hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
13806032a5703310f410b87dafb215a89e72b385
4,991
py
Python
sib_api_v3_sdk/models/remaining_credit_model_reseller.py
Edraak/APIv3-python-library
4a97bf479d92ca08d5a2881ac37e397d3a1846b4
[ "MIT" ]
null
null
null
sib_api_v3_sdk/models/remaining_credit_model_reseller.py
Edraak/APIv3-python-library
4a97bf479d92ca08d5a2881ac37e397d3a1846b4
[ "MIT" ]
null
null
null
sib_api_v3_sdk/models/remaining_credit_model_reseller.py
Edraak/APIv3-python-library
4a97bf479d92ca08d5a2881ac37e397d3a1846b4
[ "MIT" ]
null
null
null
# coding: utf-8 """ SendinBlue API SendinBlue provide a RESTFul API that can be used with any languages. With this API, you will be able to : - Manage your campaigns and get the statistics - Manage your contacts - Send transactional Emails and SMS - and much more... You can download our wrappers at https://github.com/orgs/sendinblue **Possible responses** | Code | Message | | :-------------: | ------------- | | 200 | OK. Successful Request | | 201 | OK. Successful Creation | | 202 | OK. Request accepted | | 204 | OK. Successful Update/Deletion | | 400 | Error. Bad Request | | 401 | Error. Authentication Needed | | 402 | Error. Not enough credit, plan upgrade needed | | 403 | Error. Permission denied | | 404 | Error. Object does not exist | | 405 | Error. Method not allowed | | 406 | Error. Not Acceptable | # noqa: E501 OpenAPI spec version: 3.0.0 Contact: contact@sendinblue.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class RemainingCreditModelReseller(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'sms': 'int', 'email': 'int' } attribute_map = { 'sms': 'sms', 'email': 'email' } def __init__(self, sms=None, email=None): # noqa: E501 """RemainingCreditModelReseller - a model defined in Swagger""" # noqa: E501 self._sms = None self._email = None self.discriminator = None self.sms = sms self.email = email @property def sms(self): """Gets the sms of this RemainingCreditModelReseller. # noqa: E501 SMS Credits remaining for reseller account # noqa: E501 :return: The sms of this RemainingCreditModelReseller. # noqa: E501 :rtype: int """ return self._sms @sms.setter def sms(self, sms): """Sets the sms of this RemainingCreditModelReseller. SMS Credits remaining for reseller account # noqa: E501 :param sms: The sms of this RemainingCreditModelReseller. # noqa: E501 :type: int """ if sms is None: raise ValueError("Invalid value for `sms`, must not be `None`") # noqa: E501 self._sms = sms @property def email(self): """Gets the email of this RemainingCreditModelReseller. # noqa: E501 Email Credits remaining for reseller account # noqa: E501 :return: The email of this RemainingCreditModelReseller. # noqa: E501 :rtype: int """ return self._email @email.setter def email(self, email): """Sets the email of this RemainingCreditModelReseller. Email Credits remaining for reseller account # noqa: E501 :param email: The email of this RemainingCreditModelReseller. # noqa: E501 :type: int """ if email is None: raise ValueError("Invalid value for `email`, must not be `None`") # noqa: E501 self._email = email def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RemainingCreditModelReseller, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RemainingCreditModelReseller): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
33.722973
856
0.582248
5cd304ab73b9bd75e6d4da823332247af506b3cf
2,042
py
Python
seq2seqRL/model/decoder.py
heiseish/DLPlayground
24b528779bfdcbea3e295cba847514bf840b9c06
[ "MIT" ]
1
2019-03-16T04:45:33.000Z
2019-03-16T04:45:33.000Z
seq2seqRL/model/decoder.py
heiseish/DLPlayground
24b528779bfdcbea3e295cba847514bf840b9c06
[ "MIT" ]
null
null
null
seq2seqRL/model/decoder.py
heiseish/DLPlayground
24b528779bfdcbea3e295cba847514bf840b9c06
[ "MIT" ]
null
null
null
# Package import torch.nn as nn import torch.nn.functional as F # Local files from model.attention import * class LuongAttnDecoderRNN(nn.Module): def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1): super(LuongAttnDecoderRNN, self).__init__() # Keep for reference self.attn_model = attn_model self.hidden_size = hidden_size self.output_size = output_size self.n_layers = n_layers self.dropout = dropout # Define layers self.embedding = embedding self.embedding_dropout = nn.Dropout(dropout) self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout)) self.concat = nn.Linear(hidden_size * 2, hidden_size) self.out = nn.Linear(hidden_size, output_size) self.attn = Attn(attn_model, hidden_size) def forward(self, input_step, last_hidden, encoder_outputs): # Note: we run this one step (word) at a time # Get embedding of current input word embedded = self.embedding(input_step) embedded = self.embedding_dropout(embedded) # Forward through unidirectional GRU rnn_output, hidden = self.gru(embedded, last_hidden) # Calculate attention weights from the current GRU output attn_weights = self.attn(rnn_output, encoder_outputs) # Multiply attention weights to encoder outputs to get new "weighted sum" context vector context = attn_weights.bmm(encoder_outputs.transpose(0, 1)) # Concatenate weighted context vector and GRU output using Luong eq. 5 rnn_output = rnn_output.squeeze(0) context = context.squeeze(1) concat_input = torch.cat((rnn_output, context), 1) concat_output = torch.tanh(self.concat(concat_input)) # Predict next word using Luong eq. 6 output = self.out(concat_output) output = F.softmax(output, dim=1) # Return output and final hidden state return output, hidden
41.673469
104
0.681195
ba717f444d606b1f0f3d1541d1664d21e826de05
347
py
Python
utils/align.py
catskillsresearch/xview2-catskills
5671cff323c8121c0ae251e360e454a1e8568f58
[ "BSD-3-Clause" ]
null
null
null
utils/align.py
catskillsresearch/xview2-catskills
5671cff323c8121c0ae251e360e454a1e8568f58
[ "BSD-3-Clause" ]
null
null
null
utils/align.py
catskillsresearch/xview2-catskills
5671cff323c8121c0ae251e360e454a1e8568f58
[ "BSD-3-Clause" ]
null
null
null
DISASTER='santa-rosa-wildfire' IMAGEID='00000030' XBD='/home/catskills/Desktop/dataxv2/xBD' im_reference=XBD+'/'+DISASTER+'/images/'+DISASTER+'_'+IMAGEID+'_pre_disaster.png' im_target=XBD+'/'+ DISASTER+'/images/'+DISASTER+'_'+IMAGEID+'_post_disaster.png' from arosics import COREG CR = COREG(im_reference, im_target) CR.calculate_spatial_shifts()
38.555556
81
0.775216
fbf45c311c0bd43c887534b7137dbb22d36faf47
4,990
py
Python
lstm_predictor.py
mgorkove/Time-Series-Prediction-with-LSTM-Recurrent-Neural-Networks-in-Python-with-Keras
71937e6b25736c17bdc68abea0519f88f7410077
[ "MIT" ]
10
2017-05-23T09:02:16.000Z
2021-08-04T22:52:59.000Z
lstm_predictor.py
alastairrough/Time-Series-Prediction-with-LSTM-Recurrent-Neural-Networks-in-Python-with-Keras
71937e6b25736c17bdc68abea0519f88f7410077
[ "MIT" ]
null
null
null
lstm_predictor.py
alastairrough/Time-Series-Prediction-with-LSTM-Recurrent-Neural-Networks-in-Python-with-Keras
71937e6b25736c17bdc68abea0519f88f7410077
[ "MIT" ]
7
2018-03-11T16:47:15.000Z
2021-07-21T17:24:32.000Z
import numpy as np import pandas as pd import tensorflow as tf from tensorflow.python.framework import dtypes from tensorflow.contrib import learn import logging logging.basicConfig(level=logging.INFO) def x_sin(x): return x * np.sin(x) def sin_cos(x): return pd.DataFrame(dict(a=np.sin(x), b=np.cos(x)), index=x) def rnn_data(data, time_steps, labels=False): """ creates new data frame based on previous observation * example: l = [1, 2, 3, 4, 5] time_steps = 2 -> labels == False [[1, 2], [2, 3], [3, 4]] -> labels == True [2, 3, 4, 5] """ rnn_df = [] for i in range(len(data) - time_steps): if labels: try: rnn_df.append(data.iloc[i + time_steps].as_matrix()) except AttributeError: rnn_df.append(data.iloc[i + time_steps]) else: data_ = data.iloc[i: i + time_steps].as_matrix() rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_]) return np.array(rnn_df) def split_data(data, val_size=0.1, test_size=0.1): """ splits data to training, validation and testing parts """ ntest = int(round(len(data) * (1 - test_size))) nval = int(round(len(data.iloc[:ntest]) * (1 - val_size))) df_train, df_val, df_test = data.iloc[:nval], data.iloc[nval:ntest], data.iloc[ntest:] return df_train, df_val, df_test def prepare_data(data, time_steps, labels=False, val_size=0.05, test_size=0.05): """ Given the number of `time_steps` and some data, prepares training, validation and test data for an lstm cell. """ df_train, df_val, df_test = split_data(data, val_size, test_size) return (rnn_data(df_train, time_steps, labels=labels), rnn_data(df_val, time_steps, labels=labels), rnn_data(df_test, time_steps, labels=labels)) def generate_data(fct, x, time_steps, seperate=False): """generates data with based on a function fct""" data = fct(x) if not isinstance(data, pd.DataFrame): data = pd.DataFrame(data) train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps) train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True) return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test_y) def load_csvdata(rawdata, time_steps, seperate=False): data = rawdata if not isinstance(data, pd.DataFrame): data = pd.DataFrame(data) train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps) train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True) return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test_y) def lstm_model(time_steps, rnn_layers, dense_layers=None): """ Creates a deep model based on: * stacked lstm cells * an optional dense layers :param time_steps: the number of time steps the model will be looking at. :param rnn_layers: list of int or dict * list of int: the steps used to instantiate the `BasicLSTMCell` cell * list of dict: [{steps: int, keep_prob: int}, ...] :param dense_layers: list of nodes for each layer :return: the model definition """ def lstm_cells(layers): if isinstance(layers[0], dict): return [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(layer['steps'], state_is_tuple=True), layer['keep_prob']) if layer.get('keep_prob') else tf.nn.rnn_cell.BasicLSTMCell(layer['steps'], state_is_tuple=True) for layer in layers] return [tf.nn.rnn_cell.BasicLSTMCell(steps, state_is_tuple=True) for steps in layers] def dnn_layers(input_layers, layers): if layers and isinstance(layers, dict): return learn.ops.dnn(input_layers, layers['layers'], activation=layers.get('activation'), dropout=layers.get('dropout')) elif layers: return learn.ops.dnn(input_layers, layers) else: return input_layers def _lstm_model(X, y): stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers), state_is_tuple=True) x_ = learn.ops.split_squeeze(1, time_steps, X) output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32) output = dnn_layers(output[-1], dense_layers) return learn.models.linear_regression(output, y) return _lstm_model
41.239669
101
0.597796
64def41c572d639c5ea149c44713349b5af6dfde
492
py
Python
ecos/orchestrator.py
jinho-park/ECOS
f50c095d7eb9c6b77432711b9a5b32e883835802
[ "MIT" ]
null
null
null
ecos/orchestrator.py
jinho-park/ECOS
f50c095d7eb9c6b77432711b9a5b32e883835802
[ "MIT" ]
null
null
null
ecos/orchestrator.py
jinho-park/ECOS
f50c095d7eb9c6b77432711b9a5b32e883835802
[ "MIT" ]
null
null
null
from ecos.simulator import Simulator import random class Orchestrator: def __init__(self, _policy): self.policy = _policy def offloading_target(self, task, source): collaborationTarget = 0 simul = Simulator.get_instance() if self.policy == "RANDOM": num_of_edge = simul.get_num_of_edge() selectServer = random.randrange(0, num_of_edge + 1) collaborationTarget = selectServer return collaborationTarget
24.6
63
0.660569
086b739114d84967d7c6b851f0fd96ee797c98f5
53,164
py
Python
submission_files/transformer.py
asafmaman101/transformer_exercise
444c69daab33df706c5f2317a35056926e855dc0
[ "MIT" ]
null
null
null
submission_files/transformer.py
asafmaman101/transformer_exercise
444c69daab33df706c5f2317a35056926e855dc0
[ "MIT" ]
null
null
null
submission_files/transformer.py
asafmaman101/transformer_exercise
444c69daab33df706c5f2317a35056926e855dc0
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from fairseq import utils from fairseq.distributed import fsdp_wrap from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, BaseLayer, FairseqDropout, LayerDropModuleList, LayerNorm, PositionalEmbedding, SinusoidalPositionalEmbedding, TransformerDecoderLayer, TransformerEncoderLayer, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from torch import Tensor DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) @register_model("transformer") class TransformerModel(FairseqEncoderDecoderModel): """ Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) <https://arxiv.org/abs/1706.03762>`_. Args: encoder (TransformerEncoder): the encoder decoder (TransformerDecoder): the decoder The Transformer model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_parser :prog: """ @classmethod def hub_models(cls): # fmt: off def moses_subword(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'subword_nmt', } def moses_fastbpe(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'fastbpe', } def spm(path): return { 'path': path, 'bpe': 'sentencepiece', 'tokenizer': 'space', } return { 'transformer.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'), 'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2', 'transformer.wmt18.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'), 'transformer.wmt19.en-de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.en-ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'), 'transformer.wmt19.de-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.ru-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'), 'transformer.wmt19.en-de.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'), 'transformer.wmt19.en-ru.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'), 'transformer.wmt19.de-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'), 'transformer.wmt19.ru-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'), 'transformer.wmt20.en-ta': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-ta.single.tar.gz'), 'transformer.wmt20.en-iu.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.news.single.tar.gz'), 'transformer.wmt20.en-iu.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.nh.single.tar.gz'), 'transformer.wmt20.ta-en': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.ta-en.single.tar.gz'), 'transformer.wmt20.iu-en.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.news.single.tar.gz'), 'transformer.wmt20.iu-en.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.nh.single.tar.gz'), } # fmt: on def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args self.supports_align_args = True @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') parser.add_argument('--offload-activations', action='store_true', help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.') # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # args for Fully Sharded Data Parallel (FSDP) training parser.add_argument( '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP, help=( 'minimum number of params for a layer to be wrapped with FSDP() when ' 'training with --ddp-backend=fully_sharded. Smaller values will ' 'improve memory efficiency, but may make torch.distributed ' 'communication less efficient due to smaller input sizes. This option ' 'is set to 0 (i.e., always wrap) when --checkpoint-activations or ' '--offload-activations are passed.' ) ) # fmt: on parser.add_argument('--mask-layer', type=int, metavar='N', default=-1, help='index of layer to mask one of its heads') parser.add_argument('--mask-head', type=int, metavar='N', default=-1, help='index of head to mask') parser.add_argument('--mask-layer-type', type=str, metavar='N', default="", help='type of attention to mask a head') parser.add_argument('--enc-layer-configuration', type=str, metavar='N', default="", help='MHA as A and FFN as F"') @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) if getattr(args, "offload_activations", False): args.checkpoint_activations = True # offloading implies checkpointing encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) if not args.share_all_embeddings: min_params_to_wrap = getattr( args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP ) # fsdp_wrap is a no-op when --ddp-backend != fully_sharded encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap) decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder( args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False), ) # TorchScript doesn't support optional arguments with variable length (**kwargs). # Current workaround is to add union of all arguments in child classes. def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = True, features_only: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Run the forward pass for an encoder-decoder model. Copied from the base class, but without ``**kwargs``, which are not supported by TorchScript. """ encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens ) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) return decoder_out # Since get_normalized_probs is in the Fairseq Model which is not scriptable, # I rewrite the get_normalized_probs from Base Class to call the # helper function in the Base Class. @torch.jit.export def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class TransformerEncoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.encoder_layerdrop = args.encoder_layerdrop embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None if self.encoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.encoder_layerdrop) else: self.layers = nn.ModuleList([]) if not args.enc_layer_configuration: self.layers.extend( [ self.build_encoder_layer(args, layer_index=layer_index) for layer_index in range(args.encoder_layers) ] ) else: self.layers.extend( [ self.build_encoder_layer(args, sublayer_key=sublayer_key) for sublayer_key in args.enc_layer_configuration ] ) self.num_layers = len(self.layers) if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def build_encoder_layer(self, args, layer_index=None, sublayer_key=None): if not sublayer_key: layer = TransformerEncoderLayer(args, layer_index=layer_index) else: layer = TransformerEncoderLayer(args, sublayer_key=sublayer_key) checkpoint = getattr(args, "checkpoint_activations", False) if checkpoint: offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = ( getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) if not checkpoint else 0 ) layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward_embedding( self, src_tokens, token_embedding: Optional[torch.Tensor] = None ): # embed tokens and positions if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) if self.quant_noise is not None: x = self.quant_noise(x) return x, embed def forward( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ return self.forward_scriptable(src_tokens, src_lengths, return_all_hiddens, token_embeddings) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def forward_scriptable( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) has_pads = (src_tokens.device.type == "xla" or encoder_padding_mask.any()) x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # account for padding while computing the representation if has_pads: x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = [] if return_all_hiddens: encoder_states.append(x) # encoder layers for layer in self.layers: x = layer( x, encoder_padding_mask=encoder_padding_mask if has_pads else None ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ encoder_out["encoder_embedding"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["src_lengths"]) == 0: src_lengths = [] else: src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "src_lengths": src_lengths, # B x 1 } def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: print("deleting {0}".format(weights_key)) del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, output_projection=None, ): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.decoder_layerdrop = args.decoder_layerdrop self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.output_embed_dim = args.decoder_output_dim self.padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( self.max_target_positions, embed_dim, self.padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None self.cross_self_attention = getattr(args, "cross_self_attention", False) if self.decoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.decoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_decoder_layer(args, no_encoder_attn, layer_index=layer_index) for layer_index in range(args.decoder_layers) ] ) self.num_layers = len(self.layers) if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None ) self.adaptive_softmax = None self.output_projection = output_projection if self.output_projection is None: self.build_output_projection(args, dictionary, embed_tokens) def build_output_projection(self, args, dictionary, embed_tokens): if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif self.share_input_output_embed: self.output_projection = nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) self.output_projection.weight = self.embed_tokens.weight else: self.output_projection = nn.Linear( self.output_embed_dim, len(dictionary), bias=False ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5 ) num_base_layers = getattr(args, "base_layers", 0) for i in range(num_base_layers): self.layers.insert(((i+1) * args.decoder_layers) // (num_base_layers + 1), BaseLayer(args)) def build_decoder_layer(self, args, no_encoder_attn=False, layer_index=None): layer = TransformerDecoderLayer(args, no_encoder_attn, layer_index=layer_index) checkpoint = getattr(args, "checkpoint_activations", False) if checkpoint: offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = ( getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) if not checkpoint else 0 ) layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention, should be of size T x B x C incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): return self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Similar to *forward* but only return features. Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ bs, slen = prev_output_tokens.size() if alignment_layer is None: alignment_layer = self.num_layers - 1 enc: Optional[Tensor] = None padding_mask: Optional[Tensor] = None if encoder_out is not None and len(encoder_out["encoder_out"]) > 0: enc = encoder_out["encoder_out"][0] assert ( enc.size()[1] == bs ), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}" if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0: padding_mask = encoder_out["encoder_padding_mask"][0] # embed positions positions = None if self.embed_positions is not None: positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # decoder layers attn: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): if incremental_state is None and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None x, layer_attn, _ = layer( x, enc, padding_mask, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "inner_states": inner_states} def output_layer(self, features): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary return self.output_projection(features) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 ) self._future_mask = self._future_mask.to(tensor) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) if f"{name}.output_projection.weight" not in state_dict: if self.share_input_output_embed: embed_out_key = f"{name}.embed_tokens.weight" else: embed_out_key = f"{name}.embed_out" if embed_out_key in state_dict: state_dict[f"{name}.output_projection.weight"] = state_dict[ embed_out_key ] if not self.share_input_output_embed: del state_dict[embed_out_key] for i in range(self.num_layers): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @register_model_architecture("transformer", "transformer_tiny") def tiny_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 64) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 64) args.encoder_layers = getattr(args, "encoder_layers", 2) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2) args.decoder_layers = getattr(args, "decoder_layers", 2) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2) return base_architecture(args) @register_model_architecture("transformer", "transformer") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) @register_model_architecture("transformer", "transformer_iwslt_de_en") def transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) base_architecture(args) @register_model_architecture("transformer", "transformer_wmt_en_de") def transformer_wmt_en_de(args): base_architecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_de_big") def transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) base_architecture(args) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_fr_big") def transformer_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) @register_model_architecture("transformer", "transformer_wmt_en_de_big") def transformer_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture("transformer", "transformer_wmt_en_de_big_t2t") def transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args)
44.119502
159
0.629844
a6774c397ab3bbe9657f9401f9c7015eda2c70e7
572
py
Python
esphome/components/fujitsu_general/climate.py
huhuhugo1/esphome
eb895d2095861a4d51f1a5fcd582a97389c27b4f
[ "MIT" ]
null
null
null
esphome/components/fujitsu_general/climate.py
huhuhugo1/esphome
eb895d2095861a4d51f1a5fcd582a97389c27b4f
[ "MIT" ]
null
null
null
esphome/components/fujitsu_general/climate.py
huhuhugo1/esphome
eb895d2095861a4d51f1a5fcd582a97389c27b4f
[ "MIT" ]
null
null
null
import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import climate_ir from esphome.const import CONF_ID AUTO_LOAD = ['climate_ir'] fujitsu_general_ns = cg.esphome_ns.namespace('fujitsu_general') FujitsuGeneralClimate = fujitsu_general_ns.class_('FujitsuGeneralClimate', climate_ir.ClimateIR) CONFIG_SCHEMA = climate_ir.CLIMATE_IR_SCHEMA.extend({ cv.GenerateID(): cv.declare_id(FujitsuGeneralClimate), }) def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) yield climate_ir.register_climate_ir(var, config)
30.105263
96
0.809441
31d5d2797d74d2ac9d22015d1b749f3d51f601ee
1,559
py
Python
config/includes.chroot/usr/local/share/S0lar0S/src/ranger/ranger/ext/human_readable.py
ddarksmith/S0lar0S
b91971000c089f77d1ff76a00262252a65680e5b
[ "WTFPL" ]
null
null
null
config/includes.chroot/usr/local/share/S0lar0S/src/ranger/ranger/ext/human_readable.py
ddarksmith/S0lar0S
b91971000c089f77d1ff76a00262252a65680e5b
[ "WTFPL" ]
null
null
null
config/includes.chroot/usr/local/share/S0lar0S/src/ranger/ranger/ext/human_readable.py
ddarksmith/S0lar0S
b91971000c089f77d1ff76a00262252a65680e5b
[ "WTFPL" ]
null
null
null
# This file is part of ranger, the console file manager. # License: GNU GPL version 3, see the file "AUTHORS" for details. def human_readable(byte, separator=' '): """Convert a large number of bytes to an easily readable format. >>> human_readable(54) '54 B' >>> human_readable(1500) '1.46 K' >>> human_readable(2 ** 20 * 1023) '1023 M' """ # I know this can be written much shorter, but this long version # performs much better than what I had before. If you attempt to # shorten this code, take performance into consideration. if byte <= 0: return '0' if byte < 2**10: return '%d%sB' % (byte, separator) if byte < 2**10 * 999: return '%.3g%sK' % (byte / 2**10.0, separator) if byte < 2**20: return '%.4g%sK' % (byte / 2**10.0, separator) if byte < 2**20 * 999: return '%.3g%sM' % (byte / 2**20.0, separator) if byte < 2**30: return '%.4g%sM' % (byte / 2**20.0, separator) if byte < 2**30 * 999: return '%.3g%sG' % (byte / 2**30.0, separator) if byte < 2**40: return '%.4g%sG' % (byte / 2**30.0, separator) if byte < 2**40 * 999: return '%.3g%sT' % (byte / 2**40.0, separator) if byte < 2**50: return '%.4g%sT' % (byte / 2**40.0, separator) if byte < 2**50 * 999: return '%.3g%sP' % (byte / 2**50.0, separator) if byte < 2**60: return '%.4g%sP' % (byte / 2**50.0, separator) return '>9000' if __name__ == '__main__': import doctest doctest.testmod()
32.479167
69
0.551636
96c72b09993c2130a4693b1563c79cdd8cdfed84
941
py
Python
model/test/nhl/test_predict.py
shuyi1981/bayes-bet
4f0715d31e726e8f6f4363dc9743f48fbb330b1d
[ "MIT" ]
1
2021-08-20T12:59:34.000Z
2021-08-20T12:59:34.000Z
model/test/nhl/test_predict.py
shuyi1981/bayes-bet
4f0715d31e726e8f6f4363dc9743f48fbb330b1d
[ "MIT" ]
null
null
null
model/test/nhl/test_predict.py
shuyi1981/bayes-bet
4f0715d31e726e8f6f4363dc9743f48fbb330b1d
[ "MIT" ]
null
null
null
import pandas as pd import pytest from bayesbet.nhl.predict import bayesian_poisson_pdf from bayesbet.nhl.predict import bayesian_bernoulli_win_pdf from bayesbet.nhl.predict import bayesian_goal_within_time @pytest.fixture def poisson_cases(): cases = [ (0.0, 0.1, 5, [0.3678839711698872, 0.366049307392375, 0.18392385257827024, 0.06222208712974248, 0.015944512312484223, 0.00397626941724083]), (0.0, 0.1, 6, [0.3678839711698872, 0.366049307392375, 0.18392385257827024, 0.06222208712974248, 0.015944512312484223, 0.00397626941724083, 0.0006751111828385836]) ] return cases def test_bayesian_poisson_pdf(poisson_cases): for case in poisson_cases: μ, σ, max_y, expected = case poisson_pdf = bayesian_poisson_pdf(μ, σ, max_y) assert poisson_pdf == expected, \ f"Did not get the expected bayesian Poisson pdf (μ={μ}, σ={σ}, max_y={max_y}"
37.64
90
0.709883
4803ec425164b39d584896809bc74ac32898e57e
1,814
py
Python
fit_scripts/plot_binom.py
jensengroup/prohxms
411f208efd1a1dcc06e988f1df11b5e43d406f8e
[ "BSD-2-Clause" ]
null
null
null
fit_scripts/plot_binom.py
jensengroup/prohxms
411f208efd1a1dcc06e988f1df11b5e43d406f8e
[ "BSD-2-Clause" ]
null
null
null
fit_scripts/plot_binom.py
jensengroup/prohxms
411f208efd1a1dcc06e988f1df11b5e43d406f8e
[ "BSD-2-Clause" ]
1
2021-04-24T11:11:59.000Z
2021-04-24T11:11:59.000Z
import numpy from scipy.special import binom, gamma from matplotlib import pyplot import sys def factorial(x): try: return gamma(x + 1) except OverflowError: print "Overflow, x =",x exit(0) def B(x, y): return factorial(x - 1) * factorial(y - 1) / factorial(x + y - 1) n = int(sys.argv[1]) mu = float(sys.argv[2]) sigma = float(sys.argv[3]) alpha = - mu * (mu * mu - mu * n + sigma * sigma) / (sigma * sigma * n + mu * mu - mu * n) beta = (n * alpha) / mu - alpha alpha = float(sys.argv[2]) beta = float(sys.argv[3]) if (alpha < 0.0) or (beta < 0.0): print "ERROR: Negative parameter value:" print "alpha =", alpha, "beta =", beta exit(0) sigma = numpy.sqrt( n * alpha * beta * (alpha + beta + n) / ((alpha + beta) * (alpha + beta) * (1 + alpha + beta))) mu = n * alpha / (alpha + beta) print "alpha =", alpha, "beta =", beta print "mu = %f sigma = %f" % (mu, sigma) def beta_binom(k): return binom(n, k) * B(k + alpha, n - k + beta) / B(alpha, beta) for k in range(0, n + 1): print "P(N =%3i) = %6.4f" % (k, beta_binom(k)) pyplot.rc('text', usetex=True) pyplot.rc('font', family='serif') vals = numpy.arange(0, n + 1) probs = numpy.array([beta_binom(val) for val in vals]) bar_width = 0.55 pyplot.bar(vals + bar_width/2, probs, bar_width, color = 'DarkSlateBlue', alpha=0.6) pyplot.title(r"$n = %i,\ \mu= %5.2f,\ \sigma = %5.2f\ (\alpha = %5.2f,\ \beta = %5.2f)$" % (n, mu, sigma, alpha, beta), fontsize=20) val_texts = [r"$%i$" % (val) for val in vals] pyplot.xlabel(r"$k$", fontsize=16) pyplot.xticks(vals + bar_width, val_texts, fontsize=16) pyplot.xlim([0.0, numpy.amax(vals) + bar_width*2]) pyplot.yticks(fontsize=16) pyplot.ylabel(r"$P(N_\mathrm{HB}=k)$", fontsize=16) pyplot.grid(True) pyplot.savefig("bar.png")
24.849315
132
0.597574
01f6635719f9e7d73a486a1fc3df37350abf5ab6
2,150
py
Python
samfp/tests/clustering.py
b1quint/samfp
1cd9b85851c02dc61a2294d67a309f62083d358d
[ "BSD-3-Clause" ]
null
null
null
samfp/tests/clustering.py
b1quint/samfp
1cd9b85851c02dc61a2294d67a309f62083d358d
[ "BSD-3-Clause" ]
19
2016-07-15T21:32:59.000Z
2017-09-12T00:31:26.000Z
samfp/tests/clustering.py
b1quint/samfp
1cd9b85851c02dc61a2294d67a309f62083d358d
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import numpy as np from matplotlib import gridspec from scipy import signal class Parabola: def __init__(self, a, b, c): self.a = a self.b = b self.c = c def __call__(self, x): y = self.a * x ** 2 + self.b * x + self.c return y # Use Kernel Density Estimation to identify the two different clusters def kde_scipy(x, x_grid, bandwidth=0.2, **kwargs): """Kernel Density Estimation with Scipy""" # Note that scipy weights its bandwidth by the covariance of the # input data. To make the results comparable to the other methods, # we divide the bandwidth by the sample standard deviation here. kde = stats.gaussian_kde(x, bw_method=bandwidth / x.std(ddof=1), **kwargs) return kde.evaluate(x_grid) # Create my initial parabola fsr = 60 x = np.linspace(0, 10, 100) p = Parabola(1, -10, 10) y = p(x) + (np.random.random_sample(x.size) - 0.5) * 1 # Add a fake shift representing the fsr y[y < 0] += fsr # Add a second FSR y = np.concatenate((y, y + fsr)) x = np.concatenate((x, x)) # Plot this fig = plt.figure() gs = gridspec.GridSpec(2, 1) ax1 = fig.add_subplot(gs[0]) ax1.plot(y, x, 'k+') ax1.set_xlabel("y") ax1.set_ylabel("x") # Create a lateral plot to visualize the distribution in 1D since I do not # care about the 2D distribution. x_ = -2 * np.ones_like(x) + np.random.random_sample(x.size) * 0.1 ax1.plot(y, x_, 'kx', alpha=0.10) # Make a histogram bins = np.linspace(y.min(), y.max(), 50) ax2 = fig.add_subplot(gs[1]) ax2.hist(y, bins=bins, alpha=0.5) # Split y_indexes = np.argsort(y) y_ = np.sort(y) yl_ = np.diff(y_) ayl_ = np.abs(yl_) ayl_[np.abs(ayl_ - np.median(ayl_)) < np.std(ayl_)] = 0 split_indexes = signal.argrelmax(ayl_)[0] split_y_indexes = np.split(y_indexes, split_indexes + 1) for (i, idx) in enumerate(split_y_indexes): ax1.plot(y[idx], x[idx], 'o', alpha=0.25) y[idx] -= fsr * i ax1.plot(y[idx], x[idx], 'ko', alpha=0.10) # Display the plot plt.tight_layout() plt.show()
24.431818
74
0.650698
24760ad11b3013dfa626a8adda470d30d06893e6
2,304
py
Python
userbot/plugins/antiflood.py
NoobRider/catuserbot
dea79d5d8b7174efefcc1c35ed3434516a490f58
[ "MIT" ]
2
2020-04-12T11:51:06.000Z
2020-04-18T14:08:06.000Z
userbot/plugins/antiflood.py
NoobRider/catuserbot
dea79d5d8b7174efefcc1c35ed3434516a490f58
[ "MIT" ]
null
null
null
userbot/plugins/antiflood.py
NoobRider/catuserbot
dea79d5d8b7174efefcc1c35ed3434516a490f58
[ "MIT" ]
1
2020-05-13T02:51:35.000Z
2020-05-13T02:51:35.000Z
import asyncio from telethon import events from telethon.tl.functions.channels import EditBannedRequest from telethon.tl.types import ChatBannedRights from userbot.utils import admin_cmd import userbot.plugins.sql_helper.antiflood_sql as sql import userbot.utils from userbot.utils import humanbytes, progress, time_formatter CHAT_FLOOD = sql.__load_flood_settings() # warn mode for anti flood ANTI_FLOOD_WARN_MODE = ChatBannedRights( until_date=None, view_messages=None, send_messages=True ) @borg.on(admin_cmd(incoming=True)) async def _(event): # logger.info(CHAT_FLOOD) if not CHAT_FLOOD: return if not (str(event.chat_id) in CHAT_FLOOD): return # TODO: exempt admins from this should_ban = sql.update_flood(event.chat_id, event.message.from_id) if not should_ban: return try: await event.client(EditBannedRequest( event.chat_id, event.message.from_id, ANTI_FLOOD_WARN_MODE )) except Exception as e: # pylint:disable=C0103,W0703 no_admin_privilege_message = await event.client.send_message( entity=event.chat_id, message="""**Automatic AntiFlooder** @admin [User](tg://user?id={}) is flooding this chat. `{}`""".format(event.message.from_id, str(e)), reply_to=event.message.id ) await asyncio.sleep(10) await no_admin_privilege_message.edit( "This is useless SPAM dude . stop this enjoy chat man ", link_preview=False ) else: await event.client.send_message( entity=event.chat_id, message="""**Automatic AntiFlooder** [User](tg://user?id={}) has been automatically restricted because he reached the defined flood limit.""".format(event.message.from_id), reply_to=event.message.id ) @borg.on(admin_cmd(pattern="setflood (.*)")) async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) try: sql.set_flood(event.chat_id, input_str) CHAT_FLOOD = sql.__load_flood_settings() await event.edit("Antiflood updated to {} in the current chat".format(input_str)) except Exception as e: # pylint:disable=C0103,W0703 await event.edit(str(e))
32
89
0.676649
eb9319c4201da0c0ebcf8c5591a7e08747c681ee
107
py
Python
src/roscam_application/__init__.py
gaelfargeas/roscam_application
7b8da48f5e6e468bbab8238ac3e5591d92f94a79
[ "BSD-3-Clause" ]
null
null
null
src/roscam_application/__init__.py
gaelfargeas/roscam_application
7b8da48f5e6e468bbab8238ac3e5591d92f94a79
[ "BSD-3-Clause" ]
null
null
null
src/roscam_application/__init__.py
gaelfargeas/roscam_application
7b8da48f5e6e468bbab8238ac3e5591d92f94a79
[ "BSD-3-Clause" ]
null
null
null
from roscam_application import roscam_main def main(): roscam_var = roscam_main.roscam_application()
17.833333
49
0.794393
fc60c128a7ced52334380d0c2c522d780c33447a
457
py
Python
env/lib/python3.8/site-packages/plotly/validators/layout/xaxis/_tickformat.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/layout/xaxis/_tickformat.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/layout/xaxis/_tickformat.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class TickformatValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="tickformat", parent_name="layout.xaxis", **kwargs): super(TickformatValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "ticks"), role=kwargs.pop("role", "style"), **kwargs )
35.153846
87
0.66302
e30b0746a188c6e193cfc4d309b5a3e9497f99d8
1,877
py
Python
app/utils/json_formater.py
a1136395507/Blog
e890dbe24bd2c3a82dad55e90f717db59a3e51a1
[ "Unlicense" ]
null
null
null
app/utils/json_formater.py
a1136395507/Blog
e890dbe24bd2c3a82dad55e90f717db59a3e51a1
[ "Unlicense" ]
null
null
null
app/utils/json_formater.py
a1136395507/Blog
e890dbe24bd2c3a82dad55e90f717db59a3e51a1
[ "Unlicense" ]
null
null
null
import logging import json import datetime import socket REMOVE_ATTR = ["filename", "module", "exc_text", "stack_info", "created", "", "relativeCreated", "exc_info", "msg"] class HostIp(object): host_name = None host_ip = None @classmethod def get_host_ip(cls): if not cls.host_name or not cls.host_ip: try: cls.host_name = socket.gethostname() cls.host_ip = socket.gethostbyname(cls.host_name) except Exception as err: cls.host_name = "unknown hostname" cls.host_ip = "unknow hostip" return cls.host_name,cls.host_ip class JSONFormatter(logging.Formatter): host_name, host_ip = HostIp.get_host_ip() def format(self, record): extra = self.build_record(record) self.set_format_time(extra) # set time self.set_host_ip(extra) # set host name and host ip extra['message'] = record.msg # set message # if record.exc_info: # extra['exc_info'] = self.formatException(record.exc_info) if self._fmt == 'pretty': return json.dumps(extra, indent=1, ensure_ascii=False) else: return json.dumps(extra, ensure_ascii=False) @classmethod def build_record(cls, record): return { attr_name: record.__dict__[attr_name] for attr_name in record.__dict__ if attr_name not in REMOVE_ATTR } @classmethod def set_format_time(cls, extra): now = datetime.datetime.utcnow() format_time = now.strftime("%Y-%m-%dT%H:%M:%S" + ".%03d" % (now.microsecond / 1000) + "Z") extra['@timestamp'] = format_time return format_time @classmethod def set_host_ip(cls, extra): extra['host_name'] = JSONFormatter.host_name extra['host_ip'] = JSONFormatter.host_ip
30.274194
115
0.616942
8fafa28767e90db6657f8b75e3591da46982741c
11,308
py
Python
grammar_induction/earley_parser/nltk/tokenize/casual.py
tdonca/OpenBottle
f03d80e7b3645232fb97f91cf7fc2dc02f101ac2
[ "MIT" ]
6
2017-01-22T03:15:01.000Z
2019-12-01T16:19:36.000Z
grammar_induction/earley_parser/nltk/tokenize/casual.py
tdonca/OpenBottle
f03d80e7b3645232fb97f91cf7fc2dc02f101ac2
[ "MIT" ]
3
2020-03-24T15:38:23.000Z
2021-02-02T21:44:18.000Z
grammar_induction/earley_parser/nltk/tokenize/casual.py
tdonca/OpenBottle
f03d80e7b3645232fb97f91cf7fc2dc02f101ac2
[ "MIT" ]
6
2017-01-19T21:49:55.000Z
2021-04-14T09:57:17.000Z
# coding: utf-8 # # Natural Language Toolkit: Twitter Tokenizer # # Copyright (C) 2001-2017 NLTK Project # Author: Christopher Potts <cgpotts@stanford.edu> # Ewan Klein <ewan@inf.ed.ac.uk> (modifications) # Pierpaolo Pantone <> (modifications) # URL: <http://nltk.org/> # For license information, see LICENSE.TXT # """ Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this: 1. The tuple regex_strings defines a list of regular expression strings. 2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re. 3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of the class Tokenizer. 4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it is set to False, then the tokenizer will downcase everything except for emoticons. """ ###################################################################### from __future__ import unicode_literals import re from nltk.compat import htmlentitydefs, int2byte, unichr ###################################################################### # The following strings are components in the regular expression # that is used for tokenizing. It's important that phone_number # appears first in the final regex (since it can contain whitespace). # It also could matter that tags comes after emoticons, due to the # possibility of having text like # # <:| and some text >:) # # Most importantly, the final element should always be last, since it # does a last ditch whitespace-based tokenization of whatever is left. # ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ? # This particular element is used in a couple ways, so we define it # with a name: EMOTICONS = r""" (?: [<>]? [:;=8] # eyes [\-o\*\']? # optional nose [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth | [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth [\-o\*\']? # optional nose [:;=8] # eyes [<>]? | <3 # heart )""" # URL pattern due to John Gruber, modified by Tom Winzig. See # https://gist.github.com/winzig/8894715 URLS = r""" # Capture 1: entire matched URL (?: https?: # URL protocol and colon (?: /{1,3} # 1-3 slashes | # or [a-z0-9%] # Single letter or digit or '%' # (Trying not to match e.g. "URI::Escape") ) | # or # looks like domain name followed by a slash: [a-z0-9.\-]+[.] (?:[a-z]{2,13}) / ) (?: # One or more: [^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[] | # or \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | \([^\s]+?\) # balanced parens, non-recursive: (...) )+ (?: # End with: \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | \([^\s]+?\) # balanced parens, non-recursive: (...) | # or [^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars ) | # OR, the following to match naked domains: (?: (?<!@) # not preceded by a @, avoid matching foo@_gmail.com_ [a-z0-9]+ (?:[.\-][a-z0-9]+)* [.] (?:[a-z]{2,13}) \b /? (?!@) # not succeeded by a @, # avoid matching "foo.na" in "foo.na@example.com" ) """ # The components of the tokenizer: REGEXPS = ( URLS, # Phone numbers: r""" (?: (?: # (international) \+?[01] [\-\s.]* )? (?: # (area code) [\(]? \d{3} [\-\s.\)]* )? \d{3} # exchange [\-\s.]* \d{4} # base )""" , # ASCII Emoticons EMOTICONS , # HTML tags: r"""<[^>\s]+>""" , # ASCII Arrows r"""[\-]+>|<[\-]+""" , # Twitter username: r"""(?:@[\w_]+)""" , # Twitter hashtags: r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""" , # email addresses r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""" , # Remaining word types: r""" (?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes. | (?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals. | (?:[\w_]+) # Words without apostrophes or dashes. | (?:\.(?:\s*\.){1,}) # Ellipsis dots. | (?:\S) # Everything else that isn't whitespace. """ ) ###################################################################### # This is the core tokenizing regex: WORD_RE = re.compile(r"""(%s)""" % "|".join(REGEXPS), re.VERBOSE | re.I | re.UNICODE) # WORD_RE performs poorly on these patterns: HANG_RE = re.compile(r'([^a-zA-Z0-9])\1{3,}') # The emoticon string gets its own regex so that we can preserve case for # them as needed: EMOTICON_RE = re.compile(EMOTICONS, re.VERBOSE | re.I | re.UNICODE) # These are for regularizing HTML entities to Unicode: ENT_RE = re.compile(r'&(#?(x?))([^&;\s]+);') ###################################################################### # Functions for converting html entities ###################################################################### def _str_to_unicode(text, encoding=None, errors='strict'): if encoding is None: encoding = 'utf-8' if isinstance(text, bytes): return text.decode(encoding, errors) return text def _replace_html_entities(text, keep=(), remove_illegal=True, encoding='utf-8'): """ Remove entities from text by converting them to their corresponding unicode character. :param text: a unicode string or a byte string encoded in the given `encoding` (which defaults to 'utf-8'). :param list keep: list of entity names which should not be replaced.\ This supports both numeric entities (``&#nnnn;`` and ``&#hhhh;``) and named entities (such as ``&nbsp;`` or ``&gt;``). :param bool remove_illegal: If `True`, entities that can't be converted are\ removed. Otherwise, entities that can't be converted are kept "as is". :returns: A unicode string with the entities removed. See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py >>> from nltk.tokenize.casual import _replace_html_entities >>> _replace_html_entities(b'Price: &pound;100') 'Price: \\xa3100' >>> print(_replace_html_entities(b'Price: &pound;100')) Price: £100 >>> """ def _convert_entity(match): entity_body = match.group(3) if match.group(1): try: if match.group(2): number = int(entity_body, 16) else: number = int(entity_body, 10) # Numeric character references in the 80-9F range are typically # interpreted by browsers as representing the characters mapped # to bytes 80-9F in the Windows-1252 encoding. For more info # see: http://en.wikipedia.org/wiki/Character_encodings_in_HTML if 0x80 <= number <= 0x9f: return int2byte(number).decode('cp1252') except ValueError: number = None else: if entity_body in keep: return match.group(0) else: number = htmlentitydefs.name2codepoint.get(entity_body) if number is not None: try: return unichr(number) except ValueError: pass return "" if remove_illegal else match.group(0) return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding)) ###################################################################### class TweetTokenizer: r""" Tokenizer for tweets. >>> from nltk.tokenize import TweetTokenizer >>> tknzr = TweetTokenizer() >>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--" >>> tknzr.tokenize(s0) ['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--'] Examples using `strip_handles` and `reduce_len parameters`: >>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True) >>> s1 = '@remy: This is waaaaayyyy too much for you!!!!!!' >>> tknzr.tokenize(s1) [':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!'] """ def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False): self.preserve_case = preserve_case self.reduce_len = reduce_len self.strip_handles = strip_handles def tokenize(self, text): """ :param text: str :rtype: list(str) :return: a tokenized list of strings; concatenating this list returns\ the original string if `preserve_case=False` """ # Fix HTML character entities: text = _replace_html_entities(text) # Remove username handles if self.strip_handles: text = remove_handles(text) # Normalize word lengthening if self.reduce_len: text = reduce_lengthening(text) # Shorten problematic sequences of characters safe_text = HANG_RE.sub(r'\1\1\1', text) # Tokenize: words = WORD_RE.findall(safe_text) # Possibly alter the case, but avoid changing emoticons like :D into :d: if not self.preserve_case: words = list(map((lambda x : x if EMOTICON_RE.search(x) else x.lower()), words)) return words ###################################################################### # Normalization Functions ###################################################################### def reduce_lengthening(text): """ Replace repeated character sequences of length 3 or greater with sequences of length 3. """ pattern = re.compile(r"(.)\1{2,}") return pattern.sub(r"\1\1\1", text) def remove_handles(text): """ Remove Twitter username handles from text. """ pattern = re.compile(r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)") # Substitute hadnles with ' ' to ensure that text on either side of removed handles are tokenized correctly return pattern.sub(' ', text) ###################################################################### # Tokenization Function ###################################################################### def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False): """ Convenience function for wrapping the tokenizer. """ return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize(text) ###############################################################################
32.872093
147
0.51583
262da14fedd979db34ec549bca9143fccf31c2c2
2,219
py
Python
package/spack-perl-test-cleannamespaces/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
1
2018-07-17T07:45:09.000Z
2018-07-17T07:45:09.000Z
package/spack-perl-test-cleannamespaces/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
null
null
null
package/spack-perl-test-cleannamespaces/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
null
null
null
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PerlTestCleannamespaces(PerlPackage): """This module lets you check your module's namespaces for imported functions you might have forgotten to remove""" homepage = "http://search.cpan.org/~ether/Test-CleanNamespaces-0.22/lib/Test/CleanNamespaces.pm" url = "http://search.cpan.org/CPAN/authors/id/E/ET/ETHER/Test-CleanNamespaces-0.22.tar.gz" version('0.22', '8c48bb0427f2077edce57c50491468ec') depends_on('perl-sub-exporter', type=('build', 'run')) depends_on('perl-module-runtime', type=('build', 'run')) depends_on('perl-test-needs', type=('build', 'run')) depends_on('perl-test-deep', type=('build', 'run')) depends_on('perl-test-warnings', type=('build', 'run')) depends_on('perl-file-pushd', type=('build', 'run')) depends_on('perl-package-stash', type=('build', 'run')) depends_on('perl-sub-identify', type=('build', 'run')) depends_on('perl-namespace-clean', type=('build', 'run'))
48.23913
100
0.673727
b68c9a3d0ae6bd8591c0725be24beb016a161907
684
py
Python
src/PGAN/data_loading.py
konstantinjdobler/gan-n1
8813fa5efd7a64603b60d1dd0722e8aecdec5763
[ "MIT" ]
null
null
null
src/PGAN/data_loading.py
konstantinjdobler/gan-n1
8813fa5efd7a64603b60d1dd0722e8aecdec5763
[ "MIT" ]
10
2020-07-07T15:19:21.000Z
2020-07-30T20:12:31.000Z
src/PGAN/data_loading.py
konstantinjdobler/gan-n1
8813fa5efd7a64603b60d1dd0722e8aecdec5763
[ "MIT" ]
null
null
null
import torchvision.datasets as dset import torch.utils.data as data import torch # from https://github.com/caffeinism/cDC-GAN-pytorch class ImageFeatureFolder(dset.ImageFolder): def __init__(self, image_root, attribute_file, transform): super(ImageFeatureFolder, self).__init__( root=image_root, transform=transform) with open(attribute_file, 'r') as f: data = f.read() data = data.strip().split('\n') self.attrs = torch.FloatTensor( [list(map(float, line.split()[1:])) for line in data[2:]]) def __getitem__(self, index): img, _ = super().__getitem__(index) return img, self.attrs[index]
34.2
70
0.654971
015e566c67f5a553d01a65f1bb0598f31f4cb16a
9,777
py
Python
dr/coordinates.py
rscalzo/sami
7ac5632e018cdf2384f5ff067c503177684f61c8
[ "BSD-3-Clause" ]
1
2021-12-07T08:30:38.000Z
2021-12-07T08:30:38.000Z
dr/coordinates.py
rscalzo/sami
7ac5632e018cdf2384f5ff067c503177684f61c8
[ "BSD-3-Clause" ]
null
null
null
dr/coordinates.py
rscalzo/sami
7ac5632e018cdf2384f5ff067c503177684f61c8
[ "BSD-3-Clause" ]
3
2021-02-15T19:51:59.000Z
2021-05-04T05:48:46.000Z
""" Functions for modifying fibre coordinates in SAMI FITS files. These were necessary to correct the files produced during the March 2013 run (the first with the upgraded SAMI instrument), which had two problems: * The probes were numbered in the wrong order (1-13 instead of 13-1) * The position angles were calculated 180deg out The top-level function correct_coordinates checks which of these issues affects a given file, and makes the necessary corrections. These functions will presumably never be needed again, but should be kept for reference. """ from __future__ import absolute_import, division, print_function, unicode_literals import astropy.io.fits as pf import numpy as np from sami.utils.other import find_fibre_table from scipy.optimize import leastsq import os def reverse_probes(fibre_table): """Reverse the order of the probes in the fibre table. This function is to correct a fault before 6th March 2013 in which the probe numbers were in the wrong order. The code in fact changes the fibre numbers (SPEC_ID) to match the given probe numbers, and then sorts by SPEC_ID. """ # Correct each fibre number (SPEC_ID) for fibre in fibre_table: probenum_0 = fibre['PROBENUM'] - 1 # This is the correct mapping for the fibre numbers if 'SKY' in fibre['PROBENAME']: fibre['SPEC_ID'] = 820 - fibre['SPEC_ID'] else: rel_spec_id = fibre['SPEC_ID'] - 63 * probenum_0 fibre['SPEC_ID'] = 63 * (12 - probenum_0) + rel_spec_id # Sort the fibre_table by fibre number fibre_table.sort(order='SPEC_ID') return def rotate_all_hexas(fibre_table): """Rotate all hexabundles by 180 degrees. See rotate_probe for further details. """ for probenum in range(1,14): # Have to do things as a slice to avoid copying the data back and forth this_probe = np.where((fibre_table['PROBENUM'] == probenum) & (fibre_table['TYPE'] == 'P'))[0] if np.size(this_probe) > 0: fibre_table_hexa = fibre_table[this_probe[0]:this_probe[-1]+1] rotate_hexa(fibre_table_hexa) return def rotate_hexa(fibre_table_hexa): """Rotate hexabundle by 180 degrees. This function is to correct a fault before 1st April 2013 in which the hexabundles were given a rotation of 0 degrees, when they should have had 180 degrees. We know that FIPBOS_X/Y is on a nice square coordinate system, so these coordinates are rotated by 180 degrees, and then converted into all other coordinate systems by interpolating between the original FIBPOS_X/Y values. """ # Define the centre of the hexabundle alpha, beta = define_hexa_centre(fibre_table_hexa) # Rotate FIBPOS_X/Y, but don't overwrite the old coordinates yet cen_x, cen_y = coordinate_centre( fibre_table_hexa, 'FIBPOS_X', 'FIBPOS_Y', alpha, beta) new_fibpos_x = cen_x - (fibre_table_hexa['FIBPOS_X'] - cen_x) new_fibpos_y = cen_y - (fibre_table_hexa['FIBPOS_Y'] - cen_y) # Now rotate each other coordinate pair in turn, using interpolation name_pair_list = [('XPOS', 'YPOS'), ('FIB_MRA', 'FIB_MDEC'), ('FIB_ARA', 'FIB_ADEC')] for x_name, y_name in name_pair_list: interpolate(fibre_table_hexa, x_name, y_name, new_fibpos_x, new_fibpos_y) # Update the FIBPOS_X/Y positions fibre_table_hexa['FIBPOS_X'][:] = np.round(new_fibpos_x).astype(int) fibre_table_hexa['FIBPOS_Y'][:] = np.round(new_fibpos_y).astype(int) # Update the PORIENT values fibre_table_hexa['PORIENT'][:] = 180.0 return def define_hexa_centre(fibre_table_hexa): """Define the centre of a hexabundle relative to fibres 1-3. x_cen = x_0 + alpha * (x_1 - x_0) + beta * (x_2 - x_0) y_cen = y_0 + alpha * (y_1 - y_0) + beta * (y_2 - y_0) """ order = np.argsort(fibre_table_hexa['FIBNUM']) x = fibre_table_hexa['FIB_PX'][order].astype(float) y = fibre_table_hexa['FIB_PY'][order].astype(float) alpha = ((y[0] * (x[2] - x[0]) - x[0] * (y[2] - y[0])) / ((x[1] - x[0]) * (y[2] - y[0]) - (y[1] - y[0]) * (x[2] - x[0]))) beta = ((y[0] * (x[1] - x[0]) - x[0] * (y[1] - y[0])) / ((x[2] - x[0]) * (y[1] - y[0]) - (y[2] - y[0]) * (x[1] - x[0]))) return alpha, beta def coordinate_centre(fibre_table_hexa, x_name, y_name, alpha, beta): """Return the centre of the hexabundle in the given coordinates.""" order = np.argsort(fibre_table_hexa['FIBNUM']) x = fibre_table_hexa[x_name][order] y = fibre_table_hexa[y_name][order] cen_x = x[0] + alpha * (x[1] - x[0]) + beta * (x[2] - x[0]) cen_y = y[0] + alpha * (y[1] - y[0]) + beta * (y[2] - y[0]) return cen_x, cen_y def interpolate(fibre_table_hexa, x_name, y_name, new_fibpos_x, new_fibpos_y): """Update the coordinates in x/y_name to the new fibpos_x/y positions. Works by interpolating between the old fibpos_x/y positions, which are in fibre_table_hexa. The coordinates are assumed to relate to fibpos_x/y according to: x = x_0 + a_x * fibpos_x + b_x * fibpos_y y = y_0 + a_y * fibpos_x + b_y * fibpos_y x_0, a_x, b_x, y_0, a_y, b_y are found by fitting to the old coordinates. """ old_coords_x = fibre_table_hexa[x_name] old_coords_y = fibre_table_hexa[y_name] old_fibpos_x = fibre_table_hexa['FIBPOS_X'] old_fibpos_y = fibre_table_hexa['FIBPOS_Y'] # Define the function to fit fitfunc = lambda par, fibpos_x, fibpos_y: \ par[0] + par[1]*fibpos_x + par[2]*fibpos_y errfunc = lambda par, fibpos_x, fibpos_y, coords: \ coords - fitfunc(par, fibpos_x, fibpos_y) # Initial guess for x par_x_0 = np.zeros(3) par_x_0[1] = ((old_coords_x.max() - old_coords_x.min()) / (old_fibpos_x.max() - old_fibpos_x.min())) par_x_0[0] = old_coords_x.mean() / (par_x_0[1] * old_fibpos_x.mean()) # Do the fit for x args_x = (old_fibpos_x, old_fibpos_y, old_coords_x) par_x = leastsq(errfunc, par_x_0, args=args_x)[0] # Initial guess for x par_y_0 = np.zeros(3) par_y_0[2] = ((old_coords_y.max() - old_coords_y.min()) / (old_fibpos_y.max() - old_fibpos_y.min())) par_y_0[0] = old_coords_y.mean() / (par_y_0[2] * old_fibpos_y.mean()) # Do the fit for x args_y = (old_fibpos_x, old_fibpos_y, old_coords_y) par_y = leastsq(errfunc, par_y_0, args=args_y)[0] # Now use the new_fibpos_x/y to get the new coordinates new_coords_x = fitfunc(par_x, new_fibpos_x, new_fibpos_y) new_coords_y = fitfunc(par_y, new_fibpos_x, new_fibpos_y) # Finally, save the new coordinates fibre_table_hexa[x_name][:] = new_coords_x fibre_table_hexa[y_name][:] = new_coords_y return def copy_coords(hdulist): """Copy the fibre coordinate information into a new fibre table.""" fibre_table_extension = hdulist[find_fibre_table(hdulist)] new_extension = fibre_table_extension.copy() # Name the extension so it can be found later new_extension.header['EXTNAME'] = 'OLD_COORDS' hdulist.append(new_extension) return def correct_coordinates(filename): """See which corrections are necessary and apply them to the file. If the hexabundles have PORIENT = 0.0, they will be rotated 180 degrees. If the probes are in the wrong order, they will be re-ordered. If neither of these is the case, nothing is done. If either has been done, the old coordinates will be put in an extension named OLD_COORDS.""" hdulist = pf.open(filename, 'update') try: fibre_table_extno = find_fibre_table(hdulist) except KeyError: # No fibres to correct return fibre_table = hdulist[fibre_table_extno].data epoch = hdulist[0].header['EPOCH'] # Check if the probes need to be rotated if np.all(fibre_table['PORIENT'] == 0.0) and epoch >= 2013.0: do_rotate = True else: do_rotate = False # Check if the probes need to be switched if (np.all(fibre_table['PROBENUM'][31+63*np.arange(13)] == (1+np.arange(13))) and epoch >= 2013.0): do_switch = True else: do_switch = False # If anything needs doing... if do_rotate or do_switch: header = hdulist[0].header try: # First try to copy the old coordinates back into the fibre table hdulist[fibre_table_extno].data = hdulist['OLD_COORDS'].data except KeyError: # That didn't work, so we must need to create the OLD_COORDS # extension instead copy_coords(hdulist) # Do the manipulations if do_rotate: rotate_all_hexas(fibre_table) header['COORDROT'] = (True, 'The hexabundle coordinates were rotated') else: header['COORDROT'] = (False, 'The hexabundle coordinates were rotated') if do_switch: reverse_probes(fibre_table) header['COORDREV'] = (True, 'The hexabundle probe allocations were reversed') else: header['COORDREV'] = (False, 'The hexabundle probe allocations were reversed') hdulist.close() def correct_all_coordinates(root='.'): """Run correct_coordinates on all files in all subdirectories.""" for dirname, subdir_list, filename_list in os.walk(root): for filename in filename_list: if filename.endswith('.fits'): print(filename) correct_coordinates(os.path.join(dirname, filename)) return
42.324675
82
0.646517
d9b1467d9e24c4a39f09be5ee61819205f6f49d9
447
py
Python
padpo/checkers/empty.py
christopheNan/padpo
429ef81277452db4c2563f6ab5c71547b5e519e3
[ "BSD-3-Clause" ]
4
2019-11-05T16:47:40.000Z
2020-01-04T17:38:29.000Z
padpo/checkers/empty.py
christopheNan/padpo
429ef81277452db4c2563f6ab5c71547b5e519e3
[ "BSD-3-Clause" ]
46
2019-11-06T10:23:16.000Z
2020-12-04T08:47:54.000Z
padpo/checkers/empty.py
christopheNan/padpo
429ef81277452db4c2563f6ab5c71547b5e519e3
[ "BSD-3-Clause" ]
5
2019-11-06T13:08:58.000Z
2020-10-15T11:10:30.000Z
"""Checker for missing translations.""" from padpo.checkers.baseclass import Checker from padpo.pofile import PoItem class EmptyChecker(Checker): """Checker for missing translations.""" name = "Empty" def check_item(self, item: PoItem): """Check an item in a `*.po` file.""" if item.msgid_full_content and not item.msgstr_full_content: item.add_warning(self.name, "This entry is not translated yet.")
26.294118
76
0.686801
2870df0e324989eaf6172ba4d0e34a3cac2c86ff
6,931
py
Python
lwrl/models/ddpg_model.py
sealday/lwrl
52bcd67751e605c38db4afa609c58938c7034e8d
[ "MIT" ]
2
2019-04-11T11:55:48.000Z
2020-05-29T18:09:51.000Z
lwrl/models/ddpg_model.py
sealday/lwrl
52bcd67751e605c38db4afa609c58938c7034e8d
[ "MIT" ]
6
2021-06-01T22:21:00.000Z
2022-03-11T23:24:36.000Z
lwrl/models/ddpg_model.py
sealday/lwrl
52bcd67751e605c38db4afa609c58938c7034e8d
[ "MIT" ]
1
2019-04-12T03:09:47.000Z
2019-04-12T03:09:47.000Z
import numpy as np import torch import torch.nn.functional as F from torch import nn import lwrl.utils.th_helper as H from lwrl.models import DistributionModel from lwrl.optimizers import optimizer_factory class DDPGCriticModel(nn.Module): def __init__(self, state_spec, action_spec, hidden1=400, hidden2=300): super().__init__() state_shape = state_spec['shape'] #action_shape = action_spec['shape'] assert len(state_shape) == 1 self.action_size = 1 self.fc1 = nn.Linear(state_shape[0], hidden1) self.fc2 = nn.Linear(hidden1 + self.action_size, hidden2) self.fc3 = nn.Linear(hidden2, 1) #nn.init.uniform_(self.fc3.weight) #nn.init.uniform_(self.fc3.bias) def forward(self, s, a): a = a.view(-1, self.action_size) out = F.relu(self.fc1(s)) out = F.relu(self.fc2(torch.cat([out, a], 1))) out = self.fc3(out) return out.squeeze() class DDPGModel(DistributionModel): def __init__(self, state_spec, action_spec, network_spec, exploration_schedule, optimizer, saver_spec, discount_factor, update_target_freq, update_target_weight, critic_network_spec, critic_optimizer, state_preprocess_pipeline=None): self.network_spec = network_spec self.critic_network_spec = critic_network_spec self.critic_optimizer = critic_optimizer self.update_target_freq = update_target_freq self.update_target_weight = update_target_weight super().__init__( state_spec=state_spec, action_spec=action_spec, network_spec=network_spec, exploration_schedule=exploration_schedule, optimizer=optimizer, saver_spec=saver_spec, discount_factor=discount_factor, state_preprocess_pipeline=state_preprocess_pipeline, require_deterministic=True) def init_model(self): super().init_model() self.target_network = self.create_network( self.network_spec, self.action_spec).type(H.float_tensor) hidden1 = self.critic_network_spec['hidden1'] hidden2 = self.critic_network_spec['hidden2'] self.critic_network = DDPGCriticModel( self.state_spec, self.action_spec, hidden1=hidden1, hidden2=hidden2).type(H.float_tensor) self.target_critic_network = DDPGCriticModel( self.state_spec, self.action_spec, hidden1=hidden1, hidden2=hidden2).type(H.float_tensor) self.critic_optimizer = optimizer_factory( self.critic_optimizer['type'], self.critic_network.parameters(), **self.critic_optimizer['args']) self.target_network.load_state_dict(self.network.state_dict()) self.target_critic_network.load_state_dict( self.critic_network.state_dict()) def get_target_network_action(self, obs, random_action): with torch.no_grad(): dist_param = self.target_network(H.Variable(obs)) action = self.target_network.sample( dist_param, deterministic=(not random_action) or self.require_deterministic) return action def predict_target_q(self, obs_batch, action_batch, reward_batch, neg_done_mask): q_value = self.target_critic_network(obs_batch, action_batch) return reward_batch + neg_done_mask * self.discount_factor * q_value def update_target_model(self, target_model, model): for target_param, param in zip(target_model.parameters(), model.parameters()): target_param.data.copy_( (1 - self.update_target_weight) * param.data + self.update_target_weight * target_param.data) def update(self, obs_batch, action_batch, reward_batch, next_obs_batch, done_mask): obs_batch = self.preprocess_state( H.Variable(torch.from_numpy(obs_batch).type(H.float_tensor))) next_obs_batch = self.preprocess_state( H.Variable(torch.from_numpy(next_obs_batch).type(H.float_tensor))) if self.action_spec['type'] == 'int': action_batch = H.Variable(torch.from_numpy(action_batch).long()) else: action_batch = H.Variable(torch.from_numpy(action_batch)) reward_batch = H.Variable(torch.from_numpy(reward_batch)) neg_done_mask = H.Variable( torch.from_numpy(1.0 - done_mask).type(H.float_tensor)) if H.use_cuda: action_batch = action_batch.cuda() reward_batch = reward_batch.cuda() # predict action using target network next_target_actions = self.get_target_network_action( next_obs_batch, random_action=False) # predict Q values for next states next_q_values = self.predict_target_q( next_obs_batch, next_target_actions, reward_batch, neg_done_mask).detach() q_values = self.critic_network(obs_batch, action_batch) #critic_loss = (q_values - next_q_values).pow(2).mean() critic_loss = F.smooth_l1_loss(q_values, next_q_values) # update critic self.critic_optimizer.step(critic_loss) # update actor predicted_actions = self.get_action( obs_batch, random_action=False, update=True) actor_loss = -self.critic_network(obs_batch, predicted_actions).mean() self.optimizer.step(actor_loss) self.num_updates += 1 # target networks <- online networks if self.num_updates % self.update_target_freq == 0: self.update_target_model(self.target_network, self.network) self.update_target_model(self.target_critic_network, self.critic_network) def save(self, timestep): self.saver.save( { 'global_step': timestep, 'network': self.network.state_dict(), 'target_network': self.target_network.state_dict(), 'critic_network': self.critic_network.state_dict(), 'target_critic_network': self.target_critic_network.state_dict(), }, timestep) def restore(self): checkpoint = self.saver.restore() self.global_step = checkpoint['global_step'] self.network.load_state_dict(checkpoint['network']) self.target_network.load_state_dict(checkpoint['target_network']) self.critic_network.load_state_dict(checkpoint['critic_network']) self.target_critic_network.load_state_dict( checkpoint['target_critic_network'])
38.292818
78
0.635983
795b4aff0a0fc4f3af01aa38c585c7745e6fe11b
5,350
py
Python
test/Deprecated/Options/help.py
EmanueleCannizzaro/scons
6baa4e65cdf4df6951473545b69435711864e509
[ "MIT" ]
1
2019-09-18T06:37:02.000Z
2019-09-18T06:37:02.000Z
test/Deprecated/Options/help.py
EmanueleCannizzaro/scons
6baa4e65cdf4df6951473545b69435711864e509
[ "MIT" ]
null
null
null
test/Deprecated/Options/help.py
EmanueleCannizzaro/scons
6baa4e65cdf4df6951473545b69435711864e509
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Copyright (c) 2001 - 2016 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "test/Deprecated/Options/help.py rel_2.5.1:3735:9dc6cee5c168 2016/11/03 14:02:02 bdbaddog" """ Test the Options help messages. """ import os import re import TestSCons str_True = str(True) str_False = str(False) test = TestSCons.TestSCons(match = TestSCons.match_re_dotall) workpath = test.workpath() qtpath = os.path.join(workpath, 'qt') libpath = os.path.join(qtpath, 'lib') libdirvar = os.path.join('$qtdir', 'lib') qtpath_re = re.escape(qtpath) libpath_re = re.escape(libpath) libdirvar_re = re.escape(libdirvar) test.subdir(qtpath) test.subdir(libpath) test.write('SConstruct', """ from SCons.Options import BoolOption, EnumOption, ListOption, \ PackageOption, PathOption list_of_libs = Split('x11 gl qt ical') qtdir = r'%(qtpath)s' opts = Options(args=ARGUMENTS) opts.AddOptions( BoolOption('warnings', 'compilation with -Wall and similiar', 1), BoolOption('profile', 'create profiling informations', 0), EnumOption('debug', 'debug output and symbols', 'no', allowed_values=('yes', 'no', 'full'), map={}, ignorecase=0), # case sensitive EnumOption('guilib', 'gui lib to use', 'gtk', allowed_values=('motif', 'gtk', 'kde'), map={}, ignorecase=1), # case insensitive EnumOption('some', 'some option', 'xaver', allowed_values=('xaver', 'eins'), map={}, ignorecase=2), # make lowercase ListOption('shared', 'libraries to build as shared libraries', 'all', names = list_of_libs), PackageOption('x11', 'use X11 installed here (yes = search some places)', 'yes'), PathOption('qtdir', 'where the root of Qt is installed', qtdir), PathOption('qt_libraries', 'where the Qt library is installed', r'%(libdirvar)s'), ) env = Environment(options=opts) Help(opts.GenerateHelpText(env)) print env['warnings'] print env['profile'] Default(env.Alias('dummy', None)) """ % locals()) expected_stdout = """\ scons: Reading SConscript files ... %(str_True)s %(str_False)s scons: done reading SConscript files. warnings: compilation with -Wall and similiar \\(yes|no\\) default: 1 actual: %(str_True)s profile: create profiling informations \\(yes|no\\) default: 0 actual: %(str_False)s debug: debug output and symbols \\(yes|no|full\\) default: no actual: no guilib: gui lib to use \\(motif|gtk|kde\\) default: gtk actual: gtk some: some option \\(xaver|eins\\) default: xaver actual: xaver shared: libraries to build as shared libraries \\(all|none|comma-separated list of names\\) allowed names: x11 gl qt ical default: all actual: x11 gl qt ical x11: use X11 installed here \\(yes = search some places\\) \\( yes | no | /path/to/x11 \\) default: yes actual: %(str_True)s qtdir: where the root of Qt is installed \\( /path/to/qtdir \\) default: %(qtpath_re)s actual: %(qtpath_re)s qt_libraries: where the Qt library is installed \\( /path/to/qt_libraries \\) default: %(libdirvar_re)s actual: %(libpath_re)s Use scons -H for help about command-line options. """ % locals() file_expr = TestSCons.file_expr expected_stderr = """ scons: warning: The Options class is deprecated; use the Variables class instead. %(file_expr)s scons: warning: The BoolOption\\(\\) function is deprecated; use the BoolVariable\\(\\) function instead. %(file_expr)s scons: warning: The EnumOption\\(\\) function is deprecated; use the EnumVariable\\(\\) function instead. %(file_expr)s scons: warning: The ListOption\\(\\) function is deprecated; use the ListVariable\\(\\) function instead. %(file_expr)s scons: warning: The PackageOption\\(\\) function is deprecated; use the PackageVariable\\(\\) function instead. %(file_expr)s scons: warning: The PathOption\\(\\) function is deprecated; use the PathVariable\\(\\) function instead. %(file_expr)s""" % locals() test.run(arguments='-h', stdout=expected_stdout, stderr=expected_stderr) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
31.28655
111
0.68729
9a4af4bfac167a0a72dcb286327dfe1376e404dc
12,020
py
Python
sdk/containerinstance/azure-mgmt-containerinstance/azure/mgmt/containerinstance/aio/operations/_location_operations.py
adewaleo/azure-sdk-for-python
169457edbea5e3c5557246cfcf8bd635d528bae4
[ "MIT" ]
1
2021-09-07T18:35:07.000Z
2021-09-07T18:35:07.000Z
sdk/containerinstance/azure-mgmt-containerinstance/azure/mgmt/containerinstance/aio/operations/_location_operations.py
adewaleo/azure-sdk-for-python
169457edbea5e3c5557246cfcf8bd635d528bae4
[ "MIT" ]
null
null
null
sdk/containerinstance/azure-mgmt-containerinstance/azure/mgmt/containerinstance/aio/operations/_location_operations.py
adewaleo/azure-sdk-for-python
169457edbea5e3c5557246cfcf8bd635d528bae4
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class LocationOperations: """LocationOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.containerinstance.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_usage( self, location: str, **kwargs ) -> AsyncIterable["models.UsageListResult"]: """Get the usage for a subscription. :param location: The identifier for the physical azure location. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either UsageListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.containerinstance.models.UsageListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.UsageListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_usage.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'location': self._serialize.url("location", location, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('UsageListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_usage.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.ContainerInstance/locations/{location}/usages'} # type: ignore def list_cached_images( self, location: str, **kwargs ) -> AsyncIterable["models.CachedImagesListResult"]: """Get the list of cached images. Get the list of cached images on specific OS type for a subscription in a region. :param location: The identifier for the physical azure location. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CachedImagesListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.containerinstance.models.CachedImagesListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CachedImagesListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_cached_images.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'location': self._serialize.url("location", location, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CachedImagesListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_cached_images.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.ContainerInstance/locations/{location}/cachedImages'} # type: ignore def list_capabilities( self, location: str, **kwargs ) -> AsyncIterable["models.CapabilitiesListResult"]: """Get the list of capabilities of the location. Get the list of CPU/memory/GPU capabilities of a region. :param location: The identifier for the physical azure location. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CapabilitiesListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.containerinstance.models.CapabilitiesListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CapabilitiesListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_capabilities.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'location': self._serialize.url("location", location, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CapabilitiesListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_capabilities.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.ContainerInstance/locations/{location}/capabilities'} # type: ignore
46.770428
164
0.644509
ec95ae097cf9fd53015b5bcbc1bb713ddca586e8
8,724
py
Python
test/vanilla/version-tolerant/AcceptanceTests/asynctests/test_xml.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
35
2018-04-03T12:15:53.000Z
2022-03-11T14:03:34.000Z
test/vanilla/version-tolerant/AcceptanceTests/asynctests/test_xml.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
652
2017-08-28T22:44:41.000Z
2022-03-31T21:20:31.000Z
test/vanilla/version-tolerant/AcceptanceTests/asynctests/test_xml.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
29
2017-08-28T20:57:01.000Z
2022-03-11T14:03:38.000Z
# -------------------------------------------------------------------------- # # Copyright (c) Microsoft Corporation. All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the ""Software""), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # -------------------------------------------------------------------------- import logging from ..serializer import deserialize_base64 from async_generator import yield_, async_generator from xmlserviceversiontolerant.aio import AutoRestSwaggerBATXMLService import pytest _LOGGER = logging.getLogger(__name__) @pytest.fixture @async_generator async def client(): async with AutoRestSwaggerBATXMLService() as client: await yield_(client) async def _assert_with_log(func, *args, **kwargs): def raise_for_status(response, deserialized, headers): response.http_response._internal_response.raise_for_status() try: http_response = await func(*args, cls=raise_for_status, **kwargs) except Exception as err: print(err.response.text()) pytest.fail() @pytest.mark.asyncio async def test_json_xml(client): await client.xml.json_input({"id": 42}) result = await client.xml.json_output() assert result['id'] == 42 @pytest.mark.asyncio async def test_simple(client): # Slideshow slideshow = await client.xml.get_simple() assert slideshow.attrib['title'] == "Sample Slide Show" assert slideshow.attrib['date'] == "Date of publication" assert slideshow.attrib['author'] == "Yours Truly" slides = list(slideshow.iterfind('slide')) assert len(slides) == 2 slide1 = slides[0] assert slide1.attrib['type'] == "all" assert next(slide1.iterfind('title')).text == "Wake up to WonderWidgets!" assert len(list(slide1.iterfind('item'))) == 0 slide2 = slides[1] assert slide2.attrib['type'] == "all" assert next(slide2.iterfind('title')).text == "Overview" items = list(slide2.iterfind('item')) assert len(items) == 3 assert items[0].text == "Why WonderWidgets are great" assert items[1].text == None assert items[2].text == "Who buys WonderWidgets" await _assert_with_log(client.xml.put_simple, slideshow) @pytest.mark.asyncio async def test_empty_child_element(client): banana = await client.xml.get_empty_child_element() assert banana.attrib == {} # That's the point of this test, it was an empty node. await _assert_with_log(client.xml.put_empty_child_element, banana) @pytest.mark.asyncio async def test_empty_root_list(client): bananas = await client.xml.get_empty_root_list() assert bananas.tag == 'bananas' assert bananas.attrib == {} await _assert_with_log(client.xml.put_empty_root_list, bananas) @pytest.mark.asyncio async def test_root_list_single_item(client): xml_body = await client.xml.get_root_list_single_item() bananas = list(xml_body.iterfind('banana')) assert len(bananas) == 1 assert next(bananas[0].iterfind('name')).text == "Cavendish" await _assert_with_log(client.xml.put_root_list_single_item, xml_body) @pytest.mark.asyncio async def test_root_list(client): xml_body = await client.xml.get_root_list() bananas = list(xml_body.iterfind('banana')) assert len(bananas) == 2 await _assert_with_log(client.xml.put_root_list, xml_body) @pytest.mark.asyncio async def test_empty_wrapped_lists(client): bananas = await client.xml.get_empty_wrapped_lists() assert [a for a in bananas.iterfind('GoodApples') if a.text] == [] assert [a for a in bananas.iterfind('BadApples') if a.text] == [] await _assert_with_log(client.xml.put_empty_wrapped_lists, bananas) @pytest.mark.asyncio async def test_get_empty(client): slideshow = await client.xml.get_empty_list() await _assert_with_log(client.xml.put_empty_list, slideshow) @pytest.mark.asyncio async def test_wrapped_lists(client): bananas = await client.xml.get_wrapped_lists() good_apples = bananas.find('GoodApples') assert [a.text for a in good_apples.iterfind('Apple')] == ['Fuji', 'Gala'] bad_apples = bananas.find('BadApples') assert [a.text for a in bad_apples.iterfind('Apple')] == ['Red Delicious'] await _assert_with_log(client.xml.put_wrapped_lists, bananas) @pytest.mark.asyncio async def test_complex_types(client): root = await client.xml.get_complex_type_ref_no_meta() ref_to_model = root.find('RefToModel') assert ref_to_model.find('ID').text == "myid" await client.xml.put_complex_type_ref_no_meta(root) root = await client.xml.get_complex_type_ref_with_meta() ref_to_model = root.find('XMLComplexTypeWithMeta') assert ref_to_model.find('ID').text == "myid" await client.xml.put_complex_type_ref_with_meta(root) @pytest.mark.asyncio async def test_list_containers(client): xml_body = await client.xml.list_containers() containers = xml_body.find('Containers') container_list = list(containers.iterfind('Container')) assert len(container_list) == 3 @pytest.mark.asyncio async def test_list_blobs(client): xml_body = await client.xml.list_blobs() blobs_xml_body = xml_body.find('Blobs') blobs = list(blobs_xml_body.iterfind('Blob')) assert len(blobs) == 5 assert blobs_xml_body.find('BlobPrefix') is None blob = blobs[0] assert blob.find('Name').text == "blob1.txt" properties = blob.find('Properties') assert properties.find('Last-Modified').text == 'Wed, 09 Sep 2009 09:20:02 GMT' assert properties.find('Etag').text == "0x8CBFF45D8A29A19" assert properties.find('Content-Length').text == "100" assert properties.find('Content-Type').text == "text/html" # Check that an empty field in the XML is empty string assert properties.find('Content-Encoding').text is None assert properties.find('Content-Language').text == "en-US" assert properties.find('Content-MD5').text is None assert properties.find('Cache-Control').text == "no-cache" assert properties.find('BlobType').text == "BlockBlob" # Check that a field NOT in the XML is None assert properties.find('Destination-Snapshot') is None metadata_body = blob.find('Metadata') assert metadata_body.find("Color").text == "blue" assert metadata_body.find("BlobNumber").text == "01" assert metadata_body.find("SomeMetadataName").text == "SomeMetadataValue" @pytest.mark.asyncio async def test_service_properties(client): properties = await client.xml.get_service_properties() assert properties.find('HourMetrics') is not None assert properties.find('MinuteMetrics') is not None await _assert_with_log(client.xml.put_service_properties, properties) @pytest.mark.asyncio async def test_acls(client): acls = await client.xml.get_acls() signed_identifiers = list(acls.iterfind('SignedIdentifier')) assert len(signed_identifiers) == 1 assert signed_identifiers[0].find('Id').text == 'MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTI=' await _assert_with_log(client.xml.put_acls, acls) @pytest.mark.asyncio async def test_xms_text(client): xml_object = await client.xml.get_xms_text() assert xml_object.attrib['language'] == "english" assert xml_object.text == "I am text" @pytest.mark.asyncio async def test_bytes(client): bytes_object = await client.xml.get_bytes() assert bytes_object.tag == 'ModelWithByteProperty' assert deserialize_base64(bytes_object.find('Bytes').text) == b"Hello world" await client.xml.put_binary(bytes_object) @pytest.mark.asyncio async def test_url(client): url_object = await client.xml.get_uri() assert url_object.tag == 'ModelWithUrlProperty' assert url_object.find('Url').text == 'https://myaccount.blob.core.windows.net/' await client.xml.put_uri(url_object)
40.766355
98
0.723063
5bbecd792100bd6e11a70569e4548b018e2ff8db
10,294
py
Python
torch_geometric/data/sampler.py
m30m/pytorch_geometric
4e36103299debee269cefcb3c869d45b7977bcb3
[ "MIT" ]
null
null
null
torch_geometric/data/sampler.py
m30m/pytorch_geometric
4e36103299debee269cefcb3c869d45b7977bcb3
[ "MIT" ]
null
null
null
torch_geometric/data/sampler.py
m30m/pytorch_geometric
4e36103299debee269cefcb3c869d45b7977bcb3
[ "MIT" ]
null
null
null
import copy from typing import List, Optional, Tuple, NamedTuple, Union import torch from torch import Tensor from torch_sparse import SparseTensor from torch_geometric.utils.num_nodes import maybe_num_nodes class EdgeIndex(NamedTuple): edge_index: Tensor e_id: Optional[Tensor] size: Tuple[int, int] def to(self, *args, **kwargs): edge_index = self.edge_index.to(*args, **kwargs) e_id = self.e_id.to(*args, **kwargs) if self.e_id is not None else None return EdgeIndex(edge_index, e_id, self.size) class Adj(NamedTuple): adj_t: SparseTensor e_id: Optional[Tensor] size: Tuple[int, int] def to(self, *args, **kwargs): adj_t = self.adj_t.to(*args, **kwargs) e_id = self.e_id.to(*args, **kwargs) if self.e_id is not None else None return Adj(adj_t, e_id, self.size) class NeighborSampler(torch.utils.data.DataLoader): r"""The neighbor sampler from the `"Inductive Representation Learning on Large Graphs" <https://arxiv.org/abs/1706.02216>`_ paper, which allows for mini-batch training of GNNs on large-scale graphs where full-batch training is not feasible. Given a GNN with :math:`L` layers and a specific mini-batch of nodes :obj:`node_idx` for which we want to compute embeddings, this module iteratively samples neighbors and constructs bipartite graphs that simulate the actual computation flow of GNNs. More specifically, :obj:`sizes` denotes how much neighbors we want to sample for each node in each layer. This module then takes in these :obj:`sizes` and iteratively samples :obj:`sizes[l]` for each node involved in layer :obj:`l`. In the next layer, sampling is repeated for the union of nodes that were already encountered. The actual computation graphs are then returned in reverse-mode, meaning that we pass messages from a larger set of nodes to a smaller one, until we reach the nodes for which we originally wanted to compute embeddings. Hence, an item returned by :class:`NeighborSampler` holds the current :obj:`batch_size`, the IDs :obj:`n_id` of all nodes involved in the computation, and a list of bipartite graph objects via the tuple :obj:`(edge_index, e_id, size)`, where :obj:`edge_index` represents the bipartite edges between source and target nodes, :obj:`e_id` denotes the IDs of original edges in the full graph, and :obj:`size` holds the shape of the bipartite graph. For each bipartite graph, target nodes are also included at the beginning of the list of source nodes so that one can easily apply skip-connections or add self-loops. .. note:: For an example of using :obj:`NeighborSampler`, see `examples/reddit.py <https://github.com/rusty1s/pytorch_geometric/blob/master/examples/ reddit.py>`_ or `examples/ogbn_products_sage.py <https://github.com/rusty1s/pytorch_geometric/blob/master/examples/ ogbn_products_sage.py>`_. Args: edge_index (Tensor or SparseTensor): A :obj:`torch.LongTensor` or a :obj:`torch_sparse.SparseTensor` that defines the underlying graph connectivity/message passing flow. :obj:`edge_index` holds the indices of a (sparse) symmetric adjacency matrix. If :obj:`edge_index` is of type :obj:`torch.LongTensor`, its shape must be defined as :obj:`[2, num_edges]`, where messages from nodes :obj:`edge_index[0]` are sent to nodes in :obj:`edge_index[1]` (in case :obj:`flow="source_to_target"`). If :obj:`edge_index` is of type :obj:`torch_sparse.SparseTensor`, its sparse indices :obj:`(row, col)` should relate to :obj:`row = edge_index[1]` and :obj:`col = edge_index[0]`. The major difference between both formats is that we need to input the *transposed* sparse adjacency matrix. size ([int]): The number of neighbors to sample for each node in each layer. If set to :obj:`sizes[i] = -1`, all neighbors are included in layer :obj:`l`. node_idx (LongTensor, optional): The nodes that should be considered for creating mini-batches. If set to :obj:`None`, all nodes will be considered. num_nodes (int, optional): The number of nodes in the graph. (default: :obj:`None`) return_e_id (bool, optional): If set to :obj:`False`, will not return original edge indices of sampled edges. This is only useful in case when operating on graphs without edge features to save memory. (default: :obj:`True`) **kwargs (optional): Additional arguments of :class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`, :obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`. """ def __init__(self, edge_index: Union[Tensor, SparseTensor], sizes: List[int], node_idx: Optional[Tensor] = None, num_nodes: Optional[int] = None, return_e_id: bool = True, **kwargs): self.sizes = sizes self.return_e_id = return_e_id self.is_sparse_tensor = isinstance(edge_index, SparseTensor) self.__val__ = None # Obtain a *transposed* `SparseTensor` instance. edge_index = edge_index.to('cpu') if not self.is_sparse_tensor: num_nodes = maybe_num_nodes(edge_index, num_nodes) value = torch.arange(edge_index.size(1)) if return_e_id else None self.adj_t = SparseTensor(row=edge_index[0], col=edge_index[1], value=value, sparse_sizes=(num_nodes, num_nodes)).t() else: adj_t = edge_index if return_e_id: self.__val__ = adj_t.storage.value() value = torch.arange(adj_t.nnz()) if return_e_id else self.val adj_t = adj_t.set_value(value, layout='coo') self.adj_t = adj_t self.adj_t.storage.rowptr() if node_idx is None: node_idx = torch.arange(self.adj_t.sparse_size(0)) elif node_idx.dtype == torch.bool: node_idx = node_idx.nonzero(as_tuple=False).view(-1) super(NeighborSampler, self).__init__( node_idx.view(-1).tolist(), collate_fn=self.sample, **kwargs) def sample(self, batch): if not isinstance(batch, Tensor): batch = torch.tensor(batch) batch_size: int = len(batch) adjs = [] n_id = batch for size in self.sizes: adj_t, n_id = self.adj_t.sample_adj(n_id, size, replace=False) e_id = adj_t.storage.value() size = adj_t.sparse_sizes()[::-1] if self.__val__ is not None: adj_t.set_value_(self.__val__[e_id], layout='coo') if self.is_sparse_tensor: adjs.append(Adj(adj_t, e_id, size)) else: row, col, _ = adj_t.coo() edge_index = torch.stack([col, row], dim=0) adjs.append(EdgeIndex(edge_index, e_id, size)) if len(adjs) > 1: return batch_size, n_id, adjs[::-1] else: return batch_size, n_id, adjs[0] def __repr__(self): return '{}(sizes={})'.format(self.__class__.__name__, self.sizes) class RandomIndexSampler(torch.utils.data.Sampler): def __init__(self, num_nodes: int, num_parts: int, shuffle: bool = False): self.N = num_nodes self.num_parts = num_parts self.shuffle = shuffle self.n_ids = self.get_node_indices() def get_node_indices(self): n_id = torch.randint(self.num_parts, (self.N, ), dtype=torch.long) n_ids = [(n_id == i).nonzero(as_tuple=False).view(-1) for i in range(self.num_parts)] return n_ids def __iter__(self): if self.shuffle: self.n_ids = self.get_node_indices() return iter(self.n_ids) def __len__(self): return self.num_parts class RandomNodeSampler(torch.utils.data.DataLoader): r"""A data loader that randomly samples nodes within a graph and returns their induced subgraph. .. note:: For an example of using :obj:`RandomNodeSampler`, see `examples/ogbn_proteins_deepgcn.py <https://github.com/rusty1s/pytorch_geometric/blob/master/examples/ ogbn_proteins_deepgcn.py>`_. Args: data (torch_geometric.data.Data): The graph data object. num_parts (int): The number of partitions. shuffle (bool, optional): If set to :obj:`True`, the data is reshuffled at every epoch (default: :obj:`False`). **kwargs (optional): Additional arguments of :class:`torch.utils.data.DataLoader`, such as :obj:`num_workers`. """ def __init__(self, data, num_parts: int, shuffle: bool = False, **kwargs): assert data.edge_index is not None self.N = N = data.num_nodes self.E = data.num_edges self.adj = SparseTensor( row=data.edge_index[0], col=data.edge_index[1], value=torch.arange(self.E, device=data.edge_index.device), sparse_sizes=(N, N)) self.data = copy.copy(data) self.data.edge_index = None super(RandomNodeSampler, self).__init__( self, batch_size=1, sampler=RandomIndexSampler(self.N, num_parts, shuffle), collate_fn=self.__collate__, **kwargs) def __getitem__(self, idx): return idx def __collate__(self, node_idx): node_idx = node_idx[0] data = self.data.__class__() data.num_nodes = node_idx.size(0) adj, _ = self.adj.saint_subgraph(node_idx) row, col, edge_idx = adj.coo() data.edge_index = torch.stack([row, col], dim=0) for key, item in self.data: if isinstance(item, Tensor) and item.size(0) == self.N: data[key] = item[node_idx] elif isinstance(item, Tensor) and item.size(0) == self.E: data[key] = item[edge_idx] else: data[key] = item return data
40.527559
79
0.629493
4740288f2f586e8c1a632338cbd08f2fdd2ed987
2,239
py
Python
recipes/python/flask/{{cookiecutter.app_name}}/{{cookiecutter.app_name}}/app.py
roscopecoltran/sniperkit-cookiecutter
50b7ecd87d4127875764c2b7d4668ede2ed4b299
[ "BSD-3-Clause" ]
null
null
null
recipes/python/flask/{{cookiecutter.app_name}}/{{cookiecutter.app_name}}/app.py
roscopecoltran/sniperkit-cookiecutter
50b7ecd87d4127875764c2b7d4668ede2ed4b299
[ "BSD-3-Clause" ]
null
null
null
recipes/python/flask/{{cookiecutter.app_name}}/{{cookiecutter.app_name}}/app.py
roscopecoltran/sniperkit-cookiecutter
50b7ecd87d4127875764c2b7d4668ede2ed4b299
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """The app module, containing the app factory function.""" from flask import Flask, render_template from {{cookiecutter.app_name}} import commands, public, user from {{cookiecutter.app_name}}.extensions import bcrypt, cache, csrf_protect, db, debug_toolbar, login_manager, migrate, webpack from {{cookiecutter.app_name}}.settings import ProdConfig def create_app(config_object=ProdConfig): """An application factory, as explained here: http://flask.pocoo.org/docs/patterns/appfactories/. :param config_object: The configuration object to use. """ app = Flask(__name__.split('.')[0]) app.config.from_object(config_object) register_extensions(app) register_blueprints(app) register_errorhandlers(app) register_shellcontext(app) register_commands(app) return app def register_extensions(app): """Register Flask extensions.""" bcrypt.init_app(app) cache.init_app(app) db.init_app(app) csrf_protect.init_app(app) login_manager.init_app(app) debug_toolbar.init_app(app) migrate.init_app(app, db) webpack.init_app(app) return None def register_blueprints(app): """Register Flask blueprints.""" app.register_blueprint(public.views.blueprint) app.register_blueprint(user.views.blueprint) return None def register_errorhandlers(app): """Register error handlers.""" def render_error(error): """Render error template.""" # If a HTTPException, pull the `code` attribute; default to 500 error_code = getattr(error, 'code', 500) return render_template('{0}.html'.format(error_code)), error_code for errcode in [401, 404, 500]: app.errorhandler(errcode)(render_error) return None def register_shellcontext(app): """Register shell context objects.""" def shell_context(): """Shell context objects.""" return { 'db': db, 'User': user.models.User} app.shell_context_processor(shell_context) def register_commands(app): """Register Click commands.""" app.cli.add_command(commands.test) app.cli.add_command(commands.lint) app.cli.add_command(commands.clean) app.cli.add_command(commands.urls)
30.256757
128
0.702546
6b9f83123cb64bc92e203cd1384bad42d353dae0
1,566
py
Python
app/utils.py
A-NL/simplelogin-app
f17f9aaf8c57373c09dc3393975d2509f37815b9
[ "MIT" ]
4
2021-07-06T14:51:24.000Z
2021-07-23T16:40:53.000Z
app/utils.py
A-NL/simplelogin-app
f17f9aaf8c57373c09dc3393975d2509f37815b9
[ "MIT" ]
1
2021-05-11T13:02:48.000Z
2021-05-11T13:03:32.000Z
app/utils.py
A-NL/simplelogin-app
f17f9aaf8c57373c09dc3393975d2509f37815b9
[ "MIT" ]
null
null
null
import random import string import urllib.parse from unidecode import unidecode from .config import WORDS_FILE_PATH from .log import LOG with open(WORDS_FILE_PATH) as f: LOG.d("load words file: %s", WORDS_FILE_PATH) _words = f.read().split() def random_word(): return random.choice(_words) def word_exist(word): return word in _words def random_words(): """Generate a random words. Used to generate user-facing string, for ex email addresses""" # nb_words = random.randint(2, 3) nb_words = 2 return "_".join([random.choice(_words) for i in range(nb_words)]) def random_string(length=10): """Generate a random string of fixed length """ letters = string.ascii_lowercase return "".join(random.choice(letters) for _ in range(length)) def convert_to_id(s: str): """convert a string to id-like: remove space, remove special accent""" s = s.replace(" ", "") s = s.lower() s = unidecode(s) return s _ALLOWED_CHARS = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_-." def convert_to_alphanumeric(s: str) -> str: ret = [] # drop all control characters like shift, separator, etc for c in s: if c not in _ALLOWED_CHARS: ret.append("_") else: ret.append(c) return "".join(ret) def encode_url(url): return urllib.parse.quote(url, safe="") def sanitize_email(email_address: str) -> str: if email_address: return email_address.lower().strip().replace(" ", "").replace("\n", " ") return email_address
23.029412
94
0.66986
7e1fab5c4911e10452c7add69692028c87126ace
904
py
Python
geotrek/trekking/migrations/0017_auto_20200831_1406.py
pierreloicq/Geotrek-admin
00cd29f29843f2cc25e5a3c7372fcccf14956887
[ "BSD-2-Clause" ]
50
2016-10-19T23:01:21.000Z
2022-03-28T08:28:34.000Z
geotrek/trekking/migrations/0017_auto_20200831_1406.py
pierreloicq/Geotrek-admin
00cd29f29843f2cc25e5a3c7372fcccf14956887
[ "BSD-2-Clause" ]
1,422
2016-10-27T10:39:40.000Z
2022-03-31T13:37:10.000Z
geotrek/trekking/migrations/0017_auto_20200831_1406.py
pierreloicq/Geotrek-admin
00cd29f29843f2cc25e5a3c7372fcccf14956887
[ "BSD-2-Clause" ]
46
2016-10-27T10:59:10.000Z
2022-03-22T15:55:56.000Z
# Generated by Django 2.2.15 on 2020-08-31 14:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('trekking', '0016_auto_20200708_1608'), ] operations = [ migrations.AlterField( model_name='poi', name='published', field=models.BooleanField(default=False, help_text='Visible on Geotrek-rando', verbose_name='Published'), ), migrations.AlterField( model_name='servicetype', name='published', field=models.BooleanField(default=False, help_text='Visible on Geotrek-rando', verbose_name='Published'), ), migrations.AlterField( model_name='trek', name='published', field=models.BooleanField(default=False, help_text='Visible on Geotrek-rando', verbose_name='Published'), ), ]
31.172414
117
0.619469
fa391cf9f573f7b00bba1139516d99909b93dc56
1,210
py
Python
test1.py
NarmadaBalasooriya/Climate-Change-AI
2d773f6fa1c5f4669b5cd424ec0bc50a68bb47cc
[ "MIT" ]
6
2019-03-29T04:57:18.000Z
2021-07-16T07:16:20.000Z
test1.py
NarmadaBalasooriya/Climate-Change-AI
2d773f6fa1c5f4669b5cd424ec0bc50a68bb47cc
[ "MIT" ]
null
null
null
test1.py
NarmadaBalasooriya/Climate-Change-AI
2d773f6fa1c5f4669b5cd424ec0bc50a68bb47cc
[ "MIT" ]
2
2019-04-14T17:51:58.000Z
2022-01-11T13:39:38.000Z
import os import sys import os from options.test_options import TestOptions from data import create_dataset from models import create_model from util.visualizer import save_images from util import html from googlegeocoder import GoogleGeocoder import google_streetview.api google_key = "AIzaSyBDc5jaJG0k0o1k1NHoinwU7E89AMujmso" search = sys.argv[1:] search_addr = ",".join(search) geocoder = GoogleGeocoder(google_key) location = geocoder.get(search_addr) location = location[0] print('Address of ', search_addr, ' is ', location.formatted_address) loc_lat = location.geometry.location.lat loc_lng = location.geometry.location.lng print('Latitude and Longitudes of ', search_addr, ' are ', [loc_lat, loc_lng]) loc_lat_lng = [loc_lat, loc_lng] loc_lat_lng = ",".join(map(str,loc_lat_lng)) loc = str(loc_lat_lng) print(loc) params = { 'size': '600x300', # max 640x640 pixels 'location': loc, 'heading': '0;90;180;270;360', 'pitch': '0', 'key': google_key } api_list = google_streetview.helpers.api_list(params) results = google_streetview.api.results(api_list) results.download_links(str(search_addr)) results.save_metadata('metadata.json')
24.693878
79
0.740496
ae6d8e5ba3d0877e00ce29f93a259ab60106c243
68
py
Python
src/Quotient.py
pgs8/IS601_Calculator-with-unit-tests
d6d2337b53a2c095d450bd31382bacdd3293e0b5
[ "MIT" ]
null
null
null
src/Quotient.py
pgs8/IS601_Calculator-with-unit-tests
d6d2337b53a2c095d450bd31382bacdd3293e0b5
[ "MIT" ]
null
null
null
src/Quotient.py
pgs8/IS601_Calculator-with-unit-tests
d6d2337b53a2c095d450bd31382bacdd3293e0b5
[ "MIT" ]
null
null
null
def division(a, b): return "{:.9f}".format(float(a) / float(b))
22.666667
47
0.573529
7b067c3a4147f4dd5ab37487bfca44ce8ed50043
4,080
py
Python
CPythonLib/test/test_pow.py
doom38/jython_v2.2.1
0803a0c953c294e6d14f9fc7d08edf6a3e630a15
[ "CNRI-Jython" ]
null
null
null
CPythonLib/test/test_pow.py
doom38/jython_v2.2.1
0803a0c953c294e6d14f9fc7d08edf6a3e630a15
[ "CNRI-Jython" ]
null
null
null
CPythonLib/test/test_pow.py
doom38/jython_v2.2.1
0803a0c953c294e6d14f9fc7d08edf6a3e630a15
[ "CNRI-Jython" ]
null
null
null
import sys import test_support def powtest(type): if type != float: print " Testing 2-argument pow() function..." for i in range(-1000, 1000): if pow(type(i), 0) != 1: raise ValueError, 'pow('+str(i)+',0) != 1' if pow(type(i), 1) != type(i): raise ValueError, 'pow('+str(i)+',1) != '+str(i) if pow(type(0), 1) != type(0): raise ValueError, 'pow(0,'+str(i)+') != 0' if pow(type(1), 1) != type(1): raise ValueError, 'pow(1,'+str(i)+') != 1' for i in range(-100, 100): if pow(type(i), 3) != i*i*i: raise ValueError, 'pow('+str(i)+',3) != '+str(i*i*i) pow2 = 1 for i in range(0,31): if pow(2, i) != pow2: raise ValueError, 'pow(2,'+str(i)+') != '+str(pow2) if i != 30 : pow2 = pow2*2 for othertype in int, long: for i in range(-10, 0) + range(1, 10): ii = type(i) for j in range(1, 11): jj = -othertype(j) try: pow(ii, jj) except ValueError: raise ValueError, "pow(%s, %s) failed" % (ii, jj) for othertype in int, long, float: for i in range(1, 100): zero = type(0) exp = -othertype(i/10.0) if exp == 0: continue try: pow(zero, exp) except ZeroDivisionError: pass # taking zero to any negative exponent should fail else: raise ValueError, "pow(%s, %s) did not fail" % (zero, exp) print " Testing 3-argument pow() function..." il, ih = -20, 20 jl, jh = -5, 5 kl, kh = -10, 10 compare = cmp if type == float: il = 1 compare = test_support.fcmp elif type == int: jl = 0 elif type == long: jl, jh = 0, 15 for i in range(il, ih+1): for j in range(jl, jh+1): for k in range(kl, kh+1): if k != 0: if type == float or j < 0: try: pow(type(i),j,k) except TypeError: pass else: raise TestFailed("expected TypeError from " "pow%r" % ((type(i), j, k))) continue if compare(pow(type(i),j,k), pow(type(i),j)% type(k)): raise ValueError, "pow(" +str(i)+ "," +str(j)+ \ "," +str(k)+ ") != pow(" +str(i)+ "," + \ str(j)+ ") % " +str(k) print 'Testing integer mode...' powtest(int) print 'Testing long integer mode...' powtest(long) print 'Testing floating point mode...' powtest(float) # Other tests-- not very systematic print 'The number in both columns should match.' print `pow(3,3) % 8`, `pow(3,3,8)` print `pow(3,3) % -8`, `pow(3,3,-8)` print `pow(3,2) % -2`, `pow(3,2,-2)` print `pow(-3,3) % 8`, `pow(-3,3,8)` print `pow(-3,3) % -8`, `pow(-3,3,-8)` print `pow(5,2) % -8`, `pow(5,2,-8)` print print `pow(3L,3L) % 8`, `pow(3L,3L,8)` print `pow(3L,3L) % -8`, `pow(3L,3L,-8)` print `pow(3L,2) % -2`, `pow(3L,2,-2)` print `pow(-3L,3L) % 8`, `pow(-3L,3L,8)` print `pow(-3L,3L) % -8`, `pow(-3L,3L,-8)` print `pow(5L,2) % -8`, `pow(5L,2,-8)` print print for i in range(-10, 11): for j in range(0, 6): for k in range(-7, 11): if j >= 0 and k != 0: o = pow(i,j) % k n = pow(i,j,k) if o != n: print 'Integer mismatch:', i,j,k if j >= 0 and k != 0: o = pow(long(i),j) % k n = pow(long(i),j,k) if o != n: print 'Integer mismatch:', i,j,k class TestRpow: def __rpow__(self, other): return None None ** TestRpow() # Won't fail when __rpow__ invoked. SF bug #643260.
32.380952
76
0.431127
c334b04d7d9773cc6b5b0f3d7b4db15c441f6dd5
437
py
Python
_includes/code/search-a-2d-matrix/solution.py
rajat19/interview-questions
cb1fa382a76f2f287f1c12dd3d1fca9bfb7fa311
[ "MIT" ]
null
null
null
_includes/code/search-a-2d-matrix/solution.py
rajat19/interview-questions
cb1fa382a76f2f287f1c12dd3d1fca9bfb7fa311
[ "MIT" ]
2
2022-03-01T06:30:35.000Z
2022-03-13T07:05:50.000Z
_includes/code/search-a-2d-matrix/solution.py
rajat19/interview-questions
cb1fa382a76f2f287f1c12dd3d1fca9bfb7fa311
[ "MIT" ]
1
2022-02-09T12:13:36.000Z
2022-02-09T12:13:36.000Z
from typing import List class Solution: def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: n, m = len(matrix), len(matrix[0]) row, col = 0, m - 1 while row < n and col >= 0: cell = matrix[row][col] if cell == target: return True if cell < target: row += 1 else: col -= 1 return False
25.705882
73
0.459954
aeeafe143045fdf0156c51f775732a3524b34fcc
72
py
Python
src/mixcli/command/util/__init__.py
zhuoyanli/nuance_mix_pycli
72fe76eb715d4e0be60616d282230fa90ad7250f
[ "MIT" ]
null
null
null
src/mixcli/command/util/__init__.py
zhuoyanli/nuance_mix_pycli
72fe76eb715d4e0be60616d282230fa90ad7250f
[ "MIT" ]
null
null
null
src/mixcli/command/util/__init__.py
zhuoyanli/nuance_mix_pycli
72fe76eb715d4e0be60616d282230fa90ad7250f
[ "MIT" ]
null
null
null
""" MixCli **util** command group for various **utility** use cases """
18
63
0.652778
8f607130081368c64b7d39d08ca5ef00f7c6b2bc
169
py
Python
ex12.py
AyeAyeNwe/python-exercises
68c4152e3527c04e5c0f2a6c34f66ad54701d715
[ "MIT" ]
null
null
null
ex12.py
AyeAyeNwe/python-exercises
68c4152e3527c04e5c0f2a6c34f66ad54701d715
[ "MIT" ]
null
null
null
ex12.py
AyeAyeNwe/python-exercises
68c4152e3527c04e5c0f2a6c34f66ad54701d715
[ "MIT" ]
null
null
null
age =input ("How old are you?") height =input("How tall are you?") weight =input("How much do you weight?") print(f"So,you're {age} old, {height} tall,{weight} heavy.")
33.8
60
0.668639
bedeb81f769aa8cc54a27406469a5b74d213b13b
4,320
py
Python
tests/clpy_tests/statics_tests/test_meanvar.py
fixstars/clpy
693485f85397cc110fa45803c36c30c24c297df0
[ "BSD-3-Clause" ]
142
2018-06-07T07:43:10.000Z
2021-10-30T21:06:32.000Z
tests/clpy_tests/statics_tests/test_meanvar.py
fixstars/clpy
693485f85397cc110fa45803c36c30c24c297df0
[ "BSD-3-Clause" ]
282
2018-06-07T08:35:03.000Z
2021-03-31T03:14:32.000Z
tests/clpy_tests/statics_tests/test_meanvar.py
fixstars/clpy
693485f85397cc110fa45803c36c30c24c297df0
[ "BSD-3-Clause" ]
19
2018-06-19T11:07:53.000Z
2021-05-13T20:57:04.000Z
import unittest from clpy import testing @testing.gpu class TestMeanVar(unittest.TestCase): _multiprocess_can_split_ = True @testing.for_all_dtypes() @testing.numpy_clpy_allclose() def test_mean_all(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return a.mean() @testing.for_all_dtypes() @testing.numpy_clpy_allclose() def test_external_mean_all(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return xp.mean(a) @testing.for_all_dtypes() @testing.numpy_clpy_allclose() def test_mean_axis(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return a.mean(axis=1) @testing.for_all_dtypes() @testing.numpy_clpy_allclose() def test_external_mean_axis(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return xp.mean(a, axis=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_var_all(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return a.var() @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_external_var_all(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return xp.var(a) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_var_all_ddof(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return a.var(ddof=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_external_var_all_ddof(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return xp.var(a, ddof=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_var_axis(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return a.var(axis=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_external_var_axis(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return xp.var(a, axis=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_var_axis_ddof(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return a.var(axis=1, ddof=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_external_var_axis_ddof(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return xp.var(a, axis=1, ddof=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_std_all(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return a.std() @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_external_std_all(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return xp.std(a) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_std_all_ddof(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return a.std(ddof=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_external_std_all_ddof(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return xp.std(a, ddof=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_std_axis(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return a.std(axis=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_external_std_axis(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return xp.std(a, axis=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_std_axis_ddof(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return a.std(axis=1, ddof=1) @testing.for_all_dtypes(no_complex=True) @testing.numpy_clpy_allclose() def test_external_std_axis_ddof(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return xp.std(a, axis=1, ddof=1)
33.230769
55
0.661343
0e15cef9603b721450b5f024c55f54491a74886e
536
py
Python
wafer/registration/templatetags/wafer_crispy.py
drnlm/wafer
1d843190428c401df06fcdfb89d1f9d9af67229e
[ "ISC" ]
41
2015-03-16T17:47:00.000Z
2022-01-07T04:31:21.000Z
wafer/registration/templatetags/wafer_crispy.py
drnlm/wafer
1d843190428c401df06fcdfb89d1f9d9af67229e
[ "ISC" ]
338
2015-03-15T17:26:36.000Z
2021-12-02T04:34:53.000Z
wafer/registration/templatetags/wafer_crispy.py
drnlm/wafer
1d843190428c401df06fcdfb89d1f9d9af67229e
[ "ISC" ]
28
2015-07-27T14:11:13.000Z
2020-11-16T03:50:30.000Z
from django import template import sys register = template.Library() @register.simple_tag(takes_context=True) def wafer_form_helper(context, helper_name): ''' Find the specified Crispy FormHelper and instantiate it. Handy when you are crispyifying other apps' forms. ''' request = context.request module, class_name = helper_name.rsplit('.', 1) if module not in sys.modules: __import__(module) mod = sys.modules[module] class_ = getattr(mod, class_name) return class_(request=request)
26.8
60
0.714552
581bda3b133a11f9bc14a9279b2a9d98497f451e
89
py
Python
app/app/mqtt/__init__.py
MartinHeinz/IoT-Cloud
2e6fddcfe2624862c9351759334a6655a896e8c7
[ "MIT" ]
14
2019-11-17T23:49:20.000Z
2022-02-04T23:28:45.000Z
app/app/mqtt/__init__.py
MartinHeinz/IoT-Cloud
2e6fddcfe2624862c9351759334a6655a896e8c7
[ "MIT" ]
3
2019-12-02T18:26:11.000Z
2021-04-30T20:46:06.000Z
app/app/mqtt/__init__.py
MartinHeinz/IoT-Cloud
2e6fddcfe2624862c9351759334a6655a896e8c7
[ "MIT" ]
4
2018-12-28T13:41:44.000Z
2020-09-13T14:14:06.000Z
from .mqtt import handle_on_connect, handle_on_log, handle_on_publish, handle_on_message
44.5
88
0.876404
107dd8de95264b97534c63c64ef1ae15b1f93e4b
2,145
py
Python
censusreporter/apps/census/management/commands/cache_to_s3.py
Durellg/censusreporter
c006c2f1c67fd29086fe532974f1eb57e70a0e2c
[ "MIT" ]
1
2020-07-15T23:47:28.000Z
2020-07-15T23:47:28.000Z
censusreporter/apps/census/management/commands/cache_to_s3.py
Durellg/censusreporter
c006c2f1c67fd29086fe532974f1eb57e70a0e2c
[ "MIT" ]
null
null
null
censusreporter/apps/census/management/commands/cache_to_s3.py
Durellg/censusreporter
c006c2f1c67fd29086fe532974f1eb57e70a0e2c
[ "MIT" ]
1
2020-07-17T17:49:42.000Z
2020-07-17T17:49:42.000Z
from django.core.management.base import BaseCommand from multiprocessing import Pool from traceback import format_exc from boto.s3.connection import S3Connection from boto.s3.key import Key import json import cStringIO import gzip from ...profile import geo_profile, enhance_api_data import logging logging.basicConfig(level=logging.WARN) logger = logging.getLogger(__name__) s3 = S3Connection() def s3_keyname(geoid): return '/1.0/data/profiles/%s.json' % geoid def key(geoid): bucket = s3.get_bucket('embed.censusreporter.org') keyname = s3_keyname(geoid) key = Key(bucket, keyname) return key def write_profile_json(s3_key, data): s3_key.metadata['Content-Type'] = 'application/json' s3_key.metadata['Content-Encoding'] = 'gzip' # create gzipped version of json in memory memfile = cStringIO.StringIO() #memfile.write(data) with gzip.GzipFile(filename=s3_key.key, mode='wb', fileobj=memfile) as gzip_data: gzip_data.write(data) memfile.seek(0) # store static version on S3 s3_key.set_contents_from_file(memfile) def seed(geoid): logger.info("Working on {}".format(geoid)) try: api_data = geo_profile(geoid) api_data = enhance_api_data(api_data) s3key = key(geoid) write_profile_json(s3key, json.dumps(api_data)) logger.info("Wrote to key {}".format(s3key)) except Exception, e: logger.error("Problem caching {}".format(geoid)) logger.exception(e) logger.info("Done working on {}".format(geoid)) class Command(BaseCommand): help = 'Pre-generates some Census Reporter content and places it on S3.' def handle(self, *args, **options): if not args: print "Please include the name of a file containing the seed geo_ids." return False parallelism = 4 if 'parallelism' in options: parallelism = int(options.get('parallelism')) pool = Pool(parallelism) seed_file = open(args[0], 'r') for geoid in seed_file: pool.apply_async(seed, (geoid.strip(),)) pool.close() pool.join()
27.151899
85
0.675524
62a3fb21823d64ea7d87192d63c3d02b9578f775
721
py
Python
tests/shuffle_tests.py
kimdiep/algorithmic-complexity
e3ffa1728f87a1a6a841b41a2784e32a76722a46
[ "MIT" ]
null
null
null
tests/shuffle_tests.py
kimdiep/algorithmic-complexity
e3ffa1728f87a1a6a841b41a2784e32a76722a46
[ "MIT" ]
null
null
null
tests/shuffle_tests.py
kimdiep/algorithmic-complexity
e3ffa1728f87a1a6a841b41a2784e32a76722a46
[ "MIT" ]
null
null
null
import pytest import sys sys.path.append('./') from shuffle import * # assumption made that array (list) input will not be empty [] def test_shuffle_for_empty_string(): arr = [''] assert type(random_shuffle(arr)) is list def test_shuffle_for_list_of_integers(): arr = [1,2,3,4,5] assert type(random_shuffle(arr)) is list def test_shuffle_for_list_of_strings(): arr = ['1','2','3','4','5'] assert type(random_shuffle(arr)) is list def test_shuffle_for_list_of_strings_and_integers(): arr = ['1',2,'3',4,5] assert type(random_shuffle(arr)) is list def test_shuffle_for_list_of_strings_and_integers_with_words(): arr = ['car', 'truck', 8, 4, 'bus', 6, 1] assert type(random_shuffle(arr)) is list
26.703704
63
0.71706
b7aa9354ab6dbf172990c2cd0a590ec6f5fe0f81
3,787
py
Python
haiku/_src/initializers_test.py
madisonmay/dm-haiku
de95f6f83561edeb582d46b2e3bf135051792b91
[ "Apache-2.0" ]
null
null
null
haiku/_src/initializers_test.py
madisonmay/dm-haiku
de95f6f83561edeb582d46b2e3bf135051792b91
[ "Apache-2.0" ]
null
null
null
haiku/_src/initializers_test.py
madisonmay/dm-haiku
de95f6f83561edeb582d46b2e3bf135051792b91
[ "Apache-2.0" ]
null
null
null
# Lint as: python3 # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.initializers.""" from absl.testing import absltest from haiku._src import initializers from haiku._src import test_utils import jax.numpy as jnp class InitializersTest(absltest.TestCase): @test_utils.transform_and_run def test_initializers(self): # This just makes sure we can call the initializers in accordance to the # API and get the right shapes and dtypes out. inits = [ initializers.Constant(42.0), initializers.RandomNormal(), initializers.RandomNormal(2.0), initializers.RandomUniform(), initializers.RandomUniform(3.0), initializers.VarianceScaling(), initializers.VarianceScaling(2.0), initializers.VarianceScaling(2.0, mode="fan_in"), initializers.VarianceScaling(2.0, mode="fan_out"), initializers.VarianceScaling(2.0, mode="fan_avg"), initializers.VarianceScaling(2.0, distribution="truncated_normal"), initializers.VarianceScaling(2.0, distribution="normal"), initializers.VarianceScaling(2.0, distribution="uniform"), initializers.UniformScaling(), initializers.UniformScaling(2.0), initializers.TruncatedNormal(), initializers.Orthogonal(), # Users are supposed to be able to use these. jnp.zeros, jnp.ones, ] # TODO(ibab): Test other shapes as well. shape = (20, 42) dtype = jnp.float32 for init in inits: generated = init(shape, dtype) self.assertEqual(generated.shape, shape) self.assertEqual(generated.dtype, dtype) @test_utils.transform_and_run def test_invalid_variance_scale(self): with self.assertRaisesRegex(ValueError, "scale.*must be a positive float"): initializers.VarianceScaling(scale=-1.0) with self.assertRaisesRegex(ValueError, "Invalid `mode` argument*"): initializers.VarianceScaling(mode="foo") with self.assertRaisesRegex(ValueError, "Invalid `distribution` argument*"): initializers.VarianceScaling(distribution="bar") @test_utils.transform_and_run def test_compute_fans(self): fan_in_out1 = initializers._compute_fans([]) self.assertEqual(fan_in_out1, (1, 1)) fan_in_out2 = initializers._compute_fans([2]) self.assertEqual(fan_in_out2, (2, 2)) fan_in_out3 = initializers._compute_fans([3, 4]) self.assertEqual(fan_in_out3, (3, 4)) fan_in_out4 = initializers._compute_fans([1, 2, 3, 4]) self.assertEqual(fan_in_out4, (6, 8)) @test_utils.transform_and_run def test_orthogonal_invalid_shape(self): init = initializers.Orthogonal() shape = (20,) with self.assertRaisesRegex( ValueError, "Orthogonal initializer requires at least a 2D shape."): init(shape, jnp.float32) @test_utils.transform_and_run def test_orthogonal_orthogonal(self): init = initializers.Orthogonal() shape = (42, 20) generated = init(shape, jnp.float32) self.assertEqual(generated.shape, shape) self.assertEqual(generated.dtype, jnp.float32) if __name__ == "__main__": absltest.main()
36.066667
80
0.70029
e459a6e688e3c9d51565d16f56827ef2e2a73d4d
160
py
Python
terraform_builder/release.py
mrlesmithjr/terraform-builder
08ed71333e988682ce50c6ef865fdd8ba27de395
[ "MIT" ]
7
2020-03-21T20:40:50.000Z
2022-02-17T17:17:53.000Z
terraform_builder/release.py
mrlesmithjr/terraform-builder
08ed71333e988682ce50c6ef865fdd8ba27de395
[ "MIT" ]
39
2020-03-24T04:37:21.000Z
2020-06-17T04:20:22.000Z
terraform_builder/release.py
mrlesmithjr/terraform-builder
08ed71333e988682ce50c6ef865fdd8ba27de395
[ "MIT" ]
null
null
null
"""terraform_builder/release.py""" # Version tracking for package. __author__ = 'Larry Smith Jr.' __version__ = '0.1.0' __package_name__ = 'terraform_builder'
22.857143
38
0.75
e624a1941ef6c296e1795cce20b65a8ad6927785
1,169
py
Python
orion/packages/utils/tests/test_nlp_utils.py
orion-search/orion-backend
b28815f85de1046612a777f290f982446b2a5ad7
[ "MIT" ]
19
2020-02-18T17:03:42.000Z
2021-09-22T08:02:17.000Z
orion/packages/utils/tests/test_nlp_utils.py
orion-search/orion-backend
b28815f85de1046612a777f290f982446b2a5ad7
[ "MIT" ]
116
2020-01-10T10:02:52.000Z
2022-03-01T23:10:10.000Z
orion/packages/utils/tests/test_nlp_utils.py
orion-search/orion-backend
b28815f85de1046612a777f290f982446b2a5ad7
[ "MIT" ]
2
2020-11-04T17:10:52.000Z
2021-02-14T18:37:02.000Z
import pytest from orion.packages.utils.nlp_utils import clean_name from orion.packages.utils.nlp_utils import identity_tokenizer def test_clean_name_from_double_initials(): name = "A. B. FooBar" result = clean_name(name) expected_result = None assert result == expected_result def test_clean_name_from_single_initial(): name = "A. FooBar" result = clean_name(name) expected_result = None assert result == expected_result def test_clean_name_from_single_initial_variation(): name = "Foo A. FooBar" result = clean_name(name) expected_result = "Foo FooBar" assert result == expected_result def test_clean_name_symbols(): name = "허준 ( Joon Hur ) 이용구 ( Yong Goo Lee )" result = clean_name(name) expected_result = "허준 Joon Hur 이용구 Yong Goo Lee" assert result == expected_result def test_clean_name(): name = "Foo FooBar" result = clean_name(name) expected_result = "Foo FooBar" assert result == expected_result def test_identity_tokenizer(): data = [1, 2, 3] expected_result = [1, 2, 3] result = identity_tokenizer(data) assert result == expected_result
20.155172
61
0.704021
ea2eff0ec5fc319d8de4393ae9a6cd9d4f6d1e94
937
py
Python
flask_wtforms_tutorial/routes.py
msmith2777/FinalProjectReal
460b302b783aae0857742e23b70dfdd110169689
[ "MIT" ]
null
null
null
flask_wtforms_tutorial/routes.py
msmith2777/FinalProjectReal
460b302b783aae0857742e23b70dfdd110169689
[ "MIT" ]
null
null
null
flask_wtforms_tutorial/routes.py
msmith2777/FinalProjectReal
460b302b783aae0857742e23b70dfdd110169689
[ "MIT" ]
2
2020-12-08T01:28:41.000Z
2020-12-08T01:32:16.000Z
from flask import current_app as app from flask import redirect, render_template, url_for, request, flash from .forms import * #@app.route("/", methods=['GET', 'POST']) @app.route("/", methods=['GET', 'POST']) def user_options(): form = UserOptionForm() if request.method == 'POST' and form.validate_on_submit(): option = request.form['option'] if option == "1": return redirect('/admin') else: return redirect("/reservations") return render_template("options.html", form=form, template="form-template") @app.route("/admin", methods=['GET', 'POST']) def admin(): form = AdminLoginForm() return render_template("admin.html", form=form, template="form-template") @app.route("/reservations", methods=['GET', 'POST']) def reservations(): form = ReservationForm() return render_template("reservations.html", form=form, template="form-template")
26.027778
84
0.649947
36f5f5cc29e885c74f5d25f35fc3a0ed20b52a2e
144,350
py
Python
upstream/emscripten/emcc.py
mkonicek/wasm
47441e963566ecb159f457eaf635a9822ecea056
[ "MIT" ]
1
2021-04-25T23:39:18.000Z
2021-04-25T23:39:18.000Z
emcc.py
intgr/emscripten
dff33368427fba16745c8ce52f11484a67b2855d
[ "MIT" ]
null
null
null
emcc.py
intgr/emscripten
dff33368427fba16745c8ce52f11484a67b2855d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2011 The Emscripten Authors. All rights reserved. # Emscripten is available under two separate licenses, the MIT license and the # University of Illinois/NCSA Open Source License. Both these licenses can be # found in the LICENSE file. """emcc - compiler helper script ============================= emcc is a drop-in replacement for a compiler like gcc or clang. See emcc --help for details. emcc can be influenced by a few environment variables: EMCC_DEBUG - "1" will log out useful information during compilation, as well as save each compiler step as an emcc-* file in the temp dir (by default /tmp/emscripten_temp). "2" will save additional emcc-* steps, that would normally not be separately produced (so this slows down compilation). EMMAKEN_NO_SDK - Will tell emcc *not* to use the emscripten headers. Instead your system headers will be used. """ from tools.toolchain_profiler import ToolchainProfiler import base64 import json import logging import os import re import shlex import shutil import stat import sys import time from enum import Enum from subprocess import PIPE from urllib.parse import quote import emscripten from tools import shared, system_libs from tools import colored_logger, diagnostics, building from tools.shared import unsuffixed, unsuffixed_basename, WINDOWS, safe_copy from tools.shared import run_process, read_and_preprocess, exit_with_error, DEBUG from tools.shared import do_replace from tools.response_file import substitute_response_files from tools.minimal_runtime_shell import generate_minimal_runtime_html import tools.line_endings from tools import js_manipulation from tools import wasm2c from tools import webassembly from tools import config from tools.settings import settings logger = logging.getLogger('emcc') # endings = dot + a suffix, safe to test by filename.endswith(endings) C_ENDINGS = ('.c', '.i') CXX_ENDINGS = ('.cpp', '.cxx', '.cc', '.c++', '.CPP', '.CXX', '.C', '.CC', '.C++', '.ii') OBJC_ENDINGS = ('.m', '.mi') OBJCXX_ENDINGS = ('.mm', '.mii') ASSEMBLY_CPP_ENDINGS = ('.S',) SPECIAL_ENDINGLESS_FILENAMES = (os.devnull,) SOURCE_ENDINGS = C_ENDINGS + CXX_ENDINGS + OBJC_ENDINGS + OBJCXX_ENDINGS + SPECIAL_ENDINGLESS_FILENAMES + ASSEMBLY_CPP_ENDINGS C_ENDINGS = C_ENDINGS + SPECIAL_ENDINGLESS_FILENAMES # consider the special endingless filenames like /dev/null to be C EXECUTABLE_ENDINGS = ('.wasm', '.html', '.js', '.mjs', '.out', '') DYNAMICLIB_ENDINGS = ('.dylib', '.so') # Windows .dll suffix is not included in this list, since those are never linked to directly on the command line. STATICLIB_ENDINGS = ('.a',) ASSEMBLY_ENDINGS = ('.ll', '.s') HEADER_ENDINGS = ('.h', '.hxx', '.hpp', '.hh', '.H', '.HXX', '.HPP', '.HH') # Supported LLD flags which we will pass through to the linker. SUPPORTED_LINKER_FLAGS = ( '--start-group', '--end-group', '-(', '-)', '--whole-archive', '--no-whole-archive', '-whole-archive', '-no-whole-archive' ) # Unsupported LLD flags which we will ignore. # Maps to true if the flag takes an argument. UNSUPPORTED_LLD_FLAGS = { # macOS-specific linker flag that libtool (ltmain.sh) will if macOS is detected. '-bind_at_load': False, '-M': False, # wasm-ld doesn't support soname or other dynamic linking flags (yet). Ignore them # in order to aid build systems that want to pass these flags. '-soname': True, '-allow-shlib-undefined': False, '-rpath': True, '-rpath-link': True, '-version-script': True, } DEFAULT_ASYNCIFY_IMPORTS = [ 'emscripten_sleep', 'emscripten_wget', 'emscripten_wget_data', 'emscripten_idb_load', 'emscripten_idb_store', 'emscripten_idb_delete', 'emscripten_idb_exists', 'emscripten_idb_load_blob', 'emscripten_idb_store_blob', 'SDL_Delay', 'emscripten_scan_registers', 'emscripten_lazy_load_code', 'emscripten_fiber_swap', 'wasi_snapshot_preview1.fd_sync', '__wasi_fd_sync', '_emval_await'] # Mapping of emcc opt levels to llvm opt levels. We use llvm opt level 3 in emcc # opt levels 2 and 3 (emcc 3 is unsafe opts, so unsuitable for the only level to # get llvm opt level 3, and speed-wise emcc level 2 is already the slowest/most # optimizing level) LLVM_OPT_LEVEL = { 0: ['-O0'], 1: ['-O1'], 2: ['-O3'], 3: ['-O3'], } # Target options final_js = None UBSAN_SANITIZERS = { 'alignment', 'bool', 'builtin', 'bounds', 'enum', 'float-cast-overflow', 'float-divide-by-zero', 'function', 'implicit-unsigned-integer-truncation', 'implicit-signed-integer-truncation', 'implicit-integer-sign-change', 'integer-divide-by-zero', 'nonnull-attribute', 'null', 'nullability-arg', 'nullability-assign', 'nullability-return', 'object-size', 'pointer-overflow', 'return', 'returns-nonnull-attribute', 'shift', 'signed-integer-overflow', 'unreachable', 'unsigned-integer-overflow', 'vla-bound', 'vptr', 'undefined', 'undefined-trap', 'implicit-integer-truncation', 'implicit-integer-arithmetic-value-change', 'implicit-conversion', 'integer', 'nullability', } VALID_ENVIRONMENTS = ('web', 'webview', 'worker', 'node', 'shell') SIMD_INTEL_FEATURE_TOWER = ['-msse', '-msse2', '-msse3', '-mssse3', '-msse4.1', '-msse4.2', '-mavx'] SIMD_NEON_FLAGS = ['-mfpu=neon'] # this function uses the global 'final' variable, which contains the current # final output file. if a method alters final, and calls this method, then it # must modify final globally (i.e. it can't receive final as a param and # return it) # TODO: refactor all this, a singleton that abstracts over the final output # and saving of intermediates def save_intermediate(name, suffix='js'): if not DEBUG: return if not final_js: logger.debug('(not saving intermediate %s because not generating JS)' % name) return building.save_intermediate(final_js, name + '.' + suffix) def save_intermediate_with_wasm(name, wasm_binary): if not DEBUG: return save_intermediate(name) # save the js building.save_intermediate(wasm_binary, name + '.wasm') class TimeLogger: last = time.time() @staticmethod def update(): TimeLogger.last = time.time() def log_time(name): """Log out times for emcc stages""" if DEBUG: now = time.time() logger.debug('emcc step "%s" took %.2f seconds', name, now - TimeLogger.last) TimeLogger.update() def base64_encode(b): b64 = base64.b64encode(b) return b64.decode('ascii') class OFormat(Enum): WASM = 1 JS = 2 MJS = 3 HTML = 4 BARE = 5 class EmccOptions: def __init__(self): self.output_file = None self.post_link = False self.executable = False self.compiler_wrapper = None self.oformat = None self.requested_debug = '' self.profiling = False self.profiling_funcs = False self.tracing = False self.emit_symbol_map = False self.use_closure_compiler = None self.closure_args = [] self.js_transform = None self.pre_js = '' # before all js self.post_js = '' # after all js self.extern_pre_js = '' # before all js, external to optimized code self.extern_post_js = '' # after all js, external to optimized code self.preload_files = [] self.embed_files = [] self.exclude_files = [] self.ignore_dynamic_linking = False self.shell_path = shared.path_from_root('src', 'shell.html') self.source_map_base = '' self.emrun = False self.cpu_profiler = False self.thread_profiler = False self.memory_profiler = False self.memory_init_file = None self.use_preload_cache = False self.use_preload_plugins = False self.default_object_extension = '.o' self.valid_abspaths = [] self.cfi = False # Specifies the line ending format to use for all generated text files. # Defaults to using the native EOL on each platform (\r\n on Windows, \n on # Linux & MacOS) self.output_eol = os.linesep self.no_entry = False self.shared = False self.relocatable = False def will_metadce(): # The metadce JS parsing code does not currently support the JS that gets generated # when assertions are enabled. if settings.ASSERTIONS: return False return settings.OPT_LEVEL >= 3 or settings.SHRINK_LEVEL >= 1 def setup_environment_settings(): # Environment setting based on user input environments = settings.ENVIRONMENT.split(',') if any([x for x in environments if x not in VALID_ENVIRONMENTS]): exit_with_error('Invalid environment specified in "ENVIRONMENT": ' + settings.ENVIRONMENT + '. Should be one of: ' + ','.join(VALID_ENVIRONMENTS)) settings.ENVIRONMENT_MAY_BE_WEB = not settings.ENVIRONMENT or 'web' in environments settings.ENVIRONMENT_MAY_BE_WEBVIEW = not settings.ENVIRONMENT or 'webview' in environments settings.ENVIRONMENT_MAY_BE_NODE = not settings.ENVIRONMENT or 'node' in environments settings.ENVIRONMENT_MAY_BE_SHELL = not settings.ENVIRONMENT or 'shell' in environments # The worker case also includes Node.js workers when pthreads are # enabled and Node.js is one of the supported environments for the build to # run on. Node.js workers are detected as a combination of # ENVIRONMENT_IS_WORKER and ENVIRONMENT_IS_NODE. settings.ENVIRONMENT_MAY_BE_WORKER = \ not settings.ENVIRONMENT or \ 'worker' in environments or \ (settings.ENVIRONMENT_MAY_BE_NODE and settings.USE_PTHREADS) if not settings.ENVIRONMENT_MAY_BE_WORKER and settings.PROXY_TO_WORKER: exit_with_error('If you specify --proxy-to-worker and specify a "-s ENVIRONMENT=" directive, it must include "worker" as a target! (Try e.g. -s ENVIRONMENT=web,worker)') if not settings.ENVIRONMENT_MAY_BE_WORKER and settings.USE_PTHREADS: exit_with_error('When building with multithreading enabled and a "-s ENVIRONMENT=" directive is specified, it must include "worker" as a target! (Try e.g. -s ENVIRONMENT=web,worker)') def minify_whitespace(): return settings.OPT_LEVEL >= 2 and settings.DEBUG_LEVEL == 0 def embed_memfile(): return (settings.SINGLE_FILE or (settings.MEM_INIT_METHOD == 0 and (not settings.MAIN_MODULE and not settings.SIDE_MODULE and not settings.GENERATE_SOURCE_MAP))) def expand_byte_size_suffixes(value): """Given a string with KB/MB size suffixes, such as "32MB", computes how many bytes that is and returns it as an integer. """ value = value.strip() match = re.match(r'^(\d+)\s*([kmgt]?b)?$', value, re.I) if not match: exit_with_error("invalid byte size `%s`. Valid suffixes are: kb, mb, gb, tb" % value) value, suffix = match.groups() value = int(value) if suffix: size_suffixes = {suffix: 1024 ** i for i, suffix in enumerate(['b', 'kb', 'mb', 'gb', 'tb'])} value *= size_suffixes[suffix.lower()] return value def apply_settings(changes): """Take a map of users settings {NAME: VALUE} and apply them to the global settings object. """ def standardize_setting_change(key, value): # boolean NO_X settings are aliases for X # (note that *non*-boolean setting values have special meanings, # and we can't just flip them, so leave them as-is to be # handled in a special way later) if key.startswith('NO_') and value in ('0', '1'): key = key[3:] value = str(1 - int(value)) return key, value for key, value in changes.items(): key, value = standardize_setting_change(key, value) if key in settings.internal_settings: exit_with_error('%s is an internal setting and cannot be set from command line', key) # map legacy settings which have aliases to the new names # but keep the original key so errors are correctly reported via the `setattr` below user_key = key if key in settings.legacy_settings and key in settings.alt_names: key = settings.alt_names[key] # In those settings fields that represent amount of memory, translate suffixes to multiples of 1024. if key in ('TOTAL_STACK', 'INITIAL_MEMORY', 'MEMORY_GROWTH_LINEAR_STEP', 'MEMORY_GROWTH_GEOMETRIC_CAP', 'GL_MAX_TEMP_BUFFER_SIZE', 'MAXIMUM_MEMORY', 'DEFAULT_PTHREAD_STACK_SIZE'): value = str(expand_byte_size_suffixes(value)) if value and value[0] == '@': filename = value[1:] if not os.path.exists(filename): exit_with_error('%s: file not found parsing argument: %s=%s' % (filename, key, value)) value = open(filename).read() else: value = value.replace('\\', '\\\\') existing = getattr(settings, user_key, None) expect_list = type(existing) == list try: value = parse_value(value, expect_list) except Exception as e: exit_with_error('a problem occurred in evaluating the content after a "-s", specifically "%s=%s": %s', key, value, str(e)) # Do some basic type checking by comparing to the existing settings. # Sadly we can't do this generically in the SettingsManager since there are settings # that so change types internally over time. # We only currently worry about lists vs non-lists. if expect_list != (type(value) == list): exit_with_error('setting `%s` expects `%s` but got `%s`' % (user_key, type(existing), type(value))) setattr(settings, user_key, value) if key == 'EXPORTED_FUNCTIONS': # used for warnings in emscripten.py settings.USER_EXPORTED_FUNCTIONS = settings.EXPORTED_FUNCTIONS.copy() # TODO(sbc): Remove this legacy way. if key == 'WASM_OBJECT_FILES': settings.LTO = 0 if value else 'full' def is_ar_file_with_missing_index(archive_file): # We parse the archive header outselves because llvm-nm --print-armap is slower and less # reliable. # See: https://github.com/emscripten-core/emscripten/issues/10195 archive_header = b'!<arch>\n' file_header_size = 60 with open(archive_file, 'rb') as f: header = f.read(len(archive_header)) if header != archive_header: # This is not even an ar file return False file_header = f.read(file_header_size) if len(file_header) != file_header_size: # We don't have any file entires at all so we don't consider the index missing return False name = file_header[:16].strip() # If '/' is the name of the first file we have an index return name != b'/' def ensure_archive_index(archive_file): # Fastcomp linking works without archive indexes. if not settings.AUTO_ARCHIVE_INDEXES: return if is_ar_file_with_missing_index(archive_file): diagnostics.warning('emcc', '%s: archive is missing an index; Use emar when creating libraries to ensure an index is created', archive_file) diagnostics.warning('emcc', '%s: adding index', archive_file) run_process([shared.LLVM_RANLIB, archive_file]) def get_all_js_syms(): # Runs the js compiler to generate a list of all symbols available in the JS # libraries. This must be done separately for each linker invokation since the # list of symbols depends on what settings are used. # TODO(sbc): Find a way to optimize this. Potentially we could add a super-set # mode of the js compiler that would generate a list of all possible symbols # that could be checked in. old_full = settings.INCLUDE_FULL_LIBRARY try: # Temporarily define INCLUDE_FULL_LIBRARY since we want a full list # of all available JS library functions. settings.INCLUDE_FULL_LIBRARY = True settings.ONLY_CALC_JS_SYMBOLS = True emscripten.generate_struct_info() glue, forwarded_data = emscripten.compile_settings() forwarded_json = json.loads(forwarded_data) library_fns = forwarded_json['Functions']['libraryFunctions'] library_fns_list = [] for name in library_fns: if shared.is_c_symbol(name): name = shared.demangle_c_symbol_name(name) library_fns_list.append(name) finally: settings.ONLY_CALC_JS_SYMBOLS = False settings.INCLUDE_FULL_LIBRARY = old_full return library_fns_list def filter_link_flags(flags, using_lld): def is_supported(f): if using_lld: for flag, takes_arg in UNSUPPORTED_LLD_FLAGS.items(): # lld allows various flags to have either a single -foo or double --foo if f.startswith(flag) or f.startswith('-' + flag): diagnostics.warning('linkflags', 'ignoring unsupported linker flag: `%s`', f) return False, takes_arg return True, False else: if f in SUPPORTED_LINKER_FLAGS: return True, False # Silently ignore -l/-L flags when not using lld. If using lld allow # them to pass through the linker if f.startswith('-l') or f.startswith('-L'): return False, False diagnostics.warning('linkflags', 'ignoring unsupported linker flag: `%s`', f) return False, False results = [] skip_next = False for f in flags: if skip_next: skip_next = False continue keep, skip_next = is_supported(f[1]) if keep: results.append(f) return results def fix_windows_newlines(text): # Avoid duplicating \r\n to \r\r\n when writing out text. if WINDOWS: text = text.replace('\r\n', '\n') return text def cxx_to_c_compiler(cxx): # Convert C++ compiler name into C compiler name dirname, basename = os.path.split(cxx) basename = basename.replace('clang++', 'clang').replace('g++', 'gcc').replace('em++', 'emcc') return os.path.join(dirname, basename) def get_binaryen_passes(): # run the binaryen optimizer in -O2+. in -O0 we don't need it obviously, while # in -O1 we don't run it as the LLVM optimizer has been run, and it does the # great majority of the work; not running the binaryen optimizer in that case # keeps -O1 mostly-optimized while compiling quickly and without rewriting # DWARF etc. run_binaryen_optimizer = settings.OPT_LEVEL >= 2 passes = [] # safe heap must run before post-emscripten, so post-emscripten can apply the sbrk ptr if settings.SAFE_HEAP: passes += ['--safe-heap'] if settings.MEMORY64 == 2: passes += ['--memory64-lowering'] if run_binaryen_optimizer: passes += ['--post-emscripten'] if not settings.EXIT_RUNTIME: passes += ['--no-exit-runtime'] if run_binaryen_optimizer: passes += [building.opt_level_to_str(settings.OPT_LEVEL, settings.SHRINK_LEVEL)] elif settings.STANDALONE_WASM: # even if not optimizing, make an effort to remove all unused imports and # exports, to make the wasm as standalone as possible passes += ['--remove-unused-module-elements'] # when optimizing, use the fact that low memory is never used (1024 is a # hardcoded value in the binaryen pass) if run_binaryen_optimizer and settings.GLOBAL_BASE >= 1024: passes += ['--low-memory-unused'] if settings.AUTODEBUG: # adding '--flatten' here may make these even more effective passes += ['--instrument-locals'] passes += ['--log-execution'] passes += ['--instrument-memory'] if settings.LEGALIZE_JS_FFI: # legalize it again now, as the instrumentation may need it passes += ['--legalize-js-interface'] if settings.EMULATE_FUNCTION_POINTER_CASTS: # note that this pass must run before asyncify, as if it runs afterwards we only # generate the byn$fpcast_emu functions after asyncify runs, and so we wouldn't # be able to further process them. passes += ['--fpcast-emu'] if settings.ASYNCIFY: passes += ['--asyncify'] if settings.ASSERTIONS: passes += ['--pass-arg=asyncify-asserts'] if settings.ASYNCIFY_ADVISE: passes += ['--pass-arg=asyncify-verbose'] if settings.ASYNCIFY_IGNORE_INDIRECT: passes += ['--pass-arg=asyncify-ignore-indirect'] passes += ['--pass-arg=asyncify-imports@%s' % ','.join(settings.ASYNCIFY_IMPORTS)] # shell escaping can be confusing; try to emit useful warnings def check_human_readable_list(items): for item in items: if item.count('(') != item.count(')'): logger.warning('''emcc: ASYNCIFY list contains an item without balanced parentheses ("(", ")"):''') logger.warning(''' ''' + item) logger.warning('''This may indicate improper escaping that led to splitting inside your names.''') logger.warning('''Try to quote the entire argument, like this: -s 'ASYNCIFY_ONLY=["foo(int, char)", "bar"]' ''') break if settings.ASYNCIFY_REMOVE: check_human_readable_list(settings.ASYNCIFY_REMOVE) passes += ['--pass-arg=asyncify-removelist@%s' % ','.join(settings.ASYNCIFY_REMOVE)] if settings.ASYNCIFY_ADD: check_human_readable_list(settings.ASYNCIFY_ADD) passes += ['--pass-arg=asyncify-addlist@%s' % ','.join(settings.ASYNCIFY_ADD)] if settings.ASYNCIFY_ONLY: check_human_readable_list(settings.ASYNCIFY_ONLY) passes += ['--pass-arg=asyncify-onlylist@%s' % ','.join(settings.ASYNCIFY_ONLY)] if settings.BINARYEN_IGNORE_IMPLICIT_TRAPS: passes += ['--ignore-implicit-traps'] # normally we can assume the memory, if imported, has not been modified # beforehand (in fact, in most cases the memory is not even imported anyhow, # but it is still safe to pass the flag), and is therefore filled with zeros. # the one exception is dynamic linking of a side module: the main module is ok # as it is loaded first, but the side module may be assigned memory that was # previously used. if run_binaryen_optimizer and not settings.SIDE_MODULE: passes += ['--zero-filled-memory'] if settings.BINARYEN_EXTRA_PASSES: # BINARYEN_EXTRA_PASSES is comma-separated, and we support both '-'-prefixed and # unprefixed pass names extras = settings.BINARYEN_EXTRA_PASSES.split(',') passes += [('--' + p) if p[0] != '-' else p for p in extras if p] return passes def make_js_executable(script): src = open(script).read() cmd = shared.shlex_join(config.JS_ENGINE) if not os.path.isabs(config.JS_ENGINE[0]): # TODO: use whereis etc. And how about non-*NIX? cmd = '/usr/bin/env -S ' + cmd logger.debug('adding `#!` to JavaScript file: %s' % cmd) # add shebang with open(script, 'w') as f: f.write('#!%s\n' % cmd) f.write(src) try: os.chmod(script, stat.S_IMODE(os.stat(script).st_mode) | stat.S_IXUSR) # make executable except OSError: pass # can fail if e.g. writing the executable to /dev/null def do_split_module(wasm_file): os.rename(wasm_file, wasm_file + '.orig') args = ['--instrument'] building.run_binaryen_command('wasm-split', wasm_file + '.orig', outfile=wasm_file, args=args) def is_dash_s_for_emcc(args, i): # -s OPT=VALUE or -s OPT or -sOPT are all interpreted as emscripten flags. # -s by itself is a linker option (alias for --strip-all) if args[i] == '-s': if len(args) <= i + 1: return False arg = args[i + 1] else: arg = args[i][2:] arg = arg.split('=')[0] return arg.isidentifier() and arg.isupper() def filter_out_dynamic_libs(options, inputs): # Filters out "fake" dynamic libraries that are really just intermediate object files. def check(input_file): if get_file_suffix(input_file) in DYNAMICLIB_ENDINGS: if not options.ignore_dynamic_linking: diagnostics.warning('emcc', 'ignoring dynamic library %s because not compiling to JS or HTML, remember to link it when compiling to JS or HTML at the end', os.path.basename(input_file)) return False else: return True return [f for f in inputs if check(f[1])] def filter_out_duplicate_dynamic_libs(inputs): seen = set() # Filter out duplicate "fake" shared libraries (intermediate object files). # See test_core.py:test_redundant_link def check(input_file): if get_file_suffix(input_file) in DYNAMICLIB_ENDINGS: abspath = os.path.abspath(input_file) if abspath in seen: return False seen.add(abspath) return True return [f for f in inputs if check(f[1])] def process_dynamic_libs(dylibs): for dylib in dylibs: imports = webassembly.get_imports(dylib) new_exports = [] for imp in imports: if imp.kind not in (webassembly.ExternType.FUNC, webassembly.ExternType.GLOBAL): continue new_exports.append(imp.field) logger.debug('Adding exports based on `%s`: %s', dylib, new_exports) settings.EXPORTED_FUNCTIONS.extend(shared.asmjs_mangle(e) for e in new_exports) settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE.extend(new_exports) building.user_requested_exports.update(shared.asmjs_mangle(e) for e in new_exports) exports = webassembly.get_exports(dylib) for export in exports: settings.SIDE_MODULE_EXPORTS.append(export.name) def unmangle_symbols_from_cmdline(symbols): def unmangle(x): return x.replace('.', ' ').replace('#', '&').replace('?', ',') if type(symbols) is list: return [unmangle(x) for x in symbols] return unmangle(symbols) def parse_s_args(args): settings_changes = [] for i in range(len(args)): if args[i].startswith('-s'): if is_dash_s_for_emcc(args, i): if args[i] == '-s': key = args[i + 1] args[i + 1] = '' else: key = args[i][2:] args[i] = '' # If not = is specified default to 1 if '=' not in key: key += '=1' # Special handling of browser version targets. A version -1 means that the specific version # is not supported at all. Replace those with INT32_MAX to make it possible to compare e.g. # #if MIN_FIREFOX_VERSION < 68 if re.match(r'MIN_.*_VERSION(=.*)?', key): try: if int(key.split('=')[1]) < 0: key = key.split('=')[0] + '=0x7FFFFFFF' except Exception: pass settings_changes.append(key) newargs = [a for a in args if a] return (settings_changes, newargs) def emsdk_ldflags(user_args): if os.environ.get('EMMAKEN_NO_SDK'): return [] library_paths = [ shared.Cache.get_lib_dir(absolute=True) ] ldflags = ['-L' + l for l in library_paths] if '-nostdlib' in user_args: return ldflags # TODO(sbc): Add system libraries here rather than conditionally including # them via .symbols files. libraries = [] ldflags += ['-l' + l for l in libraries] return ldflags def emsdk_cflags(user_args): cflags = ['--sysroot=' + shared.Cache.get_sysroot_dir(absolute=True)] def array_contains_any_of(hay, needles): for n in needles: if n in hay: return True if array_contains_any_of(user_args, SIMD_INTEL_FEATURE_TOWER) or array_contains_any_of(user_args, SIMD_NEON_FLAGS): if '-msimd128' not in user_args: exit_with_error('Passing any of ' + ', '.join(SIMD_INTEL_FEATURE_TOWER + SIMD_NEON_FLAGS) + ' flags also requires passing -msimd128!') cflags += ['-D__SSE__=1'] if array_contains_any_of(user_args, SIMD_INTEL_FEATURE_TOWER[1:]): cflags += ['-D__SSE2__=1'] if array_contains_any_of(user_args, SIMD_INTEL_FEATURE_TOWER[2:]): cflags += ['-D__SSE3__=1'] if array_contains_any_of(user_args, SIMD_INTEL_FEATURE_TOWER[3:]): cflags += ['-D__SSSE3__=1'] if array_contains_any_of(user_args, SIMD_INTEL_FEATURE_TOWER[4:]): cflags += ['-D__SSE4_1__=1'] if array_contains_any_of(user_args, SIMD_INTEL_FEATURE_TOWER[5:]): cflags += ['-D__SSE4_2__=1'] if array_contains_any_of(user_args, SIMD_INTEL_FEATURE_TOWER[6:]): cflags += ['-D__AVX__=1'] if array_contains_any_of(user_args, SIMD_NEON_FLAGS): cflags += ['-D__ARM_NEON__=1'] return cflags + ['-Xclang', '-iwithsysroot' + os.path.join('/include', 'compat')] def get_clang_flags(): return ['-target', get_llvm_target()] def get_llvm_target(): if settings.MEMORY64: return 'wasm64-unknown-emscripten' else: return 'wasm32-unknown-emscripten' cflags = None def get_cflags(options, user_args): global cflags if cflags: return cflags # Flags we pass to the compiler when building C/C++ code # We add these to the user's flags (newargs), but not when building .s or .S assembly files cflags = get_clang_flags() if options.tracing: cflags.append('-D__EMSCRIPTEN_TRACING__=1') if settings.USE_PTHREADS: cflags.append('-D__EMSCRIPTEN_PTHREADS__=1') if not settings.STRICT: # The preprocessor define EMSCRIPTEN is deprecated. Don't pass it to code # in strict mode. Code should use the define __EMSCRIPTEN__ instead. cflags.append('-DEMSCRIPTEN') # if exception catching is disabled, we can prevent that code from being # generated in the frontend if settings.DISABLE_EXCEPTION_CATCHING and not settings.EXCEPTION_HANDLING: cflags.append('-fignore-exceptions') if settings.INLINING_LIMIT: cflags.append('-fno-inline-functions') if settings.RELOCATABLE: cflags.append('-fPIC') cflags.append('-fvisibility=default') if settings.LTO: cflags.append('-flto=' + settings.LTO) else: # With LTO mode these args get passed instead # at link time when the backend runs. for a in building.llvm_backend_args(): cflags += ['-mllvm', a] # Set the LIBCPP ABI version to at least 2 so that we get nicely aligned string # data and other nice fixes. cflags += [# '-fno-threadsafe-statics', # disabled due to issue 1289 '-D__EMSCRIPTEN_major__=' + str(shared.EMSCRIPTEN_VERSION_MAJOR), '-D__EMSCRIPTEN_minor__=' + str(shared.EMSCRIPTEN_VERSION_MINOR), '-D__EMSCRIPTEN_tiny__=' + str(shared.EMSCRIPTEN_VERSION_TINY), '-D_LIBCPP_ABI_VERSION=2'] # For compatability with the fastcomp compiler that defined these cflags += ['-Dunix', '-D__unix', '-D__unix__'] # Changes to default clang behavior # Implicit functions can cause horribly confusing function pointer type errors, see #2175 # If your codebase really needs them - very unrecommended! - you can disable the error with # -Wno-error=implicit-function-declaration # or disable even a warning about it with # -Wno-implicit-function-declaration cflags += ['-Werror=implicit-function-declaration'] system_libs.add_ports_cflags(cflags, settings) if os.environ.get('EMMAKEN_NO_SDK') or '-nostdinc' in user_args: return cflags cflags += emsdk_cflags(user_args) return cflags def get_file_suffix(filename): """Parses the essential suffix of a filename, discarding Unix-style version numbers in the name. For example for 'libz.so.1.2.8' returns '.so'""" if filename in SPECIAL_ENDINGLESS_FILENAMES: return filename while filename: filename, suffix = os.path.splitext(filename) if not suffix[1:].isdigit(): return suffix return '' def get_secondary_target(target, ext): # Depending on the output format emscripten creates zero or more secondary # output files (e.g. the .wasm file when creating JS output, or the # .js and the .wasm file when creating html output. # Thus function names the secondary output files, while ensuring they # never collide with the primary one. base = unsuffixed(target) if get_file_suffix(target) == ext: base += '_' return base + ext def in_temp(name): temp_dir = shared.get_emscripten_temp_dir() return os.path.join(temp_dir, os.path.basename(name)) run_via_emxx = False # # Main run() function # def run(args): # Additional compiler flags that we treat as if they were passed to us on the # commandline EMCC_CFLAGS = os.environ.get('EMCC_CFLAGS') if DEBUG: cmd = shared.shlex_join(args) if EMCC_CFLAGS: cmd += ' + ' + EMCC_CFLAGS logger.warning('invocation: ' + cmd + ' (in ' + os.getcwd() + ')') if EMCC_CFLAGS: args.extend(shlex.split(EMCC_CFLAGS)) # Strip args[0] (program name) args = args[1:] misc_temp_files = shared.configuration.get_temp_files() # Handle some global flags # read response files very early on try: args = substitute_response_files(args) except IOError as e: exit_with_error(e) if '--help' in args: # Documentation for emcc and its options must be updated in: # site/source/docs/tools_reference/emcc.rst # This then gets built (via: `make -C site text`) to: # site/build/text/docs/tools_reference/emcc.txt # This then needs to be copied to its final home in docs/emcc.txt from where # we read it here. We have CI rules that ensure its always up-to-date. with open(shared.path_from_root('docs', 'emcc.txt'), 'r') as f: print(f.read()) print(''' ------------------------------------------------------------------ emcc: supported targets: llvm bitcode, WebAssembly, NOT elf (autoconf likes to see elf above to enable shared object support) ''') return 0 if '--version' in args: # if the emscripten folder is not a git repo, don't run git show - that can # look up and find the revision in a parent directory that is a git repo revision = '' if os.path.exists(shared.path_from_root('.git')): revision = run_process(['git', 'rev-parse', 'HEAD'], stdout=PIPE, stderr=PIPE, cwd=shared.path_from_root()).stdout.strip() elif os.path.exists(shared.path_from_root('emscripten-revision.txt')): revision = open(shared.path_from_root('emscripten-revision.txt')).read().strip() if revision: revision = ' (%s)' % revision print('''%s%s Copyright (C) 2014 the Emscripten authors (see AUTHORS.txt) This is free and open source software under the MIT license. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ''' % (version_string(), revision)) return 0 if run_via_emxx: clang = shared.CLANG_CXX else: clang = shared.CLANG_CC if len(args) == 1 and args[0] == '-v': # -v with no inputs # autoconf likes to see 'GNU' in the output to enable shared object support print(version_string(), file=sys.stderr) return shared.check_call([clang, '-v'] + get_clang_flags(), check=False).returncode if '-dumpmachine' in args: print(get_llvm_target()) return 0 if '-dumpversion' in args: # gcc's doc states "Print the compiler version [...] and don't do anything else." print(shared.EMSCRIPTEN_VERSION) return 0 if '--cflags' in args: # fake running the command, to see the full args we pass to clang args = [x for x in args if x != '--cflags'] with misc_temp_files.get_file(suffix='.o') as temp_target: input_file = 'hello_world.c' cmd = [shared.PYTHON, sys.argv[0], shared.path_from_root('tests', input_file), '-v', '-c', '-o', temp_target] + args proc = run_process(cmd, stderr=PIPE, check=False) if proc.returncode != 0: print(proc.stderr) exit_with_error('error getting cflags') lines = [x for x in proc.stderr.splitlines() if clang in x and input_file in x] parts = shlex.split(lines[0].replace('\\', '\\\\')) parts = [x for x in parts if x not in ['-c', '-o', '-v', '-emit-llvm'] and input_file not in x and temp_target not in x] print(shared.shlex_join(parts[1:])) return 0 shared.check_sanity() def get_language_mode(args): return_next = False for item in args: if return_next: return item if item == '-x': return_next = True continue if item.startswith('-x'): return item[2:] return '' language_mode = get_language_mode(args) EMMAKEN_CFLAGS = os.environ.get('EMMAKEN_CFLAGS') if EMMAKEN_CFLAGS: args += shlex.split(EMMAKEN_CFLAGS) # ---------------- Utilities --------------- seen_names = {} def uniquename(name): if name not in seen_names: seen_names[name] = str(len(seen_names)) return unsuffixed(name) + '_' + seen_names[name] + shared.suffix(name) # ---------------- End configs ------------- with ToolchainProfiler.profile_block('parse arguments and setup'): ## Parse args newargs = args.copy() # Scan and strip emscripten specific cmdline warning flags. # This needs to run before other cmdline flags have been parsed, so that # warnings are properly printed during arg parse. newargs = diagnostics.capture_warnings(newargs) for i in range(len(newargs)): if newargs[i] in ('-l', '-L', '-I'): # Scan for individual -l/-L/-I arguments and concatenate the next arg on # if there is no suffix newargs[i] += newargs[i + 1] newargs[i + 1] = '' options, settings_changes, user_js_defines, newargs = parse_args(newargs) if options.post_link or options.oformat == OFormat.BARE: diagnostics.warning('experimental', '--oformat=base/--post-link are experimental and subject to change.') if '-print-search-dirs' in newargs: return run_process([clang, '-print-search-dirs'], check=False).returncode if options.emrun: options.pre_js += open(shared.path_from_root('src', 'emrun_prejs.js')).read() + '\n' options.post_js += open(shared.path_from_root('src', 'emrun_postjs.js')).read() + '\n' # emrun mode waits on program exit settings.EXIT_RUNTIME = 1 if options.cpu_profiler: options.post_js += open(shared.path_from_root('src', 'cpuprofiler.js')).read() + '\n' if options.memory_profiler: settings.MEMORYPROFILER = 1 if options.thread_profiler: options.post_js += open(shared.path_from_root('src', 'threadprofiler.js')).read() + '\n' if options.memory_init_file is None: options.memory_init_file = settings.OPT_LEVEL >= 2 # TODO: support source maps with js_transform if options.js_transform and settings.GENERATE_SOURCE_MAP: logger.warning('disabling source maps because a js transform is being done') settings.GENERATE_SOURCE_MAP = 0 explicit_settings_changes, newargs = parse_s_args(newargs) settings_changes += explicit_settings_changes # Find input files # These three arrays are used to store arguments of different types for # type-specific processing. In order to shuffle the arguments back together # after processing, all of these arrays hold tuples (original_index, value). # Note that the index part of the tuple can have a fractional part for input # arguments that expand into multiple processed arguments, as in -Wl,-f1,-f2. input_files = [] libs = [] link_flags = [] has_header_inputs = False lib_dirs = [] has_dash_c = '-c' in newargs has_dash_S = '-S' in newargs has_dash_E = '-E' in newargs compile_only = has_dash_c or has_dash_S or has_dash_E def add_link_flag(i, f): if f.startswith('-l'): libs.append((i, f[2:])) if f.startswith('-L'): lib_dirs.append(f[2:]) link_flags.append((i, f)) # find input files with a simple heuristic. we should really analyze # based on a full understanding of gcc params, right now we just assume that # what is left contains no more |-x OPT| things skip = False for i in range(len(newargs)): if skip: skip = False continue arg = newargs[i] if arg in ('-MT', '-MF', '-MJ', '-MQ', '-D', '-U', '-o', '-x', '-Xpreprocessor', '-include', '-imacros', '-idirafter', '-iprefix', '-iwithprefix', '-iwithprefixbefore', '-isysroot', '-imultilib', '-A', '-isystem', '-iquote', '-install_name', '-compatibility_version', '-current_version', '-I', '-L', '-include-pch', '-Xlinker', '-Xclang'): skip = True if not arg.startswith('-'): # we already removed -o <target>, so all these should be inputs newargs[i] = '' # os.devnul should always be reported as existing but there is bug in windows # python before 3.8: # https://bugs.python.org/issue1311 if not os.path.exists(arg) and arg != os.devnull: exit_with_error('%s: No such file or directory ("%s" was expected to be an input file, based on the commandline arguments provided)', arg, arg) file_suffix = get_file_suffix(arg) if file_suffix in HEADER_ENDINGS: has_header_inputs = True if file_suffix in STATICLIB_ENDINGS and not building.is_ar(arg): if building.is_bitcode(arg): message = arg + ': File has a suffix of a static library ' + str(STATICLIB_ENDINGS) + ', but instead is an LLVM bitcode file! When linking LLVM bitcode files use .bc or .o.' else: message = arg + ': Unknown format, not a static library!' exit_with_error(message) if file_suffix in DYNAMICLIB_ENDINGS and not building.is_bitcode(arg) and not building.is_wasm(arg): # For shared libraries that are neither bitcode nor wasm, assuming its local native # library and attempt to find a library by the same name in our own library path. # TODO(sbc): Do we really need this feature? See test_other.py:test_local_link libname = unsuffixed_basename(arg).lstrip('lib') libs.append((i, libname)) else: input_files.append((i, arg)) elif arg.startswith('-L'): add_link_flag(i, arg) newargs[i] = '' elif arg.startswith('-l'): add_link_flag(i, arg) newargs[i] = '' elif arg.startswith('-Wl,'): # Multiple comma separated link flags can be specified. Create fake # fractional indices for these: -Wl,a,b,c,d at index 4 becomes: # (4, a), (4.25, b), (4.5, c), (4.75, d) link_flags_to_add = arg.split(',')[1:] for flag_index, flag in enumerate(link_flags_to_add): add_link_flag(i + float(flag_index) / len(link_flags_to_add), flag) newargs[i] = '' elif arg == '-Xlinker': add_link_flag(i + 1, newargs[i + 1]) newargs[i] = '' newargs[i + 1] = '' elif arg == '-s': # -s and some other compiler flags are normally passed onto the linker # TODO(sbc): Pass this and other flags through when using lld # link_flags.append((i, arg)) newargs[i] = '' elif arg == '-': input_files.append((i, arg)) newargs[i] = '' if not input_files and not link_flags: exit_with_error('no input files') newargs = [a for a in newargs if a] settings_map = {} for s in settings_changes: key, value = s.split('=', 1) settings_map[key] = value # Libraries are searched before settings_changes are applied, so apply the # value for STRICT from command line already now. strict_cmdline = settings_map.get('STRICT') if strict_cmdline: settings.STRICT = int(strict_cmdline) # Apply optimization level settings if settings.OPT_LEVEL >= 1: settings.ASSERTIONS = 0 if settings.SHRINK_LEVEL >= 2: settings.EVAL_CTORS = 1 # For users that opt out of WARN_ON_UNDEFINED_SYMBOLS we assume they also # want to opt out of ERROR_ON_UNDEFINED_SYMBOLS. if settings_map.get('WARN_ON_UNDEFINED_SYMBOLS') == '0': settings.ERROR_ON_UNDEFINED_SYMBOLS = 0 if settings.MINIMAL_RUNTIME or settings_map.get('MINIMAL_RUNTIME') in ('1', '2'): # Remove the default exported functions 'malloc', 'free', etc. those should only be linked in if used settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE = [] # Apply -s settings in newargs here (after optimization levels, so they can override them) apply_settings(settings_map) specified_target = options.output_file if os.environ.get('EMMAKEN_JUST_CONFIGURE') or 'conftest.c' in args: # configure tests want a more shell-like style, where we emit return codes on exit() settings.EXIT_RUNTIME = 1 # use node.js raw filesystem access, to behave just like a native executable settings.NODERAWFS = 1 # Add `#!` line to output JS and make it executable. options.executable = True # Autoconf expects the executable output file to be called `a.out` default_target_name = 'a.out' elif settings.SIDE_MODULE: default_target_name = 'a.out.wasm' else: default_target_name = 'a.out.js' # specified_target is the user-specified one, target is what we will generate if specified_target: target = specified_target # check for the existence of the output directory now, to avoid having # to do so repeatedly when each of the various output files (.mem, .wasm, # etc) are written. This gives a more useful error message than the # IOError and python backtrace that users would otherwise see. dirname = os.path.dirname(target) if dirname and not os.path.isdir(dirname): exit_with_error("specified output file (%s) is in a directory that does not exist" % target) else: target = default_target_name settings.TARGET_BASENAME = target_basename = unsuffixed_basename(target) if settings.EXTRA_EXPORTED_RUNTIME_METHODS: diagnostics.warning('deprecated', 'EXTRA_EXPORTED_RUNTIME_METHODS is deprecated, please use EXPORTED_RUNTIME_METHODS instead') settings.EXPORTED_RUNTIME_METHODS += settings.EXTRA_EXPORTED_RUNTIME_METHODS final_suffix = get_file_suffix(target) if has_dash_c or has_dash_S or has_dash_E or '-M' in newargs or '-MM' in newargs: if has_dash_c: if '-emit-llvm' in newargs: options.default_object_extension = '.bc' elif has_dash_S: if '-emit-llvm' in newargs: options.default_object_extension = '.ll' else: options.default_object_extension = '.s' elif '-M' in newargs or '-MM' in newargs: options.default_object_extension = '.mout' # not bitcode, not js; but just dependency rule of the input file if specified_target: if len(input_files) > 1: exit_with_error('cannot specify -o with -c/-S/-E/-M and multiple source files') else: target = target_basename + options.default_object_extension # If no output format was sepecific we try to imply the format based on # the output filename extension. if not options.oformat: if settings.SIDE_MODULE or final_suffix == '.wasm': options.oformat = OFormat.WASM elif final_suffix == '.mjs': options.oformat = OFormat.MJS elif final_suffix == '.html': options.oformat = OFormat.HTML else: options.oformat = OFormat.JS if options.oformat == OFormat.MJS: settings.EXPORT_ES6 = 1 settings.MODULARIZE = 1 if options.oformat in (OFormat.WASM, OFormat.BARE): # If the user asks directly for a wasm file then this *is* the target wasm_target = target else: # Otherwise the wasm file is produced alongside the final target. wasm_target = get_secondary_target(target, '.wasm') # Apply user -jsD settings for s in user_js_defines: settings[s[0]] = s[1] shared.verify_settings() if (options.oformat == OFormat.WASM or settings.PURE_WASI) and not settings.SIDE_MODULE: # if the output is just a wasm file, it will normally be a standalone one, # as there is no JS. an exception are side modules, as we can't tell at # compile time whether JS will be involved or not - the main module may # have JS, and the side module is expected to link against that. # we also do not support standalone mode in fastcomp. settings.STANDALONE_WASM = 1 if settings.LZ4: settings.EXPORTED_RUNTIME_METHODS += ['LZ4'] if settings.WASM2C: # wasm2c only makes sense with standalone wasm - there will be no JS, # just wasm and then C settings.STANDALONE_WASM = 1 # wasm2c doesn't need any special handling of i64, we have proper i64 # handling on the FFI boundary, which is exactly like the case of JS with # BigInt support settings.WASM_BIGINT = 1 if options.no_entry: settings.EXPECT_MAIN = 0 elif settings.STANDALONE_WASM: if '_main' in settings.EXPORTED_FUNCTIONS: # TODO(sbc): Make this into a warning? logger.debug('including `_main` in EXPORTED_FUNCTIONS is not necessary in standalone mode') else: # In normal non-standalone mode we have special handling of `_main` in EXPORTED_FUNCTIONS. # 1. If the user specifies exports, but doesn't include `_main` we assume they want to build a # reactor. # 2. If the user doesn't export anything we default to exporting `_main` (unless `--no-entry` # is specified (see above). if 'EXPORTED_FUNCTIONS' in settings_map: if '_main' not in settings.USER_EXPORTED_FUNCTIONS: settings.EXPECT_MAIN = 0 else: assert not settings.EXPORTED_FUNCTIONS settings.EXPORTED_FUNCTIONS = ['_main'] if settings.STANDALONE_WASM: # In STANDALONE_WASM mode we either build a command or a reactor. # See https://github.com/WebAssembly/WASI/blob/main/design/application-abi.md # For a command we always want EXIT_RUNTIME=1 # For a reactor we always want EXIT_RUNTIME=0 if 'EXIT_RUNTIME' in settings_map: exit_with_error('Explictly setting EXIT_RUNTIME not compatible with STANDALONE_WASM. EXIT_RUNTIME will always be True for programs (with a main function) and False for reactors (not main function).') settings.EXIT_RUNTIME = settings.EXPECT_MAIN # Note the exports the user requested building.user_requested_exports.update(settings.EXPORTED_FUNCTIONS) def default_setting(name, new_default): if name not in settings_map: setattr(settings, name, new_default) # -s ASSERTIONS=1 implies basic stack overflow checks, and ASSERTIONS=2 # implies full stack overflow checks. if settings.ASSERTIONS: # However, we don't set this default in PURE_WASI, or when we are linking without standard # libraries because STACK_OVERFLOW_CHECK depends on emscripten_stack_get_end which is defined # in libcompiler-rt. if not settings.PURE_WASI and '-nostdlib' not in newargs and '-nodefaultlibs' not in newargs: default_setting('STACK_OVERFLOW_CHECK', max(settings.ASSERTIONS, settings.STACK_OVERFLOW_CHECK)) if settings.LLD_REPORT_UNDEFINED or settings.STANDALONE_WASM: # Reporting undefined symbols at wasm-ld time requires us to know if we have a `main` function # or not, as does standalone wasm mode. # TODO(sbc): Remove this once this becomes the default settings.IGNORE_MISSING_MAIN = 0 # It is unlikely that developers targeting "native web" APIs with MINIMAL_RUNTIME need # errno support by default. if settings.MINIMAL_RUNTIME: default_setting('SUPPORT_ERRNO', 0) if settings.STRICT: default_setting('STRICT_JS', 1) default_setting('AUTO_JS_LIBRARIES', 0) default_setting('AUTO_NATIVE_LIBRARIES', 0) default_setting('AUTO_ARCHIVE_INDEXES', 0) default_setting('IGNORE_MISSING_MAIN', 0) default_setting('DEFAULT_TO_CXX', 0) # Default to TEXTDECODER=2 (always use TextDecoder to decode UTF-8 strings) # in -Oz builds, since custom decoder for UTF-8 takes up space. # In pthreads enabled builds, TEXTDECODER==2 may not work, see # https://github.com/whatwg/encoding/issues/172 # When supporting shell environments, do not do this as TextDecoder is not # widely supported there. if settings.SHRINK_LEVEL >= 2 and not settings.USE_PTHREADS and \ not settings.ENVIRONMENT_MAY_BE_SHELL: default_setting('TEXTDECODER', 2) # If set to 1, we will run the autodebugger (the automatic debugging tool, see # tools/autodebugger). Note that this will disable inclusion of libraries. This # is useful because including dlmalloc makes it hard to compare native and js # builds if os.environ.get('EMCC_AUTODEBUG'): settings.AUTODEBUG = 1 # Use settings if settings.DEBUG_LEVEL > 1 and options.use_closure_compiler: diagnostics.warning('emcc', 'disabling closure because debug info was requested') options.use_closure_compiler = False if settings.WASM == 2 and settings.SINGLE_FILE: exit_with_error('cannot have both WASM=2 and SINGLE_FILE enabled at the same time') if settings.SEPARATE_DWARF and settings.WASM2JS: exit_with_error('cannot have both SEPARATE_DWARF and WASM2JS at the same time (as there is no wasm file)') if settings.MINIMAL_RUNTIME_STREAMING_WASM_COMPILATION and settings.MINIMAL_RUNTIME_STREAMING_WASM_INSTANTIATION: exit_with_error('MINIMAL_RUNTIME_STREAMING_WASM_COMPILATION and MINIMAL_RUNTIME_STREAMING_WASM_INSTANTIATION are mutually exclusive!') if options.emrun: if settings.MINIMAL_RUNTIME: exit_with_error('--emrun is not compatible with -s MINIMAL_RUNTIME=1') settings.EXPORTED_RUNTIME_METHODS.append('addOnExit') if options.use_closure_compiler: settings.USE_CLOSURE_COMPILER = options.use_closure_compiler if settings.CLOSURE_WARNINGS not in ['quiet', 'warn', 'error']: exit_with_error('Invalid option -s CLOSURE_WARNINGS=%s specified! Allowed values are "quiet", "warn" or "error".' % settings.CLOSURE_WARNINGS) # Include dynCall() function by default in DYNCALLS builds in classic runtime; in MINIMAL_RUNTIME, must add this explicitly. if settings.DYNCALLS and not settings.MINIMAL_RUNTIME: settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$dynCall'] if settings.MAIN_MODULE: assert not settings.SIDE_MODULE if settings.MAIN_MODULE == 1: settings.INCLUDE_FULL_LIBRARY = 1 settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$preloadDylibs'] elif settings.SIDE_MODULE: assert not settings.MAIN_MODULE # memory init file is not supported with side modules, must be executable synchronously (for dlopen) options.memory_init_file = False # If we are including the entire JS library then we know for sure we will, by definition, # require all the reverse dependencies. if settings.INCLUDE_FULL_LIBRARY: default_setting('REVERSE_DEPS', 'all') if settings.MAIN_MODULE or settings.SIDE_MODULE: if settings.MAIN_MODULE == 1 or settings.SIDE_MODULE == 1: settings.LINKABLE = 1 settings.EXPORT_ALL = 1 settings.RELOCATABLE = 1 if settings.MAIN_MODULE: settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$getDylinkMetadata'] if settings.RELOCATABLE: settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += [ '$reportUndefinedSymbols', '$relocateExports', '$GOTHandler', '__heap_base', '__stack_pointer', ] settings.EXPORTED_FUNCTIONS += [ # This needs to be exported on the Module object too so it's visible # to side modules too. '___heap_base', # Unconditional dependency in library_dylink.js '_setThrew', ] if settings.MINIMAL_RUNTIME: exit_with_error('MINIMAL_RUNTIME is not compatible with relocatable output') if settings.WASM2JS: exit_with_error('WASM2JS is not compatible with relocatable output') # shared modules need memory utilities to allocate their memory settings.EXPORTED_RUNTIME_METHODS += ['allocate'] settings.ALLOW_TABLE_GROWTH = 1 # various settings require sbrk() access if settings.DETERMINISTIC or \ settings.EMSCRIPTEN_TRACING or \ settings.MALLOC == 'emmalloc' or \ settings.SAFE_HEAP or \ settings.MEMORYPROFILER: settings.EXPORTED_FUNCTIONS += ['_sbrk'] if settings.MEMORYPROFILER: settings.EXPORTED_FUNCTIONS += ['___heap_base', '_emscripten_stack_get_base', '_emscripten_stack_get_end', '_emscripten_stack_get_current'] if settings.ASYNCIFY_LAZY_LOAD_CODE: settings.ASYNCIFY = 1 if settings.ASYNCIFY: # See: https://github.com/emscripten-core/emscripten/issues/12065 # See: https://github.com/emscripten-core/emscripten/issues/12066 settings.DYNCALLS = 1 settings.EXPORTED_FUNCTIONS += ['_emscripten_stack_get_base', '_emscripten_stack_get_end', '_emscripten_stack_set_limits'] settings.ASYNCIFY_ADD = unmangle_symbols_from_cmdline(settings.ASYNCIFY_ADD) settings.ASYNCIFY_REMOVE = unmangle_symbols_from_cmdline(settings.ASYNCIFY_REMOVE) settings.ASYNCIFY_ONLY = unmangle_symbols_from_cmdline(settings.ASYNCIFY_ONLY) # SSEx is implemented on top of SIMD128 instruction set, but do not pass SSE flags to LLVM # so it won't think about generating native x86 SSE code. newargs = [x for x in newargs if x not in SIMD_INTEL_FEATURE_TOWER and x not in SIMD_NEON_FLAGS] link_to_object = False if options.shared or options.relocatable: # Until we have a better story for actually producing runtime shared libraries # we support a compatibility mode where shared libraries are actually just # object files linked with `wasm-ld --relocatable` or `llvm-link` in the case # of LTO. if final_suffix in EXECUTABLE_ENDINGS: diagnostics.warning('emcc', '-shared/-r used with executable output suffix. This behaviour is deprecated. Please remove -shared/-r to build an executable or avoid the executable suffix (%s) when building object files.' % final_suffix) else: if options.shared: diagnostics.warning('emcc', 'linking a library with `-shared` will emit a static object file. This is a form of emulation to support existing build systems. If you want to build a runtime shared library use the SIDE_MODULE setting.') link_to_object = True if settings.SUPPORT_BIG_ENDIAN: settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += [ '$LE_HEAP_STORE_U16', '$LE_HEAP_STORE_I16', '$LE_HEAP_STORE_U32', '$LE_HEAP_STORE_I32', '$LE_HEAP_STORE_F32', '$LE_HEAP_STORE_F64', '$LE_HEAP_LOAD_U16', '$LE_HEAP_LOAD_I16', '$LE_HEAP_LOAD_U32', '$LE_HEAP_LOAD_I32', '$LE_HEAP_LOAD_F32', '$LE_HEAP_LOAD_F64' ] if settings.STACK_OVERFLOW_CHECK: # The basic writeStackCookie/checkStackCookie mechanism just needs to know where the end # of the stack is. settings.EXPORTED_FUNCTIONS += ['_emscripten_stack_get_end', '_emscripten_stack_get_free'] if settings.STACK_OVERFLOW_CHECK == 2: # The full checking done by binaryen's `StackCheck` pass also needs to know the base of the # stack. settings.EXPORTED_FUNCTIONS += ['_emscripten_stack_get_base'] # We call one of these two functions during startup which caches the stack limits # in wasm globals allowing get_base/get_free to be super fast. # See compiler-rt/stack_limits.S. if settings.RELOCATABLE: settings.EXPORTED_FUNCTIONS += ['_emscripten_stack_set_limits'] else: settings.EXPORTED_FUNCTIONS += ['_emscripten_stack_init'] if settings.MODULARIZE: if settings.PROXY_TO_WORKER: exit_with_error('-s MODULARIZE=1 is not compatible with --proxy-to-worker (if you want to run in a worker with -s MODULARIZE=1, you likely want to do the worker side setup manually)') # in MINIMAL_RUNTIME we may not need to emit the Promise code, as the # HTML output creates a singleton instance, and it does so without the # Promise. However, in Pthreads mode the Promise is used for worker # creation. if settings.MINIMAL_RUNTIME and options.oformat == OFormat.HTML and not settings.USE_PTHREADS: settings.EXPORT_READY_PROMISE = 0 if settings.LEGACY_VM_SUPPORT: if settings.WASM2JS: settings.POLYFILL_OLD_MATH_FUNCTIONS = 1 # Support all old browser versions settings.MIN_FIREFOX_VERSION = 0 settings.MIN_SAFARI_VERSION = 0 settings.MIN_IE_VERSION = 0 settings.MIN_EDGE_VERSION = 0 settings.MIN_CHROME_VERSION = 0 if settings.MIN_CHROME_VERSION <= 37: settings.WORKAROUND_OLD_WEBGL_UNIFORM_UPLOAD_IGNORED_OFFSET_BUG = 1 setup_environment_settings() # Silently drop any individual backwards compatibility emulation flags that are known never to occur on browsers that support WebAssembly. if not settings.WASM2JS: settings.POLYFILL_OLD_MATH_FUNCTIONS = 0 settings.WORKAROUND_OLD_WEBGL_UNIFORM_UPLOAD_IGNORED_OFFSET_BUG = 0 forced_stdlibs = [] if settings.STB_IMAGE and final_suffix in EXECUTABLE_ENDINGS: forced_stdlibs.append('libstb_image') settings.EXPORTED_FUNCTIONS += ['_stbi_load', '_stbi_load_from_memory', '_stbi_image_free'] if settings.USE_WEBGL2: settings.MAX_WEBGL_VERSION = 2 # MIN_WEBGL_VERSION=2 implies MAX_WEBGL_VERSION=2 if settings.MIN_WEBGL_VERSION == 2: default_setting('MAX_WEBGL_VERSION', 2) if settings.MIN_WEBGL_VERSION > settings.MAX_WEBGL_VERSION: exit_with_error('MIN_WEBGL_VERSION must be smaller or equal to MAX_WEBGL_VERSION!') if not settings.GL_SUPPORT_SIMPLE_ENABLE_EXTENSIONS and settings.GL_SUPPORT_AUTOMATIC_ENABLE_EXTENSIONS: exit_with_error('-s GL_SUPPORT_SIMPLE_ENABLE_EXTENSIONS=0 only makes sense with -s GL_SUPPORT_AUTOMATIC_ENABLE_EXTENSIONS=0!') if settings.ASMFS and final_suffix in EXECUTABLE_ENDINGS: forced_stdlibs.append('libasmfs') settings.FILESYSTEM = 0 settings.SYSCALLS_REQUIRE_FILESYSTEM = 0 settings.FETCH = 1 settings.SYSTEM_JS_LIBRARIES.append((0, shared.path_from_root('src', 'library_asmfs.js'))) # Explicitly drop linking in a malloc implementation if program is not using any dynamic allocation calls. if not settings.USES_DYNAMIC_ALLOC: settings.MALLOC = 'none' if settings.MALLOC == 'emmalloc': settings.SYSTEM_JS_LIBRARIES.append((0, shared.path_from_root('src', 'library_emmalloc.js'))) if settings.FETCH and final_suffix in EXECUTABLE_ENDINGS: forced_stdlibs.append('libfetch') settings.SYSTEM_JS_LIBRARIES.append((0, shared.path_from_root('src', 'library_fetch.js'))) if settings.USE_PTHREADS: settings.FETCH_WORKER_FILE = unsuffixed(os.path.basename(target)) + '.fetch.js' if settings.DEMANGLE_SUPPORT: settings.EXPORTED_FUNCTIONS += ['___cxa_demangle'] if settings.FULL_ES3: settings.FULL_ES2 = 1 settings.MAX_WEBGL_VERSION = max(2, settings.MAX_WEBGL_VERSION) if settings.EMBIND: forced_stdlibs.append('libembind') settings.EXPORTED_FUNCTIONS += ['_stackSave', '_stackRestore', '_stackAlloc'] if not settings.STANDALONE_WASM: # in standalone mode, crt1 will call the constructors from inside the wasm settings.EXPORTED_FUNCTIONS.append('___wasm_call_ctors') if settings.RELOCATABLE and not settings.DYNAMIC_EXECUTION: exit_with_error('cannot have both DYNAMIC_EXECUTION=0 and RELOCATABLE enabled at the same time, since RELOCATABLE needs to eval()') if settings.SIDE_MODULE and settings.GLOBAL_BASE != -1: exit_with_error('Cannot set GLOBAL_BASE when building SIDE_MODULE') if settings.RELOCATABLE or settings.LINKABLE: default_setting('ERROR_ON_UNDEFINED_SYMBOLS', 0) default_setting('WARN_ON_UNDEFINED_SYMBOLS', 0) if 'DISABLE_EXCEPTION_CATCHING' in settings_map and 'EXCEPTION_CATCHING_ALLOWED' in settings_map: # If we get here then the user specified both DISABLE_EXCEPTION_CATCHING and EXCEPTION_CATCHING_ALLOWED # on the command line. This is no longer valid so report either an error or a warning (for # backwards compat with the old `DISABLE_EXCEPTION_CATCHING=2` if settings_map['DISABLE_EXCEPTION_CATCHING'] in ('0', '2'): diagnostics.warning('deprecated', 'DISABLE_EXCEPTION_CATCHING=X is no longer needed when specifying EXCEPTION_CATCHING_ALLOWED') else: exit_with_error('DISABLE_EXCEPTION_CATCHING and EXCEPTION_CATCHING_ALLOWED are mutually exclusive') if settings.EXCEPTION_CATCHING_ALLOWED: settings.DISABLE_EXCEPTION_CATCHING = 0 if settings.DISABLE_EXCEPTION_THROWING and not settings.DISABLE_EXCEPTION_CATCHING: exit_with_error("DISABLE_EXCEPTION_THROWING was set (probably from -fno-exceptions) but is not compatible with enabling exception catching (DISABLE_EXCEPTION_CATCHING=0). If you don't want exceptions, set DISABLE_EXCEPTION_CATCHING to 1; if you do want exceptions, don't link with -fno-exceptions") if options.use_preload_plugins or len(options.preload_files) or len(options.embed_files): if settings.NODERAWFS: exit_with_error('--preload-file and --embed-file cannot be used with NODERAWFS which disables virtual filesystem') # if we include any files, or intend to use preload plugins, then we definitely need filesystem support settings.FORCE_FILESYSTEM = 1 if settings.PROXY_TO_WORKER or options.use_preload_plugins: settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$Browser'] if not settings.MINIMAL_RUNTIME: # In non-MINIMAL_RUNTIME, the core runtime depends on these functions to be present. (In MINIMAL_RUNTIME, they are # no longer always bundled in) settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += [ '$keepRuntimeAlive', '$demangle', '$demangleAll', '$jsStackTrace', '$stackTrace' ] if settings.FILESYSTEM: # to flush streams on FS exit, we need to be able to call fflush # we only include it if the runtime is exitable, or when ASSERTIONS # (ASSERTIONS will check that streams do not need to be flushed, # helping people see when they should have enabled EXIT_RUNTIME) if settings.EXIT_RUNTIME or settings.ASSERTIONS: settings.EXPORTED_FUNCTIONS += ['_fflush'] if settings.SUPPORT_ERRNO: # so setErrNo JS library function can report errno back to C settings.EXPORTED_FUNCTIONS += ['___errno_location'] if settings.SAFE_HEAP: # SAFE_HEAP check includes calling emscripten_get_sbrk_ptr() from wasm settings.EXPORTED_FUNCTIONS += ['_emscripten_get_sbrk_ptr', '_emscripten_stack_get_base'] settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$unSign'] if not settings.DECLARE_ASM_MODULE_EXPORTS: settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$exportAsmFunctions'] if settings.ALLOW_MEMORY_GROWTH: # Setting ALLOW_MEMORY_GROWTH turns off ABORTING_MALLOC, as in that mode we default to # the behavior of trying to grow and returning 0 from malloc on failure, like # a standard system would. However, if the user sets the flag it # overrides that. default_setting('ABORTING_MALLOC', 0) if settings.USE_PTHREADS: if settings.USE_PTHREADS == 2: exit_with_error('USE_PTHREADS=2 is no longer supported') if settings.ALLOW_MEMORY_GROWTH: diagnostics.warning('pthreads-mem-growth', 'USE_PTHREADS + ALLOW_MEMORY_GROWTH may run non-wasm code slowly, see https://github.com/WebAssembly/design/issues/1271') # UTF8Decoder.decode may not work with a view of a SharedArrayBuffer, see https://github.com/whatwg/encoding/issues/172 settings.TEXTDECODER = 0 settings.SYSTEM_JS_LIBRARIES.append((0, shared.path_from_root('src', 'library_pthread.js'))) newargs += ['-pthread'] settings.EXPORTED_FUNCTIONS += [ '___emscripten_pthread_data_constructor', '___pthread_tsd_run_dtors', '__emscripten_call_on_thread', '__emscripten_do_dispatch_to_thread', '__emscripten_main_thread_futex', '__emscripten_thread_init', '_emscripten_current_thread_process_queued_calls', '__emscripten_allow_main_runtime_queued_calls', '_emscripten_futex_wake', '_emscripten_get_global_libc', '_emscripten_main_browser_thread_id', '_emscripten_main_thread_process_queued_calls', '_emscripten_register_main_browser_thread_id', '_emscripten_run_in_main_runtime_thread_js', '_emscripten_stack_set_limits', '_emscripten_sync_run_in_main_thread_2', '_emscripten_sync_run_in_main_thread_4', '_emscripten_tls_init', '_pthread_self', ] # Some of these symbols are using by worker.js but otherwise unreferenced. # Because emitDCEGraph only considered the main js file, and not worker.js # we have explictly mark these symbols as user-exported so that they will # kept alive through DCE. # TODO: Find a less hacky way to do this, perhaps by also scanning worker.js # for roots. building.user_requested_exports.add('_emscripten_tls_init') building.user_requested_exports.add('_emscripten_current_thread_process_queued_calls') # set location of worker.js settings.PTHREAD_WORKER_FILE = unsuffixed(os.path.basename(target)) + '.worker.js' else: settings.SYSTEM_JS_LIBRARIES.append((0, shared.path_from_root('src', 'library_pthread_stub.js'))) if settings.FORCE_FILESYSTEM and not settings.MINIMAL_RUNTIME: # when the filesystem is forced, we export by default methods that filesystem usage # may need, including filesystem usage from standalone file packager output (i.e. # file packages not built together with emcc, but that are loaded at runtime # separately, and they need emcc's output to contain the support they need) if not settings.ASMFS: settings.EXPORTED_RUNTIME_METHODS += [ 'FS_createPath', 'FS_createDataFile', 'FS_createPreloadedFile', 'FS_createLazyFile', 'FS_createDevice', 'FS_unlink' ] settings.EXPORTED_RUNTIME_METHODS += [ 'addRunDependency', 'removeRunDependency', ] if not settings.MINIMAL_RUNTIME or settings.EXIT_RUNTIME: # MINIMAL_RUNTIME only needs callRuntimeCallbacks in certain cases, but the normal runtime # always does. settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$callRuntimeCallbacks'] if settings.USE_PTHREADS: # memalign is used to ensure allocated thread stacks are aligned. settings.EXPORTED_FUNCTIONS += ['_memalign'] if settings.MINIMAL_RUNTIME: building.user_requested_exports.add('exit') if settings.PROXY_TO_PTHREAD: settings.EXPORTED_FUNCTIONS += ['_emscripten_proxy_main'] # pthread stack setup and other necessary utilities def include_and_export(name): settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$' + name] settings.EXPORTED_FUNCTIONS += [name] include_and_export('establishStackSpace') include_and_export('invokeEntryPoint') if not settings.MINIMAL_RUNTIME: # noExitRuntime does not apply to MINIMAL_RUNTIME. include_and_export('keepRuntimeAlive') if settings.MODULARIZE: if settings.EXPORT_NAME == 'Module': exit_with_error('pthreads + MODULARIZE currently require you to set -s EXPORT_NAME=Something (see settings.js) to Something != Module, so that the .worker.js file can work') # MODULARIZE+USE_PTHREADS mode requires extra exports out to Module so that worker.js # can access them: # general threading variables: settings.EXPORTED_RUNTIME_METHODS += ['PThread'] # To keep code size to minimum, MINIMAL_RUNTIME does not utilize the global ExitStatus # object, only regular runtime has it. if not settings.MINIMAL_RUNTIME: settings.EXPORTED_RUNTIME_METHODS += ['ExitStatus'] if settings.SIDE_MODULE: diagnostics.warning('experimental', '-s SIDE_MODULE + pthreads is experimental') elif settings.MAIN_MODULE: diagnostics.warning('experimental', '-s MAIN_MODULE + pthreads is experimental') elif settings.LINKABLE: diagnostics.warning('experimental', '-s LINKABLE + pthreads is experimental') if settings.PROXY_TO_WORKER: exit_with_error('--proxy-to-worker is not supported with -s USE_PTHREADS>0! Use the option -s PROXY_TO_PTHREAD=1 if you want to run the main thread of a multithreaded application in a web worker.') else: if settings.PROXY_TO_PTHREAD: exit_with_error('-s PROXY_TO_PTHREAD=1 requires -s USE_PTHREADS to work!') def check_memory_setting(setting): if settings[setting] % webassembly.WASM_PAGE_SIZE != 0: exit_with_error(f'{setting} must be a multiple of WebAssembly page size (64KiB), was {settings[setting]}') check_memory_setting('INITIAL_MEMORY') if settings.INITIAL_MEMORY >= 2 * 1024 * 1024 * 1024: exit_with_error('INITIAL_MEMORY must be less than 2GB due to current spec limitations') if settings.INITIAL_MEMORY < settings.TOTAL_STACK: exit_with_error(f'INITIAL_MEMORY must be larger than TOTAL_STACK, was {settings.INITIAL_MEMORY} (TOTAL_STACK={settings.TOTAL_STACK})') if settings.MAXIMUM_MEMORY != -1: check_memory_setting('MAXIMUM_MEMORY') if settings.MEMORY_GROWTH_LINEAR_STEP != -1: check_memory_setting('MEMORY_GROWTH_LINEAR_STEP') if settings.USE_PTHREADS and settings.ALLOW_MEMORY_GROWTH and settings.MAXIMUM_MEMORY == -1: exit_with_error('If pthreads and memory growth are enabled, MAXIMUM_MEMORY must be set') if settings.EXPORT_ES6 and not settings.MODULARIZE: # EXPORT_ES6 requires output to be a module if 'MODULARIZE' in settings_map: exit_with_error('EXPORT_ES6 requires MODULARIZE to be set') settings.MODULARIZE = 1 if settings.MODULARIZE and not settings.DECLARE_ASM_MODULE_EXPORTS: # When MODULARIZE option is used, currently requires declaring all module exports # individually - TODO: this could be optimized exit_with_error('DECLARE_ASM_MODULE_EXPORTS=0 is not compatible with MODULARIZE') # When not declaring wasm module exports in outer scope one by one, disable minifying # wasm module export names so that the names can be passed directly to the outer scope. # Also, if using library_exports.js API, disable minification so that the feature can work. if not settings.DECLARE_ASM_MODULE_EXPORTS or 'exports.js' in [x for _, x in libs]: settings.MINIFY_ASMJS_EXPORT_NAMES = 0 # Enable minification of wasm imports and exports when appropriate, if we # are emitting an optimized JS+wasm combo (then the JS knows how to load the minified names). # Things that process the JS after this operation would be done must disable this. # For example, ASYNCIFY_LAZY_LOAD_CODE needs to identify import names. if will_metadce() and \ settings.OPT_LEVEL >= 2 and \ settings.DEBUG_LEVEL <= 2 and \ options.oformat not in (OFormat.WASM, OFormat.BARE) and \ not settings.LINKABLE and \ not settings.STANDALONE_WASM and \ not settings.AUTODEBUG and \ not settings.ASSERTIONS and \ not settings.RELOCATABLE and \ not settings.ASYNCIFY_LAZY_LOAD_CODE and \ settings.MINIFY_ASMJS_EXPORT_NAMES: settings.MINIFY_WASM_IMPORTS_AND_EXPORTS = 1 settings.MINIFY_WASM_IMPORTED_MODULES = 1 if settings.MINIMAL_RUNTIME: # Minimal runtime uses a different default shell file if options.shell_path == shared.path_from_root('src', 'shell.html'): options.shell_path = shared.path_from_root('src', 'shell_minimal_runtime.html') if settings.ASSERTIONS and settings.MINIMAL_RUNTIME: # In ASSERTIONS-builds, functions UTF8ArrayToString() and stringToUTF8Array() (which are not JS library functions), both # use warnOnce(), which in MINIMAL_RUNTIME is a JS library function, so explicitly have to mark dependency to warnOnce() # in that case. If string functions are turned to library functions in the future, then JS dependency tracking can be # used and this special directive can be dropped. settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['$warnOnce'] # Require explicit -lfoo.js flags to link with JS libraries. settings.AUTO_JS_LIBRARIES = 0 if settings.MODULARIZE and settings.EXPORT_NAME == 'Module' and options.oformat == OFormat.HTML and \ (options.shell_path == shared.path_from_root('src', 'shell.html') or options.shell_path == shared.path_from_root('src', 'shell_minimal.html')): exit_with_error('Due to collision in variable name "Module", the shell file "' + options.shell_path + '" is not compatible with build options "-s MODULARIZE=1 -s EXPORT_NAME=Module". Either provide your own shell file, change the name of the export to something else to avoid the name collision. (see https://github.com/emscripten-core/emscripten/issues/7950 for details)') if settings.STANDALONE_WASM: if settings.USE_PTHREADS: exit_with_error('STANDALONE_WASM does not support pthreads yet') if settings.MINIMAL_RUNTIME: exit_with_error('MINIMAL_RUNTIME reduces JS size, and is incompatible with STANDALONE_WASM which focuses on ignoring JS anyhow and being 100% wasm') # the wasm must be runnable without the JS, so there cannot be anything that # requires JS legalization settings.LEGALIZE_JS_FFI = 0 # TODO(sbc): Remove WASM2JS here once the size regression it would introduce has been fixed. if settings.USE_PTHREADS or settings.RELOCATABLE or settings.ASYNCIFY_LAZY_LOAD_CODE or settings.WASM2JS: settings.IMPORTED_MEMORY = 1 if settings.WASM_BIGINT: settings.LEGALIZE_JS_FFI = 0 if settings.SINGLE_FILE: settings.GENERATE_SOURCE_MAP = 0 if options.use_closure_compiler == 2 and not settings.WASM2JS: exit_with_error('closure compiler mode 2 assumes the code is asm.js, so not meaningful for wasm') if 'MEM_INIT_METHOD' in settings_map: exit_with_error('MEM_INIT_METHOD is not supported in wasm. Memory will be embedded in the wasm binary if threads are not used, and included in a separate file if threads are used.') if settings.WASM2JS: settings.MAYBE_WASM2JS = 1 # when using wasm2js, if the memory segments are in the wasm then they # end up converted by wasm2js into base64 encoded JS. alternatively, we # can use a .mem file like asm.js used to. # generally we follow what the options tell us to do (which is to use # a .mem file in most cases, since it is binary & compact). however, for # pthreads we must keep the memory segments in the wasm as they will be # passive segments which the .mem format cannot handle. settings.MEM_INIT_IN_WASM = not options.memory_init_file or settings.SINGLE_FILE or settings.USE_PTHREADS else: # wasm includes the mem init in the wasm binary. The exception is # wasm2js, which behaves more like js. options.memory_init_file = True settings.MEM_INIT_IN_WASM = True # wasm side modules have suffix .wasm if settings.SIDE_MODULE and target.endswith('.js'): diagnostics.warning('emcc', 'output suffix .js requested, but wasm side modules are just wasm files; emitting only a .wasm, no .js') sanitize = set() for arg in newargs: if arg.startswith('-fsanitize='): sanitize.update(arg.split('=', 1)[1].split(',')) elif arg.startswith('-fno-sanitize='): sanitize.difference_update(arg.split('=', 1)[1].split(',')) if sanitize: settings.USE_OFFSET_CONVERTER = 1 settings.EXPORTED_FUNCTIONS += [ '_memalign', '_emscripten_builtin_memalign', '_emscripten_builtin_malloc', '_emscripten_builtin_free', '___heap_base', '___global_base' ] if settings.USE_OFFSET_CONVERTER and settings.USE_PTHREADS: settings.EXPORTED_RUNTIME_METHODS += ['WasmOffsetConverter'] if sanitize & UBSAN_SANITIZERS: if '-fsanitize-minimal-runtime' in newargs: settings.UBSAN_RUNTIME = 1 else: settings.UBSAN_RUNTIME = 2 if 'leak' in sanitize: settings.USE_LSAN = 1 settings.EXIT_RUNTIME = 1 if settings.LINKABLE: exit_with_error('LSan does not support dynamic linking') if 'address' in sanitize: settings.USE_ASAN = 1 if not settings.UBSAN_RUNTIME: settings.UBSAN_RUNTIME = 2 settings.EXPORTED_FUNCTIONS += [ '_emscripten_builtin_memset', '_asan_c_load_1', '_asan_c_load_1u', '_asan_c_load_2', '_asan_c_load_2u', '_asan_c_load_4', '_asan_c_load_4u', '_asan_c_load_f', '_asan_c_load_d', '_asan_c_store_1', '_asan_c_store_1u', '_asan_c_store_2', '_asan_c_store_2u', '_asan_c_store_4', '_asan_c_store_4u', '_asan_c_store_f', '_asan_c_store_d', ] if settings.ASAN_SHADOW_SIZE != -1: diagnostics.warning('emcc', 'ASAN_SHADOW_SIZE is ignored and will be removed in a future release') if settings.GLOBAL_BASE != -1: exit_with_error("ASan does not support custom GLOBAL_BASE") max_mem = settings.INITIAL_MEMORY if settings.ALLOW_MEMORY_GROWTH: max_mem = settings.MAXIMUM_MEMORY if max_mem == -1: exit_with_error('ASan requires a finite MAXIMUM_MEMORY') shadow_size = max_mem // 8 settings.GLOBAL_BASE = shadow_size if settings.SAFE_HEAP: # SAFE_HEAP instruments ASan's shadow memory accesses. # Since the shadow memory starts at 0, the act of accessing the shadow memory is detected # by SAFE_HEAP as a null pointer dereference. exit_with_error('ASan does not work with SAFE_HEAP') if settings.LINKABLE: exit_with_error('ASan does not support dynamic linking') if sanitize and settings.GENERATE_SOURCE_MAP: settings.LOAD_SOURCE_MAP = 1 if settings.LOAD_SOURCE_MAP and settings.USE_PTHREADS: settings.EXPORTED_RUNTIME_METHODS += ['WasmSourceMap'] if settings.GLOBAL_BASE == -1: # default if nothing else sets it # a higher global base is useful for optimizing load/store offsets, as it # enables the --post-emscripten pass settings.GLOBAL_BASE = 1024 # various settings require malloc/free support from JS if settings.RELOCATABLE or \ settings.BUILD_AS_WORKER or \ settings.USE_WEBGPU or \ settings.USE_PTHREADS or \ settings.OFFSCREENCANVAS_SUPPORT or \ settings.LEGACY_GL_EMULATION or \ not settings.DISABLE_EXCEPTION_CATCHING or \ settings.ASYNCIFY or \ settings.ASMFS or \ settings.DEMANGLE_SUPPORT or \ settings.FORCE_FILESYSTEM or \ settings.STB_IMAGE or \ settings.EMBIND or \ settings.FETCH or \ settings.PROXY_POSIX_SOCKETS or \ options.memory_profiler or \ sanitize: settings.EXPORTED_FUNCTIONS += ['_malloc', '_free'] if not settings.DISABLE_EXCEPTION_CATCHING: # If not for LTO builds, we could handle these by adding deps_info.py # entries for __cxa_find_matching_catch_* functions. However, under # LTO these symbols don't exist prior the linking. settings.EXPORTED_FUNCTIONS += ['___cxa_is_pointer_type', '___cxa_can_catch'] if settings.ASYNCIFY: if not settings.ASYNCIFY_IGNORE_INDIRECT: # if we are not ignoring indirect calls, then we must treat invoke_* as if # they are indirect calls, since that is what they do - we can't see their # targets statically. settings.ASYNCIFY_IMPORTS += ['invoke_*'] # with pthreads we may call main through the __call_main mechanism, which can # therefore reach anything in the program, so mark it as possibly causing a # sleep (the asyncify analysis doesn't look through JS, just wasm, so it can't # see what it itself calls) if settings.USE_PTHREADS: settings.ASYNCIFY_IMPORTS += ['__call_main'] # add the default imports settings.ASYNCIFY_IMPORTS += DEFAULT_ASYNCIFY_IMPORTS # return the full import name, including module. The name may # already have a module prefix; if not, we assume it is "env". def get_full_import_name(name): if '.' in name: return name return 'env.' + name settings.ASYNCIFY_IMPORTS = [get_full_import_name(i) for i in settings.ASYNCIFY_IMPORTS] if settings.WASM2JS and settings.GENERATE_SOURCE_MAP: exit_with_error('wasm2js does not support source maps yet (debug in wasm for now)') if settings.NODE_CODE_CACHING: if settings.WASM_ASYNC_COMPILATION: exit_with_error('NODE_CODE_CACHING requires sync compilation (WASM_ASYNC_COMPILATION=0)') if not shared.target_environment_may_be('node'): exit_with_error('NODE_CODE_CACHING only works in node, but target environments do not include it') if settings.SINGLE_FILE: exit_with_error('NODE_CODE_CACHING saves a file on the side and is not compatible with SINGLE_FILE') if options.tracing and settings.ALLOW_MEMORY_GROWTH: settings.DEFAULT_LIBRARY_FUNCS_TO_INCLUDE += ['emscripten_trace_report_memory_layout'] settings.EXPORTED_FUNCTIONS += ['_emscripten_stack_get_current', '_emscripten_stack_get_base', '_emscripten_stack_get_end'] # Any "pointers" passed to JS will now be i64's, in both modes. if settings.MEMORY64: if settings_map.get('WASM_BIGINT') == '0': exit_with_error('MEMORY64 is not compatible with WASM_BIGINT=0') settings.WASM_BIGINT = 1 # check if we can address the 2GB mark and higher: either if we start at # 2GB, or if we allow growth to either any amount or to 2GB or more. if settings.INITIAL_MEMORY > 2 * 1024 * 1024 * 1024 or \ (settings.ALLOW_MEMORY_GROWTH and (settings.MAXIMUM_MEMORY < 0 or settings.MAXIMUM_MEMORY > 2 * 1024 * 1024 * 1024)): settings.CAN_ADDRESS_2GB = 1 settings.EMSCRIPTEN_VERSION = shared.EMSCRIPTEN_VERSION settings.PROFILING_FUNCS = options.profiling_funcs settings.SOURCE_MAP_BASE = options.source_map_base or '' # exit block 'parse arguments and setup' log_time('parse arguments and setup') linker_inputs = [] if options.post_link: process_libraries(libs, lib_dirs, linker_inputs) if len(input_files) != 1: exit_with_error('--post-link requires a single input file') post_link(options, input_files[0][1], wasm_target, target) return 0 ## Compile source code to object files logger.debug('compiling inputs') with ToolchainProfiler.profile_block('compile inputs'): def is_link_flag(flag): if flag.startswith('-nostdlib'): return True return flag.startswith(('-l', '-L', '-Wl,')) CXX = [shared.CLANG_CXX] CC = [shared.CLANG_CC] if config.COMPILER_WRAPPER: logger.debug('using compiler wrapper: %s', config.COMPILER_WRAPPER) CXX.insert(0, config.COMPILER_WRAPPER) CC.insert(0, config.COMPILER_WRAPPER) if 'EMMAKEN_COMPILER' in os.environ: diagnostics.warning('deprecated', '`EMMAKEN_COMPILER` is deprecated.\n' 'To use an alteranative LLVM build set `LLVM_ROOT` in the config file (or `EM_LLVM_ROOT` env var).\n' 'To wrap invocations of clang use the `COMPILER_WRAPPER` setting (or `EM_COMPILER_WRAPPER` env var.\n') CXX = [os.environ['EMMAKEN_COMPILER']] CC = [cxx_to_c_compiler(os.environ['EMMAKEN_COMPILER'])] compile_args = [a for a in newargs if a and not is_link_flag(a)] system_libs.ensure_sysroot() def use_cxx(src): if 'c++' in language_mode or run_via_emxx: return True # Next consider the filename if src.endswith(C_ENDINGS + OBJC_ENDINGS): return False if src.endswith(CXX_ENDINGS): return True # Finally fall back to the default if settings.DEFAULT_TO_CXX: # Default to using C++ even when run as `emcc`. # This means that emcc will act as a C++ linker when no source files are # specified. # This differs to clang and gcc where the default is always C unless run as # clang++/g++. return True return False def get_compiler(cxx): if cxx: return CXX return CC def get_clang_command(src_file): return get_compiler(use_cxx(src_file)) + get_cflags(options, args) + compile_args + [src_file] def get_clang_command_asm(src_file): return get_compiler(use_cxx(src_file)) + get_clang_flags() + compile_args + [src_file] # preprocessor-only (-E) support if has_dash_E or '-M' in newargs or '-MM' in newargs or '-fsyntax-only' in newargs: for input_file in [x[1] for x in input_files]: cmd = get_clang_command(input_file) if specified_target: cmd += ['-o', specified_target] # Do not compile, but just output the result from preprocessing stage or # output the dependency rule. Warning: clang and gcc behave differently # with -MF! (clang seems to not recognize it) logger.debug(('just preprocessor ' if has_dash_E else 'just dependencies: ') + ' '.join(cmd)) shared.check_call(cmd) return 0 # Precompiled headers support if has_header_inputs: headers = [header for _, header in input_files] for header in headers: if not header.endswith(HEADER_ENDINGS): exit_with_error('cannot mix precompile headers with non-header inputs: ' + str(headers) + ' : ' + header) cmd = get_clang_command(header) if specified_target: cmd += ['-o', specified_target] logger.debug("running (for precompiled headers): " + cmd[0] + ' ' + ' '.join(cmd[1:])) shared.check_call(cmd) return 0 def get_object_filename(input_file): if compile_only: # In compile-only mode we don't use any temp file. The object files # are written directly to their final output locations. if specified_target: assert len(input_files) == 1 return specified_target else: return unsuffixed_basename(input_file) + options.default_object_extension else: return in_temp(unsuffixed(uniquename(input_file)) + options.default_object_extension) def compile_source_file(i, input_file): logger.debug('compiling source file: ' + input_file) output_file = get_object_filename(input_file) if not compile_only: linker_inputs.append((i, output_file)) if get_file_suffix(input_file) in ASSEMBLY_ENDINGS: cmd = get_clang_command_asm(input_file) else: cmd = get_clang_command(input_file) if not has_dash_c: cmd += ['-c'] cmd += ['-o', output_file] shared.check_call(cmd) if output_file not in ('-', os.devnull): assert os.path.exists(output_file) # First, generate LLVM bitcode. For each input file, we get base.o with bitcode for i, input_file in input_files: file_suffix = get_file_suffix(input_file) if file_suffix in SOURCE_ENDINGS + ASSEMBLY_ENDINGS or (has_dash_c and file_suffix == '.bc'): compile_source_file(i, input_file) elif file_suffix in DYNAMICLIB_ENDINGS: logger.debug('using shared library: ' + input_file) linker_inputs.append((i, input_file)) elif building.is_ar(input_file): logger.debug('using static library: ' + input_file) ensure_archive_index(input_file) linker_inputs.append((i, input_file)) elif language_mode: compile_source_file(i, input_file) elif input_file == '-': exit_with_error('-E or -x required when input is from standard input') else: # Default to assuming the inputs are object files and pass them to the linker logger.debug('using object file: ' + input_file) linker_inputs.append((i, input_file)) # exit block 'compile inputs' log_time('compile inputs') if compile_only: logger.debug('stopping after compile phase') for flag in link_flags: diagnostics.warning('unused-command-line-argument', "argument unused during compilation: '%s'" % flag[1]) for f in linker_inputs: diagnostics.warning('unused-command-line-argument', "%s: linker input file unused because linking not done" % f[1]) return 0 if specified_target and specified_target.startswith('-'): exit_with_error('invalid output filename: `%s`' % specified_target) ldflags = emsdk_ldflags(newargs) for f in ldflags: add_link_flag(sys.maxsize, f) using_lld = not (link_to_object and settings.LTO) link_flags = filter_link_flags(link_flags, using_lld) # Decide what we will link consumed = process_libraries(libs, lib_dirs, linker_inputs) # Filter out libraries that are actually JS libs link_flags = [l for l in link_flags if l[0] not in consumed] # If we are linking to an intermediate object then ignore other # "fake" dynamic libraries, since otherwise we will end up with # multiple copies in the final executable. if link_to_object or options.ignore_dynamic_linking: linker_inputs = filter_out_dynamic_libs(options, linker_inputs) else: linker_inputs = filter_out_duplicate_dynamic_libs(linker_inputs) if settings.MAIN_MODULE: dylibs = [i[1] for i in linker_inputs if get_file_suffix(i[1]) in DYNAMICLIB_ENDINGS] process_dynamic_libs(dylibs) linker_arguments = [val for _, val in sorted(linker_inputs + link_flags)] if link_to_object: with ToolchainProfiler.profile_block('linking to object file'): logger.debug('link_to_object: ' + str(linker_arguments) + ' -> ' + target) building.link_to_object(linker_arguments, target) logger.debug('stopping after linking to object file') return 0 if final_suffix in ('.o', '.bc', '.so', '.dylib') and not settings.SIDE_MODULE: diagnostics.warning('emcc', 'generating an executable with an object extension (%s). If you meant to build an object file please use `-c, `-r`, or `-shared`' % final_suffix) ## Continue on to create JavaScript with ToolchainProfiler.profile_block('calculate system libraries'): extra_files_to_link = [] # link in ports and system libraries, if necessary if not settings.SIDE_MODULE: # Ports are always linked into the main module, never the size module. extra_files_to_link += system_libs.get_ports_libs(settings) if '-nostdlib' not in newargs and '-nodefaultlibs' not in newargs: link_as_cxx = run_via_emxx # Traditionally we always link as C++. For compatibility we continue to do that, # unless running in strict mode. if not settings.STRICT and '-nostdlib++' not in newargs: link_as_cxx = True extra_files_to_link += system_libs.calculate([f for _, f in sorted(linker_inputs)] + extra_files_to_link, link_as_cxx, forced=forced_stdlibs) linker_arguments += extra_files_to_link # exit block 'calculate system libraries' log_time('calculate system libraries') def dedup_list(lst): rtn = [] for item in lst: if item not in rtn: rtn.append(item) return rtn # Make a final pass over settings.EXPORTED_FUNCTIONS to remove any # duplication between functions added by the driver/libraries and function # specified by the user settings.EXPORTED_FUNCTIONS = dedup_list(settings.EXPORTED_FUNCTIONS) with ToolchainProfiler.profile_block('link'): logger.debug('linking: ' + str(linker_arguments)) # if EMCC_DEBUG=2 then we must link now, so the temp files are complete. # if using the wasm backend, we might be using vanilla LLVM, which does not allow our # fastcomp deferred linking opts. # TODO: we could check if this is a fastcomp build, and still speed things up here js_funcs = None if settings.LLD_REPORT_UNDEFINED and settings.ERROR_ON_UNDEFINED_SYMBOLS: js_funcs = get_all_js_syms() log_time('JS symbol generation') building.link_lld(linker_arguments, wasm_target, external_symbol_list=js_funcs) # Special handling for when the user passed '-Wl,--version'. In this case the linker # does not create the output file, but just prints its version and exits with 0. if '--version' in linker_arguments: return 0 # exit block 'link' log_time('link') if target == os.devnull: # TODO(sbc): In theory we should really run the whole pipeline even if the output is # /dev/null, but that will take some refactoring return 0 # Perform post-link steps (unless we are running bare mode) if options.oformat != OFormat.BARE: post_link(options, wasm_target, wasm_target, target) return 0 def move_file(src, dst): logging.debug('move: %s -> %s', src, dst) if os.path.isdir(dst): exit_with_error(f'cannot write output file `{dst}`: Is a directory') src = os.path.abspath(src) dst = os.path.abspath(dst) if src == dst: return if dst == os.devnull: return shutil.move(src, dst) def post_link(options, in_wasm, wasm_target, target): global final_js target_basename = unsuffixed_basename(target) if options.oformat != OFormat.WASM: final_js = in_temp(target_basename + '.js') if settings.MEM_INIT_IN_WASM: memfile = None else: memfile = shared.replace_or_append_suffix(target, '.mem') with ToolchainProfiler.profile_block('emscript'): # Emscripten logger.debug('emscript') if options.memory_init_file: settings.MEM_INIT_METHOD = 1 else: assert settings.MEM_INIT_METHOD != 1 if embed_memfile(): settings.SUPPORT_BASE64_EMBEDDING = 1 emscripten.run(in_wasm, wasm_target, final_js, memfile) save_intermediate('original') # exit block 'emscript' log_time('emscript)') with ToolchainProfiler.profile_block('source transforms'): # Embed and preload files if len(options.preload_files) or len(options.embed_files): logger.debug('setting up files') file_args = ['--from-emcc', '--export-name=' + settings.EXPORT_NAME] if len(options.preload_files): file_args.append('--preload') file_args += options.preload_files if len(options.embed_files): file_args.append('--embed') file_args += options.embed_files if len(options.exclude_files): file_args.append('--exclude') file_args += options.exclude_files if options.use_preload_cache: file_args.append('--use-preload-cache') if settings.LZ4: file_args.append('--lz4') if options.use_preload_plugins: file_args.append('--use-preload-plugins') file_code = shared.check_call([shared.FILE_PACKAGER, unsuffixed(target) + '.data'] + file_args, stdout=PIPE).stdout options.pre_js = js_manipulation.add_files_pre_js(options.pre_js, file_code) # Apply pre and postjs files if final_js and (options.pre_js or options.post_js): logger.debug('applying pre/postjses') src = open(final_js).read() final_js += '.pp.js' with open(final_js, 'w') as f: # pre-js code goes right after the Module integration code (so it # can use Module), we have a marker for it f.write(do_replace(src, '// {{PRE_JSES}}', fix_windows_newlines(options.pre_js))) f.write(fix_windows_newlines(options.post_js)) options.pre_js = src = options.post_js = None save_intermediate('pre-post') # Apply a source code transformation, if requested if options.js_transform: safe_copy(final_js, final_js + '.tr.js') final_js += '.tr.js' posix = not shared.WINDOWS logger.debug('applying transform: %s', options.js_transform) shared.check_call(building.remove_quotes(shlex.split(options.js_transform, posix=posix) + [os.path.abspath(final_js)])) save_intermediate('transformed') # exit block 'source transforms' log_time('source transforms') if memfile and not settings.MINIMAL_RUNTIME: # MINIMAL_RUNTIME doesn't use `var memoryInitializer` but instead expects Module['mem'] to # be loaded before the module. See src/postamble_minimal.js. with ToolchainProfiler.profile_block('memory initializer'): # For the wasm backend, we don't have any memory info in JS. All we need to do # is set the memory initializer url. src = open(final_js).read() src = do_replace(src, '// {{MEM_INITIALIZER}}', 'var memoryInitializer = "%s";' % os.path.basename(memfile)) open(final_js + '.mem.js', 'w').write(src) final_js += '.mem.js' log_time('memory initializer') with ToolchainProfiler.profile_block('binaryen'): do_binaryen(target, options, wasm_target) log_time('binaryen') # If we are not emitting any JS then we are all done now if options.oformat == OFormat.WASM: return with ToolchainProfiler.profile_block('final emitting'): # Remove some trivial whitespace # TODO: do not run when compress has already been done on all parts of the code # src = open(final_js).read() # src = re.sub(r'\n+[ \n]*\n+', '\n', src) # open(final_js, 'w').write(src) if settings.USE_PTHREADS: target_dir = os.path.dirname(os.path.abspath(target)) worker_output = os.path.join(target_dir, settings.PTHREAD_WORKER_FILE) with open(worker_output, 'w') as f: f.write(shared.read_and_preprocess(shared.path_from_root('src', 'worker.js'), expand_macros=True)) # Minify the worker.js file in optimized builds if (settings.OPT_LEVEL >= 1 or settings.SHRINK_LEVEL >= 1) and not settings.DEBUG_LEVEL: minified_worker = building.acorn_optimizer(worker_output, ['minifyWhitespace'], return_output=True) open(worker_output, 'w').write(minified_worker) # track files that will need native eols generated_text_files_with_native_eols = [] if settings.MODULARIZE: modularize() module_export_name_substitution() # Run a final regex pass to clean up items that were not possible to optimize by Closure, or unoptimalities that were left behind # by processing steps that occurred after Closure. if settings.MINIMAL_RUNTIME == 2 and settings.USE_CLOSURE_COMPILER and settings.DEBUG_LEVEL == 0 and not settings.SINGLE_FILE: # Process .js runtime file. Note that we need to handle the license text # here, so that it will not confuse the hacky script. shared.JS.handle_license(final_js) shared.run_process([shared.PYTHON, shared.path_from_root('tools', 'hacky_postprocess_around_closure_limitations.py'), final_js]) # Apply pre and postjs files if options.extern_pre_js or options.extern_post_js: logger.debug('applying extern pre/postjses') src = open(final_js).read() final_js += '.epp.js' with open(final_js, 'w') as f: f.write(fix_windows_newlines(options.extern_pre_js)) f.write(src) f.write(fix_windows_newlines(options.extern_post_js)) save_intermediate('extern-pre-post') shared.JS.handle_license(final_js) if options.oformat in (OFormat.JS, OFormat.MJS): js_target = target else: js_target = get_secondary_target(target, '.js') # The JS is now final. Move it to its final location move_file(final_js, js_target) if not settings.SINGLE_FILE: generated_text_files_with_native_eols += [js_target] # If we were asked to also generate HTML, do that if options.oformat == OFormat.HTML: generate_html(target, options, js_target, target_basename, wasm_target, memfile) elif settings.PROXY_TO_WORKER: generate_worker_js(target, js_target, target_basename) if embed_memfile() and memfile: shared.try_delete(memfile) if settings.SPLIT_MODULE: diagnostics.warning('experimental', 'The SPLIT_MODULE setting is experimental and subject to change') do_split_module(wasm_target) for f in generated_text_files_with_native_eols: tools.line_endings.convert_line_endings_in_file(f, os.linesep, options.output_eol) if options.executable: make_js_executable(js_target) log_time('final emitting') # exit block 'final emitting' return 0 def version_string(): return 'emcc (Emscripten gcc/clang-like replacement + linker emulating GNU ld) %s' % shared.EMSCRIPTEN_VERSION def parse_args(newargs): options = EmccOptions() settings_changes = [] user_js_defines = [] should_exit = False eh_enabled = False wasm_eh_enabled = False skip = False for i in range(len(newargs)): if skip: skip = False continue # On Windows Vista (and possibly others), excessive spaces in the command line # leak into the items in this array, so trim e.g. 'foo.cpp ' -> 'foo.cpp' newargs[i] = newargs[i].strip() arg = newargs[i] arg_value = None def check_flag(value): # Check for and consume a flag if arg == value: newargs[i] = '' return True return False def check_arg(name): nonlocal arg_value if arg.startswith(name) and '=' in arg: arg_value = arg.split('=', 1)[1] newargs[i] = '' return True if arg == name: if len(newargs) <= i + 1: exit_with_error("option '%s' requires an argument" % arg) arg_value = newargs[i + 1] newargs[i] = '' newargs[i + 1] = '' return True return False def consume_arg(): nonlocal arg_value assert arg_value is not None rtn = arg_value arg_value = None return rtn def consume_arg_file(): name = consume_arg() if not os.path.isfile(name): exit_with_error("'%s': file not found: '%s'" % (arg, name)) return name if arg.startswith('-O'): # Let -O default to -O2, which is what gcc does. options.requested_level = arg[2:] or '2' if options.requested_level == 's': options.requested_level = 2 settings.SHRINK_LEVEL = 1 settings_changes.append('INLINING_LIMIT=1') elif options.requested_level == 'z': options.requested_level = 2 settings.SHRINK_LEVEL = 2 settings_changes.append('INLINING_LIMIT=1') settings.OPT_LEVEL = validate_arg_level(options.requested_level, 3, 'Invalid optimization level: ' + arg, clamp=True) elif check_arg('--js-opts'): logger.warning('--js-opts ignored when using llvm backend') consume_arg() elif check_arg('--llvm-opts'): diagnostics.warning('deprecated', '--llvm-opts is deprecated. All non-emcc args are passed through to clang.') elif arg.startswith('-flto'): if '=' in arg: settings.LTO = arg.split('=')[1] else: settings.LTO = "full" elif check_arg('--llvm-lto'): logger.warning('--llvm-lto ignored when using llvm backend') consume_arg() elif check_arg('--closure-args'): args = consume_arg() options.closure_args += shlex.split(args) elif check_arg('--closure'): options.use_closure_compiler = int(consume_arg()) elif check_arg('--js-transform'): options.js_transform = consume_arg() elif check_arg('--pre-js'): options.pre_js += open(consume_arg_file()).read() + '\n' elif check_arg('--post-js'): options.post_js += open(consume_arg_file()).read() + '\n' elif check_arg('--extern-pre-js'): options.extern_pre_js += open(consume_arg_file()).read() + '\n' elif check_arg('--extern-post-js'): options.extern_post_js += open(consume_arg_file()).read() + '\n' elif check_arg('--compiler-wrapper'): config.COMPILER_WRAPPER = consume_arg() elif check_flag('--post-link'): options.post_link = True elif check_arg('--oformat'): formats = [f.lower() for f in OFormat.__members__] fmt = consume_arg() if fmt not in formats: exit_with_error('invalid output format: `%s` (must be one of %s)' % (fmt, formats)) options.oformat = getattr(OFormat, fmt.upper()) elif check_arg('--minify'): arg = consume_arg() if arg != '0': exit_with_error('0 is the only supported option for --minify; 1 has been deprecated') settings.DEBUG_LEVEL = max(1, settings.DEBUG_LEVEL) elif arg.startswith('-g'): options.requested_debug = arg requested_level = arg[2:] or '3' if is_int(requested_level): # the -gX value is the debug level (-g1, -g2, etc.) settings.DEBUG_LEVEL = validate_arg_level(requested_level, 4, 'Invalid debug level: ' + arg) # if we don't need to preserve LLVM debug info, do not keep this flag # for clang if settings.DEBUG_LEVEL < 3: newargs[i] = '' else: # for 3+, report -g to clang as -g4 etc. are not accepted newargs[i] = '-g' if settings.DEBUG_LEVEL == 4: settings.GENERATE_SOURCE_MAP = 1 diagnostics.warning('deprecated', 'please replace -g4 with -gsource-map') else: if requested_level.startswith('force_dwarf'): exit_with_error('gforce_dwarf was a temporary option and is no longer necessary (use -g)') elif requested_level.startswith('separate-dwarf'): # emit full DWARF but also emit it in a file on the side newargs[i] = '-g' # if a file is provided, use that; otherwise use the default location # (note that we do not know the default location until all args have # been parsed, so just note True for now). if requested_level != 'separate-dwarf': if not requested_level.startswith('separate-dwarf=') or requested_level.count('=') != 1: exit_with_error('invalid -gseparate-dwarf=FILENAME notation') settings.SEPARATE_DWARF = requested_level.split('=')[1] else: settings.SEPARATE_DWARF = True elif requested_level == 'source-map': settings.GENERATE_SOURCE_MAP = 1 newargs[i] = '-g' # a non-integer level can be something like -gline-tables-only. keep # the flag for the clang frontend to emit the appropriate DWARF info. # set the emscripten debug level to 3 so that we do not remove that # debug info during link (during compile, this does not make a # difference). settings.DEBUG_LEVEL = 3 elif check_flag('-profiling') or check_flag('--profiling'): settings.DEBUG_LEVEL = max(settings.DEBUG_LEVEL, 2) options.profiling = True elif check_flag('-profiling-funcs') or check_flag('--profiling-funcs'): options.profiling_funcs = True elif newargs[i] == '--tracing' or newargs[i] == '--memoryprofiler': if newargs[i] == '--memoryprofiler': options.memory_profiler = True options.tracing = True newargs[i] = '' settings_changes.append("EMSCRIPTEN_TRACING=1") settings.SYSTEM_JS_LIBRARIES.append((0, shared.path_from_root('src', 'library_trace.js'))) elif check_flag('--emit-symbol-map'): options.emit_symbol_map = True settings.EMIT_SYMBOL_MAP = 1 elif check_flag('--bind'): settings.EMBIND = 1 settings.SYSTEM_JS_LIBRARIES.append((0, shared.path_from_root('src', 'embind', 'emval.js'))) settings.SYSTEM_JS_LIBRARIES.append((0, shared.path_from_root('src', 'embind', 'embind.js'))) elif check_arg('--embed-file'): options.embed_files.append(consume_arg()) elif check_arg('--preload-file'): options.preload_files.append(consume_arg()) elif check_arg('--exclude-file'): options.exclude_files.append(consume_arg()) elif check_flag('--use-preload-cache'): options.use_preload_cache = True elif check_flag('--no-heap-copy'): diagnostics.warning('legacy-settings', 'ignoring legacy flag --no-heap-copy (that is the only mode supported now)') elif check_flag('--use-preload-plugins'): options.use_preload_plugins = True elif check_flag('--ignore-dynamic-linking'): options.ignore_dynamic_linking = True elif arg == '-v': shared.PRINT_STAGES = True elif check_arg('--shell-file'): options.shell_path = consume_arg_file() elif check_arg('--source-map-base'): options.source_map_base = consume_arg() elif check_flag('--no-entry'): options.no_entry = True elif check_arg('--js-library'): settings.SYSTEM_JS_LIBRARIES.append((i + 1, os.path.abspath(consume_arg_file()))) elif check_flag('--remove-duplicates'): diagnostics.warning('legacy-settings', '--remove-duplicates is deprecated as it is no longer needed. If you cannot link without it, file a bug with a testcase') elif check_flag('--jcache'): logger.error('jcache is no longer supported') elif check_flag('--clear-cache'): logger.info('clearing cache as requested by --clear-cache') shared.Cache.erase() shared.check_sanity(force=True) # this is a good time for a sanity check should_exit = True elif check_flag('--clear-ports'): logger.info('clearing ports and cache as requested by --clear-ports') system_libs.Ports.erase() shared.Cache.erase() shared.check_sanity(force=True) # this is a good time for a sanity check should_exit = True elif check_flag('--check'): print(version_string(), file=sys.stderr) shared.check_sanity(force=True) should_exit = True elif check_flag('--show-ports'): system_libs.show_ports() should_exit = True elif check_arg('--memory-init-file'): options.memory_init_file = int(consume_arg()) elif check_flag('--proxy-to-worker'): settings_changes.append('PROXY_TO_WORKER=1') elif check_arg('--valid-abspath'): options.valid_abspaths.append(consume_arg()) elif check_flag('--separate-asm'): exit_with_error('cannot --separate-asm with the wasm backend, since not emitting asm.js') elif arg.startswith(('-I', '-L')): path_name = arg[2:] if os.path.isabs(path_name) and not is_valid_abspath(options, path_name): # Of course an absolute path to a non-system-specific library or header # is fine, and you can ignore this warning. The danger are system headers # that are e.g. x86 specific and nonportable. The emscripten bundled # headers are modified to be portable, local system ones are generally not. diagnostics.warning( 'absolute-paths', '-I or -L of an absolute path "' + arg + '" encountered. If this is to a local system header/library, it may ' 'cause problems (local system files make sense for compiling natively ' 'on your system, but not necessarily to JavaScript).') elif check_flag('--emrun'): options.emrun = True elif check_flag('--cpuprofiler'): options.cpu_profiler = True elif check_flag('--threadprofiler'): options.thread_profiler = True settings_changes.append('PTHREADS_PROFILING=1') elif arg == '-fno-exceptions': settings.DISABLE_EXCEPTION_CATCHING = 1 settings.DISABLE_EXCEPTION_THROWING = 1 settings.EXCEPTION_HANDLING = 0 elif arg == '-fexceptions': eh_enabled = True elif arg == '-fwasm-exceptions': wasm_eh_enabled = True elif arg == '-fignore-exceptions': settings.DISABLE_EXCEPTION_CATCHING = 1 elif check_arg('--default-obj-ext'): options.default_object_extension = consume_arg() if not options.default_object_extension.startswith('.'): options.default_object_extension = '.' + options.default_object_extension elif arg == '-fsanitize=cfi': options.cfi = True elif check_arg('--output_eol'): style = consume_arg() if style.lower() == 'windows': options.output_eol = '\r\n' elif style.lower() == 'linux': options.output_eol = '\n' else: exit_with_error('Invalid value "' + style + '" to --output_eol!') elif check_arg('--generate-config'): optarg = consume_arg() path = os.path.expanduser(optarg) if os.path.exists(path): exit_with_error('File ' + optarg + ' passed to --generate-config already exists!') else: config.generate_config(optarg) should_exit = True # Record USE_PTHREADS setting because it controls whether --shared-memory is passed to lld elif arg == '-pthread': settings_changes.append('USE_PTHREADS=1') elif arg in ('-fno-diagnostics-color', '-fdiagnostics-color=never'): colored_logger.disable() diagnostics.color_enabled = False elif arg == '-fno-rtti': settings.USE_RTTI = 0 elif arg == '-frtti': settings.USE_RTTI = 1 elif arg.startswith('-jsD'): key = arg[4:] if '=' in key: key, value = key.split('=') else: value = '1' if key in settings.keys(): exit_with_error(arg + ': cannot change built-in settings values with a -jsD directive. Pass -s ' + key + '=' + value + ' instead!') user_js_defines += [(key, value)] newargs[i] = '' elif check_flag('-shared'): options.shared = True elif check_flag('-r'): options.relocatable = True elif check_arg('-o'): options.output_file = consume_arg() elif arg.startswith('-o'): options.output_file = arg[2:] newargs[i] = '' elif arg == '-mllvm': # Ignore the next argument rather than trying to parse it. This is needed # because llvm args could, for example, start with `-o` and we don't want # to confuse that with a normal `-o` flag. skip = True if should_exit: sys.exit(0) # TODO Currently -fexceptions only means Emscripten EH. Switch to wasm # exception handling by default when -fexceptions is given when wasm # exception handling becomes stable. if wasm_eh_enabled: settings.EXCEPTION_HANDLING = 1 settings.DISABLE_EXCEPTION_THROWING = 1 settings.DISABLE_EXCEPTION_CATCHING = 1 elif eh_enabled: settings.EXCEPTION_HANDLING = 0 settings.DISABLE_EXCEPTION_THROWING = 0 settings.DISABLE_EXCEPTION_CATCHING = 0 newargs = [a for a in newargs if a] return options, settings_changes, user_js_defines, newargs def do_binaryen(target, options, wasm_target): global final_js logger.debug('using binaryen') if settings.GENERATE_SOURCE_MAP and not settings.SOURCE_MAP_BASE: logger.warning("Wasm source map won't be usable in a browser without --source-map-base") # whether we need to emit -g (function name debug info) in the final wasm debug_info = settings.DEBUG_LEVEL >= 2 or options.profiling_funcs # whether we need to emit -g in the intermediate binaryen invocations (but not necessarily at the very end). # this is necessary for emitting a symbol map at the end. intermediate_debug_info = bool(debug_info or options.emit_symbol_map or settings.ASYNCIFY_ONLY or settings.ASYNCIFY_REMOVE or settings.ASYNCIFY_ADD) # note that wasm-ld can strip DWARF info for us too (--strip-debug), but it # also strips the Names section. so to emit just the Names section we don't # tell wasm-ld to strip anything, and we do it here. strip_debug = settings.DEBUG_LEVEL < 3 strip_producers = not settings.EMIT_PRODUCERS_SECTION # run wasm-opt if we have work for it: either passes, or if we are using # source maps (which requires some extra processing to keep the source map # but remove DWARF) passes = get_binaryen_passes() if passes or settings.GENERATE_SOURCE_MAP: # if we need to strip certain sections, and we have wasm-opt passes # to run anyhow, do it with them. if strip_debug: passes += ['--strip-debug'] if strip_producers: passes += ['--strip-producers'] building.save_intermediate(wasm_target, 'pre-byn.wasm') building.run_wasm_opt(wasm_target, wasm_target, args=passes, debug=intermediate_debug_info) elif strip_debug or strip_producers: # we are not running wasm-opt. if we need to strip certain sections # then do so using llvm-objcopy which is fast and does not rewrite the # code (which is better for debug info) building.save_intermediate(wasm_target, 'pre-strip.wasm') building.strip(wasm_target, wasm_target, debug=strip_debug, producers=strip_producers) if settings.EVAL_CTORS: building.save_intermediate(wasm_target, 'pre-ctors.wasm') building.eval_ctors(final_js, wasm_target, debug_info=intermediate_debug_info) # after generating the wasm, do some final operations # Add extra dylibs if needed. if settings.RUNTIME_LINKED_LIBS: webassembly.update_dylink_section(wasm_target, settings.RUNTIME_LINKED_LIBS) if settings.EMIT_EMSCRIPTEN_METADATA: diagnostics.warning('deprecated', 'We hope to remove support for EMIT_EMSCRIPTEN_METADATA. See https://github.com/emscripten-core/emscripten/issues/12231') webassembly.add_emscripten_metadata(wasm_target) if final_js: if settings.SUPPORT_BIG_ENDIAN: final_js = building.little_endian_heap(final_js) # >=2GB heap support requires pointers in JS to be unsigned. rather than # require all pointers to be unsigned by default, which increases code size # a little, keep them signed, and just unsign them here if we need that. if settings.CAN_ADDRESS_2GB: final_js = building.use_unsigned_pointers_in_js(final_js) # pthreads memory growth requires some additional JS fixups. # note that we must do this after handling of unsigned pointers. unsigning # adds some >>> 0 things, while growth will replace a HEAP8 with a call to # a method to get the heap, and that call would not be recognized by the # unsigning pass if settings.USE_PTHREADS and settings.ALLOW_MEMORY_GROWTH: final_js = building.apply_wasm_memory_growth(final_js) if settings.USE_ASAN: final_js = building.instrument_js_for_asan(final_js) if settings.SAFE_HEAP: final_js = building.instrument_js_for_safe_heap(final_js) if settings.OPT_LEVEL >= 2 and settings.DEBUG_LEVEL <= 2: # minify the JS. Do not minify whitespace if Closure is used, so that # Closure can print out readable error messages (Closure will then # minify whitespace afterwards) save_intermediate_with_wasm('preclean', wasm_target) final_js = building.minify_wasm_js(js_file=final_js, wasm_file=wasm_target, expensive_optimizations=will_metadce(), minify_whitespace=minify_whitespace() and not options.use_closure_compiler, debug_info=intermediate_debug_info) save_intermediate_with_wasm('postclean', wasm_target) if settings.ASYNCIFY_LAZY_LOAD_CODE: building.asyncify_lazy_load_code(wasm_target, debug=intermediate_debug_info) def preprocess_wasm2js_script(): return read_and_preprocess(shared.path_from_root('src', 'wasm2js.js'), expand_macros=True) def run_closure_compiler(): global final_js final_js = building.closure_compiler(final_js, pretty=not minify_whitespace(), extra_closure_args=options.closure_args) save_intermediate_with_wasm('closure', wasm_target) if final_js and options.use_closure_compiler: run_closure_compiler() symbols_file = shared.replace_or_append_suffix(target, '.symbols') if options.emit_symbol_map else None if settings.WASM2JS: if settings.WASM == 2: wasm2js_template = wasm_target + '.js' open(wasm2js_template, 'w').write(preprocess_wasm2js_script()) # generate secondary file for JS symbols symbols_file_js = shared.replace_or_append_suffix(wasm2js_template, '.symbols') if options.emit_symbol_map else None else: wasm2js_template = final_js symbols_file_js = shared.replace_or_append_suffix(target, '.symbols') if options.emit_symbol_map else None wasm2js = building.wasm2js(wasm2js_template, wasm_target, opt_level=settings.OPT_LEVEL, minify_whitespace=minify_whitespace(), use_closure_compiler=options.use_closure_compiler, debug_info=debug_info, symbols_file=symbols_file, symbols_file_js=symbols_file_js) shared.configuration.get_temp_files().note(wasm2js) if settings.WASM == 2: safe_copy(wasm2js, wasm2js_template) if settings.WASM != 2: final_js = wasm2js # if we only target JS, we don't need the wasm any more shared.try_delete(wasm_target) save_intermediate('wasm2js') # emit the final symbols, either in the binary or in a symbol map. # this will also remove debug info if we only kept it around in the intermediate invocations. # note that if we aren't emitting a binary (like in wasm2js) then we don't # have anything to do here. if options.emit_symbol_map and os.path.exists(wasm_target): building.handle_final_wasm_symbols(wasm_file=wasm_target, symbols_file=symbols_file, debug_info=debug_info) save_intermediate_with_wasm('symbolmap', wasm_target) if settings.DEBUG_LEVEL >= 3 and settings.SEPARATE_DWARF and os.path.exists(wasm_target): building.emit_debug_on_side(wasm_target, settings.SEPARATE_DWARF) if settings.WASM2C: wasm2c.do_wasm2c(wasm_target) # replace placeholder strings with correct subresource locations if final_js and settings.SINGLE_FILE and not settings.WASM2JS: js = open(final_js).read() if settings.MINIMAL_RUNTIME: js = do_replace(js, '<<< WASM_BINARY_DATA >>>', base64_encode(open(wasm_target, 'rb').read())) else: js = do_replace(js, '<<< WASM_BINARY_FILE >>>', shared.JS.get_subresource_location(wasm_target)) shared.try_delete(wasm_target) with open(final_js, 'w') as f: f.write(js) def modularize(): global final_js logger.debug('Modularizing, assigning to var ' + settings.EXPORT_NAME) src = open(final_js).read() return_value = settings.EXPORT_NAME if settings.WASM_ASYNC_COMPILATION: return_value += '.ready' if not settings.EXPORT_READY_PROMISE: return_value = '{}' src = ''' function(%(EXPORT_NAME)s) { %(EXPORT_NAME)s = %(EXPORT_NAME)s || {}; %(src)s return %(return_value)s } ''' % { 'EXPORT_NAME': settings.EXPORT_NAME, 'src': src, 'return_value': return_value } if settings.MINIMAL_RUNTIME and not settings.USE_PTHREADS: # Single threaded MINIMAL_RUNTIME programs do not need access to # document.currentScript, so a simple export declaration is enough. src = 'var %s=%s' % (settings.EXPORT_NAME, src) else: script_url_node = "" # When MODULARIZE this JS may be executed later, # after document.currentScript is gone, so we save it. # In EXPORT_ES6 + USE_PTHREADS the 'thread' is actually an ES6 module webworker running in strict mode, # so doesn't have access to 'document'. In this case use 'import.meta' instead. if settings.EXPORT_ES6 and settings.USE_ES6_IMPORT_META: script_url = "import.meta.url" else: script_url = "typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined" if shared.target_environment_may_be('node'): script_url_node = "if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;" src = ''' var %(EXPORT_NAME)s = (function() { var _scriptDir = %(script_url)s; %(script_url_node)s return (%(src)s); })(); ''' % { 'EXPORT_NAME': settings.EXPORT_NAME, 'script_url': script_url, 'script_url_node': script_url_node, 'src': src } final_js += '.modular.js' with open(final_js, 'w') as f: f.write(src) # Export using a UMD style export, or ES6 exports if selected if settings.EXPORT_ES6: f.write('export default %s;' % settings.EXPORT_NAME) elif not settings.MINIMAL_RUNTIME: f.write('''\ if (typeof exports === 'object' && typeof module === 'object') module.exports = %(EXPORT_NAME)s; else if (typeof define === 'function' && define['amd']) define([], function() { return %(EXPORT_NAME)s; }); else if (typeof exports === 'object') exports["%(EXPORT_NAME)s"] = %(EXPORT_NAME)s; ''' % {'EXPORT_NAME': settings.EXPORT_NAME}) shared.configuration.get_temp_files().note(final_js) save_intermediate('modularized') def module_export_name_substitution(): global final_js logger.debug('Private module export name substitution with ' + settings.EXPORT_NAME) with open(final_js) as f: src = f.read() final_js += '.module_export_name_substitution.js' if settings.MINIMAL_RUNTIME: # In MINIMAL_RUNTIME the Module object is always present to provide the .asm.js/.wasm content replacement = settings.EXPORT_NAME else: replacement = "typeof %(EXPORT_NAME)s !== 'undefined' ? %(EXPORT_NAME)s : {}" % {"EXPORT_NAME": settings.EXPORT_NAME} src = re.sub(r'{\s*[\'"]?__EMSCRIPTEN_PRIVATE_MODULE_EXPORT_NAME_SUBSTITUTION__[\'"]?:\s*1\s*}', replacement, src) # For Node.js and other shell environments, create an unminified Module object so that # loading external .asm.js file that assigns to Module['asm'] works even when Closure is used. if settings.MINIMAL_RUNTIME and (shared.target_environment_may_be('node') or shared.target_environment_may_be('shell')): src = 'if(typeof Module==="undefined"){var Module={};}\n' + src with open(final_js, 'w') as f: f.write(src) shared.configuration.get_temp_files().note(final_js) save_intermediate('module_export_name_substitution') def generate_traditional_runtime_html(target, options, js_target, target_basename, wasm_target, memfile): script = ScriptSource() shell = read_and_preprocess(options.shell_path) assert '{{{ SCRIPT }}}' in shell, 'HTML shell must contain {{{ SCRIPT }}} , see src/shell.html for an example' base_js_target = os.path.basename(js_target) if settings.PROXY_TO_WORKER: proxy_worker_filename = (settings.PROXY_TO_WORKER_FILENAME or target_basename) + '.js' worker_js = worker_js_script(proxy_worker_filename) script.inline = (''' var filename = '%s'; if ((',' + window.location.search.substr(1) + ',').indexOf(',noProxy,') < 0) { console.log('running code in a web worker'); ''' % shared.JS.get_subresource_location(proxy_worker_filename)) + worker_js + ''' } else { console.log('running code on the main thread'); var fileBytes = tryParseAsDataURI(filename); var script = document.createElement('script'); if (fileBytes) { script.innerHTML = intArrayToString(fileBytes); } else { script.src = filename; } document.body.appendChild(script); } ''' else: # Normal code generation path script.src = base_js_target if not settings.SINGLE_FILE: if memfile and not settings.MINIMAL_RUNTIME: # start to load the memory init file in the HTML, in parallel with the JS script.un_src() script.inline = (''' var memoryInitializer = '%s'; memoryInitializer = Module['locateFile'] ? Module['locateFile'](memoryInitializer, '') : memoryInitializer; Module['memoryInitializerRequestURL'] = memoryInitializer; var meminitXHR = Module['memoryInitializerRequest'] = new XMLHttpRequest(); meminitXHR.open('GET', memoryInitializer, true); meminitXHR.responseType = 'arraybuffer'; meminitXHR.send(null); ''' % shared.JS.get_subresource_location(memfile)) + script.inline if not settings.WASM_ASYNC_COMPILATION: # We need to load the wasm file before anything else, it has to be synchronously ready TODO: optimize script.un_src() script.inline = ''' var wasmURL = '%s'; var wasmXHR = new XMLHttpRequest(); wasmXHR.open('GET', wasmURL, true); wasmXHR.responseType = 'arraybuffer'; wasmXHR.onload = function() { if (wasmXHR.status === 200 || wasmXHR.status === 0) { Module.wasmBinary = wasmXHR.response; } else { var wasmURLBytes = tryParseAsDataURI(wasmURL); if (wasmURLBytes) { Module.wasmBinary = wasmURLBytes.buffer; } } %s }; wasmXHR.send(null); ''' % (shared.JS.get_subresource_location(wasm_target), script.inline) if settings.WASM == 2: # If target browser does not support WebAssembly, we need to load the .wasm.js file before the main .js file. script.un_src() script.inline = ''' function loadMainJs() { %s } if (!window.WebAssembly || location.search.indexOf('_rwasm=0') > 0) { // Current browser does not support WebAssembly, load the .wasm.js JavaScript fallback // before the main JS runtime. var wasm2js = document.createElement('script'); wasm2js.src = '%s'; wasm2js.onload = loadMainJs; document.body.appendChild(wasm2js); } else { // Current browser supports Wasm, proceed with loading the main JS runtime. loadMainJs(); } ''' % (script.inline, shared.JS.get_subresource_location(wasm_target) + '.js') # when script.inline isn't empty, add required helper functions such as tryParseAsDataURI if script.inline: for filename in ('arrayUtils.js', 'base64Utils.js', 'URIUtils.js'): content = read_and_preprocess(shared.path_from_root('src', filename)) script.inline = content + script.inline script.inline = 'var ASSERTIONS = %s;\n%s' % (settings.ASSERTIONS, script.inline) # inline script for SINGLE_FILE output if settings.SINGLE_FILE: js_contents = script.inline or '' if script.src: js_contents += open(js_target).read() shared.try_delete(js_target) script.src = None script.inline = js_contents html_contents = do_replace(shell, '{{{ SCRIPT }}}', script.replacement()) html_contents = tools.line_endings.convert_line_endings(html_contents, '\n', options.output_eol) try: with open(target, 'wb') as f: # Force UTF-8 output for consistency across platforms and with the web. f.write(html_contents.encode('utf-8')) except OSError as e: exit_with_error(f'cannot write output file: {e}') def minify_html(filename): if settings.DEBUG_LEVEL >= 2: return opts = [] # -g1 and greater retain whitespace and comments in source if settings.DEBUG_LEVEL == 0: opts += ['--collapse-whitespace', '--collapse-inline-tag-whitespace', '--remove-comments', '--remove-tag-whitespace', '--sort-attributes', '--sort-class-name'] # -g2 and greater do not minify HTML at all if settings.DEBUG_LEVEL <= 1: opts += ['--decode-entities', '--collapse-boolean-attributes', '--remove-attribute-quotes', '--remove-redundant-attributes', '--remove-script-type-attributes', '--remove-style-link-type-attributes', '--use-short-doctype', '--minify-css', 'true', '--minify-js', 'true'] # html-minifier also has the following options, but they look unsafe for use: # '--remove-optional-tags': removes e.g. <head></head> and <body></body> tags from the page. # (Breaks at least browser.test_sdl2glshader) # '--remove-empty-attributes': removes all attributes with whitespace-only values. # (Breaks at least browser.test_asmfs_hello_file) # '--remove-empty-elements': removes all elements with empty contents. # (Breaks at least browser.test_asm_swapping) logger.debug('minifying HTML file ' + filename) size_before = os.path.getsize(filename) start_time = time.time() shared.check_call(shared.get_npm_cmd('html-minifier-terser') + [filename, '-o', filename] + opts, env=shared.env_with_node_in_path()) elapsed_time = time.time() - start_time size_after = os.path.getsize(filename) delta = size_after - size_before logger.debug('HTML minification took {:.2f}'.format(elapsed_time) + ' seconds, and shrunk size of ' + filename + ' from ' + str(size_before) + ' to ' + str(size_after) + ' bytes, delta=' + str(delta) + ' ({:+.2f}%)'.format(delta * 100.0 / size_before)) def generate_html(target, options, js_target, target_basename, wasm_target, memfile): logger.debug('generating HTML') if settings.EXPORT_NAME != 'Module' and \ not settings.MINIMAL_RUNTIME and \ options.shell_path == shared.path_from_root('src', 'shell.html'): # the minimal runtime shell HTML is designed to support changing the export # name, but the normal one does not support that currently exit_with_error('Customizing EXPORT_NAME requires that the HTML be customized to use that name (see https://github.com/emscripten-core/emscripten/issues/10086)') if settings.MINIMAL_RUNTIME: generate_minimal_runtime_html(target, options, js_target, target_basename) else: generate_traditional_runtime_html(target, options, js_target, target_basename, wasm_target, memfile) if settings.MINIFY_HTML and (settings.OPT_LEVEL >= 1 or settings.SHRINK_LEVEL >= 1): minify_html(target) def generate_worker_js(target, js_target, target_basename): # compiler output is embedded as base64 if settings.SINGLE_FILE: proxy_worker_filename = shared.JS.get_subresource_location(js_target) # compiler output goes in .worker.js file else: move_file(js_target, unsuffixed(js_target) + '.worker.js') worker_target_basename = target_basename + '.worker' proxy_worker_filename = (settings.PROXY_TO_WORKER_FILENAME or worker_target_basename) + '.js' target_contents = worker_js_script(proxy_worker_filename) open(target, 'w').write(target_contents) def worker_js_script(proxy_worker_filename): web_gl_client_src = open(shared.path_from_root('src', 'webGLClient.js')).read() idb_store_src = open(shared.path_from_root('src', 'IDBStore.js')).read() proxy_client_src = open(shared.path_from_root('src', 'proxyClient.js')).read() proxy_client_src = do_replace(proxy_client_src, '{{{ filename }}}', proxy_worker_filename) proxy_client_src = do_replace(proxy_client_src, '{{{ IDBStore.js }}}', idb_store_src) return web_gl_client_src + '\n' + proxy_client_src def process_libraries(libs, lib_dirs, linker_inputs): libraries = [] consumed = [] suffixes = STATICLIB_ENDINGS + DYNAMICLIB_ENDINGS # Find library files for i, lib in libs: logger.debug('looking for library "%s"', lib) found = False for suff in suffixes: name = 'lib' + lib + suff for lib_dir in lib_dirs: path = os.path.join(lib_dir, name) if os.path.exists(path): logger.debug('found library "%s" at %s', lib, path) linker_inputs.append((i, path)) consumed.append(i) found = True break if found: break if not found: jslibs = building.map_to_js_libs(lib) if jslibs is not None: libraries += [(i, jslib) for jslib in jslibs] consumed.append(i) elif building.map_and_apply_to_settings(lib): consumed.append(i) settings.SYSTEM_JS_LIBRARIES += libraries # At this point processing SYSTEM_JS_LIBRARIES is finished, no more items will be added to it. # Sort the input list from (order, lib_name) pairs to a flat array in the right order. settings.SYSTEM_JS_LIBRARIES.sort(key=lambda lib: lib[0]) settings.SYSTEM_JS_LIBRARIES = [lib[1] for lib in settings.SYSTEM_JS_LIBRARIES] return consumed class ScriptSource: def __init__(self): self.src = None # if set, we have a script to load with a src attribute self.inline = None # if set, we have the contents of a script to write inline in a script def un_src(self): """Use this if you want to modify the script and need it to be inline.""" if self.src is None: return self.inline = ''' var script = document.createElement('script'); script.src = "%s"; document.body.appendChild(script); ''' % self.src self.src = None def replacement(self): """Returns the script tag to replace the {{{ SCRIPT }}} tag in the target""" assert (self.src or self.inline) and not (self.src and self.inline) if self.src: return '<script async type="text/javascript" src="%s"></script>' % quote(self.src) else: return '<script>\n%s\n</script>' % self.inline def is_valid_abspath(options, path_name): # Any path that is underneath the emscripten repository root must be ok. if shared.path_from_root().replace('\\', '/') in path_name.replace('\\', '/'): return True def in_directory(root, child): # make both path absolute root = os.path.realpath(root) child = os.path.realpath(child) # return true, if the common prefix of both is equal to directory # e.g. /a/b/c/d.rst and directory is /a/b, the common prefix is /a/b return os.path.commonprefix([root, child]) == root for valid_abspath in options.valid_abspaths: if in_directory(valid_abspath, path_name): return True return False def parse_value(text, expect_list): # Note that using response files can introduce whitespace, if the file # has a newline at the end. For that reason, we rstrip() in relevant # places here. def parse_string_value(text): first = text[0] if first == "'" or first == '"': text = text.rstrip() assert text[-1] == text[0] and len(text) > 1, 'unclosed opened quoted string. expected final character to be "%s" and length to be greater than 1 in "%s"' % (text[0], text) return text[1:-1] return text def parse_string_list_members(text): sep = ',' values = text.split(sep) result = [] index = 0 while True: current = values[index].lstrip() # Cannot safely rstrip for cases like: "HERE-> ," if not len(current): exit_with_error('string array should not contain an empty value') first = current[0] if not(first == "'" or first == '"'): result.append(current.rstrip()) else: start = index while True: # Continue until closing quote found if index >= len(values): exit_with_error("unclosed quoted string. expected final character to be '%s' in '%s'" % (first, values[start])) new = values[index].rstrip() if new and new[-1] == first: if start == index: result.append(current.rstrip()[1:-1]) else: result.append((current + sep + new)[1:-1]) break else: current += sep + values[index] index += 1 index += 1 if index >= len(values): break return result def parse_string_list(text): text = text.rstrip() if text and text[0] == '[': if text[-1] != ']': exit_with_error('unclosed opened string list. expected final character to be "]" in "%s"' % (text)) text = text[1:-1] if text.strip() == "": return [] return parse_string_list_members(text) if expect_list or (text and text[0] == '['): # if json parsing fails, we fall back to our own parser, which can handle a few # simpler syntaxes try: return json.loads(text) except ValueError: return parse_string_list(text) try: return int(text) except ValueError: return parse_string_value(text) def validate_arg_level(level_string, max_level, err_msg, clamp=False): try: level = int(level_string) except ValueError: raise Exception(err_msg) if clamp: if level > max_level: logger.warning("optimization level '-O" + level_string + "' is not supported; using '-O" + str(max_level) + "' instead") level = max_level if not 0 <= level <= max_level: raise Exception(err_msg) return level def is_int(s): try: int(s) return True except ValueError: return False def main(args): start_time = time.time() ret = run(args) logger.debug('total time: %.2f seconds', (time.time() - start_time)) return ret if __name__ == '__main__': try: sys.exit(main(sys.argv)) except KeyboardInterrupt: logger.warning('KeyboardInterrupt') sys.exit(1)
40.788358
379
0.68778
d0ffe439a5100948d7cf1c382079496b47f642cf
9,047
py
Python
examples/imagenet_resnet.py
DMALab/TSplit
8f86f987163aa06521bfeeb174616eb4a0a81b47
[ "Apache-2.0" ]
2
2021-05-29T11:18:14.000Z
2021-09-09T14:29:21.000Z
examples/imagenet_resnet.py
DMALab/TSplit
8f86f987163aa06521bfeeb174616eb4a0a81b47
[ "Apache-2.0" ]
null
null
null
examples/imagenet_resnet.py
DMALab/TSplit
8f86f987163aa06521bfeeb174616eb4a0a81b47
[ "Apache-2.0" ]
1
2021-05-01T16:34:37.000Z
2021-05-01T16:34:37.000Z
import numpy as np from athena import ndarray from athena import gpu_ops as ad from athena.microopOptimizer import microopOptimizer from athena.microopPlanner import microopPlanner import time import argparse executor_ctx = ndarray.gpu(0) variable_list = [] val_list = [] rand = np.random.RandomState(seed=123) def get_variable(name, size): global variable_list, val_list x = ad.Variable(name=name) x_val = rand.normal(scale=0.1, size=size) x_val = ndarray.array(x_val, ctx=executor_ctx) variable_list.append(x) val_list.append(x_val) return x def conv2d_1_1(x, in_channel, out_channel, stride=1, padding=1, name=''): x = ad.conv2d_op(x, get_variable(name + '_weight', (out_channel, in_channel, 1, 1)), stride=stride, padding=padding, For_ResNet=True) return x def conv2d_3_3(x, in_channel, out_channel, stride=1, padding=1, name=''): x = ad.conv2d_op(x, get_variable(name + '_weight', (out_channel, in_channel, 3, 3)), stride=stride, padding=padding, For_ResNet=True) return x def conv2d_7_7(x, in_channel, out_channel, stride=1, padding=1, name=''): x = ad.conv2d_op(x, get_variable(name + '_weight', (out_channel, in_channel, 7, 7)), stride=stride, padding=padding, For_ResNet=True) return x def batch_norm_with_relu(x, hidden, name): x = ad.batch_normalization_op(x, get_variable(name + '_scale', (1, hidden, 1, 1)), get_variable(name + '_bias', (1, hidden, 1, 1))) x = ad.relu_op(x) return x def resnet_block_large(x, in_channel, out_channel, num_blocks, is_first=False, name=''): if is_first: indentity = conv2d_1_1(x, in_channel, out_channel, stride=1, padding=0, name=name + '_conv0') indentity = batch_norm_with_relu(indentity, out_channel, name + '_bn0') x = conv2d_1_1(x, in_channel, out_channel / 4, stride=1, padding=0, name=name + '_conv1') x = batch_norm_with_relu(x, out_channel / 4, name + '_bn1') x = conv2d_3_3(x, out_channel / 4, out_channel / 4, stride=1, padding=1, name=name + '_conv2') x = batch_norm_with_relu(x, out_channel / 4, name + '_bn2') x = conv2d_1_1(x, out_channel / 4, out_channel, stride=1, padding=0, name=name + '_conv3') x = batch_norm_with_relu(x, out_channel, name + 'bn_3') x = x + indentity else: identity = conv2d_1_1(x, in_channel, out_channel, stride=2, padding=0, name=name + '_conv0') identity = batch_norm_with_relu(identity, out_channel, name + '_bn0') x = conv2d_1_1(x, in_channel, out_channel / 4, stride=1, padding=0, name=name + '_conv1') x = batch_norm_with_relu(x, out_channel / 4, name + '_bn1') x = conv2d_3_3(x, out_channel / 4 , out_channel / 4, stride=2, padding=1, name=name + '_conv2') x = batch_norm_with_relu(x, out_channel / 4, name + '_bn2') x = conv2d_1_1(x, out_channel / 4, out_channel, stride=1, padding=0, name=name + '_conv3') x = batch_norm_with_relu(x, out_channel, name + '_bn3') x = x + identity for i in range(1, num_blocks): identity = x x = conv2d_1_1(x, out_channel, out_channel / 4, stride=1, padding=0, name=name + '_conv%d' % (3 * i + 1)) x = batch_norm_with_relu(x, out_channel / 4, name + '_bn%d' % (3 * i + 1)) x = conv2d_3_3(x, out_channel / 4, out_channel / 4, stride=1, padding=1, name=name + '_conv%d' % (3 * i + 2)) x = batch_norm_with_relu(x, out_channel / 4, name + '_bn%d' % (3 * i + 2)) x = conv2d_1_1(x, out_channel / 4, out_channel, stride=1, padding=0, name=name + '_conv%d' % (3 * i + 3)) x = batch_norm_with_relu(x, out_channel, name + '_bn%d' % (3 * i + 3)) x = x + identity return x def fc(x, shape, name): x = ad.matmul_op(x, get_variable(name + '_weight', shape)) return x def resnet_model(x, y_, num_layers=18): ''' ResNet model, for CIFAR10 dataset. Parameters: x: Variable(athena.gpu_ops.Node.Node), shape (N, C, H, W) y_: Variable(athena.gpu_ops.Node.Node), shape (N, num_classes) num_layers: 18 or 34 Return: loss: Variable(athena.gpu_ops.Node.Node), shape (1,) y: Variable(athena.gpu_ops.Node.Node), shape (N, num_classes) ''' base_size = 64 x = conv2d_7_7(x, 3, base_size, stride=2, padding=3, name='resnet_initial_conv') x = batch_norm_with_relu(x, base_size, 'resnet_initial_bn') x = ad.max_pool2d_op(x, 3, 3, stride=2, padding=1) if num_layers == 50: # print("Building ResNet-50 model...") x = resnet_block_large(x, base_size, 4 * 64, num_blocks=3, is_first=True, name='resnet_block1') x = resnet_block_large(x, 4 * 64, 4 * 128, num_blocks=4, is_first=False, name='resnet_block2') x = resnet_block_large(x, 4 * 128, 4 * 256, num_blocks=6, is_first=False, name='resnet_block3') x = resnet_block_large(x, 4 * 256, 4 * 512, num_blocks=3, is_first=False, name='resnet_block4') elif num_layers == 101: # print("Building ResNet-101 model...") x = resnet_block_large(x, base_size, 4 * 64, num_blocks=3, is_first=True, name='resnet_block1') x = resnet_block_large(x, 4 * 64, 4 * 128, num_blocks=4, is_first=False, name='resnet_block2') x = resnet_block_large(x, 4 * 128, 4 * 256, num_blocks=23, is_first=False, name='resnet_block3') x = resnet_block_large(x, 4 * 256, 4 * 512, num_blocks=3, is_first=False, name='resnet_block4') else: assert False, "Number of layers should be 18, 34, 50 or 101 !" x = ad.avg_pool2d_op(x, 7, 7, padding=0, stride=7) x = ad.array_reshape_op(x, (batch_size, -1)) y = fc(x, (512 * 4, 1000), name='resnet_final_fc') # here we don't use cudnn for softmax crossentropy to avoid overflows loss = ad.softmaxcrossentropy_op(y, y_) return loss, y def resnet(batch_size, num_layers, policy = "None"): global variable_list, val_list variable_list = [] val_list = [] X = ad.Variable(name='X') X_val = np.empty(shape=(batch_size, 3, 224, 224), dtype=np.float32) # X_val = ndarray.array(X_val, ctx=executor_ctx) y_ = ad.Variable(name='y_') y_val = np.empty(shape=(batch_size, 1000), dtype=np.float32) # y_val = ndarray.array(y_val, ctx=executor_ctx) loss, y = resnet_model(X, y_, num_layers) grad_list = ad.gradients(loss, variable_list) if policy == "None" or policy == "base": athena_exec = ad.Executor elif policy == "vdnnconv" or policy == "vdnnall": athena_exec = ad.vdnnExecutor elif policy == "superneurons": athena_exec = ad.superNeuronsExecutor elif policy == "recompute_memory" or policy == "recompute_speed": athena_exec = ad.recomputeExecutor elif policy == "simulator": athena_exec = microopOptimizer elif policy == "profiler": athena_exec = ad.profileExecutor elif policy == "planner": athena_exec = microopPlanner elif policy == "tsplit": athena_exec = ad.microopExecutor else: raise NotImplementedError if policy == "vdnnconv": executor = athena_exec([loss] + grad_list + [y], ctx=executor_ctx, policy = "conv") elif policy == "vdnnall": executor = athena_exec([loss] + grad_list + [y], ctx=executor_ctx, policy = "all") elif policy == "recompute_memory": executor = athena_exec([loss] + grad_list + [y], ctx=executor_ctx, policy = "memory") elif policy == "recompute_speed": executor = athena_exec([loss] + grad_list + [y], ctx=executor_ctx, policy = "speed") else: executor = athena_exec([loss] + grad_list + [y], ctx=executor_ctx) feed_dict = dict() feed_dict[X] = X_val feed_dict[y_] = y_val for i in range(len(variable_list)): feed_dict[variable_list[i]] = val_list[i] for i in range(3): if i == 1: start = time.time() grad_val_list = executor.run(feed_dict) end = time.time() return (end - start) / 2 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Demo of argparse") parser.add_argument('-l','--layer', type=int, default=0) parser.add_argument('-p','--policy', default='None') args = parser.parse_args() policy = args.policy layer = args.layer # batch_size = 590 # execution_time = resnet(batch_size, layer, policy = policy) # print("Batch size: {} , time: {} s\n".format(batch_size, execution_time)) # output_file_name = "/home/xiaonan/microop/Athena/exp/" + "resnet" + str(layer) + "/" + policy + "_batchsize_with_time.txt" # output_file = open(output_file_name, "a+", buffering=1) # output_file.write("Policy: {}, on ResNet{}\n".format(policy, layer)) # for batch_size in range(32, 2000, 32): # execution_time = resnet(batch_size, layer, policy = policy) # print("Batch size: {} , time: {} s\n".format(batch_size, execution_time)) # output_file.write("Batch size: {} , time: {} s\n".format(batch_size, execution_time)) # output_file.close()
43.917476
137
0.644965
c561c60814830df21204d975ebd5334913b04625
452
py
Python
app/main/model/example.py
Eliotdoesprogramming/python.flask.sqlalchemy.Rest_Api_Template
3f0a98ae4676aef9ecdf0df70eb9d1990fee6182
[ "MIT" ]
null
null
null
app/main/model/example.py
Eliotdoesprogramming/python.flask.sqlalchemy.Rest_Api_Template
3f0a98ae4676aef9ecdf0df70eb9d1990fee6182
[ "MIT" ]
null
null
null
app/main/model/example.py
Eliotdoesprogramming/python.flask.sqlalchemy.Rest_Api_Template
3f0a98ae4676aef9ecdf0df70eb9d1990fee6182
[ "MIT" ]
null
null
null
#Example model from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow #single instance of SQLAlchemy and Marshmallow from model import db,ma class Example(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100), unique=True) def __init__(self,name) -> None: self.name=name #Example Schema class ExampleSchema(ma.Schema): class Meta: fields = ('id','name')
22.6
49
0.721239
381009228a8252bd40e6701ceb78dc83ac57ba99
2,413
py
Python
src/bilder/components/hashicorp/consul/steps.py
mitodl/ol-infrastructure
f09912e39ff280575964a4df7c004fde58912636
[ "BSD-3-Clause" ]
25
2020-07-10T21:05:43.000Z
2022-03-09T03:55:30.000Z
src/bilder/components/hashicorp/consul/steps.py
mitodl/ol-infrastructure
f09912e39ff280575964a4df7c004fde58912636
[ "BSD-3-Clause" ]
423
2020-06-23T18:00:43.000Z
2022-03-31T17:44:08.000Z
src/bilder/components/hashicorp/consul/steps.py
mitodl/ol-infrastructure
f09912e39ff280575964a4df7c004fde58912636
[ "BSD-3-Clause" ]
null
null
null
import tempfile from pathlib import Path from pyinfra.api import deploy from pyinfra.operations import apt, files, systemd from bilder.facts import has_systemd # noqa: F401 @deploy("Set up DNS proxy") def proxy_consul_dns(state=None, host=None): apt.packages( name="Install Unbound for DNS proxying", packages=["unbound"], present=True, update=True, state=state, host=host, ) with tempfile.NamedTemporaryFile(delete=False, mode="w") as dhclient_config: dhclient_config.write( r'make_resolv_conf\necho "nameserver 127.0.0.1\\n$(cat /etc/resolv.conf)" ' "> /etc/resolv.conf" ) files.put( name="Configure dhclient to use local DNS", dest="/etc/dhcp/dhclient-enter-hooks.d/consul", src=dhclient_config.name, create_remote_dir=True, mode="0755", state=state, host=host, ) # Allow hosts that default to using systemd-resolved to properly resolve Consul # domains if host.fact.has_systemd and host.fact.systemd_enabled["systemd-resolved.service"]: with tempfile.NamedTemporaryFile(delete=False, mode="w") as resolved_conf: resolved_conf.write("[Resolve]\nDNS=127.0.0.1\nDomains=~consul") consul_resolved_config = files.put( name="Configure systemd-resolved to resolve .consul domains locally", dest="/etc/systemd/resolved.conf.d/consul.conf", src=resolved_conf.name, create_remote_dir=True, state=state, host=host, ) systemd.service( name="Enable systemd-resolved", service="systemd-resolved", enabled=True, running=True, restarted=consul_resolved_config.changed, state=state, host=host, ) files.put( name="Configure Unbound to resolve .consul domains locally", dest="/etc/unbound/unbound.conf.d/consul.conf", src=Path(__file__).parent.joinpath("files", "unbound_config.conf"), create_remote_dir=True, state=state, host=host, ) systemd.service( name="Enable Unbound DNS proxy", service="unbound", enabled=True, running=True, state=state, host=host, )
33.513889
87
0.598425
ea5dd6948b112404c7951bc7039840c85579f74c
19,352
py
Python
tests/python/relay/test_op_level1.py
YSHsieh7777/tvm
b51973fb48deb34ff725bf1206f1b683f8bc2773
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
1
2021-12-29T00:04:56.000Z
2021-12-29T00:04:56.000Z
tests/python/relay/test_op_level1.py
YSHsieh7777/tvm
b51973fb48deb34ff725bf1206f1b683f8bc2773
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
1
2017-12-09T06:30:45.000Z
2017-12-09T22:53:23.000Z
tests/python/relay/test_op_level1.py
YSHsieh7777/tvm
b51973fb48deb34ff725bf1206f1b683f8bc2773
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
1
2021-02-06T01:56:20.000Z
2021-02-06T01:56:20.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import pytest import tvm from tvm import te import scipy from tvm import relay from tvm.relay import transform from tvm.relay.testing import run_infer_type import tvm.topi.testing from tvm.contrib.nvcc import have_fp16 import tvm.testing def sigmoid(x): one = np.ones_like(x) return one / (one + np.exp(-x)) def relu(x): x_copy = np.copy(x) np.maximum(x_copy, 0, x_copy) return x_copy def rsqrt(x): one = np.ones_like(x) return one / np.sqrt(x) @tvm.testing.uses_gpu def test_unary_op(): def check_single_op(opfunc, ref, dtype): shape = (10, 4) dtype = dtype tp = relay.TensorType(shape) x = relay.var("x", tp, dtype=dtype) y = opfunc(x) # test printer assert ("{}(%x)".format(y.op.name)) in y.astext() # test type inference yy = run_infer_type(y) assert yy.checked_type == tp if ref is not None: data = np.random.rand(*shape).astype(dtype) ref_res = ref(data) func = relay.Function([x], y) for target, ctx in tvm.testing.enabled_targets(): # use graph by execuor default for testing, as we need # create function explicitly to avoid constant-folding. if ( dtype == "float16" and target == "cuda" and not have_fp16(tvm.gpu(0).compute_version) ): continue intrp = relay.create_executor("graph", ctx=ctx, target=target) op_res = intrp.evaluate(func)(data) np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=0.01) for opfunc, ref in [ (tvm.relay.log, np.log), (tvm.relay.exp, np.exp), (tvm.relay.erf, scipy.special.erf), (tvm.relay.sqrt, np.sqrt), (tvm.relay.rsqrt, rsqrt), (tvm.relay.sigmoid, sigmoid), (tvm.relay.tanh, np.tanh), (relay.nn.relu, relu), (tvm.relay.cos, np.cos), (tvm.relay.sin, np.sin), (tvm.relay.tan, np.tan), (tvm.relay.atan, np.arctan), ]: for dtype in ["float16", "float32"]: check_single_op(opfunc, ref, dtype) @tvm.testing.uses_gpu def test_binary_op(): def inst(vars, sh): return [vars.get(s, s) for s in sh] def check_binary_op(opfunc, ref, dtype): # TODO(@jroesch): this piece of code improperly uses type variables. n = te.var("n") s1 = (5, n, 5) s2 = (n, 1) t1 = relay.TensorType(s1) t2 = relay.TensorType(s2) x = relay.var("x", t1, dtype=dtype) y = relay.var("y", t2, dtype=dtype) z = opfunc(x, y) # test printer assert ("{}(%x, %y)".format(z.op.name)) in z.astext() zz = run_infer_type(z) assert zz.checked_type == t1 if ref is not None: t1 = relay.TensorType((5, 10, 5)) t2 = relay.TensorType((5, 10, 5)) x = relay.var("x", t1, dtype=dtype) y = relay.var("y", t2, dtype=dtype) z = opfunc(x, y) x_data = np.random.rand(5, 10, 5).astype(dtype) y_data = np.random.rand(5, 10, 5).astype(dtype) ref_res = ref(x_data, y_data) func = relay.Function([x, y], z) for target, ctx in tvm.testing.enabled_targets(): # use graph by execuor default for testing, as we need # create function explicitly to avoid constant-folding. if ( dtype == "float16" and target == "cuda" and not have_fp16(tvm.gpu(0).compute_version) ): continue intrp = relay.create_executor("graph", ctx=ctx, target=target) op_res = intrp.evaluate(func)(x_data, y_data) np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=0.01, atol=1e-3) for opfunc, ref in [ (relay.add, np.add), (relay.subtract, np.subtract), (relay.multiply, np.multiply), (relay.divide, np.divide), (relay.floor_divide, np.floor_divide), (relay.floor_mod, np.fmod), ]: for dtype in ["float16", "float32"]: check_binary_op(opfunc, ref, dtype) @tvm.testing.uses_gpu def test_expand_dims(): # based on topi test def verify_expand_dims(dshape, dtype, oshape, axis, num_newaxis): x = relay.Var("x", relay.TensorType(dshape, dtype)) func = relay.Function([x], relay.expand_dims(x, axis, num_newaxis)) for target, ctx in tvm.testing.enabled_targets(): if ( dtype == "float16" and target == "cuda" and not have_fp16(tvm.gpu(0).compute_version) ): continue data = np.random.uniform(size=dshape).astype(dtype) ref_res = data.reshape(oshape) intrp = relay.create_executor("graph", ctx=ctx, target=target) op_res = intrp.evaluate(func)(data) np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=0.01) for dtype in ["float16", "float32"]: verify_expand_dims((3, 10), dtype, (3, 10, 1, 1), 2, 2) verify_expand_dims((3, 10), dtype, (1, 3, 10), -3, 1) @tvm.testing.uses_gpu def test_bias_add(): for dtype in ["float16", "float32"]: xshape = (10, 2, 3, 4) bshape = (2,) rtol = 1e-2 if dtype == "float16" else 1e-5 x = relay.var("x", shape=xshape, dtype=dtype) bias = relay.var("bias", dtype=dtype) z = relay.nn.bias_add(x, bias) zz = run_infer_type(z) assert "axis=" not in zz.astext() assert zz.args[1].checked_type == relay.TensorType(bshape, dtype) func = relay.Function([x, bias], z) x_data = np.random.uniform(size=xshape).astype(dtype) y_data = np.random.uniform(size=bshape).astype(dtype) ref_res = x_data + y_data.reshape((2, 1, 1)) for target, ctx in tvm.testing.enabled_targets(): if ( dtype == "float16" and target == "cuda" and not have_fp16(tvm.gpu(0).compute_version) ): continue intrp = relay.create_executor("graph", ctx=ctx, target=target) op_res = intrp.evaluate(func)(x_data, y_data) np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=rtol) def test_bias_add_type_failure(): # the axis is out of range try: b_add = relay.nn.bias_add(relay.const(1), relay.const(2), axis=0) run_infer_type(b_add) except tvm._ffi.base.TVMError: pass else: assert False def test_expand_dims_infer_type(): for dtype in ["float16", "float32"]: n, t, d = te.size_var("n"), te.size_var("t"), 100 x = relay.var("x", shape=(n, t, d), dtype=dtype) y = relay.expand_dims(x, axis=2) assert "axis=2" in y.astext() yy = run_infer_type(y) assert yy.checked_type == relay.TensorType((n, t, 1, 100), dtype) @tvm.testing.uses_gpu def test_softmax(): for dtype in ["float16", "float32"]: # Softmax accuracy for float16 is poor if dtype == "float16": return shape = (10, 4) x = relay.var("x", shape=shape, dtype=dtype) y = relay.nn.softmax(x, axis=1) assert "nn.softmax" in y.astext() yy = run_infer_type(y) assert yy.checked_type == relay.TensorType(shape, dtype) func = relay.Function([x], y) x_data = np.random.uniform(size=shape).astype(dtype) ref_res = tvm.topi.testing.softmax_python(x_data) for target, ctx in tvm.testing.enabled_targets(): intrp = relay.create_executor("graph", ctx=ctx, target=target) op_res = intrp.evaluate(func)(x_data) np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5) @tvm.testing.uses_gpu def test_log_softmax(): for dtype in ["float16", "float32"]: # Softmax accuracy for float16 is poor if dtype == "float16": return shape = (10, 4) x = relay.var("x", shape=shape, dtype=dtype) y = relay.nn.log_softmax(x, axis=1) assert "nn.log_softmax" in y.astext() yy = run_infer_type(y) assert yy.checked_type == relay.TensorType(shape, dtype) func = relay.Function([x], y) x_data = np.random.uniform(size=shape).astype(dtype) ref_res = tvm.topi.testing.log_softmax_python(x_data) for target, ctx in tvm.testing.enabled_targets(): intrp = relay.create_executor("graph", ctx=ctx, target=target) op_res = intrp.evaluate(func)(x_data) np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5) @tvm.testing.uses_gpu def test_concatenate(): for dtype in ["float16", "float32"]: n, t, d = te.size_var("n"), te.size_var("t"), 100 x = relay.var("x", shape=(n, t, d)) y = relay.var("y", shape=(n, t, d)) z = relay.concatenate((x, y), axis=-1) assert "axis=" in z.astext() zz = run_infer_type(z) assert zz.checked_type == relay.TensorType((n, t, 200)) x = relay.exp(x) z = relay.concatenate((x, y), axis=2) zz = run_infer_type(z) assert zz.checked_type == relay.TensorType((n, t, 200)) z = relay.concatenate((x, y), axis=1) zz = run_infer_type(z) assert zz.checked_type == relay.TensorType((n, t + t, 100)) # check shape mismatches (the following case is expected to raise tvm._ffi.base.TVMError. try: x = relay.var("p1", shape=(2, 5)) y = relay.var("p2", shape=(2, 3)) c = relay.concatenate([x, y], axis=0) func = relay.Function([x, y], c) zz = run_infer_type(func) except tvm._ffi.base.TVMError: pass else: assert False x = relay.var("x", shape=(10, 5), dtype=dtype) y = relay.var("y", shape=(10, 5), dtype=dtype) t = relay.var("z", shape=(), dtype=dtype) z = relay.concatenate((x, y), axis=1) z = relay.add(z, t) # Check result. func = relay.Function([x, y, t], z) x_data = np.random.rand(10, 5).astype(dtype) y_data = np.random.rand(10, 5).astype(dtype) t_data = np.random.uniform(size=()).astype(dtype) ref_res = np.concatenate((x_data, y_data), axis=1) + t_data for target, ctx in tvm.testing.enabled_targets(): if ( dtype == "float16" and target == "cuda" and not have_fp16(tvm.gpu(0).compute_version) ): continue intrp1 = relay.create_executor("graph", ctx=ctx, target=target) intrp2 = relay.create_executor("debug", ctx=ctx, target=target) op_res1 = intrp1.evaluate(func)(x_data, y_data, t_data) tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=0.01) op_res2 = intrp2.evaluate(func)(x_data, y_data, t_data) tvm.testing.assert_allclose(op_res2.asnumpy(), ref_res, rtol=0.01) def test_dropout(): for dtype in ["float16", "float32"]: n, t, d = te.size_var("n"), te.size_var("t"), te.size_var("d") input_ty = relay.TensorType((n, t, d), dtype) x = relay.var("x", input_ty) y = relay.nn.dropout(x, rate=0.75) assert "rate=" in y.astext() yy = run_infer_type(y) assert yy.checked_type == input_ty in_np = np.random.random([4, 5, 6]).astype("float32") x = relay.const(in_np) y = relay.nn.dropout(x, rate=0.5) func = relay.Function([], y) for target, ctx in tvm.testing.enabled_targets(): for backend in ["debug", "graph"]: intrp = relay.create_executor("debug", ctx=ctx, target=target) op_res = intrp.evaluate(func)() tvm.testing.assert_allclose(op_res.asnumpy(), in_np, rtol=0.01) def test_batch_norm(): for dtype in ["float16", "float32"]: # beta and gamma ignored data = relay.var("data", relay.TensorType((3, 2, 1), dtype)) beta = relay.var("beta", relay.TensorType((2,), dtype)) gamma = relay.var("gamma", relay.TensorType((2,), dtype)) moving_mean = relay.var("moving_mean", relay.TensorType((2,), dtype)) moving_var = relay.var("moving_var", relay.TensorType((2,), dtype)) y = relay.nn.batch_norm( data, gamma, beta, moving_mean, moving_var, center=False, scale=False ) yy = run_infer_type(y.astuple()) assert "center=" in yy.astext() assert yy.checked_type == relay.ty.TupleType( tvm.runtime.convert( [ relay.TensorType((3, 2, 1), dtype), relay.TensorType((2,), dtype), relay.TensorType((2,), dtype), ] ) ) beta = relay.var("beta", relay.TensorType((3,), dtype)) gamma = relay.var("gamma", relay.TensorType((3,), dtype)) moving_mean = relay.var("moving_mean", relay.TensorType((3,), dtype)) moving_var = relay.var("moving_var", relay.TensorType((3,), dtype)) y = relay.nn.batch_norm( data, gamma, beta, moving_mean, moving_var, axis=0, center=False, scale=False ) yy = run_infer_type(y.astuple()) assert yy.checked_type == relay.ty.TupleType( tvm.runtime.convert( [ relay.ty.TensorType((3, 2, 1), dtype), relay.ty.TensorType((3,), dtype), relay.ty.TensorType((3,), dtype), ] ) ) # axis=-1 data = relay.var("data", relay.TensorType((1, 2, 3), dtype)) beta = relay.var("beta", relay.TensorType((3,), dtype)) gamma = relay.var("gamma", relay.TensorType((3,), dtype)) moving_mean = relay.var("moving_mean", relay.TensorType((3,), dtype)) moving_var = relay.var("moving_var", relay.TensorType((3,), dtype)) y = relay.nn.batch_norm( data, gamma, beta, moving_mean, moving_var, axis=-1, center=False, scale=False ) yy = run_infer_type(y.astuple()) assert yy.checked_type == relay.ty.TupleType( tvm.runtime.convert( [ relay.ty.TensorType((1, 2, 3), dtype), relay.ty.TensorType((3,), dtype), relay.ty.TensorType((3,), dtype), ] ) ) @pytest.mark.xfail def test_dense_type_check(): dtype = "float16" n, c, h, w = 2, 2, 2, 2 x = relay.var("x", relay.TensorType((n, c, h, w), dtype)) # it should fail since it does not match with m(2) mismatch_w = 3 w = relay.var("w", relay.TensorType((2, mismatch_w), dtype)) y = relay.nn.dense(x, w) yy = run_infer_type(y) @tvm.testing.uses_gpu def test_dense(): for dtype in ["float16", "float32"]: # Dense accuracy for float16 is poor if dtype == "float16": return n, c, h, w = te.size_var("n"), te.size_var("c"), te.size_var("h"), te.size_var("w") x = relay.var("x", relay.TensorType((n, c, h, w), dtype)) w = relay.var("w", relay.TensorType((2, w), dtype)) y = relay.nn.dense(x, w, units=2) assert "units=2" in y.astext() yy = run_infer_type(y) assert yy.checked_type == relay.TensorType((n, c, h, 2), dtype) n, c, h, w = te.size_var("n"), te.size_var("c"), te.size_var("h"), 2 x = relay.var("x", relay.TensorType((n, c, h, w), dtype)) wh, ww = te.size_var("wh"), te.size_var("ww") w = relay.var("w", relay.TensorType((ww, wh), dtype)) y = relay.nn.dense(x, w) yy = run_infer_type(y) assert yy.checked_type == relay.TensorType((n, c, h, ww), dtype) n, c, h, w = te.size_var("n"), te.size_var("c"), te.size_var("h"), 2 x = relay.var("x", relay.TensorType((n, c, h, w), dtype)) w = relay.var("w", relay.IncompleteType()) y = relay.nn.dense(x, w, units=2) yy = run_infer_type(y) assert yy.checked_type == relay.TensorType((n, c, h, 2), dtype) x = relay.var("x", shape=(10, 5), dtype=dtype) w = relay.var("w", shape=(2, 5), dtype=dtype) z = relay.nn.dense(x, w) # Check result. func = relay.Function([x, w], z) x_data = np.random.rand(10, 5).astype(dtype) w_data = np.random.rand(2, 5).astype(dtype) ref_res = np.dot(x_data, w_data.T) for target, ctx in tvm.testing.enabled_targets(): intrp1 = relay.create_executor("graph", ctx=ctx, target=target) intrp2 = relay.create_executor("debug", ctx=ctx, target=target) op_res1 = intrp1.evaluate(func)(x_data, w_data) tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5) op_res2 = intrp2.evaluate(func)(x_data, w_data) tvm.testing.assert_allclose(op_res2.asnumpy(), ref_res, rtol=1e-5) def test_dense_dtype(): data_dtype = "uint8" weight_dtype = "int8" out_dtype = "uint8" n, c, h, w = te.size_var("n"), te.size_var("c"), te.size_var("h"), te.size_var("w") x = relay.var("x", relay.TensorType((n, c, h, w), data_dtype)) w = relay.var("w", relay.TensorType((2, w), weight_dtype)) y = relay.nn.dense(x, w, units=2, out_dtype=out_dtype) assert "units=2" in y.astext() yy = run_infer_type(y) assert yy.checked_type == relay.TensorType((n, c, h, 2), out_dtype) assert run_infer_type(yy.args[0]).checked_type.dtype == "uint8" assert run_infer_type(yy.args[1]).checked_type.dtype == "int8" def test_bitserial_dense(): m, k = te.size_var("m"), te.size_var("k") x = relay.var("x", relay.TensorType((m, k), "int16")) w = relay.var("w", relay.TensorType((k, 32), "int16")) y = relay.nn.bitserial_dense(x, w, units=32) "units=8" in y.astext() yy = run_infer_type(y) assert yy.checked_type == relay.TensorType((m, 32), "int16") if __name__ == "__main__": test_concatenate() test_bias_add() test_bias_add_type_failure() test_unary_op() test_binary_op() test_expand_dims_infer_type() test_expand_dims() test_softmax() test_log_softmax() test_dropout() test_batch_norm() test_dense() test_bitserial_dense() test_dense_dtype()
37.945098
97
0.574204
ab8068a772476b1a9925a4766fde1c9646f25d9f
8,467
py
Python
projects/DensePose/query_db.py
aminekechaou/detectron2
3772b9316f8a2e6bf55cf5868dd64214d7f7c49a
[ "Apache-2.0" ]
null
null
null
projects/DensePose/query_db.py
aminekechaou/detectron2
3772b9316f8a2e6bf55cf5868dd64214d7f7c49a
[ "Apache-2.0" ]
null
null
null
projects/DensePose/query_db.py
aminekechaou/detectron2
3772b9316f8a2e6bf55cf5868dd64214d7f7c49a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import logging import os import sys from timeit import default_timer as timer from typing import Any, ClassVar, Dict, List import torch from detectron2.data.catalog import DatasetCatalog from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger from densepose.data.structures import DensePoseDataRelative from densepose.utils.dbhelper import EntrySelector from densepose.utils.logger import verbosity_to_level from densepose.vis.base import CompoundVisualizer from densepose.vis.bounding_box import BoundingBoxVisualizer from densepose.vis.densepose_data_points import ( DensePoseDataCoarseSegmentationVisualizer, DensePoseDataPointsIVisualizer, DensePoseDataPointsUVisualizer, DensePoseDataPointsVisualizer, DensePoseDataPointsVVisualizer, ) DOC = """Query DB - a tool to print / visualize data from a database """ LOGGER_NAME = "query_db" logger = logging.getLogger(LOGGER_NAME) _ACTION_REGISTRY: Dict[str, "Action"] = {} class Action(object): @classmethod def add_arguments(cls: type, parser: argparse.ArgumentParser): parser.add_argument( "-v", "--verbosity", action="count", help="Verbose mode. Multiple -v options increase the verbosity.", ) def register_action(cls: type): """ Decorator for action classes to automate action registration """ global _ACTION_REGISTRY _ACTION_REGISTRY[cls.COMMAND] = cls return cls class EntrywiseAction(Action): @classmethod def add_arguments(cls: type, parser: argparse.ArgumentParser): super(EntrywiseAction, cls).add_arguments(parser) parser.add_argument( "dataset", metavar="<dataset>", help="Dataset name (e.g. densepose_coco_2014_train)" ) parser.add_argument( "selector", metavar="<selector>", help="Dataset entry selector in the form field1[:type]=value1[," "field2[:type]=value_min-value_max...] which selects all " "entries from the dataset that satisfy the constraints", ) parser.add_argument( "--max-entries", metavar="N", help="Maximum number of entries to process", type=int ) @classmethod def execute(cls: type, args: argparse.Namespace): dataset = setup_dataset(args.dataset) entry_selector = EntrySelector.from_string(args.selector) context = cls.create_context(args) if args.max_entries is not None: for _, entry in zip(range(args.max_entries), dataset): if entry_selector(entry): cls.execute_on_entry(entry, context) else: for entry in dataset: if entry_selector(entry): cls.execute_on_entry(entry, context) @classmethod def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]: context = {} return context @register_action class PrintAction(EntrywiseAction): """ Print action that outputs selected entries to stdout """ COMMAND: ClassVar[str] = "print" @classmethod def add_parser(cls: type, subparsers: argparse._SubParsersAction): parser = subparsers.add_parser(cls.COMMAND, help="Output selected entries to stdout. ") cls.add_arguments(parser) parser.set_defaults(func=cls.execute) @classmethod def add_arguments(cls: type, parser: argparse.ArgumentParser): super(PrintAction, cls).add_arguments(parser) @classmethod def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]): import pprint printer = pprint.PrettyPrinter(indent=2, width=200, compact=True) printer.pprint(entry) @register_action class ShowAction(EntrywiseAction): """ Show action that visualizes selected entries on an image """ COMMAND: ClassVar[str] = "show" VISUALIZERS: ClassVar[Dict[str, object]] = { "dp_segm": DensePoseDataCoarseSegmentationVisualizer(), "dp_i": DensePoseDataPointsIVisualizer(), "dp_u": DensePoseDataPointsUVisualizer(), "dp_v": DensePoseDataPointsVVisualizer(), "dp_pts": DensePoseDataPointsVisualizer(), "bbox": BoundingBoxVisualizer(), } @classmethod def add_parser(cls: type, subparsers: argparse._SubParsersAction): parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries") cls.add_arguments(parser) parser.set_defaults(func=cls.execute) @classmethod def add_arguments(cls: type, parser: argparse.ArgumentParser): super(ShowAction, cls).add_arguments(parser) parser.add_argument( "visualizations", metavar="<visualizations>", help="Comma separated list of visualizations, possible values: " "[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))), ) parser.add_argument( "--output", metavar="<image_file>", default="output.png", help="File name to save output to", ) @classmethod def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]): import cv2 import numpy as np image_fpath = PathManager.get_local_path(entry["file_name"]) image = cv2.imread(image_fpath, cv2.IMREAD_GRAYSCALE) image = np.tile(image[:, :, np.newaxis], [1, 1, 3]) datas = cls._extract_data_for_visualizers_from_entry(context["vis_specs"], entry) visualizer = context["visualizer"] image_vis = visualizer.visualize(image, datas) entry_idx = context["entry_idx"] + 1 out_fname = cls._get_out_fname(entry_idx, context["out_fname"]) cv2.imwrite(out_fname, image_vis) logger.info(f"Output saved to {out_fname}") context["entry_idx"] += 1 @classmethod def _get_out_fname(cls: type, entry_idx: int, fname_base: str): base, ext = os.path.splitext(fname_base) return base + ".{0:04d}".format(entry_idx) + ext @classmethod def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]: vis_specs = args.visualizations.split(",") visualizers = [] for vis_spec in vis_specs: vis = cls.VISUALIZERS[vis_spec] visualizers.append(vis) context = { "vis_specs": vis_specs, "visualizer": CompoundVisualizer(visualizers), "out_fname": args.output, "entry_idx": 0, } return context @classmethod def _extract_data_for_visualizers_from_entry( cls: type, vis_specs: List[str], entry: Dict[str, Any] ): dp_list = [] bbox_list = [] for annotation in entry["annotations"]: is_valid, _ = DensePoseDataRelative.validate_annotation(annotation) if not is_valid: continue bbox = torch.as_tensor(annotation["bbox"]) bbox_list.append(bbox) dp_data = DensePoseDataRelative(annotation) dp_list.append(dp_data) datas = [] for vis_spec in vis_specs: datas.append(bbox_list if "bbox" == vis_spec else (bbox_list, dp_list)) return datas def setup_dataset(dataset_name): logger.info("Loading dataset {}".format(dataset_name)) start = timer() dataset = DatasetCatalog.get(dataset_name) stop = timer() logger.info("Loaded dataset {} in {:.3f}s".format(dataset_name, stop - start)) return dataset def create_argument_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser( description=DOC, formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120), ) parser.set_defaults(func=lambda _: parser.print_help(sys.stdout)) subparsers = parser.add_subparsers(title="Actions") for _, action in _ACTION_REGISTRY.items(): action.add_parser(subparsers) return parser def main(): parser = create_argument_parser() args = parser.parse_args() verbosity = args.verbosity if hasattr(args, "verbosity") else None global logger logger = setup_logger(name=LOGGER_NAME) logger.setLevel(verbosity_to_level(verbosity)) args.func(args) if __name__ == "__main__": main()
33.733068
96
0.662218
2ba83d342e2b8d9bc1ecc6d29d0f179c4a0d0f5f
718
py
Python
tests/__init__.py
py-graphit/py-graphit
533ef47e279fc07d9a88f86cc9d19f09d56176f9
[ "Apache-2.0" ]
1
2018-12-02T18:56:34.000Z
2018-12-02T18:56:34.000Z
tests/__init__.py
py-graphit/py-graphit
533ef47e279fc07d9a88f86cc9d19f09d56176f9
[ "Apache-2.0" ]
null
null
null
tests/__init__.py
py-graphit/py-graphit
533ef47e279fc07d9a88f86cc9d19f09d56176f9
[ "Apache-2.0" ]
1
2018-12-02T15:29:41.000Z
2018-12-02T15:29:41.000Z
# -*- coding: utf-8 -*- """ Python function for graphit module, run as: :: test = module_test_suite() runner = unittest.TextTestRunner(verbosity=2) runner.run(test) """ import os import sys import unittest import logging # Init basic logging logging.basicConfig(level=logging.DEBUG) # Add modules in package to path so we can import them modulepath = os.path.abspath(os.path.join(os.path.dirname(__file__), '../')) sys.path.insert(0, modulepath) def module_test_suite(): """ Run graphit module unit tests """ testpath = os.path.join(os.path.dirname(__file__), 'module') loader = unittest.TestLoader() suite = loader.discover(testpath, pattern='module_*.py') return suite
21.757576
76
0.696379
de9ee1bd198feb492e486c02fdbd28913d5b3d76
72,409
py
Python
ibeis/init/filter_annots.py
holmbergius/ibeisold
da3a1480057a6a5d5c68304760642edaae680502
[ "Apache-2.0" ]
1
2019-01-17T22:59:14.000Z
2019-01-17T22:59:14.000Z
ibeis/init/filter_annots.py
holmbergius/ibeisold
da3a1480057a6a5d5c68304760642edaae680502
[ "Apache-2.0" ]
null
null
null
ibeis/init/filter_annots.py
holmbergius/ibeisold
da3a1480057a6a5d5c68304760642edaae680502
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ TODO: * cross validation * encounter vs database (time filtering) """ from __future__ import absolute_import, division, print_function, unicode_literals import functools import copy import utool as ut import numpy as np import six from ibeis.control import controller_inject (print, rrr, profile) = ut.inject2(__name__) VERB_TESTDATA, VERYVERB_TESTDATA = ut.get_verbflag('testdata', 'td', 'acfg') SEED1 = 0 SEED2 = 42 if False and ut.is_developer(): USE_ACFG_CACHE = not ut.get_argflag(('--nocache-annot', '--nocache-aid', '--nocache')) and ut.USE_CACHE USE_ACFG_CACHE = False else: USE_ACFG_CACHE = False _tup = controller_inject.make_ibs_register_decorator(__name__) CLASS_INJECT_KEY, register_ibs_method = _tup @profile def time_filter_annots(): """ python -m ibeis.init.filter_annots time_filter_annots --db PZ_Master1 -a ctrl:qmingt=2 --profile Example: >>> # DISABLE_DOCTEST >>> from ibeis.init.filter_annots import * # NOQA >>> result = time_filter_annots() """ import ibeis ibeis.testdata_expanded_aids() @register_ibs_method def filter_annots_general(ibs, aid_list=None, filter_kw={}, verbose=False, **kwargs): r""" Args: ibs (IBEISController): ibeis controller object aid_list (list): list of annotation rowids filter_kw (?): KWargs:: has_none_annotmatch, any_match_annotmatch, has_all, is_known, any_match_annot, logic_annot, none_match_annotmatch, max_num_annotmatch, any_startswith_annot, has_any, require_quality, species, any_match, view_ext, has_any_annotmatch, view_pername, max_num_annot, min_timedelta, any_startswith, max_numfeat, any_startswith_annotmatch, been_adjusted, any_endswith_annot, require_viewpoint, logic, has_any_annot, min_num_annotmatch, min_num, min_num_annot, has_all_annot, has_none, min_pername, any_endswith_annotmatch, any_endswith, require_timestamp, none_match, contrib_contains, has_all_annotmatch, logic_annotmatch, min_numfeat, none_match_annot, view_ext1, view_ext2, max_num, has_none_annot, minqual, view CommandLine: python -m ibeis --tf filter_annots_general python -m ibeis --tf filter_annots_general --db PZ_Master1 \ --has_any=[needswork,correctable,mildviewpoint] \ --has_none=[viewpoint,photobomb,error:viewpoint,quality] --show python -m ibeis --tf filter_annots_general --db=GZ_Master1 \ --max-numfeat=300 --show --minqual=junk --species=None python -m ibeis --tf filter_annots_general --db=lynx \ --been_adjusted=True Example: >>> # DISABLE_DOCTEST >>> from ibeis.init.filter_annots import * # NOQA >>> import ibeis >>> filter_kw = ut.argparse_dict(get_default_annot_filter_form(), >>> type_hint=ut.ddict(list, has_any=list, >>> has_none=list, >>> logic=str)) >>> print('filter_kw = %s' % (ut.dict_str(filter_kw),)) >>> ibs = ibeis.opendb(defaultdb='testdb1') >>> aid_list = ibs.get_valid_aids() >>> #filter_kw = dict(is_known=True, min_num=1, has_any='viewpoint') >>> #filter_kw = dict(is_known=True, min_num=1, any_match='.*error.*') >>> aid_list_ = filter_annots_general(ibs, aid_list, filter_kw) >>> print('len(aid_list_) = %r' % (len(aid_list_),)) >>> all_tags = ut.flatten(ibs.get_annot_all_tags(aid_list_)) >>> filtered_tag_hist = ut.dict_hist(all_tags) >>> ut.print_dict(filtered_tag_hist, key_order_metric='val') >>> ut.print_dict(ibs.get_annot_stats_dict(aid_list_), 'annot_stats') >>> ut.quit_if_noshow() >>> import ibeis.viz.interact >>> ibeis.viz.interact.interact_chip.interact_multichips(ibs, aid_list_) >>> ut.show_if_requested() """ if aid_list is None: aid_list = ibs.get_valid_aids() filter_kw_ = get_default_annot_filter_form() ut.update_existing(filter_kw_, filter_kw, iswarning=True, assert_exists=True) ut.update_existing(filter_kw_, kwargs, iswarning=True, assert_exists=True) aid_list_ = aid_list #filter_kw = ut.merge_dicts(get_default_annot_filter_form(), filter_kw) # TODO MERGE FILTERFLAGS BY TAGS AND FILTERFLAGS INDEPENDANT #aid_list_ = ibs.filterannots_by_tags(aid_list_, filter_kw) aid_list_ = ibs.filter_annots_independent(aid_list_, filter_kw_, verbose=verbose) aid_list_ = filter_annots_intragroup(ibs, aid_list_, filter_kw_, verbose=verbose) return aid_list_ @register_ibs_method def sample_annots_general(ibs, aid_list=None, filter_kw={}, verbose=False, **kwargs): """ filter + sampling """ # hack from ibeis.expt import annotation_configs if aid_list is None: aid_list = ibs.get_valid_aids() filter_kw_ = annotation_configs.INDEPENDENT_DEFAULTS.copy() filter_kw_.update(annotation_configs.SUBINDEX_DEFAULTS.copy()) filter_kw_.update(annotation_configs.SAMPLE_DEFAULTS.copy()) ut.update_existing(filter_kw_, filter_kw, iswarning=True, assert_exists=True) ut.update_existing(filter_kw_, kwargs, iswarning=True, assert_exists=True) aid_list_ = aid_list #filter_kw = ut.merge_dicts(get_default_annot_filter_form(), filter_kw) # TODO MERGE FILTERFLAGS BY TAGS AND FILTERFLAGS INDEPENDANT #aid_list_ = ibs.filterannots_by_tags(aid_list_, filter_kw) aid_list_ = ibs.filter_annots_independent(aid_list_, filter_kw_, verbose=verbose) aid_list_ = filter_annots_intragroup(ibs, aid_list_, filter_kw_, verbose=verbose) aid_list_ = sample_annots(ibs, aid_list_, filter_kw_, verbose=verbose) aid_list_ = subindex_annots(ibs, aid_list_, filter_kw_, verbose=verbose) return aid_list_ @profile def get_default_annot_filter_form(): r""" Returns dictionary containing defaults for all valid filter parameters CommandLine: python -m ibeis --tf get_default_annot_filter_form Example: >>> # ENABLE_DOCTEST >>> from ibeis.init.filter_annots import * # NOQA >>> filter_kw = get_default_annot_filter_form() >>> print(ut.dict_str(filter_kw, align=True)) >>> print(', '.join(filter_kw.keys())) """ from ibeis.expt import annotation_configs iden_defaults = annotation_configs.INDEPENDENT_DEFAULTS.copy() filter_kw = iden_defaults #tag_defaults = get_annot_tag_filterflags( # None, None, {}, request_defaultkw=True) #filter_kw = ut.dict_union3(iden_defaults, tag_defaults, combine_op=None) return filter_kw @register_ibs_method def get_annot_tag_filterflags(ibs, aid_list, filter_kw, request_defaultkw=False): r""" Filters annotations by tags including those that is belongs to in a pair """ from ibeis import tag_funcs # Build Filters filter_keys = ut.get_func_kwargs(tag_funcs.filterflags_general_tags) annotmatch_filterkw = {} annot_filterkw = {} both_filterkw = {} kwreg = ut.KWReg(enabled=request_defaultkw) for key in filter_keys: annotmatch_filterkw[key] = filter_kw.get(*kwreg(key + '_annotmatch', None)) annot_filterkw[key] = filter_kw.get(*kwreg(key + '_annot', None)) both_filterkw[key] = filter_kw.get(*kwreg(key, None)) if request_defaultkw: return kwreg.defaultkw # Grab Data need_annot_tags = any([var is not None for var in annot_filterkw.values()]) need_annotmatch_tags = any([ var is not None for var in annotmatch_filterkw.values()]) need_both_tags = any([var is not None for var in both_filterkw.values()]) if need_annot_tags or need_both_tags: annot_tags_list = ibs.get_annot_case_tags(aid_list) if need_annotmatch_tags or need_both_tags: annotmatch_tags_list = ibs.get_annot_annotmatch_tags(aid_list) if need_both_tags: both_tags_list = list(map(ut.unique_ordered, map(ut.flatten, zip(annot_tags_list, annotmatch_tags_list)))) # Filter Data flags = np.ones(len(aid_list), dtype=np.bool) if need_annot_tags: flags_ = tag_funcs.filterflags_general_tags( annot_tags_list, **annot_filterkw) np.logical_and(flags_, flags, out=flags) if need_annotmatch_tags: flags_ = tag_funcs.filterflags_general_tags( annotmatch_tags_list, **annotmatch_filterkw) np.logical_and(flags_, flags, out=flags) if need_both_tags: flags_ = tag_funcs.filterflags_general_tags( both_tags_list, **both_filterkw) np.logical_and(flags_, flags, out=flags) return flags @register_ibs_method def filterannots_by_tags(ibs, aid_list, filter_kw): r""" Args: ibs (IBEISController): ibeis controller object aid_list (list): list of annotation rowids CommandLine: python -m ibeis --tf filterannots_by_tags utprof.py -m ibeis --tf filterannots_by_tags SeeAlso: filter_annotmatch_by_tags Example: >>> # DISABLE_DOCTEST >>> from ibeis.init.filter_annots import * # NOQA >>> import ibeis >>> ibs = ibeis.opendb(defaultdb='PZ_Master1') >>> aid_list = ibs.get_valid_aids() >>> has_any = ut.get_argval('--tags', type_=list, >>> default=['SceneryMatch', 'Photobomb']) >>> min_num = ut.get_argval('--min_num', type_=int, default=1) >>> filter_kw = dict(has_any=has_any, min_num=1) >>> aid_list_ = filterannots_by_tags(ibs, aid_list, filter_kw) >>> print('aid_list_ = %r' % (aid_list_,)) >>> ut.quit_if_noshow() >>> pass >>> # TODO: show special annot group in GUI """ flags = get_annot_tag_filterflags(ibs, aid_list, filter_kw) aid_list_ = ut.compress(aid_list, flags) return aid_list_ def get_acfg_cacheinfo(ibs, aidcfg): """ Returns location and name of the ~~annot~~ data cache """ from os.path import dirname, join # Make loading aids a big faster for experiments if ut.is_developer(): import ibeis repodir = dirname(ut.get_module_dir(ibeis)) acfg_cachedir = join(repodir, 'ACFG_CACHE') else: #acfg_cachedir = './localdata/ACFG_CACHE' acfg_cachedir = join(ibs.get_cachedir(), 'ACFG_CACHE') ut.ensuredir(acfg_cachedir) acfg_cachename = 'ACFG_CACHE' RESPECT_INTERNAL_CFGS = False if RESPECT_INTERNAL_CFGS: aid_cachestr = ibs.get_dbname() + '_' + ut.hashstr27(ut.to_json(aidcfg)) else: relevant_aidcfg = copy.deepcopy(aidcfg) ut.delete_dict_keys(relevant_aidcfg['qcfg'], ut.INTERNAL_CFGKEYS) ut.delete_dict_keys(relevant_aidcfg['dcfg'], ut.INTERNAL_CFGKEYS) aid_cachestr = ( ibs.get_dbname() + '_' + ut.hashstr27(ut.to_json(relevant_aidcfg))) acfg_cacheinfo = (acfg_cachedir, acfg_cachename, aid_cachestr) return acfg_cacheinfo @profile def expand_single_acfg(ibs, aidcfg, verbose=None): """ for main_helpers """ from ibeis.expt import annotation_configs if verbose is None: verbose = VERB_TESTDATA if verbose: print('+=== EXPAND_SINGLE_ACFG ===') print(' * acfg = %s' % (ut.dict_str(annotation_configs.compress_aidcfg(aidcfg), align=True),)) print('+---------------------') avail_aids = ibs._get_all_aids() avail_aids = filter_annots_independent(ibs, avail_aids, aidcfg, verbose=verbose) avail_aids = filter_annots_intragroup(ibs, avail_aids, aidcfg, verbose=verbose) avail_aids = sample_annots(ibs, avail_aids, aidcfg, verbose=verbose) avail_aids = subindex_annots(ibs, avail_aids, aidcfg, verbose=verbose) aids = avail_aids if verbose: print('L___ EXPAND_SINGLE_ACFG ___') return aids @profile def hack_remove_label_errors(ibs, expanded_aids, verbose=None): qaids_, daids_ = expanded_aids partitioned_sets = ibs.partition_annots_into_corresponding_groups( qaids_, daids_) tup = partitioned_sets query_group, data_group, unknown_group, distract_group = tup unknown_flags = ibs.unflat_map( ibs.get_annot_tag_filterflags, unknown_group, filter_kw=dict(none_match=['.*error.*'])) #data_flags = ibs.unflat_map( # ibs.get_annot_tag_filterflags, data_group, # filter_kw=dict(none_match=['.*error.*'])) query_flags = ibs.unflat_map( ibs.get_annot_tag_filterflags, query_group, filter_kw=dict(none_match=['.*error.*'])) query_noterror_flags = list(map(all, ut.list_zipflatten( query_flags, #data_flags, ))) unknown_noterror_flags = list(map(all, unknown_flags)) filtered_queries = ut.flatten( ut.compress(query_group, query_noterror_flags)) filtered_unknown = ut.flatten( ut.compress(unknown_group, unknown_noterror_flags)) filtered_qaids_ = sorted(filtered_queries + filtered_unknown) expanded_aids = (filtered_qaids_, daids_) if verbose: ut.colorprint('+---------------------', 'red') ibs.print_annotconfig_stats(filtered_qaids_, daids_) ut.colorprint('L___ HACKED_EXPAND_ACFGS ___', 'red') return expanded_aids @profile def hack_extra(ibs, expanded_aids): # SUCH HACK to get a larger database from ibeis.expt import annotation_configs _aidcfg = annotation_configs.default['dcfg'] _aidcfg['sample_per_name'] = 1 _aidcfg['sample_size'] = 500 _aidcfg['min_pername'] = 1 _aidcfg['require_viewpoint'] = True _aidcfg['exclude_reference'] = True _aidcfg['view'] = 'right' prefix = 'hack' qaids = expanded_aids[0] daids = expanded_aids[1] _extra_aids = ibs.get_valid_aids() _extra_aids = ibs.remove_groundtrue_aids( _extra_aids, (qaids + daids)) _extra_aids = filter_annots_independent( ibs, _extra_aids, _aidcfg, prefix) _extra_aids = sample_annots( ibs, _extra_aids, _aidcfg, prefix) daids = sorted(daids + _extra_aids) expanded_aids = (qaids, daids) return expanded_aids def expand_acfgs_consistently(ibs, acfg_combo, initial_aids=None, use_cache=None, verbose=None): """ Expands a set of configurations such that they are comparable CommandLine: python -m ibeis --tf parse_acfg_combo_list \ -a varysize ibeis --tf get_annotcfg_list --db PZ_Master1 -a varysize #ibeis --tf get_annotcfg_list --db lynx -a default:hack_imageset=True ibeis --tf get_annotcfg_list --db PZ_Master1 -a varysize:qsize=None ibeis --tf get_annotcfg_list --db PZ_Master0 --nofilter-dups -a varysize ibeis --tf get_annotcfg_list --db PZ_MTEST -a varysize --nofilter-dups ibeis --tf get_annotcfg_list --db PZ_Master0 --verbtd \ --nofilter-dups -a varysize ibeis --tf get_annotcfg_list --db PZ_Master1 -a viewpoint_compare \ --verbtd --nofilter-dups ibeis --tf get_annotcfg_list -a timectrl --db GZ_Master1 --verbtd \ --nofilter-dups """ from ibeis.expt import annotation_configs if verbose is None: verbose = VERB_TESTDATA # Edit configs so the sample sizes are consistent # FIXME: requiers that smallest configs are specified first def tmpmin(a, b): if a is None: return b elif b is None: return a return min(a, b) expanded_aids_list = [] # Keep track of seen samples min_qsize = None min_dsize = None # HACK: Find out the params being varied and disallow those from being # prefiltered due to the lack of heirarchical filters nonvaried_dict, varied_acfg_list = annotation_configs.partition_acfg_list( acfg_combo) hack_exclude_keys = list(set(ut.flatten( [list(ut.merge_dicts(*acfg.values()).keys()) for acfg in varied_acfg_list]))) # HACK: determine unconstrained min / max nannots if False: import copy acfg_combo2 = copy.deepcopy(acfg_combo) unconstrained_expansions = [] for combox, acfg in enumerate(acfg_combo2): qcfg = acfg['qcfg'] dcfg = acfg['dcfg'] with ut.Indenter('[PRE %d] ' % (combox,)): expanded_aids = expand_acfgs(ibs, acfg, initial_aids=initial_aids, use_cache=use_cache, hack_exclude_keys=hack_exclude_keys, verbose=verbose) unconstrained_expansions.append(expanded_aids) if any(ut.take_column(ut.take_column(acfg_combo, 'dcfg'), 'force_const_size')): unconstrained_lens = np.array([(len(q), len(d)) for q, d in unconstrained_expansions]) #max_dlen = unconstrained_lens.T[1].max() min_dlen = unconstrained_lens.T[1].min() for acfg in acfg_combo: dcfg = acfg['dcfg'] # TODO: make sample size annot_sample_size # sample size is #annots if dcfg['sample_size'] is None: dcfg['_orig_sample_size'] = dcfg['sample_size'] dcfg['sample_size'] = min_dlen for combox, acfg in enumerate(acfg_combo): qcfg = acfg['qcfg'] dcfg = acfg['dcfg'] # In some cases we may want to clamp these, but others we do not if qcfg['force_const_size']: qcfg['_orig_sample_size'] = qcfg['sample_size'] qcfg['sample_size'] = tmpmin(qcfg['sample_size'] , min_qsize) if dcfg['force_const_size']: dcfg['_orig_sample_size'] = dcfg['sample_size'] dcfg['sample_size'] = tmpmin(dcfg['sample_size'] , min_dsize) # Expand modified acfgdict with ut.Indenter('[%d] ' % (combox,)): expanded_aids = expand_acfgs(ibs, acfg, initial_aids=initial_aids, use_cache=use_cache, hack_exclude_keys=hack_exclude_keys, verbose=verbose) #if dcfg.get('hack_extra', None): # assert False # expanded_aids = hack_extra(ibs, expanded_aids) qsize = len(expanded_aids[0]) dsize = len(expanded_aids[1]) # <hack for float that should not interfere with other hacks if qcfg['sample_size'] != qsize: qcfg['_orig_sample_size'] = qcfg['sample_size'] if dcfg['sample_size'] != dsize: dcfg['_orig_sample_size'] = dcfg['sample_size'] # /--> if min_qsize is None: qcfg['sample_size'] = qsize if min_dsize is None: # UNSURE dcfg['sample_size'] = dsize if qcfg['sample_size'] != qsize: qcfg['_true_sample_size'] = qsize if dcfg['sample_size'] != dsize: dcfg['_true_sample_size'] = dsize if qcfg['force_const_size']: min_qsize = tmpmin(min_qsize, qsize) if dcfg['force_const_size']: # UNSURE min_dsize = tmpmin(min_dsize, dsize) # so hacky # this has to be after sample_size assignment, otherwise the filtering # is unstable Remove queries that have labeling errors in them. # TODO: fix errors AND remove labels #remove_label_errors = ut.is_developer() or ut.get_argflag('--noerrors') #ut.is_developer() or ut.get_argflag('--noerrors') remove_label_errors = qcfg.get('hackerrors', False) if remove_label_errors: expanded_aids = hack_remove_label_errors(ibs, expanded_aids, verbose) #ibs.print_annotconfig_stats(*expanded_aids) expanded_aids_list.append(expanded_aids) # Sample afterwords return list(zip(acfg_combo, expanded_aids_list)) @profile def expand_acfgs(ibs, aidcfg, verbose=None, use_cache=None, hack_exclude_keys=None, initial_aids=None, save_cache=True): r""" Main multi-expansion function. Expands an annot config dict into qaids and daids. New version of this function based on a configuration dictionary built from command line argumetns Args: ibs (IBEISController): ibeis controller object aidcfg (dict): configuration of the annotation filter verbose (bool): verbosity flag(default = False) use_cache (bool): turns on disk based caching(default = None) hack_exclude_keys (None): (default = None) initial_aids (None): (default = None) Returns: tuple: expanded_aids=(qaid_list, daid_list) - expanded list of aids that meet the criteria of the aidcfg filter TODO: The database should be created first in most circumstances, then the queries should be filtered to meet the database restrictions? I'm not sure Sometimes you need to set the query aids constant, but sometimes you need to set the data aids constant. Seems to depend. This function very much needs the idea of filter chains OkNewIdea: 3 filters: * Common sampling - takes care of things like min time delta, * species, quality viewpoint etc. * query sampling * database sampling Basic idea is * Sample large pool * Partition pool into query and database Requires: * base sampling params * partition1 params * partition2 params * inter partition params? CommandLine: python -m ibeis.dev -e print_acfg -a timectrl:qsize=10,dsize=10 --db PZ_MTEST --veryverbtd --nocache-aid python -m ibeis.dev -e print_acfg -a timectrl:qminqual=good,qsize=10,dsize=10 --db PZ_MTEST --veryverbtd --nocache-aid python -m ibeis.dev -e print_acfg -a timectrl --db PZ_MTEST --verbtd --nocache-aid python -m ibeis.dev -e print_acfg -a timectrl --db PZ_Master1 --verbtd --nocache-aid python -m ibeis.dev -e print_acfg -a timequalctrl --db PZ_Master1 --verbtd --nocache-aid python -m ibeis.dev -e rank_cdf -a controlled:qsize=10,dsize=10,dper_name=2 -t default --db PZ_MTEST python -m ibeis.dev -e rank_cdf -a controlled:qsize=10,dsize=20,dper_name=2 -t default --db PZ_MTEST python -m ibeis.dev -e print -a controlled:qsize=10,dsize=10 -t default --db PZ_MTEST --verbtd --nocache-aid python -m ibeis.dev -e latexsum -t candinvar -a viewpoint_compare --db NNP_Master3 --acfginfo utprof.py -m ibeis.dev -e print -t candk -a varysize --db PZ_MTEST --acfginfo utprof.py -m ibeis.dev -e latexsum -t candk -a controlled --db PZ_Master0 --acfginfo python -m ibeis --tf get_annotcfg_list:0 --db NNP_Master3 -a viewpoint_compare --nocache-aid --verbtd python -m ibeis --tf get_annotcfg_list --db PZ_Master1 \ -a timectrl:qhas_any=\(needswork,correctable,mildviewpoint\),qhas_none=\(viewpoint,photobomb,error:viewpoint,quality\) \ --acfginfo --veryverbtd --veryverbtd python -m ibeis --tf draw_rank_cdf --db PZ_Master1 --show -t best \ -a timectrl:qhas_any=\(needswork,correctable,mildviewpoint\),qhas_none=\(viewpoint,photobomb,error:viewpoint,quality\) \ --acfginfo --veryverbtd python -m ibeis --tf get_annotcfg_list --db Oxford -a default:qhas_any=\(query,\),dpername=2,exclude_reference=True --acfginfo --verbtd --veryverbtd --nocache-aid CommandLine: python -m ibeis.init.filter_annots --exec-expand_acfgs --show Example: >>> # ENABLE_DOCTEST >>> from ibeis.init.filter_annots import * # NOQA >>> import ibeis >>> from ibeis.expt import annotation_configs >>> ibs = ibeis.opendb(defaultdb='testdb1') >>> aidcfg = copy.deepcopy(annotation_configs.default) >>> aidcfg['qcfg']['species'] = 'primary' >>> initial_aids = None >>> expanded_aids = expand_acfgs(ibs, aidcfg, initial_aids=initial_aids) >>> result = ut.repr3(expanded_aids, nl=1, nobr=True) >>> print(result) [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], """ from ibeis.expt import annotation_configs if verbose is None: verbose = VERB_TESTDATA assert isinstance(aidcfg, dict), 'type(aidcfg)=%r' % (type(aidcfg),) aidcfg = copy.deepcopy(aidcfg) # Check if this filter has been cached # TODO: keep a database state config that augments the cachestr? if use_cache is None: use_cache = USE_ACFG_CACHE # save_cache = True if use_cache and save_cache: acfg_cacheinfo = get_acfg_cacheinfo(ibs, aidcfg) acfg_cachedir, acfg_cachename, aid_cachestr = acfg_cacheinfo if use_cache: try: (qaid_list, daid_list) = ut.load_cache( acfg_cachedir, acfg_cachename, aid_cachestr) except IOError: pass else: return qaid_list, daid_list comp_acfg = annotation_configs.compress_aidcfg(aidcfg) if verbose: ut.colorprint('+=== EXPAND_ACFGS ===', 'yellow') print(' * acfg = %s' % (ut.dict_str(comp_acfg, align=True),)) ut.colorprint('+---------------------', 'yellow') # Breakup into common, query, and database configs qcfg = aidcfg['qcfg'] dcfg = aidcfg['dcfg'] common_cfg = comp_acfg['common'] # Extract the common independent filtering params idenfilt_cfg_default = annotation_configs.INDEPENDENT_DEFAULTS idenfilt_cfg_empty = {key: None for key in idenfilt_cfg_default.keys()} idenfilt_cfg_common = ut.update_existing(idenfilt_cfg_empty, common_cfg, copy=True) if hack_exclude_keys: for key in hack_exclude_keys: if key in idenfilt_cfg_common: idenfilt_cfg_common[key] = None # Find the q/d specific filtering flags that were already taken care of in # common filtering. Set them all to None, so we dont rerun that filter qpredone_iden_keys = ut.dict_isect(qcfg, idenfilt_cfg_common).keys() for key in qpredone_iden_keys: qcfg[key] = None dpredone_iden_keys = ut.dict_isect(dcfg, idenfilt_cfg_common).keys() for key in dpredone_iden_keys: dcfg[key] = None #if aidcfg['qcfg']['hack_imageset'] is True: # return ibs.get_imageset_expanded_aids() # Hack: Make hierarchical filters to supersede this if initial_aids is None: initial_aids = ibs._get_all_aids() verbflags = dict(verbose=verbose) qfiltflags = dict(prefix='q', **verbflags) dfiltflags = dict(prefix='d', **verbflags) default_aids = initial_aids # A chain of filters on all of the aids global_filter_chain = [ (filter_annots_independent, idenfilt_cfg_common), (filter_annots_intragroup, idenfilt_cfg_common), ] # Chains of filters individually for each partition partition_chains = [ [ # Query partition chain (filter_annots_independent, qcfg), (filter_annots_intragroup, qcfg), (sample_annots, qcfg), ], [ # Database partition chain (filter_annots_independent, dcfg), (filter_annots_intragroup, dcfg), (sample_annots_wrt_ref, dcfg, 0), ] ] try: # GLOBAL FILTER CHAIN # applies filtering to all available aids for filtfn, filtcfg in global_filter_chain: default_aids = filtfn(ibs, default_aids, filtcfg, prefix='', withpre=True, **verbflags) # PARTITION FILTER CHAIN # chain of filters for query / database annots default_qaids = default_daids = default_aids partition_avail_aids = [default_qaids, default_daids] partion_kwargs = [qfiltflags, dfiltflags] for index in range(len(partition_chains)): filter_chain = partition_chains[index] avail_aids = partition_avail_aids[index] _partkw = partion_kwargs[index].copy() for filter_tup in filter_chain: filtfn, filtcfg = filter_tup[0:2] if len(filter_tup) == 3: # handle filters that take reference sets refindex = filter_tup[2] ref_aids = partition_avail_aids[refindex] _partkw['ref_aids'] = ref_aids # Execute filtering avail_aids = filtfn(ibs, avail_aids, filtcfg, **_partkw) partition_avail_aids[index] = avail_aids # SUBINDEX EACH PARTITIONED CHAIN subindex_cfgs = [qcfg, dcfg] for index in range(len(partition_avail_aids)): avail_aids = partition_avail_aids[index] _partkw = partion_kwargs[index] filtcfg = subindex_cfgs[index] avail_aids = subindex_annots( ibs, avail_aids, filtcfg, **_partkw) partition_avail_aids[index] = avail_aids # UNPACK FILTER RESULTS avail_qaids, avail_daids = partition_avail_aids except Exception as ex: print('PRINTING ERROR INFO') print(' * acfg = %s' % (ut.dict_str(comp_acfg, align=True),)) ut.printex(ex, 'Error executing filter chains') raise qaid_list = sorted(avail_qaids) daid_list = sorted(avail_daids) if verbose: ut.colorprint('+---------------------', 'yellow') ibs.print_annotconfig_stats(qaid_list, daid_list) ut.colorprint('L___ EXPAND_ACFGS ___', 'yellow') # Save filter to cache if use_cache and save_cache: ut.ensuredir(acfg_cachedir) try: ut.save_cache(acfg_cachedir, acfg_cachename, aid_cachestr, (qaid_list, daid_list)) except IOError: pass return qaid_list, daid_list def expand_species(ibs, species, avail_aids=None): if species == 'primary': species = ibs.get_primary_database_species() if species is None and avail_aids is not None: species = ibs.get_dominant_species(avail_aids) return species @profile @register_ibs_method def filter_annots_independent(ibs, avail_aids, aidcfg, prefix='', verbose=VERB_TESTDATA, withpre=False): r""" Filtering that doesn't have to do with a reference set of aids TODO make filterflags version Args: ibs (IBEISController): ibeis controller object avail_aids (list): aidcfg (dict): prefix (str): (default = '') verbose (bool): verbosity flag(default = False) Returns: list: avail_aids CommandLine: python -m ibeis --tf filter_annots_independent --veryverbtd Example: >>> # DISABLE_DOCTEST >>> from ibeis.init.filter_annots import * # NOQA >>> import ibeis >>> from ibeis.expt import annotation_configs >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST') >>> avail_aids = input_aids = ibs.get_valid_aids() >>> aidcfg = annotation_configs.default['dcfg'] >>> aidcfg['require_timestamp'] = True >>> aidcfg['require_quality'] = False >>> aidcfg['is_known'] = True >>> prefix = '' >>> verbose = True >>> avail_aids = filter_annots_independent(ibs, avail_aids, aidcfg, >>> prefix, verbose) >>> result = ('avail_aids = %s' % (str(avail_aids),)) >>> print(result) Ignore: # Testing tag features python -m ibeis --tf draw_rank_cdf --db PZ_Master1 --show -t best \ -a timectrl:qhas_any=\(needswork,correctable,mildviewpoint\),qhas_none=\(viewpoint,photobomb,error:viewpoint,quality\) \ ---acfginfo --veryverbtd """ from ibeis.other import ibsfuncs if aidcfg is None: if verbose: print('No annot filter returning') return avail_aids VerbosityContext = verb_context('FILTER_INDEPENDENT', aidcfg, verbose) VerbosityContext.startfilter(withpre=withpre) if aidcfg.get('is_known') is True: with VerbosityContext('is_known'): avail_aids = ibs.filter_aids_without_name( avail_aids, invert=not aidcfg['is_known']) #avail_aids = sorted(avail_aids) if aidcfg.get('is_exemplar') is not None: flags = ibs.get_annot_exemplar_flags(avail_aids) is_valid = [flag == aidcfg['is_exemplar'] for flag in flags] with VerbosityContext('is_exemplar'): avail_aids = ut.compress(avail_aids, is_valid) #avail_aids = sorted(avail_aids) if aidcfg.get('reviewed') is not None: flags = ibs.get_annot_reviewed(avail_aids) is_valid = [flag == aidcfg['reviewed'] for flag in flags] with VerbosityContext('reviewed'): avail_aids = ut.compress(avail_aids, is_valid) #avail_aids = sorted(avail_aids) if aidcfg.get('multiple') is not None: flags = ibs.get_annot_multiple(avail_aids) is_valid = [flag == aidcfg['multiple'] for flag in flags] with VerbosityContext('multiple'): avail_aids = ut.compress(avail_aids, is_valid) #avail_aids = sorted(avail_aids) if aidcfg.get('require_timestamp') is True: with VerbosityContext('require_timestamp'): avail_aids = ibs.filter_aids_without_timestamps(avail_aids) #avail_aids = sorted(avail_aids) cfg_species = aidcfg.get('species') if isinstance(cfg_species, six.string_types) and cfg_species.lower() == 'none': cfg_species = None metadata = ut.LazyDict( species=lambda: expand_species(ibs, cfg_species, None)) if cfg_species is not None: species = metadata['species'] with VerbosityContext('species', species=species): avail_aids = ibs.filter_aids_to_species(avail_aids, species) #avail_aids = sorted(avail_aids) if aidcfg.get('been_adjusted', None): # HACK to see if the annotation has been adjusted from the default # value set by dbio.ingest_database flag_list = ibs.get_annot_been_adjusted(avail_aids) with VerbosityContext('been_adjusted'): avail_aids = ut.compress(avail_aids, flag_list) if aidcfg.get('contrib_contains', None): contrib_contains = aidcfg['contrib_contains'] gid_list = ibs.get_annot_gids(avail_aids) tag_list = ibs.get_image_contributor_tag(gid_list) flag_list = [contrib_contains in tag for tag in tag_list] with VerbosityContext('contrib_contains'): avail_aids = ut.compress(avail_aids, flag_list) if aidcfg.get('minqual') is not None or aidcfg.get('require_quality'): minqual = 'junk' if aidcfg['minqual'] is None else aidcfg['minqual'] with VerbosityContext('minqual', 'require_quality'): # Filter quality avail_aids = ibs.filter_aids_to_quality( avail_aids, minqual, unknown_ok=not aidcfg['require_quality']) #avail_aids = sorted(avail_aids) if aidcfg.get('max_unixtime', None) is not None: max_unixtime = aidcfg.get('max_unixtime', None) unixtimes = np.array(ibs.get_annot_image_unixtimes_asfloat(avail_aids)) flags = unixtimes <= max_unixtime with VerbosityContext('max_unixtime'): avail_aids = ut.compress(avail_aids, flags) #avail_aids = sorted(avail_aids) if aidcfg.get('min_unixtime', None) is not None: min_unixtime = aidcfg.get('min_unixtime', None) unixtimes = np.array(ibs.get_annot_image_unixtimes_asfloat(avail_aids)) flags = unixtimes >= min_unixtime with VerbosityContext('min_unixtime'): avail_aids = ut.compress(avail_aids, flags) #avail_aids = sorted(avail_aids) if aidcfg.get('max_numfeat') is not None or aidcfg.get('min_numfeat') is not None: max_numfeat = aidcfg['max_numfeat'] min_numfeat = aidcfg['min_numfeat'] if max_numfeat is None: max_numfeat = np.inf if min_numfeat is None: min_numfeat = 0 numfeat_list = np.array(ibs.get_annot_num_feats(avail_aids)) flags_list = np.logical_and( numfeat_list >= min_numfeat, numfeat_list <= max_numfeat) with VerbosityContext('max_numfeat', 'min_numfeat'): avail_aids = ut.compress(avail_aids, flags_list) if aidcfg.get('view') is not None or aidcfg.get('require_viewpoint'): # Resolve base viewpoint if aidcfg['view'] == 'primary': view = ibsfuncs.get_primary_species_viewpoint(metadata['species']) elif aidcfg['view'] == 'primary1': view = ibsfuncs.get_primary_species_viewpoint(metadata['species'], 1) else: view = aidcfg['view'] if isinstance(view, six.string_types) and view.lower() == 'none': view = None OLD = False if OLD: view_ext1 = (aidcfg['view_ext'] if aidcfg['view_ext1'] is None else aidcfg['view_ext1']) view_ext2 = (aidcfg['view_ext'] if aidcfg['view_ext2'] is None else aidcfg['view_ext2']) valid_yaws = ibsfuncs.get_extended_viewpoints( view, num1=view_ext1, num2=view_ext2) unknown_ok = not aidcfg['require_viewpoint'] with VerbosityContext('view', 'require_viewpoint', 'view_ext', 'view_ext1', 'view_ext2', valid_yaws=valid_yaws): avail_aids = ibs.filter_aids_to_viewpoint( avail_aids, valid_yaws, unknown_ok=unknown_ok) avail_aids = sorted(avail_aids) else: def rectify_view(vstr): # FIXME: I stopped implementing the += stuff vstr_num = vstr.lower() num = 0 if not vstr_num.endswith('1'): vstr = vstr_num else: if '+' in vstr: vstr, numstr = vstr_num.split('+') num = int(numstr) if '-' in vstr: vstr, numstr = vstr_num.split('+') num = -int(numstr) assert num == 0, 'cant do += yet' if vstr == 'primary': return ibsfuncs.get_primary_species_viewpoint(metadata['species']) for yawtxt, other_yawtxt in ibs.const.YAWALIAS.items(): other_yawtxt = ut.ensure_iterable(other_yawtxt) if vstr == yawtxt.lower(): return yawtxt for x in other_yawtxt: if vstr == x.lower(): return yawtxt raise ValueError('unknown viewpoint vstr=%r' % (vstr,)) if view is None: valid_yaw_txts = None else: valid_yaw_txts = [ rectify_view(vstr) for vstr in ut.smart_cast(view, list) ] unknown_ok = not aidcfg['require_viewpoint'] yaw_flags = ibs.get_viewpoint_filterflags( avail_aids, valid_yaw_txts, unknown_ok=unknown_ok, assume_unique=True) yaw_flags = list(yaw_flags) with VerbosityContext('view', 'require_viewpoint', 'view_ext', 'view_ext1', 'view_ext2', valid_yaws=valid_yaw_txts): avail_aids = ut.compress(avail_aids, yaw_flags) #if aidcfg.get('exclude_view') is not None: # raise NotImplementedError('view tag resolution of exclude_view') # # Filter viewpoint # # TODO need to resolve viewpoints # exclude_view = aidcfg.get('exclude_view') # with VerbosityContext('exclude_view', hack=True): # avail_aids = ibs.remove_aids_of_viewpoint( # avail_aids, exclude_view) if aidcfg.get('min_pername_global') is not None: # Keep annots with at least this many groundtruths in the database min_pername_global = aidcfg.get('min_pername_global') num_gt_global_list = ibs.get_annot_num_groundtruth(avail_aids, noself=False) flag_list = np.array(num_gt_global_list) >= min_pername_global with VerbosityContext('exclude_view'): avail_aids = ut.compress(avail_aids, flag_list) #avail_aids = sorted(avail_aids) if aidcfg.get('max_pername_global') is not None: max_pername_global = aidcfg.get('max_pername_global') num_gt_global_list = ibs.get_annot_num_groundtruth(avail_aids, noself=False) flag_list = np.array(num_gt_global_list) <= max_pername_global with VerbosityContext('exclude_view'): avail_aids = ut.compress(avail_aids, flag_list) #avail_aids = sorted(avail_aids) # FILTER HACK integrating some notion of tag functions # TODO: further integrate if aidcfg.get('has_any', None) or aidcfg.get('has_none', None): filterkw = ut.dict_subset(aidcfg, ['has_any', 'has_none'], None) flags = get_annot_tag_filterflags(ibs, avail_aids, filterkw) with VerbosityContext('has_any', 'has_none'): avail_aids = ut.compress(avail_aids, flags) #avail_aids = sorted(avail_aids) avail_aids = sorted(avail_aids) VerbosityContext.endfilter() return avail_aids @profile def filter_annots_intragroup(ibs, avail_aids, aidcfg, prefix='', verbose=VERB_TESTDATA, withpre=False): r""" This filters annots using information about the relationships between the annotations in the ``avail_aids`` group. This function is not independent and a second consecutive call may yield new results. Thus, the order in which this filter is applied matters. CommandLine: ibeis --tf get_annotcfg_list \ -a default:qsame_imageset=True,been_adjusted=True,excluderef=True \ --db lynx --veryverbtd --nocache-aid Example: >>> aidcfg['min_timedelta'] = 60 * 60 * 24 >>> aidcfg['min_pername'] = 3 """ from ibeis.other import ibsfuncs if aidcfg is None: if verbose: print('No annot filter returning') return avail_aids VerbosityContext = verb_context('FILTER_INTRAGROUP', aidcfg, verbose) VerbosityContext.startfilter(withpre=withpre) metadata = ut.LazyDict(species=lambda: expand_species(ibs, aidcfg['species'], avail_aids)) if aidcfg['same_imageset'] is not None: same_imageset = aidcfg['same_imageset'] assert same_imageset is True imgsetid_list = ibs.get_annot_primary_imageset(avail_aids) nid_list = ibs.get_annot_nids(avail_aids) multiprop2_aids = ut.hierarchical_group_items(avail_aids, [nid_list, imgsetid_list]) qaid_list = [] # TODO: sampling using different enouncters for imgsetid, nid2_aids in multiprop2_aids.iteritems(): if len(nid2_aids) == 1: pass else: aids_list = list(nid2_aids.values()) idx = ut.list_argmax(list(map(len, aids_list))) qaids = aids_list[idx] qaid_list.extend(qaids) with VerbosityContext('same_imageset'): avail_aids = qaid_list avail_aids = sorted(avail_aids) # TODO: # Filter via GPS distance #try: # if aidcfg['min_spacedelta'] is not None: # pass # if aidcfg['min_spacetimedelta'] is not None: # pass #except KeyError: # pass # FIXME: This is NOT an independent filter because it depends on pairwise # interactions if aidcfg['view_pername'] is not None: species = metadata['species'] # This filter removes entire names. The avaiable aids must be from # names with certain viewpoint frequency properties prop2_nid2_aids = ibs.group_annots_by_prop_and_name( avail_aids, ibs.get_annot_yaw_texts) countstr = aidcfg['view_pername'] primary_viewpoint = ibsfuncs.get_primary_species_viewpoint(species) lhs_dict = { 'primary': primary_viewpoint, 'primary1': ibsfuncs.get_extended_viewpoints( primary_viewpoint, num1=1, num2=0, include_base=False)[0] } self = ut.CountstrParser(lhs_dict, prop2_nid2_aids) nid2_flag = self.parse_countstr_expr(countstr) nid2_aids = ibs.group_annots_by_name_dict(avail_aids) valid_nids = [nid for nid, flag in nid2_flag.items() if flag] with VerbosityContext('view_pername', countstr=countstr): avail_aids = ut.flatten(ut.dict_take(nid2_aids, valid_nids)) #avail_aids = sorted(avail_aids) if aidcfg['min_timedelta'] is not None: min_timedelta = ut.ensure_timedelta(aidcfg['min_timedelta']) with VerbosityContext('min_timedelta', min_timedelta=min_timedelta): avail_aids = ibs.filter_annots_using_minimum_timedelta( avail_aids, min_timedelta) #avail_aids = sorted(avail_aids) # Each aid must have at least this number of other groundtruth aids min_pername = aidcfg['min_pername'] if min_pername is not None: grouped_aids_ = ibs.group_annots_by_name(avail_aids, distinguish_unknowns=True, assume_unique=True)[0] with VerbosityContext('min_pername'): flags = np.array(ut.lmap(len, grouped_aids_)) >= min_pername avail_aids = ut.flatten(ut.compress(grouped_aids_, flags)) #avail_aids = ut.flatten([ # aids for aids in grouped_aids_ if len(aids) >= min_pername]) #avail_aids = sorted(avail_aids) max_pername = aidcfg['max_pername'] if max_pername is not None: grouped_aids_ = ibs.group_annots_by_name(avail_aids, distinguish_unknowns=True, assume_unique=True)[0] with VerbosityContext('max_pername'): avail_aids = ut.flatten([ aids for aids in grouped_aids_ if len(aids) <= max_pername]) #avail_aids = sorted(avail_aids) avail_aids = sorted(avail_aids) VerbosityContext.endfilter() return avail_aids @profile def get_reference_preference_order(ibs, gt_ref_grouped_aids, gt_avl_grouped_aids, prop_getter, cmp_func, aggfn, rng, verbose=VERB_TESTDATA): r""" Orders preference for sampling based on some metric """ import vtool as vt grouped_reference_unixtimes = ibs.unflat_map( prop_getter, gt_ref_grouped_aids) grouped_available_gt_unixtimes = ibs.unflat_map( prop_getter, gt_avl_grouped_aids) grouped_reference_props = grouped_reference_unixtimes grouped_available_gt_props = grouped_available_gt_unixtimes # Order the available aids by some aggregation over some metric preference_scores = [ aggfn(cmp_func(ref_prop, avl_prop[:, None]), axis=1) for ref_prop, avl_prop in zip(grouped_reference_props, grouped_available_gt_props) ] # Order by increasing timedelta (metric) gt_preference_idx_list = vt.argsort_groups( preference_scores, reverse=True, rng=rng) return gt_preference_idx_list @profile def sample_annots_wrt_ref(ibs, avail_aids, aidcfg, ref_aids, prefix='', verbose=VERB_TESTDATA): """ Sampling when a reference set is given """ sample_per_name = aidcfg.get('sample_per_name') sample_per_ref_name = aidcfg.get('sample_per_ref_name') exclude_reference = aidcfg.get('exclude_reference') sample_size = aidcfg.get('sample_size') offset = aidcfg.get('sample_offset') sample_rule_ref = aidcfg.get('sample_rule_ref') sample_rule = aidcfg.get('sample_rule') sample_occur = aidcfg.get('sample_occur') avail_aids = sorted(avail_aids) ref_aids = sorted(ref_aids) VerbosityContext = verb_context('SAMPLE (REF)', aidcfg, verbose) VerbosityContext.startfilter() if sample_per_ref_name is None: sample_per_ref_name = sample_per_name if offset is None: offset = 0 if exclude_reference: assert ref_aids is not None, ( 'ref_aids=%r' % (ref_aids,)) # VerbosityContext.report_annot_stats(ibs, avail_aids, prefix, '') # VerbosityContext.report_annot_stats(ibs, ref_aids, prefix, '') with VerbosityContext('exclude_reference', num_ref_aids=len(ref_aids)): import utool with utool.embed_on_exception_context: avail_aids = ut.setdiff_ordered(avail_aids, ref_aids) avail_aids = sorted(avail_aids) # HACK: #also_exclude_overlaps = ibs.get_dbname() == 'Oxford' also_exclude_overlaps = True if also_exclude_overlaps: contact_aids_list = ibs.get_annot_contact_aids(ref_aids, daid_list=avail_aids, assume_unique=True) # Disallow the same name in the same image x = ibs.unflat_map(ibs.get_annot_nids, contact_aids_list) y = ibs.get_annot_nids(ref_aids) sameimg_samename_aids = ut.flatten( [ut.compress(aids, np.array(x0) == y0) for aids, x0, y0 in zip(contact_aids_list, x, y)]) #contact_aids = ut.flatten(contact_aids_list) avail_aids = ut.setdiff_ordered(avail_aids, sameimg_samename_aids) with VerbosityContext('sample_occurr', num_ref_aids=len(ref_aids)): also_exclude_ref_encounters = sample_occur is True if also_exclude_ref_encounters: # Get other aids from the references' encounters ref_enc_texts = ibs.get_annot_encounter_text(ref_aids) avail_enc_texts = ibs.get_annot_encounter_text(avail_aids) flags = ut.setdiff_flags(avail_enc_texts, ref_enc_texts) avail_aids = ut.compress(avail_aids, flags) if not (sample_per_ref_name is not None or sample_size is not None): VerbosityContext.endfilter() return avail_aids if ut.is_float(sample_size): # A float sample size is a interpolations between full data and small # data sample_size = int(round((len(avail_aids) * sample_size + (1 - sample_size) * len(ref_aids)))) if verbose: print('Expanding sample size to: %r' % (sample_size,)) # This function first partitions aids into a one set that corresonds with # the reference set and another that does not correspond with the reference # set. The rest of the filters operate on these sets independently partitioned_sets = ibs.partition_annots_into_corresponding_groups( ref_aids, avail_aids) # items # [0], and [1] are corresponding lists of annot groups # [2], and [3] are non-corresonding annot groups (gt_ref_grouped_aids, gt_avl_grouped_aids, gf_ref_grouped_aids, gf_avl_grouped_aids) = partitioned_sets if sample_per_ref_name is not None: rng = np.random.RandomState(SEED2) if sample_rule_ref == 'maxtimedelta': # Maximize time delta between query and corresponding database # annotations cmp_func = ut.absdiff aggfn = np.mean prop_getter = ibs.get_annot_image_unixtimes_asfloat gt_preference_idx_list = get_reference_preference_order( ibs, gt_ref_grouped_aids, gt_avl_grouped_aids, prop_getter, cmp_func, aggfn, rng) elif sample_rule_ref == 'random': gt_preference_idx_list = [ut.random_indexes(len(aids), rng=rng) for aids in gt_avl_grouped_aids] else: raise ValueError('Unknown sample_rule_ref = %r' % ( sample_rule_ref,)) gt_sample_idxs_list = ut.get_list_column_slice( gt_preference_idx_list, offset, offset + sample_per_ref_name) gt_sample_aids = ut.list_ziptake(gt_avl_grouped_aids, gt_sample_idxs_list) gt_avl_grouped_aids = gt_sample_aids with VerbosityContext('sample_per_ref_name', 'sample_rule_ref', 'sample_offset', sample_per_ref_name=sample_per_ref_name): avail_aids = (ut.flatten(gt_avl_grouped_aids) + ut.flatten(gf_avl_grouped_aids)) if sample_per_name is not None: # sample rule is always random for gf right now rng = np.random.RandomState(SEED2) if sample_rule == 'random': gf_preference_idx_list = [ut.random_indexes(len(aids), rng=rng) for aids in gf_avl_grouped_aids] else: raise ValueError('Unknown sample_rule=%r' % (sample_rule,)) gf_sample_idxs_list = ut.get_list_column_slice( gf_preference_idx_list, offset, offset + sample_per_name) gf_sample_aids = ut.list_ziptake(gf_avl_grouped_aids, gf_sample_idxs_list) gf_avl_grouped_aids = gf_sample_aids with VerbosityContext('sample_per_name', 'sample_rule', 'sample_offset'): avail_aids = (ut.flatten(gt_avl_grouped_aids) + ut.flatten(gf_avl_grouped_aids)) gt_avl_aids = ut.flatten(gt_avl_grouped_aids) gf_avl_aids = ut.flatten(gf_avl_grouped_aids) if sample_size is not None: # Keep all correct matches to the reference set # We have the option of keeping ground false num_gt = len(gt_avl_aids) num_gf = len(gf_avl_aids) num_keep_gf = sample_size - num_gt num_remove_gf = num_gf - num_keep_gf if num_remove_gf < 0: # Too few ground false print(('Warning: Cannot meet sample_size=%r. available_%saids ' 'will be undersized by at least %d') % (sample_size, prefix, -num_remove_gf,)) if num_keep_gf < 0: # Too many multitons; Can never remove a multiton print('Warning: Cannot meet sample_size=%r. available_%saids ' 'will be oversized by at least %d' % (sample_size, prefix, -num_keep_gf,)) rng = np.random.RandomState(SEED2) gf_avl_aids = ut.random_sample(gf_avl_aids, num_keep_gf, rng=rng) # random ordering makes for bad hashes with VerbosityContext('sample_size', sample_size=sample_size, num_remove_gf=num_remove_gf, num_keep_gf=num_keep_gf): avail_aids = gt_avl_aids + gf_avl_aids avail_aids = sorted(gt_avl_aids + gf_avl_aids) VerbosityContext.endfilter() return avail_aids @profile def multi_sampled_seaturtle_queries(): import ibeis from ibeis.expt import annotation_configs from ibeis.expt import experiment_helpers from ibeis.init.filter_annots import expand_acfgs import copy aidcfg = copy.deepcopy(annotation_configs.default) db = 'seaturtles' # 'testdb1' ibs = ibeis.opendb(defaultdb=db) a = ['default:sample_occur=True,occur_offset=0,exclude_reference=True,qhas_any=(left,right),num_names=1'] acfg_combo_list = experiment_helpers.parse_acfg_combo_list(a) aidcfg = acfg_combo_list[0][0] if False: # Do each name individually. A bit slower, but more correct qaids_list = [] daids_list = [] aidcfg['qcfg']['name_offset'] = 0 aidcfg['qcfg']['occur_offset'] = 0 prev = -1 while True: aidcfg['qcfg']['occur_offset'] = 0 while True: qaids, daids = expand_acfgs(ibs, aidcfg, use_cache=False, save_cache=False) aidcfg['qcfg']['occur_offset'] += 1 if len(qaids) == 0: break qaids_list.append(qaids) daids_list.append(daids) print(qaids) if len(qaids_list) == prev: break prev = len(qaids_list) aidcfg['qcfg']['name_offset'] += 1 for qaids, daids in zip(qaids_list, daids_list): ibs.print_annotconfig_stats(qaids, daids, enc_per_name=True, per_enc=True) else: # A bit faster because we can do multiple names at the same time qaids_list = [] daids_list = [] aidcfg['qcfg']['num_names'] = None aidcfg['dcfg']['num_names'] = None aidcfg['qcfg']['name_offset'] = 0 aidcfg['qcfg']['occur_offset'] = 0 while True: qaids, daids = expand_acfgs(ibs, aidcfg, use_cache=False, save_cache=False) aidcfg['qcfg']['occur_offset'] += 1 if len(qaids) == 0: break qaids_list.append(qaids) daids_list.append(daids) print(qaids) for qaids, daids in zip(qaids_list, daids_list): ibs.print_annotconfig_stats(qaids, daids, enc_per_name=True, per_enc=True) @profile def sample_annots(ibs, avail_aids, aidcfg, prefix='', verbose=VERB_TESTDATA): """ Sampling preserves input sample structure and thust does not always return exact values CommandLine: python -m ibeis --tf sample_annots --veryverbtd python -m ibeis --tf get_annotcfg_list --db seaturtles \ -a default:qhas_any=\(left,right\),sample_occur=True,exclude_reference=True,sample_offset=0,num_names=1 --acfginfo Example: >>> # DISABLE_DOCTEST >>> from ibeis.init.filter_annots import * # NOQA >>> import ibeis >>> from ibeis.expt import annotation_configs >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST') >>> avail_aids = input_aids = ibs.get_valid_aids() >>> aidcfg = copy.deepcopy(annotation_configs.default['dcfg']) >>> aidcfg['sample_per_name'] = 3 >>> aidcfg['sample_size'] = 10 >>> aidcfg['min_pername'] = 2 >>> prefix = '' >>> verbose = True >>> avail_aids = filter_annots_independent(ibs, avail_aids, aidcfg, >>> prefix, verbose) >>> avail_aids = sample_annots(ibs, avail_aids, aidcfg, >>> prefix, avail_aids) >>> result = ('avail_aids = %s' % (str(avail_aids),)) >>> print(result) Example: >>> # DISABLE_DOCTEST >>> from ibeis.init.filter_annots import * # NOQA >>> import ibeis >>> from ibeis.expt import annotation_configs >>> db = 'seaturtles' # 'testdb1' >>> ibs = ibeis.opendb(defaultdb=db) >>> aidcfg = copy.deepcopy(annotation_configs.default)['qcfg'] >>> aidcfg['sample_occur'] = True >>> initial_aids = ibs.get_valid_aids() >>> withpre, verbose, prefix = True, 2, '' >>> avail_aids = filter_annots_independent( >>> ibs, initial_aids, {'has_any': ['left', 'right']}, prefix, verbose) >>> qaids = sample_annots(ibs, avail_aids, aidcfg, prefix, verbose) >>> avail_aids = initial_aids >>> ref_aids = qaids >>> dcfg = dict(exclude_reference=True, sample_occur=True) >>> daids = sample_annots_wrt_ref(ibs, initial_aids, dcfg, qaids, prefix, verbose) >>> ibs.print_annotconfig_stats(qaids, daids, enc_per_name=True, per_enc=True) """ import vtool as vt from ibeis.expt import annotation_configs def get_cfg(key): default_dict = annotation_configs.SAMPLE_DEFAULTS return aidcfg.get(key, default_dict[key]) VerbosityContext = verb_context('SAMPLE (NOREF)', aidcfg, verbose) VerbosityContext.startfilter() sample_rule = get_cfg('sample_rule') sample_per_name = get_cfg('sample_per_name') sample_size = get_cfg('sample_size') offset = get_cfg('sample_offset') occur_offset = get_cfg('occur_offset') name_offset = get_cfg('name_offset') num_names = get_cfg('num_names') sample_occur = get_cfg('sample_occur') unflat_get_annot_unixtimes = functools.partial( ibs.unflat_map, ibs.get_annot_image_unixtimes_asfloat) if offset is None: offset = 0 if occur_offset is None: occur_offset = 0 if name_offset is None: name_offset = 0 if num_names is not None: grouped_aids = ibs.group_annots_by_name(avail_aids, assume_unique=True)[0] with VerbosityContext('num_names'): name_slice = slice(name_offset, name_offset + num_names) avail_aids = ut.flatten(grouped_aids[name_slice]) if sample_occur is True: # Occurrence / Encounter sampling occur_texts = ibs.get_annot_occurrence_text(avail_aids) names = ibs.get_annot_names(avail_aids) grouped_ = ut.hierarchical_group_items(avail_aids, [names, occur_texts]) # ensure dictionary ordering for offset consistency sgrouped_ = ut.sort_dict(ut.hmap_vals(ut.sort_dict, grouped_, max_depth=0)) occur_slice = slice(occur_offset, occur_offset + 1) chosen = [ut.flatten(list(sub.values())[occur_slice]) for sub in sgrouped_.values()] with VerbosityContext('sample_offset'): # TODO: num ocurrences to sample # TODO: num annots per encounter to sample avail_aids = ut.flatten(chosen) # now find which groups of annotations share those tags if sample_per_name is not None: # For the query we just choose a single annot per name # For the database we have to do something different grouped_aids = ibs.group_annots_by_name(avail_aids, assume_unique=True)[0] # Order based on some preference (like random) sample_seed = get_cfg('sample_seed') rng = np.random.RandomState(sample_seed) # + --- Get nested sample indicies --- if sample_rule == 'random': preference_idxs_list = [ ut.random_indexes(len(aids), rng=rng) for aids in grouped_aids] elif sample_rule == 'mintime': unixtime_list = unflat_get_annot_unixtimes(grouped_aids) preference_idxs_list = vt.argsort_groups(unixtime_list, reverse=False, rng=rng) elif sample_rule == 'maxtime': unixtime_list = unflat_get_annot_unixtimes(grouped_aids) preference_idxs_list = vt.argsort_groups(unixtime_list, reverse=True, rng=rng) elif sample_rule == 'qual_and_view': if sample_rule != 'qual_and_view': # Hacked in with VerbosityContext('sample_per_name', 'sample_rule', 'sample_offset'): flags = ibs.get_annot_quality_viewpoint_subset(avail_aids, annots_per_view=sample_per_name) avail_aids = ut.compress(avail_aids, flags) else: raise ValueError('Unknown sample_rule=%r' % (sample_rule,)) # L ___ if sample_rule != 'qual_and_view': sample_idxs_list = list(ut.iget_list_column_slice( preference_idxs_list, offset, offset + sample_per_name)) sample_aids = ut.list_ziptake(grouped_aids, sample_idxs_list) with VerbosityContext('sample_per_name', 'sample_rule', 'sample_offset'): avail_aids = ut.flatten(sample_aids) avail_aids = sorted(avail_aids) if sample_size is not None: # BUG: Should sample annots while preserving name size if sample_size > avail_aids: print('Warning sample size too large') rng = np.random.RandomState(SEED2) # Randomly sample names rather than annotations this makes sampling a # knapsack problem. Use a random greedy solution grouped_aids = ibs.group_annots_by_name(avail_aids, assume_unique=True)[0] # knapsack items values and weights are are num annots per name knapsack_items = [(len(aids), len(aids), count) for count, aids in enumerate(grouped_aids)] ut.deterministic_shuffle(knapsack_items, rng=rng) total_value, items_subset = ut.knapsack_greedy(knapsack_items, sample_size) group_idx_sample = ut.get_list_column(items_subset, 2) subgroup_aids = ut.take(grouped_aids, group_idx_sample) with VerbosityContext('sample_size'): avail_aids = ut.flatten(subgroup_aids) #avail_aids = ut.random_sample(avail_aids, sample_size, rng=rng) if total_value != sample_size: print('Sampling could not get exactly right sample size') avail_aids = sorted(avail_aids) VerbosityContext.endfilter() return avail_aids @profile def subindex_annots(ibs, avail_aids, aidcfg, ref_aids=None, prefix='', verbose=VERB_TESTDATA): """ Returns exact subindex of annotations """ VerbosityContext = verb_context('SUBINDEX', aidcfg, verbose) VerbosityContext.startfilter(withpre=False) if aidcfg['shuffle']: rand_idx = ut.random_indexes(len(avail_aids), seed=SEED2) with VerbosityContext('shuffle', SEED2=SEED2): avail_aids = ut.take(avail_aids, rand_idx) if aidcfg['index'] is not None: indicies = ensure_flatlistlike(aidcfg['index']) _indexed_aids = [avail_aids[ix] for ix in indicies if ix < len(avail_aids)] with VerbosityContext('index', subset_size=len(_indexed_aids)): avail_aids = _indexed_aids # Always sort aids to preserve hashes? (Maybe sort the vuuids instead) avail_aids = sorted(avail_aids) VerbosityContext.endfilter(withpost=False) return avail_aids @profile def ensure_flatiterable(input_): if isinstance(input_, six.string_types): input_ = ut.fuzzy_int(input_) if isinstance(input_, int) or not ut.isiterable(input_): return [input_] elif isinstance(input_, (list, tuple)): #print(input_) if len(input_) > 0 and ut.isiterable(input_[0]): return ut.flatten(input_) return input_ else: raise TypeError('cannot ensure %r input_=%r is iterable', ( type(input_), input_)) def ensure_flatlistlike(input_): #if isinstance(input_, slice): # pass iter_ = ensure_flatiterable(input_) return list(iter_) def verb_context(filtertype, aidcfg, verbose): """ closure helper """ class VerbosityContext(object): """ Printing filter info in a way that avoids polluting the function namespace. This is a hack. This is a with_statement context class that expect a variable avail_aids to be modified inside the context. It prints the state of the variable before and after filtering. Several static methods can be used at the start and end of larger filtering functions. """ def __init__(self, *keys, **filterextra): self.prefix = ut.get_var_from_stack('prefix', verbose=False) if verbose: dictkw = dict(nl=False, explicit=True, nobraces=True) infostr = '' if len(keys) > 0: subdict = ut.dict_subset(aidcfg, keys, None) infostr += '' + ut.dict_str(subdict, **dictkw) print('[%s] * Filter by %s' % ( self.prefix.upper(), infostr.strip())) if verbose > 1 and len(filterextra) > 0: infostr2 = ut.dict_str(filterextra, nl=False, explicit=False) print('[%s] %s' % ( self.prefix.upper(), infostr2)) def __enter__(self): aids = ut.get_var_from_stack('avail_aids', verbose=False) self.num_before = len(aids) def __exit__(self, exc_type, exc_value, exc_traceback): if verbose: aids = ut.get_var_from_stack('avail_aids', verbose=False) num_after = len(aids) num_removed = self.num_before - num_after if num_removed > 0 or verbose > 1: print('[%s] ... removed %d annots. %d remain' % (self.prefix.upper(), num_removed, num_after)) @staticmethod def report_annot_stats(ibs, aids, prefix, name_suffix, statskw={}): if verbose > 1: with ut.Indenter('[%s] ' % (prefix.upper(),)): # TODO: helpx on statskw #statskw = dict(per_name_vpedge=None, per_name=None) dict_name = prefix + 'aid_stats' + name_suffix #hashid, per_name, per_qual, per_vp, per_name_vpedge, #per_image, min_name_hourdist ibs.print_annot_stats(aids, prefix=prefix, label=dict_name, **statskw) #def report_annotconfig_stats(ref_aids, aids): # with ut.Indenter(' '): # ibs.print_annotconfig_stats(ref_aids, avail_aids) @staticmethod def startfilter(withpre=True): """ Args: withpre (bool): if True reports stats before filtering """ if verbose: prefix = ut.get_var_from_stack('prefix', verbose=False) print('[%s] * [%s] %sAIDS' % (prefix.upper(), filtertype, prefix)) if verbose > 1 and withpre: ibs = ut.get_var_from_stack('ibs', verbose=False) aids = ut.get_var_from_stack('avail_aids', verbose=False) VerbosityContext.report_annot_stats(ibs, aids, prefix, '_pre') @staticmethod def endfilter(withpost=True): if verbose: ibs = ut.get_var_from_stack('ibs', verbose=False) aids = ut.get_var_from_stack('avail_aids', verbose=False) prefix = ut.get_var_from_stack('prefix', verbose=False) hashid = ibs.get_annot_hashid_semantic_uuid( aids, prefix=prefix.upper()) if withpost: if verbose > 1: VerbosityContext.report_annot_stats(ibs, aids, prefix, '_post') print('[%s] * HAHID: %s' % (prefix.upper(), hashid)) print('[%s] * [%s]: len(avail_%saids) = %r\n' % ( prefix.upper(), filtertype, prefix, len(aids))) return VerbosityContext if __name__ == '__main__': """ CommandLine: python -m ibeis.init.filter_annots python -m ibeis.init.filter_annots --allexamples python -m ibeis.init.filter_annots --allexamples --noface --nosrc """ import multiprocessing multiprocessing.freeze_support() # for win32 import utool as ut # NOQA ut.doctest_funcs()
41.734294
172
0.624108
b6095822319babe263c7cf53357d80cd643fe795
21,059
py
Python
tests/unit/test_control_connection.py
fatelei/python-driver
3bddef6185f2691e1713dfe51d1fa26d1555724c
[ "Apache-2.0" ]
null
null
null
tests/unit/test_control_connection.py
fatelei/python-driver
3bddef6185f2691e1713dfe51d1fa26d1555724c
[ "Apache-2.0" ]
null
null
null
tests/unit/test_control_connection.py
fatelei/python-driver
3bddef6185f2691e1713dfe51d1fa26d1555724c
[ "Apache-2.0" ]
null
null
null
# Copyright 2013-2015 DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import unittest2 as unittest except ImportError: import unittest # noqa from concurrent.futures import ThreadPoolExecutor from mock import Mock, ANY, call from cassandra import OperationTimedOut, SchemaTargetType, SchemaChangeType from cassandra.protocol import ResultMessage, RESULT_KIND_ROWS from cassandra.cluster import ControlConnection, _Scheduler from cassandra.pool import Host from cassandra.policies import (SimpleConvictionPolicy, RoundRobinPolicy, ConstantReconnectionPolicy) PEER_IP = "foobar" class MockMetadata(object): def __init__(self): self.hosts = { "192.168.1.0": Host("192.168.1.0", SimpleConvictionPolicy), "192.168.1.1": Host("192.168.1.1", SimpleConvictionPolicy), "192.168.1.2": Host("192.168.1.2", SimpleConvictionPolicy) } for host in self.hosts.values(): host.set_up() self.cluster_name = None self.partitioner = None self.token_map = {} def get_host(self, rpc_address): return self.hosts.get(rpc_address) def all_hosts(self): return self.hosts.values() def rebuild_token_map(self, partitioner, token_map): self.partitioner = partitioner self.token_map = token_map class MockCluster(object): max_schema_agreement_wait = 5 load_balancing_policy = RoundRobinPolicy() reconnection_policy = ConstantReconnectionPolicy(2) down_host = None contact_points = [] is_shutdown = False def __init__(self): self.metadata = MockMetadata() self.added_hosts = [] self.removed_hosts = [] self.scheduler = Mock(spec=_Scheduler) self.executor = Mock(spec=ThreadPoolExecutor) def add_host(self, address, datacenter, rack, signal=False, refresh_nodes=True): host = Host(address, SimpleConvictionPolicy, datacenter, rack) self.added_hosts.append(host) return host def remove_host(self, host): self.removed_hosts.append(host) def on_up(self, host): pass def on_down(self, host, is_host_addition): self.down_host = host class MockConnection(object): is_defunct = False def __init__(self): self.host = "192.168.1.0" self.local_results = [ ["schema_version", "cluster_name", "data_center", "rack", "partitioner", "release_version", "tokens"], [["a", "foocluster", "dc1", "rack1", "Murmur3Partitioner", "2.2.0", ["0", "100", "200"]]] ] self.peer_results = [ ["rpc_address", "peer", "schema_version", "data_center", "rack", "tokens"], [["192.168.1.1", "10.0.0.1", "a", "dc1", "rack1", ["1", "101", "201"]], ["192.168.1.2", "10.0.0.2", "a", "dc1", "rack1", ["2", "102", "202"]]] ] local_response = ResultMessage( kind=RESULT_KIND_ROWS, results=self.local_results) peer_response = ResultMessage( kind=RESULT_KIND_ROWS, results=self.peer_results) self.wait_for_responses = Mock(return_value=(peer_response, local_response)) class FakeTime(object): def __init__(self): self.clock = 0 def time(self): return self.clock def sleep(self, amount): self.clock += amount class ControlConnectionTest(unittest.TestCase): def setUp(self): self.cluster = MockCluster() self.connection = MockConnection() self.time = FakeTime() self.control_connection = ControlConnection(self.cluster, 1, 0, 0) self.control_connection._connection = self.connection self.control_connection._time = self.time def _get_matching_schema_preloaded_results(self): local_results = [ ["schema_version", "cluster_name", "data_center", "rack", "partitioner", "release_version", "tokens"], [["a", "foocluster", "dc1", "rack1", "Murmur3Partitioner", "2.2.0", ["0", "100", "200"]]] ] local_response = ResultMessage(kind=RESULT_KIND_ROWS, results=local_results) peer_results = [ ["rpc_address", "peer", "schema_version", "data_center", "rack", "tokens"], [["192.168.1.1", "10.0.0.1", "a", "dc1", "rack1", ["1", "101", "201"]], ["192.168.1.2", "10.0.0.2", "a", "dc1", "rack1", ["2", "102", "202"]]] ] peer_response = ResultMessage(kind=RESULT_KIND_ROWS, results=peer_results) return (peer_response, local_response) def _get_nonmatching_schema_preloaded_results(self): local_results = [ ["schema_version", "cluster_name", "data_center", "rack", "partitioner", "release_version", "tokens"], [["a", "foocluster", "dc1", "rack1", "Murmur3Partitioner", "2.2.0", ["0", "100", "200"]]] ] local_response = ResultMessage(kind=RESULT_KIND_ROWS, results=local_results) peer_results = [ ["rpc_address", "peer", "schema_version", "data_center", "rack", "tokens"], [["192.168.1.1", "10.0.0.1", "a", "dc1", "rack1", ["1", "101", "201"]], ["192.168.1.2", "10.0.0.2", "b", "dc1", "rack1", ["2", "102", "202"]]] ] peer_response = ResultMessage(kind=RESULT_KIND_ROWS, results=peer_results) return (peer_response, local_response) def test_wait_for_schema_agreement(self): """ Basic test with all schema versions agreeing """ self.assertTrue(self.control_connection.wait_for_schema_agreement()) # the control connection should not have slept at all self.assertEqual(self.time.clock, 0) def test_wait_for_schema_agreement_uses_preloaded_results_if_given(self): """ wait_for_schema_agreement uses preloaded results if given for shared table queries """ preloaded_results = self._get_matching_schema_preloaded_results() self.assertTrue(self.control_connection.wait_for_schema_agreement(preloaded_results=preloaded_results)) # the control connection should not have slept at all self.assertEqual(self.time.clock, 0) # the connection should not have made any queries if given preloaded results self.assertEqual(self.connection.wait_for_responses.call_count, 0) def test_wait_for_schema_agreement_falls_back_to_querying_if_schemas_dont_match_preloaded_result(self): """ wait_for_schema_agreement requery if schema does not match using preloaded results """ preloaded_results = self._get_nonmatching_schema_preloaded_results() self.assertTrue(self.control_connection.wait_for_schema_agreement(preloaded_results=preloaded_results)) # the control connection should not have slept at all self.assertEqual(self.time.clock, 0) self.assertEqual(self.connection.wait_for_responses.call_count, 1) def test_wait_for_schema_agreement_fails(self): """ Make sure the control connection sleeps and retries """ # change the schema version on one node self.connection.peer_results[1][1][2] = 'b' self.assertFalse(self.control_connection.wait_for_schema_agreement()) # the control connection should have slept until it hit the limit self.assertGreaterEqual(self.time.clock, self.cluster.max_schema_agreement_wait) def test_wait_for_schema_agreement_skipping(self): """ If rpc_address or schema_version isn't set, the host should be skipped """ # an entry with no schema_version self.connection.peer_results[1].append( ["192.168.1.3", "10.0.0.3", None, "dc1", "rack1", ["3", "103", "203"]] ) # an entry with a different schema_version and no rpc_address self.connection.peer_results[1].append( [None, None, "b", "dc1", "rack1", ["4", "104", "204"]] ) # change the schema version on one of the existing entries self.connection.peer_results[1][1][3] = 'c' self.cluster.metadata.get_host('192.168.1.1').is_up = False self.assertTrue(self.control_connection.wait_for_schema_agreement()) self.assertEqual(self.time.clock, 0) def test_wait_for_schema_agreement_rpc_lookup(self): """ If the rpc_address is 0.0.0.0, the "peer" column should be used instead. """ self.connection.peer_results[1].append( ["0.0.0.0", PEER_IP, "b", "dc1", "rack1", ["3", "103", "203"]] ) host = Host("0.0.0.0", SimpleConvictionPolicy) self.cluster.metadata.hosts[PEER_IP] = host host.is_up = False # even though the new host has a different schema version, it's # marked as down, so the control connection shouldn't care self.assertTrue(self.control_connection.wait_for_schema_agreement()) self.assertEqual(self.time.clock, 0) # but once we mark it up, the control connection will care host.is_up = True self.assertFalse(self.control_connection.wait_for_schema_agreement()) self.assertGreaterEqual(self.time.clock, self.cluster.max_schema_agreement_wait) def test_refresh_nodes_and_tokens(self): self.control_connection.refresh_node_list_and_token_map() meta = self.cluster.metadata self.assertEqual(meta.partitioner, 'Murmur3Partitioner') self.assertEqual(meta.cluster_name, 'foocluster') # check token map self.assertEqual(sorted(meta.all_hosts()), sorted(meta.token_map.keys())) for token_list in meta.token_map.values(): self.assertEqual(3, len(token_list)) # check datacenter/rack for host in meta.all_hosts(): self.assertEqual(host.datacenter, "dc1") self.assertEqual(host.rack, "rack1") self.assertEqual(self.connection.wait_for_responses.call_count, 1) def test_refresh_nodes_and_tokens_uses_preloaded_results_if_given(self): """ refresh_nodes_and_tokens uses preloaded results if given for shared table queries """ preloaded_results = self._get_matching_schema_preloaded_results() self.control_connection._refresh_node_list_and_token_map(self.connection, preloaded_results=preloaded_results) meta = self.cluster.metadata self.assertEqual(meta.partitioner, 'Murmur3Partitioner') self.assertEqual(meta.cluster_name, 'foocluster') # check token map self.assertEqual(sorted(meta.all_hosts()), sorted(meta.token_map.keys())) for token_list in meta.token_map.values(): self.assertEqual(3, len(token_list)) # check datacenter/rack for host in meta.all_hosts(): self.assertEqual(host.datacenter, "dc1") self.assertEqual(host.rack, "rack1") # the connection should not have made any queries if given preloaded results self.assertEqual(self.connection.wait_for_responses.call_count, 0) def test_refresh_nodes_and_tokens_no_partitioner(self): """ Test handling of an unknown partitioner. """ # set the partitioner column to None self.connection.local_results[1][0][4] = None self.control_connection.refresh_node_list_and_token_map() meta = self.cluster.metadata self.assertEqual(meta.partitioner, None) self.assertEqual(meta.token_map, {}) def test_refresh_nodes_and_tokens_add_host(self): self.connection.peer_results[1].append( ["192.168.1.3", "10.0.0.3", "a", "dc1", "rack1", ["3", "103", "203"]] ) self.cluster.scheduler.schedule = lambda delay, f, *args, **kwargs: f(*args, **kwargs) self.control_connection.refresh_node_list_and_token_map() self.assertEqual(1, len(self.cluster.added_hosts)) self.assertEqual(self.cluster.added_hosts[0].address, "192.168.1.3") self.assertEqual(self.cluster.added_hosts[0].datacenter, "dc1") self.assertEqual(self.cluster.added_hosts[0].rack, "rack1") def test_refresh_nodes_and_tokens_remove_host(self): del self.connection.peer_results[1][1] self.control_connection.refresh_node_list_and_token_map() self.assertEqual(1, len(self.cluster.removed_hosts)) self.assertEqual(self.cluster.removed_hosts[0].address, "192.168.1.2") def test_refresh_nodes_and_tokens_timeout(self): def bad_wait_for_responses(*args, **kwargs): self.assertEqual(kwargs['timeout'], self.control_connection._timeout) raise OperationTimedOut() self.connection.wait_for_responses = bad_wait_for_responses self.control_connection.refresh_node_list_and_token_map() self.cluster.executor.submit.assert_called_with(self.control_connection._reconnect) def test_refresh_schema_timeout(self): def bad_wait_for_responses(*args, **kwargs): self.time.sleep(kwargs['timeout']) raise OperationTimedOut() self.connection.wait_for_responses = Mock(side_effect=bad_wait_for_responses) self.control_connection.refresh_schema() self.assertEqual(self.connection.wait_for_responses.call_count, self.cluster.max_schema_agreement_wait / self.control_connection._timeout) self.assertEqual(self.connection.wait_for_responses.call_args[1]['timeout'], self.control_connection._timeout) def test_handle_topology_change(self): event = { 'change_type': 'NEW_NODE', 'address': ('1.2.3.4', 9000) } self.cluster.scheduler.reset_mock() self.control_connection._handle_topology_change(event) self.cluster.scheduler.schedule_unique.assert_called_once_with(ANY, self.control_connection.refresh_node_list_and_token_map) event = { 'change_type': 'REMOVED_NODE', 'address': ('1.2.3.4', 9000) } self.cluster.scheduler.reset_mock() self.control_connection._handle_topology_change(event) self.cluster.scheduler.schedule_unique.assert_called_once_with(ANY, self.cluster.remove_host, None) event = { 'change_type': 'MOVED_NODE', 'address': ('1.2.3.4', 9000) } self.cluster.scheduler.reset_mock() self.control_connection._handle_topology_change(event) self.cluster.scheduler.schedule_unique.assert_called_once_with(ANY, self.control_connection.refresh_node_list_and_token_map) def test_handle_status_change(self): event = { 'change_type': 'UP', 'address': ('1.2.3.4', 9000) } self.cluster.scheduler.reset_mock() self.control_connection._handle_status_change(event) self.cluster.scheduler.schedule_unique.assert_called_once_with(ANY, self.control_connection.refresh_node_list_and_token_map) # do the same with a known Host event = { 'change_type': 'UP', 'address': ('192.168.1.0', 9000) } self.cluster.scheduler.reset_mock() self.control_connection._handle_status_change(event) host = self.cluster.metadata.hosts['192.168.1.0'] self.cluster.scheduler.schedule_unique.assert_called_once_with(ANY, self.cluster.on_up, host) self.cluster.scheduler.schedule.reset_mock() event = { 'change_type': 'DOWN', 'address': ('1.2.3.4', 9000) } self.control_connection._handle_status_change(event) self.assertFalse(self.cluster.scheduler.schedule.called) # do the same with a known Host event = { 'change_type': 'DOWN', 'address': ('192.168.1.0', 9000) } self.control_connection._handle_status_change(event) host = self.cluster.metadata.hosts['192.168.1.0'] self.assertIs(host, self.cluster.down_host) def test_handle_schema_change(self): change_types = [getattr(SchemaChangeType, attr) for attr in vars(SchemaChangeType) if attr[0] != '_'] for change_type in change_types: event = { 'target_type': SchemaTargetType.TABLE, 'change_type': change_type, 'keyspace': 'ks1', 'table': 'table1' } self.cluster.scheduler.reset_mock() self.control_connection._handle_schema_change(event) self.cluster.scheduler.schedule_unique.assert_called_once_with(ANY, self.control_connection.refresh_schema, **event) self.cluster.scheduler.reset_mock() event['target_type'] = SchemaTargetType.KEYSPACE del event['table'] self.control_connection._handle_schema_change(event) self.cluster.scheduler.schedule_unique.assert_called_once_with(ANY, self.control_connection.refresh_schema, **event) def test_refresh_disabled(self): cluster = MockCluster() schema_event = { 'target_type': SchemaTargetType.TABLE, 'change_type': SchemaChangeType.CREATED, 'keyspace': 'ks1', 'table': 'table1' } status_event = { 'change_type': 'UP', 'address': ('1.2.3.4', 9000) } topo_event = { 'change_type': 'MOVED_NODE', 'address': ('1.2.3.4', 9000) } cc_no_schema_refresh = ControlConnection(cluster, 1, -1, 0) cluster.scheduler.reset_mock() # no call on schema refresh cc_no_schema_refresh._handle_schema_change(schema_event) self.assertFalse(cluster.scheduler.schedule.called) self.assertFalse(cluster.scheduler.schedule_unique.called) # topo and status changes as normal cc_no_schema_refresh._handle_status_change(status_event) cc_no_schema_refresh._handle_topology_change(topo_event) cluster.scheduler.schedule_unique.assert_has_calls([call(ANY, cc_no_schema_refresh.refresh_node_list_and_token_map), call(ANY, cc_no_schema_refresh.refresh_node_list_and_token_map)]) cc_no_topo_refresh = ControlConnection(cluster, 1, 0, -1) cluster.scheduler.reset_mock() # no call on topo refresh cc_no_topo_refresh._handle_topology_change(topo_event) self.assertFalse(cluster.scheduler.schedule.called) self.assertFalse(cluster.scheduler.schedule_unique.called) # schema and status change refresh as normal cc_no_topo_refresh._handle_status_change(status_event) cc_no_topo_refresh._handle_schema_change(schema_event) cluster.scheduler.schedule_unique.assert_has_calls([call(ANY, cc_no_topo_refresh.refresh_node_list_and_token_map), call(0.0, cc_no_topo_refresh.refresh_schema, **schema_event)]) class EventTimingTest(unittest.TestCase): """ A simple test to validate that event scheduling happens in order Added for PYTHON-358 """ def setUp(self): self.cluster = MockCluster() self.connection = MockConnection() self.time = FakeTime() # Use 2 for the schema_event_refresh_window which is what we would normally default to. self.control_connection = ControlConnection(self.cluster, 1, 2, 0) self.control_connection._connection = self.connection self.control_connection._time = self.time def test_event_delay_timing(self): """ Submits a wide array of events make sure that each is scheduled to occur in the order they were received """ prior_delay = 0 for _ in range(100): for change_type in ('CREATED', 'DROPPED', 'UPDATED'): event = { 'change_type': change_type, 'keyspace': '1', 'table': 'table1' } # This is to increment the fake time, we don't actually sleep here. self.time.sleep(.001) self.cluster.scheduler.reset_mock() self.control_connection._handle_schema_change(event) self.cluster.scheduler.mock_calls # Grabs the delay parameter from the scheduler invocation current_delay = self.cluster.scheduler.mock_calls[0][1][0] self.assertLess(prior_delay, current_delay) prior_delay = current_delay
41.373281
146
0.654779
531d49468644796d0b5e5c03e19af41595f70d3d
3,063
py
Python
ml-app/entities/learn/classification/model.py
janove51/ml-app
0d66aa4c25648f2059eb645b7f8081f028fac703
[ "MIT" ]
null
null
null
ml-app/entities/learn/classification/model.py
janove51/ml-app
0d66aa4c25648f2059eb645b7f8081f028fac703
[ "MIT" ]
null
null
null
ml-app/entities/learn/classification/model.py
janove51/ml-app
0d66aa4c25648f2059eb645b7f8081f028fac703
[ "MIT" ]
null
null
null
import os, sys sys.path.append(os.path.abspath('../')) from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV, RandomizedSearchCV import numpy as np import classification.utils def assemble_param_grid_rfc(nr_trees_min=200, nr_trees_max=2000, nr_trees_options=10, max_features_min=None, max_features_max=None, max_features_options=None, max_depth_min=1, max_depth_max=32, max_depth_options=6, bootstrap_options = [True, False], min_samples_split = [2, 5, 10], min_samples_leaf = [1, 2, 4]): ''' Generates grid with value options for optimal Hyperparameter search of RandomForestClassifier :return: dictionary with parameter values ''' # Number of trees = size of the ensemble itself n_estimators = [int(x) for x in np.linspace(start=nr_trees_min, stop=nr_trees_max, num=nr_trees_options)] # Number of features: limit it to increase variance within ensemble if max_features_min is None and max_features_max is None and max_features_options is None: max_features = ['sqrt', 'log2'] # default value else: max_features = [int(x) for x in np.linspace(start=max_features_min, stop=max_features_max, num=max_features_options)] # Max Depth = controls model complexity if max_depth_min is None and max_depth_max is None and max_depth_options is None: max_depth = None # default value else: max_depth = [int(x) for x in np.linspace(start=max_depth_min, stop=max_depth_max, num=max_depth_options)] nr_combos = len(n_estimators) * len(min_samples_split) * len(max_features) * len(max_depth) * len(min_samples_leaf) * len(bootstrap_options) print('Grid contains {} possible combinations'.format(nr_combos)) grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap_options} print('Hyperparameter Grid assembled:', grid) return grid def train_rfc(X_train, y_train, grid, grid_search_type = 'random'): ''' Train Random Forest Classifier using verious grid search methods :param X_train: nd-array :param y_train: nd-array :param grid: dictionary with grid values :param grid_search_type: string :return: scikit model object ''' rfc = RandomForestClassifier(n_jobs=-1, bootstrap=True) if grid_search_type == 'random': grid_search = RandomizedSearchCV(estimator=rfc, param_distributions=grid, n_iter=2, cv=2, verbose=0, random_state=0, n_jobs=1) elif grid_search_type == 'all': grid_search = GridSearchCV(estimator=rfc, param_grid=grid, cv=2, n_jobs=1, verbose=0) grid_search.fit(X_train, y_train) print('Best Parameter grid:', grid_search.best_params_) model = grid_search.best_estimator_ return model
38.772152
144
0.69507
802d18b8c7aead93622047d9327b29be53f9a315
1,417
py
Python
metadata_replace/test_mrepr.py
Preocts/python_play_carton
071b19a6b5a6420192cd262195f95acfd787b476
[ "MIT" ]
null
null
null
metadata_replace/test_mrepr.py
Preocts/python_play_carton
071b19a6b5a6420192cd262195f95acfd787b476
[ "MIT" ]
null
null
null
metadata_replace/test_mrepr.py
Preocts/python_play_carton
071b19a6b5a6420192cd262195f95acfd787b476
[ "MIT" ]
null
null
null
from typing import Dict import pytest import mrepr @pytest.mark.parametrize( ("in_", "keypairs", "expected"), ( ("{{metatag}}", {"metatag": "replaced"}, "replaced"), ("{{metaTag }}", {"metatag": "replaced"}, "replaced"), ("{{ metaTag}}", {"metatag": "replaced"}, "replaced"), ("{{ metaTag }}", {"metatag": "replaced"}, "replaced"), ("{{metatag}} ", {"metatag": "replaced"}, "replaced "), (" {{Metatag}}", {"metatag": "replaced"}, " replaced"), (" {{ metatag }} ", {"metatag": "replaced"}, " replaced "), ("This{{metatag}}sentence", {"metatag": "replaced"}, "Thisreplacedsentence"), ( "This {{ metatag }} sentence", {"metatag": "replaced"}, "This replaced sentence", ), ( "This {{ metatag }} sentence", {"metatag": "replaced"}, "This replaced sentence", ), ( "This {{ newtag }} sentence", {"metatag": "replaced"}, "This {{ newtag }} sentence", ), ( "This {{ newtag }}{{metatag}} sentence", {"metatag": "replaced", "newtag": "swapped"}, "This swappedreplaced sentence", ), ), ) def test_mrepr(in_: str, keypairs: Dict[str, str], expected: str) -> None: """Test metatag repr""" assert mrepr.mrepr(in_, keypairs) == expected
32.204545
85
0.485533
aba541e9ddbfb81741a63ed6f9bfc25859cd943a
7,358
py
Python
blog/migrations/0001_initial.py
mayankchauhan96/Travel-Blogging-website
c1aa425e961fe1158159dea4f2d97df79a0ee917
[ "Apache-2.0" ]
null
null
null
blog/migrations/0001_initial.py
mayankchauhan96/Travel-Blogging-website
c1aa425e961fe1158159dea4f2d97df79a0ee917
[ "Apache-2.0" ]
12
2021-03-19T09:05:16.000Z
2022-03-12T00:39:11.000Z
blog/migrations/0001_initial.py
mayankchauhan96/Travel-Blogging-website
c1aa425e961fe1158159dea4f2d97df79a0ee917
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.0.5 on 2021-01-07 18:40 import autoslug.fields import ckeditor_uploader.fields import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion import sorl.thumbnail.fields class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('category', models.CharField(blank=True, choices=[('Beaches', 'Beaches'), ('Treks', 'Treks'), ('Glaciers', 'Glaciers'), ('Summit', 'Summit'), ('Islands', 'Islands'), ('Hiking', 'Hiking'), ('Camping', 'Camping'), ('Mountains', 'Mountains'), ('Deserts', 'Deserts'), ('Forests', 'Forests'), ('Historic', 'Historic'), ('Monuments', 'Monuments'), ('Temples', 'Temples'), ('Museums', 'Museums'), ('Zoos', 'Zoos'), ('ThemeParks', 'ThemeParks'), ('Gardens', 'Gardens'), ('Aquaria', 'Aquaria'), ('Winter', 'Winter'), ('Market', 'Market'), ('Urban', 'Urban'), ('Rural', 'Rural'), ('Rivers', 'Rivers'), ('Lakes', 'Lakes'), ('Couple', 'Couple'), ('Sports', 'Sports'), ('Food', 'Food '), ('Resorts', 'Resorts'), ('Culture', 'Culture'), ('Adventure', 'Adventure'), ('MotoBlogs', 'MotoBlogs'), ('Solo', 'Solo'), ('Summer', 'Summer'), ('TravelTips', 'TravelTips'), ('Photography', 'Photography'), ('WFM', 'WFM')], max_length=100, null=True)), ], ), migrations.CreateModel( name='ContactUs', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=80)), ('email', models.EmailField(max_length=100)), ('mobile', models.CharField(blank=True, max_length=100)), ('created_on', models.DateTimeField(auto_now_add=True)), ('content', models.TextField(max_length=500)), ], options={ 'ordering': ['-created_on'], }, ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200, unique=True)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='title')), ('cover', sorl.thumbnail.fields.ImageField(null=True, upload_to='images/')), ('updated_on', models.DateTimeField(auto_now=True)), ('content', ckeditor_uploader.fields.RichTextUploadingField(blank=True, null=True)), ('created_on', models.DateTimeField(auto_now_add=True)), ('status', models.IntegerField(choices=[(0, 'Draft'), (1, 'Publish')], default=0)), ('state', models.CharField(choices=[('Somewhere In India', 'Somewhere In India'), ('Out Of India', 'Out Of India'), ('Andhra Pradesh', 'Andhra Pradesh'), ('Arunachal Pradesh', 'Arunachal Pradesh'), ('Assam', 'Assam'), ('Bihar', 'Bihar'), ('Chhattisgarh', 'Chhattisgarh'), ('Chandigarh', 'Chandigarh'), ('Dadra and Nagar Haveli', 'Dadra and Nagar Haveli'), ('Daman and Diu', 'Daman and Diu'), ('Delhi', 'Delhi'), ('Goa', 'Goa'), ('Gujarat', 'Gujarat'), ('Haryana', 'Haryana'), ('Himachal Pradesh', 'Himachal Pradesh'), ('Jammu and Kashmir', 'Jammu and Kashmir'), ('Jharkhand', 'Jharkhand'), ('Karnataka', 'Karnataka'), ('Kerala', 'Kerala'), ('Madhya Pradesh', 'Madhya Pradesh'), ('Maharashtra', 'Maharashtra'), ('Manipur', 'Manipur'), ('Meghalaya', 'Meghalaya'), ('Mizoram', 'Mizoram'), ('Nagaland', 'Nagaland'), ('Orissa', 'Orissa'), ('Punjab', 'Punjab'), ('Pondicherry', 'Pondicherry'), ('Rajasthan', 'Rajasthan'), ('Sikkim', 'Sikkim'), ('Tamil Nadu', 'Tamil Nadu'), ('Tripura', 'Tripura'), ('Uttar Pradesh', 'Uttar Pradesh'), ('Uttarakhand', 'Uttarakhand'), ('West Bengal', 'West Bengal')], default='Somewhere In India', max_length=80)), ('slug_st', autoslug.fields.AutoSlugField(editable=False, populate_from='state')), ('location', models.CharField(max_length=200)), ('slug_lc', autoslug.fields.AutoSlugField(editable=False, populate_from='location')), ('views', models.IntegerField(default=0)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to=settings.AUTH_USER_MODEL)), ('category', models.ManyToManyField(blank=True, related_name='posts', to='blog.Category')), ('like', models.ManyToManyField(blank=True, related_name='post_liked', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created_on'], }, ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(max_length=150)), ('signup_confirmation', models.BooleanField(default=False)), ('facebook_link', models.CharField(blank=True, max_length=100, null=True)), ('instagram_link', models.CharField(blank=True, max_length=100, null=True)), ('bio', models.CharField(blank=True, max_length=100, null=True)), ('city', models.CharField(blank=True, max_length=100, null=True)), ('Website', models.CharField(blank=True, max_length=100, null=True)), ('youtube_channel', models.CharField(blank=True, max_length=100, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='PostView', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ip', models.CharField(max_length=40)), ('session', models.CharField(max_length=40)), ('created', models.DateTimeField(default=datetime.datetime(2021, 1, 8, 0, 10, 20, 691644))), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='post_views', to='blog.Post')), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=80)), ('email', models.EmailField(max_length=100)), ('body', models.TextField(max_length=80)), ('created_on', models.DateTimeField(auto_now_add=True)), ('active', models.BooleanField(default=True)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='blog.Post')), ], options={ 'ordering': ['-created_on'], }, ), ]
68.766355
1,155
0.593368
0751e5b7b2e7d7149747c66d079210a6c122013a
6,189
py
Python
learnedevolution/bins/evaluate_sweep.py
realtwister/LearnedEvolution
2ec49b50a49acae9693cfb05ac114dfbcc4aa337
[ "MIT" ]
null
null
null
learnedevolution/bins/evaluate_sweep.py
realtwister/LearnedEvolution
2ec49b50a49acae9693cfb05ac114dfbcc4aa337
[ "MIT" ]
null
null
null
learnedevolution/bins/evaluate_sweep.py
realtwister/LearnedEvolution
2ec49b50a49acae9693cfb05ac114dfbcc4aa337
[ "MIT" ]
null
null
null
from .utils import confirm import re import ast from tempfile import TemporaryDirectory from time import sleep VAR_REGEX = re.compile("<<VARIABLE:[a-zA-Z0-9_.,{} ()\+\"\'\[\]\-]+>>"); SPACE_REGEX = re.compile("{{[a-zA-Z0-9_., ()\"\'\[\]\+\-]+}}"); SPEC_VAR_REGEX = lambda var: "<<VARIABLE:"+var+"(|{{[a-zA-Z0-9_., \"\'{}()\[\]\+\-]+}})>>"; parsers = []; def register_evaluate_sweep(subparsers): parser = subparsers.add_parser('evaluate_sweep') parser.set_defaults(func = main) parser.add_argument("log_dir", help="The directory to save/ log to") parser.add_argument("config_file", help="path to config file") parser.add_argument("variable_dir", help="variables file") parser.add_argument("--session_name", help = "The session name to use (will be created if doesn't exist) (DEFAULT:learnedevolution)", default="learnedevolution") parser.add_argument("-y","--yes",dest="should_confirm", action="store_false", default=True) parser.add_argument("--workers", help="Number of workers", default = 4) parsers.append(parser) def search_variable(line): found_vars = []; for var_found in VAR_REGEX.finditer(line): var = var_found.group()[11:-2]; space_found = SPACE_REGEX.search(var); if space_found: var = var[:space_found.start()] space = space_found.group()[2:-2]; found_vars.append((var,space)); else: found_vars.append((var, None)) return found_vars; def find_variables_in_file(file_path): variables = dict(); with open(file_path) as f: for line in f: for var, space in search_variable(line): if space is not None: if var in variables and variables[var] is not None: print("Space for variable {} defined multiple times".format(var)); else: variables[var] = create_space(var, space); elif var not in variables: variables[var] = None; return variables; def get_inactive_windows(windows): res = [] for window in windows: if window.name == "bash": res.append(window) return res def main(args): import libtmux import os parser = parsers[0] # Check arguments if os.path.exists(args.log_dir): if not confirm("Are you sure you want to overwrite it?", args.should_confirm): parser.error("The experiment dir already exists."); if args.config_file is not None: config = args.config_file; else: config = os.path.join(args.log_dir, "config.py") if not os.path.exists(config): parser.error("Configuration file not found") if not os.path.isfile(config): parser.error("Configuration is not a file") if not os.path.exists(args.variable_dir): parser.error("variable_dir should exist") # Find the variables in the config file variables = find_variables_in_file(config) # Select variable files with appropriate variables variable_files = []; for f in os.listdir(args.variable_dir): f_path = os.path.join(args.variable_dir, f) if os.path.isfile(f_path) and f[-4:] == ".var": with open(f_path,'r') as of: contents = eval(of.read()) for v in variables: if v not in contents: break; else: variable_files.append(f) workers = min(int(args.workers), len(variable_files)) print("-------- Summary --------") print("Variables: ({})".format( len(variables))) for v in variables: print(" -",v) print("Configurations: ({})".format(len(variable_files))) for f in variable_files: print(" -",f) print("Workers:", workers) print("Logging to:", os.path.abspath(args.log_dir)) print("-------------------------") if not confirm("Run the experiment?", args.should_confirm): exit() # Create configs in temporary directory tempdir =TemporaryDirectory() for f_name in variable_files: f_path = os.path.join(args.variable_dir, f_name) with open(f_path,'r') as of: values = eval(of.read()) new_config_path = os.path.join(tempdir.name, f_name[:-4]+".py") with open(config) as original: with open(new_config_path,'a') as new: for line in original: for var in variables: line = re.sub(SPEC_VAR_REGEX(var), str(values[var]), line); new.write(line) # run the sessions tmux = libtmux.Server() # Select tmux session if tmux.has_session(args.session_name): session = tmux.find_where({ "session_name": args.session_name }) if not confirm("Session already exists. Should I continue?", args.should_confirm): exit() else: session = tmux.new_session(args.session_name) # clean idle windows for window in get_inactive_windows(session.windows)[:-1]: window.kill_window() # Setup windows windows = [] for i in range(workers- len(session.windows)): window = session.new_window() windows.append(window) queue = list(variable_files) while True: for window in get_inactive_windows(session.windows): if len(queue) == 0: if len(session.windows) > 1: window.kill_window() break; f_name = queue.pop() f_name = f_name[:-4] #Remove .var extension config_path = os.path.join(tempdir.name, f_name+".py") current_dir = os.path.join(args.log_dir, f_name) window.attached_pane.send_keys("python3 -m learnedevolution evaluate_static {} {}".format( current_dir, config_path )) print("Running configuration", f_name, "on", window.id) if len(queue) == 0: break; sleep(1) print("All experiments have started or finished on session", session.name) print("Waiting before clearing temporary directory") sleep(100) tempdir.cleanup()
34.966102
165
0.59832
7b15209c18723fbcf9e43587da32c91117223168
4,755
py
Python
utils/utils.py
HerrYu123/deeplabv3
4f29d2bfb725a77b22fb04e1e0006ae742fa5d47
[ "MIT" ]
null
null
null
utils/utils.py
HerrYu123/deeplabv3
4f29d2bfb725a77b22fb04e1e0006ae742fa5d47
[ "MIT" ]
null
null
null
utils/utils.py
HerrYu123/deeplabv3
4f29d2bfb725a77b22fb04e1e0006ae742fa5d47
[ "MIT" ]
null
null
null
# camera-ready import torch import torch.nn as nn from ipdb import set_trace as b import os import numpy as np def add_weight_decay(net, l2_value, skip_list=()): # https://raberrytv.wordpress.com/2017/10/29/pytorch-weight-decay-made-easy/ decay, no_decay = [], [] for name, param in net.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: no_decay.append(param) else: decay.append(param) b() return [{'params': no_decay, 'weight_decay': 0.0}, {'params': decay, 'weight_decay': l2_value}] # function for colorizing a label image: def label_img_to_color(img, num_classes): # for num_classes=8 if num_classes == 8: label_to_color = { 0: [0, 196, 121], #ego 1: [255, 210, 37], #left 2: [240, 127, 0], #right 3: [246, 22, 70], #opposite 4: [255,255,255], 5: [224, 74, 209], 6: [230, 150, 140], 7: [0, 0, 0] } # for num_classes=24' elif num_classes == 24: label_to_color = { 0: [0, 196, 121], 1: [255, 210, 37], 2: [240, 127, 0], 3: [246, 22, 70], 4: [255,255,255], 5: [224, 74, 209], 6: [230, 150, 140], 7: [70, 70, 70], 8: [102,102, 156], 9: [190,153,153], 10: [180,165,180], 11: [150, 100, 100], 12: [220, 220, 0], 13: [107, 142, 35], 14: [220, 20, 60], 15: [255, 0, 0], 16: [ 0, 0, 70], 17: [ 0, 60, 100], 18: [0, 0, 90], 19: [140, 0, 160], 20: [255, 0, 200], 21: [255, 140, 230], 22: [221, 147, 255], 23: [0, 0 , 0] } # for num_classes=20' elif num_classes == 20: # migration model label_to_color = { 0: [0, 196, 121], 1: [255,210, 37], 2: [246, 22, 70], 3: [224, 74,209], 4: [230,150,140], 5: [230,150,140], 6: [250,170, 30], 7: [220,220, 0], 8: [107,142, 35], 9: [152,251,152], 10: [70,130,180], 11: [220, 20, 60], 12: [255, 0, 0], 13: [0, 0,142], 14: [0, 0, 70], 15: [0, 60,100], 16: [ 0, 80,100], 17: [0, 0,230], 18: [119, 11, 32], 19: [0, 0, 90], #255: [0, 0, 0] } # label_to_color = { # 0: [128, 64,128], # 1: [244, 35,232], # 2: [70, 70, 70], # 3: [102,102,156], # 4: [190,153,153], # 5: [153,153,153], # 6: [250,170, 30], # 7: [220,220, 0], # 8: [107,142, 35], # 9: [152,251,152], # 10: [70,130,180], # 11: [220, 20, 60], # 12: [255, 0, 0], # 13: [0, 0,142], # 14: [0, 0, 70], # 15: [0, 60,100], # 16: [ 0, 80,100], # 17: [0, 0,230], # 18: [119, 11, 32], # 19: [0, 0, 90], # } else: print("labels numbers error") b() # label_to_color = { # 0: [128, 64,128], # 1: [244, 35,232], # 2: [ 70, 70, 70], # 3: [102,102,156], # 4: [190,153,153], # 5: [153,153,153], # 6: [250,170, 30], # 7: [220,220, 0], # 8: [107,142, 35], # 9: [152,251,152], # 10: [ 70,130,180], # 11: [220, 20, 60], # 12: [255, 0, 0], # 13: [ 0, 0,142], # 14: [ 0, 0, 70], # 15: [ 0, 60,100], # 16: [ 0, 80,100], # 17: [ 0, 0,230], # 18: [119, 11, 32], # 19: [81, 0, 81] # } img_height, img_width = img.shape img_color = np.zeros((img_height, img_width, 3)) for row in range(img_height): for col in range(img_width): label = img[row, col] img_color[row, col] = np.array(label_to_color[label]) return img_color class AverageMeter(object): def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def check_mkdir(dir_name): if not os.path.exists(dir_name): os.mkdir(dir_name)
27.485549
99
0.403575
f1b8969bc44b62acdc8fb81804d7a5852739b22a
444
py
Python
01 - Basics/39-datatypes-numerics.py
python-demo-codes/basics
2a151bbff4b528cefd52978829c632fd087c8f20
[ "DOC" ]
2
2019-08-23T06:05:55.000Z
2019-08-26T03:56:07.000Z
01 - Basics/39-datatypes-numerics.py
python-lang-codes/basics
2a151bbff4b528cefd52978829c632fd087c8f20
[ "DOC" ]
null
null
null
01 - Basics/39-datatypes-numerics.py
python-lang-codes/basics
2a151bbff4b528cefd52978829c632fd087c8f20
[ "DOC" ]
4
2020-10-01T07:16:07.000Z
2021-07-17T07:55:08.000Z
# HEAD # Python Basics - Numeric Data Type # DESCRIPTION # Describes # - how numerics are assigned to variables # - how string like numerics are converted to numerics (type conversion) # # RESOURCES # # CORE PYTHON DATA TYPES # # Integer # # INTEGER # Integer like Numeric var = 1 # Convert a Integer like string into Integer/Numeric var = int("1") # # Following fails to convert to Integer or Numeric Type # var = int("1x")
18.5
78
0.693694
b221045328dbd3509906cd2ad24fc337afa2668a
107,316
py
Python
Lib/test/test_enum.py
ekgus9701/python_practice
b01fa0924752d55e9b2651745c1422d1045bd7a6
[ "bzip2-1.0.6" ]
18
2016-03-04T15:44:24.000Z
2021-12-31T11:06:25.000Z
Software/Python-3.7.2/mybuild/lib/python3.7/test/test_enum.py
KHsu2/gelsightmini_tracking
8f06a8f5e8e376305584d4b3db8c7b47fea90b39
[ "MIT" ]
49
2016-02-29T17:59:52.000Z
2019-05-05T04:59:26.000Z
Software/Python-3.7.2/mybuild/lib/python3.7/test/test_enum.py
KHsu2/gelsightmini_tracking
8f06a8f5e8e376305584d4b3db8c7b47fea90b39
[ "MIT" ]
5
2018-02-21T02:13:36.000Z
2019-10-07T02:01:32.000Z
import enum import inspect import pydoc import unittest import threading from collections import OrderedDict from enum import Enum, IntEnum, EnumMeta, Flag, IntFlag, unique, auto from io import StringIO from pickle import dumps, loads, PicklingError, HIGHEST_PROTOCOL from test import support from datetime import timedelta try: import threading except ImportError: threading = None # for pickle tests try: class Stooges(Enum): LARRY = 1 CURLY = 2 MOE = 3 except Exception as exc: Stooges = exc try: class IntStooges(int, Enum): LARRY = 1 CURLY = 2 MOE = 3 except Exception as exc: IntStooges = exc try: class FloatStooges(float, Enum): LARRY = 1.39 CURLY = 2.72 MOE = 3.142596 except Exception as exc: FloatStooges = exc try: class FlagStooges(Flag): LARRY = 1 CURLY = 2 MOE = 3 except Exception as exc: FlagStooges = exc # for pickle test and subclass tests try: class StrEnum(str, Enum): 'accepts only string values' class Name(StrEnum): BDFL = 'Guido van Rossum' FLUFL = 'Barry Warsaw' except Exception as exc: Name = exc try: Question = Enum('Question', 'who what when where why', module=__name__) except Exception as exc: Question = exc try: Answer = Enum('Answer', 'him this then there because') except Exception as exc: Answer = exc try: Theory = Enum('Theory', 'rule law supposition', qualname='spanish_inquisition') except Exception as exc: Theory = exc # for doctests try: class Fruit(Enum): TOMATO = 1 BANANA = 2 CHERRY = 3 except Exception: pass def test_pickle_dump_load(assertion, source, target=None): if target is None: target = source for protocol in range(HIGHEST_PROTOCOL + 1): assertion(loads(dumps(source, protocol=protocol)), target) def test_pickle_exception(assertion, exception, obj): for protocol in range(HIGHEST_PROTOCOL + 1): with assertion(exception): dumps(obj, protocol=protocol) class TestHelpers(unittest.TestCase): # _is_descriptor, _is_sunder, _is_dunder def test_is_descriptor(self): class foo: pass for attr in ('__get__','__set__','__delete__'): obj = foo() self.assertFalse(enum._is_descriptor(obj)) setattr(obj, attr, 1) self.assertTrue(enum._is_descriptor(obj)) def test_is_sunder(self): for s in ('_a_', '_aa_'): self.assertTrue(enum._is_sunder(s)) for s in ('a', 'a_', '_a', '__a', 'a__', '__a__', '_a__', '__a_', '_', '__', '___', '____', '_____',): self.assertFalse(enum._is_sunder(s)) def test_is_dunder(self): for s in ('__a__', '__aa__'): self.assertTrue(enum._is_dunder(s)) for s in ('a', 'a_', '_a', '__a', 'a__', '_a_', '_a__', '__a_', '_', '__', '___', '____', '_____',): self.assertFalse(enum._is_dunder(s)) # for subclassing tests class classproperty: def __init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel if doc is None and fget is not None: doc = fget.__doc__ self.__doc__ = doc def __get__(self, instance, ownerclass): return self.fget(ownerclass) # tests class TestEnum(unittest.TestCase): def setUp(self): class Season(Enum): SPRING = 1 SUMMER = 2 AUTUMN = 3 WINTER = 4 self.Season = Season class Konstants(float, Enum): E = 2.7182818 PI = 3.1415926 TAU = 2 * PI self.Konstants = Konstants class Grades(IntEnum): A = 5 B = 4 C = 3 D = 2 F = 0 self.Grades = Grades class Directional(str, Enum): EAST = 'east' WEST = 'west' NORTH = 'north' SOUTH = 'south' self.Directional = Directional from datetime import date class Holiday(date, Enum): NEW_YEAR = 2013, 1, 1 IDES_OF_MARCH = 2013, 3, 15 self.Holiday = Holiday def test_dir_on_class(self): Season = self.Season self.assertEqual( set(dir(Season)), set(['__class__', '__doc__', '__members__', '__module__', 'SPRING', 'SUMMER', 'AUTUMN', 'WINTER']), ) def test_dir_on_item(self): Season = self.Season self.assertEqual( set(dir(Season.WINTER)), set(['__class__', '__doc__', '__module__', 'name', 'value']), ) def test_dir_with_added_behavior(self): class Test(Enum): this = 'that' these = 'those' def wowser(self): return ("Wowser! I'm %s!" % self.name) self.assertEqual( set(dir(Test)), set(['__class__', '__doc__', '__members__', '__module__', 'this', 'these']), ) self.assertEqual( set(dir(Test.this)), set(['__class__', '__doc__', '__module__', 'name', 'value', 'wowser']), ) def test_dir_on_sub_with_behavior_on_super(self): # see issue22506 class SuperEnum(Enum): def invisible(self): return "did you see me?" class SubEnum(SuperEnum): sample = 5 self.assertEqual( set(dir(SubEnum.sample)), set(['__class__', '__doc__', '__module__', 'name', 'value', 'invisible']), ) def test_enum_in_enum_out(self): Season = self.Season self.assertIs(Season(Season.WINTER), Season.WINTER) def test_enum_value(self): Season = self.Season self.assertEqual(Season.SPRING.value, 1) def test_intenum_value(self): self.assertEqual(IntStooges.CURLY.value, 2) def test_enum(self): Season = self.Season lst = list(Season) self.assertEqual(len(lst), len(Season)) self.assertEqual(len(Season), 4, Season) self.assertEqual( [Season.SPRING, Season.SUMMER, Season.AUTUMN, Season.WINTER], lst) for i, season in enumerate('SPRING SUMMER AUTUMN WINTER'.split(), 1): e = Season(i) self.assertEqual(e, getattr(Season, season)) self.assertEqual(e.value, i) self.assertNotEqual(e, i) self.assertEqual(e.name, season) self.assertIn(e, Season) self.assertIs(type(e), Season) self.assertIsInstance(e, Season) self.assertEqual(str(e), 'Season.' + season) self.assertEqual( repr(e), '<Season.{0}: {1}>'.format(season, i), ) def test_value_name(self): Season = self.Season self.assertEqual(Season.SPRING.name, 'SPRING') self.assertEqual(Season.SPRING.value, 1) with self.assertRaises(AttributeError): Season.SPRING.name = 'invierno' with self.assertRaises(AttributeError): Season.SPRING.value = 2 def test_changing_member(self): Season = self.Season with self.assertRaises(AttributeError): Season.WINTER = 'really cold' def test_attribute_deletion(self): class Season(Enum): SPRING = 1 SUMMER = 2 AUTUMN = 3 WINTER = 4 def spam(cls): pass self.assertTrue(hasattr(Season, 'spam')) del Season.spam self.assertFalse(hasattr(Season, 'spam')) with self.assertRaises(AttributeError): del Season.SPRING with self.assertRaises(AttributeError): del Season.DRY with self.assertRaises(AttributeError): del Season.SPRING.name def test_bool_of_class(self): class Empty(Enum): pass self.assertTrue(bool(Empty)) def test_bool_of_member(self): class Count(Enum): zero = 0 one = 1 two = 2 for member in Count: self.assertTrue(bool(member)) def test_invalid_names(self): with self.assertRaises(ValueError): class Wrong(Enum): mro = 9 with self.assertRaises(ValueError): class Wrong(Enum): _create_= 11 with self.assertRaises(ValueError): class Wrong(Enum): _get_mixins_ = 9 with self.assertRaises(ValueError): class Wrong(Enum): _find_new_ = 1 with self.assertRaises(ValueError): class Wrong(Enum): _any_name_ = 9 def test_bool(self): # plain Enum members are always True class Logic(Enum): true = True false = False self.assertTrue(Logic.true) self.assertTrue(Logic.false) # unless overridden class RealLogic(Enum): true = True false = False def __bool__(self): return bool(self._value_) self.assertTrue(RealLogic.true) self.assertFalse(RealLogic.false) # mixed Enums depend on mixed-in type class IntLogic(int, Enum): true = 1 false = 0 self.assertTrue(IntLogic.true) self.assertFalse(IntLogic.false) def test_contains(self): Season = self.Season self.assertIn(Season.AUTUMN, Season) with self.assertWarns(DeprecationWarning): self.assertNotIn(3, Season) with self.assertWarns(DeprecationWarning): self.assertNotIn('AUTUMN', Season) val = Season(3) self.assertIn(val, Season) class OtherEnum(Enum): one = 1; two = 2 self.assertNotIn(OtherEnum.two, Season) def test_member_contains(self): self.assertRaises(TypeError, lambda: 'test' in self.Season.AUTUMN) self.assertRaises(TypeError, lambda: 3 in self.Season.AUTUMN) self.assertRaises(TypeError, lambda: 'AUTUMN' in self.Season.AUTUMN) def test_comparisons(self): Season = self.Season with self.assertRaises(TypeError): Season.SPRING < Season.WINTER with self.assertRaises(TypeError): Season.SPRING > 4 self.assertNotEqual(Season.SPRING, 1) class Part(Enum): SPRING = 1 CLIP = 2 BARREL = 3 self.assertNotEqual(Season.SPRING, Part.SPRING) with self.assertRaises(TypeError): Season.SPRING < Part.CLIP def test_enum_duplicates(self): class Season(Enum): SPRING = 1 SUMMER = 2 AUTUMN = FALL = 3 WINTER = 4 ANOTHER_SPRING = 1 lst = list(Season) self.assertEqual( lst, [Season.SPRING, Season.SUMMER, Season.AUTUMN, Season.WINTER, ]) self.assertIs(Season.FALL, Season.AUTUMN) self.assertEqual(Season.FALL.value, 3) self.assertEqual(Season.AUTUMN.value, 3) self.assertIs(Season(3), Season.AUTUMN) self.assertIs(Season(1), Season.SPRING) self.assertEqual(Season.FALL.name, 'AUTUMN') self.assertEqual( [k for k,v in Season.__members__.items() if v.name != k], ['FALL', 'ANOTHER_SPRING'], ) def test_duplicate_name(self): with self.assertRaises(TypeError): class Color(Enum): red = 1 green = 2 blue = 3 red = 4 with self.assertRaises(TypeError): class Color(Enum): red = 1 green = 2 blue = 3 def red(self): return 'red' with self.assertRaises(TypeError): class Color(Enum): @property def red(self): return 'redder' red = 1 green = 2 blue = 3 def test_enum_with_value_name(self): class Huh(Enum): name = 1 value = 2 self.assertEqual( list(Huh), [Huh.name, Huh.value], ) self.assertIs(type(Huh.name), Huh) self.assertEqual(Huh.name.name, 'name') self.assertEqual(Huh.name.value, 1) def test_format_enum(self): Season = self.Season self.assertEqual('{}'.format(Season.SPRING), '{}'.format(str(Season.SPRING))) self.assertEqual( '{:}'.format(Season.SPRING), '{:}'.format(str(Season.SPRING))) self.assertEqual('{:20}'.format(Season.SPRING), '{:20}'.format(str(Season.SPRING))) self.assertEqual('{:^20}'.format(Season.SPRING), '{:^20}'.format(str(Season.SPRING))) self.assertEqual('{:>20}'.format(Season.SPRING), '{:>20}'.format(str(Season.SPRING))) self.assertEqual('{:<20}'.format(Season.SPRING), '{:<20}'.format(str(Season.SPRING))) def test_format_enum_custom(self): class TestFloat(float, Enum): one = 1.0 two = 2.0 def __format__(self, spec): return 'TestFloat success!' self.assertEqual('{}'.format(TestFloat.one), 'TestFloat success!') def assertFormatIsValue(self, spec, member): self.assertEqual(spec.format(member), spec.format(member.value)) def test_format_enum_date(self): Holiday = self.Holiday self.assertFormatIsValue('{}', Holiday.IDES_OF_MARCH) self.assertFormatIsValue('{:}', Holiday.IDES_OF_MARCH) self.assertFormatIsValue('{:20}', Holiday.IDES_OF_MARCH) self.assertFormatIsValue('{:^20}', Holiday.IDES_OF_MARCH) self.assertFormatIsValue('{:>20}', Holiday.IDES_OF_MARCH) self.assertFormatIsValue('{:<20}', Holiday.IDES_OF_MARCH) self.assertFormatIsValue('{:%Y %m}', Holiday.IDES_OF_MARCH) self.assertFormatIsValue('{:%Y %m %M:00}', Holiday.IDES_OF_MARCH) def test_format_enum_float(self): Konstants = self.Konstants self.assertFormatIsValue('{}', Konstants.TAU) self.assertFormatIsValue('{:}', Konstants.TAU) self.assertFormatIsValue('{:20}', Konstants.TAU) self.assertFormatIsValue('{:^20}', Konstants.TAU) self.assertFormatIsValue('{:>20}', Konstants.TAU) self.assertFormatIsValue('{:<20}', Konstants.TAU) self.assertFormatIsValue('{:n}', Konstants.TAU) self.assertFormatIsValue('{:5.2}', Konstants.TAU) self.assertFormatIsValue('{:f}', Konstants.TAU) def test_format_enum_int(self): Grades = self.Grades self.assertFormatIsValue('{}', Grades.C) self.assertFormatIsValue('{:}', Grades.C) self.assertFormatIsValue('{:20}', Grades.C) self.assertFormatIsValue('{:^20}', Grades.C) self.assertFormatIsValue('{:>20}', Grades.C) self.assertFormatIsValue('{:<20}', Grades.C) self.assertFormatIsValue('{:+}', Grades.C) self.assertFormatIsValue('{:08X}', Grades.C) self.assertFormatIsValue('{:b}', Grades.C) def test_format_enum_str(self): Directional = self.Directional self.assertFormatIsValue('{}', Directional.WEST) self.assertFormatIsValue('{:}', Directional.WEST) self.assertFormatIsValue('{:20}', Directional.WEST) self.assertFormatIsValue('{:^20}', Directional.WEST) self.assertFormatIsValue('{:>20}', Directional.WEST) self.assertFormatIsValue('{:<20}', Directional.WEST) def test_hash(self): Season = self.Season dates = {} dates[Season.WINTER] = '1225' dates[Season.SPRING] = '0315' dates[Season.SUMMER] = '0704' dates[Season.AUTUMN] = '1031' self.assertEqual(dates[Season.AUTUMN], '1031') def test_intenum_from_scratch(self): class phy(int, Enum): pi = 3 tau = 2 * pi self.assertTrue(phy.pi < phy.tau) def test_intenum_inherited(self): class IntEnum(int, Enum): pass class phy(IntEnum): pi = 3 tau = 2 * pi self.assertTrue(phy.pi < phy.tau) def test_floatenum_from_scratch(self): class phy(float, Enum): pi = 3.1415926 tau = 2 * pi self.assertTrue(phy.pi < phy.tau) def test_floatenum_inherited(self): class FloatEnum(float, Enum): pass class phy(FloatEnum): pi = 3.1415926 tau = 2 * pi self.assertTrue(phy.pi < phy.tau) def test_strenum_from_scratch(self): class phy(str, Enum): pi = 'Pi' tau = 'Tau' self.assertTrue(phy.pi < phy.tau) def test_strenum_inherited(self): class StrEnum(str, Enum): pass class phy(StrEnum): pi = 'Pi' tau = 'Tau' self.assertTrue(phy.pi < phy.tau) def test_intenum(self): class WeekDay(IntEnum): SUNDAY = 1 MONDAY = 2 TUESDAY = 3 WEDNESDAY = 4 THURSDAY = 5 FRIDAY = 6 SATURDAY = 7 self.assertEqual(['a', 'b', 'c'][WeekDay.MONDAY], 'c') self.assertEqual([i for i in range(WeekDay.TUESDAY)], [0, 1, 2]) lst = list(WeekDay) self.assertEqual(len(lst), len(WeekDay)) self.assertEqual(len(WeekDay), 7) target = 'SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY' target = target.split() for i, weekday in enumerate(target, 1): e = WeekDay(i) self.assertEqual(e, i) self.assertEqual(int(e), i) self.assertEqual(e.name, weekday) self.assertIn(e, WeekDay) self.assertEqual(lst.index(e)+1, i) self.assertTrue(0 < e < 8) self.assertIs(type(e), WeekDay) self.assertIsInstance(e, int) self.assertIsInstance(e, Enum) def test_intenum_duplicates(self): class WeekDay(IntEnum): SUNDAY = 1 MONDAY = 2 TUESDAY = TEUSDAY = 3 WEDNESDAY = 4 THURSDAY = 5 FRIDAY = 6 SATURDAY = 7 self.assertIs(WeekDay.TEUSDAY, WeekDay.TUESDAY) self.assertEqual(WeekDay(3).name, 'TUESDAY') self.assertEqual([k for k,v in WeekDay.__members__.items() if v.name != k], ['TEUSDAY', ]) def test_intenum_from_bytes(self): self.assertIs(IntStooges.from_bytes(b'\x00\x03', 'big'), IntStooges.MOE) with self.assertRaises(ValueError): IntStooges.from_bytes(b'\x00\x05', 'big') def test_floatenum_fromhex(self): h = float.hex(FloatStooges.MOE.value) self.assertIs(FloatStooges.fromhex(h), FloatStooges.MOE) h = float.hex(FloatStooges.MOE.value + 0.01) with self.assertRaises(ValueError): FloatStooges.fromhex(h) def test_pickle_enum(self): if isinstance(Stooges, Exception): raise Stooges test_pickle_dump_load(self.assertIs, Stooges.CURLY) test_pickle_dump_load(self.assertIs, Stooges) def test_pickle_int(self): if isinstance(IntStooges, Exception): raise IntStooges test_pickle_dump_load(self.assertIs, IntStooges.CURLY) test_pickle_dump_load(self.assertIs, IntStooges) def test_pickle_float(self): if isinstance(FloatStooges, Exception): raise FloatStooges test_pickle_dump_load(self.assertIs, FloatStooges.CURLY) test_pickle_dump_load(self.assertIs, FloatStooges) def test_pickle_enum_function(self): if isinstance(Answer, Exception): raise Answer test_pickle_dump_load(self.assertIs, Answer.him) test_pickle_dump_load(self.assertIs, Answer) def test_pickle_enum_function_with_module(self): if isinstance(Question, Exception): raise Question test_pickle_dump_load(self.assertIs, Question.who) test_pickle_dump_load(self.assertIs, Question) def test_enum_function_with_qualname(self): if isinstance(Theory, Exception): raise Theory self.assertEqual(Theory.__qualname__, 'spanish_inquisition') def test_class_nested_enum_and_pickle_protocol_four(self): # would normally just have this directly in the class namespace class NestedEnum(Enum): twigs = 'common' shiny = 'rare' self.__class__.NestedEnum = NestedEnum self.NestedEnum.__qualname__ = '%s.NestedEnum' % self.__class__.__name__ test_pickle_dump_load(self.assertIs, self.NestedEnum.twigs) def test_pickle_by_name(self): class ReplaceGlobalInt(IntEnum): ONE = 1 TWO = 2 ReplaceGlobalInt.__reduce_ex__ = enum._reduce_ex_by_name for proto in range(HIGHEST_PROTOCOL): self.assertEqual(ReplaceGlobalInt.TWO.__reduce_ex__(proto), 'TWO') def test_exploding_pickle(self): BadPickle = Enum( 'BadPickle', 'dill sweet bread-n-butter', module=__name__) globals()['BadPickle'] = BadPickle # now break BadPickle to test exception raising enum._make_class_unpicklable(BadPickle) test_pickle_exception(self.assertRaises, TypeError, BadPickle.dill) test_pickle_exception(self.assertRaises, PicklingError, BadPickle) def test_string_enum(self): class SkillLevel(str, Enum): master = 'what is the sound of one hand clapping?' journeyman = 'why did the chicken cross the road?' apprentice = 'knock, knock!' self.assertEqual(SkillLevel.apprentice, 'knock, knock!') def test_getattr_getitem(self): class Period(Enum): morning = 1 noon = 2 evening = 3 night = 4 self.assertIs(Period(2), Period.noon) self.assertIs(getattr(Period, 'night'), Period.night) self.assertIs(Period['morning'], Period.morning) def test_getattr_dunder(self): Season = self.Season self.assertTrue(getattr(Season, '__eq__')) def test_iteration_order(self): class Season(Enum): SUMMER = 2 WINTER = 4 AUTUMN = 3 SPRING = 1 self.assertEqual( list(Season), [Season.SUMMER, Season.WINTER, Season.AUTUMN, Season.SPRING], ) def test_reversed_iteration_order(self): self.assertEqual( list(reversed(self.Season)), [self.Season.WINTER, self.Season.AUTUMN, self.Season.SUMMER, self.Season.SPRING] ) def test_programmatic_function_string(self): SummerMonth = Enum('SummerMonth', 'june july august') lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 1): e = SummerMonth(i) self.assertEqual(int(e.value), i) self.assertNotEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_string_with_start(self): SummerMonth = Enum('SummerMonth', 'june july august', start=10) lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 10): e = SummerMonth(i) self.assertEqual(int(e.value), i) self.assertNotEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_string_list(self): SummerMonth = Enum('SummerMonth', ['june', 'july', 'august']) lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 1): e = SummerMonth(i) self.assertEqual(int(e.value), i) self.assertNotEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_string_list_with_start(self): SummerMonth = Enum('SummerMonth', ['june', 'july', 'august'], start=20) lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 20): e = SummerMonth(i) self.assertEqual(int(e.value), i) self.assertNotEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_iterable(self): SummerMonth = Enum( 'SummerMonth', (('june', 1), ('july', 2), ('august', 3)) ) lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 1): e = SummerMonth(i) self.assertEqual(int(e.value), i) self.assertNotEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_from_dict(self): SummerMonth = Enum( 'SummerMonth', OrderedDict((('june', 1), ('july', 2), ('august', 3))) ) lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 1): e = SummerMonth(i) self.assertEqual(int(e.value), i) self.assertNotEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_type(self): SummerMonth = Enum('SummerMonth', 'june july august', type=int) lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 1): e = SummerMonth(i) self.assertEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_type_with_start(self): SummerMonth = Enum('SummerMonth', 'june july august', type=int, start=30) lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 30): e = SummerMonth(i) self.assertEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_type_from_subclass(self): SummerMonth = IntEnum('SummerMonth', 'june july august') lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 1): e = SummerMonth(i) self.assertEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_programmatic_function_type_from_subclass_with_start(self): SummerMonth = IntEnum('SummerMonth', 'june july august', start=40) lst = list(SummerMonth) self.assertEqual(len(lst), len(SummerMonth)) self.assertEqual(len(SummerMonth), 3, SummerMonth) self.assertEqual( [SummerMonth.june, SummerMonth.july, SummerMonth.august], lst, ) for i, month in enumerate('june july august'.split(), 40): e = SummerMonth(i) self.assertEqual(e, i) self.assertEqual(e.name, month) self.assertIn(e, SummerMonth) self.assertIs(type(e), SummerMonth) def test_subclassing(self): if isinstance(Name, Exception): raise Name self.assertEqual(Name.BDFL, 'Guido van Rossum') self.assertTrue(Name.BDFL, Name('Guido van Rossum')) self.assertIs(Name.BDFL, getattr(Name, 'BDFL')) test_pickle_dump_load(self.assertIs, Name.BDFL) def test_extending(self): class Color(Enum): red = 1 green = 2 blue = 3 with self.assertRaises(TypeError): class MoreColor(Color): cyan = 4 magenta = 5 yellow = 6 def test_exclude_methods(self): class whatever(Enum): this = 'that' these = 'those' def really(self): return 'no, not %s' % self.value self.assertIsNot(type(whatever.really), whatever) self.assertEqual(whatever.this.really(), 'no, not that') def test_wrong_inheritance_order(self): with self.assertRaises(TypeError): class Wrong(Enum, str): NotHere = 'error before this point' def test_intenum_transitivity(self): class number(IntEnum): one = 1 two = 2 three = 3 class numero(IntEnum): uno = 1 dos = 2 tres = 3 self.assertEqual(number.one, numero.uno) self.assertEqual(number.two, numero.dos) self.assertEqual(number.three, numero.tres) def test_wrong_enum_in_call(self): class Monochrome(Enum): black = 0 white = 1 class Gender(Enum): male = 0 female = 1 self.assertRaises(ValueError, Monochrome, Gender.male) def test_wrong_enum_in_mixed_call(self): class Monochrome(IntEnum): black = 0 white = 1 class Gender(Enum): male = 0 female = 1 self.assertRaises(ValueError, Monochrome, Gender.male) def test_mixed_enum_in_call_1(self): class Monochrome(IntEnum): black = 0 white = 1 class Gender(IntEnum): male = 0 female = 1 self.assertIs(Monochrome(Gender.female), Monochrome.white) def test_mixed_enum_in_call_2(self): class Monochrome(Enum): black = 0 white = 1 class Gender(IntEnum): male = 0 female = 1 self.assertIs(Monochrome(Gender.male), Monochrome.black) def test_flufl_enum(self): class Fluflnum(Enum): def __int__(self): return int(self.value) class MailManOptions(Fluflnum): option1 = 1 option2 = 2 option3 = 3 self.assertEqual(int(MailManOptions.option1), 1) def test_introspection(self): class Number(IntEnum): one = 100 two = 200 self.assertIs(Number.one._member_type_, int) self.assertIs(Number._member_type_, int) class String(str, Enum): yarn = 'soft' rope = 'rough' wire = 'hard' self.assertIs(String.yarn._member_type_, str) self.assertIs(String._member_type_, str) class Plain(Enum): vanilla = 'white' one = 1 self.assertIs(Plain.vanilla._member_type_, object) self.assertIs(Plain._member_type_, object) def test_no_such_enum_member(self): class Color(Enum): red = 1 green = 2 blue = 3 with self.assertRaises(ValueError): Color(4) with self.assertRaises(KeyError): Color['chartreuse'] def test_new_repr(self): class Color(Enum): red = 1 green = 2 blue = 3 def __repr__(self): return "don't you just love shades of %s?" % self.name self.assertEqual( repr(Color.blue), "don't you just love shades of blue?", ) def test_inherited_repr(self): class MyEnum(Enum): def __repr__(self): return "My name is %s." % self.name class MyIntEnum(int, MyEnum): this = 1 that = 2 theother = 3 self.assertEqual(repr(MyIntEnum.that), "My name is that.") def test_multiple_mixin_mro(self): class auto_enum(type(Enum)): def __new__(metacls, cls, bases, classdict): temp = type(classdict)() names = set(classdict._member_names) i = 0 for k in classdict._member_names: v = classdict[k] if v is Ellipsis: v = i else: i = v i += 1 temp[k] = v for k, v in classdict.items(): if k not in names: temp[k] = v return super(auto_enum, metacls).__new__( metacls, cls, bases, temp) class AutoNumberedEnum(Enum, metaclass=auto_enum): pass class AutoIntEnum(IntEnum, metaclass=auto_enum): pass class TestAutoNumber(AutoNumberedEnum): a = ... b = 3 c = ... class TestAutoInt(AutoIntEnum): a = ... b = 3 c = ... def test_subclasses_with_getnewargs(self): class NamedInt(int): __qualname__ = 'NamedInt' # needed for pickle protocol 4 def __new__(cls, *args): _args = args name, *args = args if len(args) == 0: raise TypeError("name and value must be specified") self = int.__new__(cls, *args) self._intname = name self._args = _args return self def __getnewargs__(self): return self._args @property def __name__(self): return self._intname def __repr__(self): # repr() is updated to include the name and type info return "{}({!r}, {})".format(type(self).__name__, self.__name__, int.__repr__(self)) def __str__(self): # str() is unchanged, even if it relies on the repr() fallback base = int base_str = base.__str__ if base_str.__objclass__ is object: return base.__repr__(self) return base_str(self) # for simplicity, we only define one operator that # propagates expressions def __add__(self, other): temp = int(self) + int( other) if isinstance(self, NamedInt) and isinstance(other, NamedInt): return NamedInt( '({0} + {1})'.format(self.__name__, other.__name__), temp ) else: return temp class NEI(NamedInt, Enum): __qualname__ = 'NEI' # needed for pickle protocol 4 x = ('the-x', 1) y = ('the-y', 2) self.assertIs(NEI.__new__, Enum.__new__) self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)") globals()['NamedInt'] = NamedInt globals()['NEI'] = NEI NI5 = NamedInt('test', 5) self.assertEqual(NI5, 5) test_pickle_dump_load(self.assertEqual, NI5, 5) self.assertEqual(NEI.y.value, 2) test_pickle_dump_load(self.assertIs, NEI.y) test_pickle_dump_load(self.assertIs, NEI) def test_subclasses_with_getnewargs_ex(self): class NamedInt(int): __qualname__ = 'NamedInt' # needed for pickle protocol 4 def __new__(cls, *args): _args = args name, *args = args if len(args) == 0: raise TypeError("name and value must be specified") self = int.__new__(cls, *args) self._intname = name self._args = _args return self def __getnewargs_ex__(self): return self._args, {} @property def __name__(self): return self._intname def __repr__(self): # repr() is updated to include the name and type info return "{}({!r}, {})".format(type(self).__name__, self.__name__, int.__repr__(self)) def __str__(self): # str() is unchanged, even if it relies on the repr() fallback base = int base_str = base.__str__ if base_str.__objclass__ is object: return base.__repr__(self) return base_str(self) # for simplicity, we only define one operator that # propagates expressions def __add__(self, other): temp = int(self) + int( other) if isinstance(self, NamedInt) and isinstance(other, NamedInt): return NamedInt( '({0} + {1})'.format(self.__name__, other.__name__), temp ) else: return temp class NEI(NamedInt, Enum): __qualname__ = 'NEI' # needed for pickle protocol 4 x = ('the-x', 1) y = ('the-y', 2) self.assertIs(NEI.__new__, Enum.__new__) self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)") globals()['NamedInt'] = NamedInt globals()['NEI'] = NEI NI5 = NamedInt('test', 5) self.assertEqual(NI5, 5) test_pickle_dump_load(self.assertEqual, NI5, 5) self.assertEqual(NEI.y.value, 2) test_pickle_dump_load(self.assertIs, NEI.y) test_pickle_dump_load(self.assertIs, NEI) def test_subclasses_with_reduce(self): class NamedInt(int): __qualname__ = 'NamedInt' # needed for pickle protocol 4 def __new__(cls, *args): _args = args name, *args = args if len(args) == 0: raise TypeError("name and value must be specified") self = int.__new__(cls, *args) self._intname = name self._args = _args return self def __reduce__(self): return self.__class__, self._args @property def __name__(self): return self._intname def __repr__(self): # repr() is updated to include the name and type info return "{}({!r}, {})".format(type(self).__name__, self.__name__, int.__repr__(self)) def __str__(self): # str() is unchanged, even if it relies on the repr() fallback base = int base_str = base.__str__ if base_str.__objclass__ is object: return base.__repr__(self) return base_str(self) # for simplicity, we only define one operator that # propagates expressions def __add__(self, other): temp = int(self) + int( other) if isinstance(self, NamedInt) and isinstance(other, NamedInt): return NamedInt( '({0} + {1})'.format(self.__name__, other.__name__), temp ) else: return temp class NEI(NamedInt, Enum): __qualname__ = 'NEI' # needed for pickle protocol 4 x = ('the-x', 1) y = ('the-y', 2) self.assertIs(NEI.__new__, Enum.__new__) self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)") globals()['NamedInt'] = NamedInt globals()['NEI'] = NEI NI5 = NamedInt('test', 5) self.assertEqual(NI5, 5) test_pickle_dump_load(self.assertEqual, NI5, 5) self.assertEqual(NEI.y.value, 2) test_pickle_dump_load(self.assertIs, NEI.y) test_pickle_dump_load(self.assertIs, NEI) def test_subclasses_with_reduce_ex(self): class NamedInt(int): __qualname__ = 'NamedInt' # needed for pickle protocol 4 def __new__(cls, *args): _args = args name, *args = args if len(args) == 0: raise TypeError("name and value must be specified") self = int.__new__(cls, *args) self._intname = name self._args = _args return self def __reduce_ex__(self, proto): return self.__class__, self._args @property def __name__(self): return self._intname def __repr__(self): # repr() is updated to include the name and type info return "{}({!r}, {})".format(type(self).__name__, self.__name__, int.__repr__(self)) def __str__(self): # str() is unchanged, even if it relies on the repr() fallback base = int base_str = base.__str__ if base_str.__objclass__ is object: return base.__repr__(self) return base_str(self) # for simplicity, we only define one operator that # propagates expressions def __add__(self, other): temp = int(self) + int( other) if isinstance(self, NamedInt) and isinstance(other, NamedInt): return NamedInt( '({0} + {1})'.format(self.__name__, other.__name__), temp ) else: return temp class NEI(NamedInt, Enum): __qualname__ = 'NEI' # needed for pickle protocol 4 x = ('the-x', 1) y = ('the-y', 2) self.assertIs(NEI.__new__, Enum.__new__) self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)") globals()['NamedInt'] = NamedInt globals()['NEI'] = NEI NI5 = NamedInt('test', 5) self.assertEqual(NI5, 5) test_pickle_dump_load(self.assertEqual, NI5, 5) self.assertEqual(NEI.y.value, 2) test_pickle_dump_load(self.assertIs, NEI.y) test_pickle_dump_load(self.assertIs, NEI) def test_subclasses_without_direct_pickle_support(self): class NamedInt(int): __qualname__ = 'NamedInt' def __new__(cls, *args): _args = args name, *args = args if len(args) == 0: raise TypeError("name and value must be specified") self = int.__new__(cls, *args) self._intname = name self._args = _args return self @property def __name__(self): return self._intname def __repr__(self): # repr() is updated to include the name and type info return "{}({!r}, {})".format(type(self).__name__, self.__name__, int.__repr__(self)) def __str__(self): # str() is unchanged, even if it relies on the repr() fallback base = int base_str = base.__str__ if base_str.__objclass__ is object: return base.__repr__(self) return base_str(self) # for simplicity, we only define one operator that # propagates expressions def __add__(self, other): temp = int(self) + int( other) if isinstance(self, NamedInt) and isinstance(other, NamedInt): return NamedInt( '({0} + {1})'.format(self.__name__, other.__name__), temp ) else: return temp class NEI(NamedInt, Enum): __qualname__ = 'NEI' x = ('the-x', 1) y = ('the-y', 2) self.assertIs(NEI.__new__, Enum.__new__) self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)") globals()['NamedInt'] = NamedInt globals()['NEI'] = NEI NI5 = NamedInt('test', 5) self.assertEqual(NI5, 5) self.assertEqual(NEI.y.value, 2) test_pickle_exception(self.assertRaises, TypeError, NEI.x) test_pickle_exception(self.assertRaises, PicklingError, NEI) def test_subclasses_without_direct_pickle_support_using_name(self): class NamedInt(int): __qualname__ = 'NamedInt' def __new__(cls, *args): _args = args name, *args = args if len(args) == 0: raise TypeError("name and value must be specified") self = int.__new__(cls, *args) self._intname = name self._args = _args return self @property def __name__(self): return self._intname def __repr__(self): # repr() is updated to include the name and type info return "{}({!r}, {})".format(type(self).__name__, self.__name__, int.__repr__(self)) def __str__(self): # str() is unchanged, even if it relies on the repr() fallback base = int base_str = base.__str__ if base_str.__objclass__ is object: return base.__repr__(self) return base_str(self) # for simplicity, we only define one operator that # propagates expressions def __add__(self, other): temp = int(self) + int( other) if isinstance(self, NamedInt) and isinstance(other, NamedInt): return NamedInt( '({0} + {1})'.format(self.__name__, other.__name__), temp ) else: return temp class NEI(NamedInt, Enum): __qualname__ = 'NEI' x = ('the-x', 1) y = ('the-y', 2) def __reduce_ex__(self, proto): return getattr, (self.__class__, self._name_) self.assertIs(NEI.__new__, Enum.__new__) self.assertEqual(repr(NEI.x + NEI.y), "NamedInt('(the-x + the-y)', 3)") globals()['NamedInt'] = NamedInt globals()['NEI'] = NEI NI5 = NamedInt('test', 5) self.assertEqual(NI5, 5) self.assertEqual(NEI.y.value, 2) test_pickle_dump_load(self.assertIs, NEI.y) test_pickle_dump_load(self.assertIs, NEI) def test_tuple_subclass(self): class SomeTuple(tuple, Enum): __qualname__ = 'SomeTuple' # needed for pickle protocol 4 first = (1, 'for the money') second = (2, 'for the show') third = (3, 'for the music') self.assertIs(type(SomeTuple.first), SomeTuple) self.assertIsInstance(SomeTuple.second, tuple) self.assertEqual(SomeTuple.third, (3, 'for the music')) globals()['SomeTuple'] = SomeTuple test_pickle_dump_load(self.assertIs, SomeTuple.first) def test_duplicate_values_give_unique_enum_items(self): class AutoNumber(Enum): first = () second = () third = () def __new__(cls): value = len(cls.__members__) + 1 obj = object.__new__(cls) obj._value_ = value return obj def __int__(self): return int(self._value_) self.assertEqual( list(AutoNumber), [AutoNumber.first, AutoNumber.second, AutoNumber.third], ) self.assertEqual(int(AutoNumber.second), 2) self.assertEqual(AutoNumber.third.value, 3) self.assertIs(AutoNumber(1), AutoNumber.first) def test_inherited_new_from_enhanced_enum(self): class AutoNumber(Enum): def __new__(cls): value = len(cls.__members__) + 1 obj = object.__new__(cls) obj._value_ = value return obj def __int__(self): return int(self._value_) class Color(AutoNumber): red = () green = () blue = () self.assertEqual(list(Color), [Color.red, Color.green, Color.blue]) self.assertEqual(list(map(int, Color)), [1, 2, 3]) def test_inherited_new_from_mixed_enum(self): class AutoNumber(IntEnum): def __new__(cls): value = len(cls.__members__) + 1 obj = int.__new__(cls, value) obj._value_ = value return obj class Color(AutoNumber): red = () green = () blue = () self.assertEqual(list(Color), [Color.red, Color.green, Color.blue]) self.assertEqual(list(map(int, Color)), [1, 2, 3]) def test_equality(self): class AlwaysEqual: def __eq__(self, other): return True class OrdinaryEnum(Enum): a = 1 self.assertEqual(AlwaysEqual(), OrdinaryEnum.a) self.assertEqual(OrdinaryEnum.a, AlwaysEqual()) def test_ordered_mixin(self): class OrderedEnum(Enum): def __ge__(self, other): if self.__class__ is other.__class__: return self._value_ >= other._value_ return NotImplemented def __gt__(self, other): if self.__class__ is other.__class__: return self._value_ > other._value_ return NotImplemented def __le__(self, other): if self.__class__ is other.__class__: return self._value_ <= other._value_ return NotImplemented def __lt__(self, other): if self.__class__ is other.__class__: return self._value_ < other._value_ return NotImplemented class Grade(OrderedEnum): A = 5 B = 4 C = 3 D = 2 F = 1 self.assertGreater(Grade.A, Grade.B) self.assertLessEqual(Grade.F, Grade.C) self.assertLess(Grade.D, Grade.A) self.assertGreaterEqual(Grade.B, Grade.B) self.assertEqual(Grade.B, Grade.B) self.assertNotEqual(Grade.C, Grade.D) def test_extending2(self): class Shade(Enum): def shade(self): print(self.name) class Color(Shade): red = 1 green = 2 blue = 3 with self.assertRaises(TypeError): class MoreColor(Color): cyan = 4 magenta = 5 yellow = 6 def test_extending3(self): class Shade(Enum): def shade(self): return self.name class Color(Shade): def hex(self): return '%s hexlified!' % self.value class MoreColor(Color): cyan = 4 magenta = 5 yellow = 6 self.assertEqual(MoreColor.magenta.hex(), '5 hexlified!') def test_subclass_duplicate_name(self): class Base(Enum): def test(self): pass class Test(Base): test = 1 self.assertIs(type(Test.test), Test) def test_subclass_duplicate_name_dynamic(self): from types import DynamicClassAttribute class Base(Enum): @DynamicClassAttribute def test(self): return 'dynamic' class Test(Base): test = 1 self.assertEqual(Test.test.test, 'dynamic') def test_no_duplicates(self): class UniqueEnum(Enum): def __init__(self, *args): cls = self.__class__ if any(self.value == e.value for e in cls): a = self.name e = cls(self.value).name raise ValueError( "aliases not allowed in UniqueEnum: %r --> %r" % (a, e) ) class Color(UniqueEnum): red = 1 green = 2 blue = 3 with self.assertRaises(ValueError): class Color(UniqueEnum): red = 1 green = 2 blue = 3 grene = 2 def test_init(self): class Planet(Enum): MERCURY = (3.303e+23, 2.4397e6) VENUS = (4.869e+24, 6.0518e6) EARTH = (5.976e+24, 6.37814e6) MARS = (6.421e+23, 3.3972e6) JUPITER = (1.9e+27, 7.1492e7) SATURN = (5.688e+26, 6.0268e7) URANUS = (8.686e+25, 2.5559e7) NEPTUNE = (1.024e+26, 2.4746e7) def __init__(self, mass, radius): self.mass = mass # in kilograms self.radius = radius # in meters @property def surface_gravity(self): # universal gravitational constant (m3 kg-1 s-2) G = 6.67300E-11 return G * self.mass / (self.radius * self.radius) self.assertEqual(round(Planet.EARTH.surface_gravity, 2), 9.80) self.assertEqual(Planet.EARTH.value, (5.976e+24, 6.37814e6)) def test_ignore(self): class Period(timedelta, Enum): ''' different lengths of time ''' def __new__(cls, value, period): obj = timedelta.__new__(cls, value) obj._value_ = value obj.period = period return obj _ignore_ = 'Period i' Period = vars() for i in range(13): Period['month_%d' % i] = i*30, 'month' for i in range(53): Period['week_%d' % i] = i*7, 'week' for i in range(32): Period['day_%d' % i] = i, 'day' OneDay = day_1 OneWeek = week_1 OneMonth = month_1 self.assertFalse(hasattr(Period, '_ignore_')) self.assertFalse(hasattr(Period, 'Period')) self.assertFalse(hasattr(Period, 'i')) self.assertTrue(isinstance(Period.day_1, timedelta)) self.assertTrue(Period.month_1 is Period.day_30) self.assertTrue(Period.week_4 is Period.day_28) def test_nonhash_value(self): class AutoNumberInAList(Enum): def __new__(cls): value = [len(cls.__members__) + 1] obj = object.__new__(cls) obj._value_ = value return obj class ColorInAList(AutoNumberInAList): red = () green = () blue = () self.assertEqual(list(ColorInAList), [ColorInAList.red, ColorInAList.green, ColorInAList.blue]) for enum, value in zip(ColorInAList, range(3)): value += 1 self.assertEqual(enum.value, [value]) self.assertIs(ColorInAList([value]), enum) def test_conflicting_types_resolved_in_new(self): class LabelledIntEnum(int, Enum): def __new__(cls, *args): value, label = args obj = int.__new__(cls, value) obj.label = label obj._value_ = value return obj class LabelledList(LabelledIntEnum): unprocessed = (1, "Unprocessed") payment_complete = (2, "Payment Complete") self.assertEqual(list(LabelledList), [LabelledList.unprocessed, LabelledList.payment_complete]) self.assertEqual(LabelledList.unprocessed, 1) self.assertEqual(LabelledList(1), LabelledList.unprocessed) def test_auto_number(self): class Color(Enum): red = auto() blue = auto() green = auto() self.assertEqual(list(Color), [Color.red, Color.blue, Color.green]) self.assertEqual(Color.red.value, 1) self.assertEqual(Color.blue.value, 2) self.assertEqual(Color.green.value, 3) def test_auto_name(self): class Color(Enum): def _generate_next_value_(name, start, count, last): return name red = auto() blue = auto() green = auto() self.assertEqual(list(Color), [Color.red, Color.blue, Color.green]) self.assertEqual(Color.red.value, 'red') self.assertEqual(Color.blue.value, 'blue') self.assertEqual(Color.green.value, 'green') def test_auto_name_inherit(self): class AutoNameEnum(Enum): def _generate_next_value_(name, start, count, last): return name class Color(AutoNameEnum): red = auto() blue = auto() green = auto() self.assertEqual(list(Color), [Color.red, Color.blue, Color.green]) self.assertEqual(Color.red.value, 'red') self.assertEqual(Color.blue.value, 'blue') self.assertEqual(Color.green.value, 'green') def test_auto_garbage(self): class Color(Enum): red = 'red' blue = auto() self.assertEqual(Color.blue.value, 1) def test_auto_garbage_corrected(self): class Color(Enum): red = 'red' blue = 2 green = auto() self.assertEqual(list(Color), [Color.red, Color.blue, Color.green]) self.assertEqual(Color.red.value, 'red') self.assertEqual(Color.blue.value, 2) self.assertEqual(Color.green.value, 3) def test_duplicate_auto(self): class Dupes(Enum): first = primero = auto() second = auto() third = auto() self.assertEqual([Dupes.first, Dupes.second, Dupes.third], list(Dupes)) def test_missing(self): class Color(Enum): red = 1 green = 2 blue = 3 @classmethod def _missing_(cls, item): if item == 'three': return cls.blue elif item == 'bad return': # trigger internal error return 5 elif item == 'error out': raise ZeroDivisionError else: # trigger not found return None self.assertIs(Color('three'), Color.blue) self.assertRaises(ValueError, Color, 7) try: Color('bad return') except TypeError as exc: self.assertTrue(isinstance(exc.__context__, ValueError)) else: raise Exception('Exception not raised.') try: Color('error out') except ZeroDivisionError as exc: self.assertTrue(isinstance(exc.__context__, ValueError)) else: raise Exception('Exception not raised.') def test_multiple_mixin(self): class MaxMixin: @classproperty def MAX(cls): max = len(cls) cls.MAX = max return max class StrMixin: def __str__(self): return self._name_.lower() class SomeEnum(Enum): def behavior(self): return 'booyah' class AnotherEnum(Enum): def behavior(self): return 'nuhuh!' def social(self): return "what's up?" class Color(MaxMixin, Enum): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 3) self.assertEqual(Color.MAX, 3) self.assertEqual(str(Color.BLUE), 'Color.BLUE') class Color(MaxMixin, StrMixin, Enum): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 3) self.assertEqual(Color.MAX, 3) self.assertEqual(str(Color.BLUE), 'blue') class Color(StrMixin, MaxMixin, Enum): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 3) self.assertEqual(Color.MAX, 3) self.assertEqual(str(Color.BLUE), 'blue') class CoolColor(StrMixin, SomeEnum, Enum): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(CoolColor.RED.value, 1) self.assertEqual(CoolColor.GREEN.value, 2) self.assertEqual(CoolColor.BLUE.value, 3) self.assertEqual(str(CoolColor.BLUE), 'blue') self.assertEqual(CoolColor.RED.behavior(), 'booyah') class CoolerColor(StrMixin, AnotherEnum, Enum): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(CoolerColor.RED.value, 1) self.assertEqual(CoolerColor.GREEN.value, 2) self.assertEqual(CoolerColor.BLUE.value, 3) self.assertEqual(str(CoolerColor.BLUE), 'blue') self.assertEqual(CoolerColor.RED.behavior(), 'nuhuh!') self.assertEqual(CoolerColor.RED.social(), "what's up?") class CoolestColor(StrMixin, SomeEnum, AnotherEnum): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(CoolestColor.RED.value, 1) self.assertEqual(CoolestColor.GREEN.value, 2) self.assertEqual(CoolestColor.BLUE.value, 3) self.assertEqual(str(CoolestColor.BLUE), 'blue') self.assertEqual(CoolestColor.RED.behavior(), 'booyah') self.assertEqual(CoolestColor.RED.social(), "what's up?") class ConfusedColor(StrMixin, AnotherEnum, SomeEnum): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(ConfusedColor.RED.value, 1) self.assertEqual(ConfusedColor.GREEN.value, 2) self.assertEqual(ConfusedColor.BLUE.value, 3) self.assertEqual(str(ConfusedColor.BLUE), 'blue') self.assertEqual(ConfusedColor.RED.behavior(), 'nuhuh!') self.assertEqual(ConfusedColor.RED.social(), "what's up?") class ReformedColor(StrMixin, IntEnum, SomeEnum, AnotherEnum): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(ReformedColor.RED.value, 1) self.assertEqual(ReformedColor.GREEN.value, 2) self.assertEqual(ReformedColor.BLUE.value, 3) self.assertEqual(str(ReformedColor.BLUE), 'blue') self.assertEqual(ReformedColor.RED.behavior(), 'booyah') self.assertEqual(ConfusedColor.RED.social(), "what's up?") self.assertTrue(issubclass(ReformedColor, int)) def test_multiple_inherited_mixin(self): class StrEnum(str, Enum): def __new__(cls, *args, **kwargs): for a in args: if not isinstance(a, str): raise TypeError("Enumeration '%s' (%s) is not" " a string" % (a, type(a).__name__)) return str.__new__(cls, *args, **kwargs) @unique class Decision1(StrEnum): REVERT = "REVERT" REVERT_ALL = "REVERT_ALL" RETRY = "RETRY" class MyEnum(StrEnum): pass @unique class Decision2(MyEnum): REVERT = "REVERT" REVERT_ALL = "REVERT_ALL" RETRY = "RETRY" class TestOrder(unittest.TestCase): def test_same_members(self): class Color(Enum): _order_ = 'red green blue' red = 1 green = 2 blue = 3 def test_same_members_with_aliases(self): class Color(Enum): _order_ = 'red green blue' red = 1 green = 2 blue = 3 verde = green def test_same_members_wrong_order(self): with self.assertRaisesRegex(TypeError, 'member order does not match _order_'): class Color(Enum): _order_ = 'red green blue' red = 1 blue = 3 green = 2 def test_order_has_extra_members(self): with self.assertRaisesRegex(TypeError, 'member order does not match _order_'): class Color(Enum): _order_ = 'red green blue purple' red = 1 green = 2 blue = 3 def test_order_has_extra_members_with_aliases(self): with self.assertRaisesRegex(TypeError, 'member order does not match _order_'): class Color(Enum): _order_ = 'red green blue purple' red = 1 green = 2 blue = 3 verde = green def test_enum_has_extra_members(self): with self.assertRaisesRegex(TypeError, 'member order does not match _order_'): class Color(Enum): _order_ = 'red green blue' red = 1 green = 2 blue = 3 purple = 4 def test_enum_has_extra_members_with_aliases(self): with self.assertRaisesRegex(TypeError, 'member order does not match _order_'): class Color(Enum): _order_ = 'red green blue' red = 1 green = 2 blue = 3 purple = 4 verde = green class TestFlag(unittest.TestCase): """Tests of the Flags.""" class Perm(Flag): R, W, X = 4, 2, 1 class Color(Flag): BLACK = 0 RED = 1 GREEN = 2 BLUE = 4 PURPLE = RED|BLUE class Open(Flag): RO = 0 WO = 1 RW = 2 AC = 3 CE = 1<<19 def test_str(self): Perm = self.Perm self.assertEqual(str(Perm.R), 'Perm.R') self.assertEqual(str(Perm.W), 'Perm.W') self.assertEqual(str(Perm.X), 'Perm.X') self.assertEqual(str(Perm.R | Perm.W), 'Perm.R|W') self.assertEqual(str(Perm.R | Perm.W | Perm.X), 'Perm.R|W|X') self.assertEqual(str(Perm(0)), 'Perm.0') self.assertEqual(str(~Perm.R), 'Perm.W|X') self.assertEqual(str(~Perm.W), 'Perm.R|X') self.assertEqual(str(~Perm.X), 'Perm.R|W') self.assertEqual(str(~(Perm.R | Perm.W)), 'Perm.X') self.assertEqual(str(~(Perm.R | Perm.W | Perm.X)), 'Perm.0') self.assertEqual(str(Perm(~0)), 'Perm.R|W|X') Open = self.Open self.assertEqual(str(Open.RO), 'Open.RO') self.assertEqual(str(Open.WO), 'Open.WO') self.assertEqual(str(Open.AC), 'Open.AC') self.assertEqual(str(Open.RO | Open.CE), 'Open.CE') self.assertEqual(str(Open.WO | Open.CE), 'Open.CE|WO') self.assertEqual(str(~Open.RO), 'Open.CE|AC|RW|WO') self.assertEqual(str(~Open.WO), 'Open.CE|RW') self.assertEqual(str(~Open.AC), 'Open.CE') self.assertEqual(str(~(Open.RO | Open.CE)), 'Open.AC') self.assertEqual(str(~(Open.WO | Open.CE)), 'Open.RW') def test_repr(self): Perm = self.Perm self.assertEqual(repr(Perm.R), '<Perm.R: 4>') self.assertEqual(repr(Perm.W), '<Perm.W: 2>') self.assertEqual(repr(Perm.X), '<Perm.X: 1>') self.assertEqual(repr(Perm.R | Perm.W), '<Perm.R|W: 6>') self.assertEqual(repr(Perm.R | Perm.W | Perm.X), '<Perm.R|W|X: 7>') self.assertEqual(repr(Perm(0)), '<Perm.0: 0>') self.assertEqual(repr(~Perm.R), '<Perm.W|X: 3>') self.assertEqual(repr(~Perm.W), '<Perm.R|X: 5>') self.assertEqual(repr(~Perm.X), '<Perm.R|W: 6>') self.assertEqual(repr(~(Perm.R | Perm.W)), '<Perm.X: 1>') self.assertEqual(repr(~(Perm.R | Perm.W | Perm.X)), '<Perm.0: 0>') self.assertEqual(repr(Perm(~0)), '<Perm.R|W|X: 7>') Open = self.Open self.assertEqual(repr(Open.RO), '<Open.RO: 0>') self.assertEqual(repr(Open.WO), '<Open.WO: 1>') self.assertEqual(repr(Open.AC), '<Open.AC: 3>') self.assertEqual(repr(Open.RO | Open.CE), '<Open.CE: 524288>') self.assertEqual(repr(Open.WO | Open.CE), '<Open.CE|WO: 524289>') self.assertEqual(repr(~Open.RO), '<Open.CE|AC|RW|WO: 524291>') self.assertEqual(repr(~Open.WO), '<Open.CE|RW: 524290>') self.assertEqual(repr(~Open.AC), '<Open.CE: 524288>') self.assertEqual(repr(~(Open.RO | Open.CE)), '<Open.AC: 3>') self.assertEqual(repr(~(Open.WO | Open.CE)), '<Open.RW: 2>') def test_or(self): Perm = self.Perm for i in Perm: for j in Perm: self.assertEqual((i | j), Perm(i.value | j.value)) self.assertEqual((i | j).value, i.value | j.value) self.assertIs(type(i | j), Perm) for i in Perm: self.assertIs(i | i, i) Open = self.Open self.assertIs(Open.RO | Open.CE, Open.CE) def test_and(self): Perm = self.Perm RW = Perm.R | Perm.W RX = Perm.R | Perm.X WX = Perm.W | Perm.X RWX = Perm.R | Perm.W | Perm.X values = list(Perm) + [RW, RX, WX, RWX, Perm(0)] for i in values: for j in values: self.assertEqual((i & j).value, i.value & j.value) self.assertIs(type(i & j), Perm) for i in Perm: self.assertIs(i & i, i) self.assertIs(i & RWX, i) self.assertIs(RWX & i, i) Open = self.Open self.assertIs(Open.RO & Open.CE, Open.RO) def test_xor(self): Perm = self.Perm for i in Perm: for j in Perm: self.assertEqual((i ^ j).value, i.value ^ j.value) self.assertIs(type(i ^ j), Perm) for i in Perm: self.assertIs(i ^ Perm(0), i) self.assertIs(Perm(0) ^ i, i) Open = self.Open self.assertIs(Open.RO ^ Open.CE, Open.CE) self.assertIs(Open.CE ^ Open.CE, Open.RO) def test_invert(self): Perm = self.Perm RW = Perm.R | Perm.W RX = Perm.R | Perm.X WX = Perm.W | Perm.X RWX = Perm.R | Perm.W | Perm.X values = list(Perm) + [RW, RX, WX, RWX, Perm(0)] for i in values: self.assertIs(type(~i), Perm) self.assertEqual(~~i, i) for i in Perm: self.assertIs(~~i, i) Open = self.Open self.assertIs(Open.WO & ~Open.WO, Open.RO) self.assertIs((Open.WO|Open.CE) & ~Open.WO, Open.CE) def test_bool(self): Perm = self.Perm for f in Perm: self.assertTrue(f) Open = self.Open for f in Open: self.assertEqual(bool(f.value), bool(f)) def test_programatic_function_string(self): Perm = Flag('Perm', 'R W X') lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 1<<i e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_string_with_start(self): Perm = Flag('Perm', 'R W X', start=8) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 8<<i e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_string_list(self): Perm = Flag('Perm', ['R', 'W', 'X']) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 1<<i e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_iterable(self): Perm = Flag('Perm', (('R', 2), ('W', 8), ('X', 32))) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 1<<(2*i+1) e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_from_dict(self): Perm = Flag('Perm', OrderedDict((('R', 2), ('W', 8), ('X', 32)))) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 1<<(2*i+1) e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_pickle(self): if isinstance(FlagStooges, Exception): raise FlagStooges test_pickle_dump_load(self.assertIs, FlagStooges.CURLY|FlagStooges.MOE) test_pickle_dump_load(self.assertIs, FlagStooges) def test_contains(self): Open = self.Open Color = self.Color self.assertFalse(Color.BLACK in Open) self.assertFalse(Open.RO in Color) with self.assertWarns(DeprecationWarning): self.assertFalse('BLACK' in Color) with self.assertWarns(DeprecationWarning): self.assertFalse('RO' in Open) with self.assertWarns(DeprecationWarning): self.assertFalse(1 in Color) with self.assertWarns(DeprecationWarning): self.assertFalse(1 in Open) def test_member_contains(self): Perm = self.Perm R, W, X = Perm RW = R | W RX = R | X WX = W | X RWX = R | W | X self.assertTrue(R in RW) self.assertTrue(R in RX) self.assertTrue(R in RWX) self.assertTrue(W in RW) self.assertTrue(W in WX) self.assertTrue(W in RWX) self.assertTrue(X in RX) self.assertTrue(X in WX) self.assertTrue(X in RWX) self.assertFalse(R in WX) self.assertFalse(W in RX) self.assertFalse(X in RW) def test_auto_number(self): class Color(Flag): red = auto() blue = auto() green = auto() self.assertEqual(list(Color), [Color.red, Color.blue, Color.green]) self.assertEqual(Color.red.value, 1) self.assertEqual(Color.blue.value, 2) self.assertEqual(Color.green.value, 4) def test_auto_number_garbage(self): with self.assertRaisesRegex(TypeError, 'Invalid Flag value: .not an int.'): class Color(Flag): red = 'not an int' blue = auto() def test_cascading_failure(self): class Bizarre(Flag): c = 3 d = 4 f = 6 # Bizarre.c | Bizarre.d self.assertRaisesRegex(ValueError, "5 is not a valid Bizarre", Bizarre, 5) self.assertRaisesRegex(ValueError, "5 is not a valid Bizarre", Bizarre, 5) self.assertRaisesRegex(ValueError, "2 is not a valid Bizarre", Bizarre, 2) self.assertRaisesRegex(ValueError, "2 is not a valid Bizarre", Bizarre, 2) self.assertRaisesRegex(ValueError, "1 is not a valid Bizarre", Bizarre, 1) self.assertRaisesRegex(ValueError, "1 is not a valid Bizarre", Bizarre, 1) def test_duplicate_auto(self): class Dupes(Enum): first = primero = auto() second = auto() third = auto() self.assertEqual([Dupes.first, Dupes.second, Dupes.third], list(Dupes)) def test_bizarre(self): class Bizarre(Flag): b = 3 c = 4 d = 6 self.assertEqual(repr(Bizarre(7)), '<Bizarre.d|c|b: 7>') def test_multiple_mixin(self): class AllMixin: @classproperty def ALL(cls): members = list(cls) all_value = None if members: all_value = members[0] for member in members[1:]: all_value |= member cls.ALL = all_value return all_value class StrMixin: def __str__(self): return self._name_.lower() class Color(AllMixin, Flag): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 4) self.assertEqual(Color.ALL.value, 7) self.assertEqual(str(Color.BLUE), 'Color.BLUE') class Color(AllMixin, StrMixin, Flag): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 4) self.assertEqual(Color.ALL.value, 7) self.assertEqual(str(Color.BLUE), 'blue') class Color(StrMixin, AllMixin, Flag): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 4) self.assertEqual(Color.ALL.value, 7) self.assertEqual(str(Color.BLUE), 'blue') @support.reap_threads def test_unique_composite(self): # override __eq__ to be identity only class TestFlag(Flag): one = auto() two = auto() three = auto() four = auto() five = auto() six = auto() seven = auto() eight = auto() def __eq__(self, other): return self is other def __hash__(self): return hash(self._value_) # have multiple threads competing to complete the composite members seen = set() failed = False def cycle_enum(): nonlocal failed try: for i in range(256): seen.add(TestFlag(i)) except Exception: failed = True threads = [ threading.Thread(target=cycle_enum) for _ in range(8) ] with support.start_threads(threads): pass # check that only 248 members were created self.assertFalse( failed, 'at least one thread failed while creating composite members') self.assertEqual(256, len(seen), 'too many composite members created') class TestIntFlag(unittest.TestCase): """Tests of the IntFlags.""" class Perm(IntFlag): X = 1 << 0 W = 1 << 1 R = 1 << 2 class Color(IntFlag): BLACK = 0 RED = 1 GREEN = 2 BLUE = 4 PURPLE = RED|BLUE class Open(IntFlag): RO = 0 WO = 1 RW = 2 AC = 3 CE = 1<<19 def test_type(self): Perm = self.Perm Open = self.Open for f in Perm: self.assertTrue(isinstance(f, Perm)) self.assertEqual(f, f.value) self.assertTrue(isinstance(Perm.W | Perm.X, Perm)) self.assertEqual(Perm.W | Perm.X, 3) for f in Open: self.assertTrue(isinstance(f, Open)) self.assertEqual(f, f.value) self.assertTrue(isinstance(Open.WO | Open.RW, Open)) self.assertEqual(Open.WO | Open.RW, 3) def test_str(self): Perm = self.Perm self.assertEqual(str(Perm.R), 'Perm.R') self.assertEqual(str(Perm.W), 'Perm.W') self.assertEqual(str(Perm.X), 'Perm.X') self.assertEqual(str(Perm.R | Perm.W), 'Perm.R|W') self.assertEqual(str(Perm.R | Perm.W | Perm.X), 'Perm.R|W|X') self.assertEqual(str(Perm.R | 8), 'Perm.8|R') self.assertEqual(str(Perm(0)), 'Perm.0') self.assertEqual(str(Perm(8)), 'Perm.8') self.assertEqual(str(~Perm.R), 'Perm.W|X') self.assertEqual(str(~Perm.W), 'Perm.R|X') self.assertEqual(str(~Perm.X), 'Perm.R|W') self.assertEqual(str(~(Perm.R | Perm.W)), 'Perm.X') self.assertEqual(str(~(Perm.R | Perm.W | Perm.X)), 'Perm.-8') self.assertEqual(str(~(Perm.R | 8)), 'Perm.W|X') self.assertEqual(str(Perm(~0)), 'Perm.R|W|X') self.assertEqual(str(Perm(~8)), 'Perm.R|W|X') Open = self.Open self.assertEqual(str(Open.RO), 'Open.RO') self.assertEqual(str(Open.WO), 'Open.WO') self.assertEqual(str(Open.AC), 'Open.AC') self.assertEqual(str(Open.RO | Open.CE), 'Open.CE') self.assertEqual(str(Open.WO | Open.CE), 'Open.CE|WO') self.assertEqual(str(Open(4)), 'Open.4') self.assertEqual(str(~Open.RO), 'Open.CE|AC|RW|WO') self.assertEqual(str(~Open.WO), 'Open.CE|RW') self.assertEqual(str(~Open.AC), 'Open.CE') self.assertEqual(str(~(Open.RO | Open.CE)), 'Open.AC|RW|WO') self.assertEqual(str(~(Open.WO | Open.CE)), 'Open.RW') self.assertEqual(str(Open(~4)), 'Open.CE|AC|RW|WO') def test_repr(self): Perm = self.Perm self.assertEqual(repr(Perm.R), '<Perm.R: 4>') self.assertEqual(repr(Perm.W), '<Perm.W: 2>') self.assertEqual(repr(Perm.X), '<Perm.X: 1>') self.assertEqual(repr(Perm.R | Perm.W), '<Perm.R|W: 6>') self.assertEqual(repr(Perm.R | Perm.W | Perm.X), '<Perm.R|W|X: 7>') self.assertEqual(repr(Perm.R | 8), '<Perm.8|R: 12>') self.assertEqual(repr(Perm(0)), '<Perm.0: 0>') self.assertEqual(repr(Perm(8)), '<Perm.8: 8>') self.assertEqual(repr(~Perm.R), '<Perm.W|X: -5>') self.assertEqual(repr(~Perm.W), '<Perm.R|X: -3>') self.assertEqual(repr(~Perm.X), '<Perm.R|W: -2>') self.assertEqual(repr(~(Perm.R | Perm.W)), '<Perm.X: -7>') self.assertEqual(repr(~(Perm.R | Perm.W | Perm.X)), '<Perm.-8: -8>') self.assertEqual(repr(~(Perm.R | 8)), '<Perm.W|X: -13>') self.assertEqual(repr(Perm(~0)), '<Perm.R|W|X: -1>') self.assertEqual(repr(Perm(~8)), '<Perm.R|W|X: -9>') Open = self.Open self.assertEqual(repr(Open.RO), '<Open.RO: 0>') self.assertEqual(repr(Open.WO), '<Open.WO: 1>') self.assertEqual(repr(Open.AC), '<Open.AC: 3>') self.assertEqual(repr(Open.RO | Open.CE), '<Open.CE: 524288>') self.assertEqual(repr(Open.WO | Open.CE), '<Open.CE|WO: 524289>') self.assertEqual(repr(Open(4)), '<Open.4: 4>') self.assertEqual(repr(~Open.RO), '<Open.CE|AC|RW|WO: -1>') self.assertEqual(repr(~Open.WO), '<Open.CE|RW: -2>') self.assertEqual(repr(~Open.AC), '<Open.CE: -4>') self.assertEqual(repr(~(Open.RO | Open.CE)), '<Open.AC|RW|WO: -524289>') self.assertEqual(repr(~(Open.WO | Open.CE)), '<Open.RW: -524290>') self.assertEqual(repr(Open(~4)), '<Open.CE|AC|RW|WO: -5>') def test_or(self): Perm = self.Perm for i in Perm: for j in Perm: self.assertEqual(i | j, i.value | j.value) self.assertEqual((i | j).value, i.value | j.value) self.assertIs(type(i | j), Perm) for j in range(8): self.assertEqual(i | j, i.value | j) self.assertEqual((i | j).value, i.value | j) self.assertIs(type(i | j), Perm) self.assertEqual(j | i, j | i.value) self.assertEqual((j | i).value, j | i.value) self.assertIs(type(j | i), Perm) for i in Perm: self.assertIs(i | i, i) self.assertIs(i | 0, i) self.assertIs(0 | i, i) Open = self.Open self.assertIs(Open.RO | Open.CE, Open.CE) def test_and(self): Perm = self.Perm RW = Perm.R | Perm.W RX = Perm.R | Perm.X WX = Perm.W | Perm.X RWX = Perm.R | Perm.W | Perm.X values = list(Perm) + [RW, RX, WX, RWX, Perm(0)] for i in values: for j in values: self.assertEqual(i & j, i.value & j.value, 'i is %r, j is %r' % (i, j)) self.assertEqual((i & j).value, i.value & j.value, 'i is %r, j is %r' % (i, j)) self.assertIs(type(i & j), Perm, 'i is %r, j is %r' % (i, j)) for j in range(8): self.assertEqual(i & j, i.value & j) self.assertEqual((i & j).value, i.value & j) self.assertIs(type(i & j), Perm) self.assertEqual(j & i, j & i.value) self.assertEqual((j & i).value, j & i.value) self.assertIs(type(j & i), Perm) for i in Perm: self.assertIs(i & i, i) self.assertIs(i & 7, i) self.assertIs(7 & i, i) Open = self.Open self.assertIs(Open.RO & Open.CE, Open.RO) def test_xor(self): Perm = self.Perm for i in Perm: for j in Perm: self.assertEqual(i ^ j, i.value ^ j.value) self.assertEqual((i ^ j).value, i.value ^ j.value) self.assertIs(type(i ^ j), Perm) for j in range(8): self.assertEqual(i ^ j, i.value ^ j) self.assertEqual((i ^ j).value, i.value ^ j) self.assertIs(type(i ^ j), Perm) self.assertEqual(j ^ i, j ^ i.value) self.assertEqual((j ^ i).value, j ^ i.value) self.assertIs(type(j ^ i), Perm) for i in Perm: self.assertIs(i ^ 0, i) self.assertIs(0 ^ i, i) Open = self.Open self.assertIs(Open.RO ^ Open.CE, Open.CE) self.assertIs(Open.CE ^ Open.CE, Open.RO) def test_invert(self): Perm = self.Perm RW = Perm.R | Perm.W RX = Perm.R | Perm.X WX = Perm.W | Perm.X RWX = Perm.R | Perm.W | Perm.X values = list(Perm) + [RW, RX, WX, RWX, Perm(0)] for i in values: self.assertEqual(~i, ~i.value) self.assertEqual((~i).value, ~i.value) self.assertIs(type(~i), Perm) self.assertEqual(~~i, i) for i in Perm: self.assertIs(~~i, i) Open = self.Open self.assertIs(Open.WO & ~Open.WO, Open.RO) self.assertIs((Open.WO|Open.CE) & ~Open.WO, Open.CE) def test_programatic_function_string(self): Perm = IntFlag('Perm', 'R W X') lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 1<<i e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e, v) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_string_with_start(self): Perm = IntFlag('Perm', 'R W X', start=8) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 8<<i e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e, v) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_string_list(self): Perm = IntFlag('Perm', ['R', 'W', 'X']) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 1<<i e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e, v) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_iterable(self): Perm = IntFlag('Perm', (('R', 2), ('W', 8), ('X', 32))) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 1<<(2*i+1) e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e, v) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_from_dict(self): Perm = IntFlag('Perm', OrderedDict((('R', 2), ('W', 8), ('X', 32)))) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 3, Perm) self.assertEqual(lst, [Perm.R, Perm.W, Perm.X]) for i, n in enumerate('R W X'.split()): v = 1<<(2*i+1) e = Perm(v) self.assertEqual(e.value, v) self.assertEqual(type(e.value), int) self.assertEqual(e, v) self.assertEqual(e.name, n) self.assertIn(e, Perm) self.assertIs(type(e), Perm) def test_programatic_function_from_empty_list(self): Perm = enum.IntFlag('Perm', []) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 0, Perm) Thing = enum.Enum('Thing', []) lst = list(Thing) self.assertEqual(len(lst), len(Thing)) self.assertEqual(len(Thing), 0, Thing) def test_programatic_function_from_empty_tuple(self): Perm = enum.IntFlag('Perm', ()) lst = list(Perm) self.assertEqual(len(lst), len(Perm)) self.assertEqual(len(Perm), 0, Perm) Thing = enum.Enum('Thing', ()) self.assertEqual(len(lst), len(Thing)) self.assertEqual(len(Thing), 0, Thing) def test_contains(self): Color = self.Color Open = self.Open self.assertTrue(Color.GREEN in Color) self.assertTrue(Open.RW in Open) self.assertFalse(Color.GREEN in Open) self.assertFalse(Open.RW in Color) with self.assertWarns(DeprecationWarning): self.assertFalse('GREEN' in Color) with self.assertWarns(DeprecationWarning): self.assertFalse('RW' in Open) with self.assertWarns(DeprecationWarning): self.assertFalse(2 in Color) with self.assertWarns(DeprecationWarning): self.assertFalse(2 in Open) def test_member_contains(self): Perm = self.Perm R, W, X = Perm RW = R | W RX = R | X WX = W | X RWX = R | W | X self.assertTrue(R in RW) self.assertTrue(R in RX) self.assertTrue(R in RWX) self.assertTrue(W in RW) self.assertTrue(W in WX) self.assertTrue(W in RWX) self.assertTrue(X in RX) self.assertTrue(X in WX) self.assertTrue(X in RWX) self.assertFalse(R in WX) self.assertFalse(W in RX) self.assertFalse(X in RW) with self.assertWarns(DeprecationWarning): self.assertFalse('swallow' in RW) def test_bool(self): Perm = self.Perm for f in Perm: self.assertTrue(f) Open = self.Open for f in Open: self.assertEqual(bool(f.value), bool(f)) def test_multiple_mixin(self): class AllMixin: @classproperty def ALL(cls): members = list(cls) all_value = None if members: all_value = members[0] for member in members[1:]: all_value |= member cls.ALL = all_value return all_value class StrMixin: def __str__(self): return self._name_.lower() class Color(AllMixin, IntFlag): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 4) self.assertEqual(Color.ALL.value, 7) self.assertEqual(str(Color.BLUE), 'Color.BLUE') class Color(AllMixin, StrMixin, IntFlag): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 4) self.assertEqual(Color.ALL.value, 7) self.assertEqual(str(Color.BLUE), 'blue') class Color(StrMixin, AllMixin, IntFlag): RED = auto() GREEN = auto() BLUE = auto() self.assertEqual(Color.RED.value, 1) self.assertEqual(Color.GREEN.value, 2) self.assertEqual(Color.BLUE.value, 4) self.assertEqual(Color.ALL.value, 7) self.assertEqual(str(Color.BLUE), 'blue') @support.reap_threads def test_unique_composite(self): # override __eq__ to be identity only class TestFlag(IntFlag): one = auto() two = auto() three = auto() four = auto() five = auto() six = auto() seven = auto() eight = auto() def __eq__(self, other): return self is other def __hash__(self): return hash(self._value_) # have multiple threads competing to complete the composite members seen = set() failed = False def cycle_enum(): nonlocal failed try: for i in range(256): seen.add(TestFlag(i)) except Exception: failed = True threads = [ threading.Thread(target=cycle_enum) for _ in range(8) ] with support.start_threads(threads): pass # check that only 248 members were created self.assertFalse( failed, 'at least one thread failed while creating composite members') self.assertEqual(256, len(seen), 'too many composite members created') class TestUnique(unittest.TestCase): def test_unique_clean(self): @unique class Clean(Enum): one = 1 two = 'dos' tres = 4.0 @unique class Cleaner(IntEnum): single = 1 double = 2 triple = 3 def test_unique_dirty(self): with self.assertRaisesRegex(ValueError, 'tres.*one'): @unique class Dirty(Enum): one = 1 two = 'dos' tres = 1 with self.assertRaisesRegex( ValueError, 'double.*single.*turkey.*triple', ): @unique class Dirtier(IntEnum): single = 1 double = 1 triple = 3 turkey = 3 def test_unique_with_name(self): @unique class Silly(Enum): one = 1 two = 'dos' name = 3 @unique class Sillier(IntEnum): single = 1 name = 2 triple = 3 value = 4 expected_help_output_with_docs = """\ Help on class Color in module %s: class Color(enum.Enum) | Color(value, names=None, *, module=None, qualname=None, type=None, start=1) |\x20\x20 | An enumeration. |\x20\x20 | Method resolution order: | Color | enum.Enum | builtins.object |\x20\x20 | Data and other attributes defined here: |\x20\x20 | blue = <Color.blue: 3> |\x20\x20 | green = <Color.green: 2> |\x20\x20 | red = <Color.red: 1> |\x20\x20 | ---------------------------------------------------------------------- | Data descriptors inherited from enum.Enum: |\x20\x20 | name | The name of the Enum member. |\x20\x20 | value | The value of the Enum member. |\x20\x20 | ---------------------------------------------------------------------- | Data descriptors inherited from enum.EnumMeta: |\x20\x20 | __members__ | Returns a mapping of member name->value. |\x20\x20\x20\x20\x20\x20 | This mapping lists all enum members, including aliases. Note that this | is a read-only view of the internal mapping.""" expected_help_output_without_docs = """\ Help on class Color in module %s: class Color(enum.Enum) | Color(value, names=None, *, module=None, qualname=None, type=None, start=1) |\x20\x20 | Method resolution order: | Color | enum.Enum | builtins.object |\x20\x20 | Data and other attributes defined here: |\x20\x20 | blue = <Color.blue: 3> |\x20\x20 | green = <Color.green: 2> |\x20\x20 | red = <Color.red: 1> |\x20\x20 | ---------------------------------------------------------------------- | Data descriptors inherited from enum.Enum: |\x20\x20 | name |\x20\x20 | value |\x20\x20 | ---------------------------------------------------------------------- | Data descriptors inherited from enum.EnumMeta: |\x20\x20 | __members__""" class TestStdLib(unittest.TestCase): maxDiff = None class Color(Enum): red = 1 green = 2 blue = 3 def test_pydoc(self): # indirectly test __objclass__ if StrEnum.__doc__ is None: expected_text = expected_help_output_without_docs % __name__ else: expected_text = expected_help_output_with_docs % __name__ output = StringIO() helper = pydoc.Helper(output=output) helper(self.Color) result = output.getvalue().strip() self.assertEqual(result, expected_text) def test_inspect_getmembers(self): values = dict(( ('__class__', EnumMeta), ('__doc__', 'An enumeration.'), ('__members__', self.Color.__members__), ('__module__', __name__), ('blue', self.Color.blue), ('green', self.Color.green), ('name', Enum.__dict__['name']), ('red', self.Color.red), ('value', Enum.__dict__['value']), )) result = dict(inspect.getmembers(self.Color)) self.assertEqual(values.keys(), result.keys()) failed = False for k in values.keys(): if result[k] != values[k]: print() print('\n%s\n key: %s\n result: %s\nexpected: %s\n%s\n' % ('=' * 75, k, result[k], values[k], '=' * 75), sep='') failed = True if failed: self.fail("result does not equal expected, see print above") def test_inspect_classify_class_attrs(self): # indirectly test __objclass__ from inspect import Attribute values = [ Attribute(name='__class__', kind='data', defining_class=object, object=EnumMeta), Attribute(name='__doc__', kind='data', defining_class=self.Color, object='An enumeration.'), Attribute(name='__members__', kind='property', defining_class=EnumMeta, object=EnumMeta.__members__), Attribute(name='__module__', kind='data', defining_class=self.Color, object=__name__), Attribute(name='blue', kind='data', defining_class=self.Color, object=self.Color.blue), Attribute(name='green', kind='data', defining_class=self.Color, object=self.Color.green), Attribute(name='red', kind='data', defining_class=self.Color, object=self.Color.red), Attribute(name='name', kind='data', defining_class=Enum, object=Enum.__dict__['name']), Attribute(name='value', kind='data', defining_class=Enum, object=Enum.__dict__['value']), ] values.sort(key=lambda item: item.name) result = list(inspect.classify_class_attrs(self.Color)) result.sort(key=lambda item: item.name) failed = False for v, r in zip(values, result): if r != v: print('\n%s\n%s\n%s\n%s\n' % ('=' * 75, r, v, '=' * 75), sep='') failed = True if failed: self.fail("result does not equal expected, see print above") class MiscTestCase(unittest.TestCase): def test__all__(self): support.check__all__(self, enum) # These are unordered here on purpose to ensure that declaration order # makes no difference. CONVERT_TEST_NAME_D = 5 CONVERT_TEST_NAME_C = 5 CONVERT_TEST_NAME_B = 5 CONVERT_TEST_NAME_A = 5 # This one should sort first. CONVERT_TEST_NAME_E = 5 CONVERT_TEST_NAME_F = 5 class TestIntEnumConvert(unittest.TestCase): def test_convert_value_lookup_priority(self): test_type = enum.IntEnum._convert( 'UnittestConvert', ('test.test_enum', '__main__')[__name__=='__main__'], filter=lambda x: x.startswith('CONVERT_TEST_')) # We don't want the reverse lookup value to vary when there are # multiple possible names for a given value. It should always # report the first lexigraphical name in that case. self.assertEqual(test_type(5).name, 'CONVERT_TEST_NAME_A') def test_convert(self): test_type = enum.IntEnum._convert( 'UnittestConvert', ('test.test_enum', '__main__')[__name__=='__main__'], filter=lambda x: x.startswith('CONVERT_TEST_')) # Ensure that test_type has all of the desired names and values. self.assertEqual(test_type.CONVERT_TEST_NAME_F, test_type.CONVERT_TEST_NAME_A) self.assertEqual(test_type.CONVERT_TEST_NAME_B, 5) self.assertEqual(test_type.CONVERT_TEST_NAME_C, 5) self.assertEqual(test_type.CONVERT_TEST_NAME_D, 5) self.assertEqual(test_type.CONVERT_TEST_NAME_E, 5) # Ensure that test_type only picked up names matching the filter. self.assertEqual([name for name in dir(test_type) if name[0:2] not in ('CO', '__')], [], msg='Names other than CONVERT_TEST_* found.') if __name__ == '__main__': unittest.main()
36.084734
103
0.539603
198be4e3a3527accfaa4fd967fee6bb8c87c538c
1,030
py
Python
sclrecommender/matrix/oneClassMatrix.py
wezteoh/Bandit_Recommendation
a326e4d1d082e1a2113fe739bc343fb45b0b8a4a
[ "MIT" ]
null
null
null
sclrecommender/matrix/oneClassMatrix.py
wezteoh/Bandit_Recommendation
a326e4d1d082e1a2113fe739bc343fb45b0b8a4a
[ "MIT" ]
null
null
null
sclrecommender/matrix/oneClassMatrix.py
wezteoh/Bandit_Recommendation
a326e4d1d082e1a2113fe739bc343fb45b0b8a4a
[ "MIT" ]
null
null
null
import numpy as np from .recommenderMatrix import RecommenderMatrix class OneClassMatrix(RecommenderMatrix): def __init__(self, ratingMatrix, positiveThreshold): ''' Generates a matrix of 1,0 where: 1 => This is a positive item 0 => Don't know anything about this data, might be negative, might be unseen ''' ratingMatrix = ratingMatrix.copy() # Note: Don't have to round the reconstruction matrix since you are setting to binary from the threshold below itself super().__init__(ratingMatrix) # Convert to one class self.oneClassMatrix= np.ones(self.ratingMatrix.shape) self.oneClassMatrix[np.where(self.ratingMatrix == 0)] = 0.0 self.oneClassMatrix[np.where(self.ratingMatrix < positiveThreshold)] = 0.0 # Override def applyMask(self, mask): super().applyMask(mask) # Checks for mask shape self.oneClassMatrix *= mask def getOneClassMatrix(self): return self.oneClassMatrix.copy()
36.785714
125
0.673786
9e753ed97bec391dcf4076bfbdc6088dae8aa092
8,591
py
Python
official/r1/transformer/translate.py
zcdzcdzcd/models
a31b526a7617a152a138a865b5689bf5b59f655d
[ "Apache-2.0" ]
15
2019-11-06T17:23:27.000Z
2021-07-17T16:03:01.000Z
official/r1/transformer/translate.py
zcdzcdzcd/models
a31b526a7617a152a138a865b5689bf5b59f655d
[ "Apache-2.0" ]
16
2020-01-28T22:22:10.000Z
2022-03-12T00:10:37.000Z
official/r1/transformer/translate.py
zcdzcdzcd/models
a31b526a7617a152a138a865b5689bf5b59f655d
[ "Apache-2.0" ]
13
2019-11-06T17:23:29.000Z
2019-11-29T13:03:07.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Translate text or files using trained transformer model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # pylint: disable=g-bad-import-order from absl import app as absl_app from absl import flags import tensorflow as tf # pylint: enable=g-bad-import-order from official.transformer.utils import tokenizer from official.utils.flags import core as flags_core _DECODE_BATCH_SIZE = 32 _EXTRA_DECODE_LENGTH = 100 _BEAM_SIZE = 4 _ALPHA = 0.6 def _get_sorted_inputs(filename): """Read and sort lines from the file sorted by decreasing length. Args: filename: String name of file to read inputs from. Returns: Sorted list of inputs, and dictionary mapping original index->sorted index of each element. """ with tf.io.gfile.GFile(filename) as f: records = f.read().split("\n") inputs = [record.strip() for record in records] if not inputs[-1]: inputs.pop() input_lens = [(i, len(line.split())) for i, line in enumerate(inputs)] sorted_input_lens = sorted(input_lens, key=lambda x: x[1], reverse=True) sorted_inputs = [None] * len(sorted_input_lens) sorted_keys = [0] * len(sorted_input_lens) for i, (index, _) in enumerate(sorted_input_lens): sorted_inputs[i] = inputs[index] sorted_keys[index] = i return sorted_inputs, sorted_keys def _encode_and_add_eos(line, subtokenizer): """Encode line with subtokenizer, and add EOS id to the end.""" return subtokenizer.encode(line) + [tokenizer.EOS_ID] def _trim_and_decode(ids, subtokenizer): """Trim EOS and PAD tokens from ids, and decode to return a string.""" try: index = list(ids).index(tokenizer.EOS_ID) return subtokenizer.decode(ids[:index]) except ValueError: # No EOS found in sequence return subtokenizer.decode(ids) def translate_file( estimator, subtokenizer, input_file, output_file=None, print_all_translations=True): """Translate lines in file, and save to output file if specified. Args: estimator: tf.Estimator used to generate the translations. subtokenizer: Subtokenizer object for encoding and decoding source and translated lines. input_file: file containing lines to translate output_file: file that stores the generated translations. print_all_translations: If true, all translations are printed to stdout. Raises: ValueError: if output file is invalid. """ batch_size = _DECODE_BATCH_SIZE # Read and sort inputs by length. Keep dictionary (original index-->new index # in sorted list) to write translations in the original order. sorted_inputs, sorted_keys = _get_sorted_inputs(input_file) num_decode_batches = (len(sorted_inputs) - 1) // batch_size + 1 def input_generator(): """Yield encoded strings from sorted_inputs.""" for i, line in enumerate(sorted_inputs): if i % batch_size == 0: batch_num = (i // batch_size) + 1 tf.logging.info("Decoding batch %d out of %d." % (batch_num, num_decode_batches)) yield _encode_and_add_eos(line, subtokenizer) def input_fn(): """Created batched dataset of encoded inputs.""" ds = tf.data.Dataset.from_generator( input_generator, tf.int64, tf.TensorShape([None])) ds = ds.padded_batch(batch_size, [None]) return ds translations = [] for i, prediction in enumerate(estimator.predict(input_fn)): translation = _trim_and_decode(prediction["outputs"], subtokenizer) translations.append(translation) if print_all_translations: tf.logging.info("Translating:\n\tInput: %s\n\tOutput: %s" % (sorted_inputs[i], translation)) # Write translations in the order they appeared in the original file. if output_file is not None: if tf.io.gfile.isdir(output_file): raise ValueError("File output is a directory, will not save outputs to " "file.") tf.logging.info("Writing to file %s" % output_file) with tf.io.gfile.GFile(output_file, "w") as f: for i in sorted_keys: f.write("%s\n" % translations[i]) def translate_text(estimator, subtokenizer, txt): """Translate a single string.""" encoded_txt = _encode_and_add_eos(txt, subtokenizer) def input_fn(): ds = tf.data.Dataset.from_tensors(encoded_txt) ds = ds.batch(_DECODE_BATCH_SIZE) return ds predictions = estimator.predict(input_fn) translation = next(predictions)["outputs"] translation = _trim_and_decode(translation, subtokenizer) tf.logging.info("Translation of \"%s\": \"%s\"" % (txt, translation)) def main(unused_argv): from official.transformer import transformer_main tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.text is None and FLAGS.file is None: tf.logging.warn("Nothing to translate. Make sure to call this script using " "flags --text or --file.") return subtokenizer = tokenizer.Subtokenizer(FLAGS.vocab_file) # Set up estimator and params params = transformer_main.PARAMS_MAP[FLAGS.param_set] params["beam_size"] = _BEAM_SIZE params["alpha"] = _ALPHA params["extra_decode_length"] = _EXTRA_DECODE_LENGTH params["batch_size"] = _DECODE_BATCH_SIZE estimator = tf.estimator.Estimator( model_fn=transformer_main.model_fn, model_dir=FLAGS.model_dir, params=params) if FLAGS.text is not None: tf.logging.info("Translating text: %s" % FLAGS.text) translate_text(estimator, subtokenizer, FLAGS.text) if FLAGS.file is not None: input_file = os.path.abspath(FLAGS.file) tf.logging.info("Translating file: %s" % input_file) if not tf.gfile.Exists(FLAGS.file): raise ValueError("File does not exist: %s" % input_file) output_file = None if FLAGS.file_out is not None: output_file = os.path.abspath(FLAGS.file_out) tf.logging.info("File output specified: %s" % output_file) translate_file(estimator, subtokenizer, input_file, output_file) def define_translate_flags(): """Define flags used for translation script.""" # Model flags flags.DEFINE_string( name="model_dir", short_name="md", default="/tmp/transformer_model", help=flags_core.help_wrap( "Directory containing Transformer model checkpoints.")) flags.DEFINE_enum( name="param_set", short_name="mp", default="big", enum_values=["base", "big"], help=flags_core.help_wrap( "Parameter set to use when creating and training the model. The " "parameters define the input shape (batch size and max length), " "model configuration (size of embedding, # of hidden layers, etc.), " "and various other settings. The big parameter set increases the " "default batch size, embedding/hidden size, and filter size. For a " "complete list of parameters, please see model/model_params.py.")) flags.DEFINE_string( name="vocab_file", short_name="vf", default=None, help=flags_core.help_wrap( "Path to subtoken vocabulary file. If data_download.py was used to " "download and encode the training data, look in the data_dir to find " "the vocab file.")) flags.mark_flag_as_required("vocab_file") flags.DEFINE_string( name="text", default=None, help=flags_core.help_wrap( "Text to translate. Output will be printed to console.")) flags.DEFINE_string( name="file", default=None, help=flags_core.help_wrap( "File containing text to translate. Translation will be printed to " "console and, if --file_out is provided, saved to an output file.")) flags.DEFINE_string( name="file_out", default=None, help=flags_core.help_wrap( "If --file flag is specified, save translation to this file.")) if __name__ == "__main__": define_translate_flags() FLAGS = flags.FLAGS absl_app.run(main)
36.096639
80
0.701315
719f7961b45149cc58fcb7c8e3106d03315c73bd
1,560
py
Python
test_autolens/integration/tests/features/model_mapper/link_variable_float_to_next_phase.py
PyJedi/PyAutoLens
bcfb2e7b447aa24508fc648d60b6fd9b4fd852e7
[ "MIT" ]
null
null
null
test_autolens/integration/tests/features/model_mapper/link_variable_float_to_next_phase.py
PyJedi/PyAutoLens
bcfb2e7b447aa24508fc648d60b6fd9b4fd852e7
[ "MIT" ]
null
null
null
test_autolens/integration/tests/features/model_mapper/link_variable_float_to_next_phase.py
PyJedi/PyAutoLens
bcfb2e7b447aa24508fc648d60b6fd9b4fd852e7
[ "MIT" ]
null
null
null
import autofit as af import autolens as al from test_autolens.integration.tests.imaging import runner test_type = "model_mapper" test_name = "link_model_float_to_next_phase" data_type = "lens_light_dev_vaucouleurs" data_resolution = "lsst" def make_pipeline(name, phase_folders, non_linear_class=af.MultiNest): phase1 = al.PhaseImaging( phase_name="phase_1", phase_folders=phase_folders, galaxies=dict(lens=al.GalaxyModel(redshift=0.5, light=al.lp.EllipticalSersic)), non_linear_class=non_linear_class, ) phase1.optimizer.const_efficiency_mode = True phase1.optimizer.n_live_points = 20 phase1.optimizer.sampling_efficiency = 0.8 class MMPhase2(al.PhaseImaging): def customize_priors(self, results): self.galaxies.lens.light.centre = results.from_phase( "phase_1" ).model.galaxies.lens.light.centre self.galaxies.lens.light.axis_ratio = results.from_phase( "phase_1" ).model.galaxies.lens.light.axis_ratio phase2 = MMPhase2( phase_name="phase_2", phase_folders=phase_folders, galaxies=dict(lens=al.GalaxyModel(redshift=0.5, light=al.lp.EllipticalSersic)), non_linear_class=non_linear_class, ) phase2.optimizer.const_efficiency_mode = True phase2.optimizer.n_live_points = 20 phase2.optimizer.sampling_efficiency = 0.8 return al.PipelineDataset(name, phase1, phase2) if __name__ == "__main__": import sys runner.run(sys.modules[__name__])
29.433962
87
0.705769
553b06e0a446030f7c5e2713c926ccf0d4a76673
179
py
Python
tests/IT/fixtures/test_class_inheritance_1.py
testandconquer/pytest-conquer
da600c7f5bcd06aa62c5cca9b75370bf1a6ebf05
[ "MIT" ]
null
null
null
tests/IT/fixtures/test_class_inheritance_1.py
testandconquer/pytest-conquer
da600c7f5bcd06aa62c5cca9b75370bf1a6ebf05
[ "MIT" ]
5
2018-12-27T02:52:01.000Z
2019-01-02T01:52:55.000Z
tests/IT/fixtures/test_class_inheritance_1.py
testandconquer/pytest-conquer
da600c7f5bcd06aa62c5cca9b75370bf1a6ebf05
[ "MIT" ]
null
null
null
class TestObject1(object): @classmethod def setup_class(cls): pass @classmethod def teardown_class(cls): pass def test1(self): pass
13.769231
28
0.586592
4c9f21b5189e0437fdf3b93c2ffb700c8fa68fd3
1,697
py
Python
register/admin.py
yashiki-takajin/sfa-next
049058a37b9ee45b58be5f4393a0b3191362043c
[ "MIT" ]
19
2018-11-23T10:13:14.000Z
2022-03-26T11:57:55.000Z
register/admin.py
yashiki-takajin/sfa-next
049058a37b9ee45b58be5f4393a0b3191362043c
[ "MIT" ]
3
2020-06-05T19:25:20.000Z
2021-06-10T20:59:30.000Z
register/admin.py
yashiki-takajin/sfa-next
049058a37b9ee45b58be5f4393a0b3191362043c
[ "MIT" ]
8
2019-04-21T11:08:22.000Z
2021-12-08T09:38:30.000Z
from django.conf import settings from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.forms import UserChangeForm, UserCreationForm from django.utils.translation import ugettext_lazy as _ from .models import MyGroup, User, Workspace class MyUserChangeForm(UserChangeForm): class Meta: model = User fields = '__all__' class MyUserCreationForm(UserCreationForm): class Meta: model = User fields = ('email', ) class MyGroupAdmin(admin.ModelAdmin): pass class WorkspaceAdmin(admin.ModelAdmin): pass class MyUserAdmin(UserAdmin): fieldsets = ( (None, { 'fields': ('email', 'password') }), (_('Personal info'), { 'fields': ('first_name', 'last_name', 'workspace', 'is_workspace_active', 'workspace_role', 'my_group') }), (_('Permissions'), { 'fields': ('is_active', 'is_staff', 'is_superuser', 'groups', 'user_permissions') }), (_('Important dates'), { 'fields': ('last_login', 'date_joined') }), ) filter_horizontal = ('groups', 'user_permissions') add_fieldsets = ((None, { 'classes': ('wide', ), 'fields': ('email', 'password1', 'password2'), }), ) form = MyUserChangeForm add_form = MyUserCreationForm list_display = ('email', 'first_name', 'last_name', 'is_staff') search_fields = ('email', 'first_name', 'last_name') ordering = ('email', ) admin.site.register(User, MyUserAdmin) admin.site.register(Workspace, WorkspaceAdmin) admin.site.register(MyGroup, MyGroupAdmin)
27.370968
75
0.619328
e90383e6a38a73dae3c92637ab5519b03942ed6b
2,618
py
Python
src/squirrel/repo/setuprepolist.py
bvz2000/squirrel
5d3ba00825aaa5337d8972a0edc6530230a8a754
[ "Unlicense" ]
null
null
null
src/squirrel/repo/setuprepolist.py
bvz2000/squirrel
5d3ba00825aaa5337d8972a0edc6530230a8a754
[ "Unlicense" ]
null
null
null
src/squirrel/repo/setuprepolist.py
bvz2000/squirrel
5d3ba00825aaa5337d8972a0edc6530230a8a754
[ "Unlicense" ]
null
null
null
import inspect import os from bvzconfig import Config from squirrel.shared.constants import * from squirrel.shared.squirrelerror import SquirrelError # ---------------------------------------------------------------------------------------------------------------------- def validate_repo_list(repo_list_obj, localized_resource_obj): """ Makes sure the repo list file is valid. Raises an asset error if not. :param repo_list_obj: The repo list object responsible for managing the list of repos. :param localized_resource_obj: The localization object responsible for managing localized strings. :return: Nothing. """ sections = dict() sections["repos"] = None sections["defaults"] = [("default_repo", "str")] failures = repo_list_obj.validate(sections) if failures: if failures[1] is None: err_msg = localized_resource_obj.get_error_msg(601) err_msg = err_msg.format(repo_list_p=repo_list_obj.config_path, section=failures[0]) raise SquirrelError(err_msg, 601) # ---------------------------------------------------------------------------------------------------------------------- def create_repo_list_object(localized_resource_obj, repo_list_p=None): """ Create a repo list object. :param localized_resource_obj: The localization object responsible for managing localized strings. :param repo_list_p: If provided, this path will be used instead of any provided by an env variable or the default repo list file location. If None, then the repo list file will be read from the path given by the env variable or, if that is not set, from the default location. Defaults to None. :return: A repo list object. """ assert repo_list_p is None or type(repo_list_p) is str if repo_list_p is None: if REPO_LIST_PATH_ENV_VAR in os.environ.keys(): repo_list_p = os.environ[REPO_LIST_PATH_ENV_VAR] else: module_d = os.path.split(inspect.stack()[0][1])[0] repo_list_p = os.path.join(module_d, "..", "..", "..", "config", "repos") if not os.path.exists(repo_list_p): err_msg = localized_resource_obj.get_error_msg(603) err_msg = err_msg.format(repo_list_file=repo_list_p) raise SquirrelError(err_msg, 603) repo_list_obj = Config(repo_list_p) validate_repo_list(repo_list_obj, localized_resource_obj) return repo_list_obj
35.863014
120
0.599312
940f817959ca8cffa6953eacdb0ba9f983f03d21
1,600
py
Python
src/vsc/model/expr_fieldref_model.py
edcote/pyvsc
18261852ca502291e0ac3266d1c0d2dd91317b01
[ "Apache-2.0" ]
null
null
null
src/vsc/model/expr_fieldref_model.py
edcote/pyvsc
18261852ca502291e0ac3266d1c0d2dd91317b01
[ "Apache-2.0" ]
null
null
null
src/vsc/model/expr_fieldref_model.py
edcote/pyvsc
18261852ca502291e0ac3266d1c0d2dd91317b01
[ "Apache-2.0" ]
1
2021-09-12T23:39:58.000Z
2021-09-12T23:39:58.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Created on Jul 26, 2019 # # @author: ballance from vsc.model.expr_model import ExprModel class ExprFieldRefModel(ExprModel): def __init__(self, fm): super().__init__() self.fm = fm if fm is None: raise Exception("Field Model None specified") def build(self, btor): if self.fm.var is None: raise Exception("Field " + str(self.fm) + " (" + self.fm.name + ") has not been built") return self.fm.var def is_signed(self): return self.fm.is_signed def width(self): return self.fm.width def accept(self, visitor): visitor.visit_expr_fieldref(self) def val(self): return self.fm.val def __str__(self): return "Field: " + self.fm.name
30.188679
99
0.668125
924161ab6ff3e212d92fcdb31f6aa1f77453385b
11,340
py
Python
host/greatfet/utils.py
grvvy/greatfet
e8098307960a60e34c27ed2903f7abc2252b4cce
[ "BSD-3-Clause" ]
328
2015-08-30T03:10:50.000Z
2022-03-31T12:47:48.000Z
host/greatfet/utils.py
grvvy/greatfet
e8098307960a60e34c27ed2903f7abc2252b4cce
[ "BSD-3-Clause" ]
231
2017-02-11T23:21:31.000Z
2022-03-27T23:07:43.000Z
host/greatfet/utils.py
grvvy/greatfet
e8098307960a60e34c27ed2903f7abc2252b4cce
[ "BSD-3-Clause" ]
94
2015-09-27T15:01:04.000Z
2022-02-26T15:41:20.000Z
# # This file is part of GreatFET # """ Utilities that help in writing simple scripts for GreatFET. """ from __future__ import print_function import sys import ast import time import errno import argparse from decimal import Decimal from . import GreatFET, _GreatFETSingletonWrapper from .boards.flash_stub import GreatFETFlashStub from pygreat.errors import DeviceNotFoundError SI_PREFIXES = { 'E-12': 'p', 'E-9': 'n', 'E-6': 'u', 'E-3': 'm', 'E+3': 'k', 'E+6': 'M', 'E+9': 'G', 'E+12': 'T', } def log_silent(string, end=None): """Silently discards all log data, but provides our logging interface.""" pass def log_verbose(string, end="\n"): """Prints all logging data to the screen.""" print(string, end=end) sys.stdout.flush() def log_error(string, end="\n"): """ Prints errors to stderr. """ sys.stdout.flush() print(string, end=end, file=sys.stderr) sys.stderr.flush() def eng_notation(number, unit=None, separator=' '): """ Converts a given number to a nicely-formatted engineering number; so 10e6 would become 10 M.""" # Grab the raw engineering notation from python's decimal class... string = Decimal(number).normalize().to_eng_string() # ... and replace the normalized engineering suffix with the relevant SI prefix. for normalized, prefix in SI_PREFIXES.items(): string = string.replace(normalized, separator + prefix) if unit is not None: string += unit return string def from_eng_notation(string, unit=None, units=None, to_type=None): """ Converts a string accepted on the command line (potentially in engineering notation) into a python number. """ # Ensure we have a new list of units accessible to us. if units is None: units = [] else: units = units[:] # If we have a single unit specified, absorb it into our units list. if unit is not None: units.append(unit) # If we have an acceptable unit, strip it off before we process things. for unit in units: string = string.replace(unit, '') string = string.replace(unit.upper(), '') string = string.replace(unit.lower(), '') # Strip off any unnecessary whitespace. string = string.strip() # Replace each SI prefix with its normalized value. for normalized, prefix in SI_PREFIXES.items(): if string.endswith(prefix): string = string.replace(prefix, '').strip() string += normalized break # Finally, try to parse the string as a python literal. result = ast.literal_eval(string) # If we have a post-processing function, apply it. if callable(to_type): result = to_type(result) return result def human_readable_size(byte_count, unit="B", binary_marker='i'): """ Converts a number of bytes into a human-readable size string. """ SUFFIXES = { 0: "", 1: "k" + binary_marker, 2: "M" + binary_marker, 3: "G" + binary_marker, 4: "T" + binary_marker, 5: "P" + binary_marker } if byte_count is None: return 0 suffix_order =0 while byte_count >= 1024: suffix_order += 1 byte_count /= 1024 return "{} {}{}".format(byte_count, SUFFIXES[suffix_order], unit) class GreatFETArgumentParser(argparse.ArgumentParser): """ Convenience-extended argument parser for GreatFET. """ """ Serial number expected from a device in DFU. """ DFU_STUB_SERIAL = "dfu_flash_stub" def __init__(self, *args, **kwargs): """ Sets up a GreatFET-specialized argument parser. Additional keyword arguments: dfu -- If set to True, DFU-reglated arguments will be provided. raise_device_find_failures -- If set to True, this will throw a DeviceNotFoundError instead of quitting if no device is present. """ # Determine if we should provide DFU arguments. if 'dfu' in kwargs: self.supports_dfu = kwargs['dfu'] del kwargs['dfu'] else: self.supports_dfu = False # Determine if we should provide DFU arguments. if 'verbose_by_default' in kwargs: verbose_by_default = kwargs['verbose_by_default'] del kwargs['verbose_by_default'] else: verbose_by_default = False # If set, this will throw DeviceNotFound errors instead of killing the process. if 'raise_device_find_failures' in kwargs: self.raise_device_find_failures = kwargs['raise_device_find_failures'] del kwargs['raise_device_find_failures'] else: self.raise_device_find_failures = False # Invoke the core function. super(GreatFETArgumentParser, self).__init__(*args, **kwargs) # Start off with no memoized arguments. self.memoized_args = None # By default, log queietly. # Add the standard arguments used to find a GreatFET. self.add_argument('-s', '--serial', dest='serial', metavar='<serialnumber>', type=str, help="Serial number of device to look for", default=None) self.add_argument('-i', '--index', dest='index', metavar='<i>', type=int, help="number of the attached device (default: 0)", default=0) self.add_argument('--wait', dest='wait', action='store_true', help="Wait for a GreatFET device to come online if none is found.") if verbose_by_default: self.add_argument('-q', '--quiet', dest='verbose', action='store_false', help="Don't log details to the console unless an error occurs.") else: self.add_argument('-v', '--verbose', dest='verbose', action='store_true', help="Log more details to the console.") # TODO: specify protocol? # TODO: accept comms URI # If we're accepting devices from DFU mode, accept the relevant arguments, as well. # Note that you must put the device into DFU mode and load the stub from the caller. if self.supports_dfu: self.add_argument('-d', '--dfu', dest='dfu', action='store_true', help="Access a device from in DFU mode by first loading a stub. Always resets.") self.add_argument('--dfu-stub', dest='dfu_stub', metavar='<stub.dfu>', type=str, help="The stub to use for DFU programming. If not provided, the utility will attempt to automtaically find one.") def find_specified_device(self): """ Connects to the GreatFET specified by the user's command line arguments. """ device = None args = self.parse_args() # Loop until we have a device. # Conditions where we should abort are presented below. while device is None: try: device = self._find_greatfet(args) except DeviceNotFoundError: # If we're not in wait mode (or waiting for a DFU flash stub to come up), bail out. if not (args.wait or (self.supports_dfu and args.dfu)): # If we're not handling location failures, re-raise the exception. if self.raise_device_find_failures: raise # Otherwise, print a message and bail out. if args.serial: print("No GreatFET board found matching serial '{}'.".format(args.serial), file=sys.stderr) elif args.index: print("No GreatFET board found with index '{}'.".format(args.index), file=sys.stderr) else: print("No GreatFET board found!", file=sys.stderr) sys.exit(errno.ENODEV) else: time.sleep(1) return device def get_singleton_for_specified_device(self): """ Connects to the GreatFET specified by the user's command line arguments, but gets a singleton that persists across reconnects. """ # Grab the device itself, and find its serial number. device = self.find_specified_device() serial = device.serial_number() device.close() # Create an equivalent singleton wrapper. return _GreatFETSingletonWrapper(serial) def get_log_function(self): """ Returns a function that can be used for logging, but which respects verbosity. """ return log_verbose if self.parse_args().verbose else log_silent def get_log_functions(self): """ Returns a 2-tuple of a function that can be used for logging data and errors, attempting to repsect -v/-q.""" return self.get_log_function(), log_error def parse_args(self): """ Specialized version of parse_args that memoizes, for GreatFET. """ # If we haven't called parse_args yet, let the base class handle the parsing, # first. if self.memoized_args is None: self.memoized_args = super(GreatFETArgumentParser, self).parse_args() # Always return our memoized version. return self.memoized_args def _find_greatfet(self, args): """ Finds a GreatFET matching the relevant arguments.""" # If we're programming via DFU mode, look for a device that sports the DFU stub. # Note that we only support a single DFU-mode device for now, and thus always # grab the first one. if self.supports_dfu and args.dfu: devices = GreatFET(find_all=True) for device in devices: if isinstance(device, GreatFETFlashStub): return device raise DeviceNotFoundError # If we have an index argument, grab _all_ greatFETs and select by index. elif args.index: # Find _all_ GreatFETs... devices = GreatFET(find_all=True) # ... and then select the one with the provided index. if len(devices) <= args.index: raise DeviceNotFoundError return devices[args.index] # If we have a serial number, look only for a single device. Theoretically, # we should never have more than one GreatFET with the same serial number. # Technically, this is violable, but libusb doesn't properly handle searching # by serial number if there are multiple devices with the same one, so we # enforce this. else: return GreatFET(serial_number=args.serial) def greatfet_assets_directory(): """ Provide a quick function that helps us get at our assets directory. """ import os # Find the path to the module, and then find its assets folder. module_path = os.path.dirname(__file__) return os.path.join(module_path, 'assets') def find_greatfet_asset(filename): """ Returns the path to a given GreatFET asset, if it exists, or None if the GreatFET asset isn't provided.""" import os asset_path = os.path.join(greatfet_assets_directory(), filename) if os.path.isfile(asset_path): return asset_path else: return None
33.850746
145
0.620106
022a4ac73afffd134ee4c35bf3dbba7ed2214bff
3,260
py
Python
tests/app/states/test_states.py
jerjohste/exopy
0fe3eb94f440ead88c396a1abccf7c22dd633a61
[ "BSD-3-Clause" ]
16
2018-03-20T09:06:23.000Z
2021-09-08T18:46:15.000Z
tests/app/states/test_states.py
jerjohste/exopy
0fe3eb94f440ead88c396a1abccf7c22dd633a61
[ "BSD-3-Clause" ]
118
2015-05-13T07:50:04.000Z
2018-02-14T17:37:20.000Z
tests/app/states/test_states.py
jerjohste/exopy
0fe3eb94f440ead88c396a1abccf7c22dd633a61
[ "BSD-3-Clause" ]
11
2018-03-02T11:17:26.000Z
2021-06-23T22:25:40.000Z
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2015-2018 by Exopy Authors, see AUTHORS for more details. # # Distributed under the terms of the BSD license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Test state plugin system. """ import enaml from enaml.workbench.api import Workbench from pytest import raises with enaml.imports(): from enaml.workbench.core.core_manifest import CoreManifest from exopy.app.states.manifest import StateManifest from .states_utils import StateContributor CORE_PLUGIN = 'enaml.workbench.core' GET_STATE = 'exopy.app.states.get' STATE_ID = 'test.states.state' class TestState(object): """Test the handling os states by the state plugin. """ def setup(self): self.workbench = Workbench() self.workbench.register(CoreManifest()) self.workbench.register(StateManifest()) self.workbench.register(StateContributor()) def test_get_state(self): """Test accessing to a state object through the command. """ core = self.workbench.get_plugin(CORE_PLUGIN) par = {'state_id': STATE_ID} state = core.invoke_command(GET_STATE, par, trigger=self) assert hasattr(state, 'string') assert state.string == 'init' with raises(AttributeError): state.string = 1 self.workbench.unregister('exopy.app.states') def test_state_unicity(self): """Test that asking twice the same state return the same object. """ core = self.workbench.get_plugin(CORE_PLUGIN) par = {'state_id': STATE_ID} state1 = core.invoke_command(GET_STATE, par, trigger=self) state2 = core.invoke_command(GET_STATE, par, trigger=self) assert state1 is state2 def test_member_sync(self): """Test that the state is correctly synchronised with the plugin. """ core = self.workbench.get_plugin(CORE_PLUGIN) par = {'state_id': STATE_ID} state = core.invoke_command(GET_STATE, par, trigger=self) plugin = self.workbench.get_plugin('test.states') plugin.string = 'test' assert state.string == 'test' def test_death_notif(self): """Test that a state whose plugin is unregistered is marked as dead. """ core = self.workbench.get_plugin(CORE_PLUGIN) par = {'state_id': STATE_ID} state = core.invoke_command(GET_STATE, par, trigger=self) self.workbench.unregister(u'test.states') assert not state.alive # ============================================================================= # --- API import -------------------------------------------------------------- # ============================================================================= def test_api_import(): """Test importing the api module. """ from exopy.app.states import api assert api.__all__
31.650485
79
0.55
92dfc564442a9268d1dd23dcff29aae550306c0f
5,583
py
Python
tempest/api/network/test_allowed_address_pair.py
gamado/ds_tempest_rm_me_please
3f5d149b3a32e713c60c59a054035ac2e5c73c28
[ "Apache-2.0" ]
null
null
null
tempest/api/network/test_allowed_address_pair.py
gamado/ds_tempest_rm_me_please
3f5d149b3a32e713c60c59a054035ac2e5c73c28
[ "Apache-2.0" ]
null
null
null
tempest/api/network/test_allowed_address_pair.py
gamado/ds_tempest_rm_me_please
3f5d149b3a32e713c60c59a054035ac2e5c73c28
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr import six from tempest.api.network import base from tempest import config from tempest import test CONF = config.CONF class AllowedAddressPairTestJSON(base.BaseNetworkTest): """Tests the Neutron Allowed Address Pair API extension The following API operations are tested with this extension: create port list ports update port show port v2.0 of the Neutron API is assumed. It is also assumed that the following options are defined in the [network-feature-enabled] section of etc/tempest.conf api_extensions """ @classmethod def skip_checks(cls): super(AllowedAddressPairTestJSON, cls).skip_checks() if not test.is_extension_enabled('allowed-address-pairs', 'network'): msg = "Allowed Address Pairs extension not enabled." raise cls.skipException(msg) @classmethod def resource_setup(cls): super(AllowedAddressPairTestJSON, cls).resource_setup() cls.network = cls.create_network() cls.create_subnet(cls.network) port = cls.create_port(cls.network) cls.ip_address = port['fixed_ips'][0]['ip_address'] cls.mac_address = port['mac_address'] @test.idempotent_id('86c3529b-1231-40de-803c-00e40882f043') def test_create_list_port_with_address_pair(self): # Create port with allowed address pair attribute allowed_address_pairs = [{'ip_address': self.ip_address, 'mac_address': self.mac_address}] body = self.ports_client.create_port( network_id=self.network['id'], allowed_address_pairs=allowed_address_pairs) port_id = body['port']['id'] self.addCleanup(self.ports_client.delete_port, port_id) # Confirm port was created with allowed address pair attribute body = self.ports_client.list_ports() ports = body['ports'] port = [p for p in ports if p['id'] == port_id] msg = 'Created port not found in list of ports returned by Neutron' self.assertTrue(port, msg) self._confirm_allowed_address_pair(port[0], self.ip_address) def _update_port_with_address(self, address, mac_address=None, **kwargs): # Create a port without allowed address pair body = self.ports_client.create_port(network_id=self.network['id']) port_id = body['port']['id'] self.addCleanup(self.ports_client.delete_port, port_id) if mac_address is None: mac_address = self.mac_address # Update allowed address pair attribute of port allowed_address_pairs = [{'ip_address': address, 'mac_address': mac_address}] if kwargs: allowed_address_pairs.append(kwargs['allowed_address_pairs']) body = self.ports_client.update_port( port_id, allowed_address_pairs=allowed_address_pairs) allowed_address_pair = body['port']['allowed_address_pairs'] six.assertCountEqual(self, allowed_address_pair, allowed_address_pairs) @test.idempotent_id('9599b337-272c-47fd-b3cf-509414414ac4') def test_update_port_with_address_pair(self): # Update port with allowed address pair self._update_port_with_address(self.ip_address) @test.idempotent_id('4d6d178f-34f6-4bff-a01c-0a2f8fe909e4') def test_update_port_with_cidr_address_pair(self): # Update allowed address pair with cidr cidr = str(netaddr.IPNetwork(CONF.network.project_network_cidr)) self._update_port_with_address(cidr) @test.idempotent_id('b3f20091-6cd5-472b-8487-3516137df933') def test_update_port_with_multiple_ip_mac_address_pair(self): # Create an ip _address and mac_address through port create resp = self.ports_client.create_port(network_id=self.network['id']) newportid = resp['port']['id'] self.addCleanup(self.ports_client.delete_port, newportid) ipaddress = resp['port']['fixed_ips'][0]['ip_address'] macaddress = resp['port']['mac_address'] # Update allowed address pair port with multiple ip and mac allowed_address_pairs = {'ip_address': ipaddress, 'mac_address': macaddress} self._update_port_with_address( self.ip_address, self.mac_address, allowed_address_pairs=allowed_address_pairs) def _confirm_allowed_address_pair(self, port, ip): msg = 'Port allowed address pairs should not be empty' self.assertTrue(port['allowed_address_pairs'], msg) ip_address = port['allowed_address_pairs'][0]['ip_address'] mac_address = port['allowed_address_pairs'][0]['mac_address'] self.assertEqual(ip_address, ip) self.assertEqual(mac_address, self.mac_address) class AllowedAddressPairIpV6TestJSON(AllowedAddressPairTestJSON): _ip_version = 6
41.355556
78
0.687802
17587c72b4d27646a4c02786287b2feeccaaa19e
2,172
py
Python
nfmanagementapi/resources/ServiceGroupObjectCollectionResource.py
nfirewall/nfmapi
7232975711ad01b031ed50d7f26936afcfe5312a
[ "MIT" ]
null
null
null
nfmanagementapi/resources/ServiceGroupObjectCollectionResource.py
nfirewall/nfmapi
7232975711ad01b031ed50d7f26936afcfe5312a
[ "MIT" ]
null
null
null
nfmanagementapi/resources/ServiceGroupObjectCollectionResource.py
nfirewall/nfmapi
7232975711ad01b031ed50d7f26936afcfe5312a
[ "MIT" ]
null
null
null
from nfmanagementapi.models import ServiceGroupObject from nfmanagementapi.schemata import ServiceGroupObjectSchema from marshmallow.exceptions import ValidationError from .BaseResource import BaseResource from flask import request from app import db from uuid import uuid4 path = 'service_groups' endpoint = 'service_groups' class ServiceGroupObjectCollectionResource(BaseResource): def get(self): """List service groups --- description: List all service groups tags: - Service Groups responses: 200: content: application/json: schema: type: array items: ServiceGroupObjectSchema """ objects = ServiceGroupObject.query.all() schema = ServiceGroupObjectSchema(many = True) return schema.dump(objects) def post(self): """Create service group --- description: Create a service group tags: - Service Groups requestBody: content: application/json: schema: ServiceGroupObjectSchema responses: 201: description: Created content: application/json: schema: ServiceGroupObjectSchema 422: description: Unprocessable Entity content: application/json: schema: MessageSchema """ json_data = request.get_json() try: data = ServiceGroupObjectSchema().load(json_data) except ValidationError as err: return err.messages, 422 object = ServiceGroupObject() error = False messages = [] for key in data: try: setattr(object, key, data[key]) except ValueError as e: error = True messages.append(e.args[0]) if error: return {"messages": messages}, 422 db.session.add(object) db.session.commit() db.session.refresh(object) return ServiceGroupObjectSchema().dump(object)
28.96
61
0.573665
65eadbf7310ec6c0e373b6428d5da182bb6f92e7
1,294
py
Python
domain/src/entity/profile_entity.py
python-jacksonsr45/web_services
6e37d4f00e9e59a35f06f05ce955ba53242ed9ee
[ "MIT" ]
null
null
null
domain/src/entity/profile_entity.py
python-jacksonsr45/web_services
6e37d4f00e9e59a35f06f05ce955ba53242ed9ee
[ "MIT" ]
null
null
null
domain/src/entity/profile_entity.py
python-jacksonsr45/web_services
6e37d4f00e9e59a35f06f05ce955ba53242ed9ee
[ "MIT" ]
null
null
null
import uuid from datetime import datetime class ProfileEntity: def __init__( self, profile_id: str = None, name: str = None, last_name: str = None, document_id: str = None, phone: str = None, mobile_phone: str = None, created_at: str = None, ): if not profile_id: self.id = str(uuid.uuid4()) else: self.id = profile_id self.name = name self.last_name = last_name self.document_id = document_id self.phone = phone self.mobile_phone = mobile_phone if not created_at: self.created_at = datetime.now() else: self.created_at = created_at self.updated_at = datetime.now() def get_id(self) -> str: return self.id def get_name(self) -> str: return self.name def get_last_name(self) -> str: return self.last_name def get_document_id(self) -> str: return self.last_name def get_phone(self) -> str: return self.phone def get_mobile_phone(self) -> str: return self.mobile_phone def get_created_at(self) -> datetime: return self.created_at def get_updated_at(self) -> datetime: return self.updated_at
23.962963
44
0.581917
074ce6df69a6b4d417be3161cf6e84eba92c6b21
6,039
py
Python
plotly/graph_objs/scattergl/_line.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
null
null
null
plotly/graph_objs/scattergl/_line.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
null
null
null
plotly/graph_objs/scattergl/_line.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
1
2019-02-18T04:12:56.000Z
2019-02-18T04:12:56.000Z
from plotly.basedatatypes import BaseTraceHierarchyType import copy class Line(BaseTraceHierarchyType): # color # ----- @property def color(self): """ Sets the line color. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self['color'] @color.setter def color(self, val): self['color'] = val # dash # ---- @property def dash(self): """ Sets the style of the lines. The 'dash' property is an enumeration that may be specified as: - One of the following enumeration values: ['solid', 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot'] Returns ------- Any """ return self['dash'] @dash.setter def dash(self, val): self['dash'] = val # width # ----- @property def width(self): """ Sets the line width (in px). The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self['width'] @width.setter def width(self, val): self['width'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'scattergl' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the line color. dash Sets the style of the lines. width Sets the line width (in px). """ def __init__(self, arg=None, color=None, dash=None, width=None, **kwargs): """ Construct a new Line object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.scattergl.Line color Sets the line color. dash Sets the style of the lines. width Sets the line width (in px). Returns ------- Line """ super(Line, self).__init__('line') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattergl.Line constructor must be a dict or an instance of plotly.graph_objs.scattergl.Line""" ) # Import validators # ----------------- from plotly.validators.scattergl import (line as v_line) # Initialize validators # --------------------- self._validators['color'] = v_line.ColorValidator() self._validators['dash'] = v_line.DashValidator() self._validators['width'] = v_line.WidthValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('color', None) self.color = color if color is not None else _v _v = arg.pop('dash', None) self.dash = dash if dash is not None else _v _v = arg.pop('width', None) self.width = width if width is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs))
32.294118
78
0.536181
033760337b8304a4ccb5609b7cb5f461908a1b8d
2,146
py
Python
netmiko-interface-example/device_info.py
vabmalikusa/python_code_samples_network
441e6202a69ab94102d9f392e7fea87968f8d09b
[ "MIT" ]
522
2017-02-09T15:28:23.000Z
2022-03-29T18:22:24.000Z
netmiko-interface-example/device_info.py
vabmalikusa/python_code_samples_network
441e6202a69ab94102d9f392e7fea87968f8d09b
[ "MIT" ]
10
2018-03-12T14:47:09.000Z
2021-07-15T15:53:48.000Z
netmiko-interface-example/device_info.py
vabmalikusa/python_code_samples_network
441e6202a69ab94102d9f392e7fea87968f8d09b
[ "MIT" ]
360
2017-02-14T17:41:00.000Z
2022-03-07T07:29:18.000Z
#! /usr/bin/env python """Device Details for DevNet Sandboxes This script is imported into other code. Copyright (c) 2018 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __author__ = "Hank Preston" __author_email__ = "hapresto@cisco.com" __copyright__ = "Copyright (c) 2016 Cisco Systems, Inc." __license__ = "MIT" # DevNet Always-On NETCONF/YANG & RESTCONF Sandbox Device # https://devnetsandbox.cisco.com/RM/Diagram/Index/27d9747a-db48-4565-8d44-df318fce37ad?diagramType=Topology ios_xe1 = { "address": "ios-xe-mgmt.cisco.com", "netconf_port": 10000, "restconf_port": 9443, "ssh_port": 8181, "username": "root", "password": "D_Vay!_10&", "device_type": "cisco_ios" } # DevNet Always-On Sandbox NX-OS # nxos1 = { "address": "sbx-nxos-mgmt.cisco.com", "netconf_port": 10000, "restconf_port": 443, "ssh_port": 818122, "username": "admin", "password": "Admin_1234!", "device_type": "cisco_nxos" } # Sample GitHub Editor Comment.
37.649123
108
0.695713
55cd50b3406fdee633923b952c0960f3234b70dd
1,768
py
Python
bg.py
FrasSmith/backgrads
65cc952e72575f3a4c1d9ad68cd942706229a811
[ "Apache-2.0" ]
null
null
null
bg.py
FrasSmith/backgrads
65cc952e72575f3a4c1d9ad68cd942706229a811
[ "Apache-2.0" ]
null
null
null
bg.py
FrasSmith/backgrads
65cc952e72575f3a4c1d9ad68cd942706229a811
[ "Apache-2.0" ]
null
null
null
# from .image import render_image import PIL from PIL import ImageFont from PIL import Image from PIL import ImageDraw import numpy as np width = 1024 depth = 1024 colourRange = 'full' # ('dark', 'light', 'full') filename = 'output.png' def render_image(backWidth, backDepth, filename, colours='full'): if colourRange == 'dark': startColour = list(np.random.choice(range(128), size=3)) endColour = list(np.random.choice(range(128), size=3)) elif colourRange == 'light': startColourTemp = list(np.random.choice(range(128), size=3)) endColourTemp = list(np.random.choice(range(128), size=3)) startColour = [x+127 for x in startColourTemp] endColour = [x+127 for x in endColourTemp] else: startColour = list(np.random.choice(range(256), size=3)) endColour = list(np.random.choice(range(256), size=3)) hlist = list(np.random.choice([True, False], size=3)) colourArray = get_gradient_3d(backWidth, backDepth, startColour, endColour, hlist) im = Image.fromarray(np.uint8(colourArray)) draw = ImageDraw.Draw(im) im.save(filename) def get_gradient_2d(start, stop, width, height, is_horizontal): if is_horizontal: return np.tile(np.linspace(start, stop, width), (height, 1)) else: return np.tile(np.linspace(start, stop, height), (width, 1)).T def get_gradient_3d(width, height, start_list, stop_list, is_horizontal_list): result = np.zeros((height, width, len(start_list)), dtype=np.float64) for i, (start, stop, is_horizontal) in enumerate(zip(start_list, stop_list, is_horizontal_list)): result[:, :, i] = get_gradient_2d(start, stop, width, height, is_horizontal) return result render_image(width, depth, filename, 'full')
36.081633
101
0.687783
3f0b8fb85ba3433adc4a19f44936ea1d24c04740
1,274
py
Python
main.py
lee15253/edl_bk
6777f5803138e6a64dabb096fe18a495728aabe3
[ "MIT" ]
null
null
null
main.py
lee15253/edl_bk
6777f5803138e6a64dabb096fe18a495728aabe3
[ "MIT" ]
null
null
null
main.py
lee15253/edl_bk
6777f5803138e6a64dabb096fe18a495728aabe3
[ "MIT" ]
null
null
null
# Copyright (c) 2019, salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: MIT # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/MIT import ipdb if __name__ == "__main__": import torch.multiprocessing as mp # https://github.com/pytorch/pytorch/issues/3492#issuecomment-392977006 try: mp.set_start_method('spawn') except RuntimeError: pass import os os.environ["OMP_NUM_THREADS"] = "1" import time from dist_train.utils.experiment_bookend import open_experiment from dist_train.workers import synchronous_worker if __name__ == '__main__': # Interpret the arguments. Load the shared model/optimizer. Fetch the config file. model, _, config, args = open_experiment(apply_time_machine=True) print(' ', flush=True) model.reset() print(' ', flush=True) # Create a group of workers print('Launching the individual workers...', flush=True) processes = [] for rank in range(args.N): # The workers perform roll-outs and synchronize gradients p = mp.Process(target=synchronous_worker, args=(int(rank), config, args)) p.start() time.sleep(0.25) processes.append(p) for p in processes: p.join()
31.073171
101
0.694662
e9118d1ffe9715cecd0e9e336a3bc85ce92829db
4,455
py
Python
opendeep/log/logger.py
vitruvianscience/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
252
2015-03-13T21:55:22.000Z
2021-09-06T21:37:38.000Z
opendeep/log/logger.py
afcarl/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
16
2015-03-14T06:47:04.000Z
2016-09-23T19:13:35.000Z
opendeep/log/logger.py
afcarl/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
68
2015-03-14T00:05:53.000Z
2020-06-04T13:36:13.000Z
""" Configuring the logger for our example needs. By default in the logging_config.json file, this will print logging levels of info and higher to log files in the logs/ directory. Debug goes to console. """ # standard libraries import os import logging import logging.config import json # internal references from opendeep.utils.file_ops import mkdir_p def get_root_logger(): """ Grabs the logger instance for the root of the OpenDeep package. Returns ------- logger The logger for the root of the OpenDeep package. """ return logging.getLogger(__name__.split('.')[0]) def config_root_logger(config_file='logging_config.json'): """ Configures the root logger (returned from get_root_logger()) to the specifications in the JSON file `config_file`. Parameters ---------- config_file : str The string path to the configuration JSON file to use. """ # this could be called from scripts anywhere, but we want to keep the log-related items in this directory. # therefore, change the cwd to this file's directory and then change back at the end. prevdir = os.path.realpath(os.getcwd()) os.chdir(os.path.split(os.path.realpath(__file__))[0]) # load the basic parameters from the JSON configuration file # config_file = os.path.join(os.path.split(os.path.realpath(__file__))[0], config_file) path = config_file env_key = 'LOG_CFG' value = os.getenv(env_key, None) if value: path = value # if the configuration exists init = True if os.path.exists(path): with open(path, 'rt') as f: try: config = json.load(f) except: logging.basicConfig(level=logging.DEBUG) logger = get_root_logger() logger.exception('Exception in reading the JSON logging config file!') logger.warning('Anyway, loading the basicConfig for the logger instead.') init = False if init: # make the file paths to the log files for handler in config.get('handlers', None): if handler is not None: path = config.get('handlers').get(handler).get('filename') if path is not None: path = os.path.normpath(path) (dirs, _) = os.path.split(path) if len(dirs) is not 0: # dirs = os.path.join(os.path.split(os.path.realpath(__file__))[0], dirs) try: mkdir_p(dirs) except: logging.basicConfig(level=logging.DEBUG) logger = get_root_logger() logger.exception('Exception in creating the directory for a logging handler! ' 'Path was {0!s}'.format(os.path.realpath(dirs))) logger.warning('Anyway, loading the basicConfig for the logger instead.') init = False # load the configuration into the logging module if init: try: logging.config.dictConfig(config) except: logging.basicConfig(level=logging.DEBUG) logger = get_root_logger() logger.exception('Exception in loading the JSON logging config file to the logging module!') logger.warning('Anyway, loading the basicConfig for the logger instead.') # otherwise, couldn't find the configuration file else: logging.basicConfig(level=logging.DEBUG) logger = get_root_logger() logger.warning("Could not find configuration file for logger! Was looking for {0!s}. " "Using basicConfig instead...".format(os.path.realpath(path))) # change the directory to the calling file's working directory os.chdir(prevdir) def delete_root_logger(): """ Deletes the root logger (returned from get_root_logger()). This removes all existing handlers for the logger, which effectively renders it useless. """ # get rid of all the existing handlers - effectively renders the logger useless root_logger = get_root_logger() while root_logger.handlers: root_logger.handlers.pop()
40.135135
118
0.595511
eb6a5261872eeb42706a34a1204ed8449fc7e138
877
py
Python
COLAB-GOOGLE-Practices/colab google/data/L3/l3.py
ailabteam/Daily-Working
0a36b5b6e92941e2e101a151eda202cb57567f4a
[ "MIT" ]
1
2019-10-24T04:19:00.000Z
2019-10-24T04:19:00.000Z
COLAB-GOOGLE-Practices/colab google/data/L3/l3.py
ailabteam/Daily-Working
0a36b5b6e92941e2e101a151eda202cb57567f4a
[ "MIT" ]
null
null
null
COLAB-GOOGLE-Practices/colab google/data/L3/l3.py
ailabteam/Daily-Working
0a36b5b6e92941e2e101a151eda202cb57567f4a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Mar 5 10:56:14 2019 @author: DELL """ import numpy as np import pandas as pd import matplotlib.pyplot as plt # Hàm sigmoid def sigmoid(x): return 1 / (1 + np.exp(-x)) # Toán tử AND plt.scatter([1], [1], c='red', edgecolors='none', s=30, label='cho vay') plt.scatter([0, 0, 1], [0, 1, 0], c='blue', edgecolors='none', s=30, label='từ chối') plt.plot([0, 1.5], [1.5, 0], 'g') # Toán tử OR plt.scatter([0, 1, 1], [1, 0, 1], c='red', edgecolors='none', s=30, label='cho vay') plt.scatter([0], [0], c='blue', edgecolors='none', s=30, label='từ chối') plt.plot([-0.5, 1.5], [1, -1], 'g') plt.xlabel('x1') plt.ylabel('x2') # Toán tử XOR plt.scatter([1, 0], [0, 1], c='red', edgecolors='none', s=30, label='cho vay') plt.scatter([1, 0], [1, 0], c='blue', edgecolors='none', s=30, label='từ chối') plt.xlabel('x1') plt.ylabel('x2')
26.575758
85
0.588369
c10fc98f6f9cd46663649e015de46f17bd21c926
10,918
py
Python
statsmodels/graphics/tsaplots.py
larsoner/statsmodels
e0b772ed95880e58fd0c089c04ab01eb393c2485
[ "BSD-3-Clause" ]
6
2017-08-23T12:43:44.000Z
2021-08-18T08:20:15.000Z
statsmodels/graphics/tsaplots.py
bert9bert/statsmodels
898ddfc483c45bb0f8e5156dd8506abda84c9b63
[ "BSD-3-Clause" ]
null
null
null
statsmodels/graphics/tsaplots.py
bert9bert/statsmodels
898ddfc483c45bb0f8e5156dd8506abda84c9b63
[ "BSD-3-Clause" ]
3
2017-08-23T12:43:49.000Z
2018-04-24T02:27:33.000Z
"""Correlation plot functions.""" import numpy as np from statsmodels.compat.pandas import sort_values from statsmodels.graphics import utils from statsmodels.tsa.stattools import acf, pacf def _prepare_data_corr_plot(x, lags, zero): zero = bool(zero) irregular = False if zero else True if lags is None: lags = np.arange(not zero, len(x)) elif np.isscalar(lags): lags = np.arange(not zero, int(lags) + 1) # +1 for zero lag else: irregular = True lags = np.asanyarray(lags).astype(np.int) nlags = lags.max(0) return lags, nlags, irregular def _plot_corr(ax, title, acf_x, confint, lags, irregular, use_vlines, **kwargs): if irregular: acf_x = acf_x[lags] if confint is not None: confint = confint[lags] if use_vlines: ax.vlines(lags, [0], acf_x, **kwargs) ax.axhline(**kwargs) kwargs.setdefault('marker', 'o') kwargs.setdefault('markersize', 5) kwargs.setdefault('linestyle', 'None') ax.margins(.05) ax.plot(lags, acf_x, **kwargs) ax.set_title(title) if confint is not None: if lags[0] == 0: lags = lags[1:] confint = confint[1:] acf_x = acf_x[1:] ax.fill_between(lags, confint[:, 0] - acf_x, confint[:, 1] - acf_x, alpha=.25) def plot_acf(x, ax=None, lags=None, alpha=.05, use_vlines=True, unbiased=False, fft=False, title='Autocorrelation', zero=True, **kwargs): """Plot the autocorrelation function Plots lags on the horizontal and the correlations on vertical axis. Parameters ---------- x : array_like Array of time-series values ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. lags : int or array_like, optional int or Array of lag values, used on horizontal axis. Uses np.arange(lags) when lags is an int. If not provided, ``lags=np.arange(len(corr))`` is used. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett's formula. If None, no confidence intervals are plotted. use_vlines : bool, optional If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is 'o'; it can be overridden with a ``marker`` kwarg. unbiased : bool If True, then denominators for autocovariance are n-k, otherwise n fft : bool, optional If True, computes the ACF via FFT. title : str, optional Title to place on plot. Default is 'Autocorrelation' zero : bool, optional Flag indicating whether to include the 0-lag autocorrelation. Default is True. **kwargs : kwargs, optional Optional keyword arguments that are directly passed on to the Matplotlib ``plot`` and ``axhline`` functions. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- matplotlib.pyplot.xcorr matplotlib.pyplot.acorr mpl_examples/pylab_examples/xcorr_demo.py Notes ----- Adapted from matplotlib's `xcorr`. Data are plotted as ``plot(lags, corr, **kwargs)`` """ fig, ax = utils.create_mpl_ax(ax) lags, nlags, irregular = _prepare_data_corr_plot(x, lags, zero) confint = None # acf has different return type based on alpha if alpha is None: acf_x = acf(x, nlags=nlags, alpha=alpha, fft=fft, unbiased=unbiased) else: acf_x, confint = acf(x, nlags=nlags, alpha=alpha, fft=fft, unbiased=unbiased) _plot_corr(ax, title, acf_x, confint, lags, irregular, use_vlines, **kwargs) return fig def plot_pacf(x, ax=None, lags=None, alpha=.05, method='ywm', use_vlines=True, title='Partial Autocorrelation', zero=True, **kwargs): """Plot the partial autocorrelation function Plots lags on the horizontal and the correlations on vertical axis. Parameters ---------- x : array_like Array of time-series values ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. lags : int or array_like, optional int or Array of lag values, used on horizontal axis. Uses np.arange(lags) when lags is an int. If not provided, ``lags=np.arange(len(corr))`` is used. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)) method : 'ywunbiased' (default) or 'ywmle' or 'ols' specifies which method for the calculations to use: - yw or ywunbiased : yule walker with bias correction in denominator for acovf - ywm or ywmle : yule walker without bias correction - ols - regression of time series on lags of it and on constant - ld or ldunbiased : Levinson-Durbin recursion with bias correction - ldb or ldbiased : Levinson-Durbin recursion without bias correction use_vlines : bool, optional If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is 'o'; it can be overridden with a ``marker`` kwarg. title : str, optional Title to place on plot. Default is 'Partial Autocorrelation' zero : bool, optional Flag indicating whether to include the 0-lag autocorrelation. Default is True. **kwargs : kwargs, optional Optional keyword arguments that are directly passed on to the Matplotlib ``plot`` and ``axhline`` functions. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- matplotlib.pyplot.xcorr matplotlib.pyplot.acorr mpl_examples/pylab_examples/xcorr_demo.py Notes ----- Adapted from matplotlib's `xcorr`. Data are plotted as ``plot(lags, corr, **kwargs)`` """ fig, ax = utils.create_mpl_ax(ax) lags, nlags, irregular = _prepare_data_corr_plot(x, lags, zero) confint = None if alpha is None: acf_x = pacf(x, nlags=nlags, alpha=alpha, method=method) else: acf_x, confint = pacf(x, nlags=nlags, alpha=alpha, method=method) _plot_corr(ax, title, acf_x, confint, lags, irregular, use_vlines, **kwargs) return fig def seasonal_plot(grouped_x, xticklabels, ylabel=None, ax=None): """ Consider using one of month_plot or quarter_plot unless you need irregular plotting. Parameters ---------- grouped_x : iterable of DataFrames Should be a GroupBy object (or similar pair of group_names and groups as DataFrames) with a DatetimeIndex or PeriodIndex xticklabels : list of str List of season labels, one for each group. ylabel : str Lable for y axis ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. """ fig, ax = utils.create_mpl_ax(ax) start = 0 ticks = [] for season, df in grouped_x: df = df.copy() # or sort balks for series. may be better way df.sort_index() nobs = len(df) x_plot = np.arange(start, start + nobs) ticks.append(x_plot.mean()) ax.plot(x_plot, df.values, 'k') ax.hlines(df.values.mean(), x_plot[0], x_plot[-1], colors='r', linewidth=3) start += nobs ax.set_xticks(ticks) ax.set_xticklabels(xticklabels) ax.set_ylabel(ylabel) ax.margins(.1, .05) return fig def month_plot(x, dates=None, ylabel=None, ax=None): """ Seasonal plot of monthly data Parameters ---------- x : array-like Seasonal data to plot. If dates is None, x must be a pandas object with a PeriodIndex or DatetimeIndex with a monthly frequency. dates : array-like, optional If `x` is not a pandas object, then dates must be supplied. ylabel : str, optional The label for the y-axis. Will attempt to use the `name` attribute of the Series. ax : matplotlib.axes, optional Existing axes instance. Returns ------- matplotlib.Figure Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.elnino.load_pandas().data >>> dta['YEAR'] = dta.YEAR.astype(int).astype(str) >>> dta = dta.set_index('YEAR').T.unstack() >>> dates = pd.to_datetime(list(map(lambda x : '-'.join(x) + '-1', ... dta.index.values))) >>> dta.index = pd.DatetimeIndex(dates, freq='MS') >>> fig = sm.graphics.tsa.month_plot(dta) .. plot:: plots/graphics_month_plot.py """ from pandas import DataFrame if dates is None: from statsmodels.tools.data import _check_period_index _check_period_index(x, freq="M") else: from pandas import Series, PeriodIndex x = Series(x, index=PeriodIndex(dates, freq="M")) xticklabels = ['j','f','m','a','m','j','j','a','s','o','n','d'] return seasonal_plot(x.groupby(lambda y : y.month), xticklabels, ylabel=ylabel, ax=ax) def quarter_plot(x, dates=None, ylabel=None, ax=None): """ Seasonal plot of quarterly data Parameters ---------- x : array-like Seasonal data to plot. If dates is None, x must be a pandas object with a PeriodIndex or DatetimeIndex with a monthly frequency. dates : array-like, optional If `x` is not a pandas object, then dates must be supplied. ylabel : str, optional The label for the y-axis. Will attempt to use the `name` attribute of the Series. ax : matplotlib.axes, optional Existing axes instance. Returns ------- matplotlib.Figure """ from pandas import DataFrame if dates is None: from statsmodels.tools.data import _check_period_index _check_period_index(x, freq="Q") else: from pandas import Series, PeriodIndex x = Series(x, index=PeriodIndex(dates, freq="Q")) xticklabels = ['q1', 'q2', 'q3', 'q4'] return seasonal_plot(x.groupby(lambda y : y.quarter), xticklabels, ylabel=ylabel, ax=ax)
33.388379
86
0.632259
80b49d0ae4cf3e9c0edaafde8d39e6770890217f
454
py
Python
Sorting/problems/two_array_element_swap.py
kimjiwook0129/Coding-Interivew-Cheatsheet
574e6acecdb617b9c3cef7ec3b154ab183d8b99a
[ "MIT" ]
3
2022-01-09T04:33:04.000Z
2022-02-04T17:40:43.000Z
Sorting/problems/two_array_element_swap.py
kimjiwook0129/Coding-Interivew-Cheatsheet
574e6acecdb617b9c3cef7ec3b154ab183d8b99a
[ "MIT" ]
null
null
null
Sorting/problems/two_array_element_swap.py
kimjiwook0129/Coding-Interivew-Cheatsheet
574e6acecdb617b9c3cef7ec3b154ab183d8b99a
[ "MIT" ]
null
null
null
# 이것이 코딩테스트다 p.182 import sys if __name__ == "__main__": N, K = map(int, input().split()) lst_A = list(map(int, sys.stdin.readline().rstrip().split())) lst_B = list(map(int, sys.stdin.readline().rstrip().split())) lst_A.sort() lst_B.sort() for i in range(K): a = lst_A[i] b = lst_B[N - i - 1] if b > a: lst_A[i], lst_B[N - i - 1] = b, a else: break print(sum(lst_A))
25.222222
65
0.506608
0eaeead28a385652269daff022ab2b305aec76f0
902
py
Python
setup.py
HaxballGym/HaxballGym-tools
ec627801c7eac1ebf71fef75b4c3696fd1baea27
[ "Apache-2.0" ]
null
null
null
setup.py
HaxballGym/HaxballGym-tools
ec627801c7eac1ebf71fef75b4c3696fd1baea27
[ "Apache-2.0" ]
null
null
null
setup.py
HaxballGym/HaxballGym-tools
ec627801c7eac1ebf71fef75b4c3696fd1baea27
[ "Apache-2.0" ]
null
null
null
from setuptools import setup, find_packages __version__ = None # This will get replaced when reading version.py exec(open('haxballgym_tools/version.py').read()) with open('README.md', 'r') as readme_file: long_description = readme_file.read() setup( name='haxballgym_tools', packages=find_packages(), version=__version__, description='Extra tools for HaxballGym, like SB3 compatibility', long_description=long_description, long_description_content_type='text/markdown', author='Wazarr', install_requires=[ 'haxballgym>=0.3.0', ], python_requires='>=3.7', license='Apache 2.0', license_file='LICENSE', keywords=['haxball', 'gym', 'reinforcement-learning'], classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3', ], )
31.103448
69
0.677384
6f8011a6cf74ce96501920266aa080d8474f355a
3,262
py
Python
manila_ui/dashboards/admin/share_instances/views.py
mail2nsrajesh/manila-ui
6c55579d69083525b40ad85a2bd83deebbaa9eeb
[ "Apache-2.0" ]
null
null
null
manila_ui/dashboards/admin/share_instances/views.py
mail2nsrajesh/manila-ui
6c55579d69083525b40ad85a2bd83deebbaa9eeb
[ "Apache-2.0" ]
null
null
null
manila_ui/dashboards/admin/share_instances/views.py
mail2nsrajesh/manila-ui
6c55579d69083525b40ad85a2bd83deebbaa9eeb
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Admin views for managing share instances. """ from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import tables from horizon import tabs from horizon.utils import memoized from manila_ui.api import manila from manila_ui.dashboards.admin.share_instances import tables as si_tables from manila_ui.dashboards.admin.share_instances import tabs as si_tabs from manila_ui.dashboards import utils as ui_utils class ShareInstancesView(tables.MultiTableView): table_classes = ( si_tables.ShareInstancesTable, ) template_name = "admin/share_instances/index.html" page_title = _("Share Instances") @memoized.memoized_method def get_share_instances_data(self): try: share_instances = manila.share_instance_list(self.request) except Exception: share_instances = [] exceptions.handle( self.request, _("Unable to retrieve share instances.")) return share_instances class ShareInstanceDetailView(tabs.TabView): tab_group_class = si_tabs.ShareInstanceDetailTabs template_name = 'admin/share_instances/detail.html' def get_context_data(self, **kwargs): context = super(self.__class__, self).get_context_data(**kwargs) share_instance = self.get_data() context["share_instance"] = share_instance context["page_title"] = ( _("Share Instance Details: %s") % share_instance.id) return context @memoized.memoized_method def get_data(self): try: share_instance_id = self.kwargs['share_instance_id'] share_instance = manila.share_instance_get( self.request, share_instance_id) share_instance.export_locations = ( manila.share_instance_export_location_list( self.request, share_instance_id)) export_locations = [ exp['path'] for exp in share_instance.export_locations ] share_instance.el_size = ui_utils.calculate_longest_str_size( export_locations) return share_instance except Exception: redirect = reverse('horizon:admin:share_instances:index') exceptions.handle( self.request, _('Unable to retrieve share instance details.'), redirect=redirect) def get_tabs(self, request, *args, **kwargs): share_instance = self.get_data() return self.tab_group_class( request, share_instance=share_instance, **kwargs)
37.068182
78
0.685162
533bc04a57f367682885026a43c5f20be1049f65
1,967
py
Python
grr/server/grr_response_server/gui/api_plugins/config_regression_test.py
tsehori/grr
048506f22f74642bfe61749069a45ddf496fdab3
[ "Apache-2.0" ]
1
2021-07-01T01:43:06.000Z
2021-07-01T01:43:06.000Z
grr/server/grr_response_server/gui/api_plugins/config_regression_test.py
tsehori/grr
048506f22f74642bfe61749069a45ddf496fdab3
[ "Apache-2.0" ]
44
2021-05-14T22:49:24.000Z
2022-03-13T21:54:02.000Z
grr/server/grr_response_server/gui/api_plugins/config_regression_test.py
tsehori/grr
048506f22f74642bfe61749069a45ddf496fdab3
[ "Apache-2.0" ]
1
2020-06-25T14:25:54.000Z
2020-06-25T14:25:54.000Z
#!/usr/bin/env python # Lint as: python3 """This modules contains regression tests for config API handler.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from absl import app from grr_response_server.gui import api_regression_test_lib from grr_response_server.gui.api_plugins import config as config_plugin from grr_response_server.gui.api_plugins import config_test as config_plugin_test class ApiListGrrBinariesHandlerRegressionTest( config_plugin_test.ApiGrrBinaryTestMixin, api_regression_test_lib.ApiRegressionTest): api_method = "ListGrrBinaries" handler = config_plugin.ApiListGrrBinariesHandler def Run(self): self.SetUpBinaries() self.Check("ListGrrBinaries") class ApiGetGrrBinaryHandlerRegressionTest( config_plugin_test.ApiGrrBinaryTestMixin, api_regression_test_lib.ApiRegressionTest): api_method = "GetGrrBinary" handler = config_plugin.ApiGetGrrBinaryHandler def Run(self): self.SetUpBinaries() self.Check( "GetGrrBinary", args=config_plugin.ApiGetGrrBinaryArgs(type="PYTHON_HACK", path="test")) self.Check( "GetGrrBinary", args=config_plugin.ApiGetGrrBinaryArgs( type="EXECUTABLE", path="windows/test.exe")) class ApiGetGrrBinaryBlobHandlerRegressionTest( config_plugin_test.ApiGrrBinaryTestMixin, api_regression_test_lib.ApiRegressionTest): api_method = "GetGrrBinaryBlob" handler = config_plugin.ApiGetGrrBinaryBlobHandler def Run(self): self.SetUpBinaries() self.Check( "GetGrrBinaryBlob", args=config_plugin.ApiGetGrrBinaryBlobArgs( type="PYTHON_HACK", path="test")) self.Check( "GetGrrBinaryBlob", args=config_plugin.ApiGetGrrBinaryBlobArgs( type="EXECUTABLE", path="windows/test.exe")) def main(argv): api_regression_test_lib.main(argv) if __name__ == "__main__": app.run(main)
26.581081
81
0.758516
644d6fd768fbd4fbfa0d82a696d80bff9bc7e645
4,453
gyp
Python
shared_model/packages/javascript/binding.gyp
steephengeorge/iroha
9e0e19035308c6ebaf706f709c5b7b3ac46e708b
[ "Apache-2.0" ]
null
null
null
shared_model/packages/javascript/binding.gyp
steephengeorge/iroha
9e0e19035308c6ebaf706f709c5b7b3ac46e708b
[ "Apache-2.0" ]
null
null
null
shared_model/packages/javascript/binding.gyp
steephengeorge/iroha
9e0e19035308c6ebaf706f709c5b7b3ac46e708b
[ "Apache-2.0" ]
null
null
null
{ 'variables': { 'iroha_home_dir': '../../../' }, 'targets': [ { 'target_name': 'shared_model', 'type': 'none', 'actions': [ { 'action_name': 'configure', 'message': 'Generate CMake build configuration for shared_model...', 'inputs': [ '<(iroha_home_dir)/shared_model/bindings/CMakeLists.txt' ], 'outputs': [ '<(SHARED_INTERMEDIATE_DIR)/shared_model/bindings/Makefile', ], 'action': [ 'cmake', '-H<(iroha_home_dir)', '-B<(SHARED_INTERMEDIATE_DIR)', '-DSWIG_NODE=ON', '-DENABLE_LIBS_PACKAGING=OFF', '-DSHARED_MODEL_DISABLE_COMPATIBILITY=ON', '-DCMAKE_POSITION_INDEPENDENT_CODE=ON', '-DCMAKE_BUILD_TYPE=Release' ], }, { 'action_name': 'build', 'message': 'Build shared_model libraries by CMake...', 'inputs': [ '<(SHARED_INTERMEDIATE_DIR)/shared_model/bindings/Makefile', ], 'outputs': [ '<(SHARED_INTERMEDIATE_DIR)/shared_model/bindings/bindingsJAVASCRIPT_wrap.cxx', '<(SHARED_INTERMEDIATE_DIR)/shared_model/bindings/libirohanode.a', '<(SHARED_INTERMEDIATE_DIR)/shared_model/bindings/libbindings.a' ], 'action': [ 'cmake', '--build', '<(SHARED_INTERMEDIATE_DIR)', '--target', 'irohanode', '--', '-j<!(echo "$(getconf _NPROCESSORS_ONLN)")' ] }, ], ### # Copy all necessary static libs to PRODUCT_DIR, so we ensure their existence! ### 'copies': [ { 'files': [ '<(SHARED_INTERMEDIATE_DIR)/shared_model/bindings/libirohanode.a', '<(SHARED_INTERMEDIATE_DIR)/shared_model/bindings/libbindings.a', '<(SHARED_INTERMEDIATE_DIR)/schema/libschema.a', '<(SHARED_INTERMEDIATE_DIR)/libs/generator/libgenerator.a', '<(SHARED_INTERMEDIATE_DIR)/libs/amount/libiroha_amount.a', '<(SHARED_INTERMEDIATE_DIR)/shared_model/validators/libshared_model_stateless_validation.a', # Cryptography libs '<(SHARED_INTERMEDIATE_DIR)/shared_model/cryptography/ed25519_sha3_impl/libshared_model_cryptography.a', '<(SHARED_INTERMEDIATE_DIR)/shared_model/cryptography/ed25519_sha3_impl/internal/libhash.a', '<(SHARED_INTERMEDIATE_DIR)/shared_model/cryptography/ed25519_sha3_impl/internal/libed25519_crypto.a', '<(SHARED_INTERMEDIATE_DIR)/shared_model/cryptography/model_impl/libshared_model_cryptography_model.a', # Third-party libraries '<(iroha_home_dir)/external/src/hyperledger_ed25519-build/libed25519.a' ], 'destination': '<(PRODUCT_DIR)' } ] }, { 'target_name': '<(module_name)', 'dependencies': [ 'shared_model' ], 'include_dirs': [ '<(iroha_home_dir)/shared_model', '<(iroha_home_dir)/libs', '<(iroha_home_dir)/schema' ], 'sources': [ '<(SHARED_INTERMEDIATE_DIR)/shared_model/bindings/bindingsJAVASCRIPT_wrap.cxx' ], 'cflags_cc': ['-std=c++14', '-fexceptions', '-DDISABLE_BACKWARD'], 'cflags_cc!': ['-fno-rtti'], 'libraries': [ '-L/usr/local/lib', '-L<(PRODUCT_DIR)', '-lirohanode', # Library contains SWIG runtime '-lbindings', '-lgenerator', '-liroha_amount', '-lschema', '-lshared_model_stateless_validation', # Cryptography libs '-lshared_model_cryptography', '-lhash', '-led25519_crypto', '-lshared_model_cryptography_model', # Third-party libraries '-led25519', '-lprotobuf' ], 'conditions': [ [ 'OS == "mac"', { 'xcode_settings': { 'GCC_ENABLE_CPP_RTTI': 'YES', 'GCC_ENABLE_CPP_EXCEPTIONS': 'YES', 'OTHER_CFLAGS': ['-std=c++14', '-DDISABLE_BACKWARD'] } } ] ] }, { 'target_name': 'action_after_build', 'type': 'none', 'dependencies': [ '<(module_name)' ], 'copies': [ { 'files': [ '<(PRODUCT_DIR)/<(module_name).node' ], 'destination': '<(module_path)' } ] } ] }
33.734848
116
0.551314
36527fe25558e6edecd224b2cea50bc2e0c8b979
1,297
py
Python
vanmongo/connection.py
SatelCreative/vanmongo
9037c0c0ad56f6fa3fb687c48607c285c4e14a03
[ "MIT" ]
null
null
null
vanmongo/connection.py
SatelCreative/vanmongo
9037c0c0ad56f6fa3fb687c48607c285c4e14a03
[ "MIT" ]
5
2021-06-25T17:49:21.000Z
2021-09-15T00:15:58.000Z
vanmongo/connection.py
SatelCreative/vanmongo
9037c0c0ad56f6fa3fb687c48607c285c4e14a03
[ "MIT" ]
null
null
null
from __future__ import annotations from base64 import b64decode, b64encode from typing import Any, Generic, List, Optional, Type, TypeVar from pydantic import BaseModel from pydantic.generics import GenericModel Node = TypeVar("Node") Model = TypeVar("Model", bound=BaseModel) def base64_encode_model(model: Model) -> str: return b64encode(model.json(exclude_none=True).encode()).decode() def base64_decode_model(Model: Type[Model], value: str) -> Model: return Model.parse_raw(b64decode(value.encode())) class MongoCursor(BaseModel): id: str sort: Optional[str] = None value: Optional[Any] = None def base64_encode(self): return base64_encode_model(self) @classmethod def base64_decode(cls, value: str): return base64_decode_model(cls, value) class MeilCursor(BaseModel): offset: int query: str def base64_encode(self): return base64_encode_model(self) @classmethod def base64_decode(cls, value: str): return base64_decode_model(cls, value) class Edge(GenericModel, Generic[Node]): node: Node cursor: str class PageInfo(BaseModel): has_next_page: bool has_previous_page: bool class Connection(GenericModel, Generic[Node]): edges: List[Edge[Node]] page_info: PageInfo
21.983051
69
0.718581
d2adeba08a4794c3c7b4cb4a13be4a8e631bafdc
20,409
py
Python
tools/rating_curve_comparison.py
hohe12ly/inundation-mapping
d133addd4d730b5c468dcf1a8f7dfab35c55cbd7
[ "Info-ZIP" ]
25
2020-10-13T17:45:31.000Z
2022-01-25T18:35:49.000Z
tools/rating_curve_comparison.py
dhardestylewis/cahaba
dcf414f5655ecafbf8bb62cd219aef405e55f0a2
[ "Info-ZIP" ]
422
2020-10-06T16:48:38.000Z
2022-02-03T22:43:23.000Z
tools/rating_curve_comparison.py
dhardestylewis/cahaba
dcf414f5655ecafbf8bb62cd219aef405e55f0a2
[ "Info-ZIP" ]
7
2020-10-06T16:17:49.000Z
2021-12-07T23:16:05.000Z
#!/usr/bin/env python3 import os import sys import pandas as pd import numpy as np import argparse import matplotlib.pyplot as plt import seaborn as sns from functools import reduce from multiprocessing import Pool from os.path import isfile, join import shutil import warnings from pathlib import Path import time warnings.simplefilter(action='ignore', category=FutureWarning) """ Plot Rating Curves and Compare to USGS Gages Parameters ---------- fim_dir : str Directory containing FIM output folders. output_dir : str Directory containing rating curve plots and tables. usgs_gages_filename : str File name of USGS rating curves. nwm_flow_dir : str Directory containing NWM recurrence flows files. number_of_jobs : str Number of jobs. stat_groups : str string of columns to group eval metrics. """ def check_file_age(file): ''' Checks if file exists, determines the file age, and recommends updating if older than 1 month. Returns ------- None. ''' file = Path(file) if file.is_file(): modification_time = file.stat().st_mtime current_time = time.time() file_age_days = (current_time - modification_time)/86400 if file_age_days > 30: check = f'{file.name} is {int(file_age_days)} days old, consider updating.\nUpdate with rating_curve_get_usgs_curves.py' else: check = f'{file.name} is {int(file_age_days)} days old.' return check # recurr_intervals = ['recurr_1_5_cms.csv','recurr_5_0_cms.csv','recurr_10_0_cms.csv'] def generate_rating_curve_metrics(args): elev_table_filename = args[0] hydrotable_filename = args[1] usgs_gages_filename = args[2] usgs_recurr_stats_filename = args[3] nwm_recurr_data_filename = args[4] rc_comparison_plot_filename = args[5] nwm_flow_dir = args[6] catfim_flows_filename = args[7] huc = args[8] elev_table = pd.read_csv(elev_table_filename,dtype={'location_id': str}) hydrotable = pd.read_csv(hydrotable_filename,dtype={'HUC': str,'feature_id': str}) usgs_gages = pd.read_csv(usgs_gages_filename,dtype={'location_id': str}) # Join rating curves with elevation data hydrotable = hydrotable.merge(elev_table, on="HydroID") relevant_gages = list(hydrotable.location_id.unique()) usgs_gages = usgs_gages[usgs_gages['location_id'].isin(relevant_gages)] usgs_gages = usgs_gages.reset_index(drop=True) if len(usgs_gages) > 0: # Adjust rating curve to elevation hydrotable['elevation_ft'] = (hydrotable.stage + hydrotable.dem_adj_elevation) * 3.28084 # convert from m to ft # hydrotable['raw_elevation_ft'] = (hydrotable.stage + hydrotable.dem_elevation) * 3.28084 # convert from m to ft hydrotable['discharge_cfs'] = hydrotable.discharge_cms * 35.3147 usgs_gages = usgs_gages.rename(columns={"flow": "discharge_cfs", "elevation_navd88": "elevation_ft"}) hydrotable['source'] = "FIM" usgs_gages['source'] = "USGS" limited_hydrotable = hydrotable.filter(items=['location_id','elevation_ft','discharge_cfs','source']) select_usgs_gages = usgs_gages.filter(items=['location_id', 'elevation_ft', 'discharge_cfs','source']) rating_curves = limited_hydrotable.append(select_usgs_gages) # Add stream order stream_orders = hydrotable.filter(items=['location_id','str_order']).drop_duplicates() rating_curves = rating_curves.merge(stream_orders, on='location_id') rating_curves['str_order'] = rating_curves['str_order'].astype('int') # plot rating curves generate_facet_plot(rating_curves, rc_comparison_plot_filename) # NWM recurr intervals recurr_1_5_yr_filename = join(nwm_flow_dir,'recurr_1_5_cms.csv') recurr_5_yr_filename = join(nwm_flow_dir,'recurr_5_0_cms.csv') recurr_10_yr_filename = join(nwm_flow_dir,'recurr_10_0_cms.csv') # Update column names recurr_1_5_yr = pd.read_csv(recurr_1_5_yr_filename,dtype={'feature_id': str}) recurr_1_5_yr = recurr_1_5_yr.rename(columns={"discharge": "1.5"}) recurr_5_yr = pd.read_csv(recurr_5_yr_filename,dtype={'feature_id': str}) recurr_5_yr = recurr_5_yr.rename(columns={"discharge": "5.0"}) recurr_10_yr = pd.read_csv(recurr_10_yr_filename,dtype={'feature_id': str}) recurr_10_yr = recurr_10_yr.rename(columns={"discharge": "10.0"}) # Merge NWM recurr intervals into a single layer nwm_recurr_intervals_all = reduce(lambda x,y: pd.merge(x,y, on='feature_id', how='outer'), [recurr_1_5_yr, recurr_5_yr, recurr_10_yr]) nwm_recurr_intervals_all = pd.melt(nwm_recurr_intervals_all, id_vars=['feature_id'], value_vars=['1.5','5.0','10.0'], var_name='recurr_interval', value_name='discharge_cms') # Append catfim data (already set up in format similar to nwm_recurr_intervals_all) cat_fim = pd.read_csv(catfim_flows_filename, dtype={'feature_id':str}) nwm_recurr_intervals_all = nwm_recurr_intervals_all.append(cat_fim) # Convert discharge to cfs and filter nwm_recurr_intervals_all['discharge_cfs'] = nwm_recurr_intervals_all.discharge_cms * 35.3147 nwm_recurr_intervals_all = nwm_recurr_intervals_all.filter(items=['discharge_cfs', 'recurr_interval','feature_id']).drop_duplicates() # Identify unique gages usgs_crosswalk = hydrotable.filter(items=['location_id', 'feature_id']).drop_duplicates() nwm_recurr_data_table = pd.DataFrame() usgs_recurr_data = pd.DataFrame() # Interpolate USGS/FIM elevation at each gage for index, gage in usgs_crosswalk.iterrows(): # Interpolate USGS elevation at NWM recurrence intervals usgs_rc = rating_curves.loc[(rating_curves.location_id==gage.location_id) & (rating_curves.source=="USGS")] if len(usgs_rc) <1: print(f"missing USGS rating curve data for usgs station {gage.location_id} in huc {huc}") continue str_order = np.unique(usgs_rc.str_order).item() feature_id = str(gage.feature_id) usgs_pred_elev = get_reccur_intervals(usgs_rc, usgs_crosswalk,nwm_recurr_intervals_all) # Handle sites missing data if len(usgs_pred_elev) <1: print(f"missing USGS elevation data for usgs station {gage.location_id} in huc {huc}") continue # Clean up data usgs_pred_elev['location_id'] = gage.location_id usgs_pred_elev = usgs_pred_elev.filter(items=['location_id','recurr_interval', 'discharge_cfs','pred_elev']) usgs_pred_elev = usgs_pred_elev.rename(columns={"pred_elev": "USGS"}) # Interpolate FIM elevation at NWM recurrence intervals fim_rc = rating_curves.loc[(rating_curves.location_id==gage.location_id) & (rating_curves.source=="FIM")] if len(fim_rc) <1: print(f"missing FIM rating curve data for usgs station {gage.location_id} in huc {huc}") continue fim_pred_elev = get_reccur_intervals(fim_rc, usgs_crosswalk,nwm_recurr_intervals_all) # Handle sites missing data if len(fim_pred_elev) <1: print(f"missing FIM elevation data for usgs station {gage.location_id} in huc {huc}") continue # Clean up data fim_pred_elev = fim_pred_elev.rename(columns={"pred_elev": "FIM"}) fim_pred_elev = fim_pred_elev.filter(items=['recurr_interval', 'discharge_cfs','FIM']) usgs_pred_elev = usgs_pred_elev.merge(fim_pred_elev, on=['recurr_interval','discharge_cfs']) # Add attributes usgs_pred_elev['HUC'] = huc usgs_pred_elev['HUC4'] = huc[0:4] usgs_pred_elev['str_order'] = str_order usgs_pred_elev['feature_id'] = feature_id # Melt dataframe usgs_pred_elev = pd.melt(usgs_pred_elev, id_vars=['location_id','feature_id','recurr_interval','discharge_cfs','HUC','HUC4','str_order'], value_vars=['USGS','FIM'], var_name="source", value_name='elevation_ft') nwm_recurr_data_table = nwm_recurr_data_table.append(usgs_pred_elev) # Interpolate FIM elevation at USGS observations # fim_rc = fim_rc.merge(usgs_crosswalk, on="location_id") # usgs_rc = usgs_rc.rename(columns={"elevation_ft": "USGS"}) # # # Sort stage in ascending order # usgs_rc = usgs_rc.sort_values('USGS',ascending=True) # # # Interpolate FIM elevation at USGS observations # usgs_rc['FIM'] = np.interp(usgs_rc.discharge_cfs.values, fim_rc['discharge_cfs'], fim_rc['elevation_ft'], left = np.nan, right = np.nan) # usgs_rc = usgs_rc[usgs_rc['FIM'].notna()] # usgs_rc = usgs_rc.drop(columns=["source"]) # # # Melt dataframe # usgs_rc = pd.melt(usgs_rc, id_vars=['location_id','discharge_cfs','str_order'], value_vars=['USGS','FIM'], var_name="source", value_name='elevation_ft') # # if not usgs_rc.empty: # usgs_recurr_data = usgs_recurr_data.append(usgs_rc) # Generate stats for all sites in huc # if not usgs_recurr_data.empty: # usgs_recurr_stats_table = calculate_rc_stats_elev(usgs_recurr_data) # usgs_recurr_stats_table.to_csv(usgs_recurr_stats_filename,index=False) # # Generate plots (not currently being used) # fim_elev_at_USGS_rc_plot_filename = join(dirname(rc_comparison_plot_filename),'FIM_elevations_at_USGS_rc_' + str(huc) +'.png') # generate_facet_plot(usgs_recurr_data, fim_elev_at_USGS_rc_plot_filename) if not nwm_recurr_data_table.empty: nwm_recurr_data_table.discharge_cfs = np.round(nwm_recurr_data_table.discharge_cfs,2) nwm_recurr_data_table.elevation_ft = np.round(nwm_recurr_data_table.elevation_ft,2) nwm_recurr_data_table.to_csv(nwm_recurr_data_filename,index=False) else: print(f"no USGS data for gage(s): {relevant_gages} in huc {huc}") def aggregate_metrics(output_dir,procs_list,stat_groups): # agg_usgs_interp_elev_stats = join(output_dir,'agg_usgs_interp_elev_stats.csv') agg_nwm_recurr_flow_elev = join(output_dir,'agg_nwm_recurr_flow_elevations.csv') agg_nwm_recurr_flow_elev_stats = join(output_dir,f"agg_nwm_recurr_flow_elev_stats_{'_'.join(stat_groups)}.csv") # if os.path.isfile(agg_usgs_interp_elev_stats): # os.remove(agg_usgs_interp_elev_stats) if os.path.isfile(agg_nwm_recurr_flow_elev): os.remove(agg_nwm_recurr_flow_elev) if os.path.isfile(agg_nwm_recurr_flow_elev_stats): os.remove(agg_nwm_recurr_flow_elev_stats) for huc in procs_list: # if os.path.isfile(huc[3]): # usgs_recurr_stats = pd.read_csv(huc[3]) # # # Write/append usgs_recurr_stats # if os.path.isfile(agg_usgs_interp_elev_stats): # usgs_recurr_stats.to_csv(agg_usgs_interp_elev_stats,index=False, mode='a',header=False) # else: # usgs_recurr_stats.to_csv(agg_usgs_interp_elev_stats,index=False) if os.path.isfile(huc[4]): nwm_recurr_data = pd.read_csv(huc[4],dtype={'location_id': str, 'feature_id': str}) # Write/append nwm_recurr_data if os.path.isfile(agg_nwm_recurr_flow_elev): nwm_recurr_data.to_csv(agg_nwm_recurr_flow_elev,index=False, mode='a',header=False) else: nwm_recurr_data.to_csv(agg_nwm_recurr_flow_elev,index=False) agg_stats = pd.read_csv(agg_nwm_recurr_flow_elev,dtype={'location_id': str, 'feature_id': str}) agg_recurr_stats_table = calculate_rc_stats_elev(agg_stats,stat_groups) agg_recurr_stats_table.to_csv(agg_nwm_recurr_flow_elev_stats,index=False) def generate_facet_plot(rc, plot_filename): # Filter FIM elevation based on USGS data for gage in rc.location_id.unique(): min_elev = rc.loc[(rc.location_id==gage) & (rc.source=='USGS')].elevation_ft.min() max_elev = rc.loc[(rc.location_id==gage) & (rc.source=='USGS')].elevation_ft.max() rc = rc.drop(rc[(rc.location_id==gage) & (rc.source=='FIM') & (rc.elevation_ft > (max_elev + 2))].index) rc = rc.drop(rc[(rc.location_id==gage) & (rc.source=='FIM') & (rc.elevation_ft < min_elev - 2)].index) rc = rc.rename(columns={"location_id": "USGS Gage"}) ## Generate rating curve plots num_plots = len(rc["USGS Gage"].unique()) if num_plots > 3: columns = num_plots // 3 else: columns = 1 sns.set(style="ticks") g = sns.FacetGrid(rc, col="USGS Gage", hue="source", hue_order=['USGS','FIM'], sharex=False, sharey=False,col_wrap=columns) g.map(sns.scatterplot, "discharge_cfs", "elevation_ft", palette="tab20c", marker="o") g.set_axis_labels(x_var="Discharge (cfs)", y_var="Elevation (ft)") # Adjust the arrangement of the plots g.fig.tight_layout(w_pad=1) g.add_legend() plt.savefig(plot_filename) plt.close() def get_reccur_intervals(site_rc, usgs_crosswalk,nwm_recurr_intervals): usgs_site = site_rc.merge(usgs_crosswalk, on="location_id") nwm_ids = len(usgs_site.feature_id.drop_duplicates()) if nwm_ids > 0: nwm_recurr_intervals = nwm_recurr_intervals.copy().loc[nwm_recurr_intervals.feature_id==usgs_site.feature_id.drop_duplicates().item()] nwm_recurr_intervals['pred_elev'] = np.interp(nwm_recurr_intervals.discharge_cfs.values, usgs_site['discharge_cfs'], usgs_site['elevation_ft'], left = np.nan, right = np.nan) return nwm_recurr_intervals else: return [] def calculate_rc_stats_elev(rc,stat_groups=None): usgs_elev = "USGS" src_elev = "FIM" # Collect any extra columns not associated with melt col_index = list(rc.columns) pivot_vars = ['source','elevation_ft'] col_index = [col for col in col_index if col not in pivot_vars] # Unmelt elevation/source rc_unmelt = (rc.set_index(col_index) .pivot(columns="source")['elevation_ft'] .reset_index() .rename_axis(None, axis=1) ) if stat_groups is None: stat_groups = ['location_id'] # Calculate variables for NRMSE rc_unmelt["yhat_minus_y"] = rc_unmelt[src_elev] - rc_unmelt[usgs_elev] rc_unmelt["yhat_minus_y_squared"] = rc_unmelt["yhat_minus_y"] ** 2 # Calculate metrics by group station_rc = rc_unmelt.groupby(stat_groups) # Calculate variables for NRMSE sum_y_diff = station_rc.apply(lambda x: x["yhat_minus_y_squared"].sum())\ .reset_index(stat_groups, drop = False).rename({0: "sum_y_diff"}, axis=1) # Determine number of events that are modeled n = station_rc.apply(lambda x: x[usgs_elev].count())\ .reset_index(stat_groups, drop = False).rename({0: "n"}, axis=1) # Determine the maximum/minimum USGS elevation y_max = station_rc.apply(lambda x: x[usgs_elev].max())\ .reset_index(stat_groups, drop = False).rename({0: "y_max"}, axis=1) y_min = station_rc.apply(lambda x: x[usgs_elev].min())\ .reset_index(stat_groups, drop = False).rename({0: "y_min"}, axis=1) # Collect variables for NRMSE nrmse_table = reduce(lambda x,y: pd.merge(x,y, on=stat_groups, how='outer'), [sum_y_diff, n, y_max, y_min]) nrmse_table_group = nrmse_table.groupby(stat_groups) # Calculate nrmse nrmse = nrmse_table_group.apply(lambda x: ((x['sum_y_diff'] / x['n']) ** 0.5) / (x['y_max'] - x['y_min']))\ .reset_index(stat_groups, drop = False).rename({0: "nrmse"}, axis=1) # Calculate Mean Absolute Depth Difference mean_abs_y_diff = station_rc.apply(lambda x: (abs(x["yhat_minus_y"]).mean()))\ .reset_index(stat_groups, drop = False).rename({0: "mean_abs_y_diff_ft"}, axis=1) # Calculate Percent Bias percent_bias = station_rc.apply(lambda x: 100 * (x["yhat_minus_y"].sum() / x[usgs_elev].sum()))\ .reset_index(stat_groups, drop = False).rename({0: "percent_bias"}, axis=1) rc_stat_table = reduce(lambda x,y: pd.merge(x,y, on=stat_groups, how='outer'), [nrmse, mean_abs_y_diff, percent_bias]) return rc_stat_table if __name__ == '__main__': parser = argparse.ArgumentParser(description='generate rating curve plots and tables for FIM and USGS gages') parser.add_argument('-fim_dir','--fim-dir', help='FIM output dir', required=True,type=str) parser.add_argument('-output_dir','--output-dir', help='rating curves output folder', required=True,type=str) parser.add_argument('-gages','--usgs-gages-filename',help='USGS rating curves',required=True,type=str) parser.add_argument('-flows','--nwm-flow-dir',help='NWM recurrence flows dir',required=True,type=str) parser.add_argument('-catfim', '--catfim-flows-filename', help='Categorical FIM flows file',required = True,type=str) parser.add_argument('-j','--number-of-jobs',help='number of workers',required=False,default=1,type=int) parser.add_argument('-group','--stat-groups',help='column(s) to group stats',required=False,type=str) args = vars(parser.parse_args()) fim_dir = args['fim_dir'] output_dir = args['output_dir'] usgs_gages_filename = args['usgs_gages_filename'] nwm_flow_dir = args['nwm_flow_dir'] catfim_flows_filename = args['catfim_flows_filename'] number_of_jobs = args['number_of_jobs'] stat_groups = args['stat_groups'] stat_groups = stat_groups.split() procs_list = [] plots_dir = join(output_dir,'plots') os.makedirs(plots_dir, exist_ok=True) tables_dir = join(output_dir,'tables') os.makedirs(tables_dir, exist_ok=True) #Check age of gages csv and recommend updating if older than 30 days. print(check_file_age(usgs_gages_filename)) # Open log file sys.__stdout__ = sys.stdout log_file = open(join(output_dir,'rating_curve_comparison.log'),"w") sys.stdout = log_file merged_elev_table = [] huc_list = os.listdir(fim_dir) for huc in huc_list: if huc != 'logs': elev_table_filename = join(fim_dir,huc,'usgs_elev_table.csv') hydrotable_filename = join(fim_dir,huc,'hydroTable.csv') usgs_recurr_stats_filename = join(tables_dir,f"usgs_interpolated_elevation_stats_{huc}.csv") nwm_recurr_data_filename = join(tables_dir,f"nwm_recurrence_flow_elevations_{huc}.csv") rc_comparison_plot_filename = join(plots_dir,f"FIM-USGS_rating_curve_comparison_{huc}.png") if isfile(elev_table_filename): procs_list.append([elev_table_filename, hydrotable_filename, usgs_gages_filename, usgs_recurr_stats_filename, nwm_recurr_data_filename, rc_comparison_plot_filename,nwm_flow_dir, catfim_flows_filename, huc]) # Aggregate all of the individual huc elev_tables into one aggregate for accessing all data in one csv read_elev_table = pd.read_csv(elev_table_filename) read_elev_table['huc'] = huc merged_elev_table.append(read_elev_table) # Output a concatenated elev_table to_csv if merged_elev_table: print(f"Creating aggregate elev table csv") concat_elev_table = pd.concat(merged_elev_table) concat_elev_table['thal_burn_depth_meters'] = concat_elev_table['dem_elevation'] - concat_elev_table['dem_adj_elevation'] concat_elev_table.to_csv(join(output_dir,'agg_usgs_elev_table.csv'),index=False) # Initiate multiprocessing print(f"Generating rating curve metrics for {len(procs_list)} hucs using {number_of_jobs} jobs") with Pool(processes=number_of_jobs) as pool: pool.map(generate_rating_curve_metrics, procs_list) print(f"Aggregating rating curve metrics for {len(procs_list)} hucs") aggregate_metrics(output_dir,procs_list,stat_groups) print('Delete intermediate tables') shutil.rmtree(tables_dir, ignore_errors=True) # Close log file sys.stdout = sys.__stdout__ log_file.close()
44.854945
222
0.682395
7556de256bbca57e64a7b2c8dbdca009598f50a9
2,137
py
Python
tests/tools/test_histogram2d.py
dgorelik/differential-privacy-library
5a7a267c591320036615a52dfad1918dc3718e62
[ "MIT" ]
1
2020-05-03T06:06:44.000Z
2020-05-03T06:06:44.000Z
tests/tools/test_histogram2d.py
dohmatob/differential-privacy-library
1a17bf0e3bf7d18d5c19258abbf81c27fd9a5e16
[ "MIT" ]
null
null
null
tests/tools/test_histogram2d.py
dohmatob/differential-privacy-library
1a17bf0e3bf7d18d5c19258abbf81c27fd9a5e16
[ "MIT" ]
1
2022-02-23T13:56:19.000Z
2022-02-23T13:56:19.000Z
import numpy as np from unittest import TestCase from diffprivlib.tools.histograms import histogram2d from diffprivlib.utils import global_seed, PrivacyLeakWarning class TestHistogram2d(TestCase): def test_no_params(self): x = np.array([1, 2, 3, 4, 5]) y = np.array([5, 7, 1, 5, 9]) with self.assertWarns(PrivacyLeakWarning): res = histogram2d(x, y) self.assertIsNotNone(res) def test_no_range(self): x = np.array([1, 2, 3, 4, 5]) y = np.array([5, 7, 1, 5, 9]) with self.assertWarns(PrivacyLeakWarning): res = histogram2d(x, y, epsilon=1) self.assertIsNotNone(res) def test_missing_range(self): x = np.array([1, 2, 3, 4, 5]) y = np.array([5, 7, 1, 5, 9]) with self.assertWarns(PrivacyLeakWarning): res = histogram2d(x, y, epsilon=1, range=[(0, 10), None]) self.assertIsNotNone(res) def test_same_edges(self): x = np.array([1, 2, 3, 4, 5]) y = np.array([5, 7, 1, 5, 9]) _, edges_x, edges_y = np.histogram2d(x, y, bins=3, range=[(0, 10), (0, 10)]) _, dp_edges_x, dp_edges_y = histogram2d(x, y, epsilon=1, bins=3, range=[(0, 10), (0, 10)]) self.assertTrue((edges_x == dp_edges_x).all()) self.assertTrue((edges_y == dp_edges_y).all()) def test_different_result(self): global_seed(3141592653) x = np.array([1, 2, 3, 4, 5]) y = np.array([5, 7, 1, 5, 9]) hist, _, _ = np.histogram2d(x, y, bins=3, range=[(0, 10), (0, 10)]) dp_hist, _, _ = histogram2d(x, y, epsilon=0.1, bins=3, range=[(0, 10), (0, 10)]) # print("Non-private histogram: %s" % hist) # print("Private histogram: %s" % dp_hist) self.assertTrue((hist != dp_hist).any()) def test_density(self): global_seed(3141592653) x = np.array([1, 2, 3, 4, 5]) y = np.array([5, 7, 1, 5, 9]) dp_hist, _, _ = histogram2d(x, y, epsilon=1, bins=3, range=[(0, 10), (0, 10)], density=True) # print(dp_hist.sum()) self.assertAlmostEqual(dp_hist.sum(), 1.0 * (3 / 10) ** 2)
35.616667
100
0.565278
7ef5fdda7e9666f209c582eb4bb164701bcdb17f
517
py
Python
aprendizado/curso_em_video/desafios/desafio096.py
renatodev95/Python
2adee4a01de41f8bbb68fce563100c135a5ab549
[ "MIT" ]
null
null
null
aprendizado/curso_em_video/desafios/desafio096.py
renatodev95/Python
2adee4a01de41f8bbb68fce563100c135a5ab549
[ "MIT" ]
null
null
null
aprendizado/curso_em_video/desafios/desafio096.py
renatodev95/Python
2adee4a01de41f8bbb68fce563100c135a5ab549
[ "MIT" ]
null
null
null
# Faça um programa que tenha uma função chamada área(), que receba as dimensões # de um terreno retangular (largura e comprimento) e mostre a área do terreno. def titulo(txt): print('-' * 30) print(f'{txt:^30}') print('-' * 30, '') def area(larg, comp): a = larg * comp print(f'A área de um terreno {larg}x{comp} é de {a}m².\n') titulo('CONTROLE DE TERRENO') largura = float(input('Largura (m): ')) comprimento = float(input('Comprimento (m): ')) area(largura, comprimento)
27.210526
80
0.628627
244c6610c050c5f1cc4d8ba8cb574a3eb2d92b2c
222
py
Python
users/urls.py
Joaxin/django-welogs
260a72322cdc5591ecd3ceae1dc99a66da333d2b
[ "MIT" ]
null
null
null
users/urls.py
Joaxin/django-welogs
260a72322cdc5591ecd3ceae1dc99a66da333d2b
[ "MIT" ]
null
null
null
users/urls.py
Joaxin/django-welogs
260a72322cdc5591ecd3ceae1dc99a66da333d2b
[ "MIT" ]
null
null
null
from django.urls import path from . import views app_name = "users" urlpatterns = [ path('profile/', views.profile, name='profile'), path('profile/update/', views.profile_update, name='profile_update'), ]
24.666667
74
0.68018
6664c3b026665568036c77684726a8d59a1da442
232
py
Python
sams-roku-interface/colors.py
sam-maryland/sams-roku-interface
5a11588a2054ea46a16851b95ed2c04e3219898f
[ "MIT" ]
1
2019-12-09T20:06:24.000Z
2019-12-09T20:06:24.000Z
sams-roku-interface/colors.py
sammaryland/sams-roku-interface
5a11588a2054ea46a16851b95ed2c04e3219898f
[ "MIT" ]
2
2021-03-31T19:19:23.000Z
2021-06-02T00:45:17.000Z
sams-roku-interface/colors.py
sammaryland/sams-roku-interface
5a11588a2054ea46a16851b95ed2c04e3219898f
[ "MIT" ]
null
null
null
class Colors: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m'
21.090909
24
0.517241
83ab6adc271ccd255f0ef30cf97e8c2297197793
137
py
Python
py_tdlib/constructors/delete_chat_reply_markup.py
Mr-TelegramBot/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
24
2018-10-05T13:04:30.000Z
2020-05-12T08:45:34.000Z
py_tdlib/constructors/delete_chat_reply_markup.py
MrMahdi313/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
3
2019-06-26T07:20:20.000Z
2021-05-24T13:06:56.000Z
py_tdlib/constructors/delete_chat_reply_markup.py
MrMahdi313/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
5
2018-10-05T14:29:28.000Z
2020-08-11T15:04:10.000Z
from ..factory import Method class deleteChatReplyMarkup(Method): chat_id = None # type: "int53" message_id = None # type: "int53"
19.571429
36
0.715328
ac3f5e817e7f7abe120883218f6f78e5d6cf39ad
737
py
Python
auth/admin.py
Junhua9981/WebProjectFinal
8db619b4196fa3bc684202ddb24a725c15e06d78
[ "MIT" ]
120
2020-09-04T23:07:58.000Z
2022-03-22T03:00:39.000Z
auth/admin.py
Junhua9981/WebProjectFinal
8db619b4196fa3bc684202ddb24a725c15e06d78
[ "MIT" ]
10
2016-03-25T09:28:36.000Z
2021-07-26T15:04:41.000Z
auth/admin.py
Junhua9981/WebProjectFinal
8db619b4196fa3bc684202ddb24a725c15e06d78
[ "MIT" ]
38
2020-09-16T18:47:09.000Z
2022-03-25T07:52:57.000Z
from fastapi import HTTPException, Depends, status from fastapi.security import HTTPBasicCredentials, HTTPBasic from passlib.context import CryptContext from database.database import admin_collection security = HTTPBasic() hash_helper = CryptContext(schemes=["bcrypt"]) async def validate_login(credentials: HTTPBasicCredentials = Depends(security)): admin = admin_collection.find_one({"email": credentials.username}) if admin: password = hash_helper.verify(credentials.password, admin['password']) if not password: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect email or password" ) return True return False
36.85
80
0.723202
740c15cf202ff0b94136db22f838060e30832dc6
441
py
Python
demos/Multiscale/uniswap/model/sys_params.py
w-ghub/demos
6382676fae89bd5a190626612712fcedf17bca6d
[ "MIT" ]
56
2020-07-08T23:23:15.000Z
2022-03-11T20:43:09.000Z
demos/Multiscale/uniswap/model/sys_params.py
w-ghub/demos
6382676fae89bd5a190626612712fcedf17bca6d
[ "MIT" ]
41
2020-07-11T23:24:06.000Z
2022-01-28T13:28:07.000Z
demos/Multiscale/uniswap/model/sys_params.py
w-ghub/demos
6382676fae89bd5a190626612712fcedf17bca6d
[ "MIT" ]
39
2020-07-15T11:35:04.000Z
2022-02-01T16:02:51.000Z
import pandas as pd sys_params = { 'fee_numerator': [997, 997, 997, 997, 995, 995, 995, 995], 'fee_denominator': [1000], 'uniswap_events': [pd.read_pickle('./data/uniswap_events.pickle')], 'fix_cost': [-1], # -1 to deactivate 'retail_precision': [3,3,15,15, 3,3,15,15], 'retail_tolerance': [0.0005, 0.025, 0.0005, 0.025, 0.0005, 0.025, 0.0005, 0.025] }
33.923077
71
0.53288
937417375d19864ddf807a520959c783f29cb311
2,191
py
Python
tests/models/test_airplane_model.py
ascii-dev/flight-booking
3a64951f91d0254402bc5c14e5ef6d1bd2cf372e
[ "MIT" ]
null
null
null
tests/models/test_airplane_model.py
ascii-dev/flight-booking
3a64951f91d0254402bc5c14e5ef6d1bd2cf372e
[ "MIT" ]
30
2019-05-26T09:39:12.000Z
2021-06-02T00:16:58.000Z
tests/models/test_airplane_model.py
ascii-dev/flight-booking
3a64951f91d0254402bc5c14e5ef6d1bd2cf372e
[ "MIT" ]
null
null
null
from api.models.airplane import Airplane class TestAirplaneModel: def test_new_airplane_succeeds(self, init_db, new_airplane): """ Test that airplane can be created successfully through the model :param init_db: initialize the database :param new_airplane: creates new airplane through the model :return: assertion """ assert new_airplane == new_airplane.save() def test_get_a_single_airplane_succeeds(self, init_db, new_airplane): """ Tests that getting a single airplane from the database through the model is successful :param init_db: initialize the database :param new_airplane: creates new airplane through the model :return: assertion """ new_airplane.save() assert Airplane.query.get(new_airplane.id) == new_airplane def test_update_a_airplane_succeeds(self, init_db, new_airplane): """ Tests that updating a airplane from the database through the model is successful :param init_db: initialize the database :param new_airplane: creates a new airplane through the model :return: assertion """ new_airplane.save() new_airplane.update(capacity=321) assert new_airplane.capacity == 321 def test_delete_a_airplane_succeeds(self, init_db, new_airplane): """ Tests that deleting a airplane from the database through the model is successful :param init_db: initialize the database :param new_airplane: creates a new airplane through the model :return: None """ new_airplane.save() new_airplane.delete() def test_get_airplane_string_representation(self, new_airplane): """ Tests to compute and assert string representation of a new airplane :param new_airplane: creates a new airplane through the model :return: assertion """ brand = new_airplane.brand model = new_airplane.model capacity = new_airplane.capacity assert repr(new_airplane) == \ f'<Airplane {brand} {model} {capacity}>'
35.918033
73
0.659516
88ec23b4fa04d7e8c9e852e4554762e3afedd2f9
289
py
Python
Rig/Lobby/lobby_room.py
Oulala-Leon/Text-Factory
fbf24221529ccf7a35894090f8595da526c0523d
[ "Apache-2.0" ]
null
null
null
Rig/Lobby/lobby_room.py
Oulala-Leon/Text-Factory
fbf24221529ccf7a35894090f8595da526c0523d
[ "Apache-2.0" ]
null
null
null
Rig/Lobby/lobby_room.py
Oulala-Leon/Text-Factory
fbf24221529ccf7a35894090f8595da526c0523d
[ "Apache-2.0" ]
null
null
null
import tell import sys def check_arglen(argv, minimum, maximum=-1): "Checks arguments length vs expected minimum and maximum." maximum = minimum if maximum == -1 else maximum size = len(argv) return size if size >= minimum and size <= maximum else sys.exit(tell.README())
32.111111
83
0.709343
95ea82b753f8dee6f45badf0d3ec324a10f0ed60
6,287
py
Python
tests/tensorflow_cloud/deploy_test.py
gogasca/cloud
9ad530b64464ba68c65b2cefd12b1e5043486006
[ "Apache-2.0" ]
null
null
null
tests/tensorflow_cloud/deploy_test.py
gogasca/cloud
9ad530b64464ba68c65b2cefd12b1e5043486006
[ "Apache-2.0" ]
null
null
null
tests/tensorflow_cloud/deploy_test.py
gogasca/cloud
9ad530b64464ba68c65b2cefd12b1e5043486006
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the cloud deploy module.""" import io import mock import os import shutil import sys import tarfile import unittest from tensorflow_cloud import deploy from tensorflow_cloud import machine_config from tensorflow_cloud import package from mock import call, patch class TestDeploy(unittest.TestCase): def setup(self, MockDiscovery): self.mock_job_id = 'tf-train-abcde' self.mock_project_name = 'my-gcp-project' self.entry_point = 'testdata/sample_compile_fit.py' self.chief_config = machine_config.COMMON_MACHINE_CONFIGS['K80_4X'] self.worker_count = 2 self.worker_config = machine_config.COMMON_MACHINE_CONFIGS['K80_1X'] self.region = 'us-central-a' self.docker_img = 'custom-image-tag' self.entry_point_args = ['1000'] self.stream_logs = False self.expected_request_dict = { 'jobId': self.mock_job_id, 'trainingInput': { 'use_chief_in_tf_config': True, 'scaleTier': 'custom', 'region': self.region, 'args': self.entry_point_args, 'masterType': 'n1-standard-16', 'workerType': 'n1-standard-8', 'workerCount': str(self.worker_count), 'workerConfig': { 'acceleratorConfig': { 'count': '1', 'type': 'NVIDIA_TESLA_K80' }, 'imageUri': self.docker_img, }, 'masterConfig': { 'acceleratorConfig': { 'count': '4', 'type': 'NVIDIA_TESLA_K80' }, 'imageUri': self.docker_img, } }, } # Verify mocking is correct and setup method mocks. assert MockDiscovery is deploy.discovery def _mock_generate_job_id(): return self.mock_job_id deploy._generate_job_id = _mock_generate_job_id def _mock_get_project_name(): return self.mock_project_name deploy.gcp.get_project_name = _mock_get_project_name @patch('sys.stdout', new_callable=io.StringIO) @patch('tensorflow_cloud.deploy.discovery') def test_deploy_job(self, MockDiscovery, MockStdOut): self.setup(MockDiscovery) job_name = deploy.deploy_job( self.region, self.docker_img, self.chief_config, self.worker_count, self.worker_config, self.entry_point_args, self.stream_logs) self.assertEqual(job_name, self.mock_job_id) # Verify discovery API is invoked as expected. self.assertEqual(MockDiscovery.build.call_count, 1) args, _ = MockDiscovery.build.call_args self.assertListEqual(list(args), ['ml', 'v1']) # Verify job is created as expected build_ret_val = MockDiscovery.build.return_value self.assertEqual(build_ret_val.projects.call_count, 1) proj_ret_val = build_ret_val.projects.return_value self.assertEqual(proj_ret_val.jobs.call_count, 1) jobs_ret_val = proj_ret_val.jobs.return_value self.assertEqual(jobs_ret_val.create.call_count, 1) # Verify job creation args _, kwargs = jobs_ret_val.create.call_args self.assertDictEqual(kwargs, { 'parent': 'projects/' + self.mock_project_name, 'body': self.expected_request_dict}) # Verify print statement self.assertEqual( MockStdOut.getvalue(), 'Job submitted successfully.\nYour job ID is: {}\nPlease access ' 'your job logs at the following URL:\nhttps://' 'console.cloud.google.com/mlengine/jobs/{}?project={}\n'.format( self.mock_job_id, self.mock_job_id, self.mock_project_name)) @patch('tensorflow_cloud.deploy.discovery') def test_request_dict_without_workers(self, MockDiscovery): self.setup(MockDiscovery) worker_count = 0 job_name = deploy.deploy_job( self.region, self.docker_img, self.chief_config, worker_count, None, self.entry_point_args, self.stream_logs) build_ret_val = MockDiscovery.build.return_value proj_ret_val = build_ret_val.projects.return_value jobs_ret_val = proj_ret_val.jobs.return_value self.expected_request_dict['trainingInput']['workerCount'] = str( worker_count) del self.expected_request_dict['trainingInput']['workerType'] del self.expected_request_dict['trainingInput']['workerConfig'] # Verify job creation args _, kwargs = jobs_ret_val.create.call_args self.assertDictEqual(kwargs, { 'parent': 'projects/' + self.mock_project_name, 'body': self.expected_request_dict}) @patch('tensorflow_cloud.deploy.discovery') def test_request_dict_without_user_args(self, MockDiscovery): self.setup(MockDiscovery) job_name = deploy.deploy_job( self.region, self.docker_img, self.chief_config, self.worker_count, self.worker_config, None, self.stream_logs) build_ret_val = MockDiscovery.build.return_value proj_ret_val = build_ret_val.projects.return_value jobs_ret_val = proj_ret_val.jobs.return_value del self.expected_request_dict['trainingInput']['args'] # Verify job creation args _, kwargs = jobs_ret_val.create.call_args self.assertDictEqual(kwargs, { 'parent': 'projects/' + self.mock_project_name, 'body': self.expected_request_dict})
38.570552
79
0.643391
c8ae5d88bc7eab1f651138610209ebccb2e82601
1,627
py
Python
setup.py
mgxd/niworkflows
d28857d0be2a63263e4c29af44e84d18fdc44d2f
[ "BSD-3-Clause" ]
null
null
null
setup.py
mgxd/niworkflows
d28857d0be2a63263e4c29af44e84d18fdc44d2f
[ "BSD-3-Clause" ]
1
2020-01-24T02:42:31.000Z
2020-01-24T02:51:48.000Z
setup.py
mgxd/niworkflows
d28857d0be2a63263e4c29af44e84d18fdc44d2f
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: oesteban # @Date: 2015-11-19 16:44:27 # @Last Modified by: oesteban """ niworkflows setup script """ PACKAGE_NAME = 'niworkflows' def main(): """ Install entry-point """ from os import path as op from setuptools import setup, find_packages import runpy ldict = runpy.run_path(op.join(op.abspath(op.dirname(__file__)), 'niworkflows', 'info.py')) setup( name=PACKAGE_NAME, version=ldict['__version__'], description=ldict['__description__'], long_description=ldict['__longdesc__'], author=ldict['__author__'], author_email=ldict['__email__'], maintainer=ldict['__maintainer__'], maintainer_email=ldict['__email__'], license=ldict['__license__'], url=ldict['URL'], download_url=ldict['DOWNLOAD_URL'], classifiers=ldict['CLASSIFIERS'], packages=find_packages(exclude=['*.tests']), zip_safe=False, # Dependencies handling setup_requires=ldict['SETUP_REQUIRES'], install_requires=list(set(ldict['REQUIRES'])), dependency_links=ldict['LINKS_REQUIRES'], tests_require=ldict['TESTS_REQUIRES'], extras_require=ldict['EXTRA_REQUIRES'], # Data package_data={'niworkflows': ['data/t1-mni_registration*.json', 'nipype/pipeline/engine/report_template.html', 'nipype/external/d3.js']}, include_package_data=True, ) if __name__ == '__main__': main()
31.901961
84
0.601721
6ac750591a277fc78ec540ede6df7cb5ea7da784
570
py
Python
src/backend/aspen/database/models/enum.py
chanzuckerberg/czgenepi
87bd2b1739acdfe2c7c25663fafb01dc24c5e2fd
[ "MIT" ]
null
null
null
src/backend/aspen/database/models/enum.py
chanzuckerberg/czgenepi
87bd2b1739acdfe2c7c25663fafb01dc24c5e2fd
[ "MIT" ]
30
2022-02-01T23:19:14.000Z
2022-03-29T19:34:20.000Z
src/backend/aspen/database/models/enum.py
chanzuckerberg/czgenepi
87bd2b1739acdfe2c7c25663fafb01dc24c5e2fd
[ "MIT" ]
null
null
null
from typing import Type, TYPE_CHECKING, TypeVar # https://github.com/dropbox/sqlalchemy-stubs/issues/114 # This is the (gross) workaround. Keep an eye on the issue and get rid of it once it's fixed. if TYPE_CHECKING: from sqlalchemy.sql.type_api import TypeEngine T = TypeVar("T") class Enum(TypeEngine[T]): def __init__(self, enum: Type[T]) -> None: ... else: from enumtables import EnumType as Enum # noqa: F401 Enum.cache_ok = ( True # SqlAlchemy 1.4 requires us to set a cache_ok flag on type decorators. )
28.5
93
0.673684
578f3e758cd5132b1a535cbc56a46c32104a2818
56
py
Python
04 Data Structure/list.py
diaamshalabi/the-ultimate-python-programming-bootcamp
f19170640217684a218d862fb4108053dabab8b3
[ "MIT" ]
2
2022-02-09T08:09:58.000Z
2022-02-10T14:16:10.000Z
04 Data Structure/list.py
diaa-shalabi/the-ultimate-python-programming-bootcamp
f19170640217684a218d862fb4108053dabab8b3
[ "MIT" ]
null
null
null
04 Data Structure/list.py
diaa-shalabi/the-ultimate-python-programming-bootcamp
f19170640217684a218d862fb4108053dabab8b3
[ "MIT" ]
null
null
null
my_list= [3, 4, 6, 2] my_list1 = list(("Hello World"))
14
32
0.589286
f47037b7d3e959e51b907bfb5f90f7a35dcdad2b
5,287
py
Python
lib/modules/powershell/situational_awareness/network/smbautobrute.py
kumardineshwar/Empire
8b8741242e929897f2759698b780853b77b2a81e
[ "BSD-3-Clause" ]
3
2019-08-26T02:39:03.000Z
2021-03-30T00:04:44.000Z
lib/modules/powershell/situational_awareness/network/smbautobrute.py
kumardineshwar/Empire
8b8741242e929897f2759698b780853b77b2a81e
[ "BSD-3-Clause" ]
null
null
null
lib/modules/powershell/situational_awareness/network/smbautobrute.py
kumardineshwar/Empire
8b8741242e929897f2759698b780853b77b2a81e
[ "BSD-3-Clause" ]
8
2017-06-09T12:54:46.000Z
2021-11-09T06:44:09.000Z
from lib.common import helpers class Module: def __init__(self, mainMenu, params=[]): # metadata info about the module, not modified during runtime self.info = { # name for the module that will appear in module menus 'Name': 'Invoke-SMBAutoBrute', # list of one or more authors for the module 'Author': ['@curi0usJack'], # more verbose multi-line description of the module 'Description': ('Runs an SMB brute against a list of usernames/passwords. ' 'Will check the DCs to interrogate the bad password count of the ' 'users and will keep bruting until either a valid credential is ' 'discoverd or the bad password count reaches one below the threshold. ' 'Run "shell net accounts" on a valid agent to determine the lockout ' 'threshold. VERY noisy! Generates a ton of traffic on the DCs.' ), # True if the module needs to run in the background 'Background' : True, # File extension to save the file as 'OutputExtension' : None, # True if the module needs admin rights to run 'NeedsAdmin' : False, # True if the method doesn't touch disk/is reasonably opsec safe 'OpsecSafe' : False, 'Language' : 'powershell', 'MinLanguageVersion' : '2', # list of any references/other comments 'Comments': [ ] } # any options needed by the module, settable during runtime self.options = { # format: # value_name : {description, required, default_value} 'Agent' : { # The 'Agent' option is the only one that MUST be in a module 'Description' : 'Agent to run smbautobrute from.', 'Required' : True, 'Value' : '' }, 'UserList' : { 'Description' : 'File of users to brute (on the target), one per line. If not specified, autobrute will query a list of users with badpwdcount < LockoutThreshold - 1 for each password brute. Wrap path in double quotes.', 'Required' : False, 'Value' : '' }, 'PasswordList' : { 'Description' : 'Comma separated list of passwords to test. Wrap in double quotes.', 'Required' : True, 'Value' : '' }, 'ShowVerbose' : { 'Description' : 'Show failed attempts & skipped accounts in addition to success.', 'Required' : False, 'Value' : '' }, 'LockoutThreshold' : { 'Description' : 'The max number of bad password attempts until the account locks. Autobrute will try till one less than this setting.', 'Required' : True, 'Value' : '' }, 'Delay' : { 'Description' : 'Amount of time to wait (in milliseconds) between attempts. Default 100.', 'Required' : False, 'Value' : '' }, 'StopOnSuccess' : { 'Description' : 'Quit running after the first successful authentication.', 'Required' : False, 'Value' : '' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu # During instantiation, any settable option parameters # are passed as an object set to the module and the # options dictionary is automatically set. This is mostly # in case options are passed on the command line if params: for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value def generate(self): # use the pattern below # read in the common module source code moduleSource = self.mainMenu.installPath + "/data/module_source/situational_awareness/network/Invoke-SMBAutoBrute.ps1" try: f = open(moduleSource, 'r') except: print helpers.color("[!] Could not read module source path at: " + str(moduleSource)) return "" moduleCode = f.read() f.close() script = moduleCode scriptcmd = "Invoke-SMBAutoBrute" # add any arguments to the end execution of the script for option,values in self.options.iteritems(): if option.lower() != "agent": if values['Value'] and values['Value'] != '': if values['Value'].lower() == "true": # if we're just adding a switch scriptcmd += " -" + str(option) else: scriptcmd += " -" + str(option) + " " + str(values['Value']) script += scriptcmd #print helpers.color(scriptcmd) return script
40.05303
240
0.529412
03c922d7d4b6867279152a4b718382aaacbde67a
1,392
py
Python
waldur_core/structure/tests/serializers.py
opennode/nodeconductor
d6c17a9592bb6c49c33567542eef8d099605a46a
[ "MIT" ]
23
2015-01-15T13:29:53.000Z
2017-05-04T05:12:24.000Z
waldur_core/structure/tests/serializers.py
opennode/nodeconductor
d6c17a9592bb6c49c33567542eef8d099605a46a
[ "MIT" ]
null
null
null
waldur_core/structure/tests/serializers.py
opennode/nodeconductor
d6c17a9592bb6c49c33567542eef8d099605a46a
[ "MIT" ]
8
2015-01-11T18:51:47.000Z
2017-06-29T18:53:12.000Z
from rest_framework import serializers from waldur_core.structure import serializers as structure_serializers from . import models class ServiceSerializer(structure_serializers.BaseServiceSerializer): SERVICE_ACCOUNT_EXTRA_FIELDS = { 'tenant_name': '', 'availability_zone': '', } class Meta(structure_serializers.BaseServiceSerializer.Meta): model = models.TestService required_fields = 'backend_url', 'username', 'password' class ServiceProjectLinkSerializer(structure_serializers.BaseServiceProjectLinkSerializer): class Meta(structure_serializers.BaseServiceProjectLinkSerializer.Meta): model = models.TestServiceProjectLink extra_kwargs = { 'service': {'lookup_field': 'uuid', 'view_name': 'test-detail'}, } class NewInstanceSerializer(structure_serializers.VirtualMachineSerializer): service = serializers.HyperlinkedRelatedField( source='service_project_link.service', view_name='test-detail', read_only=True, lookup_field='uuid') service_project_link = serializers.HyperlinkedRelatedField( view_name='test-spl-detail', queryset=models.TestServiceProjectLink.objects.all(), allow_null=True, required=False, ) class Meta(structure_serializers.BaseResourceSerializer.Meta): model = models.TestNewInstance
32.372093
91
0.730603