in kwargs: warnings.warn(""" Don't use {} for ChangingDecimal, that functionality has been depricated and you should use a mobject updater instead """.format(attr) ) def interpolate_mobject(self, alpha): self.mobject.set_value( self.number_update_func(alpha) ) class ChangeDecimalToValue(ChangingDecimal): def __init__(self, decimal_mob, target_number, **kwargs): start_number = decimal_mob.number super().__init__( decimal_mob, lambda a: interpolate(start_number, target_number, a), **kwargs )
32.566038
66
0.628042
a1ce4a5af50ec2a02700a3588b13f0aba54325e1
397
py
Python
example/src/dsodemo/cli.py
navytux/setuptools_dso
6b1b72f012bdba1c891ce7719dbd230345924209
[ "BSD-3-Clause" ]
null
null
null
example/src/dsodemo/cli.py
navytux/setuptools_dso
6b1b72f012bdba1c891ce7719dbd230345924209
[ "BSD-3-Clause" ]
null
null
null
example/src/dsodemo/cli.py
navytux/setuptools_dso
6b1b72f012bdba1c891ce7719dbd230345924209
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function import sys, os def fixpath(): path = os.environ.get('PATH', '').split(os.pathsep) moddir = os.path.dirname(__file__) path.append(os.path.join(moddir, 'lib')) os.environ['PATH'] = os.pathsep.join(path) if sys.platform == "win32": fixpath() from .ext import dtest if __name__=='__main__': print(dtest.foo()) print(dtest.bar())
19.85
55
0.65995
ba849a08141dd9933f34bd4549e20a1324e86e6c
4,420
py
Python
native/jni/external/selinux/sandbox/test_sandbox.py
Joyoe/Magisk-nosbin_magisk-nohide
449441921740bf85926c14f41b3532822ca0eb65
[ "MIT" ]
2
2022-01-16T00:59:54.000Z
2022-02-09T12:00:48.000Z
native/jni/external/selinux/sandbox/test_sandbox.py
Joyoe/Magisk-nosbin_magisk-nohide
449441921740bf85926c14f41b3532822ca0eb65
[ "MIT" ]
null
null
null
native/jni/external/selinux/sandbox/test_sandbox.py
Joyoe/Magisk-nosbin_magisk-nohide
449441921740bf85926c14f41b3532822ca0eb65
[ "MIT" ]
2
2022-02-09T12:00:39.000Z
2022-02-21T18:34:46.000Z
import unittest import os import shutil import sys from tempfile import mkdtemp from subprocess import Popen, PIPE class SandboxTests(unittest.TestCase): def assertDenied(self, err): self.assertTrue(b'Permission denied' in err, '"Permission denied" not found in %r' % err) def assertNotFound(self, err): self.assertTrue(b'not found' in err, '"not found" not found in %r' % err) def assertFailure(self, status): self.assertTrue(status != 0, '"Succeeded when it should have failed') def assertSuccess(self, status, err): self.assertTrue(status == 0, '"Sandbox should have succeeded for this test %r' % err) def test_simple_success(self): "Verify that we can read file descriptors handed to sandbox" p1 = Popen(['cat', '/etc/passwd'], stdout=PIPE) p2 = Popen([sys.executable, 'sandbox', 'grep', 'root'], stdin=p1.stdout, stdout=PIPE) p1.stdout.close() out, err = p2.communicate() self.assertTrue(b'root' in out) def test_cant_kill(self): "Verify that we cannot send kill signal in the sandbox" pid = os.getpid() p = Popen([sys.executable, 'sandbox', 'kill', '-HUP', str(pid)], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertDenied(err) def test_cant_ping(self): "Verify that we can't ping within the sandbox" p = Popen([sys.executable, 'sandbox', 'ping', '-c 1 ', '127.0.0.1'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertDenied(err) def test_cant_mkdir(self): "Verify that we can't mkdir within the sandbox" p = Popen([sys.executable, 'sandbox', 'mkdir', '~/test'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertFailure(p.returncode) def test_cant_list_homedir(self): "Verify that we can't list homedir within the sandbox" p = Popen([sys.executable, 'sandbox', 'ls', '~'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertFailure(p.returncode) def test_cant_send_mail(self): "Verify that we can't send mail within the sandbox" p = Popen([sys.executable, 'sandbox', 'mail'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertDenied(err) def test_cant_sudo(self): "Verify that we can't run sudo within the sandbox" p = Popen([sys.executable, 'sandbox', 'sudo'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertFailure(p.returncode) def test_mount(self): "Verify that we mount a file system" p = Popen([sys.executable, 'sandbox', '-M', 'id'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertSuccess(p.returncode, err) def test_set_level(self): "Verify that we set level a file system" p = Popen([sys.executable, 'sandbox', '-l', 's0', 'id'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertSuccess(p.returncode, err) def test_homedir(self): "Verify that we set homedir a file system" homedir = mkdtemp(dir=".", prefix=".sandbox_test") p = Popen([sys.executable, 'sandbox', '-H', homedir, '-M', 'id'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() shutil.rmtree(homedir) self.assertSuccess(p.returncode, err) def test_tmpdir(self): "Verify that we set tmpdir a file system" tmpdir = mkdtemp(dir="/tmp", prefix=".sandbox_test") p = Popen([sys.executable, 'sandbox', '-T', tmpdir, '-M', 'id'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() shutil.rmtree(tmpdir) self.assertSuccess(p.returncode, err) def test_include_file(self): "Verify that sandbox can copy a file in the sandbox home and use it" p = Popen([sys.executable, 'sandbox', '-i' ,'test_sandbox.py' , '-M', '/bin/cat', 'test_sandbox.py'], stdout=PIPE, stderr=PIPE) out, err = p.communicate() self.assertSuccess(p.returncode, err) if __name__ == "__main__": import selinux if selinux.is_selinux_enabled() and selinux.security_getenforce() == 1: unittest.main() else: print("SELinux must be in enforcing mode for this test")
38.77193
109
0.613348
2c525fbbf89eeeabf9512c4ed25ece3f60390e60
35,899
py
Python
hmAP.py
zhujiaxiaowang/Safety-helmet-detection-based-on-Yolov3
5f68bd391fc1f5ca796b955c28ea8f4074215b09
[ "MIT" ]
null
null
null
hmAP.py
zhujiaxiaowang/Safety-helmet-detection-based-on-Yolov3
5f68bd391fc1f5ca796b955c28ea8f4074215b09
[ "MIT" ]
null
null
null
hmAP.py
zhujiaxiaowang/Safety-helmet-detection-based-on-Yolov3
5f68bd391fc1f5ca796b955c28ea8f4074215b09
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Aug 18 10:33:15 2020 @author: CQU2616 """ import glob import json import os import shutil import operator import sys import argparse import math import numpy as np MINOVERLAP = 0.5 # default value (defined in the PASCAL VOC2012 challenge) parser = argparse.ArgumentParser() parser.add_argument('-na', '--no-animation', help="no animation is shown.", action="store_true") parser.add_argument('-np', '--no-plot', help="no plot is shown.", action="store_true") parser.add_argument('-q', '--quiet', help="minimalistic console output.", action="store_true") # argparse receiving list of classes to be ignored (e.g., python main.py --ignore person book) parser.add_argument('-i', '--ignore', nargs='+', type=str, help="ignore a list of classes.") # argparse receiving list of classes with specific IoU (e.g., python main.py --set-class-iou person 0.7) parser.add_argument('--set-class-iou', nargs='+', type=str, help="set IoU for a specific class.") args = parser.parse_args() ''' 0,0 ------> x (width) | | (Left,Top) | *_________ | | | | | y |_________| (height) * (Right,Bottom) ''' # if there are no classes to ignore then replace None by empty list if args.ignore is None: args.ignore = [] specific_iou_flagged = False if args.set_class_iou is not None: specific_iou_flagged = True # make sure that the cwd() is the location of the python script (so that every path makes sense) os.chdir(os.path.dirname(os.path.abspath(__file__))) GT_PATH = os.path.join(os.getcwd(), 'input', 'ground-truth') DR_PATH = os.path.join(os.getcwd(), 'input', 'detection-results') # if there are no images then no animation can be shown IMG_PATH = os.path.join(os.getcwd(), 'input', 'images-optional') if os.path.exists(IMG_PATH): for dirpath, dirnames, files in os.walk(IMG_PATH): if not files: # no image files found args.no_animation = True else: args.no_animation = True # try to import OpenCV if the user didn't choose the option --no-animation show_animation = False if not args.no_animation: try: import cv2 show_animation = True except ImportError: print("\"opencv-python\" not found, please install to visualize the results.") args.no_animation = True # try to import Matplotlib if the user didn't choose the option --no-plot draw_plot = False if not args.no_plot: try: import matplotlib.pyplot as plt draw_plot = True except ImportError: print("\"matplotlib\" not found, please install it to get the resulting plots.") args.no_plot = True def log_average_miss_rate(prec, rec, num_images): """ log-average miss rate: Calculated by averaging miss rates at 9 evenly spaced FPPI points between 10e-2 and 10e0, in log-space. output: lamr | log-average miss rate mr | miss rate fppi | false positives per image references: [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the State of the Art." Pattern Analysis and Machine Intelligence, IEEE Transactions on 34.4 (2012): 743 - 761. """ # if there were no detections of that class if prec.size == 0: lamr = 0 mr = 1 fppi = 0 return lamr, mr, fppi fppi = (1 - prec) mr = (1 - rec) fppi_tmp = np.insert(fppi, 0, -1.0) mr_tmp = np.insert(mr, 0, 1.0) # Use 9 evenly spaced reference points in log-space ref = np.logspace(-2.0, 0.0, num = 9) for i, ref_i in enumerate(ref): # np.where() will always find at least 1 index, since min(ref) = 0.01 and min(fppi_tmp) = -1.0 j = np.where(fppi_tmp <= ref_i)[-1][-1] ref[i] = mr_tmp[j] # log(0) is undefined, so we use the np.maximum(1e-10, ref) lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref)))) return lamr, mr, fppi """ throw error and exit """ def error(msg): print(msg) sys.exit(0) """ check if the number is a float between 0.0 and 1.0 """ def is_float_between_0_and_1(value): try: val = float(value) if val > 0.0 and val < 1.0: return True else: return False except ValueError: return False """ Calculate the AP given the recall and precision array 1st) We compute a version of the measured precision/recall curve with precision monotonically decreasing 2nd) We compute the AP as the area under this curve by numerical integration. """ def voc_ap(rec, prec): """ --- Official matlab code VOC2012--- mrec=[0 ; rec ; 1]; mpre=[0 ; prec ; 0]; for i=numel(mpre)-1:-1:1 mpre(i)=max(mpre(i),mpre(i+1)); end i=find(mrec(2:end)~=mrec(1:end-1))+1; ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); """ rec.insert(0, 0.0) # insert 0.0 at begining of list rec.append(1.0) # insert 1.0 at end of list mrec = rec[:] prec.insert(0, 0.0) # insert 0.0 at begining of list prec.append(0.0) # insert 0.0 at end of list mpre = prec[:] """ This part makes the precision monotonically decreasing (goes from the end to the beginning) matlab: for i=numel(mpre)-1:-1:1 mpre(i)=max(mpre(i),mpre(i+1)); """ # matlab indexes start in 1 but python in 0, so I have to do: # range(start=(len(mpre) - 2), end=0, step=-1) # also the python function range excludes the end, resulting in: # range(start=(len(mpre) - 2), end=-1, step=-1) for i in range(len(mpre)-2, -1, -1): mpre[i] = max(mpre[i], mpre[i+1]) """ This part creates a list of indexes where the recall changes matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1; """ i_list = [] for i in range(1, len(mrec)): if mrec[i] != mrec[i-1]: i_list.append(i) # if it was matlab would be i + 1 """ The Average Precision (AP) is the area under the curve (numerical integration) matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); """ ap = 0.0 for i in i_list: ap += ((mrec[i]-mrec[i-1])*mpre[i]) return ap, mrec, mpre """ Convert the lines of a file to a list """ def file_lines_to_list(path): # open txt file lines to a list with open(path) as f: content = f.readlines() # remove whitespace characters like `\n` at the end of each line content = [x.strip() for x in content] return content """ Draws text in image """ def draw_text_in_image(img, text, pos, color, line_width): font = cv2.FONT_HERSHEY_PLAIN fontScale = 1 lineType = 1 bottomLeftCornerOfText = pos cv2.putText(img, text, bottomLeftCornerOfText, font, fontScale, color, lineType) text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0] return img, (line_width + text_width) """ Plot - adjust axes """ def adjust_axes(r, t, fig, axes): # get text width for re-scaling bb = t.get_window_extent(renderer=r) text_width_inches = bb.width / fig.dpi # get axis width in inches current_fig_width = fig.get_figwidth() new_fig_width = current_fig_width + text_width_inches propotion = new_fig_width / current_fig_width # get axis limit x_lim = axes.get_xlim() axes.set_xlim([x_lim[0], x_lim[1]*propotion]) """ Draw plot using Matplotlib """ def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar): # sort the dictionary by decreasing value, into a list of tuples sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1)) # unpacking the list of tuples into two lists sorted_keys, sorted_values = zip(*sorted_dic_by_value) # if true_p_bar != "": """ Special case to draw in: - green -> TP: True Positives (object detected and matches ground-truth) - red -> FP: False Positives (object detected but does not match ground-truth) - pink -> FN: False Negatives (object not detected but present in the ground-truth) """ fp_sorted = [] tp_sorted = [] for key in sorted_keys: fp_sorted.append(dictionary[key] - true_p_bar[key]) tp_sorted.append(true_p_bar[key]) plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive') plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted) # add legend plt.legend(loc='lower right') """ Write number on side of bar """ fig = plt.gcf() # gcf - get current figure axes = plt.gca() r = fig.canvas.get_renderer() for i, val in enumerate(sorted_values): fp_val = fp_sorted[i] tp_val = tp_sorted[i] fp_str_val = " " + str(fp_val) tp_str_val = fp_str_val + " " + str(tp_val) # trick to paint multicolor with offset: # first paint everything and then repaint the first number t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold') plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold') if i == (len(sorted_values)-1): # largest bar adjust_axes(r, t, fig, axes) else: plt.barh(range(n_classes), sorted_values, color=plot_color) """ Write number on side of bar """ fig = plt.gcf() # gcf - get current figure axes = plt.gca() r = fig.canvas.get_renderer() for i, val in enumerate(sorted_values): str_val = " " + str(val) # add a space before if val < 1.0: str_val = " {0:.2f}".format(val) t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold') # re-set axes to show number inside the figure if i == (len(sorted_values)-1): # largest bar adjust_axes(r, t, fig, axes) # set window title fig.canvas.set_window_title(window_title) # write classes in y axis tick_font_size = 12 plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size) """ Re-scale height accordingly """ init_height = fig.get_figheight() # comput the matrix height in points and inches dpi = fig.dpi height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing) height_in = height_pt / dpi # compute the required figure height top_margin = 0.15 # in percentage of the figure height bottom_margin = 0.05 # in percentage of the figure height figure_height = height_in / (1 - top_margin - bottom_margin) # set new height if figure_height > init_height: fig.set_figheight(figure_height) # set plot title plt.title(plot_title, fontsize=14) # set axis titles # plt.xlabel('classes') plt.xlabel(x_label, fontsize='large') # adjust size of window fig.tight_layout() # save the plot fig.savefig(output_path) # show image if to_show: plt.show() # close the plot plt.close() """ Create a ".temp_files/" and "output/" directory """ TEMP_FILES_PATH = ".temp_files" if not os.path.exists(TEMP_FILES_PATH): # if it doesn't exist already os.makedirs(TEMP_FILES_PATH) output_files_path = "output" if os.path.exists(output_files_path): # if it exist already # reset the output directory shutil.rmtree(output_files_path) os.makedirs(output_files_path) if draw_plot: os.makedirs(os.path.join(output_files_path, "classes")) if show_animation: os.makedirs(os.path.join(output_files_path, "images", "detections_one_by_one")) """ ground-truth Load each of the ground-truth files into a temporary ".json" file. Create a list of all the class names present in the ground-truth (gt_classes). """ # get a list with the ground-truth files ground_truth_files_list = glob.glob(GT_PATH + '/*.txt') if len(ground_truth_files_list) == 0: error("Error: No ground-truth files found!") ground_truth_files_list.sort() # dictionary with counter per class gt_counter_per_class = {} counter_images_per_class = {} gt_files = [] for txt_file in ground_truth_files_list: #print(txt_file) file_id = txt_file.split(".txt", 1)[0] file_id = os.path.basename(os.path.normpath(file_id)) # check if there is a correspondent detection-results file temp_path = os.path.join(DR_PATH, (file_id + ".txt")) if not os.path.exists(temp_path): error_msg = "Error. File not found: {}\n".format(temp_path) error_msg += "(You can avoid this error message by running extra/intersect-gt-and-dr.py)" error(error_msg) lines_list = file_lines_to_list(txt_file) # create ground-truth dictionary bounding_boxes = [] is_difficult = False already_seen_classes = [] for line in lines_list: try: if "difficult" in line: class_name, left, top, right, bottom, _difficult = line.split() is_difficult = True else: class_name, left, top, right, bottom = line.split() except ValueError: error_msg = "Error: File " + txt_file + " in the wrong format.\n" error_msg += " Expected: <class_name> <left> <top> <right> <bottom> ['difficult']\n" error_msg += " Received: " + line error_msg += "\n\nIf you have a <class_name> with spaces between words you should remove them\n" error_msg += "by running the script \"remove_space.py\" or \"rename_class.py\" in the \"extra/\" folder." error(error_msg) # check if class is in the ignore list, if yes skip if class_name in args.ignore: continue bbox = left + " " + top + " " + right + " " +bottom if is_difficult: bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True}) is_difficult = False else: bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False}) # count that object if class_name in gt_counter_per_class: gt_counter_per_class[class_name] += 1 else: # if class didn't exist yet gt_counter_per_class[class_name] = 1 if class_name not in already_seen_classes: if class_name in counter_images_per_class: counter_images_per_class[class_name] += 1 else: # if class didn't exist yet counter_images_per_class[class_name] = 1 already_seen_classes.append(class_name) # dump bounding_boxes into a ".json" file new_temp_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json" gt_files.append(new_temp_file) with open(new_temp_file, 'w') as outfile: json.dump(bounding_boxes, outfile) gt_classes = list(gt_counter_per_class.keys()) # let's sort the classes alphabetically gt_classes = sorted(gt_classes) n_classes = len(gt_classes) #print(gt_classes) #print(gt_counter_per_class) """ Check format of the flag --set-class-iou (if used) e.g. check if class exists """ if specific_iou_flagged: n_args = len(args.set_class_iou) error_msg = \ '\n --set-class-iou [class_1] [IoU_1] [class_2] [IoU_2] [...]' if n_args % 2 != 0: error('Error, missing arguments. Flag usage:' + error_msg) # [class_1] [IoU_1] [class_2] [IoU_2] # specific_iou_classes = ['class_1', 'class_2'] specific_iou_classes = args.set_class_iou[::2] # even # iou_list = ['IoU_1', 'IoU_2'] iou_list = args.set_class_iou[1::2] # odd if len(specific_iou_classes) != len(iou_list): error('Error, missing arguments. Flag usage:' + error_msg) for tmp_class in specific_iou_classes: if tmp_class not in gt_classes: error('Error, unknown class \"' + tmp_class + '\". Flag usage:' + error_msg) for num in iou_list: if not is_float_between_0_and_1(num): error('Error, IoU must be between 0.0 and 1.0. Flag usage:' + error_msg) """ detection-results Load each of the detection-results files into a temporary ".json" file. """ # get a list with the detection-results files dr_files_list = glob.glob(DR_PATH + '/*.txt') dr_files_list.sort() for class_index, class_name in enumerate(gt_classes): bounding_boxes = [] for txt_file in dr_files_list: #print(txt_file) # the first time it checks if all the corresponding ground-truth files exist file_id = txt_file.split(".txt",1)[0] file_id = os.path.basename(os.path.normpath(file_id)) temp_path = os.path.join(GT_PATH, (file_id + ".txt")) if class_index == 0: if not os.path.exists(temp_path): error_msg = "Error. File not found: {}\n".format(temp_path) error_msg += "(You can avoid this error message by running extra/intersect-gt-and-dr.py)" error(error_msg) lines = file_lines_to_list(txt_file) for line in lines: try: tmp_class_name, confidence, left, top, right, bottom = line.split() except ValueError: error_msg = "Error: File " + txt_file + " in the wrong format.\n" error_msg += " Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n" error_msg += " Received: " + line error(error_msg) if tmp_class_name == class_name: #print("match") bbox = left + " " + top + " " + right + " " +bottom bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox}) #print(bounding_boxes) # sort detection-results by decreasing confidence bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True) with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile: json.dump(bounding_boxes, outfile) """ Calculate the AP for each class """ sum_AP = 0.0 ap_dictionary = {} lamr_dictionary = {} # open file to store the output with open(output_files_path + "/output.txt", 'w') as output_file: output_file.write("# AP and precision/recall per class\n") count_true_positives = {} for class_index, class_name in enumerate(gt_classes): count_true_positives[class_name] = 0 """ Load detection-results of that class """ dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json" dr_data = json.load(open(dr_file)) """ Assign detection-results to ground-truth objects """ nd = len(dr_data) tp = [0] * nd # creates an array of zeros of size nd fp = [0] * nd for idx, detection in enumerate(dr_data): file_id = detection["file_id"] if show_animation: # find ground truth image ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*") #tifCounter = len(glob.glob1(myPath,"*.tif")) if len(ground_truth_img) == 0: error("Error. Image not found with id: " + file_id) elif len(ground_truth_img) > 1: error("Error. Multiple image with id: " + file_id) else: # found image #print(IMG_PATH + "/" + ground_truth_img[0]) # Load image img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0]) # load image with draws of multiple detections img_cumulative_path = output_files_path + "/images/" + ground_truth_img[0] if os.path.isfile(img_cumulative_path): img_cumulative = cv2.imread(img_cumulative_path) else: img_cumulative = img.copy() # Add bottom border to image bottom_border = 60 BLACK = [0, 0, 0] img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK) # assign detection-results to ground truth object if any # open ground-truth with that file_id gt_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json" ground_truth_data = json.load(open(gt_file)) ovmax = -1 gt_match = -1 # load detected object bounding-box bb = [ float(x) for x in detection["bbox"].split() ] for obj in ground_truth_data: # look for a class_name match if obj["class_name"] == class_name: bbgt = [ float(x) for x in obj["bbox"].split() ] bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])] iw = bi[2] - bi[0] + 1 ih = bi[3] - bi[1] + 1 if iw > 0 and ih > 0: # compute overlap (IoU) = area of intersection / area of union ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0] + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih ov = iw * ih / ua if ov > ovmax: ovmax = ov gt_match = obj # assign detection as true positive/don't care/false positive if show_animation: status = "NO MATCH FOUND!" # status is only used in the animation # set minimum overlap min_overlap = MINOVERLAP if specific_iou_flagged: if class_name in specific_iou_classes: index = specific_iou_classes.index(class_name) min_overlap = float(iou_list[index]) if ovmax >= min_overlap: if "difficult" not in gt_match: if not bool(gt_match["used"]): # true positive tp[idx] = 1 gt_match["used"] = True count_true_positives[class_name] += 1 # update the ".json" file with open(gt_file, 'w') as f: f.write(json.dumps(ground_truth_data)) if show_animation: status = "MATCH!" else: # false positive (multiple detection) fp[idx] = 1 if show_animation: status = "REPEATED MATCH!" else: # false positive fp[idx] = 1 if ovmax > 0: status = "INSUFFICIENT OVERLAP" """ Draw image to show animation """ if show_animation: height, widht = img.shape[:2] # colors (OpenCV works with BGR) white = (255,255,255) light_blue = (255,200,100) green = (0,255,0) light_red = (30,30,255) # 1st line margin = 10 v_pos = int(height - margin - (bottom_border / 2.0)) text = "Image: " + ground_truth_img[0] + " " img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0) text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " " img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width) if ovmax != -1: color = light_red if status == "INSUFFICIENT OVERLAP": text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100) else: text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100) color = green img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width) # 2nd line v_pos += int(bottom_border / 2.0) rank_pos = str(idx+1) # rank position (idx starts at 0) text = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(detection["confidence"])*100) img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0) color = light_red if status == "MATCH!": color = green text = "Result: " + status + " " img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width) font = cv2.FONT_HERSHEY_SIMPLEX if ovmax > 0: # if there is intersections between the bounding-boxes bbgt = [ int(round(float(x))) for x in gt_match["bbox"].split() ] cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2) cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2) cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA) bb = [int(i) for i in bb] cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2) cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2) cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA) # show image cv2.imshow("Animation", img) cv2.waitKey(20) # show for 20 ms # save image to output output_img_path = output_files_path + "/images/detections_one_by_one/" + class_name + "_detection" + str(idx) + ".jpg" cv2.imwrite(output_img_path, img) # save the image with all the objects drawn to it cv2.imwrite(img_cumulative_path, img_cumulative) #print(tp) # compute precision/recall cumsum = 0 for idx, val in enumerate(fp): fp[idx] += cumsum cumsum += val cumsum = 0 for idx, val in enumerate(tp): tp[idx] += cumsum cumsum += val #print(tp) rec = tp[:] for idx, val in enumerate(tp): rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name] #print(rec) prec = tp[:] for idx, val in enumerate(tp): prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx]) #print(prec) ap, mrec, mprec = voc_ap(rec[:], prec[:]) sum_AP += ap text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100) """ Write to output.txt """ rounded_prec = [ '%.2f' % elem for elem in prec ] rounded_rec = [ '%.2f' % elem for elem in rec ] output_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n") if not args.quiet: print(text) ap_dictionary[class_name] = ap n_images = counter_images_per_class[class_name] lamr, mr, fppi = log_average_miss_rate(np.array(prec), np.array(rec), n_images) lamr_dictionary[class_name] = lamr """ Draw plot """ if draw_plot: plt.plot(rec, prec, '-o') # add a new penultimate point to the list (mrec[-2], 0.0) # since the last line segment (and respective area) do not affect the AP value area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]] area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]] plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r') # set window title fig = plt.gcf() # gcf - get current figure fig.canvas.set_window_title('AP ' + class_name) # set plot title plt.title('class: ' + text) #plt.suptitle('This is a somewhat long figure title', fontsize=16) # set axis titles plt.xlabel('Recall') plt.ylabel('Precision') # optional - set axes axes = plt.gca() # gca - get current axes axes.set_xlim([0.0,1.0]) axes.set_ylim([0.0,1.05]) # .05 to give some extra space # Alternative option -> wait for button to be pressed #while not plt.waitforbuttonpress(): pass # wait for key display # Alternative option -> normal display #plt.show() # save the plot fig.savefig(output_files_path + "/classes/" + class_name + ".png") plt.cla() # clear axes for next plot if show_animation: cv2.destroyAllWindows() output_file.write("\n# mAP of all classes\n") mAP = sum_AP / n_classes text = "mAP = {0:.2f}%".format(mAP*100) output_file.write(text + "\n") print(text) """ Draw false negatives """ if show_animation: pink = (203,192,255) for tmp_file in gt_files: ground_truth_data = json.load(open(tmp_file)) #print(ground_truth_data) # get name of corresponding image start = TEMP_FILES_PATH + '/' img_id = tmp_file[tmp_file.find(start)+len(start):tmp_file.rfind('_ground_truth.json')] img_cumulative_path = output_files_path + "/images/" + img_id + ".jpg" img = cv2.imread(img_cumulative_path) if img is None: img_path = IMG_PATH + '/' + img_id + ".jpg" img = cv2.imread(img_path) # draw false negatives for obj in ground_truth_data: if not obj['used']: bbgt = [ int(round(float(x))) for x in obj["bbox"].split() ] cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),pink,2) cv2.imwrite(img_cumulative_path, img) # remove the temp_files directory shutil.rmtree(TEMP_FILES_PATH) """ Count total of detection-results """ # iterate through all the files det_counter_per_class = {} for txt_file in dr_files_list: # get lines to list lines_list = file_lines_to_list(txt_file) for line in lines_list: class_name = line.split()[0] # check if class is in the ignore list, if yes skip if class_name in args.ignore: continue # count that object if class_name in det_counter_per_class: det_counter_per_class[class_name] += 1 else: # if class didn't exist yet det_counter_per_class[class_name] = 1 #print(det_counter_per_class) dr_classes = list(det_counter_per_class.keys()) """ Plot the total number of occurences of each class in the ground-truth """ if draw_plot: window_title = "ground-truth-info" plot_title = "ground-truth\n" plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)" x_label = "Number of objects per class" output_path = output_files_path + "/ground-truth-info.png" to_show = False plot_color = 'forestgreen' draw_plot_func( gt_counter_per_class, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, '', ) """ Write number of ground-truth objects per class to results.txt """ with open(output_files_path + "/output.txt", 'a') as output_file: output_file.write("\n# Number of ground-truth objects per class\n") for class_name in sorted(gt_counter_per_class): output_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n") """ Finish counting true positives """ for class_name in dr_classes: # if class exists in detection-result but not in ground-truth then there are no true positives in that class if class_name not in gt_classes: count_true_positives[class_name] = 0 #print(count_true_positives) """ Plot the total number of occurences of each class in the "detection-results" folder """ if draw_plot: window_title = "detection-results-info" # Plot title plot_title = "detection-results\n" plot_title += "(" + str(len(dr_files_list)) + " files and " count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values())) plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)" # end Plot title x_label = "Number of objects per class" output_path = output_files_path + "/detection-results-info.png" to_show = False plot_color = 'forestgreen' true_p_bar = count_true_positives draw_plot_func( det_counter_per_class, len(det_counter_per_class), window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar ) """ Write number of detected objects per class to output.txt """ with open(output_files_path + "/output.txt", 'a') as output_file: output_file.write("\n# Number of detected objects per class\n") for class_name in sorted(dr_classes): n_det = det_counter_per_class[class_name] text = class_name + ": " + str(n_det) text += " (tp:" + str(count_true_positives[class_name]) + "" text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n" output_file.write(text) """ Draw log-average miss rate plot (Show lamr of all classes in decreasing order) """ if draw_plot: window_title = "lamr" plot_title = "log-average miss rate" x_label = "log-average miss rate" output_path = output_files_path + "/lamr.png" to_show = False plot_color = 'royalblue' draw_plot_func( lamr_dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, "" ) """ Draw mAP plot (Show AP's of all classes in decreasing order) """ if draw_plot: window_title = "mAP" plot_title = "mAP = {0:.2f}%".format(mAP*100) x_label = "Average Precision" output_path = output_files_path + "/mAP.png" to_show = True plot_color = 'royalblue' draw_plot_func( ap_dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, "" )
39.536344
135
0.569542
b5b6cb27bf3119558e8ff5802b29b39c2b5f72aa
32,345
py
Python
mobmonitor/checkfile/manager_unittest.py
hustwei/chromite
10eb79abeb64e859362546214b7e039096ac9830
[ "BSD-3-Clause" ]
null
null
null
mobmonitor/checkfile/manager_unittest.py
hustwei/chromite
10eb79abeb64e859362546214b7e039096ac9830
[ "BSD-3-Clause" ]
null
null
null
mobmonitor/checkfile/manager_unittest.py
hustwei/chromite
10eb79abeb64e859362546214b7e039096ac9830
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Unittests for Mob* Monitor checkfile manager.""" from __future__ import print_function import imp import mock import os import subprocess import time import threading from cherrypy.process import plugins from chromite.lib import cros_test_lib from chromite.mobmonitor.checkfile import manager # Test health check and related attributes class TestHealthCheck(object): """Test health check.""" def Check(self): """Stub Check.""" return 0 def Diagnose(self, _errcode): """Stub Diagnose.""" return ('Unknown Error.', []) class TestHealthCheckHasAttributes(object): """Test health check with attributes.""" CHECK_INTERVAL_SEC = 10 def Check(self): """Stub Check.""" return 0 def Diagnose(self, _errcode): """Stub Diagnose.""" return ('Unknown Error.', []) class TestHealthCheckUnhealthy(object): """Unhealthy test health check.""" def __init__(self): self.x = -1 def Check(self): """Stub Check.""" return self.x def Diagnose(self, errcode): """Stub Diagnose.""" if errcode == -1: return ('Stub Error.', [self.Repair]) return ('Unknown Error.', []) def Repair(self): self.x = 0 class TestHealthCheckMultipleActions(object): """Unhealthy check with many actions that have different parameters.""" def __init__(self): self.x = -1 def Check(self): """Stub Check.""" return self.x def Diagnose(self, errcode): """Stub Diagnose.""" if errcode == -1: return ('Stub Error.', [self.NoParams, self.PositionalParams, self.DefaultParams, self.MixedParams]) return ('Unknown Error.', []) def NoParams(self): """NoParams Action.""" self.x = 0 # pylint: disable=unused-argument def PositionalParams(self, x, y, z): """PositionalParams Action.""" self.x = 0 def DefaultParams(self, x=1, y=2, z=3): """DefaultParams Action.""" self.x = 0 def MixedParams(self, x, y, z=1): """MixedParams Action.""" self.x = 0 # pylint: enable=unused-argument class TestHealthCheckQuasihealthy(object): """Quasi-healthy test health check.""" def Check(self): """Stub Check.""" return 1 def Diagnose(self, errcode): """Stub Diagnose.""" if errcode == 1: return ('Stub Error.', [self.RepairStub]) return ('Unknown Error.', []) def RepairStub(self): """Stub repair action.""" class TestHealthCheckBroken(object): """Broken test health check.""" def Check(self): """Stub Check.""" raise ValueError() def Diagnose(self, _errcode): """A broken Diagnose function. A proper return should be a pair.""" raise ValueError() def TestAction(): return True TEST_SERVICE_NAME = 'test-service' TEST_MTIME = 100 TEST_EXEC_TIME = 400 CHECKDIR = '.' # Strings that are used to mock actual check modules. CHECKFILE_MANY_SIMPLE = ''' SERVICE = 'test-service' class MyHealthCheck2(object): def Check(self): return 0 def Diagnose(self, errcode): return ('Unknown error.', []) class MyHealthCheck3(object): def Check(self): return 0 def Diagnose(self, errcode): return ('Unknown error.', []) class MyHealthCheck4(object): def Check(self): return 0 def Diagnose(self, errcode): return ('Unknown error.', []) ''' CHECKFILE_MANY_SIMPLE_ONE_BAD = ''' SERVICE = 'test-service' class MyHealthCheck(object): def Check(self): return 0 def Diagnose(self, errcode): return ('Unknown error.', []) class NotAHealthCheck(object): def Diagnose(self, errcode): return ('Unknown error.', []) class MyHealthCheck2(object): def Check(self): return 0 def Diagnose(self, errcode): return ('Unknown error.', []) ''' NOT_A_CHECKFILE = ''' class NotAHealthCheck(object): def NotCheckNorDiagnose(self): return -1 ''' ANOTHER_NOT_A_CHECKFILE = ''' class AnotherNotAHealthCheck(object): def AnotherNotCheckNorDiagnose(self): return -2 ''' ACTION_FILE = ''' def TestAction(): return True def AnotherAction(): return False ''' class RunCommand(threading.Thread): """Helper class for executing the Mob* Monitor with a timeout.""" def __init__(self, cmd, timeout): threading.Thread.__init__(self) self.cmd = cmd self.timeout = timeout self.p = None self.proc_stdout = None self.proc_stderr = None def run(self): self.p = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) self.proc_stdout, self.proc_stderr = self.p.communicate() def Stop(self): self.join(self.timeout) if self.is_alive(): self.p.terminate() self.join(self.timeout) if self.is_alive(): self.p.kill() self.join(self.timeout) return self.proc_stdout class CheckFileManagerHelperTest(cros_test_lib.MockTestCase): """Unittests for CheckFileManager helper functions.""" def testMapHealthcheckStatusToDict(self): """Test mapping a manager.HEALTHCHECK_STATUS to a dict.""" def _func(): pass status = manager.HEALTHCHECK_STATUS('test', False, 'desc', [_func]) expect = {'name': 'test', 'health': False, 'description': 'desc', 'actions': ['_func']} self.assertEquals(expect, manager.MapHealthcheckStatusToDict(status)) def testMapServiceStatusToDict(self): """Test mapping a manager.SERVICE_STATUS to a dict.""" def _func(): pass hcstatus = manager.HEALTHCHECK_STATUS('test', False, 'desc', [_func]) hcexpect = {'name': 'test', 'health': False, 'description': 'desc', 'actions': ['_func']} status = manager.SERVICE_STATUS('test-service', False, [hcstatus]) expect = {'service': 'test-service', 'health': False, 'healthchecks': [hcexpect]} self.assertEquals(expect, manager.MapServiceStatusToDict(status)) def testMapActionInfoToDict(self): """Test mapping a manager.ACTION_INFO to a dict.""" actioninfo = manager.ACTION_INFO('test', 'test', [1], {'a': 1}) expect = {'action': 'test', 'info': 'test', 'args': [1], 'kwargs': {'a': 1}} self.assertEquals(expect, manager.MapActionInfoToDict(actioninfo)) def testIsHealthcheckHealthy(self): """Test checking whether health check statuses are healthy.""" # Test a healthy health check. hch = manager.HEALTHCHECK_STATUS('healthy', True, manager.NULL_DESCRIPTION, manager.EMPTY_ACTIONS) self.assertTrue(manager.isHealthcheckHealthy(hch)) # Test a quasi-healthy health check. hcq = manager.HEALTHCHECK_STATUS('quasi-healthy', True, 'Quasi-Healthy', ['QuasiAction']) self.assertFalse(manager.isHealthcheckHealthy(hcq)) # Test an unhealthy health check. hcu = manager.HEALTHCHECK_STATUS('unhealthy', False, 'Unhealthy', ['UnhealthyAction']) self.assertFalse(manager.isHealthcheckHealthy(hcu)) # Test an object that is not a health check status. s = manager.SERVICE_STATUS('service_status', True, []) self.assertFalse(manager.isHealthcheckHealthy(s)) def testIsServiceHealthy(self): """Test checking whether service statuses are healthy.""" # Define some health check statuses. hch = manager.HEALTHCHECK_STATUS('healthy', True, manager.NULL_DESCRIPTION, manager.EMPTY_ACTIONS) hcq = manager.HEALTHCHECK_STATUS('quasi-healthy', True, 'Quasi-Healthy', ['QuasiAction']) hcu = manager.HEALTHCHECK_STATUS('unhealthy', False, 'Unhealthy', ['UnhealthyAction']) # Test a healthy service. s = manager.SERVICE_STATUS('healthy', True, []) self.assertTrue(manager.isServiceHealthy(s)) # Test a quasi-healthy service. s = manager.SERVICE_STATUS('quasi-healthy', True, [hch, hcq]) self.assertFalse(manager.isServiceHealthy(s)) # Test an unhealthy service. s = manager.SERVICE_STATUS('unhealthy', False, [hcu]) self.assertFalse(manager.isServiceHealthy(s)) # Test an object that is not a service status. self.assertFalse(manager.isServiceHealthy(hch)) def testDetermineHealthcheckStatusHealthy(self): """Test DetermineHealthCheckStatus on a healthy check.""" hcname = TestHealthCheck.__name__ testhc = TestHealthCheck() expected = manager.HEALTHCHECK_STATUS(hcname, True, manager.NULL_DESCRIPTION, manager.EMPTY_ACTIONS) self.assertEquals(expected, manager.DetermineHealthcheckStatus(hcname, testhc)) def testDeterminHealthcheckStatusUnhealthy(self): """Test DetermineHealthcheckStatus on an unhealthy check.""" hcname = TestHealthCheckUnhealthy.__name__ testhc = TestHealthCheckUnhealthy() desc, actions = testhc.Diagnose(testhc.Check()) expected = manager.HEALTHCHECK_STATUS(hcname, False, desc, actions) self.assertEquals(expected, manager.DetermineHealthcheckStatus(hcname, testhc)) def testDetermineHealthcheckStatusQuasihealth(self): """Test DetermineHealthcheckStatus on a quasi-healthy check.""" hcname = TestHealthCheckQuasihealthy.__name__ testhc = TestHealthCheckQuasihealthy() desc, actions = testhc.Diagnose(testhc.Check()) expected = manager.HEALTHCHECK_STATUS(hcname, True, desc, actions) self.assertEquals(expected, manager.DetermineHealthcheckStatus(hcname, testhc)) def testDetermineHealthcheckStatusBrokenCheck(self): """Test DetermineHealthcheckStatus raises on a broken health check.""" hcname = TestHealthCheckBroken.__name__ testhc = TestHealthCheckBroken() result = manager.DetermineHealthcheckStatus(hcname, testhc) self.assertEquals(hcname, result.name) self.assertFalse(result.health) self.assertFalse(result.actions) def testIsHealthCheck(self): """Test that IsHealthCheck properly asserts the health check interface.""" class NoAttrs(object): """Test health check missing 'check' and 'diagnose' methods.""" class NoCheckAttr(object): """Test health check missing 'check' method.""" def Diagnose(self, errcode): pass class NoDiagnoseAttr(object): """Test health check missing 'diagnose' method.""" def Check(self): pass class GoodHealthCheck(object): """Test health check that implements 'check' and 'diagnose' methods.""" def Check(self): pass def Diagnose(self, errcode): pass self.assertFalse(manager.IsHealthCheck(NoAttrs())) self.assertFalse(manager.IsHealthCheck(NoCheckAttr())) self.assertFalse(manager.IsHealthCheck(NoDiagnoseAttr())) self.assertTrue(manager.IsHealthCheck(GoodHealthCheck())) def testApplyHealthCheckAttributesNoAttrs(self): """Test that we can apply attributes to a health check.""" testhc = TestHealthCheck() result = manager.ApplyHealthCheckAttributes(testhc) self.assertEquals(result.CHECK_INTERVAL_SEC, manager.CHECK_INTERVAL_DEFAULT_SEC) def testApplyHealthCheckAttributesHasAttrs(self): """Test that we do not override an acceptable attribute.""" testhc = TestHealthCheckHasAttributes() check_interval = testhc.CHECK_INTERVAL_SEC result = manager.ApplyHealthCheckAttributes(testhc) self.assertEquals(result.CHECK_INTERVAL_SEC, check_interval) def testImportFileAllHealthChecks(self): """Test that health checks and service name are collected.""" self.StartPatcher(mock.patch('os.path.splitext')) os.path.splitext.return_value = '/path/to/test_check.py' self.StartPatcher(mock.patch('os.path.getmtime')) os.path.getmtime.return_value = TEST_MTIME checkmodule = imp.new_module('test_check') exec CHECKFILE_MANY_SIMPLE in checkmodule.__dict__ self.StartPatcher(mock.patch('imp.load_source')) imp.load_source.return_value = checkmodule healthchecks, mtime = manager.ImportFile(TEST_SERVICE_NAME, '/') self.assertEquals(len(healthchecks), 3) self.assertEquals(mtime, TEST_MTIME) def testImportFileSomeHealthChecks(self): """Test importing when not all classes are actually health checks.""" self.StartPatcher(mock.patch('os.path.splitext')) os.path.splitext.return_value = '/path/to/test_check.py' self.StartPatcher(mock.patch('os.path.getmtime')) os.path.getmtime.return_value = TEST_MTIME checkmodule = imp.new_module('test_check') exec CHECKFILE_MANY_SIMPLE_ONE_BAD in checkmodule.__dict__ self.StartPatcher(mock.patch('imp.load_source')) imp.load_source.return_value = checkmodule healthchecks, mtime = manager.ImportFile(TEST_SERVICE_NAME, '/') self.assertEquals(len(healthchecks), 2) self.assertEquals(mtime, TEST_MTIME) class CheckFileManagerTest(cros_test_lib.MockTestCase): """Unittests for CheckFileManager.""" def testCollectionExecutionCallbackCheckfiles(self): """Test the CollectionExecutionCallback on collecting checkfiles.""" self.StartPatcher(mock.patch('os.walk')) os.walk.return_value = iter([[CHECKDIR, [TEST_SERVICE_NAME], []]]) self.StartPatcher(mock.patch('os.listdir')) os.listdir.return_value = ['test_check.py'] self.StartPatcher(mock.patch('os.path.isfile')) os.path.isfile.return_value = True self.StartPatcher(mock.patch('imp.find_module')) imp.find_module.return_value = (None, None, None) self.StartPatcher(mock.patch('imp.load_module')) myobj = TestHealthCheck() manager.ImportFile = mock.Mock(return_value=[[myobj], TEST_MTIME]) cfm = manager.CheckFileManager(checkdir=CHECKDIR) cfm.CollectionExecutionCallback() manager.ImportFile.assert_called_once_with( TEST_SERVICE_NAME, './%s/test_check.py' % TEST_SERVICE_NAME) self.assertTrue(TEST_SERVICE_NAME in cfm.service_checks) self.assertEquals(cfm.service_checks[TEST_SERVICE_NAME], {myobj.__class__.__name__: (TEST_MTIME, myobj)}) def testCollectionExecutionCallbackNoChecks(self): """Test the CollectionExecutionCallback with no valid check files.""" self.StartPatcher(mock.patch('os.walk')) os.walk.return_value = iter([['/checkdir/', [], ['test.py']]]) manager.ImportFile = mock.Mock(return_value=None) cfm = manager.CheckFileManager(checkdir=CHECKDIR) cfm.CollectionExecutionCallback() self.assertFalse(manager.ImportFile.called) self.assertFalse(TEST_SERVICE_NAME in cfm.service_checks) def testStartCollectionExecution(self): """Test the StartCollectionExecution method.""" plugins.Monitor = mock.Mock() cfm = manager.CheckFileManager(checkdir=CHECKDIR) cfm.StartCollectionExecution() self.assertTrue(plugins.Monitor.called) def testUpdateExistingHealthCheck(self): """Test update when a health check exists and is not stale.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) myobj = TestHealthCheck() cfm.service_checks[TEST_SERVICE_NAME] = {myobj.__class__.__name__: (TEST_MTIME, myobj)} myobj2 = TestHealthCheck() cfm.Update(TEST_SERVICE_NAME, [myobj2], TEST_MTIME) self.assertTrue(TEST_SERVICE_NAME in cfm.service_checks) self.assertEquals(cfm.service_checks[TEST_SERVICE_NAME], {myobj.__class__.__name__: (TEST_MTIME, myobj)}) def testUpdateNonExistingHealthCheck(self): """Test adding a new health check to the manager.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) cfm.service_checks = {} myobj = TestHealthCheck() cfm.Update(TEST_SERVICE_NAME, [myobj], TEST_MTIME) self.assertTrue(TEST_SERVICE_NAME in cfm.service_checks) self.assertEquals(cfm.service_checks[TEST_SERVICE_NAME], {myobj.__class__.__name__: (TEST_MTIME, myobj)}) def testExecuteFresh(self): """Test executing a health check when the result is still fresh.""" self.StartPatcher(mock.patch('time.time')) exec_time_offset = TestHealthCheckHasAttributes.CHECK_INTERVAL_SEC / 2 time.time.return_value = TEST_EXEC_TIME + exec_time_offset cfm = manager.CheckFileManager(checkdir=CHECKDIR) cfm.service_checks = {TEST_SERVICE_NAME: {TestHealthCheckHasAttributes.__name__: (TEST_MTIME, TestHealthCheckHasAttributes())}} cfm.service_check_results = { TEST_SERVICE_NAME: {TestHealthCheckHasAttributes.__name__: (manager.HCEXECUTION_COMPLETED, TEST_EXEC_TIME, None)}} cfm.Execute() _, exec_time, _ = cfm.service_check_results[TEST_SERVICE_NAME][ TestHealthCheckHasAttributes.__name__] self.assertEquals(exec_time, TEST_EXEC_TIME) def testExecuteStale(self): """Test executing a health check when the result is stale.""" self.StartPatcher(mock.patch('time.time')) exec_time_offset = TestHealthCheckHasAttributes.CHECK_INTERVAL_SEC * 2 time.time.return_value = TEST_EXEC_TIME + exec_time_offset cfm = manager.CheckFileManager(checkdir=CHECKDIR) cfm.service_checks = {TEST_SERVICE_NAME: {TestHealthCheckHasAttributes.__name__: (TEST_MTIME, TestHealthCheckHasAttributes())}} cfm.service_check_results = { TEST_SERVICE_NAME: {TestHealthCheckHasAttributes.__name__: (manager.HCEXECUTION_COMPLETED, TEST_EXEC_TIME, None)}} cfm.Execute() _, exec_time, _ = cfm.service_check_results[TEST_SERVICE_NAME][ TestHealthCheckHasAttributes.__name__] self.assertEquals(exec_time, TEST_EXEC_TIME + exec_time_offset) def testExecuteNonExistent(self): """Test executing a health check when the result is nonexistent.""" self.StartPatcher(mock.patch('time.time')) time.time.return_value = TEST_EXEC_TIME cfm = manager.CheckFileManager(checkdir=CHECKDIR) cfm.service_checks = {TEST_SERVICE_NAME: {TestHealthCheck.__name__: (TEST_MTIME, TestHealthCheck())}} cfm.Execute() resultsdict = cfm.service_check_results.get(TEST_SERVICE_NAME) self.assertTrue(resultsdict is not None) exec_status, exec_time, _ = resultsdict.get(TestHealthCheck.__name__, (None, None, None)) self.assertTrue(exec_status is not None) self.assertTrue(exec_time is not None) self.assertEquals(exec_status, manager.HCEXECUTION_COMPLETED) self.assertEquals(exec_time, TEST_EXEC_TIME) def testExecuteForce(self): """Test executing a health check by ignoring the check interval.""" self.StartPatcher(mock.patch('time.time')) exec_time_offset = TestHealthCheckHasAttributes.CHECK_INTERVAL_SEC / 2 time.time.return_value = TEST_EXEC_TIME + exec_time_offset cfm = manager.CheckFileManager(checkdir=CHECKDIR) cfm.service_checks = {TEST_SERVICE_NAME: {TestHealthCheckHasAttributes.__name__: (TEST_MTIME, TestHealthCheckHasAttributes())}} cfm.service_check_results = { TEST_SERVICE_NAME: {TestHealthCheckHasAttributes.__name__: (manager.HCEXECUTION_COMPLETED, TEST_EXEC_TIME, None)}} cfm.Execute(force=True) _, exec_time, _ = cfm.service_check_results[TEST_SERVICE_NAME][ TestHealthCheckHasAttributes.__name__] self.assertEquals(exec_time, TEST_EXEC_TIME + exec_time_offset) def testConsolidateServiceStatesUnhealthy(self): """Test consolidating state for a service with unhealthy checks.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) # Setup some test check results hcname = TestHealthCheck.__name__ statuses = [ manager.HEALTHCHECK_STATUS(hcname, False, 'Failed', ['Repair']), manager.HEALTHCHECK_STATUS(hcname, True, 'Quasi', ['RepairQuasi']), manager.HEALTHCHECK_STATUS(hcname, True, '', [])] cfm.service_check_results.setdefault(TEST_SERVICE_NAME, {}) for i, status in enumerate(statuses): name = '%s_%s' % (hcname, i) cfm.service_check_results[TEST_SERVICE_NAME][name] = ( manager.HCEXECUTION_COMPLETED, TEST_EXEC_TIME, status) # Run and check the results. cfm.ConsolidateServiceStates() self.assertTrue(TEST_SERVICE_NAME in cfm.service_states) _, health, healthchecks = cfm.service_states[TEST_SERVICE_NAME] self.assertFalse(health) self.assertEquals(2, len(healthchecks)) self.assertTrue(all([x in healthchecks for x in statuses[:2]])) def testConsolidateServiceStatesQuasiHealthy(self): """Test consolidating state for a service with quasi-healthy checks.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) # Setup some test check results hcname = TestHealthCheck.__name__ statuses = [ manager.HEALTHCHECK_STATUS(hcname, True, 'Quasi', ['RepairQuasi']), manager.HEALTHCHECK_STATUS(hcname, True, '', [])] cfm.service_check_results.setdefault(TEST_SERVICE_NAME, {}) for i, status in enumerate(statuses): name = '%s_%s' % (hcname, i) cfm.service_check_results[TEST_SERVICE_NAME][name] = ( manager.HCEXECUTION_COMPLETED, TEST_EXEC_TIME, status) # Run and check the results. cfm.ConsolidateServiceStates() self.assertTrue(TEST_SERVICE_NAME in cfm.service_states) _, health, healthchecks = cfm.service_states[TEST_SERVICE_NAME] self.assertTrue(health) self.assertEquals(1, len(healthchecks)) self.assertTrue(statuses[0] in healthchecks) def testConsolidateServiceStatesHealthy(self): """Test consolidating state for a healthy service.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) # Setup some test check results hcname = TestHealthCheck.__name__ hcname2 = '%s_2' % hcname statuses = [ manager.HEALTHCHECK_STATUS(hcname, True, '', []), manager.HEALTHCHECK_STATUS(hcname2, True, '', [])] cfm.service_check_results.setdefault(TEST_SERVICE_NAME, {}) cfm.service_check_results[TEST_SERVICE_NAME][hcname] = ( manager.HCEXECUTION_COMPLETED, TEST_EXEC_TIME, statuses[0]) cfm.service_check_results[TEST_SERVICE_NAME][hcname2] = ( manager.HCEXECUTION_IN_PROGRESS, TEST_EXEC_TIME, statuses[1]) # Run and check. cfm.ConsolidateServiceStates() self.assertTrue(TEST_SERVICE_NAME in cfm.service_states) _, health, healthchecks = cfm.service_states.get(TEST_SERVICE_NAME) self.assertTrue(health) self.assertEquals(0, len(healthchecks)) def testGetServiceList(self): """Test the GetServiceList RPC response.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) self.assertEquals([], cfm.GetServiceList()) status = manager.SERVICE_STATUS(TEST_SERVICE_NAME, True, []) cfm.service_states[TEST_SERVICE_NAME] = status self.assertEquals([TEST_SERVICE_NAME], cfm.GetServiceList()) def testGetStatusNonExistent(self): """Test the GetStatus RPC response when the service does not exist.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) self.assertFalse(TEST_SERVICE_NAME in cfm.service_states) status = manager.SERVICE_STATUS(TEST_SERVICE_NAME, False, []) self.assertEquals(status, cfm.GetStatus(TEST_SERVICE_NAME)) def testGetStatusSingleService(self): """Test the GetStatus RPC response for a single service.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) s1name = TEST_SERVICE_NAME s2name = '%s_2' % s1name status1 = manager.SERVICE_STATUS(s1name, True, []) status2 = manager.SERVICE_STATUS(s2name, True, []) cfm.service_states[s1name] = status1 cfm.service_states[s2name] = status2 self.assertEquals(status1, cfm.GetStatus(s1name)) self.assertEquals(status2, cfm.GetStatus(s2name)) def testGetStatusAllServices(self): """Test the GetStatus RPC response when no service is specified.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) s1name = TEST_SERVICE_NAME s2name = '%s_2' % s1name status1 = manager.SERVICE_STATUS(s1name, True, []) status2 = manager.SERVICE_STATUS(s2name, True, []) cfm.service_states[s1name] = status1 cfm.service_states[s2name] = status2 result = cfm.GetStatus('') self.assertEquals(2, len(result)) self.assertTrue(all([x in result for x in [status1, status2]])) def testRepairServiceHealthy(self): """Test the RepairService RPC when the service is healthy.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) healthy_status = manager.SERVICE_STATUS(TEST_SERVICE_NAME, True, []) cfm.service_states[TEST_SERVICE_NAME] = healthy_status self.assertEquals(healthy_status, cfm.RepairService(TEST_SERVICE_NAME, 'HealthcheckName', 'RepairFuncName', [], {})) def testRepairServiceNonExistent(self): """Test the RepairService RPC when the service does not exist.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) self.assertFalse(TEST_SERVICE_NAME in cfm.service_states) expected = manager.SERVICE_STATUS(TEST_SERVICE_NAME, False, []) result = cfm.RepairService(TEST_SERVICE_NAME, 'DummyHealthcheck', 'DummyAction', [], {}) self.assertEquals(expected, result) def testRepairServiceInvalidAction(self): """Test the RepairService RPC when the action is not recognized.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) hcobj = TestHealthCheckUnhealthy() cfm.service_checks[TEST_SERVICE_NAME] = { hcobj.__class__.__name__: (TEST_MTIME, hcobj)} unhealthy_status = manager.SERVICE_STATUS( TEST_SERVICE_NAME, False, [manager.HEALTHCHECK_STATUS(hcobj.__class__.__name__, False, 'Always fails', [hcobj.Repair])]) cfm.service_states[TEST_SERVICE_NAME] = unhealthy_status status = cfm.GetStatus(TEST_SERVICE_NAME) self.assertFalse(status.health) self.assertEquals(1, len(status.healthchecks)) status = cfm.RepairService(TEST_SERVICE_NAME, hcobj.__class__.__name__, 'Blah', [], {}) self.assertFalse(status.health) self.assertEquals(1, len(status.healthchecks)) def testRepairServiceInvalidActionArguments(self): """Test the RepairService RPC when the action arguments are invalid.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) hcobj = TestHealthCheckUnhealthy() cfm.service_checks[TEST_SERVICE_NAME] = { hcobj.__class__.__name__: (TEST_MTIME, hcobj)} unhealthy_status = manager.SERVICE_STATUS( TEST_SERVICE_NAME, False, [manager.HEALTHCHECK_STATUS(hcobj.__class__.__name__, False, 'Always fails', [hcobj.Repair])]) cfm.service_states[TEST_SERVICE_NAME] = unhealthy_status status = cfm.GetStatus(TEST_SERVICE_NAME) self.assertFalse(status.health) self.assertEquals(1, len(status.healthchecks)) status = cfm.RepairService(TEST_SERVICE_NAME, hcobj.__class__.__name__, 'Repair', [1, 2, 3], {}) self.assertFalse(status.health) self.assertEquals(1, len(status.healthchecks)) def testRepairService(self): """Test the RepairService RPC to repair an unhealthy service.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) hcobj = TestHealthCheckUnhealthy() cfm.service_checks[TEST_SERVICE_NAME] = { hcobj.__class__.__name__: (TEST_MTIME, hcobj)} unhealthy_status = manager.SERVICE_STATUS( TEST_SERVICE_NAME, False, [manager.HEALTHCHECK_STATUS(hcobj.__class__.__name__, False, 'Always fails', [hcobj.Repair])]) cfm.service_states[TEST_SERVICE_NAME] = unhealthy_status status = cfm.GetStatus(TEST_SERVICE_NAME) self.assertFalse(status.health) self.assertEquals(1, len(status.healthchecks)) status = cfm.RepairService(TEST_SERVICE_NAME, hcobj.__class__.__name__, hcobj.Repair.__name__, [], {}) self.assertTrue(status.health) self.assertEquals(0, len(status.healthchecks)) def testActionInfoServiceNonExistent(self): """Test the ActionInfo RPC when the service does not exist.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) self.assertFalse(TEST_SERVICE_NAME in cfm.service_states) expect = manager.ACTION_INFO('test', 'Service not recognized.', [], {}) result = cfm.ActionInfo(TEST_SERVICE_NAME, 'test', 'test') self.assertEquals(expect, result) def testActionInfoServiceHealthy(self): """Test the ActionInfo RPC when the service is healthy.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) healthy_status = manager.SERVICE_STATUS(TEST_SERVICE_NAME, True, []) cfm.service_states[TEST_SERVICE_NAME] = healthy_status expect = manager.ACTION_INFO('test', 'Service is healthy.', [], {}) result = cfm.ActionInfo(TEST_SERVICE_NAME, 'test', 'test') self.assertEquals(expect, result) def testActionInfoActionNonExistent(self): """Test the ActionInfo RPC when the action does not exist.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) hcobj = TestHealthCheckUnhealthy() cfm.service_checks[TEST_SERVICE_NAME] = { hcobj.__class__.__name__: (TEST_MTIME, hcobj)} unhealthy_status = manager.SERVICE_STATUS( TEST_SERVICE_NAME, False, [manager.HEALTHCHECK_STATUS(hcobj.__class__.__name__, False, 'Always fails', [hcobj.Repair])]) cfm.service_states[TEST_SERVICE_NAME] = unhealthy_status expect = manager.ACTION_INFO('test', 'Action not recognized.', [], {}) result = cfm.ActionInfo(TEST_SERVICE_NAME, hcobj.__class__.__name__, 'test') self.assertEquals(expect, result) def testActionInfo(self): """Test the ActionInfo RPC to collect information on a repair action.""" cfm = manager.CheckFileManager(checkdir=CHECKDIR) hcobj = TestHealthCheckMultipleActions() hcname = hcobj.__class__.__name__ actions = [hcobj.NoParams, hcobj.PositionalParams, hcobj.DefaultParams, hcobj.MixedParams] cfm.service_checks[TEST_SERVICE_NAME] = {hcname: (TEST_MTIME, hcobj)} unhealthy_status = manager.SERVICE_STATUS( TEST_SERVICE_NAME, False, [manager.HEALTHCHECK_STATUS(hcname, False, 'Always fails', actions)]) cfm.service_states[TEST_SERVICE_NAME] = unhealthy_status # Test ActionInfo when the action has no parameters. expect = manager.ACTION_INFO('NoParams', 'NoParams Action.', [], {}) self.assertEquals(expect, cfm.ActionInfo(TEST_SERVICE_NAME, hcname, 'NoParams')) # Test ActionInfo when the action has only positional parameters. expect = manager.ACTION_INFO('PositionalParams', 'PositionalParams Action.', ['x', 'y', 'z'], {}) self.assertEquals(expect, cfm.ActionInfo(TEST_SERVICE_NAME, hcname, 'PositionalParams')) # Test ActionInfo when the action has only default parameters. expect = manager.ACTION_INFO('DefaultParams', 'DefaultParams Action.', [], {'x': 1, 'y': 2, 'z': 3}) self.assertEquals(expect, cfm.ActionInfo(TEST_SERVICE_NAME, hcname, 'DefaultParams')) # Test ActionInfo when the action has positional and default parameters. expect = manager.ACTION_INFO('MixedParams', 'MixedParams Action.', ['x', 'y'], {'z': 1}) self.assertEquals(expect, cfm.ActionInfo(TEST_SERVICE_NAME, hcname, 'MixedParams'))
35.543956
80
0.681465
5f7f8f0c7f8a4120d0671975ae42bd9ad01bdb75
439
py
Python
djangocms_baseplugins/text/translation.py
benzkji/djangocms-baseplugins
7f041a030ed93dcdec70e4ca777b841846b8f2f2
[ "MIT" ]
2
2019-04-14T01:31:22.000Z
2020-03-05T13:06:57.000Z
djangocms_baseplugins/text/translation.py
benzkji/djangocms-baseplugins
7f041a030ed93dcdec70e4ca777b841846b8f2f2
[ "MIT" ]
32
2017-04-04T09:28:06.000Z
2021-08-18T16:23:02.000Z
djangocms_baseplugins/text/translation.py
bnzk/djangocms-baseplugins
7f041a030ed93dcdec70e4ca777b841846b8f2f2
[ "MIT" ]
null
null
null
from django.conf import settings from modeltranslation.translator import TranslationOptions, translator from djangocms_baseplugins.baseplugin import defaults from . import conf from .models import Text class TextTranslationOptions(TranslationOptions): fields = defaults.TRANSLATED_FIELDS + conf.TRANSLATED_FIELDS if getattr(settings, 'DJANGOCMS_BASEPLUGINS_TRANSLATE', None): translator.register(Text, TextTranslationOptions)
29.266667
70
0.838269
6951603c37853d581ab4afb52d1a4d3d95ad2e48
12,462
py
Python
deep3dmap/datasets/scannet.py
achao2013/DeepRecon
1c9b0480710212e1fe86ab75dcf0b30bd9f654e7
[ "Apache-2.0" ]
30
2022-02-05T18:35:27.000Z
2022-02-09T09:14:41.000Z
deep3dmap/datasets/scannet.py
achao2013/DeepRecon
1c9b0480710212e1fe86ab75dcf0b30bd9f654e7
[ "Apache-2.0" ]
null
null
null
deep3dmap/datasets/scannet.py
achao2013/DeepRecon
1c9b0480710212e1fe86ab75dcf0b30bd9f654e7
[ "Apache-2.0" ]
null
null
null
# Copyright (c) achao2013. All rights reserved. import torch import numpy as np import os import cv2 import pickle from PIL import Image from torch.utils.data import Dataset from .builder import DATASETS from .pipelines import Compose import sys sys.path.append('.') import argparse import json import os import numpy as np from deep3dmap.core.renderer.rerender_pr import PyRenderer import trimesh from deep3dmap.core.evaluation.depth_eval import eval_depth from deep3dmap.core.evaluation.mesh_eval import eval_fscore from deep3dmap.core.evaluation.metrics_utils import parse_metrics_neucon import open3d as o3d import ray from ray.exceptions import GetTimeoutError torch.multiprocessing.set_sharing_strategy('file_system') @DATASETS.register_module() class ScanNetDataset(Dataset): CLASSES=None def __init__(self, datapath, mode, pipeline, nviews, n_scales, epoch=0, test_mode=False): super(ScanNetDataset, self).__init__() self.datapath = datapath self.mode = mode self.test_mode = test_mode self.n_views = nviews self.pipeline = pipeline self.tsdf_file = 'all_tsdf_{}'.format(self.n_views) assert self.mode in ["train", "val", "test", "train_debug", "val_debug"] self.metas = self.build_list() if mode == 'test': self.source_path = 'scans_test' else: self.source_path = 'scans' self.n_scales = n_scales self.epoch = epoch self.tsdf_cashe = {} self.max_cashe = 100 # processing pipeline self.pipeline = Compose(pipeline) self.flag = np.zeros(len(self), dtype=np.uint8) def set_epoch(self, epoch): self.epoch=epoch self.tsdf_cashe = {} def build_list(self): with open(os.path.join(self.datapath, self.tsdf_file, 'fragments_{}.pkl'.format(self.mode)), 'rb') as f: metas = pickle.load(f) return metas def __len__(self): return len(self.metas) def read_cam_file(self, filepath, vid): intrinsics = np.loadtxt(os.path.join(filepath, 'intrinsic', 'intrinsic_color.txt'), delimiter=' ')[:3, :3] intrinsics = intrinsics.astype(np.float32) extrinsics = np.loadtxt(os.path.join(filepath, 'pose', '{}.txt'.format(str(vid)))) return intrinsics, extrinsics def read_img(self, filepath): img = Image.open(filepath) return img def read_depth(self, filepath): # Read depth image and camera pose depth_im = cv2.imread(filepath, -1).astype( np.float32) depth_im /= 1000. # depth is saved in 16-bit PNG in millimeters depth_im[depth_im > 3.0] = 0 return depth_im def read_scene_volumes(self, data_path, scene): if scene not in self.tsdf_cashe.keys(): if len(self.tsdf_cashe) > self.max_cashe: self.tsdf_cashe = {} full_tsdf_list = [] for l in range(self.n_scales + 1): # load full tsdf volume full_tsdf = np.load(os.path.join(data_path, scene, 'full_tsdf_layer{}.npz'.format(l)), allow_pickle=True) full_tsdf_list.append(full_tsdf.f.arr_0) self.tsdf_cashe[scene] = full_tsdf_list return self.tsdf_cashe[scene] def __getitem__(self, idx): meta = self.metas[idx] imgs = [] depth = [] extrinsics_list = [] intrinsics_list = [] tsdf_list = self.read_scene_volumes(os.path.join(self.datapath, self.tsdf_file), meta['scene']) for i, vid in enumerate(meta['image_ids']): # load images imgs.append( self.read_img( os.path.join(self.datapath, self.source_path, meta['scene'], 'color', '{}.jpg'.format(vid)))) depth.append( self.read_depth( os.path.join(self.datapath, self.source_path, meta['scene'], 'depth', '{}.png'.format(vid))) ) # load intrinsics and extrinsics intrinsics, extrinsics = self.read_cam_file(os.path.join(self.datapath, self.source_path, meta['scene']), vid) intrinsics_list.append(intrinsics) extrinsics_list.append(extrinsics) intrinsics = np.stack(intrinsics_list) extrinsics = np.stack(extrinsics_list) items = { 'imgs': imgs, 'depth': depth, 'intrinsics': intrinsics, 'extrinsics': extrinsics, 'tsdf_list_full': tsdf_list, 'vol_origin': meta['vol_origin'], 'scene': meta['scene'], 'fragment': meta['scene'] + '_' + str(meta['fragment_id']), 'epoch': [self.epoch], } if self.pipeline is not None: items = self.pipeline(items) return items def evaluate(self, outputs, metric, data_path, save_path, gt_path, max_depth, num_workers, loader_num_workers, n_proc, n_gpu, **kwargs): def process(scene, total_scenes_index, total_scenes_count, data_path, save_path, gt_path, max_depth, loader_num_workers): width, height = 640, 480 test_framid = os.listdir(os.path.join(data_path, scene, 'color')) n_imgs = len(test_framid) intrinsic_dir = os.path.join(data_path, scene, 'intrinsic', 'intrinsic_depth.txt') cam_intr = np.loadtxt(intrinsic_dir, delimiter=' ')[:3, :3] dataset = ScanNetSceneDataset(n_imgs, scene, data_path, max_depth) dataloader = torch.utils.data.DataLoader(dataset, batch_size=None, collate_fn=collate_fn, batch_sampler=None, num_workers=loader_num_workers) voxel_size = 4 # re-fuse to remove hole filling since filled holes are penalized in # mesh metrics # tsdf_fusion = TSDFFusion(vol_dim, float(voxel_size)/100, origin, color=False) #volume = o3d.pipelines.integration.ScalableTSDFVolume( volume = o3d.integration.ScalableTSDFVolume( voxel_length=float(voxel_size) / 100, sdf_trunc=3 * float(voxel_size) / 100, color_type=o3d.integration.TSDFVolumeColorType.RGB8) # color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8) mesh_file = os.path.join(save_path, '%s.ply' % scene.replace('/', '-')) try: mesh = trimesh.load(mesh_file, process=False) except: return scene, None # mesh renderer renderer = PyRenderer() mesh_opengl = renderer.mesh_opengl(mesh) for i, (cam_pose, depth_trgt, _) in enumerate(dataloader): print(total_scenes_index, total_scenes_count, scene, i, len(dataloader)) if cam_pose[0][0] == np.inf or cam_pose[0][0] == -np.inf or cam_pose[0][0] == np.nan: continue _, depth_pred = renderer(height, width, cam_intr, cam_pose, mesh_opengl) temp = eval_depth(depth_pred, depth_trgt) if i == 0: metrics_depth = temp else: metrics_depth = {key: value + temp[key] for key, value in metrics_depth.items()} # placeholder color_im = np.repeat(depth_pred[:, :, np.newaxis] * 255, 3, axis=2).astype(np.uint8) depth_pred = o3d.geometry.Image(depth_pred) color_im = o3d.geometry.Image(color_im) rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(color_im, depth_pred, depth_scale=1.0, depth_trunc=5.0, convert_rgb_to_intensity=False) volume.integrate( rgbd, o3d.camera.PinholeCameraIntrinsic(width=width, height=height, fx=cam_intr[0, 0], fy=cam_intr[1, 1], cx=cam_intr[0, 2], cy=cam_intr[1, 2]), np.linalg.inv(cam_pose)) metrics_depth = {key: value / len(dataloader) for key, value in metrics_depth.items()} # save trimed mesh file_mesh_trim = os.path.join(save_path, '%s_trim_single.ply' % scene.replace('/', '-')) o3d.io.write_triangle_mesh(file_mesh_trim, volume.extract_triangle_mesh()) # eval trimed mesh file_mesh_trgt = os.path.join(gt_path, scene, scene + '_vh_clean_2.ply') metrics_mesh = eval_fscore(file_mesh_trim, file_mesh_trgt) metrics = {**metrics_depth, **metrics_mesh} rslt_file = os.path.join(save_path, '%s_metrics.json' % scene.replace('/', '-')) json.dump(metrics, open(rslt_file, 'w')) return scene, metrics @ray.remote(num_cpus=num_workers + 1, num_gpus=(1 / n_proc)) def process_with_single_worker(info_files, data_path, save_path, gt_path, max_depth, loader_num_workers): metrics = {} for i, info_file in enumerate(info_files): scene, temp = process(info_file, i, len(info_files), data_path, save_path, gt_path, max_depth, loader_num_workers) if temp is not None: metrics[scene] = temp return metrics def split_list(_list, n): assert len(_list) >= n ret = [[] for _ in range(n)] for idx, item in enumerate(_list): ret[idx % n].append(item) return ret all_proc = n_proc * n_gpu ray.init(num_cpus=all_proc * (num_workers + 1), num_gpus=n_gpu) info_files = sorted(os.listdir(data_path)) info_files = split_list(info_files, all_proc) ray_worker_ids = [] for w_idx in range(all_proc): ray_worker_ids.append(process_with_single_worker.remote(info_files[w_idx], data_path, save_path, gt_path, max_depth, loader_num_workers)) try: results = ray.get(ray_worker_ids, timeout=14400) except GetTimeoutError: print("`get` timed out.") metrics = {} for r in results: metrics.update(r) rslt_file = os.path.join(save_path, 'metrics.json') json.dump(metrics, open(rslt_file, 'w')) # display results parse_metrics_neucon(rslt_file) print('parse_metrics_neucon end') return metrics def collate_fn(list_data): cam_pose, depth_im, _ = list_data # Concatenate all lists return cam_pose, depth_im, _ class ScanNetSceneDataset(Dataset): """Pytorch Dataset for a single scene. getitem loads individual frames""" def __init__(self, n_imgs, scene, data_path, max_depth, id_list=None): """ Args: """ self.n_imgs = n_imgs self.scene = scene self.data_path = data_path self.max_depth = max_depth if id_list is None: self.id_list = [i for i in range(n_imgs)] else: self.id_list = id_list def __len__(self): return self.n_imgs def __getitem__(self, id): """ Returns: dict of meta data and images for a single frame """ id = self.id_list[id] cam_pose = np.loadtxt(os.path.join(self.data_path, self.scene, "pose", str(id) + ".txt"), delimiter=' ') # Read depth image and camera pose depth_im = cv2.imread(os.path.join(self.data_path, self.scene, "depth", str(id) + ".png"), -1).astype( np.float32) depth_im /= 1000. # depth is saved in 16-bit PNG in millimeters depth_im[depth_im > self.max_depth] = 0 # Read RGB image color_image = cv2.cvtColor(cv2.imread(os.path.join(self.data_path, self.scene, "color", str(id) + ".jpg")), cv2.COLOR_BGR2RGB) color_image = cv2.resize(color_image, (depth_im.shape[1], depth_im.shape[0]), interpolation=cv2.INTER_AREA) return cam_pose, depth_im, color_image
36.979228
119
0.582491
f5a7fd627f706da58a67bd89caf9990b80a840f3
4,805
py
Python
src/print-alt-fastas.py
cory-weller/pseudodiploidy
33b22e906ccae424ecf065e98032c2843290b57c
[ "MIT" ]
null
null
null
src/print-alt-fastas.py
cory-weller/pseudodiploidy
33b22e906ccae424ecf065e98032c2843290b57c
[ "MIT" ]
null
null
null
src/print-alt-fastas.py
cory-weller/pseudodiploidy
33b22e906ccae424ecf065e98032c2843290b57c
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys import subprocess import gzip chromosome = sys.argv[1] start = sys.argv[2] end = sys.argv[3] chromosome = sys.argv[4] vcfFileName = 'data/external/chromosome12.vcf.gz' chromosomeName = 'chromosome12' def buildGenotypeDictionary(vcfFileName): # Create dictionary for this chromosome genotypeDict = {} with gzip.open(vcfFileName, 'r') as infile: for line in infile: try: line = line.decode() except(UnicodeDecodeError, AttributeError): pass chromosome, pos, _, ref, alt = line.strip().split()[0:5] strainGenotypes = line.strip().split()[9:] for strain, genotype in zip(strains, strainGenotypes): asldfkj if chromosome not in genotypeDict: genotypeDict[chromosome] = {} genotypes = [ref] + alt.split(',') # index0 = ref, index1 = alt1, index2 = alt2, etc genotypeDict[chromosome][int(pos)] = genotypes return(genotypeDict) genotypeDict = buildGenotypeDictionary(vcfFileName) positions = list(genotypeDict[chromosomeName].keys()) positions.sort(reverse = True) # fasta = '' # import VCF as list # sort inverse by position (descending, high to low) # for item in list, # read in whole thing # reverse order # vcf[position][individual] def import_fasta(filename): with gzip.open(filename, 'r') as infile: text = infile.read().splitlines() text = list(''.join(text[1:])) return(text) def personalize_fasta(site_genotypes, personal_genotypes_file, chromosome, ref_sequence): haplotype1 = ref_sequence[:] haplotype2 = ref_sequence[:] with open(personal_genotypes_file, 'r') as genotype_file: for line in genotype_file: chrom, pos, hap1, hap2 = line.split() if chrom == chromosome: pos = int(pos) if hap1 == "1/1": haplotype1[pos-1] = site_genotypes[pos][1] elif hap1 == "./.": haplotype1[pos-1] = "N" if hap2 == "1/1": haplotype2[pos-1] = site_genotypes[pos][1] elif hap2 == "./.": haplotype2[pos-1] = "N" return(haplotype1, haplotype2) def write_fasta(ind_n, chromosome, haplotype1, haplotype2, wrap_length): with open(str(ind_n) + "." + chromosome + ".fasta", 'w') as outfile: outfile.write(">" + str(ind_n) + "_" + chromosome + "_haplotype1" "\n") outfile.write('\n'.join([''.join(haplotype1[i:i+wrap_length]) for i in range(0,len(haplotype1),wrap_length)])) outfile.write('\n') outfile.write(">" + str(ind_n) + "_" + chromosome + "_haplotype2" "\n") outfile.write('\n'.join([''.join(haplotype2[i:i+wrap_length]) for i in range(0,len(haplotype2),wrap_length)])) def get_diploidGenomeSize(fastaFilename): cmd = """grep "^[^>]" %s | wc -c""" % (fastaFilename) output = subprocess.check_output(cmd, shell=True).rstrip() return(int(output)) def run_wgsim(fastaFilename, readLength, coverage): diploidGenomeSize = get_diploidGenomeSize(fastaFilename) nReads = round( (float(diploidGenomeSize) * coverage) / (4*readLength) ) ind_n, chromosome = fastaFilename.split(".")[0:2] cmd = """../../bin/wgsim-master/wgsim \ -1 %s \ -2 %s \ -N %s \ -e 0.001 \ -r 0 \ -R 0 \ %s.%s.fasta \ %s.%s.F.fq \ %s.%s.R.fq && \ rm %s.%s.fasta && \ bzip2 %s.%s.F.fq && \ bzip2 %s.%s.R.fq""" % (readLength, readLength, nReads, ind_n, chromosome, ind_n, chromosome, ind_n, chromosome, ind_n, chromosome, ind_n, chromosome, ind_n, chromosome) subprocess.call(cmd, shell=True) args = sys.argv[1:] project_directory = os.path.dirname(os.getcwd()) population = args[0] chromosome = args[1] first_ind = int(args[2]) last_ind = int(args[3]) site_genotypes = build_ref_alt_dict(directory = project_directory + "/input_data/", chromosome=chromosome) ref_sequence = import_fasta(filename = project_directory + "/input_data/" + chromosome + ".fa") os.chdir(population) # Iterate through individuals for ind_n in range(first_ind, last_ind+1, 1): fastaFilename = str(ind_n) + "." + chromosome + ".fasta" if os.path.exists(str(ind_n) + "." + chromosome + ".R.fq.bz2") == False: haplotype1, haplotype2 = personalize_fasta( site_genotypes=site_genotypes, personal_genotypes_file=str(ind_n) + ".geno", chromosome=chromosome, ref_sequence=ref_sequence) write_fasta(ind_n, chromosome, haplotype1, haplotype2, wrap_length=80) run_wgsim(fastaFilename, readLength=100.0, coverage=0.05)
38.44
172
0.612903
9fd4e408ed45ebc5efce1e70ad9ba75b4d1acdeb
7,887
py
Python
backend/test2_33914/settings.py
crowdbotics-apps/test2-33914
57ae765648af915113375de9cdde558d6499a9ad
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/test2_33914/settings.py
crowdbotics-apps/test2-33914
57ae765648af915113375de9cdde558d6499a9ad
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/test2_33914/settings.py
crowdbotics-apps/test2-33914
57ae765648af915113375de9cdde558d6499a9ad
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" Django settings for test2_33914 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import io import environ import logging import google.auth from google.cloud import secretmanager from google.auth.exceptions import DefaultCredentialsError from google.api_core.exceptions import PermissionDenied from modules.manifest import get_modules # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) env_file = os.path.join(BASE_DIR, ".env") env = environ.Env() env.read_env(env_file) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) try: # Pull secrets from Secret Manager _, project = google.auth.default() client = secretmanager.SecretManagerServiceClient() settings_name = os.environ.get("SETTINGS_NAME", "django_settings") name = client.secret_version_path(project, settings_name, "latest") payload = client.access_secret_version(name=name).payload.data.decode("UTF-8") env.read_env(io.StringIO(payload)) except (DefaultCredentialsError, PermissionDenied): pass # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', ] MODULES_APPS = get_modules() INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS + MODULES_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'test2_33914.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'web_build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'test2_33914.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" # GCP config GS_BUCKET_NAME = env.str("GS_BUCKET_NAME", "") if GS_BUCKET_NAME: DEFAULT_FILE_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" STATICFILES_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" GS_DEFAULT_ACL = "publicRead"
30.334615
112
0.736402
e4edd42130ed00c59ecaf05e3cef605b4d6ee123
613
py
Python
Algo and DSA/LeetCode-Solutions-master/Python/base-7.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
3,269
2018-10-12T01:29:40.000Z
2022-03-31T17:58:41.000Z
Algo and DSA/LeetCode-Solutions-master/Python/base-7.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
53
2018-12-16T22:54:20.000Z
2022-02-25T08:31:20.000Z
Algo and DSA/LeetCode-Solutions-master/Python/base-7.py
Sourav692/FAANG-Interview-Preparation
f523e5c94d582328b3edc449ea16ac6ab28cdc81
[ "Unlicense" ]
1,236
2018-10-12T02:51:40.000Z
2022-03-30T13:30:37.000Z
# Time: O(1) # Space: O(1) class Solution(object): def convertToBase7(self, num): if num < 0: return '-' + self.convertToBase7(-num) result = '' while num: result = str(num % 7) + result num //= 7 return result if result else '0' class Solution2(object): def convertToBase7(self, num): """ :type num: int :rtype: str """ if num < 0: return '-' + self.convertToBase7(-num) if num < 7: return str(num) return self.convertToBase7(num // 7) + str(num % 7)
22.703704
59
0.487765
1764586f4e6a7163a54b216a8e80be81ab6ec855
12,368
py
Python
grr/client/client_actions/osx/osx.py
panhania/grr
fe16a7311a528e31fe0e315a880e98273b8df960
[ "Apache-2.0" ]
null
null
null
grr/client/client_actions/osx/osx.py
panhania/grr
fe16a7311a528e31fe0e315a880e98273b8df960
[ "Apache-2.0" ]
null
null
null
grr/client/client_actions/osx/osx.py
panhania/grr
fe16a7311a528e31fe0e315a880e98273b8df960
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """OSX specific actions. Most of these actions share an interface (in/out rdfvalues) with linux actions of the same name. OSX-only actions are registered with the server via libs/server_stubs.py """ import ctypes import logging import os import re import shutil import sys import pytsk3 from grr import config from grr.client import actions from grr.client import client_utils_common from grr.client import client_utils_osx from grr.client.client_actions import standard from grr.client.osx.objc import ServiceManagement from grr.lib.rdfvalues import client as rdf_client from grr.lib.rdfvalues import protodict as rdf_protodict from grr.parsers import osx_launchd class Error(Exception): """Base error class.""" class UnsupportedOSVersionError(Error): """This action not supported on this os version.""" # struct sockaddr_dl { # u_char sdl_len; /* Total length of sockaddr */ # u_char sdl_family; /* AF_LINK */ # u_short sdl_index; /* if != 0, system given index for interface */ # u_char sdl_type; /* interface type */ # u_char sdl_nlen; /* interface name length, no trailing 0 reqd. */ # u_char sdl_alen; /* link level address length */ # u_char sdl_slen; /* link layer selector length */ # char sdl_data[12]; /* minimum work area, can be larger; # contains both if name and ll address */ # }; # Interfaces can have names up to 15 chars long and sdl_data contains name + mac # but no separators - we need to make sdl_data at least 15+6 bytes. class Sockaddrdl(ctypes.Structure): """The sockaddr_dl struct.""" _fields_ = [ ("sdl_len", ctypes.c_ubyte), ("sdl_family", ctypes.c_ubyte), ("sdl_index", ctypes.c_ushort), ("sdl_type", ctypes.c_ubyte), ("sdl_nlen", ctypes.c_ubyte), ("sdl_alen", ctypes.c_ubyte), ("sdl_slen", ctypes.c_ubyte), ("sdl_data", ctypes.c_ubyte * 24), ] # struct sockaddr_in { # __uint8_t sin_len; # sa_family_t sin_family; # in_port_t sin_port; # struct in_addr sin_addr; # char sin_zero[8]; # }; class Sockaddrin(ctypes.Structure): """The sockaddr_in struct.""" _fields_ = [ ("sin_len", ctypes.c_ubyte), ("sin_family", ctypes.c_ubyte), ("sin_port", ctypes.c_ushort), ("sin_addr", ctypes.c_ubyte * 4), ("sin_zero", ctypes.c_char * 8) ] # pyformat: disable # struct sockaddr_in6 { # __uint8_t sin6_len; /* length of this struct */ # sa_family_t sin6_family; /* AF_INET6 (sa_family_t) */ # in_port_t sin6_port; /* Transport layer port */ # __uint32_t sin6_flowinfo; /* IP6 flow information */ # struct in6_addr sin6_addr; /* IP6 address */ # __uint32_t sin6_scope_id; /* scope zone index */ # }; class Sockaddrin6(ctypes.Structure): """The sockaddr_in6 struct.""" _fields_ = [ ("sin6_len", ctypes.c_ubyte), ("sin6_family", ctypes.c_ubyte), ("sin6_port", ctypes.c_ushort), ("sin6_flowinfo", ctypes.c_ubyte * 4), ("sin6_addr", ctypes.c_ubyte * 16), ("sin6_scope_id", ctypes.c_ubyte * 4) ] # pyformat: disable # struct ifaddrs *ifa_next; /* Pointer to next struct */ # char *ifa_name; /* Interface name */ # u_int ifa_flags; /* Interface flags */ # struct sockaddr *ifa_addr; /* Interface address */ # struct sockaddr *ifa_netmask; /* Interface netmask */ # struct sockaddr *ifa_broadaddr; /* Interface broadcast address */ # struct sockaddr *ifa_dstaddr; /* P2P interface destination */ # void *ifa_data; /* Address specific data */ class Ifaddrs(ctypes.Structure): pass setattr(Ifaddrs, "_fields_", [ ("ifa_next", ctypes.POINTER(Ifaddrs)), ("ifa_name", ctypes.POINTER(ctypes.c_char)), ("ifa_flags", ctypes.c_uint), ("ifa_addr", ctypes.POINTER(ctypes.c_char)), ("ifa_netmask", ctypes.POINTER(ctypes.c_char)), ("ifa_broadaddr", ctypes.POINTER(ctypes.c_char)), ("ifa_destaddr", ctypes.POINTER(ctypes.c_char)), ("ifa_data", ctypes.POINTER(ctypes.c_char)) ]) # pyformat: disable class EnumerateInterfaces(actions.ActionPlugin): """Enumerate all MAC addresses of all NICs.""" out_rdfvalues = [rdf_client.Interface] def Run(self, unused_args): """Enumerate all MAC addresses.""" libc = ctypes.cdll.LoadLibrary(ctypes.util.find_library("c")) ifa = Ifaddrs() p_ifa = ctypes.pointer(ifa) libc.getifaddrs(ctypes.pointer(p_ifa)) addresses = {} macs = {} ifs = set() m = p_ifa while m: ifname = ctypes.string_at(m.contents.ifa_name) ifs.add(ifname) try: iffamily = ord(m.contents.ifa_addr[1]) if iffamily == 0x2: # AF_INET data = ctypes.cast(m.contents.ifa_addr, ctypes.POINTER(Sockaddrin)) ip4 = "".join(map(chr, data.contents.sin_addr)) address_type = rdf_client.NetworkAddress.Family.INET address = rdf_client.NetworkAddress( address_type=address_type, packed_bytes=ip4) addresses.setdefault(ifname, []).append(address) if iffamily == 0x12: # AF_LINK data = ctypes.cast(m.contents.ifa_addr, ctypes.POINTER(Sockaddrdl)) iflen = data.contents.sdl_nlen addlen = data.contents.sdl_alen macs[ifname] = "".join( map(chr, data.contents.sdl_data[iflen:iflen + addlen])) if iffamily == 0x1E: # AF_INET6 data = ctypes.cast(m.contents.ifa_addr, ctypes.POINTER(Sockaddrin6)) ip6 = "".join(map(chr, data.contents.sin6_addr)) address_type = rdf_client.NetworkAddress.Family.INET6 address = rdf_client.NetworkAddress( address_type=address_type, packed_bytes=ip6) addresses.setdefault(ifname, []).append(address) except ValueError: # Some interfaces don't have a iffamily and will raise a null pointer # exception. We still want to send back the name. pass m = m.contents.ifa_next libc.freeifaddrs(p_ifa) for interface in ifs: mac = macs.setdefault(interface, "") address_list = addresses.setdefault(interface, "") args = {"ifname": interface} if mac: args["mac_address"] = mac if address_list: args["addresses"] = address_list self.SendReply(rdf_client.Interface(**args)) class GetInstallDate(actions.ActionPlugin): """Estimate the install date of this system.""" out_rdfvalues = [rdf_protodict.DataBlob] def Run(self, unused_args): for f in ["/var/log/CDIS.custom", "/var", "/private"]: try: stat = os.stat(f) self.SendReply(rdf_protodict.DataBlob(integer=int(stat.st_ctime))) return except OSError: pass self.SendReply(rdf_protodict.DataBlob(integer=0)) class EnumerateFilesystems(actions.ActionPlugin): """Enumerate all unique filesystems local to the system.""" out_rdfvalues = [rdf_client.Filesystem] def Run(self, unused_args): """List all local filesystems mounted on this system.""" for fs_struct in client_utils_osx.GetFileSystems(): self.SendReply( rdf_client.Filesystem( device=fs_struct.f_mntfromname, mount_point=fs_struct.f_mntonname, type=fs_struct.f_fstypename)) drive_re = re.compile("r?disk[0-9].*") for drive in os.listdir("/dev"): if not drive_re.match(drive): continue path = os.path.join("/dev", drive) try: img_inf = pytsk3.Img_Info(path) # This is a volume or a partition - we send back a TSK device. self.SendReply(rdf_client.Filesystem(device=path)) vol_inf = pytsk3.Volume_Info(img_inf) for volume in vol_inf: if volume.flags == pytsk3.TSK_VS_PART_FLAG_ALLOC: offset = volume.start * vol_inf.info.block_size self.SendReply( rdf_client.Filesystem( device=path + ":" + str(offset), type="partition")) except (IOError, RuntimeError): continue class OSXEnumerateRunningServices(actions.ActionPlugin): """Enumerate all running launchd jobs.""" in_rdfvalue = None out_rdfvalues = [rdf_client.OSXServiceInformation] def GetRunningLaunchDaemons(self): """Get running launchd jobs from objc ServiceManagement framework.""" sm = ServiceManagement() return sm.SMGetJobDictionaries("kSMDomainSystemLaunchd") def Run(self, unused_arg): """Get running launchd jobs. Raises: UnsupportedOSVersionError: for OS X earlier than 10.6 """ osxversion = client_utils_osx.OSXVersion() version_array = osxversion.VersionAsMajorMinor() if version_array[:2] < [10, 6]: raise UnsupportedOSVersionError( "ServiceManagment API unsupported on < 10.6. This client is %s" % osxversion.VersionString()) launchd_list = self.GetRunningLaunchDaemons() self.parser = osx_launchd.OSXLaunchdJobDict(launchd_list) for job in self.parser.Parse(): response = self.CreateServiceProto(job) self.SendReply(response) def CreateServiceProto(self, job): """Create the Service protobuf. Args: job: Launchdjobdict from servicemanagement framework. Returns: sysinfo_pb2.OSXServiceInformation proto """ service = rdf_client.OSXServiceInformation( label=job.get("Label"), program=job.get("Program"), sessiontype=job.get("LimitLoadToSessionType"), lastexitstatus=int(job["LastExitStatus"]), timeout=int(job["TimeOut"]), ondemand=bool(job["OnDemand"])) for arg in job.get("ProgramArguments", "", stringify=False): # Returns CFArray of CFStrings service.args.Append(unicode(arg)) mach_dict = job.get("MachServices", {}, stringify=False) for key, value in mach_dict.iteritems(): service.machservice.Append("%s:%s" % (key, value)) job_mach_dict = job.get("PerJobMachServices", {}, stringify=False) for key, value in job_mach_dict.iteritems(): service.perjobmachservice.Append("%s:%s" % (key, value)) if "PID" in job: service.pid = job["PID"].value return service class Uninstall(actions.ActionPlugin): """Remove the service that starts us at startup.""" out_rdfvalues = [rdf_protodict.DataBlob] def Run(self, unused_arg): """This kills us with no cleanups.""" logging.debug("Disabling service") msg = "Service disabled." if hasattr(sys, "frozen"): grr_binary = os.path.abspath(sys.executable) elif __file__: grr_binary = os.path.abspath(__file__) try: os.remove(grr_binary) except OSError: msg = "Could not remove binary." try: os.remove(config.CONFIG["Client.plist_path"]) except OSError: if "Could not" in msg: msg += " Could not remove plist file." else: msg = "Could not remove plist file." # Get the directory we are running in from pyinstaller. This is either the # GRR directory which we should delete (onedir mode) or a generated temp # directory which we can delete without problems in onefile mode. directory = getattr(sys, "_MEIPASS", None) if directory: shutil.rmtree(directory, ignore_errors=True) self.SendReply(rdf_protodict.DataBlob(string=msg)) class UpdateAgent(standard.ExecuteBinaryCommand): """Updates the GRR agent to a new version.""" def ProcessFile(self, path, args): cmd = "/usr/sbin/installer" cmd_args = ["-pkg", path, "-target", "/"] time_limit = args.time_limit res = client_utils_common.Execute( cmd, cmd_args, time_limit=time_limit, bypass_whitelist=True) (stdout, stderr, status, time_used) = res # Limit output to 10MB so our response doesn't get too big. stdout = stdout[:10 * 1024 * 1024] stderr = stderr[:10 * 1024 * 1024] self.SendReply( rdf_client.ExecuteBinaryResponse( stdout=stdout, stderr=stderr, exit_status=status, # We have to return microseconds. time_used=int(1e6 * time_used)))
32.806366
80
0.644809
33e6ffa679702762014a0851b37eeabfbc5fdfc5
6,736
py
Python
instrumentation/opentelemetry-instrumentation-urllib3/src/opentelemetry/instrumentation/urllib3/__init__.py
ericmustin/opentelemetry-python-contrib
308369004c71a8d07c18560ac1fb46049a0a8105
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
instrumentation/opentelemetry-instrumentation-urllib3/src/opentelemetry/instrumentation/urllib3/__init__.py
ericmustin/opentelemetry-python-contrib
308369004c71a8d07c18560ac1fb46049a0a8105
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
instrumentation/opentelemetry-instrumentation-urllib3/src/opentelemetry/instrumentation/urllib3/__init__.py
ericmustin/opentelemetry-python-contrib
308369004c71a8d07c18560ac1fb46049a0a8105
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This library allows tracing HTTP requests made by the `urllib3 <https://urllib3.readthedocs.io/>`_ library. Usage ----- .. code-block:: python import urllib3 import urllib3.util from opentelemetry.instrumentation.urllib3 import URLLib3Instrumentor def strip_query_params(url: str) -> str: return url.split("?")[0] def span_name_callback(method: str, url: str, headers): return urllib3.util.Url(url).path URLLib3Instrumentor().instrument( # Remove all query params from the URL attribute on the span. url_filter=strip_query_params, # Use the URL's path as the span name. span_name_or_callback=span_name_callback ) http = urllib3.PoolManager() response = http.request("GET", "https://www.example.org/") API --- """ import contextlib import typing import urllib3.connectionpool import wrapt from opentelemetry import context from opentelemetry.instrumentation.instrumentor import BaseInstrumentor from opentelemetry.instrumentation.urllib3.version import __version__ from opentelemetry.instrumentation.utils import ( http_status_to_status_code, unwrap, ) from opentelemetry.propagate import inject from opentelemetry.trace import Span, SpanKind, TracerProvider, get_tracer from opentelemetry.trace.status import Status _SUPPRESS_HTTP_INSTRUMENTATION_KEY = "suppress_http_instrumentation" _UrlFilterT = typing.Optional[typing.Callable[[str], str]] _SpanNameT = typing.Optional[ typing.Union[typing.Callable[[str, str, typing.Mapping], str], str] ] _URL_OPEN_ARG_TO_INDEX_MAPPING = { "method": 0, "url": 1, } class URLLib3Instrumentor(BaseInstrumentor): def _instrument(self, **kwargs): """Instruments the urllib3 module Args: **kwargs: Optional arguments ``tracer_provider``: a TracerProvider, defaults to global. ``span_name_or_callback``: Override the default span name. ``url_filter``: A callback to process the requested URL prior to adding it as a span attribute. """ _instrument( tracer_provider=kwargs.get("tracer_provider"), span_name_or_callback=kwargs.get("span_name"), url_filter=kwargs.get("url_filter"), ) def _uninstrument(self, **kwargs): _uninstrument() def _instrument( tracer_provider: TracerProvider = None, span_name_or_callback: _SpanNameT = None, url_filter: _UrlFilterT = None, ): def instrumented_urlopen(wrapped, instance, args, kwargs): if _is_instrumentation_suppressed(): return wrapped(*args, **kwargs) method = _get_url_open_arg("method", args, kwargs).upper() url = _get_url(instance, args, kwargs, url_filter) headers = _prepare_headers(kwargs) span_name = _get_span_name(span_name_or_callback, method, url, headers) span_attributes = { "http.method": method, "http.url": url, } with get_tracer( __name__, __version__, tracer_provider ).start_as_current_span( span_name, kind=SpanKind.CLIENT, attributes=span_attributes ) as span: inject(headers) with _suppress_further_instrumentation(): response = wrapped(*args, **kwargs) _apply_response(span, response) return response wrapt.wrap_function_wrapper( urllib3.connectionpool.HTTPConnectionPool, "urlopen", instrumented_urlopen, ) def _get_url_open_arg(name: str, args: typing.List, kwargs: typing.Mapping): arg_idx = _URL_OPEN_ARG_TO_INDEX_MAPPING.get(name) if arg_idx is not None: try: return args[arg_idx] except IndexError: pass return kwargs.get(name) def _get_url( instance: urllib3.connectionpool.HTTPConnectionPool, args: typing.List, kwargs: typing.Mapping, url_filter: _UrlFilterT, ) -> str: url_or_path = _get_url_open_arg("url", args, kwargs) if not url_or_path.startswith("/"): url = url_or_path else: url = instance.scheme + "://" + instance.host if _should_append_port(instance.scheme, instance.port): url += ":" + str(instance.port) url += url_or_path if url_filter: return url_filter(url) return url def _should_append_port(scheme: str, port: typing.Optional[int]) -> bool: if not port: return False if scheme == "http" and port == 80: return False if scheme == "https" and port == 443: return False return True def _prepare_headers(urlopen_kwargs: typing.Dict) -> typing.Dict: headers = urlopen_kwargs.get("headers") # avoid modifying original headers on inject headers = headers.copy() if headers is not None else {} urlopen_kwargs["headers"] = headers return headers def _get_span_name( span_name_or_callback, method: str, url: str, headers: typing.Mapping ): span_name = None if callable(span_name_or_callback): span_name = span_name_or_callback(method, url, headers) elif isinstance(span_name_or_callback, str): span_name = span_name_or_callback if not span_name or not isinstance(span_name, str): span_name = "HTTP {}".format(method.strip()) return span_name def _apply_response(span: Span, response: urllib3.response.HTTPResponse): if not span.is_recording(): return span.set_attribute("http.status_code", response.status) span.set_status(Status(http_status_to_status_code(response.status))) def _is_instrumentation_suppressed() -> bool: return bool( context.get_value("suppress_instrumentation") or context.get_value(_SUPPRESS_HTTP_INSTRUMENTATION_KEY) ) @contextlib.contextmanager def _suppress_further_instrumentation(): token = context.attach( context.set_value(_SUPPRESS_HTTP_INSTRUMENTATION_KEY, True) ) try: yield finally: context.detach(token) def _uninstrument(): unwrap(urllib3.connectionpool.HTTPConnectionPool, "urlopen")
29.414847
79
0.687203
51249d7ab57083da814e587a381ab4f3be9c31bf
408
py
Python
Level1/Lessons12982/minari - 12982.py
StudyForCoding/ProgrammersLevel
dc957b1c02cc4383a93b8cbf3d739e6c4d88aa25
[ "MIT" ]
null
null
null
Level1/Lessons12982/minari - 12982.py
StudyForCoding/ProgrammersLevel
dc957b1c02cc4383a93b8cbf3d739e6c4d88aa25
[ "MIT" ]
null
null
null
Level1/Lessons12982/minari - 12982.py
StudyForCoding/ProgrammersLevel
dc957b1c02cc4383a93b8cbf3d739e6c4d88aa25
[ "MIT" ]
1
2021-04-05T07:35:59.000Z
2021-04-05T07:35:59.000Z
```python def solution(d, budget): answer = 0 d.sort() #1. #2. for i in range(len(d)): if budget - d[i] >= 0: answer += 1 budget = budget - d[i] else: break return answer #1. 최대한 많은 부서의 물품지원 -> 지원금액이 작은 부서부터 채워야 많은 부서를 지원 가능 #2. 부서가 지원한 금액 그대로를 주어야함. ( 모자라게 줄 수 없음 ) -> for문 돌려서 d[i] 값을 budget에서 빼기 ```
18.545455
73
0.460784
1e841763a8d173a24b58fd7370c2443a336e938b
612
py
Python
var/spack/repos/builtin/packages/py-doxypypy/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2,360
2017-11-06T08:47:01.000Z
2022-03-31T14:45:33.000Z
var/spack/repos/builtin/packages/py-doxypypy/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
13,838
2017-11-04T07:49:45.000Z
2022-03-31T23:38:39.000Z
var/spack/repos/builtin/packages/py-doxypypy/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1,793
2017-11-04T07:45:50.000Z
2022-03-30T14:31:53.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyDoxypypy(PythonPackage): """A Doxygen filter for Python. A more Pythonic version of doxypy, a Doxygen filter for Python. """ homepage = "https://github.com/Feneric/doxypypy" pypi = "doxypypy/doxypypy-0.8.8.6.tar.gz" version('0.8.8.6', sha256='627571455c537eb91d6998d95b32efc3c53562b2dbadafcb17e49593e0dae01b') depends_on('py-setuptools', type='build')
29.142857
97
0.73366
5d8b2c967e5f5da6f815636b1ab90fcb8cb91b92
3,547
py
Python
src/copuled_hopf_network.py
koriavinash1/Network-Games-for-Coupled-Neuron-Model
9766eee0002b2e0eba22c871349bc9c98aaa575a
[ "MIT" ]
1
2020-04-30T08:00:40.000Z
2020-04-30T08:00:40.000Z
src/copuled_hopf_network.py
koriavinash1/Network-Games-for-Coupled-Neuron-Model
9766eee0002b2e0eba22c871349bc9c98aaa575a
[ "MIT" ]
null
null
null
src/copuled_hopf_network.py
koriavinash1/Network-Games-for-Coupled-Neuron-Model
9766eee0002b2e0eba22c871349bc9c98aaa575a
[ "MIT" ]
null
null
null
import os, sys import numpy as np sys.path.append('../../../Projects/nfm/') from nfm.helper.GaussianStatistics import * from nfm.helper.configure import Config from nfm.SOM import SOM from keras.datasets import mnist import matplotlib.pyplot as plt (x_train, y_train), (x_test, y_test) = mnist.load_data() index = np.arange(len(x_test)) np.random.shuffle(index) x_test = x_test[index] y_test = y_test[index] _som_ = SOM((10, 10),(28, 28), 25, learning_rate=1e-2, rad = 5, sig = 3) _som_.load_weights('../../../Projects/nfm/logs/SOM_weights_MNIST_noise_0.0.npy') complex = lambda x: np.random.uniform(0, 1, size=x) + np.random.uniform(0, 1, size = x)*1j star = lambda x: np.conjugate(x) norm = lambda x: x/(np.abs(x) + 1e-3) minmax = lambda x: (x - np.min(x))/(np.max(x) - np.min(x)) def som(digit): response = _som_.response(digit, _som_.weights) # response = minmax(response) real = response imag = 1. - response return real + imag*1j # DP codes def get_nbrs(i, j, Z): nbrs = [] idx = [(1, 0), (0, 1), (-1, 0), (0, -1)] for ix, iy in idx: try: nbrs.append(Z[i+ix, j+iy]) except: pass return nbrs def couple(W, Z): coupling = np.zeros_like(Z) for i in range(Z.shape[0]): for j in range(Z.shape[1]): nbrs = get_nbrs(i,j,Z) coupling[i, j] = W[i, j]*np.prod(nbrs) return coupling def nbr(Z): nbr_matrix = np.zeros_like(Z) for i in range(Z.shape[0]): for j in range(Z.shape[1]): nbrs = get_nbrs(i,j,Z) nbr_matrix[i, j] = np.prod(nbrs) return nbr_matrix omega = np.pi/20. mu = 5.0 T = 50 deltaT = 0.1 ita = 1e-2 digits = np.arange(10) phase_information = [] magnitude_information = [] for digit in digits: Zs = []; Ws = [] # initalizations Z = som(x_test[y_test == digit][10]) W = complex(Z.shape) # plt.clf() # plt.ion() for _ in range(int(T/deltaT)): Zdot = (mu - np.abs(Z)**2)*Z + Z*omega*1j + couple(W, Z) Z = Z + deltaT*Zdot W = norm(W); Z = norm(Z) utility = np.zeros(Z.shape) utility[np.abs(Z) > 0.5] = 1.0 W = W + ita*((utility + 1)*Z*star(nbr(Z)) - W) Zs.append(Z); Ws.append(W) # plt.imshow(np.abs(Z)) # plt.pause(0.01) Zs = np.array(Zs) mZs = np.mean(Zs, axis=0) idx = np.where(mZs == np.max(mZs)) phase_information.append(np.unwrap(np.angle((Zs[:, 2, 2])))) magnitude_information.append(np.mean(Zs, axis=0)) for i in digits: plt.plot(phase_information[i]) plt.ylabel("Unwrapped phase for different digits") plt.xlabel('t') plt.grid() plt.show() """ plt.subplot(1, 2, 1) plt.plot(np.real(Z1s), np.imag(Z1s), 'b') plt.plot(np.real(Z1s[0]), np.imag(Z1s[0]), '*g') #plt.xlim(-10, 10) #plt.ylim(-10, 10.0) plt.grid() plt.xlabel("(1) Neuron $Z_1$ stable state oscillator") plt.subplot(1, 2, 2) plt.plot(np.real(Z2s), np.imag(Z2s), 'g') plt.plot(np.real(Z2s[0]), np.imag(Z2s[0]), '*r') #plt.xlim(-10, 10) #plt.ylim(-10, 10.0) plt.grid() plt.xlabel("(2) Neuron $Z_2$ stable state oscillator") plt.show() ##### plt.subplot(3, 1, 1) plt.plot(np.real(Z1s)) plt.plot(np.real(Z2s)) plt.xlabel("(1) Real part of $Z_1$ and $Z_2$") plt.grid() plt.subplot(3, 1, 2) plt.plot(np.imag(Z1s)) plt.plot(np.imag(Z2s)) plt.xlabel("(2) Imaginary part of $Z1$ and $Z2$") plt.grid() plt.subplot(3, 1, 3) plt.plot(np.angle(Z1s)) plt.plot(np.angle(Z2s)) plt.xlabel("(3) Phase plot for both $Z_1$ and $Z2$") plt.grid() plt.show() """
23.032468
90
0.594869
440668745ce65f0a6a3c621f9d345207a9fb3927
1,722
py
Python
magellan_models/initializers/initialize_with_yaml.py
3mcloud/magellan-models
aae47496f240a5211e650a5c0efcbc95a15f7bb0
[ "BSD-3-Clause" ]
2
2021-08-11T18:15:28.000Z
2021-08-11T18:33:38.000Z
magellan_models/initializers/initialize_with_yaml.py
3mcloud/magellan-models
aae47496f240a5211e650a5c0efcbc95a15f7bb0
[ "BSD-3-Clause" ]
null
null
null
magellan_models/initializers/initialize_with_yaml.py
3mcloud/magellan-models
aae47496f240a5211e650a5c0efcbc95a15f7bb0
[ "BSD-3-Clause" ]
null
null
null
""" Yaml based initialization module """ import yaml import requests from magellan_models.config import MagellanConfig from magellan_models.model_generator.generate_from_spec import generate_from_spec from magellan_models.exceptions import MagellanParserException def initialize_with_yaml_file(path: str, model_config: MagellanConfig = None): """Initializes Magellan with a yaml file path Args: path (str): The path to a yaml file model_config (MagellanConfig, optional): A Magellan Config instance. Defaults to None. Returns: [type]: [description] """ if not model_config: model_config = MagellanConfig() with open(path) as yaml_file: specification = yaml.load(yaml_file, Loader=yaml.FullLoader) return generate_from_spec(specification, configuration=model_config) def initialize_with_yaml_url(api_spec_url: str, model_config: MagellanConfig = None): """Initializes Magellan with a Yaml URL Args: api_spec_url (str): the URL path to a YAML file model_config (MagellanConfig, optional): The Magellan Config object. Defaults to None. Raises: MagellanParserException: Raises if the request fails Returns: tuple(dict, dict): The Magellan objects and functions generated """ if not model_config: model_config = MagellanConfig() spec_resp = requests.get(api_spec_url) if spec_resp.status_code != 200: raise MagellanParserException( f"Error retrieving the json schema .yaml. Error code: {spec_resp.status_code}" ) return generate_from_spec( yaml.load(spec_resp.content, Loader=yaml.FullLoader), configuration=model_config )
31.888889
94
0.720674
a62de8fcbe7f418cbb7dc8be73fac50a7b7dae27
1,315
py
Python
data-mining/votes_dataset.py
paulopieczarka/cuddly-umbrella
29e1c101db0bd733b92eeb36d0ec334a5a87b9da
[ "MIT" ]
null
null
null
data-mining/votes_dataset.py
paulopieczarka/cuddly-umbrella
29e1c101db0bd733b92eeb36d0ec334a5a87b9da
[ "MIT" ]
null
null
null
data-mining/votes_dataset.py
paulopieczarka/cuddly-umbrella
29e1c101db0bd733b92eeb36d0ec334a5a87b9da
[ "MIT" ]
null
null
null
import pandas as pd import statistics as stcs def HouseVotes_DataSet(filename='house-votes-84.csv'): print("-> Loading %s dataset file." % filename) # read database dataset = pd.read_csv(filename) x = dataset.iloc[:, 1:].values y = dataset.iloc[:, 0].values n_samples, n_instances = x.shape print("-> Done. Shape =", n_samples, "x", n_instances) print("-> Preprocessing dataset...") # replace class name with ints # democrat = 0, republican = 1 for i in range(n_samples): if y[i] == 'democrat': y[i] = 0 elif y[i] == 'republican': y[i] = 1 y = y.astype(int) # replace value with ints # y = 1, n = 0 for i in range(n_samples): for j in range(n_instances): if ('y' in x[i][j]): x[i][j] = 1 elif ('n' in x[i][j]): x[i][j] = 0 # find each class median medians = [] for j in range(n_instances): acceptable = [] for i in range(n_samples): if (x[i][j] == 1 or x[i][j] == 0): acceptable.append(x[i][j]) med = stcs.median(acceptable) medians.append(int(med)) # replace missing values with median for i in range(n_samples): for j in range(n_instances): if (x[i][j] != 1 and x[i][j] != 0): x[i][j] = medians[j] x = x.astype(int) print("-> Done.") return (x, y, dataset)
23.909091
56
0.576426
94eb4ee6e0cac458bf46f3c31de203e4c2a21c09
5,720
py
Python
tensorflow_recommenders/experimental/optimizers/composite_optimizer_test.py
D34D10CK/recommenders
e6e491b4e6bb991b3ad7ce8843c5ed04dfd60996
[ "Apache-2.0" ]
null
null
null
tensorflow_recommenders/experimental/optimizers/composite_optimizer_test.py
D34D10CK/recommenders
e6e491b4e6bb991b3ad7ce8843c5ed04dfd60996
[ "Apache-2.0" ]
null
null
null
tensorflow_recommenders/experimental/optimizers/composite_optimizer_test.py
D34D10CK/recommenders
e6e491b4e6bb991b3ad7ce8843c5ed04dfd60996
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The TensorFlow Recommenders Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for CompositeOptimizer.""" import unittest from absl.testing import parameterized import tensorflow as tf from tensorflow_recommenders.experimental.optimizers.composite_optimizer import CompositeOptimizer class CompositOptimizerTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters( ("sgd", "adam"), ("rmsprop", "sgd"), ("adam", "adagrad"), ("adagrad", "rmsprop")) def test_composite_optimizer(self, optimizer1_type, optimizer2_type): values1 = [1.0, 2.0, 3.0] values2 = [0.5, 0.0, -2.0] values3 = [0.1, 0.0, -1.0] grad1_values = [0.1, 0.2, 1.0] grad2_values = [-0.1, 0.05, 2.0] grad3_values = [2.1, 0.0, 0.3] var1 = tf.Variable(values1) var2 = tf.Variable(values2) var3 = tf.Variable(values3) grads1 = tf.constant(grad1_values) grads2 = tf.constant(grad2_values) grads3 = tf.constant(grad3_values) composite_optimizer = CompositeOptimizer([ (tf.keras.optimizers.get(optimizer1_type), lambda: [var1]), (tf.keras.optimizers.get(optimizer2_type), lambda: [var2, var3]), ]) optimizer1 = tf.keras.optimizers.get(optimizer1_type) optimizer2 = tf.keras.optimizers.get(optimizer2_type) grads_and_vars_1 = [(tf.constant(grad1_values), tf.Variable(values1))] grads_and_vars_2 = [(tf.constant(grad2_values), tf.Variable(values2)), (tf.constant(grad3_values), tf.Variable(values3))] grads_and_vars = list(zip([grads1, grads2, grads3], [var1, var2, var3])) for _ in range(10): # Testing that when applying a coposite optimizer has the same effect as # applying optimizer1 and optimizer2 seperately on subset of gradients/ # variables. composite_optimizer.apply_gradients(grads_and_vars) optimizer1.apply_gradients(grads_and_vars_1) optimizer2.apply_gradients(grads_and_vars_2) self.assertAllClose(grads_and_vars[:1], grads_and_vars_1) self.assertAllClose(grads_and_vars[1:], grads_and_vars_2) def test_incorrect_inputs(self): var1 = tf.Variable([0.1, 0.2, 1.0]) var2 = tf.Variable([-5.1, 0.1, 0]) var3 = tf.Variable([-2.1, 1.3, 0/3]) grads1 = tf.constant([0.1, 0.2, 1.0]) grads2 = tf.constant([0.5, 0.0, -2.0]) grads3 = tf.constant([-0.2, 0.0, -1.0]) # Test same variable in tow optimizers. composite_optimizer = CompositeOptimizer([ (tf.keras.optimizers.Adam(), lambda: [var1]), (tf.keras.optimizers.Adagrad(), lambda: [var1, var2]), ]) grads_and_vars = list(zip([grads1, grads2], [var1, var2])) with self.assertRaises(ValueError): composite_optimizer.apply_gradients(grads_and_vars) # Test missing variable (var3) in optimizers. composite_optimizer = CompositeOptimizer([ (tf.keras.optimizers.Adam(), lambda: [var1]), (tf.keras.optimizers.Adagrad(), lambda: [var2]), ]) grads_and_vars = list(zip([grads1, grads2, grads3], [var1, var2, var3])) with self.assertRaises(ValueError): composite_optimizer.apply_gradients(grads_and_vars) # TODO(agagik) Need to remove expectedFailure after fixing CompositeOptimizer # to restore optimizer.iteration steps are restoreing a model from checkpoint. @unittest.expectedFailure def test_checkpoint_save_restore(self): # Using a simple Linear model to test checkpoint save/restore. model = tf.keras.experimental.LinearModel(units=10) composite_optimizer = CompositeOptimizer([ (tf.keras.optimizers.Adam(), lambda: model.trainable_variables[:1]), (tf.keras.optimizers.Adagrad(), lambda: model.trainable_variables[1:]), ]) checkpoint = tf.train.Checkpoint(model=model, optimizer=composite_optimizer) model.compile(optimizer=composite_optimizer, loss=tf.keras.losses.MSE) batch_size = 16 num_of_batches = 8 x = tf.ones((num_of_batches * batch_size, 5)) y = tf.zeros((num_of_batches * batch_size, 1)) training_dataset = tf.data.Dataset.from_tensor_slices((x, y)) training_dataset = training_dataset.batch(batch_size) model.fit(training_dataset, epochs=1) # Check that optimizer iterations matches dataset size. self.assertEqual(composite_optimizer.iterations.numpy(), num_of_batches) # Saving checkpoint. checkpoint_path = self.get_temp_dir() checkpoint.write(checkpoint_path) # Loading checkpoint after reinitializing the optimizer and checkpoint. composite_optimizer = CompositeOptimizer([ (tf.keras.optimizers.Adam(), lambda: model.trainable_variables), (tf.keras.optimizers.Adagrad(), lambda: []), ]) checkpoint = tf.train.Checkpoint(model=model, optimizer=composite_optimizer) checkpoint.read(checkpoint_path).assert_consumed() # After restoring the checkpoint, optimizer iterations should also be # restored to its original value. Right now this assertion is failing. self.assertEqual(composite_optimizer.iterations.numpy(), num_of_batches) if __name__ == "__main__": tf.test.main()
36.666667
98
0.697203
ffbbd25065fd49e5b4da0b0d1da31ebe3a7da1f9
98
py
Python
era_search/era_search/gunicorn.conf.py
bergonzzi/eracareers
8956bd21770a72ed466791b53aae8cf0cfc9b6db
[ "Apache-2.0" ]
1
2016-01-05T15:21:13.000Z
2016-01-05T15:21:13.000Z
era_search/era_search/gunicorn.conf.py
bergonzzi/eracareers
8956bd21770a72ed466791b53aae8cf0cfc9b6db
[ "Apache-2.0" ]
null
null
null
era_search/era_search/gunicorn.conf.py
bergonzzi/eracareers
8956bd21770a72ed466791b53aae8cf0cfc9b6db
[ "Apache-2.0" ]
null
null
null
daemon = True accesslog = "../../../logs/access_era.log" errorlog = "../../../logs/error_era.log"
24.5
42
0.612245
ec66e18b7ae85923a5e16b2e0a0cffcd12c91bb0
22
py
Python
toolkit/__init__.py
bmorris3/trappist1g_spots
3ee7c5ef523d517bd9e4363fd5292c2bfab3ab77
[ "MIT" ]
4
2020-05-11T00:07:25.000Z
2021-10-05T15:46:32.000Z
toolkit/__init__.py
bmorris3/trappist1g_spots
3ee7c5ef523d517bd9e4363fd5292c2bfab3ab77
[ "MIT" ]
4
2021-11-17T08:45:57.000Z
2021-12-21T15:33:22.000Z
examples/__init__.py
AndreyBychkov/QBee
c444d1bc8c76dcf9c2b316354e215bcaa92d072c
[ "MIT" ]
null
null
null
from .systems import *
22
22
0.772727
348405db68fd368bd4e99a54e49175fdf0e27b9f
1,973
py
Python
everyday_wechat/control/bot/tuling123.py
llht/EverydayWechat
9c46ce10abf2fbbea3c6ea8de4d63e86a0a7e5e5
[ "MIT" ]
1
2019-06-20T07:25:46.000Z
2019-06-20T07:25:46.000Z
everyday_wechat/control/bot/tuling123.py
llht/EverydayWechat
9c46ce10abf2fbbea3c6ea8de4d63e86a0a7e5e5
[ "MIT" ]
null
null
null
everyday_wechat/control/bot/tuling123.py
llht/EverydayWechat
9c46ce10abf2fbbea3c6ea8de4d63e86a0a7e5e5
[ "MIT" ]
null
null
null
# coding=utf-8 ''' 图灵机器人自动回复 官网:http://www.tuling123.com/ apiKey,userid 需要去官网申请。 ''' import requests from everyday_wechat.utils.common import ( is_json, md5_encode ) from everyday_wechat.utils import config # 图灵机器人错误码集合 TULING_ERROR_CODE_LIST = [ 5000, 6000, 4000, 4001, 4002, 4003, 4005, 4007, 4100, 4200, 4300, 4400, 4500, 4600, 4602, 7002, 8008, 0] URL = "http://openapi.tuling123.com/openapi/api/v2" def get_tuling123(text, userId): """ 接口地址:(https://www.kancloud.cn/turing/www-tuling123-com/718227) 获取图灵机器人对话 :param text: 发送的话 :param userId: 用户唯一标识(最好用微信好友uuid) :return: 对白 """ try: # config.init() info = config.get('auto_relay_info')['turing_conf'] apiKey = info['apiKey'] if not apiKey: print('图灵机器人 apikey 为空,请求出错') return None userId = md5_encode(userId if userId else '250') content = { 'perception': { 'inputText': { 'text': text } }, 'userInfo': { 'apiKey': apiKey, 'userId': userId } } # print('发出消息:{}'.format(text)) resp = requests.post(URL, json=content) if resp.status_code == 200 and is_json(resp): # print(resp.text) re_data = resp.json() if re_data['intent']['code'] not in TULING_ERROR_CODE_LIST: return_text = re_data['results'][0]['values']['text'] return return_text else: error_text = re_data['results'][0]['values']['text'] print('图灵机器人错误信息:{}'.format(error_text)) print('图灵机器人获取数据失败') except Exception as e: print(e) print('图灵机器人获取数据失败') get_auto_reply = get_tuling123 if __name__ == '__main__': text = '雷军 are you ok?' reply = get_auto_reply(text,'WE……………………………………') print(reply) pass
24.974684
71
0.547897
296af1eb179dd05907d24d3d75a830143447aade
855
py
Python
osc/users/migrations/0001_initial.py
aqd14/online-shopping
0c76c24cb277c637cb490ef70fae28f85e469059
[ "Apache-2.0" ]
null
null
null
osc/users/migrations/0001_initial.py
aqd14/online-shopping
0c76c24cb277c637cb490ef70fae28f85e469059
[ "Apache-2.0" ]
null
null
null
osc/users/migrations/0001_initial.py
aqd14/online-shopping
0c76c24cb277c637cb490ef70fae28f85e469059
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-09-13 03:43 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=20)), ('password', models.CharField(max_length=30)), ('confirm_pw', models.CharField(max_length=30)), ('email', models.EmailField(max_length=254)), ('birthday', models.DateField()), ('address', models.CharField(max_length=100)), ], ), ]
29.482759
114
0.574269
7e4c9cd1e11ac40d9a9d0235bccbc0b12274f421
1,447
py
Python
smallsmilhandler.py
vmartinezf/ptavi-p3
9d282502d9a40ab8d075f0d20089391fee08eca1
[ "Apache-2.0" ]
null
null
null
smallsmilhandler.py
vmartinezf/ptavi-p3
9d282502d9a40ab8d075f0d20089391fee08eca1
[ "Apache-2.0" ]
null
null
null
smallsmilhandler.py
vmartinezf/ptavi-p3
9d282502d9a40ab8d075f0d20089391fee08eca1
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- from xml.sax import make_parser from xml.sax.handler import ContentHandler class SmallSMILHandler(ContentHandler): """ Clase para manejar smill """ def __init__(self): """ Constructor. Inicializamos las variables """ self.lista_etiquetas = [] self.dic = {'root-layout': ['width', 'height', 'background-color'], 'region': ['id', 'top', 'bottom', 'left', 'right'], 'img': ['src', 'region', 'begin', 'dur'], 'audio': ['src', 'begin', 'dur'], 'textstream': ['src', 'region']} def startElement(self, name, attrs): """ Método que se llama para alamacenar las etiquetas, los atributos y su contenido """ if name in self.dic: dicc = {} for item in self.dic[name]: dicc[item] = attrs.get(item, "") diccname = {name: dicc} self.lista_etiquetas.append(diccname) def get_tags(self): """ Método que devuelve las etiquetas, los atributos y su contenido """ return self.lista_etiquetas if __name__ == "__main__": """ Programa principal """ parser = make_parser() cHandler = SmallSMILHandler() parser.setContentHandler(cHandler) parser.parse(open('karaoke.smil')) print (cHandler.get_tags())
27.301887
75
0.543193
bde920039aa8f82c5b41aa9b5ffb1c1c2bbf3a28
600
py
Python
SmartHelmet/core/migrations/0005_alter_data_options_data_timestamp.py
amanpandey-crypto/PDP_Group_44
b29ca460dd7f429bf27a0060ea7d377c718a624f
[ "MIT" ]
null
null
null
SmartHelmet/core/migrations/0005_alter_data_options_data_timestamp.py
amanpandey-crypto/PDP_Group_44
b29ca460dd7f429bf27a0060ea7d377c718a624f
[ "MIT" ]
null
null
null
SmartHelmet/core/migrations/0005_alter_data_options_data_timestamp.py
amanpandey-crypto/PDP_Group_44
b29ca460dd7f429bf27a0060ea7d377c718a624f
[ "MIT" ]
null
null
null
# Generated by Django 4.0.3 on 2022-04-24 19:13 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('core', '0004_data'), ] operations = [ migrations.AlterModelOptions( name='data', options={'ordering': ['-timestamp']}, ), migrations.AddField( model_name='data', name='timestamp', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), ]
24
93
0.591667
57e46a262a0d6e40d3856e496302d0d057cd903e
48,254
py
Python
infra/bots/recipes/test.py
iabro/skia
33d8fb035a3d2ad0f2dedb5703b5385f8fd15b84
[ "BSD-3-Clause" ]
null
null
null
infra/bots/recipes/test.py
iabro/skia
33d8fb035a3d2ad0f2dedb5703b5385f8fd15b84
[ "BSD-3-Clause" ]
null
null
null
infra/bots/recipes/test.py
iabro/skia
33d8fb035a3d2ad0f2dedb5703b5385f8fd15b84
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # Recipe module for Skia Swarming test. DEPS = [ 'env', 'flavor', 'recipe_engine/context', 'recipe_engine/file', 'recipe_engine/path', 'recipe_engine/platform', 'recipe_engine/properties', 'recipe_engine/python', 'recipe_engine/raw_io', 'recipe_engine/step', 'run', 'vars', ] def upload_dm_results(buildername): skip_upload_bots = [ 'ASAN', 'Coverage', 'MSAN', 'TSAN', 'UBSAN', 'Valgrind', ] for s in skip_upload_bots: if s in buildername: return False return True def dm_flags(api, bot): args = [] configs = [] blacklisted = [] def blacklist(quad): config, src, options, name = ( quad.split(' ') if isinstance(quad, str) else quad) if (config == '_' or config in configs or (config[0] == '~' and config[1:] in configs)): blacklisted.extend([config, src, options, name]) # We've been spending lots of time writing out and especially uploading # .pdfs, but not doing anything further with them. skia:6821 args.extend(['--dont_write', 'pdf']) # This enables non-deterministic random seeding of the GPU FP optimization # test. # Not Android due to: # - https://skia.googlesource.com/skia/+/ # 5910ed347a638ded8cd4c06dbfda086695df1112/BUILD.gn#160 # - https://skia.googlesource.com/skia/+/ # ce06e261e68848ae21cac1052abc16bc07b961bf/tests/ProcessorTest.cpp#307 # Not MSAN due to: # - https://skia.googlesource.com/skia/+/ # 0ac06e47269a40c177747310a613d213c95d1d6d/infra/bots/recipe_modules/ # flavor/gn_flavor.py#80 if 'Android' not in bot and 'MSAN' not in bot: args.append('--randomProcessorTest') # 32-bit desktop bots tend to run out of memory, because they have relatively # far more cores than RAM (e.g. 32 cores, 3G RAM). Hold them back a bit. if '-x86-' in bot and not 'NexusPlayer' in bot: args.extend(['--threads', '4']) # Nexus7 runs out of memory due to having 4 cores and only 1G RAM. if 'CPU' in bot and 'Nexus7' in bot: args.extend(['--threads', '2']) # MotoG4 occasionally fails when multiple threads read the same image file. if 'CPU' in bot and 'MotoG4' in bot: args.extend(['--threads', '0']) if 'Chromecast' in bot: args.extend(['--threads', '0']) # Avoid issues with dynamically exceeding resource cache limits. if 'Test' in bot and 'DISCARDABLE' in bot: args.extend(['--threads', '0']) # See if staying on the main thread helps skia:6748. if 'Test-iOS' in bot: args.extend(['--threads', '0']) # Android's kernel will occasionally attempt to kill our process, using # SIGINT, in an effort to free up resources. If requested, that signal # is ignored and dm will keep attempting to proceed until we actually # exhaust the available resources. if ('NexusPlayer' in bot or 'Chromecast' in bot): args.append('--ignoreSigInt') if 'SwiftShader' in api.vars.extra_tokens: configs.extend(['gles', 'glesdft']) args.append('--disableDriverCorrectnessWorkarounds') elif api.vars.builder_cfg.get('cpu_or_gpu') == 'CPU': args.append('--nogpu') configs.append('8888') if 'BonusConfigs' in bot or ('SAN' in bot and 'GCE' in bot): configs.extend([ 'pdf', 'g8', '565', 'pic-8888', 'tiles_rt-8888', 'lite-8888', 'serialize-8888', 'gbr-8888', 'f16', 'srgb', 'esrgb', 'narrow', 'enarrow', 'p3', 'ep3', 'rec2020', 'erec2020']) elif api.vars.builder_cfg.get('cpu_or_gpu') == 'GPU': args.append('--nocpu') # Add in either gles or gl configs to the canonical set based on OS sample_count = '8' gl_prefix = 'gl' if 'Android' in bot or 'iOS' in bot: sample_count = '4' # We want to test the OpenGL config not the GLES config on the Shield if 'NVIDIA_Shield' not in bot: gl_prefix = 'gles' elif 'Intel' in bot: sample_count = '' elif 'ChromeOS' in bot: gl_prefix = 'gles' if 'NativeFonts' in bot: configs.append(gl_prefix) else: configs.extend([gl_prefix, gl_prefix + 'dft', gl_prefix + 'srgb']) if sample_count is not '': configs.append(gl_prefix + 'msaa' + sample_count) # The NP produces a long error stream when we run with MSAA. The Tegra3 just # doesn't support it. if ('NexusPlayer' in bot or 'Tegra3' in bot or # We aren't interested in fixing msaa bugs on current iOS devices. 'iPad4' in bot or 'iPadPro' in bot or 'iPhone6' in bot or 'iPhone7' in bot or # skia:5792 'IntelHD530' in bot or 'IntelIris540' in bot): configs = [x for x in configs if 'msaa' not in x] # The NP produces different images for dft on every run. if 'NexusPlayer' in bot: configs = [x for x in configs if 'dft' not in x] # We want to test both the OpenGL config and the GLES config on Linux Intel: # GL is used by Chrome, GLES is used by ChromeOS. # Also do the Ganesh threading verification test (render with and without # worker threads, using only the SW path renderer, and compare the results). if 'Intel' in bot and api.vars.is_linux: configs.extend(['gles', 'glesdft', 'glessrgb', 'gltestthreading']) # skbug.com/6333, skbug.com/6419, skbug.com/6702 blacklist('gltestthreading gm _ lcdblendmodes') blacklist('gltestthreading gm _ lcdoverlap') blacklist('gltestthreading gm _ textbloblooper') # All of these GMs are flaky, too: blacklist('gltestthreading gm _ bleed_alpha_bmp') blacklist('gltestthreading gm _ bleed_alpha_bmp_shader') blacklist('gltestthreading gm _ bleed_alpha_image') blacklist('gltestthreading gm _ bleed_alpha_image_shader') blacklist('gltestthreading gm _ savelayer_with_backdrop') blacklist('gltestthreading gm _ persp_shaders_bw') blacklist('gltestthreading gm _ dftext_blob_persp') blacklist('gltestthreading gm _ dftext') # skbug.com/7523 - Flaky on various GPUs blacklist('gltestthreading gm _ orientation') # CommandBuffer bot *only* runs the command_buffer config. if 'CommandBuffer' in bot: configs = ['commandbuffer'] # ANGLE bot *only* runs the angle configs if 'ANGLE' in bot: configs = ['angle_d3d11_es2', 'angle_d3d9_es2', 'angle_gl_es2', 'angle_d3d11_es3'] if sample_count is not '': configs.append('angle_d3d11_es2_msaa' + sample_count) configs.append('angle_d3d11_es3_msaa' + sample_count) if 'GTX' in bot or 'Quadro' in bot: # See skia:7823 and chromium:693090. configs.append('angle_gl_es3') if sample_count is not '': configs.append('angle_gl_es2_msaa' + sample_count) configs.append('angle_gl_es3_msaa' + sample_count) if 'NUC5i7RYH' in bot: # skbug.com/7376 blacklist('_ test _ ProcessorCloneTest') # Vulkan bot *only* runs the vk config. if 'Vulkan' in bot: configs = ['vk'] if 'Metal' in bot: configs = ['mtl'] # Test 1010102 on our Linux/NVIDIA bots and the persistent cache config # on the GL bots. if ('QuadroP400' in bot and 'PreAbandonGpuContext' not in bot and 'TSAN' not in bot and api.vars.is_linux): if 'Vulkan' in bot: configs.append('vk1010102') # Decoding transparent images to 1010102 just looks bad blacklist('vk1010102 image _ _') else: configs.extend(['gl1010102', 'gltestpersistentcache']) # Decoding transparent images to 1010102 just looks bad blacklist('gl1010102 image _ _') # These tests produce slightly different pixels run to run on NV. blacklist('gltestpersistentcache gm _ atlastext') blacklist('gltestpersistentcache gm _ dftext') blacklist('gltestpersistentcache gm _ glyph_pos_h_b') # Test SkColorSpaceXformCanvas and rendering to wrapped dsts on a few bots if 'BonusConfigs' in api.vars.extra_tokens: configs = ['gbr-gl', 'glbetex', 'glbert'] if 'ChromeOS' in bot: # Just run GLES for now - maybe add gles_msaa4 in the future configs = ['gles'] if 'Chromecast' in bot: configs = ['gles'] # Test coverage counting path renderer. if 'CCPR' in bot: configs = [c for c in configs if c == 'gl' or c == 'gles'] args.extend(['--pr', 'ccpr', '--cachePathMasks', 'false']) # DDL is a GPU-only feature if 'DDL1' in bot: # This bot generates gl and vk comparison images for the large skps configs = [c for c in configs if c == 'gl' or c == 'vk'] args.extend(['--skpViewportSize', "2048"]) args.extend(['--pr', '~small']) if 'DDL3' in bot: # This bot generates the ddl-gl and ddl-vk images for the # large skps and the gms configs = ['ddl-' + c for c in configs if c == 'gl' or c == 'vk'] args.extend(['--skpViewportSize', "2048"]) args.extend(['--gpuThreads', "0"]) if 'Lottie' in bot: configs = ['gl'] tf = api.vars.builder_cfg.get('test_filter') if 'All' != tf: # Expected format: shard_XX_YY parts = tf.split('_') if len(parts) == 3: args.extend(['--shard', parts[1]]) args.extend(['--shards', parts[2]]) else: # pragma: nocover raise Exception('Invalid task name - bad shards: %s' % tf) args.append('--config') args.extend(configs) # Run tests, gms, and image decoding tests everywhere. args.extend('--src tests gm image lottie colorImage svg skp'.split(' ')) if api.vars.builder_cfg.get('cpu_or_gpu') == 'GPU': # Don't run the 'svgparse_*' svgs on GPU. blacklist('_ svg _ svgparse_') elif bot == 'Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Debug-All-ASAN': # Only run the CPU SVGs on 8888. blacklist('~8888 svg _ _') else: # On CPU SVGs we only care about parsing. Only run them on the above bot. args.remove('svg') # Eventually I'd like these to pass, but for now just skip 'em. if 'SK_FORCE_RASTER_PIPELINE_BLITTER' in bot: args.remove('tests') if 'NativeFonts' in bot: # images won't exercise native font integration :) args.remove('image') args.remove('colorImage') def remove_from_args(arg): if arg in args: args.remove(arg) if 'DDL' in bot: # The DDL bots just render the large skps and the gms remove_from_args('tests') remove_from_args('image') remove_from_args('colorImage') remove_from_args('svg') else: # Currently, only the DDL bots render skps remove_from_args('skp') if 'Lottie' in api.vars.builder_cfg.get('extra_config', ''): # Only run the lotties on Lottie bots. remove_from_args('tests') remove_from_args('gm') remove_from_args('image') remove_from_args('colorImage') remove_from_args('svg') remove_from_args('skp') else: remove_from_args('lottie') # TODO: ??? blacklist('f16 _ _ dstreadshuffle') blacklist('glsrgb image _ _') blacklist('glessrgb image _ _') # Not any point to running these. blacklist('gbr-8888 image _ _') blacklist('gbr-8888 colorImage _ _') # --src image --config g8 means "decode into Gray8", which isn't supported. blacklist('g8 image _ _') blacklist('g8 colorImage _ _') if 'Valgrind' in bot: # These take 18+ hours to run. blacklist('pdf gm _ fontmgr_iter') blacklist('pdf _ _ PANO_20121023_214540.jpg') blacklist('pdf skp _ worldjournal') blacklist('pdf skp _ desk_baidu.skp') blacklist('pdf skp _ desk_wikipedia.skp') blacklist('_ svg _ _') if 'iOS' in bot: blacklist(gl_prefix + ' skp _ _') if 'Mac' in bot or 'iOS' in bot: # CG fails on questionable bmps blacklist('_ image gen_platf rgba32abf.bmp') blacklist('_ image gen_platf rgb24prof.bmp') blacklist('_ image gen_platf rgb24lprof.bmp') blacklist('_ image gen_platf 8bpp-pixeldata-cropped.bmp') blacklist('_ image gen_platf 4bpp-pixeldata-cropped.bmp') blacklist('_ image gen_platf 32bpp-pixeldata-cropped.bmp') blacklist('_ image gen_platf 24bpp-pixeldata-cropped.bmp') # CG has unpredictable behavior on this questionable gif # It's probably using uninitialized memory blacklist('_ image gen_platf frame_larger_than_image.gif') # CG has unpredictable behavior on incomplete pngs # skbug.com/5774 blacklist('_ image gen_platf inc0.png') blacklist('_ image gen_platf inc1.png') blacklist('_ image gen_platf inc2.png') blacklist('_ image gen_platf inc3.png') blacklist('_ image gen_platf inc4.png') blacklist('_ image gen_platf inc5.png') blacklist('_ image gen_platf inc6.png') blacklist('_ image gen_platf inc7.png') blacklist('_ image gen_platf inc8.png') blacklist('_ image gen_platf inc9.png') blacklist('_ image gen_platf inc10.png') blacklist('_ image gen_platf inc11.png') blacklist('_ image gen_platf inc12.png') blacklist('_ image gen_platf inc13.png') blacklist('_ image gen_platf inc14.png') blacklist('_ image gen_platf incInterlaced.png') # These images fail after Mac 10.13.1 upgrade. blacklist('_ image gen_platf incInterlaced.gif') blacklist('_ image gen_platf inc1.gif') blacklist('_ image gen_platf inc0.gif') blacklist('_ image gen_platf butterfly.gif') # WIC fails on questionable bmps if 'Win' in bot: blacklist('_ image gen_platf pal8os2v2.bmp') blacklist('_ image gen_platf pal8os2v2-16.bmp') blacklist('_ image gen_platf rgba32abf.bmp') blacklist('_ image gen_platf rgb24prof.bmp') blacklist('_ image gen_platf rgb24lprof.bmp') blacklist('_ image gen_platf 8bpp-pixeldata-cropped.bmp') blacklist('_ image gen_platf 4bpp-pixeldata-cropped.bmp') blacklist('_ image gen_platf 32bpp-pixeldata-cropped.bmp') blacklist('_ image gen_platf 24bpp-pixeldata-cropped.bmp') if 'x86_64' in bot and 'CPU' in bot: # This GM triggers a SkSmallAllocator assert. blacklist('_ gm _ composeshader_bitmap') if 'Win' in bot or 'Mac' in bot: # WIC and CG fail on arithmetic jpegs blacklist('_ image gen_platf testimgari.jpg') # More questionable bmps that fail on Mac, too. skbug.com/6984 blacklist('_ image gen_platf rle8-height-negative.bmp') blacklist('_ image gen_platf rle4-height-negative.bmp') # These PNGs have CRC errors. The platform generators seem to draw # uninitialized memory without reporting an error, so skip them to # avoid lots of images on Gold. blacklist('_ image gen_platf error') if 'Android' in bot or 'iOS' in bot or 'Chromecast' in bot: # This test crashes the N9 (perhaps because of large malloc/frees). It also # is fairly slow and not platform-specific. So we just disable it on all of # Android and iOS. skia:5438 blacklist('_ test _ GrShape') if api.vars.internal_hardware_label == '2': # skia:7160 blacklist('_ test _ SRGBReadWritePixels') blacklist('_ test _ SRGBMipMap') if api.vars.internal_hardware_label == '5': # skia:8470 blacklist('_ test _ SRGBReadWritePixels') blacklist('_ test _ ES2BlendWithNoTexture') # skia:4095 bad_serialize_gms = ['bleed_image', 'c_gms', 'colortype', 'colortype_xfermodes', 'drawfilter', 'fontmgr_bounds_0.75_0', 'fontmgr_bounds_1_-0.25', 'fontmgr_bounds', 'fontmgr_match', 'fontmgr_iter', 'imagemasksubset'] # skia:5589 bad_serialize_gms.extend(['bitmapfilters', 'bitmapshaders', 'bleed', 'bleed_alpha_bmp', 'bleed_alpha_bmp_shader', 'convex_poly_clip', 'extractalpha', 'filterbitmap_checkerboard_32_32_g8', 'filterbitmap_image_mandrill_64', 'shadows', 'simpleaaclip_aaclip']) # skia:5595 bad_serialize_gms.extend(['composeshader_bitmap', 'scaled_tilemodes_npot', 'scaled_tilemodes']) # skia:5778 bad_serialize_gms.append('typefacerendering_pfaMac') # skia:5942 bad_serialize_gms.append('parsedpaths') # these use a custom image generator which doesn't serialize bad_serialize_gms.append('ImageGeneratorExternal_rect') bad_serialize_gms.append('ImageGeneratorExternal_shader') # skia:6189 bad_serialize_gms.append('shadow_utils') # skia:7938 bad_serialize_gms.append('persp_images') # Not expected to round trip encoding/decoding. bad_serialize_gms.append('all_bitmap_configs') bad_serialize_gms.append('makecolorspace') bad_serialize_gms.append('readpixels') bad_serialize_gms.append('draw_image_set_rect_to_rect') # This GM forces a path to be convex. That property doesn't survive # serialization. bad_serialize_gms.append('analytic_antialias_convex') for test in bad_serialize_gms: blacklist(['serialize-8888', 'gm', '_', test]) if 'Mac' not in bot: for test in ['bleed_alpha_image', 'bleed_alpha_image_shader']: blacklist(['serialize-8888', 'gm', '_', test]) # It looks like we skip these only for out-of-memory concerns. if 'Win' in bot or 'Android' in bot: for test in ['verylargebitmap', 'verylarge_picture_image']: blacklist(['serialize-8888', 'gm', '_', test]) if 'Mac' in bot and 'CPU' in bot: # skia:6992 blacklist(['pic-8888', 'gm', '_', 'encode-platform']) blacklist(['serialize-8888', 'gm', '_', 'encode-platform']) # skia:4769 for test in ['drawfilter']: blacklist([ 'pic-8888', 'gm', '_', test]) blacklist([ 'lite-8888', 'gm', '_', test]) # skia:4703 for test in ['image-cacherator-from-picture', 'image-cacherator-from-raster', 'image-cacherator-from-ctable']: blacklist([ 'pic-8888', 'gm', '_', test]) blacklist(['serialize-8888', 'gm', '_', test]) # GM that requires raster-backed canvas for test in ['gamut', 'complexclip4_bw', 'complexclip4_aa', 'p3']: blacklist([ 'pic-8888', 'gm', '_', test]) blacklist([ 'lite-8888', 'gm', '_', test]) blacklist(['serialize-8888', 'gm', '_', test]) # GM that not support tiles_rt for test in ['complexclip4_bw', 'complexclip4_aa']: blacklist([ 'tiles_rt-8888', 'gm', '_', test]) # Extensions for RAW images r = ['arw', 'cr2', 'dng', 'nef', 'nrw', 'orf', 'raf', 'rw2', 'pef', 'srw', 'ARW', 'CR2', 'DNG', 'NEF', 'NRW', 'ORF', 'RAF', 'RW2', 'PEF', 'SRW'] # skbug.com/4888 # Blacklist RAW images (and a few large PNGs) on GPU bots # until we can resolve failures. if 'GPU' in bot: blacklist('_ image _ interlaced1.png') blacklist('_ image _ interlaced2.png') blacklist('_ image _ interlaced3.png') for raw_ext in r: blacklist('_ image _ .%s' % raw_ext) # Blacklist memory intensive tests on 32-bit bots. if ('Win8' in bot or 'Win2016' in bot) and 'x86-' in bot: blacklist('_ image f16 _') blacklist('_ image _ abnormal.wbmp') blacklist('_ image _ interlaced1.png') blacklist('_ image _ interlaced2.png') blacklist('_ image _ interlaced3.png') for raw_ext in r: blacklist('_ image _ .%s' % raw_ext) if 'Nexus5' in bot and 'GPU' in bot: # skia:5876 blacklist(['_', 'gm', '_', 'encode-platform']) if 'AndroidOne-GPU' in bot: # skia:4697, skia:4704, skia:4694, skia:4705 blacklist(['_', 'gm', '_', 'bigblurs']) blacklist(['_', 'gm', '_', 'bleed']) blacklist(['_', 'gm', '_', 'bleed_alpha_bmp']) blacklist(['_', 'gm', '_', 'bleed_alpha_bmp_shader']) blacklist(['_', 'gm', '_', 'bleed_alpha_image']) blacklist(['_', 'gm', '_', 'bleed_alpha_image_shader']) blacklist(['_', 'gm', '_', 'bleed_image']) blacklist(['_', 'gm', '_', 'dropshadowimagefilter']) blacklist(['_', 'gm', '_', 'filterfastbounds']) blacklist([gl_prefix, 'gm', '_', 'imageblurtiled']) blacklist(['_', 'gm', '_', 'imagefiltersclipped']) blacklist(['_', 'gm', '_', 'imagefiltersscaled']) blacklist(['_', 'gm', '_', 'imageresizetiled']) blacklist(['_', 'gm', '_', 'matrixconvolution']) blacklist(['_', 'gm', '_', 'strokedlines']) if sample_count is not '': gl_msaa_config = gl_prefix + 'msaa' + sample_count blacklist([gl_msaa_config, 'gm', '_', 'imageblurtiled']) blacklist([gl_msaa_config, 'gm', '_', 'imagefiltersbase']) match = [] if 'Valgrind' in bot: # skia:3021 match.append('~Threaded') if 'Valgrind' in bot and 'PreAbandonGpuContext' in bot: # skia:6575 match.append('~multipicturedraw_') if 'CommandBuffer' in bot: # https://crbug.com/697030 match.append('~HalfFloatAlphaTextureTest') if 'AndroidOne' in bot: match.append('~WritePixels') # skia:4711 match.append('~PremulAlphaRoundTrip_Gpu') # skia:7501 match.append('~ReimportImageTextureWithMipLevels') # skia:8090 if 'Chromecast' in bot: if 'GPU' in bot: # skia:6687 match.append('~animated-image-blurs') match.append('~blur_0.01') match.append('~blur_image_filter') match.append('~check_small_sigma_offset') match.append('~imageblur2') match.append('~lighting') match.append('~longpathdash') match.append('~matrixconvolution') match.append('~textblobmixedsizes_df') match.append('~textblobrandomfont') # Blacklisted to avoid OOM (we see DM just end with "broken pipe") match.append('~bigbitmaprect_') match.append('~DrawBitmapRect') match.append('~drawbitmaprect') match.append('~GM_animated-image-blurs') match.append('~ImageFilterBlurLargeImage') match.append('~savelayer_clipmask') match.append('~TextBlobCache') match.append('~verylarge') if 'GalaxyS6' in bot: match.append('~SpecialImage') # skia:6338 match.append('~skbug6653') # skia:6653 if 'MSAN' in bot: match.extend(['~Once', '~Shared']) # Not sure what's up with these tests. if 'TSAN' in bot: match.extend(['~ReadWriteAlpha']) # Flaky on TSAN-covered on nvidia bots. match.extend(['~RGBA4444TextureTest', # Flakier than they are important. '~RGB565TextureTest']) # By default, we test with GPU threading enabled, unless specifically # disabled. if 'NoGPUThreads' in bot: args.extend(['--gpuThreads', '0']) if 'Vulkan' in bot and 'Adreno530' in bot: # skia:5777 match.extend(['~CopySurface']) if 'Vulkan' in bot and 'Adreno' in bot: # skia:7663 match.extend(['~WritePixelsNonTextureMSAA_Gpu']) match.extend(['~WritePixelsMSAA_Gpu']) if 'Vulkan' in bot and api.vars.is_linux and 'IntelIris640' in bot: match.extend(['~VkHeapTests']) # skia:6245 if api.vars.is_linux and 'IntelIris640' in bot: match.extend(['~GLPrograms']) # skia:7849 if 'Vulkan' in bot and api.vars.is_linux and 'IntelHD405' in bot: # skia:7322 blacklist(['vk', 'gm', '_', 'skbug_257']) blacklist(['vk', 'gm', '_', 'filltypespersp']) match.append('~^ClearOp$') match.append('~^CopySurface$') match.append('~^ImageNewShader_GPU$') match.append('~^InitialTextureClear$') match.append('~^PinnedImageTest$') match.append('~^ReadPixels_Gpu$') match.append('~^ReadPixels_Texture$') match.append('~^SRGBReadWritePixels$') match.append('~^VkUploadPixelsTests$') match.append('~^WritePixelsNonTexture_Gpu$') match.append('~^WritePixelsNonTextureMSAA_Gpu$') match.append('~^WritePixels_Gpu$') match.append('~^WritePixelsMSAA_Gpu$') if 'Vulkan' in bot and 'IntelIris540' in bot and 'Win' in bot: # skia:6398 blacklist(['vk', 'gm', '_', 'aarectmodes']) blacklist(['vk', 'gm', '_', 'aaxfermodes']) blacklist(['vk', 'gm', '_', 'dont_clip_to_layer']) blacklist(['vk', 'gm', '_', 'dftext']) blacklist(['vk', 'gm', '_', 'dftext_blob_persp']) blacklist(['vk', 'gm', '_', 'drawregionmodes']) blacklist(['vk', 'gm', '_', 'filterfastbounds']) blacklist(['vk', 'gm', '_', 'fontmgr_iter']) blacklist(['vk', 'gm', '_', 'fontmgr_match']) blacklist(['vk', 'gm', '_', 'fontscaler']) blacklist(['vk', 'gm', '_', 'fontscalerdistortable']) blacklist(['vk', 'gm', '_', 'gammagradienttext']) blacklist(['vk', 'gm', '_', 'gammatext']) blacklist(['vk', 'gm', '_', 'gradtext']) blacklist(['vk', 'gm', '_', 'hairmodes']) blacklist(['vk', 'gm', '_', 'imagefilters_xfermodes']) blacklist(['vk', 'gm', '_', 'imagefiltersclipped']) blacklist(['vk', 'gm', '_', 'imagefiltersscaled']) blacklist(['vk', 'gm', '_', 'imagefiltersstroked']) blacklist(['vk', 'gm', '_', 'imagefilterstransformed']) blacklist(['vk', 'gm', '_', 'imageresizetiled']) blacklist(['vk', 'gm', '_', 'lcdblendmodes']) blacklist(['vk', 'gm', '_', 'lcdoverlap']) blacklist(['vk', 'gm', '_', 'lcdtext']) blacklist(['vk', 'gm', '_', 'lcdtextsize']) blacklist(['vk', 'gm', '_', 'matriximagefilter']) blacklist(['vk', 'gm', '_', 'mixedtextblobs']) blacklist(['vk', 'gm', '_', 'resizeimagefilter']) blacklist(['vk', 'gm', '_', 'rotate_imagefilter']) blacklist(['vk', 'gm', '_', 'savelayer_lcdtext']) blacklist(['vk', 'gm', '_', 'shadermaskfilter_image']) blacklist(['vk', 'gm', '_', 'srcmode']) blacklist(['vk', 'gm', '_', 'surfaceprops']) blacklist(['vk', 'gm', '_', 'textblobgeometrychange']) blacklist(['vk', 'gm', '_', 'textbloblooper']) blacklist(['vk', 'gm', '_', 'textblobmixedsizes']) blacklist(['vk', 'gm', '_', 'textblobrandomfont']) blacklist(['vk', 'gm', '_', 'textfilter_color']) blacklist(['vk', 'gm', '_', 'textfilter_image']) blacklist(['vk', 'gm', '_', 'varied_text_clipped_lcd']) blacklist(['vk', 'gm', '_', 'varied_text_ignorable_clip_lcd']) if 'Vulkan' in bot and 'GTX660' in bot and 'Win' in bot: # skbug.com/8047 match.append('~FloatingPointTextureTest$') if 'MoltenVK' in bot: # skbug.com/7959 blacklist(['_', 'gm', '_', 'vertices_scaled_shader']) blacklist(['_', 'gm', '_', 'vertices']) match.append('~^InitialTextureClear$') match.append('~^RGB565TextureTest$') match.append('~^RGBA4444TextureTest$') match.append('~^WritePixelsNonTextureMSAA_Gpu$') if 'ANGLE' in bot: # skia:7835 match.append('~BlurMaskBiggerThanDest') if 'IntelIris6100' in bot and 'ANGLE' in bot and 'Release' in bot: # skia:7376 match.append('~^ProcessorOptimizationValidationTest$') if ('IntelIris6100' in bot or 'IntelHD4400' in bot) and 'ANGLE' in bot: # skia:6857 blacklist(['angle_d3d9_es2', 'gm', '_', 'lighting']) if 'PowerVRGX6250' in bot: match.append('~gradients_view_perspective_nodither') #skia:6972 if '-arm-' in bot and 'ASAN' in bot: # TODO: can we run with env allocator_may_return_null=1 instead? match.append('~BadImage') if 'Mac' in bot and 'IntelHD6000' in bot: # skia:7574 match.append('~^ProcessorCloneTest$') match.append('~^GrMeshTest$') if 'Mac' in bot and 'IntelHD615' in bot: # skia:7603 match.append('~^GrMeshTest$') if 'Metal' in bot: # skia:8243 match.append('~^ClearOp$') match.append('~^DDLSurfaceCharacterizationTest$') match.append('~^DDLOperatorEqTest$') match.append('~^DeferredProxyTest$') match.append('~^GPUMemorySize$') match.append('~^GrContext_colorTypeSupportedAsImage$') match.append('~^GrContext_colorTypeSupportedAsSurface$') match.append('~^GrContext_maxSurfaceSamplesForColorType$') match.append('~^GrContextFactory_sharedContexts$') match.append('~^GrPipelineDynamicStateTest$') match.append('~^InitialTextureClear$') match.append('~^PromiseImageTest$') match.append('~^ResourceAllocatorTest$') match.append('~^RGB565TextureTest$') match.append('~^RGBA4444TextureTest$') match.append('~^TransferPixelsTest$') match.append('~^SurfaceSemaphores$') match.append('~^VertexAttributeCount$') match.append('~^WrappedProxyTest$') if blacklisted: args.append('--blacklist') args.extend(blacklisted) if match: args.append('--match') args.extend(match) # These bots run out of memory running RAW codec tests. Do not run them in # parallel if 'NexusPlayer' in bot or 'Nexus5' in bot or 'Nexus9' in bot: args.append('--noRAW_threading') if 'FSAA' in bot: args.extend(['--analyticAA', 'false', '--deltaAA', 'false']) if 'FAAA' in bot: args.extend(['--deltaAA', 'false', '--forceAnalyticAA']) if 'FDAA' in bot: args.extend(['--deltaAA', '--forceDeltaAA']) if 'NativeFonts' not in bot: args.append('--nonativeFonts') if 'GDI' in bot: args.append('--gdi') if ('QuadroP400' in bot or 'Adreno540' in bot or 'IntelHD2000' in bot or # gen 6 - sandy bridge 'IntelHD4400' in bot or # gen 7 - haswell 'IntelHD405' in bot or # gen 8 - cherryview braswell 'IntelIris6100' in bot or # gen 8 - broadwell 'IntelIris540' in bot or # gen 9 - skylake 'IntelIris640' in bot or # gen 9 - kaby lake 'MaliT760' in bot or 'MaliT860' in bot or 'MaliT880' in bot): args.extend(['--reduceOpListSplitting']) # Let's make all bots produce verbose output by default. args.append('--verbose') return args def key_params(api): """Build a unique key from the builder name (as a list). E.g. arch x86 gpu GeForce320M mode MacMini4.1 os Mac10.6 """ # Don't bother to include role, which is always Test. blacklist = ['role', 'test_filter'] flat = [] for k in sorted(api.vars.builder_cfg.keys()): if k not in blacklist: flat.append(k) flat.append(api.vars.builder_cfg[k]) return flat def test_steps(api): """Run the DM test.""" b = api.properties['buildername'] use_hash_file = False if upload_dm_results(b): host_dm_dir = str(api.flavor.host_dirs.dm_dir) api.flavor.create_clean_host_dir(api.path['start_dir'].join('test')) device_dm_dir = str(api.flavor.device_dirs.dm_dir) if host_dm_dir != device_dm_dir: api.flavor.create_clean_device_dir(device_dm_dir) # Obtain the list of already-generated hashes. hash_filename = 'uninteresting_hashes.txt' host_hashes_file = api.vars.tmp_dir.join(hash_filename) hashes_file = api.flavor.device_path_join( api.flavor.device_dirs.tmp_dir, hash_filename) api.run( api.python.inline, 'get uninteresting hashes', program=""" import contextlib import math import socket import sys import time import urllib2 HASHES_URL = sys.argv[1] RETRIES = 5 TIMEOUT = 60 WAIT_BASE = 15 socket.setdefaulttimeout(TIMEOUT) for retry in range(RETRIES): try: with contextlib.closing( urllib2.urlopen(HASHES_URL, timeout=TIMEOUT)) as w: hashes = w.read() with open(sys.argv[2], 'w') as f: f.write(hashes) break except Exception as e: print 'Failed to get uninteresting hashes from %s:' % HASHES_URL print e if retry == RETRIES: raise waittime = WAIT_BASE * math.pow(2, retry) print 'Retry in %d seconds.' % waittime time.sleep(waittime) """, args=[api.properties['gold_hashes_url'], host_hashes_file], abort_on_failure=False, fail_build_on_failure=False, infra_step=True) if api.path.exists(host_hashes_file): api.flavor.copy_file_to_device(host_hashes_file, hashes_file) use_hash_file = True # Run DM. properties = [ 'gitHash', api.properties['revision'], 'builder', api.vars.builder_name, 'buildbucket_build_id', api.properties.get('buildbucket_build_id', ''), ] if api.vars.is_trybot: properties.extend([ 'issue', api.vars.issue, 'patchset', api.vars.patchset, 'patch_storage', api.vars.patch_storage, ]) properties.extend(['swarming_bot_id', api.vars.swarming_bot_id]) properties.extend(['swarming_task_id', api.vars.swarming_task_id]) if 'Chromecast' in api.vars.builder_cfg.get('os', ''): # Due to limited disk space, we only deal with skps and one image. args = [ 'dm', '--resourcePath', api.flavor.device_dirs.resource_dir, '--skps', api.flavor.device_dirs.skp_dir, '--images', api.flavor.device_path_join( api.flavor.device_dirs.resource_dir, 'images', 'color_wheel.jpg'), '--nameByHash', '--properties' ] + properties else: args = [ 'dm', '--resourcePath', api.flavor.device_dirs.resource_dir, '--skps', api.flavor.device_dirs.skp_dir, '--images', api.flavor.device_path_join( api.flavor.device_dirs.images_dir, 'dm'), '--colorImages', api.flavor.device_path_join( api.flavor.device_dirs.images_dir, 'colorspace'), '--nameByHash', '--properties' ] + properties args.extend(['--svgs', api.flavor.device_dirs.svg_dir]) if 'Lottie' in api.vars.builder_cfg.get('extra_config', ''): args.extend(['--lotties', api.flavor.device_dirs.lotties_dir]) args.append('--key') keys = key_params(api) if 'Lottie' in api.vars.builder_cfg.get('extra_config', ''): keys.extend(['renderer', 'skottie']) args.extend(keys) if use_hash_file: args.extend(['--uninterestingHashesFile', hashes_file]) if upload_dm_results(b): args.extend(['--writePath', api.flavor.device_dirs.dm_dir]) args.extend(dm_flags(api, api.vars.builder_name)) # See skia:2789. if 'AbandonGpuContext' in api.vars.extra_tokens: args.append('--abandonGpuContext') if 'PreAbandonGpuContext' in api.vars.extra_tokens: args.append('--preAbandonGpuContext') if 'ReleaseAndAbandonGpuContext' in api.vars.extra_tokens: args.append('--releaseAndAbandonGpuContext') api.run(api.flavor.step, 'dm', cmd=args, abort_on_failure=False) if upload_dm_results(b): # Copy images and JSON to host machine if needed. api.flavor.copy_directory_contents_to_host( api.flavor.device_dirs.dm_dir, api.flavor.host_dirs.dm_dir) def RunSteps(api): api.vars.setup() api.file.ensure_directory('makedirs tmp_dir', api.vars.tmp_dir) api.flavor.setup() env = {} if 'iOS' in api.vars.builder_name: env['IOS_BUNDLE_ID'] = 'com.google.dm' env['IOS_MOUNT_POINT'] = api.vars.slave_dir.join('mnt_iosdevice') with api.context(env=env): try: if 'Chromecast' in api.vars.builder_name: api.flavor.install(resources=True, skps=True) elif 'Lottie' in api.vars.builder_name: api.flavor.install(resources=True, lotties=True) else: api.flavor.install(skps=True, images=True, svgs=True, resources=True) test_steps(api) finally: api.flavor.cleanup_steps() api.run.check_failure() TEST_BUILDERS = [ 'Test-Android-Clang-AndroidOne-GPU-Mali400MP2-arm-Release-All-Android', 'Test-Android-Clang-GalaxyS6-GPU-MaliT760-arm64-Debug-All-Android', ('Test-Android-Clang-GalaxyS6-GPU-MaliT760-arm64-Debug-All' '-Android_NoGPUThreads'), ('Test-Android-Clang-GalaxyS7_G930FD-GPU-MaliT880-arm64-Release-All' '-Android_Vulkan'), 'Test-Android-Clang-MotoG4-CPU-Snapdragon617-arm-Release-All-Android', 'Test-Android-Clang-NVIDIA_Shield-GPU-TegraX1-arm64-Debug-All-Android_CCPR', 'Test-Android-Clang-Nexus5-GPU-Adreno330-arm-Release-All-Android', 'Test-Android-Clang-Nexus7-CPU-Tegra3-arm-Release-All-Android', 'Test-Android-Clang-NexusPlayer-GPU-PowerVRG6430-x86-Release-All-Android', 'Test-Android-Clang-Pixel-GPU-Adreno530-arm64-Debug-All-Android_Vulkan', 'Test-Android-Clang-Pixel-GPU-Adreno530-arm-Debug-All-Android_ASAN', ('Test-ChromeOS-Clang-AcerChromebookR13Convertible-GPU-PowerVRGX6250-' 'arm-Debug-All'), 'Test-Chromecast-Clang-Chorizo-CPU-Cortex_A7-arm-Release-All', 'Test-Chromecast-Clang-Chorizo-GPU-Cortex_A7-arm-Release-All', 'Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Debug-All-ASAN', 'Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Debug-All-BonusConfigs', 'Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Debug-shard_00_10-Coverage', 'Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Debug-All-MSAN', ('Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Debug-All' '-SK_USE_DISCARDABLE_SCALEDIMAGECACHE'), 'Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Release-All-Lottie', ('Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Release-All' '-SK_FORCE_RASTER_PIPELINE_BLITTER'), 'Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Release-All-TSAN', 'Test-Debian9-Clang-GCE-GPU-SwiftShader-x86_64-Release-All-SwiftShader', 'Test-Debian9-Clang-NUC5PPYH-GPU-IntelHD405-x86_64-Release-All-Vulkan', 'Test-Debian9-Clang-NUC7i5BNK-GPU-IntelIris640-x86_64-Debug-All-Vulkan', 'Test-Mac-Clang-MacBook10.1-GPU-IntelHD615-x86_64-Release-All-NativeFonts', 'Test-Mac-Clang-MacBookAir7.2-GPU-IntelHD6000-x86_64-Debug-All', 'Test-Mac-Clang-MacBookPro11.5-CPU-AVX2-x86_64-Release-All', 'Test-Mac-Clang-MacBookPro11.5-GPU-RadeonHD8870M-x86_64-Debug-All-Metal', ('Test-Mac-Clang-MacBookPro11.5-GPU-RadeonHD8870M-x86_64-Release-All-' 'MoltenVK_Vulkan'), 'Test-Mac-Clang-MacMini7.1-GPU-IntelIris5100-x86_64-Debug-All-CommandBuffer', 'Test-Ubuntu17-Clang-Golo-GPU-QuadroP400-x86_64-Debug-All-Vulkan_Coverage', ('Test-Ubuntu17-GCC-Golo-GPU-QuadroP400-x86_64-Release-All' '-Valgrind_AbandonGpuContext_SK_CPU_LIMIT_SSE41'), ('Test-Ubuntu17-GCC-Golo-GPU-QuadroP400-x86_64-Release-All' '-Valgrind_PreAbandonGpuContext_SK_CPU_LIMIT_SSE41'), 'Test-Ubuntu17-Clang-Golo-GPU-QuadroP400-x86_64-Debug-All-DDL1', 'Test-Ubuntu17-Clang-Golo-GPU-QuadroP400-x86_64-Debug-All-DDL3', 'Test-Ubuntu17-Clang-Golo-GPU-QuadroP400-x86_64-Debug-All-Lottie', 'Test-Win10-Clang-Golo-GPU-QuadroP400-x86_64-Release-All-BonusConfigs', ('Test-Win10-Clang-Golo-GPU-QuadroP400-x86_64-Release-All' '-ReleaseAndAbandonGpuContext'), 'Test-Win10-Clang-NUC5i7RYH-CPU-AVX2-x86_64-Debug-All-NativeFonts_GDI', 'Test-Win10-Clang-NUC5i7RYH-GPU-IntelIris6100-x86_64-Release-All-ANGLE', 'Test-Win10-Clang-NUC6i5SYK-GPU-IntelIris540-x86_64-Debug-All-ANGLE', 'Test-Win10-Clang-NUC6i5SYK-GPU-IntelIris540-x86_64-Debug-All-Vulkan', 'Test-Win10-Clang-NUCD34010WYKH-GPU-IntelHD4400-x86_64-Release-All-ANGLE', 'Test-Win10-Clang-ShuttleA-GPU-GTX660-x86_64-Release-All-Vulkan', 'Test-Win10-Clang-ShuttleC-GPU-GTX960-x86_64-Debug-All-ANGLE', 'Test-Win2016-Clang-GCE-CPU-AVX2-x86_64-Debug-All-FAAA', 'Test-Win2016-Clang-GCE-CPU-AVX2-x86_64-Debug-All-FDAA', 'Test-Win2016-Clang-GCE-CPU-AVX2-x86_64-Debug-All-FSAA', 'Test-iOS-Clang-iPadPro-GPU-PowerVRGT7800-arm64-Release-All', ] def GenTests(api): for builder in TEST_BUILDERS: test = ( api.test(builder) + api.properties(buildername=builder, buildbucket_build_id='123454321', revision='abc123', path_config='kitchen', gold_hashes_url='https://example.com/hashes.txt', swarm_out_dir='[SWARM_OUT_DIR]') + api.path.exists( api.path['start_dir'].join('skia'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skimage', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skp', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'svg', 'VERSION'), api.path['start_dir'].join('tmp', 'uninteresting_hashes.txt') ) + api.step_data('get swarming bot id', stdout=api.raw_io.output('skia-bot-123')) + api.step_data('get swarming task id', stdout=api.raw_io.output('123456')) ) if 'Win' in builder: test += api.platform('win', 64) if 'Chromecast' in builder: test += api.step_data( 'read chromecast ip', stdout=api.raw_io.output('192.168.1.2:5555')) if 'ChromeOS' in builder: test += api.step_data( 'read chromeos ip', stdout=api.raw_io.output('{"user_ip":"foo@127.0.0.1"}')) yield test builder = 'Test-Win8-Clang-Golo-CPU-AVX-x86-Debug-All' yield ( api.test('trybot') + api.properties(buildername=builder, buildbucket_build_id='123454321', revision='abc123', path_config='kitchen', gold_hashes_url='https://example.com/hashes.txt', swarm_out_dir='[SWARM_OUT_DIR]') + api.properties(patch_storage='gerrit') + api.properties.tryserver( buildername=builder, gerrit_project='skia', gerrit_url='https://skia-review.googlesource.com/', )+ api.path.exists( api.path['start_dir'].join('skia'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skimage', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skp', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'svg', 'VERSION'), api.path['start_dir'].join('tmp', 'uninteresting_hashes.txt') ) ) builder = 'Test-Debian9-GCC-GCE-CPU-AVX2-x86_64-Debug-All' yield ( api.test('failed_dm') + api.properties(buildername=builder, buildbucket_build_id='123454321', revision='abc123', path_config='kitchen', gold_hashes_url='https://example.com/hashes.txt', swarm_out_dir='[SWARM_OUT_DIR]') + api.path.exists( api.path['start_dir'].join('skia'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skimage', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skp', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'svg', 'VERSION'), api.path['start_dir'].join('tmp', 'uninteresting_hashes.txt') ) + api.step_data('symbolized dm', retcode=1) ) builder = 'Test-Android-Clang-Nexus7-GPU-Tegra3-arm-Release-All-Android' yield ( api.test('failed_get_hashes') + api.properties(buildername=builder, buildbucket_build_id='123454321', revision='abc123', path_config='kitchen', gold_hashes_url='https://example.com/hashes.txt', swarm_out_dir='[SWARM_OUT_DIR]') + api.path.exists( api.path['start_dir'].join('skia'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skimage', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skp', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'svg', 'VERSION'), api.path['start_dir'].join('tmp', 'uninteresting_hashes.txt') ) + api.step_data('get uninteresting hashes', retcode=1) ) builder = ('Test-Android-Clang-NexusPlayer-CPU-Moorefield-x86-' 'Debug-All-Android') yield ( api.test('failed_push') + api.properties(buildername=builder, buildbucket_build_id='123454321', revision='abc123', path_config='kitchen', gold_hashes_url='https://example.com/hashes.txt', swarm_out_dir='[SWARM_OUT_DIR]') + api.path.exists( api.path['start_dir'].join('skia'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skimage', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skp', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'svg', 'VERSION'), api.path['start_dir'].join('tmp', 'uninteresting_hashes.txt') ) + api.step_data('get swarming bot id', stdout=api.raw_io.output('build123-m2--device5')) + api.step_data('push [START_DIR]/skia/resources/* '+ '/sdcard/revenge_of_the_skiabot/resources', retcode=1) ) builder = 'Test-Android-Clang-Nexus7-GPU-Tegra3-arm-Debug-All-Android' retry_step_name = 'adb pull.pull /sdcard/revenge_of_the_skiabot/dm_out' yield ( api.test('failed_pull') + api.properties(buildername=builder, buildbucket_build_id='123454321', revision='abc123', path_config='kitchen', gold_hashes_url='https://example.com/hashes.txt', swarm_out_dir='[SWARM_OUT_DIR]') + api.path.exists( api.path['start_dir'].join('skia'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skimage', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skp', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'svg', 'VERSION'), api.path['start_dir'].join('tmp', 'uninteresting_hashes.txt') ) + api.step_data('dm', retcode=1) + api.step_data(retry_step_name, retcode=1) + api.step_data(retry_step_name + ' (attempt 2)', retcode=1) + api.step_data(retry_step_name + ' (attempt 3)', retcode=1) ) yield ( api.test('internal_bot_2') + api.properties(buildername=builder, buildbucket_build_id='123454321', revision='abc123', path_config='kitchen', swarm_out_dir='[SWARM_OUT_DIR]', gold_hashes_url='https://example.com/hashes.txt', internal_hardware_label='2') + api.path.exists( api.path['start_dir'].join('skia'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skimage', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skp', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'svg', 'VERSION'), api.path['start_dir'].join('tmp', 'uninteresting_hashes.txt') ) ) yield ( api.test('internal_bot_5') + api.properties(buildername=builder, buildbucket_build_id='123454321', revision='abc123', path_config='kitchen', swarm_out_dir='[SWARM_OUT_DIR]', gold_hashes_url='https://example.com/hashes.txt', internal_hardware_label='5') + api.path.exists( api.path['start_dir'].join('skia'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skimage', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'skp', 'VERSION'), api.path['start_dir'].join('skia', 'infra', 'bots', 'assets', 'svg', 'VERSION'), api.path['start_dir'].join('tmp', 'uninteresting_hashes.txt') ) )
38.388226
80
0.625772
43de6d701fd333c80e55f1bc9019f3c9f41a8558
24,580
py
Python
anuga/damage_modelling/tests/test_inundation_damage.py
samcom12/anuga_core
f4378114dbf02d666fe6423de45798add5c42806
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
anuga/damage_modelling/tests/test_inundation_damage.py
samcom12/anuga_core
f4378114dbf02d666fe6423de45798add5c42806
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
anuga/damage_modelling/tests/test_inundation_damage.py
samcom12/anuga_core
f4378114dbf02d666fe6423de45798add5c42806
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
#!/usr/bin/env python # from __future__ import print_function from builtins import str from builtins import range import unittest import tempfile import os, sys import time import csv from random import seed seed(17) #, version=1) # Make probabilistic tests reproducible #from anuga.damage.inundation_damage import _calc_collapse_structures from anuga.damage_modelling.inundation_damage import * from anuga.geospatial_data.geospatial_data import Geospatial_data from anuga.pmesh.mesh import Mesh from anuga.coordinate_transforms.geo_reference import Geo_reference from anuga.utilities.numerical_tools import mean from anuga.utilities import system_tools from anuga.file.sww import SWW_file from anuga.shallow_water.shallow_water_domain import Domain from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ import Transmissive_boundary import numpy as num from pprint import pprint def elevation_function(x, y): return -x class Test_inundation_damage(unittest.TestCase): # Class variable verbose = False def set_verbose(self): Test_Data_Manager.verbose = True def setUp(self): #print "****set up****" # Create an sww file # Set up an sww that has a geo ref. # have it cover an area in Australia. 'gong maybe #Don't have many triangles though! #Site Name: GDA-MGA: (UTM with GRS80 ellipsoid) #Zone: 56 #Easting: 222908.705 Northing: 6233785.284 #Latitude: -34 0 ' 0.00000 '' Longitude: 150 0 ' 0.00000 '' #Grid Convergence: -1 40 ' 43.13 '' Point Scale: 1.00054660 #geo-ref #Zone: 56 #Easting: 220000 Northing: 6230000 #have a big area covered. mesh_file = tempfile.mktemp(".tsh") points_lat_long = [[-33,152],[-35,152],[-35,150],[-33,150]] spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True) points_ab = spat.get_data_points( absolute = True) geo = Geo_reference(56,400000,6000000) spat.set_geo_reference(geo) m = Mesh() m.add_vertices(spat) m.auto_segment() m.generate_mesh(verbose=False) m.export_mesh_file(mesh_file) #Create shallow water domain domain = Domain(mesh_file) os.remove(mesh_file) domain.default_order=2 #Set some field values #domain.set_quantity('stage', 1.0) domain.set_quantity('elevation', -0.5) domain.set_quantity('friction', 0.03) ###################### # Boundary conditions B = Transmissive_boundary(domain) domain.set_boundary( {'exterior': B}) ###################### #Initial condition - with jumps bed = domain.quantities['elevation'].vertex_values stage = num.zeros(bed.shape, float) h = 0.3 for i in range(stage.shape[0]): if i % 2 == 0: stage[i,:] = bed[i,:] + h else: stage[i,:] = bed[i,:] domain.set_quantity('stage', stage) domain.set_quantity('xmomentum', stage*22.0) domain.set_quantity('ymomentum', stage*55.0) domain.distribute_to_vertices_and_edges() self.domain = domain C = domain.get_vertex_coordinates() self.X = C[:,0:6:2].copy() self.Y = C[:,1:6:2].copy() self.F = bed #sww_file = tempfile.mktemp("") self.domain.set_name('tid_P0') self.domain.format = 'sww' self.domain.smooth = True self.domain.reduction = mean sww = SWW_file(self.domain) sww.store_connectivity() sww.store_timestep() self.domain.set_time(2.) sww.store_timestep() self.sww = sww # so it can be deleted #Create another sww file mesh_file = tempfile.mktemp(".tsh") points_lat_long = [[-35,152],[-36,152],[-36,150],[-35,150]] spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True) points_ab = spat.get_data_points( absolute = True) geo = Geo_reference(56,400000,6000000) spat.set_geo_reference(geo) m = Mesh() m.add_vertices(spat) m.auto_segment() m.generate_mesh(verbose=False) m.export_mesh_file(mesh_file) #Create shallow water domain domain = Domain(mesh_file) os.remove(mesh_file) domain.default_order=2 #Set some field values #domain.set_quantity('stage', 1.0) domain.set_quantity('elevation', -40) domain.set_quantity('friction', 0.03) ###################### # Boundary conditions B = Transmissive_boundary(domain) domain.set_boundary( {'exterior': B}) ###################### #Initial condition - with jumps bed = domain.quantities['elevation'].vertex_values stage = num.zeros(bed.shape, float) h = 30. for i in range(stage.shape[0]): if i % 2 == 0: stage[i,:] = bed[i,:] + h else: stage[i,:] = bed[i,:] domain.set_quantity('stage', stage) domain.set_quantity('xmomentum', stage*22.0) domain.set_quantity('ymomentum', stage*55.0) domain.distribute_to_vertices_and_edges() self.domain2 = domain C = domain.get_vertex_coordinates() self.X2 = C[:,0:6:2].copy() self.Y2 = C[:,1:6:2].copy() self.F2 = bed #sww_file = tempfile.mktemp("") domain.set_name('tid_P1') domain.format = 'sww' domain.smooth = True domain.reduction = mean sww = SWW_file(domain) sww.store_connectivity() sww.store_timestep() domain.set_time(2.0) sww.store_timestep() self.swwII = sww # so it can be deleted # print "sww.filename", sww.filename #Create a csv file self.csv_file = tempfile.mktemp(".csv") fd = open(self.csv_file,'w',newline="") writer = csv.writer(fd) writer.writerow(['LONGITUDE','LATITUDE',STR_VALUE_LABEL,CONT_VALUE_LABEL,'ROOF_TYPE',WALL_TYPE_LABEL, SHORE_DIST_LABEL]) writer.writerow(['151.5','-34','199770','130000','Metal','Timber',20.]) writer.writerow(['151','-34.5','150000','76000','Metal','Double Brick',200.]) writer.writerow(['151','-34.25','150000','76000','Metal','Brick Veneer',200.]) fd.close() #Create a csv file self.csv_fileII = tempfile.mktemp(".csv") fd = open(self.csv_fileII,'w',newline="") writer = csv.writer(fd) writer.writerow(['LONGITUDE','LATITUDE',STR_VALUE_LABEL,CONT_VALUE_LABEL,'ROOF_TYPE',WALL_TYPE_LABEL, SHORE_DIST_LABEL]) writer.writerow(['151.5','-34','199770','130000','Metal','Timber',20.]) writer.writerow(['151','-34.5','150000','76000','Metal','Double Brick',200.]) writer.writerow(['151','-34.25','150000','76000','Metal','Brick Veneer',200.]) fd.close() def tearDown(self): #print "***** tearDown ********" # FIXME (Ole): Sometimes this fails - is the file open or is it sometimes not created? try: # Sometimes this fails - don't know why. # Seems to be that the file is not created, since after it # fails there are no sww files in the anuga directory os.remove(self.sww.filename) os.remove(self.swwII.filename) except OSError: pass os.remove(self.csv_file) os.remove(self.csv_fileII) def test_inundation_damage1(self): # Note, this isn't testing the results, # just that is all runs sww_file = self.domain.get_name() + "." + self.domain.format #print "sww_file",sww_file inundation_damage(sww_file, self.csv_file, verbose=False) def test_inundation_damage_list_as_input(self): # Note, this isn't testing the results, # just that is all runs sww_file = self.domain.get_name() + "." + self.domain.format #print "sww_file",sww_file inundation_damage(sww_file, [self.csv_file, self.csv_fileII], verbose=False) def test_inundation_damage2(self): # create mesh mesh_file = tempfile.mktemp(".tsh") points = [[0.0,0.0],[6.0,0.0],[6.0,6.0],[0.0,6.0]] m = Mesh() m.add_vertices(points) m.auto_segment() m.generate_mesh(verbose=False) m.export_mesh_file(mesh_file) #Create shallow water domain domain = Domain(mesh_file) os.remove(mesh_file) domain.default_order=2 #Set some field values domain.set_quantity('elevation', elevation_function) domain.set_quantity('friction', 0.03) domain.set_quantity('xmomentum', 22.0) domain.set_quantity('ymomentum', 55.0) ###################### # Boundary conditions B = Transmissive_boundary(domain) domain.set_boundary( {'exterior': B}) # This call mangles the stage values. domain.distribute_to_vertices_and_edges() domain.set_quantity('stage', 0.3) #sww_file = tempfile.mktemp("") domain.set_name('datatest' + str(time.time())) domain.format = 'sww' domain.smooth = True domain.reduction = mean sww = SWW_file(domain) sww.store_connectivity() sww.store_timestep() domain.set_quantity('stage', -0.3) domain.set_time(2.) sww.store_timestep() #Create a csv file csv_file = tempfile.mktemp(".csv") fd = open(csv_file,'w',newline="") writer = csv.writer(fd) writer.writerow(['x', 'y', STR_VALUE_LABEL, CONT_VALUE_LABEL, \ 'ROOF_TYPE', WALL_TYPE_LABEL, SHORE_DIST_LABEL]) writer.writerow([5.5,0.5,'10','130000','Metal','Timber',20]) writer.writerow([4.5,1.0,'150','76000','Metal','Double Brick',20]) writer.writerow([0.1,1.5,'100','76000','Metal','Brick Veneer',300]) writer.writerow([6.1,1.5,'100','76000','Metal','Brick Veneer',300]) fd.close() sww_file = domain.get_name() + "." + domain.format #print "sww_file",sww_file inundation_damage(sww_file, csv_file, verbose=False) csv_handle = Exposure(csv_file) struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE) #print "struct_loss",struct_loss struct_loss = [float(x) for x in struct_loss] assert num.allclose(struct_loss, [10.0, 150.0, 66.553333478768664, 0.0]) depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE) #print "depth",depth depth = [float(x) for x in depth] assert num.allclose(depth,[3.00000001192092, 2.9166666785875957, 2.2666666785875957, -0.3]) os.remove(sww.filename) os.remove(csv_file) def test_inundation_damage_list(self): # create mesh mesh_file = tempfile.mktemp(".tsh") points = [[0.0,0.0],[6.0,0.0],[6.0,6.0],[0.0,6.0]] m = Mesh() m.add_vertices(points) m.auto_segment() m.generate_mesh(verbose=False) m.export_mesh_file(mesh_file) #Create shallow water domain domain = Domain(mesh_file) os.remove(mesh_file) domain.default_order=2 #Set some field values domain.set_quantity('elevation', elevation_function) domain.set_quantity('friction', 0.03) domain.set_quantity('xmomentum', 22.0) domain.set_quantity('ymomentum', 55.0) ###################### # Boundary conditions B = Transmissive_boundary(domain) domain.set_boundary( {'exterior': B}) # This call mangles the stage values. domain.distribute_to_vertices_and_edges() domain.set_quantity('stage', 0.3) #sww_file = tempfile.mktemp("") domain.set_name('datatest' + str(time.time())) domain.format = 'sww' domain.smooth = True domain.reduction = mean sww = SWW_file(domain) sww.store_connectivity() sww.store_timestep() domain.set_quantity('stage', -0.3) domain.set_time(2.) sww.store_timestep() #Create a csv file csv_file = tempfile.mktemp(".csv") fd = open(csv_file,'w',newline="") writer = csv.writer(fd) writer.writerow(['x','y',STR_VALUE_LABEL,CONT_VALUE_LABEL,'ROOF_TYPE',WALL_TYPE_LABEL, SHORE_DIST_LABEL]) writer.writerow([5.5,0.5,'10','130000','Metal','Timber',20]) writer.writerow([4.5,1.0,'150','76000','Metal','Double Brick',20]) writer.writerow([0.1,1.5,'100','76000','Metal','Brick Veneer',300]) writer.writerow([6.1,1.5,'100','76000','Metal','Brick Veneer',300]) fd.close() extension = ".csv" csv_fileII = tempfile.mktemp(extension) fd = open(csv_fileII,'w',newline="") writer = csv.writer(fd) writer.writerow(['x','y',STR_VALUE_LABEL,CONT_VALUE_LABEL,'ROOF_TYPE',WALL_TYPE_LABEL, SHORE_DIST_LABEL]) writer.writerow([5.5,0.5,'10','130000','Metal','Timber',20]) writer.writerow([4.5,1.0,'150','76000','Metal','Double Brick',20]) writer.writerow([0.1,1.5,'100','76000','Metal','Brick Veneer',300]) writer.writerow([6.1,1.5,'100','76000','Metal','Brick Veneer',300]) fd.close() sww_file = domain.get_name() + "." + domain.format #print "sww_file",sww_file marker='_gosh' inundation_damage(sww_file, [csv_file, csv_fileII], exposure_file_out_marker=marker, verbose=False) # Test one file csv_handle = Exposure(csv_file[:-4]+marker+extension) struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE) #print "struct_loss",struct_loss struct_loss = [float(x) for x in struct_loss] #pprint(struct_loss) assert num.allclose(struct_loss,[10.0, 150.0, 66.55333347876866, 0.0]) depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE) #print "depth",depth depth = [float(x) for x in depth] assert num.allclose(depth, [3.000000011920929, 2.9166666785875957, 2.2666666785875957, -0.3]) # Test another file csv_handle = Exposure(csv_fileII[:-4]+marker+extension) struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE) #print "struct_loss",struct_loss struct_loss = [float(x) for x in struct_loss] #pprint(struct_loss) assert num.allclose(struct_loss, [10.0, 150.0, 66.553333478768664, 0.0]) depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE) #print "depth",depth depth = [float(x) for x in depth] assert num.allclose(depth,[3.000000011920929, 2.9166666785875957, 2.2666666785875957, -0.3]) os.remove(sww.filename) os.remove(csv_file) os.remove(csv_fileII) def ztest_add_depth_and_momentum2csv(self): sww_file = self.domain.get_name() + "." + self.domain.format #print "sww_file",sww_file out_csv = tempfile.mktemp(".csv") print("out_csv",out_csv) add_depth_and_momentum2csv(sww_file, self.csv_file, out_csv, verbose=False) def test_calc_damage_percentages(self): max_depths = [-0.3, 0.0, 1.0,-0.3, 0.0, 1.0,-0.3, 0.0, 1.0] shore_distances = [100, 100, 100, 100, 100, 100, 100, 100, 100] walls = ['Double Brick', 'Double Brick', 'Double Brick', 'Timber', 'Timber', 'Timber', 'Brick Veneer', 'Brick Veneer', 'Brick Veneer'] struct_costs = [10, 10, 10, 10, 10, 10, 1, 1, 1] content_costs = [100, 100, 100, 100, 100, 100, 10, 10, 10] edm = EventDamageModel(max_depths, shore_distances, walls, struct_costs, content_costs) edm.calc_damage_percentages() assert num.allclose(edm.struct_damage,[0.0,0.016,0.572, 0.0,0.016,0.618, 0.0,0.016,0.618]) assert num.allclose(edm.contents_damage,[0.0,0.013,0.970, 0.0,0.013,0.970, 0.0,0.013,0.970]) edm.calc_cost() assert num.allclose(edm.struct_loss,[0.0,.16,5.72, 0.0,.16,6.18, 0.0,0.016,0.618]) assert num.allclose(edm.contents_loss,[0.0,1.3,97, 0.0,1.3,97, 0.0,0.13,9.7]) def test_calc_collapse_structures1(self): edm = EventDamageModel([0.0]*17, [0.0]*17, [0.0]*17, [0.0]*17, [0.0]*17) edm.struct_damage = num.zeros(17,float) edm.contents_damage = num.zeros(17,float) collapse_probability = {0.4:[0], #0 0.6:[1], #1 0.5:[2], #1 0.25:[3,4], #1 0.1:[5,6,7,8], #0 0.2:[9,10,11,12,13,14,15,16]} #2 assert num.allclose(edm.max_depths, 0.0) assert num.allclose(edm.shore_distances, 0.0) assert num.allclose(edm.walls, 0.0) assert num.allclose(edm.struct_costs, 0.0) assert num.allclose(edm.content_costs, 0.0) edm._calc_collapse_structures(collapse_probability, verbose_csv=True) # Random numbers are not stable between Python2 and Python3 - even with the same seed seed(17, version=1) # See https://stackoverflow.com/questions/11929701/why-is-seeding-the-random-generator-not-stable-between-versions-of-python if system_tools.major_version == 2: assert num.allclose(edm.struct_damage, [0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]), 'Expected %s' % edm.struct_damage assert num.allclose(edm.contents_damage, [0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]), 'Expected %s' % edm.contents_damage self.assertTrue(edm.struct_damage[0] == 0.0 and edm.contents_damage[0] == 0.0, 'Error!') self.assertTrue(edm.struct_damage[1] == 1.0 and edm.contents_damage[1] == 1.0, 'Error!') self.assertTrue(edm.struct_damage[2] == 1.0 and edm.contents_damage[2] == 1.0, 'Error!') self.assertTrue(edm.struct_damage[3] + edm.struct_damage[4] == 1.0 and edm.contents_damage[3] + edm.contents_damage[4] ==1.0, 'Error!') elif system_tools.major_version == 3: assert num.allclose(edm.struct_damage, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0]), 'Expected %s' % edm.struct_damage assert num.allclose(edm.contents_damage, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0]), 'Expected %s' % edm.contents_damage self.assertTrue(edm.struct_damage[0] == 0.0 and edm.contents_damage[0] == 0.0, 'Error!') self.assertTrue(edm.struct_damage[1] == 1.0 and edm.contents_damage[1] == 1.0, 'Error!') self.assertTrue(edm.struct_damage[2] == 0.0 and edm.contents_damage[2] == 0.0, 'Error!') self.assertTrue(edm.struct_damage[3] + edm.struct_damage[4] == 0 and edm.contents_damage[3] + edm.contents_damage[4] ==0, 'Error!') else: raise Exception('Unknown python version: %s' % system_tools.version) sum_struct = 0.0 sum_contents = 0.0 for i in [5,6,7,8]: sum_struct += edm.struct_damage[i] sum_contents += edm.contents_damage[i] #print("", end=' ') self.assertTrue(sum_struct == 0.0 and sum_contents == 0.0, 'Error!') sum_struct = 0.0 sum_contents = 0.0 for i in [9,10,11,12,13,14,15,16]: sum_struct += edm.struct_damage[i] sum_contents += edm.contents_damage[i] self.assertTrue( sum_struct == 2.0 and sum_contents == 2.0, 'Error!') def test_calc_collapse_probability(self): depth = [0.0, 0.5, 0.5 , 1.5, 2.5, 4.5, 10000, 2.0] shore_distance = [0.0, 125, 250.1, 0.0, 150, 225, 10000, 251] dummy = depth edm = EventDamageModel(depth, shore_distance, dummy, dummy, dummy) struct_coll_prob = edm.calc_collapse_probability() answer = {0.05:[1,7], 0.6:[3], 0.4:[4], 0.5:[5], 0.45:[6]} #print "struct_coll_prob",struct_coll_prob #print "answer",answer self.assertTrue( struct_coll_prob == answer, 'Error!') def test_calc_damage_and_costs(self): max_depths = [-0.3, 0.0, 1.0,-0.3, 0.0, 1.0,-0.3, 0.0, 10.0] shore_distances = [100, 100, 100, 100, 100, 100, 100, 100, 100] walls = ['Double Brick', 'Double Brick', 'Double Brick', 'Timber', 'Timber', 'Timber', 'Brick Veneer', 'Brick Veneer', 'Brick Veneer'] struct_costs = [10, 10, 10, 10, 10, 10, 1, 1, 1] content_costs = [100, 100, 100, 100, 100, 100, 10, 10, 10] edm = EventDamageModel(max_depths, shore_distances, walls, struct_costs, content_costs) results_dic = edm.calc_damage_and_costs(verbose_csv=True) #print "results_dic",results_dic def test_calc_max_depth_and_momentum(self): sww_file = "tid" # self.domain.get_name() + "." + self.domain.format points_lat_long = [[-34, 151.5],[-35.5, 151.5],[-50, 151]] spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True) points_ab = spat.get_data_points( absolute = True) deps, _ = calc_max_depth_and_momentum(sww_file, points_ab, verbose=self.verbose, use_cache = False) # Test values based on returned results, so not an excellent test assert num.allclose(deps[0],0.113204555211) assert num.allclose(deps[1],11.3215) assert num.allclose(deps[2],0.0) # this value is outside both sww files #------------------------------------------------------------- if __name__ == "__main__": if len(sys.argv) > 1 and sys.argv[1][0].upper() == 'V': Test_inundation_damage.verbose=True saveout = sys.stdout filename = ".temp_verbose" fid = open(filename, 'w',newline="") sys.stdout = fid else: pass suite = unittest.makeSuite(Test_inundation_damage,'test') runner = unittest.TextTestRunner() runner.run(suite) # Cleaning up if len(sys.argv) > 1 and sys.argv[1][0].upper() == 'V': sys.stdout = saveout fid.close() os.remove(filename)
37.641654
142
0.547315
595fc4560c600bc335113e6e337290f1a542385c
3,531
py
Python
problems/template-problem.py
beratyenilen/qc-ga
8c94fe6a89a627fc65a64d3102823c8466f50649
[ "Apache-2.0" ]
null
null
null
problems/template-problem.py
beratyenilen/qc-ga
8c94fe6a89a627fc65a64d3102823c8466f50649
[ "Apache-2.0" ]
14
2021-03-01T11:43:05.000Z
2021-06-16T17:03:59.000Z
problems/template-problem.py
beratyenilen/qc-ga
8c94fe6a89a627fc65a64d3102823c8466f50649
[ "Apache-2.0" ]
null
null
null
# Importing the necessary modules. import projectq from projectq.ops import H, X, Y, Z, T, Tdagger, S, Sdagger, CNOT, Measure, All, Rx, Ry, Rz, SqrtX import numpy as np import copy from constants import * from deap import creator, base, tools from candidate import Candidate from constants import * from evolution import crossoverInd, mutateInd, selectAndEvolve, geneticAlgorithm # Import additional modules you want to use in here def desiredState(): ''' This function returns the state vector of the desiredState as list where ith element is the ith coefficient of the state vector. ''' return None def evaluateInd(individual, verbose=False): ''' This function should take an individual,possibly an instance of Candidate class, and return a tuple where each element of the tuple is an objective. An example objective would be (error,circuitLen) where: error = |1 - < createdState | wantedState > circuitLen = len(individual.circuit) / MAX_CIRCUIT_LENGTH MAX_CIRCUIT_LENGTH is the expected circuit length for the problem. ''' return (None, None) # Your main function if __name__ == "__main__": ''' You should initialize: numberOfQubits : number of qubits to be used for the problem allowedGates : allowed set of gates. Default is [Rz,SX,X,CX] problemName : output of the problem will be stored at ./outputs/problemName.txt problemDescription : A small header describing the problem. fitnessWeights : A tuple describing the weight of each objective. A negative weight means that objective should be minimized, a positive weight means that objective should be maximized. For example, if you want to represent your weights as (error,circuitLen) and want to minimize both with equal weight you can just define fitnessWeights = (-1.0,-1.0). Only the relative values of the weights have meaning. BEWARE that they are multiplied and summed up while calculating the total fitness, so you might want to normalize them. ''' # Initialize your variables numberOfQubits = 5 allowedGates = [Rz,SqrtX,X,CNOT] problemName = "template" problemDescription = "Template Problem\nnumberOfQubits=" + str(numberOfQubits)+"\nallowedGates="+str(allowedGates)+"\n" fitnessWeights = (-1.0, -1.0) # Create the type of the individual creator.create("FitnessMin", base.Fitness, weights=fitnessWeights) creator.create("Individual", Candidate, fitness=creator.FitnessMin) # Initialize your toolbox and population toolbox = base.Toolbox() toolbox.register("individual", creator.Individual, numberOfQubits=numberOfQubits, allowedGates=allowedGates) toolbox.register("population", tools.initRepeat, list, toolbox.individual) # Register the necessary functions to the toolbox toolbox.register("mate", crossoverInd, toolbox=toolbox) toolbox.register("mutate", mutateInd) toolbox.register("select", tools.selNSGA2) toolbox.register("selectAndEvolve", selectAndEvolve) toolbox.register("evaluate", evaluateInd) # Get it running NGEN = 100 # For how many generations should the algorithm run ? POPSIZE = 1000 # How many individuals should be in the population ? verbose = False # Do you want functions to print out information. # Note that they will print out a lot of things. # Initialize a random population pop = toolbox.population(n=POPSIZE) # Run the genetic algorithm geneticAlgorithm(pop, toolbox, NGEN, problemName, problemDescription, epsilon, verbose=verbose)
44.696203
121
0.745681
ff07e26a80b7fe412bd0ed9a28b94488072a3691
28
py
Python
python/quicktest.py
elsampsa/darknet-python
6c62a5934082157154087809d67d0ee43384cc7a
[ "MIT" ]
10
2019-05-10T07:26:56.000Z
2021-04-22T18:59:12.000Z
python/quicktest.py
elsampsa/darknet-python
6c62a5934082157154087809d67d0ee43384cc7a
[ "MIT" ]
null
null
null
python/quicktest.py
elsampsa/darknet-python
6c62a5934082157154087809d67d0ee43384cc7a
[ "MIT" ]
4
2018-11-16T00:55:41.000Z
2020-09-29T03:44:28.000Z
from darknet.core import *
9.333333
26
0.75
80f9204e1fbb385e86dfd99daa1ffd07e231c5ec
4,725
py
Python
mac_vendor_lookup.py
Terrarasa/mac_vendor_lookup
994847656bf44ae90c41e73e6f365172280e2465
[ "Apache-2.0" ]
null
null
null
mac_vendor_lookup.py
Terrarasa/mac_vendor_lookup
994847656bf44ae90c41e73e6f365172280e2465
[ "Apache-2.0" ]
null
null
null
mac_vendor_lookup.py
Terrarasa/mac_vendor_lookup
994847656bf44ae90c41e73e6f365172280e2465
[ "Apache-2.0" ]
null
null
null
##-----------------------------------------------## # MAC Lookup basic functions # @author Mike https://github.com/terrarasa # Based on work by Johann Bauer https://github.com/bauerj # Based on @project https://github.com/bauerj/mac_vendor_lookup ##-----------------------------------------------## import os, logging, sys, urllib.request, urllib.error from datetime import datetime OUI_URL = "https://standards-oui.ieee.org/oui.txt" class InvalidMacError(Exception): pass class VendorNotFoundError(KeyError): def __init__(self, mac): self.mac = mac def __str__(self): return f"The vendor for MAC {self.mac} could not be found. " \ f"Either it's not registered or the local list is out of date. Try MacLookup().update_vendors()" class BaseMacLookup(object): cache_path = f"{os.path.curdir}{os.path.sep}mac-vendors.txt" @staticmethod def sanitise(_mac): mac = _mac.replace(":", "").replace("-", "").replace(".", "").upper() try: int(mac, 16) except ValueError: raise InvalidMacError("{} contains unexpected character".format(_mac)) if len(mac) > 12: raise InvalidMacError("{} is not a valid MAC address (too long)".format(_mac)) return mac def get_last_updated(self): vendors_location = self.find_vendors_list() if vendors_location: return datetime.fromtimestamp(os.path.getmtime(vendors_location)) def find_vendors_list(self): possible_locations = [ self.cache_path, sys.prefix + os.path.sep + "cache" + os.path.sep + "mac-vendors.txt" ] for location in possible_locations: if os.path.exists(location): return location class MacLookup(BaseMacLookup): def __init__(self): self.prefixes = {} #Download Function def download_vendors(self): logging.log(logging.DEBUG, "Downloading MAC vendor list") # Connect to the IEEE server and obtain MAC vendor list # Try/except here to handle errors (context manager looks ugly) try: response = urllib.request.urlopen(OUI_URL) #Handle HTTP errors first as it's a subclass of URL error (and otherwise causes everything to be handled as URL errors) except urllib.error.HTTPError as e: sys.exit(f"IEEE server returned an error\nUnable to obtain updated MAC vendor list\n{e.code}: {e.reason}") except urllib.error.URLError as e: sys.exit("Unable to connect to the server\nCheck your internet connection, firewall, or proxy") file = response.read().decode("utf-8") split_request = file.splitlines(False) with open(self.cache_path, mode='w', encoding="utf-8") as out_file: """ The OUI file is very long it contains the Hex and Base16 variants of the MAC identifier along with full addresses of manufacturers to save on cache space, we cut out the data we need and discard the remainder Cache file is saved as list of base16:vendor separated by \n """ for i in range(len(split_request)): #Does the line relate to the base16 version of the MAC identifier? if not split_request[i]: continue if split_request[i].find("(base 16)") == 11: #Split the line into the identifier and vendor prefix, vendor = split_request[i].split("(base 16)", 1) #Strip out white space and write to cache file out_file.write(f"{prefix.strip()}:{vendor.strip()}\n") else: continue #Load prefixes into memory def load_prefixes(self): logging.log(logging.DEBUG, "Loading prefixes into memory") #Does the cache already exist or does it need to be downloaded? if os.path.isfile(self.cache_path) == False: self.download_vendors with open(self.cache_path, mode='r', encoding="utf-8") as f: split_file = f.read().splitlines(False) for i in range(len(split_file)): prefix, vendor = split_file[i].split(":", 1) self.prefixes[prefix] = vendor #Lookup a MAC def lookup(self, mac): mac = BaseMacLookup.sanitise(mac) self.load_prefixes() try: return self.prefixes[mac[:6]] except KeyError: raise VendorNotFoundError(mac)
40.042373
128
0.582434
15a6ca4381a2d22d3c8f997214722bead4b3c3ca
27,901
py
Python
xclim/sdba/utils.py
Ouranosinc/dcvar
0737c66a36f8969e7a17276990bc7e76f7b410c4
[ "Apache-2.0" ]
1
2018-08-20T16:36:40.000Z
2018-08-20T16:36:40.000Z
xclim/sdba/utils.py
Ouranosinc/dcvar
0737c66a36f8969e7a17276990bc7e76f7b410c4
[ "Apache-2.0" ]
3
2018-08-23T13:25:47.000Z
2018-08-23T15:59:45.000Z
xclim/sdba/utils.py
Ouranosinc/hailstorm
494c850164a9f553eeeba66c6cc90fe398eb2094
[ "Apache-2.0" ]
null
null
null
# noqa: D205,D400 """ Statistical Downscaling and Bias Adjustment Utilities ===================================================== """ from __future__ import annotations import itertools from typing import Callable, Mapping, Union from warnings import warn import numpy as np import xarray as xr from boltons.funcutils import wraps from dask import array as dsk from scipy.interpolate import griddata, interp1d from scipy.stats import spearmanr from xclim.core.calendar import _interpolate_doy_calendar # noqa from xclim.core.utils import ensure_chunk_size from .base import Grouper, parse_group from .nbutils import _extrapolate_on_quantiles MULTIPLICATIVE = "*" ADDITIVE = "+" loffsets = {"MS": "14d", "M": "15d", "YS": "181d", "Y": "182d", "QS": "45d", "Q": "46d"} def _ecdf_1d(x, value): sx = np.r_[-np.inf, np.sort(x, axis=None)] return np.searchsorted(sx, value, side="right") / np.sum(~np.isnan(sx)) def map_cdf_1d(x, y, y_value): """Return the value in `x` with the same CDF as `y_value` in `y`.""" q = _ecdf_1d(y, y_value) _func = np.nanquantile return _func(x, q=q) def map_cdf( ds: xr.Dataset, *, y_value: xr.DataArray, dim, ): """Return the value in `x` with the same CDF as `y_value` in `y`. This function is meant to be wrapped in a `Grouper.apply`. Parameters ---------- ds : xr.Dataset Variables: x, Values from which to pick, y, Reference values giving the ranking y_value : float, array Value within the support of `y`. dim : str Dimension along which to compute quantile. Returns ------- array Quantile of `x` with the same CDF as `y_value` in `y`. """ return xr.apply_ufunc( map_cdf_1d, ds.x, ds.y, input_core_dims=[dim] * 2, output_core_dims=[["x"]], vectorize=True, keep_attrs=True, kwargs={"y_value": np.atleast_1d(y_value)}, output_dtypes=[ds.x.dtype], ) def ecdf(x: xr.DataArray, value: float, dim: str = "time") -> xr.DataArray: """Return the empirical CDF of a sample at a given value. Parameters ---------- x : array Sample. value : float The value within the support of `x` for which to compute the CDF value. dim : str Dimension name. Returns ------- xr.DataArray Empirical CDF. """ return (x <= value).sum(dim) / x.notnull().sum(dim) def ensure_longest_doy(func: Callable) -> Callable: """Ensure that selected day is the longest day of year for x and y dims.""" @wraps(func) def _ensure_longest_doy(x, y, *args, **kwargs): if ( hasattr(x, "dims") and hasattr(y, "dims") and "dayofyear" in x.dims and "dayofyear" in y.dims and x.dayofyear.max() != y.dayofyear.max() ): warn( ( "get_correction received inputs defined on different dayofyear ranges. " "Interpolating to the longest range. Results could be strange." ), stacklevel=4, ) if x.dayofyear.max() < y.dayofyear.max(): x = _interpolate_doy_calendar( x, int(y.dayofyear.max()), int(y.dayofyear.min()) ) else: y = _interpolate_doy_calendar( y, int(x.dayofyear.max()), int(x.dayofyear.min()) ) return func(x, y, *args, **kwargs) return _ensure_longest_doy @ensure_longest_doy def get_correction(x: xr.DataArray, y: xr.DataArray, kind: str) -> xr.DataArray: """Return the additive or multiplicative correction/adjustment factors.""" with xr.set_options(keep_attrs=True): if kind == ADDITIVE: out = y - x elif kind == MULTIPLICATIVE: out = y / x else: raise ValueError("kind must be + or *.") if isinstance(out, xr.DataArray): out.attrs["kind"] = kind return out @ensure_longest_doy def apply_correction( x: xr.DataArray, factor: xr.DataArray, kind: str | None = None ) -> xr.DataArray: """Apply the additive or multiplicative correction/adjustment factors. If kind is not given, default to the one stored in the "kind" attribute of factor. """ kind = kind or factor.get("kind", None) with xr.set_options(keep_attrs=True): if kind == ADDITIVE: out = x + factor elif kind == MULTIPLICATIVE: out = x * factor else: raise ValueError return out def invert(x: xr.DataArray, kind: str | None = None) -> xr.DataArray: """Invert a DataArray either additively (-x) or multiplicatively (1/x). If kind is not given, default to the one stored in the "kind" attribute of x. """ kind = kind or x.get("kind", None) with xr.set_options(keep_attrs=True): if kind == ADDITIVE: return -x if kind == MULTIPLICATIVE: return 1 / x # type: ignore raise ValueError @parse_group def broadcast( grouped: xr.DataArray, x: xr.DataArray, *, group: str | Grouper = "time", interp: str = "nearest", sel: Mapping[str, xr.DataArray] | None = None, ) -> xr.DataArray: """Broadcast a grouped array back to the same shape as a given array. Parameters ---------- grouped : xr.DataArray The grouped array to broadcast like `x`. x : xr.DataArray The array to broadcast grouped to. group : Union[str, Grouper] Grouping information. See :py:class:`xclim.sdba.base.Grouper` for details. interp : {'nearest', 'linear', 'cubic'} The interpolation method to use, sel : Mapping[str, xr.DataArray] Mapping of grouped coordinates to x coordinates (other than the grouping one). Returns ------- xr.DataArray """ if sel is None: sel = {} if group.prop != "group" and group.prop not in sel: sel.update({group.prop: group.get_index(x, interp=interp != "nearest")}) if sel: # Extract the correct mean factor for each time step. if interp == "nearest": # Interpolate both the time group and the quantile. grouped = grouped.sel(sel, method="nearest") else: # Find quantile for nearest time group and quantile. # For `.interp` we need to explicitly pass the shared dims # (see pydata/xarray#4463 and Ouranosinc/xclim#449,567) sel.update( {dim: x[dim] for dim in set(grouped.dims).intersection(set(x.dims))} ) if group.prop != "group": grouped = add_cyclic_bounds(grouped, group.prop, cyclic_coords=False) if interp == "cubic" and len(sel.keys()) > 1: interp = "linear" warn( "Broadcasting operations in multiple dimensions can only be done with linear and nearest-neighbor" " interpolation, not cubic. Using linear." ) grouped = grouped.interp(sel, method=interp).astype(grouped.dtype) for var in sel.keys(): if var in grouped.coords and var not in grouped.dims: grouped = grouped.drop_vars(var) if group.prop == "group" and "group" in grouped.dims: grouped = grouped.squeeze("group", drop=True) return grouped def equally_spaced_nodes(n: int, eps: float | None = None) -> np.array: """Return nodes with `n` equally spaced points within [0, 1], optionally adding two end-points. Parameters ---------- n : int Number of equally spaced nodes. eps : float, optional Distance from 0 and 1 of added end nodes. If None (default), do not add endpoints. Returns ------- np.array Nodes between 0 and 1. Nodes can be seen as the middle points of `n` equal bins. Warnings -------- Passing a small `eps` will effectively clip the scenario to the bounds of the reference on the historical period in most cases. With normal quantile mapping algorithms, this can give strange result when the reference does not show as many extremes as the simulation does. Notes ----- For n=4, eps=0 : 0---x------x------x------x---1 """ dq = 1 / n / 2 q = np.linspace(dq, 1 - dq, n) if eps is None: return q return np.insert(np.append(q, 1 - eps), 0, eps) def add_cyclic_bounds( da: xr.DataArray, att: str, cyclic_coords: bool = True ) -> xr.DataArray | xr.Dataset: """Reindex an array to include the last slice at the beginning and the first at the end. This is done to allow interpolation near the end-points. Parameters ---------- da : Union[xr.DataArray, xr.Dataset] An array att : str The name of the coordinate to make cyclic cyclic_coords : bool If True, the coordinates are made cyclic as well, if False, the new values are guessed using the same step as their neighbour. Returns ------- Union[xr.DataArray, xr.Dataset] da but with the last element along att prepended and the last one appended. """ qmf = da.pad({att: (1, 1)}, mode="wrap") if not cyclic_coords: vals = qmf.coords[att].values diff = da.coords[att].diff(att) vals[0] = vals[1] - diff[0] vals[-1] = vals[-2] + diff[-1] qmf = qmf.assign_coords({att: vals}) qmf[att].attrs.update(da.coords[att].attrs) return ensure_chunk_size(qmf, **{att: -1}) def _interp_on_quantiles_1D(newx, oldx, oldy, method, extrap): mask_new = np.isnan(newx) mask_old = np.isnan(oldy) | np.isnan(oldx) out = np.full_like(newx, np.NaN, dtype=f"float{oldy.dtype.itemsize * 8}") if np.all(mask_new) or np.all(mask_old): warn( "All-NaN slice encountered in interp_on_quantiles", category=RuntimeWarning, ) return out if extrap == "constant": fill_value = ( oldy[~np.isnan(oldy)][0], oldy[~np.isnan(oldy)][-1], ) else: # extrap == 'nan' fill_value = np.NaN out[~mask_new] = interp1d( oldx[~mask_old], oldy[~mask_old], kind=method, bounds_error=False, fill_value=fill_value, )(newx[~mask_new]) return out def _interp_on_quantiles_2D(newx, newg, oldx, oldy, oldg, method, extrap): # noqa mask_new = np.isnan(newx) | np.isnan(newg) mask_old = np.isnan(oldy) | np.isnan(oldx) | np.isnan(oldg) out = np.full_like(newx, np.NaN, dtype=f"float{oldy.dtype.itemsize * 8}") if np.all(mask_new) or np.all(mask_old): warn( "All-NaN slice encountered in interp_on_quantiles", category=RuntimeWarning, ) return out out[~mask_new] = griddata( (oldx[~mask_old], oldg[~mask_old]), oldy[~mask_old], (newx[~mask_new], newg[~mask_new]), method=method, ) if method == "nearest" or extrap != "nan": # 'nan' extrapolation implicit for cubic and linear interpolation. out = _extrapolate_on_quantiles(out, oldx, oldg, oldy, newx, newg, extrap) return out @parse_group def interp_on_quantiles( newx: xr.DataArray, xq: xr.DataArray, yq: xr.DataArray, *, group: str | Grouper = "time", method: str = "linear", extrapolation: str = "constant", ): """Interpolate values of yq on new values of x. Interpolate in 2D with :py:func:`~scipy.interpolate.griddata` if grouping is used, in 1D otherwise, with :py:class:`~scipy.interpolate.interp1d`. Any NaNs in xq or yq are removed from the input map. Similarly, NaNs in newx are left NaNs. Parameters ---------- newx : xr.DataArray The values at which to evaluate `yq`. If `group` has group information, `new` should have a coordinate with the same name as the group name In that case, 2D interpolation is used. xq, yq : xr.DataArray Coordinates and values on which to interpolate. The interpolation is done along the "quantiles" dimension if `group` has no group information. If it does, interpolation is done in 2D on "quantiles" and on the group dimension. group : Union[str, Grouper] The dimension and grouping information. (ex: "time" or "time.month"). Defaults to "time". method : {'nearest', 'linear', 'cubic'} The interpolation method. extrapolation : {'constant', 'nan'} The extrapolation method used for values of `newx` outside the range of `xq`. See notes. Notes ----- Extrapolation methods: - 'nan' : Any value of `newx` outside the range of `xq` is set to NaN. - 'constant' : Values of `newx` smaller than the minimum of `xq` are set to the first value of `yq` and those larger than the maximum, set to the last one (first and last non-nan values along the "quantiles" dimension). When the grouping is "time.month", these limits are linearly interpolated along the month dimension. """ dim = group.dim prop = group.prop if prop == "group": if "group" in xq.dims: xq = xq.squeeze("group", drop=True) if "group" in yq.dims: yq = yq.squeeze("group", drop=True) out = xr.apply_ufunc( _interp_on_quantiles_1D, newx, xq, yq, kwargs={"method": method, "extrap": extrapolation}, input_core_dims=[[dim], ["quantiles"], ["quantiles"]], output_core_dims=[[dim]], vectorize=True, dask="parallelized", output_dtypes=[yq.dtype], ) return out # else: if prop not in xq.dims: xq = xq.expand_dims({prop: group.get_coordinate()}) if prop not in yq.dims: yq = yq.expand_dims({prop: group.get_coordinate()}) xq = add_cyclic_bounds(xq, prop, cyclic_coords=False) yq = add_cyclic_bounds(yq, prop, cyclic_coords=False) newg = group.get_index(newx, interp=method != "nearest") oldg = xq[prop].expand_dims(quantiles=xq.coords["quantiles"]) return xr.apply_ufunc( _interp_on_quantiles_2D, newx, newg, xq, yq, oldg, kwargs={"method": method, "extrap": extrapolation}, input_core_dims=[ [dim], [dim], [prop, "quantiles"], [prop, "quantiles"], [prop, "quantiles"], ], output_core_dims=[[dim]], vectorize=True, dask="parallelized", output_dtypes=[yq.dtype], ) # TODO is this useless? def rank(da: xr.DataArray, dim: str = "time", pct: bool = False) -> xr.DataArray: """Ranks data along a dimension. Replicates `xr.DataArray.rank` but as a function usable in a Grouper.apply(). Xarray's docstring is below: Equal values are assigned a rank that is the average of the ranks that would have been otherwise assigned to all the values within that set. Ranks begin at 1, not 0. If pct, computes percentage ranks. Parameters ---------- da: xr.DataArray Source array. dim : str, hashable Dimension over which to compute rank. pct : bool, optional If True, compute percentage ranks, otherwise compute integer ranks. Returns ------- DataArray DataArray with the same coordinates and dtype 'float64'. Notes ----- The `bottleneck` library is required. NaNs in the input array are returned as NaNs. """ return da.rank(dim, pct=pct) def pc_matrix(arr: np.ndarray | dsk.Array) -> np.ndarray | dsk.Array: """Construct a Principal Component matrix. This matrix can be used to transform points in arr to principal components coordinates. Note that this function does not manage NaNs; if a single observation is null, all elements of the transformation matrix involving that variable will be NaN. Parameters ---------- arr : numpy.ndarray or dask.array.Array 2D array (M, N) of the M coordinates of N points. Returns ------- numpy.ndarray or dask.array.Array MxM Array of the same type as arr. """ # Get appropriate math module mod = dsk if isinstance(arr, dsk.Array) else np # Covariance matrix cov = mod.cov(arr) # Get eigenvalues and eigenvectors # There are no such method yet in dask, but we are lucky: # the SVD decomposition of a symmetric matrix gives the eigen stuff. # And covariance matrices are by definition symmetric! # Numpy has a hermitian=True option to accelerate, but not dask... kwargs = {} if mod is dsk else {"hermitian": True} eig_vec, eig_vals, _ = mod.linalg.svd(cov, **kwargs) # The PC matrix is the eigen vectors matrix scaled by the square root of the eigen values return eig_vec * mod.sqrt(eig_vals) def best_pc_orientation_simple( R: np.ndarray, Hinv: np.ndarray, val: float = 1000 ) -> np.ndarray: """Return best orientation vector according to a simple test. Eigenvectors returned by `pc_matrix` do not have a defined orientation. Given an inverse transform Hinv and a transform R, this returns the orientation minimizing the projected distance for a test point far from the origin. This trick is inspired by the one exposed in [hnilica2017]_. For each possible orientation vector, the test point is reprojected and the distance from the original point is computed. The orientation minimizing that distance is chosen. See documentation of `sdba.adjustment.PrincipalComponentAdjustment`. Parameters ---------- R : np.ndarray MxM Matrix defining the final transformation. Hinv : np.ndarray MxM Matrix defining the (inverse) first transformation. val : float The coordinate of the test point (same for all axes). It should be much greater than the largest furthest point in the array used to define B. Returns ------- np.ndarray Mx1 vector of orientation correction (1 or -1). References ---------- .. [hnilica2017] Hnilica, J., Hanel, M. and Pš, V. (2017), Multisite bias correction of precipitation data from regional climate models. Int. J. Climatol., 37: 2934-2946. https://doi.org/10.1002/joc.4890 """ m = R.shape[0] P = np.diag(val * np.ones(m)) signes = dict(itertools.zip_longest(itertools.product(*[[1, -1]] * m), [None])) for orient in list(signes.keys()): # Compute new error signes[orient] = np.linalg.norm(P - ((orient * R) @ Hinv) @ P) return np.array(min(signes, key=lambda o: signes[o])) def best_pc_orientation_full( R: np.ndarray, Hinv: np.ndarray, Rmean: np.ndarray, Hmean: np.ndarray, hist: np.ndarray, ) -> np.ndarray: """Return best orientation vector for A according to the method of Alavoine et al. (2021, preprint). Eigenvectors returned by `pc_matrix` do not have a defined orientation. Given an inverse transform Hinv, a transform R, the actual and target origins Hmean and Rmean and the matrix of training observations hist, this computes a scenario for all possible orientations and return the orientation that maximizes the Spearman correlation coefficient of all variables. The correlation is computed for each variable individually, then averaged. This trick is explained in [alavoine2021]_. See documentation of :py:func:`sdba.adjustment.PrincipalComponentAdjustment`. Parameters ---------- R : np.ndarray MxM Matrix defining the final transformation. Hinv : np.ndarray MxM Matrix defining the (inverse) first transformation. Rmean : np.ndarray M vector defining the target distribution center point. Hmean : np.ndarray M vector defining the original distribution center point. hist : np.ndarray MxN matrix of all training observations of the M variables/sites. Returns ------- np.ndarray M vector of orientation correction (1 or -1). References ---------- .. [alavoine2021] Alavoine, M., & Grenier, P. (2021). The distinct problems of physical inconsistency and of multivariate bias potentially involved in the statistical adjustment of climate simulations. https://eartharxiv.org/repository/view/2876/ """ # All possible orientation vectors m = R.shape[0] signes = dict(itertools.zip_longest(itertools.product(*[[1, -1]] * m), [None])) for orient in list(signes.keys()): # Calculate scen for hist scen = np.atleast_2d(Rmean).T + ((orient * R) @ Hinv) @ ( hist - np.atleast_2d(Hmean).T ) # Correlation for each variable corr = [spearmanr(hist[i, :], scen[i, :])[0] for i in range(hist.shape[0])] # Store mean correlation signes[orient] = np.mean(corr) # Return orientation that maximizes the correlation return np.array(max(signes, key=lambda o: signes[o])) def get_clusters_1d( data: np.ndarray, u1: float, u2: float ) -> tuple[np.array, np.array, np.array, np.array]: """Get clusters of a 1D array. A cluster is defined as a sequence of values larger than u2 with at least one value larger than u1. Parameters ---------- data: 1D ndarray Values to get clusters from. u1 : float Extreme value threshold, at least one value in the cluster must exceed this. u2 : float Cluster threshold, values above this can be part of a cluster. Returns ------- (np.array, np.array, np.array, np.array) References ---------- `getcluster` of Extremes.jl (read on 2021-04-20) https://github.com/jojal5/Extremes.jl """ # Boolean array, True where data is over u2 # We pad with values under u2, so that clusters never start or end at boundaries. exce = np.concatenate(([u2 - 1], data, [u2 - 1])) > u2 # 1 just before the start of the cluster # -1 on the last element of the cluster bounds = np.diff(exce.astype(np.int32)) # We add 1 to get the first element and sub 1 to get the same index as in data starts = np.where(bounds == 1)[0] # We sub 1 to get the same index as in data and add 1 to get the element after (for python slicing) ends = np.where(bounds == -1)[0] cl_maxpos = [] cl_maxval = [] cl_start = [] cl_end = [] for start, end in zip(starts, ends): cluster_max = data[start:end].max() if cluster_max > u1: cl_maxval.append(cluster_max) cl_maxpos.append(start + np.argmax(data[start:end])) cl_start.append(start) cl_end.append(end - 1) return ( np.array(cl_start), np.array(cl_end), np.array(cl_maxpos), np.array(cl_maxval), ) def get_clusters(data: xr.DataArray, u1, u2, dim: str = "time") -> xr.Dataset: """Get cluster count, maximum and position along a given dim. See `get_clusters_1d`. Used by `adjustment.ExtremeValues`. Parameters ---------- data: 1D ndarray Values to get clusters from. u1 : float Extreme value threshold, at least one value in the cluster must exceed this. u2 : float Cluster threshold, values above this can be part of a cluster. dim : str Dimension name. Returns ------- xr.Dataset With variables, - `nclusters` : Number of clusters for each point (with `dim` reduced), int - `start` : First index in the cluster (`dim` reduced, new `cluster`), int - `end` : Last index in the cluster, inclusive (`dim` reduced, new `cluster`), int - `maxpos` : Index of the maximal value within the cluster (`dim` reduced, new `cluster`), int - `maximum` : Maximal value within the cluster (`dim` reduced, new `cluster`), same dtype as data. For `start`, `end` and `maxpos`, -1 means NaN and should always correspond to a `NaN` in `maximum`. The length along `cluster` is half the size of "dim", the maximal theoretical number of clusters. """ def _get_clusters(arr, u1, u2, N): st, ed, mp, mv = get_clusters_1d(arr, u1, u2) count = len(st) pad = [-1] * (N - count) return ( np.append(st, pad), np.append(ed, pad), np.append(mp, pad), np.append(mv, [np.NaN] * (N - count)), count, ) # The largest possible number of clusters. Ex: odd positions are < u2, even positions are > u1. N = data[dim].size // 2 starts, ends, maxpos, maxval, nclusters = xr.apply_ufunc( _get_clusters, data, u1, u2, input_core_dims=[[dim], [], []], output_core_dims=[["cluster"], ["cluster"], ["cluster"], ["cluster"], []], kwargs={"N": N}, dask="parallelized", vectorize=True, dask_gufunc_kwargs={ "meta": ( np.array((), dtype=int), np.array((), dtype=int), np.array((), dtype=int), np.array((), dtype=data.dtype), np.array((), dtype=int), ), "output_sizes": {"cluster": N}, }, ) ds = xr.Dataset( { "start": starts, "end": ends, "maxpos": maxpos, "maximum": maxval, "nclusters": nclusters, } ) return ds def rand_rot_matrix( crd: xr.DataArray, num: int = 1, new_dim: str | None = None ) -> xr.DataArray: r"""Generate random rotation matrices. Rotation matrices are members of the SO(n) group, where n is the matrix size (`crd.size`). They can be characterized as orthogonal matrices with determinant 1. A square matrix :math:`R` is a rotation matrix if and only if :math:`R^t = R^{−1}` and :math:`\mathrm{det} R = 1`. Parameters ---------- crd: xr.DataArray 1D coordinate DataArray along which the rotation occurs. The output will be square with the same coordinate replicated, the second renamed to `new_dim`. num : int If larger than 1 (default), the number of matrices to generate, stacked along a "matrices" dimension. new_dim : str Name of the new "prime" dimension, defaults to the same name as `crd` + "_prime". Returns ------- xr.DataArray float, NxN if num = 1, numxNxN otherwise, where N is the length of crd. References ---------- Mezzadri, F. (2006). How to generate random matrices from the classical compact groups. arXiv preprint math-ph/0609050. """ if num > 1: return xr.concat([rand_rot_matrix(crd, num=1) for i in range(num)], "matrices") N = crd.size dim = crd.dims[0] # Rename and rebuild second coordinate : "prime" axis. if new_dim is None: new_dim = dim + "_prime" crd2 = xr.DataArray(crd.values, dims=new_dim, name=new_dim, attrs=crd.attrs) # Random floats from the standardized normal distribution Z = np.random.standard_normal((N, N)) # QR decomposition and manipulation from Mezzadri 2006 Q, R = np.linalg.qr(Z) num = np.diag(R) denum = np.abs(num) lam = np.diag(num / denum) # "lambda" return xr.DataArray( Q @ lam, dims=(dim, new_dim), coords={dim: crd, new_dim: crd2} ).astype("float32") def copy_all_attrs(ds: xr.Dataset | xr.DataArray, ref: xr.Dataset | xr.DataArray): """Copy all attributes of ds to ref, including attributes of shared coordinates, and variables in the case of Datasets.""" ds.attrs.update(ref.attrs) extras = ds.variables if isinstance(ds, xr.Dataset) else ds.coords others = ref.variables if isinstance(ref, xr.Dataset) else ref.coords for name, var in extras.items(): if name in others: var.attrs.update(ref[name].attrs)
33.69686
250
0.617505
f9df2aa2f332a0c987dfd2e2421bdf8b81331a76
529
py
Python
tests/check_behaviour_with_minimal_settings.py
pakal/django-compat-patcher
62c1a766807f2be11b03ea481fbb4c9f9e6529ba
[ "MIT" ]
12
2017-05-21T10:52:45.000Z
2022-03-04T09:52:58.000Z
tests/check_behaviour_with_minimal_settings.py
pakal/django-compat-patcher
62c1a766807f2be11b03ea481fbb4c9f9e6529ba
[ "MIT" ]
18
2019-04-18T12:42:18.000Z
2022-02-23T09:38:45.000Z
tests/check_behaviour_with_minimal_settings.py
pakal/django-compat-patcher
62c1a766807f2be11b03ea481fbb4c9f9e6529ba
[ "MIT" ]
2
2019-05-07T20:28:25.000Z
2022-03-03T22:13:15.000Z
from __future__ import absolute_import, print_function, unicode_literals import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) os.environ["DJANGO_SETTINGS_MODULE"] = "test_project.minimal_settings" import django import django_compat_patcher django_compat_patcher.patch() # fixers which can't apply should be skipped, not crash django.setup() # idempotent from django.conf import settings assert settings.INSTALLED_APPS == [] # we ensure that we haven't mixed django confs
26.45
87
0.773157
ccbc3a0e09f687d0e2efd3a61e621a0cf259062c
690
py
Python
api/services/q1.py
kazishuvo22/Health-Data-Analytics
d93b863429ee360f58d24dffcac21ebfed29d36c
[ "Apache-2.0" ]
null
null
null
api/services/q1.py
kazishuvo22/Health-Data-Analytics
d93b863429ee360f58d24dffcac21ebfed29d36c
[ "Apache-2.0" ]
null
null
null
api/services/q1.py
kazishuvo22/Health-Data-Analytics
d93b863429ee360f58d24dffcac21ebfed29d36c
[ "Apache-2.0" ]
null
null
null
from flask import jsonify from flask.views import MethodView from api.querycontroller.q1 import Query1 class Query1API(MethodView): def __init__(self): self.q1 = Query1() def get(self): ''' Get the data of querycontroller 1 :return: [{ ‘division’: “Dhaka”, 'total_sales’: 1000 }, { ‘division’: “Rangpur”, ‘total_sales’: 1000 },.... ] ''' result = self.q1.execute() ## Dataframe # print(jsonify(result)) return jsonify(result) # def post(self): # def delete(self):
23
48
0.478261
e07a34a79802da2a53dd138d8316c6a3f4be0fe1
235
py
Python
design_patterns/creational/object_pool/resource_module.py
gsingh79/obi_explorations
bcae6bb4c691b8806fcbb2bc35ea1bac604f7dd9
[ "Apache-2.0" ]
null
null
null
design_patterns/creational/object_pool/resource_module.py
gsingh79/obi_explorations
bcae6bb4c691b8806fcbb2bc35ea1bac604f7dd9
[ "Apache-2.0" ]
null
null
null
design_patterns/creational/object_pool/resource_module.py
gsingh79/obi_explorations
bcae6bb4c691b8806fcbb2bc35ea1bac604f7dd9
[ "Apache-2.0" ]
1
2021-11-15T22:32:40.000Z
2021-11-15T22:32:40.000Z
class ResourceModule: _value = 0 def get_value(self): return self._value def set_obj_value(self, number): print('Number', number) self._value = number def reset(self): self._value = 0
18.076923
36
0.595745
691f697295c66262fddb35c30e2cece72bfddbd6
4,227
py
Python
flask_resources/resources.py
ppanero/flask-resources
f0b99f7ceb31054ac3c4b1da705e9a009476996c
[ "MIT" ]
null
null
null
flask_resources/resources.py
ppanero/flask-resources
f0b99f7ceb31054ac3c4b1da705e9a009476996c
[ "MIT" ]
null
null
null
flask_resources/resources.py
ppanero/flask-resources
f0b99f7ceb31054ac3c4b1da705e9a009476996c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # Copyright (C) 2020 Northwestern University. # # Flask-Resources is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Resource view.""" from flask import Blueprint from marshmallow import ValidationError from .deserializers import JSONDeserializer from .errors import create_errormap_handler from .loaders import RequestLoader from .parsers import HeadersParser, URLArgsParser from .responses import Response from .serializers import JSONSerializer from .views import ItemView, ListView, SingletonView ITEM_VIEW_SUFFIX = "_item" LIST_VIEW_SUFFIX = "_list" class ResourceConfig: """Base resource configuration.""" request_loaders = { "application/json": RequestLoader(deserializer=JSONDeserializer()) } response_handlers = {"application/json": Response(JSONSerializer())} item_route = "/resources/<id>" list_route = "/resources/" request_url_args_parser = URLArgsParser() request_headers_parser = HeadersParser() default_content_type = "application/json" default_accept_mimetype = "application/json" class Resource: """Resource controller interface.""" default_config = ResourceConfig def __init__(self, config=None): """Initialize the base resource.""" # TODO: The config should be checked to see that it is consistent. See issue #57 self.config = config or self.default_config self.bp_name = None # Primary interface def search(self): """Perform a search over the items.""" return [], 200 def create(self): """Create an item.""" return {}, 200 def read(self): """Read an item.""" return {}, 200 def update(self): """Update an item.""" return {}, 200 def partial_update(self): """Partial update an item.""" return {}, 200 def delete(self): """Delete an item.""" return {}, 200 # Secondary interface def as_blueprint(self, name, **bp_kwargs): """Create blueprint and register rules only for the RecordResource.""" self.bp_name = name blueprint = Blueprint(name, __name__, **bp_kwargs) for rule in self.create_url_rules(name): blueprint.add_url_rule(**rule) for exc_or_code, error_handler in self.create_errormap_handlers(): blueprint.register_error_handler(exc_or_code, error_handler) return blueprint def create_url_rules(self, bp_name): """Create url rules.""" return [ { "rule": self.config.item_route, "view_func": ItemView.as_view( name=f"{bp_name}", resource=self, ), } ] def create_errormap_handlers(self): """Create error handlers.""" error_map = getattr(self.config, "error_map", {}) return error_map.items() class CollectionResource(Resource): """CollectionResource.""" def update_all(self): """Delete an item.""" return [], 200 def delete_all(self): """Delete an item.""" return [], 200 def create_url_rules(self, bp_name): """Create url rules.""" return [ { "rule": self.config.item_route, "view_func": ItemView.as_view( name=f"{bp_name}{ITEM_VIEW_SUFFIX}", resource=self, ), }, { "rule": self.config.list_route, "view_func": ListView.as_view( name=f"{bp_name}{LIST_VIEW_SUFFIX}", resource=self, ), }, ] class SingletonResource(Resource): """SingletonResource.""" def create_url_rules(self, bp_name): """Create url rules.""" return [ { "rule": self.config.list_route, "view_func": SingletonView.as_view( name=f"{bp_name}", resource=self, ), } ]
27.448052
88
0.585758
31374d5208258f5bd270f1286029fd440dbcda8d
7,179
py
Python
nntoolbox/sequence/components/cells/multiplicative.py
nhatsmrt/nn-toolbox
689b9924d3c88a433f8f350b89c13a878ac7d7c3
[ "Apache-2.0" ]
16
2019-07-11T15:57:41.000Z
2020-09-08T13:52:45.000Z
nntoolbox/sequence/components/cells/multiplicative.py
nhatsmrt/nn-toolbox
689b9924d3c88a433f8f350b89c13a878ac7d7c3
[ "Apache-2.0" ]
1
2022-01-18T22:21:57.000Z
2022-01-18T22:21:57.000Z
nntoolbox/sequence/components/cells/multiplicative.py
nhatsmrt/nn-toolbox
689b9924d3c88a433f8f350b89c13a878ac7d7c3
[ "Apache-2.0" ]
1
2019-08-07T10:07:09.000Z
2019-08-07T10:07:09.000Z
import torch from torch import nn, Tensor from typing import Tuple, Optional from ....init import sqrt_uniform_init from torch import jit __all__ = ['MultiplicativeRNNCell', 'MILSTMCell', 'MIGRUCell'] class MultiplicativeRNNCell(jit.ScriptModule): """ Multiplicative RNN. Allowing input to change the hidden state easier by introducing multiplicative interaction: m_t = (W_mx x_t) * (W_mh h_{t-1}) h_t = tanh(W_hm m_t + W_hx x_t) Note that the implementation is based on the re-formulation from the second reference. References: Ilya Sutskever, James Martens, and Geoffrey Hinton. "Generating Text with Recurrent Neural Networks." https://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf Ben Krause, Iain Murray, Steve Renals, and Liang Lu. "MULTIPLICATIVE LSTM FOR SEQUENCE MODELLING." https://arxiv.org/pdf/1609.07959.pdf """ __constants__ = ['intermediate_size', 'hidden_size', 'bias'] def __init__(self, input_size: int, hidden_size: int, intermediate_size: int, bias: bool=True): super().__init__() self.hidden_size, self.intermediate_size, self.bias = hidden_size, intermediate_size, bias self.weight_i = nn.Parameter(torch.rand(intermediate_size + hidden_size, input_size)) self.weight_h = nn.Parameter(torch.rand(intermediate_size, hidden_size)) self.weight_m = nn.Parameter(torch.rand(hidden_size, intermediate_size)) if bias: self.bias_i = nn.Parameter(torch.rand(intermediate_size + hidden_size)) self.bias_h = nn.Parameter(torch.rand(intermediate_size)) self.bias_op = nn.Parameter(torch.rand(hidden_size)) sqrt_uniform_init(self) @jit.script_method def forward(self, input: Tensor, state: Optional[Tensor]=None) -> Tensor: if state is None: state = torch.zeros((input.shape[0], self.hidden_size)).to(input.device).to(input.dtype) input_trans = torch.matmul(input, self.weight_i.t()) if self.bias: input_trans += self.bias_i intermediate = input_trans[:, :self.intermediate_size] * torch.matmul(state, self.weight_h.t()) if self.bias: intermediate += self.bias_h op = torch.matmul(intermediate, self.weight_m.t()) + input_trans[:, self.intermediate_size:] if self.bias: op += self.bias_op return torch.tanh(op) class MILSTMCell(jit.ScriptModule): """ Multiplicative Integration LSTM Cell References: Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, Ruslan Salakhutdinov. "On Multiplicative Integration with Recurrent Neural Networks." https://arxiv.org/abs/1606.06630 The PyTorch Team. "Optimizing CUDA Recurrent Neural Networks with TorchScript." https://pytorch.org/blog/optimizing-cuda-rnn-with-torchscript/ """ __constants__ = ['hidden_size'] def __init__(self, input_size: int, hidden_size: int): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.weight_ih = nn.Parameter(torch.randn(4 * hidden_size, input_size)) self.weight_hh = nn.Parameter(torch.randn(4 * hidden_size, hidden_size)) self.bias_ih = nn.Parameter(torch.randn(4 * hidden_size)) self.bias_hh = nn.Parameter(torch.randn(4 * hidden_size)) self.bias_mult = nn.Parameter(torch.randn(4 * hidden_size)) self.bias_ind = nn.Parameter(torch.randn(4 * hidden_size)) sqrt_uniform_init(self) @jit.script_method def forward( self, input: Tensor, state: Optional[Tuple[Tensor, Tensor]]=None ) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: if state is None: state = ( torch.zeros((input.shape[0], self.hidden_size)).to(input.device).to(input.dtype), torch.zeros((input.shape[0], self.hidden_size)).to(input.device).to(input.dtype) ) hx, cx = state input_transform = torch.mm(input, self.weight_ih.t()) hidden_transform = torch.mm(hx, self.weight_hh.t()) gates = ( input_transform * hidden_transform * self.bias_mult + input_transform * self.bias_ih + hidden_transform * self.bias_hh + self.bias_ind ) ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) ingate, forgetgate, cellgate, outgate = \ torch.sigmoid(ingate), torch.sigmoid(forgetgate), torch.tanh(cellgate), torch.sigmoid(outgate) cy = forgetgate * cx + ingate * cellgate hy = outgate * torch.tanh(cy) return hy, (hy, cy) class MIGRUCell(jit.ScriptModule): """ Multiplicative Integration GRU Cell References: Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, Ruslan Salakhutdinov. "On Multiplicative Integration with Recurrent Neural Networks." https://arxiv.org/abs/1606.06630 The PyTorch Team. "Optimizing CUDA Recurrent Neural Networks with TorchScript." https://pytorch.org/blog/optimizing-cuda-rnn-with-torchscript/ """ __constants__ = ['hidden_size'] def __init__(self, input_size: int, hidden_size: int): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.weight_ig = nn.Parameter(torch.randn(2 * hidden_size, input_size)) self.weight_hg = nn.Parameter(torch.randn(2 * hidden_size, hidden_size)) self.bias_ig = nn.Parameter(torch.randn(2 * hidden_size)) self.bias_hg = nn.Parameter(torch.randn(2 * hidden_size)) self.bias_mult_g = nn.Parameter(torch.randn(2 * hidden_size)) self.bias_ind_g = nn.Parameter(torch.randn(2 * hidden_size)) self.weight_ic = nn.Parameter(torch.randn(hidden_size, input_size)) self.weight_hc = nn.Parameter(torch.randn(hidden_size, hidden_size)) self.bias_ic = nn.Parameter(torch.randn(hidden_size)) self.bias_hc = nn.Parameter(torch.randn(hidden_size)) self.bias_mult_c = nn.Parameter(torch.randn(hidden_size)) self.bias_ind_c = nn.Parameter(torch.randn(hidden_size)) sqrt_uniform_init(self) @jit.script_method def forward(self, input: Tensor, hx: Optional[Tensor]=None) -> Tensor: if hx is None: hx = torch.zeros((input.shape[0], self.hidden_size)).to(input.device).to(input.dtype) input_transform = torch.mm(input, self.weight_ig.t()) hidden_transform = torch.mm(hx, self.weight_hg.t()) gates = ( input_transform * hidden_transform * self.bias_mult_g + input_transform * self.bias_ig + hidden_transform * self.bias_hg + self.bias_ind_g ) update_gate, reset_gate = gates.chunk(2, 1) input_transform_c = torch.mm(input, self.weight_ic.t()) hidden_transform_c = torch.mm(reset_gate * hx, self.weight_hc.t()) candidate = torch.tanh( input_transform_c * hidden_transform_c * self.bias_mult_c + input_transform_c * self.bias_ic + hidden_transform_c * self.bias_hc + self.bias_ind_c ) return (1.0 - update_gate) * hx + update_gate * candidate
41.022857
115
0.667502
40e930d5c7e90e135b493745a8b79515798613c3
4,232
py
Python
pyASH/exceptions.py
dhrone/pyASH
85da060d135fb8be6475d58d4dc33acf88a3a9b2
[ "MIT" ]
null
null
null
pyASH/exceptions.py
dhrone/pyASH
85da060d135fb8be6475d58d4dc33acf88a3a9b2
[ "MIT" ]
null
null
null
pyASH/exceptions.py
dhrone/pyASH
85da060d135fb8be6475d58d4dc33acf88a3a9b2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018 by dhrone. All Rights Reserved. # # Credit for the concepts behind this module go entirely to Matěj Hlaváček (https://github.com/mathead) class pyASH_EXCEPTION(Exception): def __init__(self, message, *args, **kwargs): if hasattr(self, 'payload'): self.payload['type'] = type(self).__name__ self.payload['message'] = message else: self.payload = { 'type': type(self).__name__, 'message': message } super(pyASH_EXCEPTION, self).__init__(message, *args, **kwargs) class ACCEPT_GRANT_FAILED(pyASH_EXCEPTION): pass class BRIDGE_UNREACHABLE(pyASH_EXCEPTION): pass class ENDPOINT_BUSY(pyASH_EXCEPTION): pass class ENDPOINT_LOW_POWER(pyASH_EXCEPTION): def __init__(self, message, percentageState=None, *args, **kwargs): if percentageState: self.payload = { 'percentageState': percentageState } super(ENDPOINT_LOW_POWER, self).__init__(message, *args, **kwargs) class ENDPOINT_UNREACHABLE(pyASH_EXCEPTION): pass class EXPIRED_AUTHORIZATION_CREDENTIAL(pyASH_EXCEPTION): pass class FIRMWARE_OUT_OF_DATE(pyASH_EXCEPTION): pass class HARDWARE_MALFUNCTION(pyASH_EXCEPTION): pass class INTERNAL_ERROR(pyASH_EXCEPTION): def __init__(self, message, *args, **kwargs): super(INTERNAL_ERROR, self).__init__(message, *args, **kwargs) self.payload['type'] = 'INTERNAL_ERROR' class INVALID_AUTHORIZATION_CREDENTIAL(pyASH_EXCEPTION): pass class INVALID_DIRECTIVE(pyASH_EXCEPTION): pass class INVALID_VALUE(pyASH_EXCEPTION): pass class NO_SUCH_ENDPOINT(pyASH_EXCEPTION): pass class NOT_SUPPORTED_IN_CURRENT_MODE(pyASH_EXCEPTION): def __init__(self, message, mode, *args, **kwargs): self.payload = { 'currentDeviceMode': mode } super(NOT_SUPPORTED_IN_CURRENT_MODE, self).__init__(message, *args, **kwargs) class RATE_LIMIT_EXCEEDED(pyASH_EXCEPTION): pass class TEMPERATURE_VALUE_OUT_OF_RANGE(pyASH_EXCEPTION): def __init__(self, message, minv=None, maxv=None, scale='FAHRENHEIT', *args, **kwargs): minv = minv if isinstance(minv, Temperature) or not minv else Temperature(minv, scale) maxv = maxv if isinstance(maxv, Temperature) or not maxv else Temperature(maxv, scale) if minv and maxv: self.payload= { 'validRange': { 'minimumValue': minv.json, 'maximumValue': maxv.json } } super(TEMPERATURE_VALUE_OUT_OF_RANGE, self).__init__(message, *args, **kwargs) class VALUE_OUT_OF_RANGE(pyASH_EXCEPTION): def __init__(self, message, minv=None, maxv=None, *args, **kwargs): if minv and maxv: self.payload = { 'validRange': { 'minimumValue': minv, 'maximumValue': maxv } } super(VALUE_OUT_OF_RANGE, self).__init__(message, *args, **kwargs) # Additional Exceptions # These are not directly related to the ASH errors so get reported as INTERNAL_ERROR class OAUTH2_EXCEPTION(INTERNAL_ERROR): pass class USER_NOT_FOUND_EXCEPTION(INTERNAL_ERROR): pass class MISCELLANIOUS_EXCEPTION(INTERNAL_ERROR): pass ############################################################# # In Alexa Smart Home documentation but missing from schema # ############################################################# class ALREADY_IN_OPERATION(pyASH_EXCEPTION): pass class NOT_IN_OPERATION(pyASH_EXCEPTION): pass class POWER_LEVEL_NOT_SUPPORTED(pyASH_EXCEPTION): pass # COOKING Interface specific Exceptions class DOOR_OPEN(pyASH_EXCEPTION): pass class DOOR_CLOSED_TOO_LONG(pyASH_EXCEPTION): pass class COOK_DURATION_TOO_LONG(pyASH_EXCEPTION): def __init__(self, message, maxCookTime=None, *args, **kwargs): self.payload = { 'maxCookTime': Duration(maxCookTime) } super(COOK_DURATION_TOO_LONG, self).__init__(message, *args, **kwargs) class REMOTE_START_NOT_SUPPORTED(pyASH_EXCEPTION): pass class REMOTE_START_DISABLED(pyASH_EXCEPTION): pass # Video interface specific exceptions class NOT_SUBSCRIBED(pyASH_EXCEPTION): pass
30.228571
103
0.678166
0107e628367d9dc9f4a06dbd5ccd917717068c2b
990
py
Python
bangoo/navigation/urlresolvers.py
slapec/bangoo
34facf122f15943a4368d5c2f45fe178ff01edaa
[ "MIT" ]
null
null
null
bangoo/navigation/urlresolvers.py
slapec/bangoo
34facf122f15943a4368d5c2f45fe178ff01edaa
[ "MIT" ]
null
null
null
bangoo/navigation/urlresolvers.py
slapec/bangoo
34facf122f15943a4368d5c2f45fe178ff01edaa
[ "MIT" ]
null
null
null
from .models import Menu from django.core.urlresolvers import reverse as rev, NoReverseMatch def reverse(viewname, urlconf=None, args=None, kwargs=None, prefix=None, current_app=None): url = None try: ### Try static url first url = rev(viewname=viewname, args=args, kwargs=kwargs, prefix=prefix, current_app=current_app) except NoReverseMatch: urlconf = kwargs.pop('urlconf', '') ## If the urlconf is explicitly setted, then try that first if urlconf: urlconfs = [urlconf] + list(Menu.objects.exclude(urlconf=urlconf).values_list("urlconf", flat=True).distinct()) else: urlconfs = Menu.objects.all().values_list("urlconf", flat=True).distinct() for uconf in urlconfs: try: url = rev(viewname, uconf, args, kwargs, prefix, current_app) break except NoReverseMatch: pass if not url: raise NoReverseMatch() return url
38.076923
123
0.634343
2186d7e015c631ff7cac875c8673008ab5d72e46
875
py
Python
processing.py
dremovd/data-fusion-1-baseline
0e4b2055b49bd52b08ccd5ac3562e416fa4d17ae
[ "MIT" ]
41
2021-01-30T18:56:28.000Z
2021-04-02T13:51:17.000Z
processing.py
dremovd/data-fusion-1-baseline
0e4b2055b49bd52b08ccd5ac3562e416fa4d17ae
[ "MIT" ]
null
null
null
processing.py
dremovd/data-fusion-1-baseline
0e4b2055b49bd52b08ccd5ac3562e416fa4d17ae
[ "MIT" ]
6
2021-01-30T23:04:58.000Z
2021-11-18T09:58:50.000Z
import numpy as np import pandas as pd def load_dataset(dataset_name, drop_unlabeled=True): data = pd.read_parquet(dataset_name) data['weight'] = 1 receipt_item_count = data.groupby('receipt_id').agg( {'weight': 'count'}).rename({'weight': 'receipt_item_count'}, axis=1) data = data.merge(receipt_item_count, on='receipt_id') if drop_unlabeled: data = data[data.category_id != -1] return data def unique_item_name(data): grouping = { 'receipt_dayofweek': 'first', 'item_nds_rate': 'first', 'receipt_item_count': 'first', 'item_quantity': 'first', 'item_price': 'first', 'receipt_id': 'first', } if 'category_id' in data.columns: grouping['category_id'] = 'first' data_unique = data.groupby(['item_name']).agg(grouping).reset_index() return data_unique
27.34375
77
0.64
fe979ba9631aec07b8f8fddaf035b7cad26cec47
6,590
py
Python
scripts/addRing.py
ekraka/EDHB
a6aa3ab4f41448894b821c2a0944d37d441a7d96
[ "MIT" ]
1
2021-03-07T17:19:09.000Z
2021-03-07T17:19:09.000Z
scripts/addRing.py
ekraka/EDHB
a6aa3ab4f41448894b821c2a0944d37d441a7d96
[ "MIT" ]
null
null
null
scripts/addRing.py
ekraka/EDHB
a6aa3ab4f41448894b821c2a0944d37d441a7d96
[ "MIT" ]
1
2021-03-04T18:44:33.000Z
2021-03-04T18:44:33.000Z
import sys import hb_connections as hb import os def get_ids(path,suffix='_ah'): f=open(path,'r') lines=f.readlines() f.close() i=-1 i2=0 ref=0 lm={} length=0 kr_st=None for line in lines: i+=1 if ref==5: break if ref==1 and not kr_st: kr=line.strip().split() if kr[0]!='DonarSymbol': kr_st=(43,67) else: kr_st=(11,36) if 'File format' in line: ref+=1 if len(line.strip().split())==0 and ref>0: ref+=1 if ref==2: lines[i-1]=' '.join(lines[i-1].strip().split())+', IntramolecularRing(size) \n' if ref==2 or ref==3: ref+=1 if ref==4: s,e=kr_st # 10,28 #print line[s:e] l=line[s:e].split(',') st=l lm[str(i2+1)+'.']=st #lines[i]=lines[i].strip()+' '+lmodes[i2]+'\n' i2+=1 return lm def addRing(path,p_id): f=open(path,'r') lines=f.readlines() f.close() i=-1 i2=0 ref=0 lm={} length=0 for line in lines: i+=1 if ref==5: break if 'File format' in line: ref+=1 if len(line.strip().split())==0 and ref>0: ref+=1 if ref==2: lines[i-1]=' '.join(lines[i-1].strip().split())+', IntramolecularRing(size) \n' if ref==2 or ref==3: ref+=1 if ref==4: if i2==0: if length<len(line): length=len(line) lm[str(i2+1)+'.']=p_id[str(i2+1)+'.'] i2+=1 j=0 length+=1 for line in lines: if len(line.strip().split())==0: j+=1 continue if line.strip().split()[0] in lm: string=lm[line.strip().split()[0]] lines[j]=lines[j][:-1]+' '*(length-len(lines[j])+2)+string+'\n' j+=1 g=open(path,'w') g.write(''.join(lines)) g.close() return lm def job(path): dic=get_ids(path,suffix='_ah') p_id={} con=hb.connections(path[:-4]+'.xyz') for i in dic: a,b,c=dic[i] #print a,b,c refe_lis=con.bfs(int(a)-1,int(c)-1) if len(refe_lis)==0: p_id[i]='None' elif 0 and len(refe_lis)==4: # for writing dihedral in bracket for 5 memberd rings p_id[i]='I('+str(len(refe_lis)+1)+')'+'('+str(con.dihedral(refe_lis))+')' else: p_id[i]='I('+str(len(refe_lis)+1)+')' return addRing(path,p_id) def make_input_pucker(lis,d,count): st0 = '' for i in lis: st0+=' '.join(list(map(str,d[i][1:])))+'\n' f = open('P'+str(d[lis[0]][0])+'-'+str(d[lis[0]][0])+'_'+str(count)+'.dat','w') f.write(st0) f.close() def test(path): def lmode_id(path): f=open(path,'r') lines=f.readlines() f.close() i=-1 i2=0 ref=0 lm={} length=0 kr_st=None for line in lines: i+=1 if ref==5: break if ref==1 and not kr_st: kr=line.strip().split() if kr[0]!='DonarSymbol': kr_st=(43,67) else: kr_st=(11,36) if 'File format' in line: ref+=1 if len(line.strip().split())==0 and ref>0: ref+=1 if ref==2: lines[i-1]=' '.join(lines[i-1].strip().split())+', IntramolecularRing(size)(dihedral for C5 type) \n' if ref==2 or ref==3: ref+=1 if ref==4: s,e=kr_st #print line[s:e] l=line.strip().split() st=l[-3] lm[str(i2+1)+'.']=st #lines[i]=lines[i].strip()+' '+lmodes[i2]+'\n' i2+=1 return lm dic=get_ids(path,suffix='_ah') l_d=lmode_id(path) #print l_d p_id={} con=hb.connections(path[:-4]+'.xyz') st_d = {} count = 0 for i in dic: a,b,c=dic[i] #print a,b,c a,b,c = list(map(int,[a,b,c])) refe_lis=con.bfs(int(a)-1,int(c)-1) dist=con.distance(int(a),int(c)) hbl = con.distance(int(b),int(c)) if len(refe_lis)==0: p_id[i]='None' elif len(refe_lis)==4: make_input_pucker(refe_lis+[b],con.d,count) count+=1 p_id[i]='I('+str(len(refe_lis)+1)+')'+'('+str(con.dihedral(refe_lis))+')' bond = con.atom_name(int(a))+'-'+con.atom_name(int(c)) if bond in st_d: st_d[bond]+=bond+' '+str(dist)+' '+str(con.dihedral(refe_lis))+' '+l_d[i]+' '+str(hbl)+' '+str(a)+' '+str(b)+' '+str(c)+'\n' else: st_d[bond] = bond+' '+str(dist)+' '+str(con.dihedral(refe_lis))+' '+l_d[i]+' '+str(hbl)+' '+str(a)+' '+str(b)+' '+str(c)+'\n' else: p_id[i]='I('+str(len(refe_lis)+1)+')' return st_d if __name__=='__main__': d_c = {} for i in os.listdir('.'): if i[-4:]=='.txt': print (i) d = test(i) #print d for i in d: if i in d_c: d_c[i]+=d[i] else: d_c[i]=d[i] for i in d_c: print (d_c[i]+'\n\n')
30.651163
145
0.355994
968f3fa973045054b20d6f040a284809161df57b
6,343
py
Python
CTL/causal_tree/sig_diff/sig.py
Youngyi/CTL
3dc578b17adf7ddc4eecb5630ed96b3693c53f68
[ "MIT" ]
38
2019-08-03T08:06:44.000Z
2022-03-27T17:24:35.000Z
CTL/causal_tree/sig_diff/sig.py
springbarley/CTL
3dc578b17adf7ddc4eecb5630ed96b3693c53f68
[ "MIT" ]
6
2019-09-19T02:43:43.000Z
2021-07-29T03:40:23.000Z
CTL/causal_tree/sig_diff/sig.py
springbarley/CTL
3dc578b17adf7ddc4eecb5630ed96b3693c53f68
[ "MIT" ]
6
2019-10-24T18:31:36.000Z
2022-02-25T01:31:14.000Z
# from CTL.causal_tree.util import * try: from CTL.causal_tree.util_c import * except: from CTL.causal_tree.util import * from CTL.causal_tree.ct import * import numpy as np from scipy.stats import ttest_ind_from_stats class SigNode(CTNode): def __init__(self, p_val=1.0, effect=0.0, node_depth=0, control_mean=0.0, treatment_mean=0.0, col=-1, value=-1, is_leaf=False, leaf_num=-1, num_samples=0.0, obj=0.0): super().__init__() # not tree specific features (most likely added at creation) self.p_val = p_val self.effect = effect self.node_depth = node_depth self.control_mean = control_mean self.treatment_mean = treatment_mean # during tree building self.obj = obj self.num_samples = num_samples # after building tree self.col = col self.value = value self.is_leaf = is_leaf self.leaf_num = leaf_num self.true_branch = None self.false_branch = None # after calling functions self.column_name = "" self.decision = "" class SigTree(CausalTree): def __init__(self, alpha=0.05, max_depth=-1, min_size=2, seed=724, max_values=None, verbose=False): super().__init__() self.alpha = 0.05 self.max_depth = max_depth self.min_size = min_size self.seed = seed self.max_values = max_values self.verbose = verbose self.max_effect = 0.0 self.min_effect = 0.0 self.features = None self.root = SigNode() @abstractmethod def fit(self, x, y, t): pass def _eval_util(self, train_y, train_t): var_t, var_c = variance(train_y, train_t) std = np.sqrt(var_t) + np.sqrt(var_c) effect = ace(train_y, train_t) return effect, std def _eval(self, y_train1, t_train1, y_train2, t_train2): total1 = y_train1.shape[0] total2 = y_train2.shape[0] return_val = (1, 1) if total1 < 1 or total2 < 1: return return_val effect1, std1 = self._eval_util(y_train1, t_train1) effect2, std2 = self._eval_util(y_train2, t_train2) stat, p_val = ttest_ind_from_stats(effect1, std1, total1, effect2, std2, total2) return stat, p_val def predict(self, x): def _predict(node: SigNode, observation): if node.is_leaf: return node.effect else: v = observation[node.col] if v >= node.value: branch = node.true_branch else: branch = node.false_branch return _predict(branch, observation) if len(x.shape) == 1: prediction = _predict(self.root, x) return prediction num_test = x.shape[0] prediction = np.zeros(num_test) for i in range(num_test): test_example = x[i, :] prediction[i] = _predict(self.root, test_example) return prediction def get_groups(self, x): def _get_group(node: SigNode, observation): if node.is_leaf: return node.leaf_num else: v = observation[node.col] if v >= node.value: branch = node.true_branch else: branch = node.false_branch return _get_group(branch, observation) if len(x.shape) == 1: return _get_group(self.root, x) num_test = x.shape[0] leaf_results = np.zeros(num_test) for i in range(num_test): test_example = x[i, :] leaf_results[i] = _get_group(self.root, test_example) return leaf_results def get_features(self, x): def _get_features(node: SigNode, observation, features): if node.is_leaf: return features else: v = observation[node.col] if v >= node.value: branch = node.true_branch else: branch = node.false_branch features.append(node.decision) return _get_features(branch, observation, features) if len(x.shape) == 1: features = [] return _get_features(self.root, x, features) num_test = x.shape[0] leaf_features = [] for i in range(num_test): features = [] test_example = x[i, :] leaf_features.append(_get_features(self.root, test_example, features)) return leaf_features def prune(self, alpha=0.05): def _prune(node: SigNode): if node.true_branch is None or node.false_branch is None: return # recursive call for each branch if not node.true_branch.is_leaf: _prune(node.true_branch) if not node.false_branch.is_leaf: _prune(node.false_branch) # merge leaves (potentially) if node.true_branch.is_leaf and node.false_branch.is_leaf: # Get branches tb = node.true_branch fb = node.false_branch tb_pval = tb.p_val fb_pval = fb.p_val if tb_pval > alpha and fb_pval > alpha: node.leaf_num = node.true_branch.leaf_num node.true_branch = None node.false_branch = None self.num_leaves = self.num_leaves - 1 node.is_leaf = True # ---------------------------------------------------------------- # Something about obj/mse? if that is added # # - can do a self function so that tree references itself/it's own type of node? # ---------------------------------------------------------------- if tb.node_depth == self.tree_depth: self.tree_depth = self.tree_depth - 1 _prune(self.root) def get_triggers(self, x): pass def save(self, filename): import pickle as pkl check_dir(filename) with open(filename, "wb") as file: pkl.dump(self, file)
29.919811
115
0.539335
1f2eb09d98c9984b79308aaee685cb79f8ed5953
3,840
py
Python
docs/conf.py
ihsan1852/edge
6f15a5a3f19f6b7dfd8ba0641ae5deddbb7d145d
[ "MIT" ]
56
2021-01-22T17:05:21.000Z
2022-03-31T11:09:56.000Z
docs/conf.py
ihsan1852/edge
6f15a5a3f19f6b7dfd8ba0641ae5deddbb7d145d
[ "MIT" ]
null
null
null
docs/conf.py
ihsan1852/edge
6f15a5a3f19f6b7dfd8ba0641ae5deddbb7d145d
[ "MIT" ]
7
2021-05-25T00:31:36.000Z
2022-02-01T16:52:42.000Z
import os import sys from datetime import datetime import alabaster sys.path.insert(0, os.path.abspath('../leaf')) # -- Project information ----------------------------------------------------- project = "LEAF" author = "Philipp Wiesner" copyright = f"{datetime.now().year} {author}" # The short X.Y version try: import importlib.metadata version = importlib.metadata.version('leafsim') except ModuleNotFoundError: # Python <3.8 import pkg_resources version = pkg_resources.get_distribution('leaf').version # The full version, including alpha/beta/rc tags release = version html_theme_path = [alabaster.get_path()] extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", "alabaster", ] html_static_path = ["_static"] html_theme_options = { "logo": "logo.svg", "logo_name": True, "logo_text_align": "center", "description": "Simulator for modeling energy consumption in cloud, fog and edge computing environments.", "github_user": "dos-group", "github_repo": "leaf", "github_banner": True, "github_button": True, #"travis_button": True, #"codecov_button": True, #"tidelift_url": "https://tidelift.com/subscription/pkg/pypi-fabric?utm_source=pypi-fabric&utm_medium=referral&utm_campaign=docs", #"analytics_id": "UA-18486793-1", "link": "#3782BE", "link_hover": "#3782BE", # Wide enough that 80-col code snippets aren't truncated on default font # settings (at least for bitprophet's Chrome-on-OSX-Yosemite setup) "page_width": "1024px", } html_theme = 'alabaster' # Both the class’ and the __init__ method’s docstring are concatenated and inserted. autoclass_content = "both" # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of reference filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to reference directory, that match files and # directories to ignore when looking for reference files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (reference start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'gcsfs.tex', 'gcsfs Documentation', 'Othoz GmbH', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (reference start file, name, description, authors, manual section). man_pages = [ (master_doc, 'LEAF', 'LEAF Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (reference start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'LEAF', 'LEAF Documentation', author, 'leaf', '-', 'Simulator'), ]
29.767442
134
0.665625
c83531fe55fad97a3eb341db1ea94b6926be0d04
806
py
Python
src/importTerminology.py
aws-samples/aim317-uncover-insights-customer-conversations
663ba08fe9ad1cf1e520e77a88dc6a96b611619b
[ "MIT-0" ]
null
null
null
src/importTerminology.py
aws-samples/aim317-uncover-insights-customer-conversations
663ba08fe9ad1cf1e520e77a88dc6a96b611619b
[ "MIT-0" ]
null
null
null
src/importTerminology.py
aws-samples/aim317-uncover-insights-customer-conversations
663ba08fe9ad1cf1e520e77a88dc6a96b611619b
[ "MIT-0" ]
1
2021-12-20T16:40:55.000Z
2021-12-20T16:40:55.000Z
import boto3 def lambda_handler(event, context): record = event['Records'][0] print("Record: " + str(record)) s3bucket = record['s3']['bucket']['name'] s3object = record['s3']['object']['key'] s3Path = "s3://" + s3bucket + "/" + s3object s3_resource = boto3.resource('s3') temp = s3_resource.Object(s3bucket, s3object) term_file = temp.get()['Body'].read().decode('utf-8') client = boto3.client('translate') print("S3 Path:" + s3Path) response = client.import_terminology( Name="aim317-custom-terminology", MergeStrategy='OVERWRITE', TerminologyData={ 'File': term_file, 'Format': 'CSV' }, ) return { 'TerminologyName': response['TerminologyProperties']['Name'] }
23.705882
68
0.578164
233736af717ba5172be48d9c0bde225177a5a352
1,381
py
Python
KTU/Programavimo Kalbu Teorija/L1 PYTHON/Lab1.py
sandybridge9/KTU-darbai-ir-ataskaitos
4d2e9874efdae5d1e55725c089946ecac3532c3a
[ "MIT" ]
null
null
null
KTU/Programavimo Kalbu Teorija/L1 PYTHON/Lab1.py
sandybridge9/KTU-darbai-ir-ataskaitos
4d2e9874efdae5d1e55725c089946ecac3532c3a
[ "MIT" ]
null
null
null
KTU/Programavimo Kalbu Teorija/L1 PYTHON/Lab1.py
sandybridge9/KTU-darbai-ir-ataskaitos
4d2e9874efdae5d1e55725c089946ecac3532c3a
[ "MIT" ]
null
null
null
#Number class used to store a number and a number which shows a cumulative sum of each numbers divisors from 1 to number class Number: def __init__(self, number, cumulativeSum): self.number = number self.cumulativeSum = cumulativeSum def get_number(self): return self.number #finds sum of all viable divisors of number n def findSumOfDivisors(n): sum = 0 for x in range(2, int(n)): z = n / x #temporary result of division if z == int(z): sum = sum + z return sum #finds cumulative sum of divisors for numbers 1 to Number.number def findCumulativeSumOfDivisors(Number): for x in range(0, Number.number + 1): Number.cumulativeSum = Number.cumulativeSum + findSumOfDivisors(x) print("Cumulative sum of divisors of number n: " + str(Number.number) + " is: " + str(Number.cumulativeSum)) return Number #reads data from file into integer array def readIntoArray(fileName): array = [] with open('data.txt') as f: for line in f: # read all lines array.append(int(line)) return array #finds results for all integers in array def findResults(array): numberArray = [] for x in array: temp = Number(x, 0) temp = findCumulativeSumOfDivisors(temp) numberArray.append(temp) array = readIntoArray("data.txt") findResults(array)
32.116279
120
0.666908
b4a153898455863facf5d726011513fd94cd18bc
4,107
py
Python
models/blocks.py
PRBonn/segcontrast
3dbdb19aecfe1d78f88637b0ecb3b453daac8d97
[ "MIT" ]
22
2022-01-03T22:51:18.000Z
2022-03-31T10:11:41.000Z
models/blocks.py
PRBonn/segcontrast
3dbdb19aecfe1d78f88637b0ecb3b453daac8d97
[ "MIT" ]
3
2022-03-07T08:42:25.000Z
2022-03-31T10:09:54.000Z
models/blocks.py
PRBonn/segcontrast
3dbdb19aecfe1d78f88637b0ecb3b453daac8d97
[ "MIT" ]
2
2022-03-29T12:06:18.000Z
2022-03-31T07:02:46.000Z
import torch.nn as nn import MinkowskiEngine as ME class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, bn_momentum=0.1, dimension=-1): super(BasicBlock, self).__init__() assert dimension > 0 self.conv1 = ME.MinkowskiConvolution( inplanes, planes, kernel_size=3, stride=stride, dilation=dilation, dimension=dimension) self.norm1 = ME.MinkowskiBatchNorm(planes, momentum=bn_momentum) self.conv2 = ME.MinkowskiConvolution( planes, planes, kernel_size=3, stride=1, dilation=dilation, dimension=dimension) self.norm2 = ME.MinkowskiBatchNorm(planes, momentum=bn_momentum) self.relu = ME.MinkowskiReLU(inplace=True) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) out = self.conv2(out) out = self.norm2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, bn_momentum=0.1, dimension=-1): super(Bottleneck, self).__init__() assert dimension > 0 self.conv1 = ME.MinkowskiConvolution( inplanes, planes, kernel_size=1, dimension=dimension) self.norm1 = ME.MinkowskiBatchNorm(planes, momentum=bn_momentum) self.conv2 = ME.MinkowskiConvolution( planes, planes, kernel_size=3, stride=stride, dilation=dilation, dimension=dimension) self.norm2 = ME.MinkowskiBatchNorm(planes, momentum=bn_momentum) self.conv3 = ME.MinkowskiConvolution( planes, planes * self.expansion, kernel_size=1, dimension=dimension) self.norm3 = ME.MinkowskiBatchNorm( planes * self.expansion, momentum=bn_momentum) self.relu = ME.MinkowskiReLU(inplace=True) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) out = self.conv2(out) out = self.norm2(out) out = self.relu(out) out = self.conv3(out) out = self.norm3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ProjectionHead(nn.Module): def __init__(self, in_channels, out_channels): nn.Module.__init__(self) self.projection_head = nn.Sequential( nn.Linear(in_channels, out_channels), nn.ReLU(inplace=True), nn.Linear(out_channels, out_channels), ) self.dropout = ME.MinkowskiDropout(p=0.4) self.glob_pool = ME.MinkowskiGlobalMaxPooling() def forward(self, x): # from input points dropout some (increase randomness) x = self.dropout(x) # global max pooling over the remaining points x = self.glob_pool(x) # project the max pooled features out = self.projection_head(x.F) return out class SegmentationClassifierHead(nn.Module): def __init__(self, in_channels=512, out_channels=26): nn.Module.__init__(self) self.fc = nn.Sequential(nn.Linear(in_channels, out_channels)) def forward(self, x): return self.fc(x.F) class ClassifierHead(nn.Module): def __init__(self, in_channels=512, out_channels=40): nn.Module.__init__(self) self.fc = ME.MinkowskiLinear(in_channels, out_channels, bias=True) self.glob_pool = ME.MinkowskiGlobalMaxPooling() def forward(self, x): return self.fc(self.glob_pool(x))
29.335714
99
0.602873
fc55e1e64b3a634b6468d3bf95b3f6e141092509
35,446
py
Python
c7n/resources/account.py
fadiguezel/cloud-custodian
147fffcf9a109ffd4248a746775b55def5a727c5
[ "Apache-2.0" ]
null
null
null
c7n/resources/account.py
fadiguezel/cloud-custodian
147fffcf9a109ffd4248a746775b55def5a727c5
[ "Apache-2.0" ]
null
null
null
c7n/resources/account.py
fadiguezel/cloud-custodian
147fffcf9a109ffd4248a746775b55def5a727c5
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2017 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AWS Account as a custodian resource. """ from __future__ import absolute_import, division, print_function, unicode_literals import json from botocore.exceptions import ClientError from datetime import datetime, timedelta from dateutil.parser import parse as parse_date from dateutil.tz import tzutc from c7n.actions import ActionRegistry, BaseAction from c7n.filters import Filter, FilterRegistry, ValueFilter, FilterValidationError from c7n.manager import ResourceManager, resources from c7n.utils import local_session, type_schema from c7n.resources.iam import CredentialReport filters = FilterRegistry('aws.account.actions') actions = ActionRegistry('aws.account.filters') def get_account(session_factory, config): session = local_session(session_factory) client = session.client('iam') aliases = client.list_account_aliases().get( 'AccountAliases', ('',)) name = aliases and aliases[0] or "" return {'account_id': config.account_id, 'account_name': name} @resources.register('account') class Account(ResourceManager): filter_registry = filters action_registry = actions class resource_type(object): id = 'account_id' name = 'account_name' filter_name = None @classmethod def get_permissions(cls): return ('iam:ListAccountAliases',) def get_model(self): return self.resource_type def resources(self): return self.filter_resources([get_account(self.session_factory, self.config)]) def get_resources(self, resource_ids): return [get_account(self.session_factory, self.config)] @filters.register('credential') class AccountCredentialReport(CredentialReport): def process(self, resources, event=None): super(AccountCredentialReport, self).process(resources, event) report = self.get_credential_report() if report is None: return [] results = [] info = report.get('<root_account>') for r in resources: if self.match(info): r['c7n:credential-report'] = info results.append(r) return results @filters.register('check-cloudtrail') class CloudTrailEnabled(Filter): """Verify cloud trail enabled for this account per specifications. Returns an annotated account resource if trail is not enabled. Of particular note, the current-region option will evaluate whether cloudtrail is available in the current region, either as a multi region trail or as a trail with it as the home region. :example: .. code-block:: yaml policies: - name: account-cloudtrail-enabled resource: account region: us-east-1 filters: - type: check-cloudtrail global-events: true multi-region: true running: true """ schema = type_schema( 'check-cloudtrail', **{'multi-region': {'type': 'boolean'}, 'global-events': {'type': 'boolean'}, 'current-region': {'type': 'boolean'}, 'running': {'type': 'boolean'}, 'notifies': {'type': 'boolean'}, 'file-digest': {'type': 'boolean'}, 'kms': {'type': 'boolean'}, 'kms-key': {'type': 'string'}}) permissions = ('cloudtrail:DescribeTrails', 'cloudtrail:GetTrailStatus') def process(self, resources, event=None): session = local_session(self.manager.session_factory) client = session.client('cloudtrail') trails = client.describe_trails()['trailList'] resources[0]['c7n:cloudtrails'] = trails if self.data.get('global-events'): trails = [t for t in trails if t.get('IncludeGlobalServiceEvents')] if self.data.get('current-region'): current_region = session.region_name trails = [t for t in trails if t.get( 'HomeRegion') == current_region or t.get('IsMultiRegionTrail')] if self.data.get('kms'): trails = [t for t in trails if t.get('KmsKeyId')] if self.data.get('kms-key'): trails = [t for t in trails if t.get('KmsKeyId', '') == self.data['kms-key']] if self.data.get('file-digest'): trails = [t for t in trails if t.get('LogFileValidationEnabled')] if self.data.get('multi-region'): trails = [t for t in trails if t.get('IsMultiRegionTrail')] if self.data.get('notifies'): trails = [t for t in trails if t.get('SNSTopicArn')] if self.data.get('running', True): running = [] for t in list(trails): t['Status'] = status = client.get_trail_status( Name=t['TrailARN']) if status['IsLogging'] and not status.get( 'LatestDeliveryError'): running.append(t) trails = running if trails: return [] return resources @filters.register('check-config') class ConfigEnabled(Filter): """Is config service enabled for this account :example: .. code-block:: yaml policies: - name: account-check-config-services resource: account region: us-east-1 filters: - type: check-config all-resources: true global-resources: true running: true """ schema = type_schema( 'check-config', **{ 'all-resources': {'type': 'boolean'}, 'running': {'type': 'boolean'}, 'global-resources': {'type': 'boolean'}}) permissions = ('config:DescribeDeliveryChannels', 'config:DescribeConfigurationRecorders', 'config:DescribeConfigurationRecorderStatus') def process(self, resources, event=None): client = local_session( self.manager.session_factory).client('config') channels = client.describe_delivery_channels()[ 'DeliveryChannels'] recorders = client.describe_configuration_recorders()[ 'ConfigurationRecorders'] resources[0]['c7n:config_recorders'] = recorders resources[0]['c7n:config_channels'] = channels if self.data.get('global-resources'): recorders = [ r for r in recorders if r['recordingGroup'].get('includeGlobalResourceTypes')] if self.data.get('all-resources'): recorders = [r for r in recorders if r['recordingGroup'].get('allSupported')] if self.data.get('running', True) and recorders: status = {s['name']: s for s in client.describe_configuration_recorder_status( )['ConfigurationRecordersStatus']} resources[0]['c7n:config_status'] = status recorders = [r for r in recorders if status[r['name']]['recording'] and status[r['name']]['lastStatus'].lower() in ('pending', 'success')] if channels and recorders: return [] return resources @filters.register('iam-summary') class IAMSummary(ValueFilter): """Return annotated account resource if iam summary filter matches. Some use cases include, detecting root api keys or mfa usage. Example iam summary wrt to matchable fields:: { "AccessKeysPerUserQuota": 2, "AccountAccessKeysPresent": 0, "AccountMFAEnabled": 1, "AccountSigningCertificatesPresent": 0, "AssumeRolePolicySizeQuota": 2048, "AttachedPoliciesPerGroupQuota": 10, "AttachedPoliciesPerRoleQuota": 10, "AttachedPoliciesPerUserQuota": 10, "GroupPolicySizeQuota": 5120, "Groups": 1, "GroupsPerUserQuota": 10, "GroupsQuota": 100, "InstanceProfiles": 0, "InstanceProfilesQuota": 100, "MFADevices": 3, "MFADevicesInUse": 2, "Policies": 3, "PoliciesQuota": 1000, "PolicySizeQuota": 5120, "PolicyVersionsInUse": 5, "PolicyVersionsInUseQuota": 10000, "Providers": 0, "RolePolicySizeQuota": 10240, "Roles": 4, "RolesQuota": 250, "ServerCertificates": 0, "ServerCertificatesQuota": 20, "SigningCertificatesPerUserQuota": 2, "UserPolicySizeQuota": 2048, "Users": 5, "UsersQuota": 5000, "VersionsPerPolicyQuota": 5, } For example to determine if an account has either not been enabled with root mfa or has root api keys. .. code-block:: yaml policies: - name: root-keys-or-no-mfa resource: account filters: - type: iam-summary key: AccountMFAEnabled value: true op: eq value_type: swap """ schema = type_schema('iam-summary', rinherit=ValueFilter.schema) permissions = ('iam:GetAccountSummary',) def process(self, resources, event=None): if not resources[0].get('c7n:iam_summary'): client = local_session( self.manager.session_factory).client('iam') resources[0]['c7n:iam_summary'] = client.get_account_summary( )['SummaryMap'] if self.match(resources[0]['c7n:iam_summary']): return resources return [] @filters.register('password-policy') class AccountPasswordPolicy(ValueFilter): """Check an account's password policy. Note that on top of the default password policy fields, we also add an extra key, PasswordPolicyConfigured which will be set to true or false to signify if the given account has attempted to set a policy at all. :example: .. code-block:: yaml policies: - name: password-policy-check resource: account region: us-east-1 filters: - type: password-policy key: MinimumPasswordLength value: 10 op: ge - type: password-policy key: RequireSymbols value: true """ schema = type_schema('password-policy', rinherit=ValueFilter.schema) permissions = ('iam:GetAccountPasswordPolicy',) def process(self, resources, event=None): account = resources[0] if not account.get('c7n:password_policy'): client = local_session(self.manager.session_factory).client('iam') policy = {} try: policy = client.get_account_password_policy().get('PasswordPolicy', {}) policy['PasswordPolicyConfigured'] = True except ClientError as e: if e.response['Error']['Code'] == 'NoSuchEntity': policy['PasswordPolicyConfigured'] = False else: raise account['c7n:password_policy'] = policy if self.match(account['c7n:password_policy']): return resources return [] @filters.register('service-limit') class ServiceLimit(Filter): """Check if account's service limits are past a given threshold. Supported limits are per trusted advisor, which is variable based on usage in the account and support level enabled on the account. - service: AutoScaling limit: Auto Scaling groups - service: AutoScaling limit: Launch configurations - service: EBS limit: Active snapshots - service: EBS limit: Active volumes - service: EBS limit: General Purpose (SSD) volume storage (GiB) - service: EBS limit: Magnetic volume storage (GiB) - service: EBS limit: Provisioned IOPS - service: EBS limit: Provisioned IOPS (SSD) storage (GiB) - service: EC2 limit: Elastic IP addresses (EIPs) # Note this is extant for each active instance type in the account # however the total value is against sum of all instance types. # see issue https://github.com/capitalone/cloud-custodian/issues/516 - service: EC2 limit: On-Demand instances - m3.medium - service: EC2 limit: Reserved Instances - purchase limit (monthly) - service: ELB limit: Active load balancers - service: IAM limit: Groups - service: IAM limit: Instance profiles - service: IAM limit: Roles - service: IAM limit: Server certificates - service: IAM limit: Users - service: RDS limit: DB instances - service: RDS limit: DB parameter groups - service: RDS limit: DB security groups - service: RDS limit: DB snapshots per user - service: RDS limit: Storage quota (GB) - service: RDS limit: Internet gateways - service: SES limit: Daily sending quota - service: VPC limit: VPCs - service: VPC limit: VPC Elastic IP addresses (EIPs) :example: .. code-block:: yaml policies: - name: account-service-limits resource: account filters: - type: service-limit services: - EC2 threshold: 1.0 - name: specify-region-for-global-service region: us-east-1 resource: account filters: - type: service-limit services: - IAM limits: - Roles """ schema = type_schema( 'service-limit', threshold={'type': 'number'}, refresh_period={'type': 'integer'}, limits={'type': 'array', 'items': {'type': 'string'}}, services={'type': 'array', 'items': { 'enum': ['EC2', 'ELB', 'VPC', 'AutoScaling', 'RDS', 'EBS', 'SES', 'IAM']}}) permissions = ('support:DescribeTrustedAdvisorCheckResult',) check_id = 'eW7HH0l7J9' check_limit = ('region', 'service', 'check', 'limit', 'extant', 'color') global_services = set(['IAM']) def validate(self): region = self.manager.data.get('region', '') if len(self.global_services.intersection(self.data.get('services', []))): if region != 'us-east-1': raise FilterValidationError( "Global services: %s must be targeted in us-east-1 on the policy" % ', '.join(self.global_services)) return self def process(self, resources, event=None): client = local_session(self.manager.session_factory).client( 'support', region_name='us-east-1') checks = client.describe_trusted_advisor_check_result( checkId=self.check_id, language='en')['result'] region = self.manager.config.region checks['flaggedResources'] = [r for r in checks['flaggedResources'] if r['metadata'][0] == region or (r['metadata'][0] == '-' and region == 'us-east-1')] resources[0]['c7n:ServiceLimits'] = checks delta = timedelta(self.data.get('refresh_period', 1)) check_date = parse_date(checks['timestamp']) if datetime.now(tz=tzutc()) - delta > check_date: client.refresh_trusted_advisor_check(checkId=self.check_id) threshold = self.data.get('threshold') services = self.data.get('services') limits = self.data.get('limits') exceeded = [] for resource in checks['flaggedResources']: if threshold is None and resource['status'] == 'ok': continue limit = dict(zip(self.check_limit, resource['metadata'])) if services and limit['service'] not in services: continue if limits and limit['check'] not in limits: continue limit['status'] = resource['status'] limit['percentage'] = float(limit['extant'] or 0) / float( limit['limit']) * 100 if threshold and limit['percentage'] < threshold: continue exceeded.append(limit) if exceeded: resources[0]['c7n:ServiceLimitsExceeded'] = exceeded return resources return [] @actions.register('request-limit-increase') class RequestLimitIncrease(BaseAction): r"""File support ticket to raise limit. :Example: .. code-block:: yaml policies: - name: account-service-limits resource: account filters: - type: service-limit services: - EBS limits: - Provisioned IOPS (SSD) storage (GiB) threshold: 60.5 actions: - type: request-limit-increase notify: [email, email2] ## You can use one of either percent-increase or an amount-increase. percent-increase: 50 message: "Please raise the below account limit(s); \n {limits}" """ schema = { 'type': 'object', 'notify': {'type': 'array'}, 'properties': { 'type': {'enum': ['request-limit-increase']}, 'percent-increase': {'type': 'number', 'minimum': 1}, 'amount-increase': {'type': 'number', 'minimum': 1}, 'subject': {'type': 'string'}, 'message': {'type': 'string'}, 'severity': {'type': 'string', 'enum': ['urgent', 'high', 'normal', 'low']} }, 'oneOf': [ {'required': ['type', 'percent-increase']}, {'required': ['type', 'amount-increase']} ] } permissions = ('support:CreateCase',) default_subject = '[Account:{account}]Raise the following limit(s) of {service} in {region}' default_template = 'Please raise the below account limit(s); \n {limits}' default_severity = 'normal' service_code_mapping = { 'AutoScaling': 'auto-scaling', 'ELB': 'elastic-load-balancing', 'EBS': 'amazon-elastic-block-store', 'EC2': 'amazon-elastic-compute-cloud-linux', 'RDS': 'amazon-relational-database-service-aurora', 'VPC': 'amazon-virtual-private-cloud', } def process(self, resources): session = local_session(self.manager.session_factory) client = session.client('support', region_name='us-east-1') account_id = self.manager.config.account_id service_map = {} region_map = {} limit_exceeded = resources[0].get('c7n:ServiceLimitsExceeded', []) percent_increase = self.data.get('percent-increase') amount_increase = self.data.get('amount-increase') for s in limit_exceeded: current_limit = int(s['limit']) if percent_increase: increase_by = current_limit * float(percent_increase) / 100 increase_by = max(increase_by, 1) else: increase_by = amount_increase increase_by = round(increase_by) msg = '\nIncrease %s by %d in %s \n\t Current Limit: %s\n\t Current Usage: %s\n\t ' \ 'Set New Limit to: %d' % ( s['check'], increase_by, s['region'], s['limit'], s['extant'], (current_limit + increase_by)) service_map.setdefault(s['service'], []).append(msg) region_map.setdefault(s['service'], s['region']) for service in service_map: subject = self.data.get('subject', self.default_subject).format( service=service, region=region_map[service], account=account_id) service_code = self.service_code_mapping.get(service) body = self.data.get('message', self.default_template) body = body.format(**{ 'service': service, 'limits': '\n\t'.join(service_map[service]), }) client.create_case( subject=subject, communicationBody=body, serviceCode=service_code, categoryCode='general-guidance', severityCode=self.data.get('severity', self.default_severity), ccEmailAddresses=self.data.get('notify', [])) def cloudtrail_policy(original, bucket_name, account_id): '''add CloudTrail permissions to an S3 policy, preserving existing''' ct_actions = [ { 'Action': 's3:GetBucketAcl', 'Effect': 'Allow', 'Principal': {'Service': 'cloudtrail.amazonaws.com'}, 'Resource': 'arn:aws:s3:::' + bucket_name, 'Sid': 'AWSCloudTrailAclCheck20150319', }, { 'Action': 's3:PutObject', 'Condition': { 'StringEquals': {'s3:x-amz-acl': 'bucket-owner-full-control'}, }, 'Effect': 'Allow', 'Principal': {'Service': 'cloudtrail.amazonaws.com'}, 'Resource': 'arn:aws:s3:::%s/AWSLogs/%s/*' % ( bucket_name, account_id ), 'Sid': 'AWSCloudTrailWrite20150319', }, ] # parse original policy if original is None: policy = { 'Statement': [], 'Version': '2012-10-17', } else: policy = json.loads(original['Policy']) original_actions = [a.get('Action') for a in policy['Statement']] for cta in ct_actions: if cta['Action'] not in original_actions: policy['Statement'].append(cta) return json.dumps(policy) @actions.register('enable-cloudtrail') class EnableTrail(BaseAction): """Enables logging on the trail(s) named in the policy :Example: .. code-block:: yaml policies: - name: trail-test description: Ensure CloudTrail logging is enabled resource: account actions: - type: enable-cloudtrail trail: mytrail bucket: trails """ permissions = ( 'cloudtrail:CreateTrail', 'cloudtrail:DescribeTrails', 'cloudtrail:GetTrailStatus', 'cloudtrail:StartLogging', 'cloudtrail:UpdateTrail', 's3:CreateBucket', 's3:GetBucketPolicy', 's3:PutBucketPolicy', ) schema = type_schema( 'enable-cloudtrail', **{ 'trail': {'type': 'string'}, 'bucket': {'type': 'string'}, 'bucket-region': {'type': 'string'}, 'multi-region': {'type': 'boolean'}, 'global-events': {'type': 'boolean'}, 'notify': {'type': 'string'}, 'file-digest': {'type': 'boolean'}, 'kms': {'type': 'boolean'}, 'kms-key': {'type': 'string'}, 'required': ('bucket',), } ) def process(self, accounts): """Create or enable CloudTrail""" session = local_session(self.manager.session_factory) client = session.client('cloudtrail') bucket_name = self.data['bucket'] bucket_region = self.data.get('bucket-region', 'us-east-1') trail_name = self.data.get('trail', 'default-trail') multi_region = self.data.get('multi-region', True) global_events = self.data.get('global-events', True) notify = self.data.get('notify', '') file_digest = self.data.get('file-digest', False) kms = self.data.get('kms', False) kms_key = self.data.get('kms-key', '') s3client = session.client('s3') try: s3client.create_bucket( Bucket=bucket_name, CreateBucketConfiguration={'LocationConstraint': bucket_region} ) except ClientError as ce: if not ('Error' in ce.response and ce.response['Error']['Code'] == 'BucketAlreadyOwnedByYou'): raise ce try: current_policy = s3client.get_bucket_policy(Bucket=bucket_name) except ClientError: current_policy = None policy_json = cloudtrail_policy( current_policy, bucket_name, self.manager.config.account_id) s3client.put_bucket_policy(Bucket=bucket_name, Policy=policy_json) trails = client.describe_trails().get('trailList', ()) if trail_name not in [t.get('Name') for t in trails]: new_trail = client.create_trail( Name=trail_name, S3BucketName=bucket_name, ) if new_trail: trails.append(new_trail) # the loop below will configure the new trail for trail in trails: if trail.get('Name') != trail_name: continue # enable arn = trail['TrailARN'] status = client.get_trail_status(Name=arn) if not status['IsLogging']: client.start_logging(Name=arn) # apply configuration changes (if any) update_args = {} if multi_region != trail.get('IsMultiRegionTrail'): update_args['IsMultiRegionTrail'] = multi_region if global_events != trail.get('IncludeGlobalServiceEvents'): update_args['IncludeGlobalServiceEvents'] = global_events if notify != trail.get('SNSTopicArn'): update_args['SnsTopicName'] = notify if file_digest != trail.get('LogFileValidationEnabled'): update_args['EnableLogFileValidation'] = file_digest if kms_key != trail.get('KmsKeyId'): if not kms and 'KmsKeyId' in trail: kms_key = '' update_args['KmsKeyId'] = kms_key if update_args: update_args['Name'] = trail_name client.update_trail(**update_args) @filters.register('has-virtual-mfa') class HasVirtualMFA(Filter): """Is the account configured with a virtual MFA device? :example: .. code-block:: yaml policies: - name: account-with-virtual-mfa resource: account region: us-east-1 filters: - type: has-virtual-mfa value: true """ schema = type_schema('has-virtual-mfa', **{'value': {'type': 'boolean'}}) permissions = ('iam:ListVirtualMFADevices',) def mfa_belongs_to_root_account(self, mfa): return mfa['SerialNumber'].endswith(':mfa/root-account-mfa-device') def account_has_virtual_mfa(self, account): if not account.get('c7n:VirtualMFADevices'): client = local_session(self.manager.session_factory).client('iam') paginator = client.get_paginator('list_virtual_mfa_devices') raw_list = paginator.paginate().build_full_result()['VirtualMFADevices'] account['c7n:VirtualMFADevices'] = list(filter( self.mfa_belongs_to_root_account, raw_list)) expect_virtual_mfa = self.data.get('value', True) has_virtual_mfa = any(account['c7n:VirtualMFADevices']) return expect_virtual_mfa == has_virtual_mfa def process(self, resources, event=None): return list(filter(self.account_has_virtual_mfa, resources)) @actions.register('enable-data-events') class EnableDataEvents(BaseAction): """Ensure all buckets in account are setup to log data events. Note this works via a single trail for data events per (https://goo.gl/1ux7RG). This trail should NOT be used for api management events, the configuration here is soley for data events. If directed to create a trail this will do so without management events. :example: .. code-block:: yaml policies: - name: s3-remove-owner-tag resource: actions actions: - type: enable-data-events data-trail: name: s3-events multi-region: us-east-1 """ schema = type_schema( 'enable-data-events', required=['data-trail'], **{ 'data-trail': { 'type': 'object', 'additionalProperties': False, 'required': ['name'], 'properties': { 'create': { 'title': 'Should we create trail if needed for events?', 'type': 'boolean'}, 'type': {'enum': ['ReadOnly', 'WriteOnly', 'All']}, 'name': { 'title': 'The name of the event trail', 'type': 'string'}, 'topic': { 'title': 'If creating, the sns topic for the trail to send updates', 'type': 'string'}, 's3-bucket': { 'title': 'If creating, the bucket to store trail event data', 'type': 'string'}, 's3-prefix': {'type': 'string'}, 'key-id': { 'title': 'If creating, Enable kms on the trail', 'type': 'string'}, # region that we're aggregating via trails. 'multi-region': { 'title': 'If creating, use this region for all data trails', 'type': 'string'}}}}) def validate(self): if self.data['data-trail'].get('create'): if 's3-bucket' not in self.data['data-trail']: raise FilterValidationError( "If creating data trails, an s3-bucket is required") return self def get_permissions(self): perms = [ 'cloudtrail:DescribeTrails', 'cloudtrail:GetEventSelectors', 'cloudtrail:PutEventSelectors'] if self.data.get('data-trail', {}).get('create'): perms.extend([ 'cloudtrail:CreateTrail', 'cloudtrail:StartLogging']) return perms def add_data_trail(self, client, trail_cfg): if not trail_cfg.get('create'): raise ValueError( "s3 data event trail missing and not configured to create") params = dict( Name=trail_cfg['name'], S3BucketName=trail_cfg['s3-bucket'], EnableLogFileValidation=True) if 'key-id' in trail_cfg: params['KmsKeyId'] = trail_cfg['key-id'] if 's3-prefix' in trail_cfg: params['S3KeyPrefix'] = trail_cfg['s3-prefix'] if 'topic' in trail_cfg: params['SnsTopicName'] = trail_cfg['topic'] if 'multi-region' in trail_cfg: params['IsMultiRegionTrail'] = True client.create_trail(**params) return {'Name': trail_cfg['name']} def process(self, resources): session = local_session(self.manager.session_factory) region = self.data['data-trail'].get('multi-region') if region: client = session.client('cloudtrail', region_name=region) else: client = session.client('cloudtrail') added = False tconfig = self.data['data-trail'] trails = client.describe_trails( trailNameList=[tconfig['name']]).get('trailList', ()) if not trails: trail = self.add_data_trail(client, tconfig) added = True else: trail = trails[0] events = client.get_event_selectors( TrailName=trail['Name']).get('EventSelectors', []) for e in events: found = False if not e.get('DataResources'): continue for data_events in e['DataResources']: if data_events['Type'] != 'AWS::S3::Object': continue for b in data_events['Values']: if b.rsplit(':')[-1].strip('/') == '': found = True break if found: resources[0]['c7n_data_trail'] = trail return # Opinionated choice, separate api and data events. event_count = len(events) events = [e for e in events if not e.get('IncludeManagementEvents')] if len(events) != event_count: self.log.warning("removing api trail from data trail") # future proof'd for other data events, for s3 this trail # encompasses all the buckets in the account. events.append({ 'IncludeManagementEvents': False, 'ReadWriteType': tconfig.get('type', 'All'), 'DataResources': [{ 'Type': 'AWS::S3::Object', 'Values': ['arn:aws:s3:::']}]}) client.put_event_selectors( TrailName=trail['Name'], EventSelectors=events) if added: client.start_logging(Name=tconfig['name']) resources[0]['c7n_data_trail'] = trail @filters.register('shield-enabled') class ShieldEnabled(Filter): permissions = ('shield:DescribeSubscription',) schema = type_schema( 'shield-enabled', state={'type': 'boolean'}) def process(self, resources, event=None): state = self.data.get('state', False) client = self.manager.session_factory().client('shield') try: subscription = client.describe_subscription().get( 'Subscription', None) except ClientError as e: if e.response['Error']['Code'] != 'ResourceNotFoundException': raise subscription = None resources[0]['c7n:ShieldSubscription'] = subscription if state and subscription: return resources elif not state and not subscription: return resources return [] @actions.register('set-shield-advanced') class SetShieldAdvanced(BaseAction): """Enable/disable Shield Advanced on an account.""" permissions = ( 'shield:CreateSubscription', 'shield:DeleteSubscription') schema = type_schema( 'set-shield-advanced', state={'type': 'boolean'}) def process(self, resources): client = self.manager.session_factory().client('shield') state = self.data.get('state', True) if state: client.create_subscription() else: try: client.delete_subscription() except ClientError as e: if e.response['Error']['Code'] == 'ResourceNotFoundException': return raise
36.655636
99
0.567906
daad082596d259673fe4bba215bf2cd9e3b91096
1,587
py
Python
src/backend/expungeservice/models/disposition.py
KentShikama/recordexpungPDX
4d3d14339e9f408ae466b867615101bdee42e98b
[ "MIT" ]
null
null
null
src/backend/expungeservice/models/disposition.py
KentShikama/recordexpungPDX
4d3d14339e9f408ae466b867615101bdee42e98b
[ "MIT" ]
null
null
null
src/backend/expungeservice/models/disposition.py
KentShikama/recordexpungPDX
4d3d14339e9f408ae466b867615101bdee42e98b
[ "MIT" ]
null
null
null
from dataclasses import dataclass from datetime import date from enum import Enum class DispositionStatus(str, Enum): CONVICTED = "Convicted" DISMISSED = "Dismissed" NO_COMPLAINT = "No Complaint" DIVERTED = "Diverted" UNRECOGNIZED = "Unrecognized" @dataclass(frozen=True) class Disposition: date: date ruling: str status: DispositionStatus amended: bool = False class DispositionCreator: @staticmethod def create(date: date, ruling: str, amended: bool = False) -> Disposition: status = DispositionCreator.__build_status(ruling) return Disposition(date, ruling, status, amended) @staticmethod def __build_status(ruling_string): ruling = ruling_string.lower() conviction_rulings = ["convicted", "conviction", "reduced", "finding - guilty", "conversion", "converted"] dismissal_rulings = [ "acquitted", "acquittal", "dismissed", "dismissal", "finding - not guilty", "accusatory instrument filed", "removed from charging instrument", ] if any([rule in ruling for rule in conviction_rulings]): return DispositionStatus.CONVICTED elif any([rule in ruling for rule in dismissal_rulings]): return DispositionStatus.DISMISSED elif "diverted" in ruling: return DispositionStatus.DIVERTED elif "no complaint" in ruling: return DispositionStatus.NO_COMPLAINT else: return DispositionStatus.UNRECOGNIZED
28.339286
114
0.647133
6eef6dcb38a57d37b3dc4cbf4df3476989300c43
6,913
py
Python
sdk/python/pulumi_azure/apimanagement/named_value.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/apimanagement/named_value.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/apimanagement/named_value.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class NamedValue(pulumi.CustomResource): api_management_name: pulumi.Output[str] """ The name of the API Management Service in which the API Management Named Value should exist. Changing this forces a new resource to be created. """ display_name: pulumi.Output[str] """ The display name of this API Management Named Value. """ name: pulumi.Output[str] """ The name of the API Management Named Value. Changing this forces a new resource to be created. """ resource_group_name: pulumi.Output[str] """ The name of the Resource Group in which the API Management Named Value should exist. Changing this forces a new resource to be created. """ secret: pulumi.Output[bool] """ Specifies whether the API Management Named Value is secret. Valid values are `true` or `false`. The default value is `false`. """ tags: pulumi.Output[list] """ A list of tags to be applied to the API Management Named Value. """ value: pulumi.Output[str] """ The value of this API Management Named Value. """ def __init__(__self__, resource_name, opts=None, api_management_name=None, display_name=None, name=None, resource_group_name=None, secret=None, tags=None, value=None, __props__=None, __name__=None, __opts__=None): """ Manages an API Management Named Value. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] api_management_name: The name of the API Management Service in which the API Management Named Value should exist. Changing this forces a new resource to be created. :param pulumi.Input[str] display_name: The display name of this API Management Named Value. :param pulumi.Input[str] name: The name of the API Management Named Value. Changing this forces a new resource to be created. :param pulumi.Input[str] resource_group_name: The name of the Resource Group in which the API Management Named Value should exist. Changing this forces a new resource to be created. :param pulumi.Input[bool] secret: Specifies whether the API Management Named Value is secret. Valid values are `true` or `false`. The default value is `false`. :param pulumi.Input[list] tags: A list of tags to be applied to the API Management Named Value. :param pulumi.Input[str] value: The value of this API Management Named Value. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if api_management_name is None: raise TypeError("Missing required property 'api_management_name'") __props__['api_management_name'] = api_management_name if display_name is None: raise TypeError("Missing required property 'display_name'") __props__['display_name'] = display_name __props__['name'] = name if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['secret'] = secret __props__['tags'] = tags if value is None: raise TypeError("Missing required property 'value'") __props__['value'] = value super(NamedValue, __self__).__init__( 'azure:apimanagement/namedValue:NamedValue', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, api_management_name=None, display_name=None, name=None, resource_group_name=None, secret=None, tags=None, value=None): """ Get an existing NamedValue resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] api_management_name: The name of the API Management Service in which the API Management Named Value should exist. Changing this forces a new resource to be created. :param pulumi.Input[str] display_name: The display name of this API Management Named Value. :param pulumi.Input[str] name: The name of the API Management Named Value. Changing this forces a new resource to be created. :param pulumi.Input[str] resource_group_name: The name of the Resource Group in which the API Management Named Value should exist. Changing this forces a new resource to be created. :param pulumi.Input[bool] secret: Specifies whether the API Management Named Value is secret. Valid values are `true` or `false`. The default value is `false`. :param pulumi.Input[list] tags: A list of tags to be applied to the API Management Named Value. :param pulumi.Input[str] value: The value of this API Management Named Value. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["api_management_name"] = api_management_name __props__["display_name"] = display_name __props__["name"] = name __props__["resource_group_name"] = resource_group_name __props__["secret"] = secret __props__["tags"] = tags __props__["value"] = value return NamedValue(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
52.770992
217
0.689426
9c8c46e6fa2672175fd7631b2fa6d376ddea0c3b
5,010
py
Python
pose_estimation/configs/fashion/udp/deepfashion/hrnet_w32_deepfashion_full_256x192_udp.py
AK391/UniFormer
22c6b3b98b68236dda6a8fa7152a32af1af62a20
[ "MIT" ]
367
2022-01-14T03:32:25.000Z
2022-03-31T04:48:20.000Z
pose_estimation/configs/fashion/udp/deepfashion/hrnet_w32_deepfashion_full_256x192_udp.py
hadlang/UniFormer
e8024703bffb89cb7c7d09e0d774a0d2a9f96c25
[ "MIT" ]
27
2022-01-27T07:12:49.000Z
2022-03-31T04:31:13.000Z
pose_estimation/configs/fashion/udp/deepfashion/hrnet_w32_deepfashion_full_256x192_udp.py
hadlang/UniFormer
e8024703bffb89cb7c7d09e0d774a0d2a9f96c25
[ "MIT" ]
53
2022-01-18T11:21:43.000Z
2022-03-31T06:42:41.000Z
log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=5, create_symlink=False) evaluation = dict(interval=10, metric='PCK', key_indicator='PCK') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=10, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) target_type = 'GaussianHeatMap' channel_cfg = dict( num_output_channels=8, dataset_joints=8, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7], ], inference_channel=[0, 1, 2, 3, 4, 5, 6, 7]) # model settings model = dict( type='TopDown', pretrained='https://download.openmmlab.com/mmpose/' 'pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256))), ), keypoint_head=dict( type='TopDownSimpleHead', in_channels=32, out_channels=channel_cfg['num_output_channels'], num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=False, target_type=target_type, modulate_kernel=11, use_udp=True)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file='../../../../dataset/coco/person_detection_results/' 'COCO_val2017_detections_AP_H_56_person.json', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine', use_udp=True), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='TopDownGenerateTarget', sigma=2, encoding='UDP', target_type=target_type), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine', use_udp=True), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/fld' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=256), test_dataloader=dict(samples_per_gpu=256), train=dict( type='DeepFashionDataset', ann_file=f'{data_root}/annotations/fld_full_train.json', img_prefix=f'{data_root}/img/', subset='full', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='DeepFashionDataset', ann_file=f'{data_root}/annotations/fld_full_val.json', img_prefix=f'{data_root}/img/', subset='full', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='DeepFashionDataset', ann_file=f'{data_root}/annotations/fld_full_test.json', img_prefix=f'{data_root}/img/', subset='full', data_cfg=data_cfg, pipeline=val_pipeline), )
28.305085
79
0.586028
bdf269ce2a956875e13721438968639668e5e7bd
5,531
py
Python
py/bitbox02/u2fhid/u2fhid.py
jstrnbrg/bitbox02-firmware
173a1fe340daf1a839b888286a654fb75745102d
[ "Apache-2.0" ]
1
2019-11-29T07:06:59.000Z
2019-11-29T07:06:59.000Z
py/bitbox02/u2fhid/u2fhid.py
jstrnbrg/bitbox02-firmware
173a1fe340daf1a839b888286a654fb75745102d
[ "Apache-2.0" ]
null
null
null
py/bitbox02/u2fhid/u2fhid.py
jstrnbrg/bitbox02-firmware
173a1fe340daf1a839b888286a654fb75745102d
[ "Apache-2.0" ]
1
2019-11-29T07:07:01.000Z
2019-11-29T07:07:01.000Z
# Copyright 2019 Shift Cryptosecurity AG # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementations""" import struct import random from typing_extensions import Protocol USB_REPORT_SIZE = 64 ERR_NONE = 0x00 ERR_INVALID_CMD = 0x01 ERR_INVALID_PAR = 0x02 ERR_INVALID_LEN = 0x03 ERR_INVALID_SEQ = 0x04 ERR_MSG_TIMEOUT = 0x05 ERR_CHANNEL_BUSY = 0x06 ERR_LOCK_REQUIRED = 0x0A ERR_INVALID_CID = 0x0B ERR_OTHER = 0x7F PING = 0x80 | 0x01 MSG = 0x80 | 0x03 LOCK = 0x80 | 0x04 INIT = 0x80 | 0x06 WINK = 0x80 | 0x08 SYNC = 0x80 | 0x3C ERROR = 0x80 | 0x3F CID_BROADCAST = 0xFFFFFFFF class SupportsReadWrite(Protocol): # pylint: disable=unused-argument,no-self-use def write(self, msg: bytes) -> None: ... def read(self, size: int, timeout_ms: int) -> bytes: ... def generate_cid() -> int: """Generate a valid CID""" # Exclude 0 and u32_max (0xffff_ffff) return random.randrange(1, 0xFFFFFFFF) # TODO: Create exceptions def _throw_error(error_code: int) -> None: if error_code == ERR_INVALID_CMD: raise Exception("Received error: invalid command") if error_code == ERR_INVALID_LEN: raise Exception("Received error: invalid length") if error_code == ERR_INVALID_SEQ: raise Exception("Received error: invalid sequence") if error_code == ERR_CHANNEL_BUSY: raise Exception("Received error: channel busy") if error_code == 0x7E: raise Exception("Received error: encryption failed") if error_code == ERR_OTHER: raise Exception("Received unknown error") raise Exception("Received error: %d" % error_code) def write(hid_device: SupportsReadWrite, data: bytes, cmd: int, cid: int) -> None: """ Send data to the device. Args: hid_device: An object that implements read/write functions data: Data to send cmd: U2F HID command cid: U2F HID channel ID Throws: ValueError: In case any value is out of range """ if cmd < 0 or cmd > 0xFF: raise ValueError("Channel command is out of range '0 < cmd <= 0xFF'") if cid < 0 or cid > 0xFFFFFFFF: raise ValueError("Channel id is out of range '0 < cid <= 0xFFFFFFFF'") data = bytearray(data) data_len = len(data) if data_len > 0xFFFF: raise ValueError("Data is too large 'size <= 0xFFFF'") seq = 0 idx = 0 buf = b"" # Allow to write an empty packet single_empty_write = data_len == 0 while idx < data_len or single_empty_write: if idx == 0: # INIT frame buf = data[idx : idx + min(data_len, USB_REPORT_SIZE - 7)] hid_device.write( b"\0" + struct.pack(">IBH", cid, cmd, data_len) + buf + b"\xEE" * (USB_REPORT_SIZE - 7 - len(buf)) ) else: # CONT frame buf = data[idx : idx + min(data_len, USB_REPORT_SIZE - 5)] hid_device.write( b"\0" + struct.pack(">IB", cid, seq) + buf + b"\xEE" * (USB_REPORT_SIZE - 5 - len(buf)) ) seq += 1 idx += len(buf) single_empty_write = False def read(hid_device: SupportsReadWrite, cmd: int, cid: int, timeout: int = 5000) -> bytes: """ Receive data from the device. Args: hid_device: An object that implements read/write functions cmd: The expected returned U2F HID command cid: The expected returned U2F HID channel ID timeout: For how long to wait for more bytes from hid_device Returns: The read message combined from the u2fhid packets Throws: ValueError: In case any value is out of range Exception: In case of USB communication issues """ if cmd < 0 or cmd > 0xFF: raise ValueError("Channel command is out of range '0 < cmd <= 0xFF'") if cid < 0 or cid > 0xFFFFFFFF: raise ValueError("Channel id is out of range '0 < cid <= 0xFFFFFFFF'") timeout_ms = timeout * 1000 buf = hid_device.read(USB_REPORT_SIZE, timeout_ms) if len(buf) >= 3: reply_cid = ((buf[0] * 256 + buf[1]) * 256 + buf[2]) * 256 + buf[3] reply_cmd = buf[4] data_len = buf[5] * 256 + buf[6] data = buf[7:] idx = len(buf) - 7 if reply_cmd == ERROR: _throw_error(data[0]) while idx < data_len: # CONT response buf = hid_device.read(USB_REPORT_SIZE, timeout_ms) if len(buf) < 3: raise Exception("Did not receive a continuation frame after %d seconds" % timeout) data += buf[5:] idx += len(buf) - 5 if reply_cid != cid: raise Exception(f"- USB channel ID mismatch {reply_cid:x} != {cid:x}") if reply_cmd != cmd: raise Exception(f"- USB command mismatch {reply_cmd:x} != {cmd:x}") return data[:data_len] raise Exception("Did not read anything after %d seconds" % timeout)
32.727811
98
0.619056
5b96c0befe2a9434560bdd357f3d8e8dc2a92bc5
3,144
py
Python
nixos/modules/tests/stripe-api-double.py
PrivateStorageio/PrivateStorageio
fc3cf0fd0a3ccb31780984b99f4c04d96d1c3820
[ "Apache-2.0" ]
1
2020-12-22T23:40:34.000Z
2020-12-22T23:40:34.000Z
nixos/modules/tests/stripe-api-double.py
PrivateStorageio/PrivateStorageio
fc3cf0fd0a3ccb31780984b99f4c04d96d1c3820
[ "Apache-2.0" ]
25
2019-08-08T15:54:29.000Z
2021-03-08T18:06:10.000Z
nixos/modules/tests/stripe-api-double.py
PrivateStorageio/PrivateStorageio
fc3cf0fd0a3ccb31780984b99f4c04d96d1c3820
[ "Apache-2.0" ]
2
2019-10-24T20:08:17.000Z
2020-05-19T21:09:48.000Z
#!/usr/bin/env python3 from sys import stdout, argv from json import dumps from twisted.internet.defer import Deferred from twisted.internet.endpoints import serverFromString from twisted.internet.task import react from twisted.web.resource import Resource from twisted.web.server import Site from twisted.python.log import startLogging class Charges(Resource): def render_POST(self, request): voucher = request.args[b"metadata[Voucher]"][0].decode("utf-8") card = request.args[b"card"][0].decode("utf-8") amount = int(request.args[b"amount"][0]) currency = request.args[b"currency"][0].decode("utf-8") response = dumps(charge(card, amount, currency, {u"Voucher": voucher})) return response.encode("utf-8") def main(reactor, listenEndpoint): charges = Charges() v1 = Resource() v1.putChild(b"charges", charges) root = Resource() root.putChild(b"v1", v1) return serverFromString(reactor, listenEndpoint).listen( Site(root), ).addCallback( lambda ignored: Deferred() ) def charge(source, amount, currency, metadata): return { "id": "ch_1Fj8frBHXBAMm9bPkekylvAq", "object": "charge", "amount": amount, "amount_refunded": 0, "application": None, "application_fee": None, "application_fee_amount": None, "balance_transaction": "txn_1Fj8fr2eZvKYlo2CC5JzIGj5", "billing_details": { "address": { "city": None, "country": None, "line1": None, "line2": None, "postal_code": None, "state": None }, "email": None, "name": None, "phone": None }, "captured": False, "created": 1574792527, "currency": currency, "customer": None, "description": None, "dispute": None, "disputed": False, "failure_code": None, "failure_message": None, "fraud_details": {}, "invoice": None, "livemode": False, "metadata": metadata, "on_behalf_of": None, "order": None, "outcome": None, "paid": True, "payment_intent": None, "payment_method": source, "payment_method_details": {}, "receipt_email": None, "receipt_number": None, "receipt_url": "https://pay.stripe.com/receipts/acct_1FhhxTBHXBAMm9bP/ch_1Fj8frBHXBAMm9bPkekylvAq/rcpt_GFdxYuDoGKfYgokh9YA11XhnYC7Gnxp", "refunded": False, "refunds": { "object": "list", "data": [], "has_more": False, "url": "/v1/charges/ch_1Fj8frBHXBAMm9bPkekylvAq/refunds" }, "review": None, "shipping": None, "source_transfer": None, "statement_descriptor": None, "statement_descriptor_suffix": None, "status": "succeeded", "transfer_data": None, "transfer_group": None, "source": source, } if __name__ == '__main__': startLogging(stdout) react(main, argv[1:])
30.823529
144
0.577608
8bd11f4af6e22c1087e3d5260f9d58249b97c553
3,029
py
Python
app.py
bkhanale/SlackContestWatcherBot
744dac74aecfedeeee8fa41b781d454fe105e6a1
[ "MIT" ]
12
2018-07-28T19:39:25.000Z
2021-08-29T17:39:35.000Z
app.py
bkhanale/slackcontestwatcherbot
744dac74aecfedeeee8fa41b781d454fe105e6a1
[ "MIT" ]
8
2018-07-28T19:41:03.000Z
2018-08-20T17:14:56.000Z
app.py
bkhanale/slackcontestwatcherbot
744dac74aecfedeeee8fa41b781d454fe105e6a1
[ "MIT" ]
2
2018-07-29T09:38:29.000Z
2018-07-29T11:11:37.000Z
import datetime from dateutil import tz import json import requests from os import environ base_url = "https://clist.by/api/v1/contest/" header = {"Authorization": environ["CLIST_API_TOKEN"]} def convert_time(utc): return str( utc.replace(tzinfo=tz.gettz('UTC')) .astimezone(tz.gettz('Asia/Calcutta')) .replace(microsecond=0) .replace(tzinfo=None)) def convert_dt(string): return datetime.datetime.strptime(string, '%Y-%m-%dT%H:%M:%S') def watchcontest(now): cur_time = now.replace(microsecond=0) + datetime.timedelta(hours=1) para = {"start": cur_time.isoformat()} resp = requests.get(base_url, params=para, headers=header) flag = False res = "" if(resp.status_code == 200): contests = json.loads(resp.content.decode("utf-8")) if(len(contests["objects"]) >= 1): flag = True for con in contests["objects"]: lcls = convert_time(convert_dt(con["start"])) lcle = convert_time(convert_dt(con["end"])) res += con["event"] + " will start in 1 hour!\n" res += con["href"] + "\n" res += "Start: " + lcls + "\n" res += "End: " + lcle + "\n" res += "Duration: " + str( datetime.timedelta(seconds=con["duration"])) + "\n\n" return flag, res def upcoming(site, now): now = now.replace(microsecond=0) then = now + datetime.timedelta(days=7) para = { "start__gte": now.isoformat(), "start__lte": then.isoformat(), "resource__name__contains": site, "order_by": "start"} resp = requests.get(base_url, params=para, headers=header) if(resp.status_code == 200): return ( "Following are the upcoming contests within a week:\n\n" + build_string(json.loads(resp.content.decode("utf-8")))) else: return "Error " + str(resp.status_code) def ongoing(site, now): now = now.replace(microsecond=0) para = { "start__lte": now.isoformat(), "end__gt": now.isoformat(), "resource__name__contains": site, "order_by": "start"} resp = requests.get(base_url, params=para, headers=header) if(resp.status_code == 200): return ( "Following are the ongoing contests:\n\n" + build_string(json.loads(resp.content.decode("utf-8")))) else: return "Error " + str(resp.status_code) def build_string(contests): res = "" con_ind = 1 for con in contests["objects"]: res += str(con_ind) + ". " + con["event"] + "\n" res += con["href"] + "\n" res += "Start: " + convert_time(convert_dt(con["start"])) + "\n" res += "End: " + convert_time(convert_dt(con["end"])) + "\n" res += "Duration: " + str(datetime.timedelta(seconds=con["duration"])) res += "\n\n" con_ind += 1 return res
33.655556
79
0.555629
801729b67723302bafcc0f41bcf618c63a1abcea
1,763
py
Python
job_scripts/cori-haswell/slack_job_start.py
dwillcox/workflow
ff4a0e98eda5dd8ac002f6c0b518c5c9aa94bd8d
[ "MIT" ]
3
2018-11-27T20:19:47.000Z
2021-03-11T02:14:02.000Z
job_scripts/cori-haswell/slack_job_start.py
dwillcox/workflow
ff4a0e98eda5dd8ac002f6c0b518c5c9aa94bd8d
[ "MIT" ]
6
2018-04-09T23:24:48.000Z
2021-09-28T18:21:31.000Z
job_scripts/cori-haswell/slack_job_start.py
dwillcox/workflow
ff4a0e98eda5dd8ac002f6c0b518c5c9aa94bd8d
[ "MIT" ]
6
2018-12-25T01:06:17.000Z
2022-03-25T22:40:24.000Z
#!/usr/bin/env python import json import sys import subprocess import shlex def slack_post(name, channel, message, webhook): payload = {} payload["channel"] = channel payload["username"] = name payload["text"] = message s = json.dumps(payload) cmd = "curl -X POST --data-urlencode 'payload={}' {}".format(s, webhook) so = run(cmd) def run(string, stdin=False, outfile=None, store_command=False, env=None, outfile_mode="a", log=None): # shlex.split will preserve inner quotes prog = shlex.split(string) if stdin: p0 = subprocess.Popen(prog, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env) else: p0 = subprocess.Popen(prog, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env) stdout0, stderr0 = p0.communicate() if stdin: p0.stdin.close() rc = p0.returncode p0.stdout.close() if not outfile == None: try: cf = open(outfile, outfile_mode) except IOError: log.fail(" ERROR: unable to open file for writing") else: if store_command: cf.write(string) for line in stdout0: cf.write(line) cf.close() return stdout0, stderr0, rc if __name__ == "__main__": try: f = open("/global/homes/z/zingale/.slack.webhook") except: sys.exit("ERROR: unable to open webhook file") else: webhook = str(f.readline()) f.close() message = sys.argv[1] channel = sys.argv[2] if not channel.startswith("#"): channel = "#{}".format(channel) slack_post("bender", channel, message, webhook)
25.550725
102
0.581963
1bdb6d2dd320d7c51a7c0bcf01377c345a20ccdf
1,110
py
Python
apps/account/views.py
hakancelik96/eatingword
722e0c5ce2c92812b79db106eb9df7bd90a83143
[ "MIT" ]
10
2020-09-24T12:25:59.000Z
2020-09-24T12:28:11.000Z
apps/account/views.py
hakancelik96/eatingword
722e0c5ce2c92812b79db106eb9df7bd90a83143
[ "MIT" ]
4
2021-06-04T23:52:28.000Z
2021-09-22T19:34:29.000Z
apps/account/views.py
hakancelik96/eatingword
722e0c5ce2c92812b79db106eb9df7bd90a83143
[ "MIT" ]
null
null
null
from django.contrib import messages from django.contrib.auth import authenticate, login from django.contrib.auth import views as auth_views from django.urls import reverse_lazy from django.views import generic from apps.account.forms import AuthenticationForm, RegisterForm from apps.views import MessageMixin class RegisterView(MessageMixin, generic.CreateView): template_name = "registration/register.html" success_url = reverse_lazy("wordapp:index") form_class = RegisterForm success_message = "You have successfully registered %(username)s" def form_valid(self, form): response = super().form_valid(form) user = authenticate( username=form.cleaned_data["username"], password=form.cleaned_data["password1"], ) if user is not None: login(self.request, user) else: messages.error(self.request, "Could not login") return response class LoginView(MessageMixin, auth_views.LoginView): form_class = AuthenticationForm success_message = "You have successfully logged in %(username)s"
33.636364
69
0.722523
65977c52122caa1854d2df3c5485a7e08c0d074f
96
py
Python
python3-cgdk/model/WeatherType.py
leloykun/russian-ai-cup
aa06dcd594f8a33aa5d1accc128b931812de7297
[ "MIT" ]
null
null
null
python3-cgdk/model/WeatherType.py
leloykun/russian-ai-cup
aa06dcd594f8a33aa5d1accc128b931812de7297
[ "MIT" ]
null
null
null
python3-cgdk/model/WeatherType.py
leloykun/russian-ai-cup
aa06dcd594f8a33aa5d1accc128b931812de7297
[ "MIT" ]
null
null
null
from enum import IntEnum class WeatherType(IntEnum): CLEAR = 0 CLOUD = 1 RAIN = 2
12
27
0.635417