hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
766aabca8ded1833740d64e0a0444184a722c075
1,660
py
Python
app/core/tests/test_admin.py
Chinmay-395/recipe-app-api
76a6436ec3191b6d21986f627471606ae64bb357
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
Chinmay-395/recipe-app-api
76a6436ec3191b6d21986f627471606ae64bb357
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
Chinmay-395/recipe-app-api
76a6436ec3191b6d21986f627471606ae64bb357
[ "MIT" ]
null
null
null
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTests(TestCase): def setUp(self): """ it is is a function that is ran before every test """ self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email="admin@londonappdev.com", password='password@123' ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email='test@londonappdev.com', password='password@123', name='Test user full name' ) def test_user_listed(self): """ Test that users are listed on user page """ url = reverse('admin:core_user_changelist') res = self.client.get(url) # res stands for response print("response of http request-------", res) self.assertContains(res, self.user.name) """ what `assertContains` it does is it checks that the HTTP response was HTTP 200 and that it looks into the actual content of this 'res' """ self.assertContains(res, self.user.email) def test_user_change_page(self): url = reverse('admin:core_user_change', args=[self.user.id]) res = self.client.get(url) self.assertEquals(res.status_code, 200) def test_create_user_page(self): """Test that the create user page works""" url = reverse('admin:core_user_add') res = self.client.get(url) self.assertEqual(res.status_code, 200)
36.086957
69
0.615663
4bdaef7a74ca18d0e7ce0ccad9d5a5b82619fd37
20,210
py
Python
tests/python/contrib/test_ethosu/infra.py
cli99/tvm
6c6e873a1325a32418108daad6e38f3df8c37660
[ "Apache-2.0" ]
null
null
null
tests/python/contrib/test_ethosu/infra.py
cli99/tvm
6c6e873a1325a32418108daad6e38f3df8c37660
[ "Apache-2.0" ]
null
null
null
tests/python/contrib/test_ethosu/infra.py
cli99/tvm
6c6e873a1325a32418108daad6e38f3df8c37660
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This module provides infrastructure to verify the correctness of the command stream produced. Currently it will invoke vela to generate a vela-optimized tflite in which the command stream is contained as a custom operator. This class include methods to parse the custom operator to extract the command stream and perform an equivalency check for single operator test cases. """ from typing import List import os import struct import numpy import math from enum import IntEnum import tensorflow as tf from ethosu.vela.register_command_stream_generator import CmdMode from ethosu.vela.register_command_stream_generator import cmd0 from ethosu.vela.register_command_stream_generator import cmd1 import tvm from tvm import relay import tvm.relay.backend.contrib.ethosu.op as ethosu_ops from tvm.topi.nn.utils import get_pad_tuple from tests.python.relay.aot.aot_test_utils import ( AOTCompiledTestModel, AOTDataLinkage, AOTTestModel, AOTTestRunner, compile_models, run_and_check, ) class AttachType(IntEnum): kGroupRoot = 1 kInline = 2 kInlinedAlready = 3 kScope = 4 kScanUpdate = 5 class VelaArtifacts: def __init__(self): self.cs = dict() self.flash = dict() self.sram = dict() self.npu_ops = set() def print_payload(payload): cmds = deserialize_command_stream(payload) for cmd_val in cmds: cmd, val = parse_cmd(cmd_val) s = str(cmd) s = s.ljust(40) s += str(val) print(s) def parse_cmd(binary_cmd): code = binary_cmd[0] & 0x0000FFFF # lower 16 bits param = binary_cmd[0] >> 16 # higher 16 bits payload_mode = CmdMode(code & CmdMode.Mask) if payload_mode == CmdMode.Payload32: command = cmd1(code & CmdMode.CmdOpMask) value = binary_cmd[1] else: command = cmd0(code & CmdMode.CmdOpMask) value = param return command, value def check_cmms_equivalency(vela_cmd, vela_value, tvm_value, ignore_cmds=None): if ignore_cmds is None: ignore_cmds = [] if vela_value != tvm_value and vela_cmd not in ignore_cmds: raise RuntimeError( "ValueMismatch :: vela={}, tvm={} for command:{}".format( vela_value, tvm_value, vela_cmd ) ) def verify_cmms(cmms_tvm_blob, cmms_vela_blob): vela_cmm = deserialize_command_stream(cmms_vela_blob) tvm_cmm = deserialize_command_stream(cmms_tvm_blob) cmms_zip = zip(vela_cmm, tvm_cmm) first_ifm_found = False last_ofm_found = False ignore_commands = ( cmd1.NPU_SET_DMA0_SRC, cmd1.NPU_SET_DMA0_DST, cmd1.NPU_SET_WEIGHT_BASE, cmd1.NPU_SET_OFM_BASE0, cmd1.NPU_SET_IFM_BASE0, cmd1.NPU_SET_SCALE_BASE, ) ofm_region_params = [] ofm_bases = [] for vela_cmm, tvm_cmm in cmms_zip: vela_cmd, vela_value = parse_cmd(vela_cmm) tvm_cmd, tvm_value = parse_cmd(tvm_cmm) assert vela_cmd == tvm_cmd # The first IFM region could be different, but it needs to be 1 and 3. if vela_cmd == cmd0.NPU_SET_IFM_REGION and not first_ifm_found: if vela_value == 1 and tvm_value == 3: first_ifm_found = True continue if vela_cmd == cmd1.NPU_SET_IFM_BASE0 and not first_ifm_found: if tvm_value != 0: raise RuntimeError("ValueError :: tvm primary ifm base should be zero") continue # OFM regions should be cached to be checked later if vela_cmd == cmd0.NPU_SET_OFM_REGION: ofm_region_params.append((vela_value, tvm_value)) continue # OFM bases should be cached to be checked later if vela_cmd == cmd1.NPU_SET_OFM_BASE0: ofm_bases.append((vela_value, tvm_value)) continue check_cmms_equivalency(vela_cmd, vela_value, tvm_value, ignore_commands) # The last OFM region could be different but it should be 1 and 4. last_vela_ofm_region, last_tvm_ofm_region = ofm_region_params.pop(-1) if not (last_vela_ofm_region == 1 and last_tvm_ofm_region == 4): raise RuntimeError( "ValueMismatch :: vela={}, tvm={} for last ofm region it should be 1 and 4 respectively".format( last_vela_ofm_region, last_tvm_ofm_region ) ) # The rest of the OFM regions should be the same. for vela_value, tvm_value in ofm_region_params: check_cmms_equivalency(vela_cmd, vela_value, tvm_value, ignore_commands) # The last OFM base should be zero for tvm _, last_tvm_ofm_base = ofm_bases.pop(-1) if not last_tvm_ofm_base == 0: raise RuntimeError("ValueError :: tvm primary ofm base should be zero") def deserialize_command_stream(blob): assert isinstance(blob, bytes) payload_bytes = struct.unpack("<{0}I".format(len(blob) // 4), blob) cmms = [] # remove_header payload_bytes = payload_bytes[8:] idx = 0 while idx < len(payload_bytes): cmd = [] code = payload_bytes[idx] idx += 1 cmd.append(code) payload_mode = CmdMode(code & CmdMode.Mask) if payload_mode == CmdMode.Payload32: value = payload_bytes[idx] idx += 1 cmd.append(value) cmms.append(cmd) return cmms def create_test_runner(accel="ethos-u55-256", enable_usmp=True): file_dir = os.path.dirname(os.path.abspath(__file__)) test_root = os.path.join(file_dir, "reference_system") _, ethosu_variant, ethosu_macs = accel.split("-") ethosu_variant = ethosu_variant.upper() return AOTTestRunner( makefile="corstone300", prologue=""" uart_init(); EthosuInit(); struct ethosu_driver* ethos_u = ethosu_reserve_driver(); """, epilogue=""" ethosu_release_driver(ethos_u); """, includes=["uart.h", "ethosu_55.h", "ethosu_mod.h", "hard_fault.h"], parameters={ "ETHOSU_TEST_ROOT": test_root, "NPU_MACS": ethosu_macs, "NPU_VARIANT": ethosu_variant, }, pass_config={ "relay.ext.ethos-u.options": { "accelerator_config": accel, }, "tir.usmp.enable": enable_usmp, }, ) def build_source( module, inputs, outputs, accel="ethos-u55-256", output_tolerance=0, enable_usmp=True ): test_runner = create_test_runner(accel, enable_usmp) return compile_models( models=AOTTestModel( module=module, inputs=inputs, outputs=outputs, output_tolerance=output_tolerance, extra_memory_in_bytes=0, ), interface_api="c", use_unpacked_api=True, workspace_byte_alignment=16, pass_config=test_runner.pass_config, ) def verify_source( models: List[AOTCompiledTestModel], accel="ethos-u55-256", ): """ This method verifies the generated source from an NPU module by building it and running on an FVP. """ interface_api = "c" test_runner = create_test_runner(accel) run_and_check( models, test_runner, interface_api, workspace_byte_alignment=16, data_linkage=AOTDataLinkage(section="ethosu_scratch", alignment=16), ) def flatten_numpy_data(data): """Flatten the numpy tensor to be single dimensional""" total_elements = data.size reshaped_data = numpy.reshape(data, [total_elements]) return reshaped_data class InputGenerator: def __init__(self, random_state): self._random_state = random_state def generate(self, size, dtype): if dtype == numpy.float32: print("random float32") return self._random_state.uniform(-1, 1, size).astype(dtype) else: print("random (u)int min=%d max=%d", numpy.iinfo(dtype).min, numpy.iinfo(dtype).max) low = numpy.iinfo(dtype).min high = numpy.iinfo(dtype).max + 1 return self._random_state.randint(low, high, size, dtype) def generate_ref_data_tflite(model): """ This method generates reference data by running the specified model on tflite with random input data. The random input data and generated output data are returned. """ expected_output_data = {} interpreter = tf.lite.Interpreter(model_content=model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Initialize random generators with a fixed seed to get deterministic results seed = 0 random_state = numpy.random.RandomState(seed) inputgen = InputGenerator(random_state) # Generate input data input_data = { input_detail["name"]: inputgen.generate( input_detail["shape"], input_detail["dtype"], ) for input_detail in input_details } for index, value in enumerate(input_data.values()): interpreter.set_tensor(index, value) interpreter.invoke() expected_output_data = { output_detail["name"]: interpreter.get_tensor(output_detail["index"]) for output_detail in output_details } return input_data, expected_output_data def make_partitioned_function(relay_op): ifm0 = relay.analysis.free_vars(relay_op) ifm_shape = ifm0[0].type_annotation.shape ifm_dtype = ifm0[0].type_annotation.dtype ifm = relay.var("ifm", shape=ifm_shape, dtype=ifm_dtype) glb_ethosu = relay.GlobalVar("tvmgen_default_ethosu_main_0") func = ( relay.Function(ifm0, relay_op) .with_attr("Inline", 1) .with_attr("Compiler", "ethos-u") .with_attr("global_symbol", "tvmgen_default_ethosu_main_0") .with_attr("Primitive", 1) ) mod = tvm.IRModule() mod[glb_ethosu] = func mod = relay.transform.InferType()(mod) call = relay.Call(glb_ethosu, [ifm]) mod["main"] = relay.Function([ifm], call) mod = relay.transform.InferType()(mod) return mod def generate_weights_data(shape, dtype): size = 1 for dim in shape: size *= dim return (numpy.arange(size) % 255).reshape(shape).astype(dtype) def get_convolutional_args(call, include_buffers=False, remove_constants=False): """A method to extract the arguments from conv2d or depthwise_conv2d extern call.""" args = call.args conv_args = [] remove_indices = [0] if remove_constants: remove_indices += [41, 42, 44, 45] for i, arg in enumerate(args): if i in remove_indices: continue elif isinstance(arg, tvm.tir.expr.IntImm) or isinstance(arg, tvm.tir.expr.FloatImm): conv_args.append(arg.value) elif isinstance(arg, tvm.tir.expr.Load) and not include_buffers: conv_args.append(arg.index) else: conv_args.append(arg) return conv_args def compute_ofm_shape(ifm_shape, padding, kernel_shape, strides, dilation=[1, 1]): assert len(strides) == 2 assert len(dilation) == 2 assert len(kernel_shape) == 2 if padding.lower() == "valid": h = math.ceil((ifm_shape[1] - (kernel_shape[0] - 1) * dilation[0]) / strides[0]) w = math.ceil((ifm_shape[2] - (kernel_shape[1] - 1) * dilation[1]) / strides[1]) if padding.lower() == "same": h = math.ceil(ifm_shape[1] / strides[0]) w = math.ceil(ifm_shape[2] / strides[1]) ofm_shape = [ifm_shape[0], h, w, ifm_shape[3]] return ofm_shape def compute_padding_shape(ifm_shape, ofm_shape, padding, kernel_shape, strides, dilation=[1, 1]): assert len(strides) == 2 assert len(dilation) == 2 assert len(kernel_shape) == 2 if padding.lower() == "valid": return [0, 0, 0, 0] if padding.lower() == "same": effective_kernel_shape = [ dilation[0] * (kernel_shape[0] - 1) + 1, dilation[1] * (kernel_shape[1] - 1) + 1, ] pad_along_height = max( (ofm_shape[1] - 1) * strides[0] + effective_kernel_shape[0] - ifm_shape[1], 0 ) pad_along_width = max( (ofm_shape[2] - 1) * strides[1] + effective_kernel_shape[1] - ifm_shape[2], 0 ) pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left return [pad_top, pad_left, pad_bottom, pad_right] def make_ethosu_conv2d( ifm, ifm_channels, ofm_channels, kernel_shape, padding, strides, dilation, lut=relay.const([], dtype="int8"), activation="NONE", ifm_layout="NHWC", ofm_layout="NHWC", weight_dtype="int8", scale_bias_dtype="uint8", rounding_mode="TFL", upscale="NONE", ): # conv params weight_shape = (ofm_channels, kernel_shape[0], kernel_shape[1], ifm_channels) padding = get_pad_tuple(padding, kernel_shape) scale_bias_data = generate_weights_data((weight_shape[0], 10), scale_bias_dtype) scale_bias = relay.const(scale_bias_data, dtype=scale_bias_dtype) weight_data = generate_weights_data(weight_shape, weight_dtype) weight = relay.const(weight_data, dtype=weight_dtype) conv = ethosu_ops.ethosu_conv2d( ifm, weight, scale_bias, lut=lut, ifm_scale=0.5, ifm_zero_point=10, weight_zero_point=12, ofm_scale=0.25, ofm_zero_point=14, kernel_shape=kernel_shape, ofm_channels=ofm_channels, strides=strides, padding=padding, dilation=dilation, activation=activation, clip_min=10 if activation == "CLIP" else 0, clip_max=100 if activation == "CLIP" else 0, rounding_mode=rounding_mode, upscale=upscale, ifm_layout=ifm_layout, ofm_layout=ofm_layout, ) return conv def make_ethosu_depthwise_conv2d( ifm, channels, kernel_shape, padding, strides, dilation, activation="NONE", ifm_layout="NHWC", ofm_layout="NHWC", weight_dtype="int8", scale_bias_dtype="uint8", rounding_mode="TFL", ): # params weight_shape = (channels, kernel_shape[0], kernel_shape[1], 1) padding = get_pad_tuple(padding, kernel_shape) scale_bias_data = generate_weights_data((weight_shape[0], 10), scale_bias_dtype) scale_bias = relay.const(scale_bias_data, dtype=scale_bias_dtype) weight_data = generate_weights_data(weight_shape, weight_dtype) weight = relay.const(weight_data, dtype=weight_dtype) depthwise = ethosu_ops.ethosu_depthwise_conv2d( ifm, weight, scale_bias, lut=relay.const([], dtype="int8"), ifm_scale=0.6, ifm_zero_point=11, weight_zero_point=13, ofm_scale=0.26, ofm_zero_point=15, kernel_shape=kernel_shape, ofm_channels=channels, strides=strides, padding=padding, dilation=dilation, activation=activation, clip_min=15 if activation == "CLIP" else 0, clip_max=105 if activation == "CLIP" else 0, rounding_mode=rounding_mode, upscale="NONE", ifm_layout=ifm_layout, ofm_layout=ofm_layout, ) return depthwise def get_pooling_args(call, include_buffers=False): args = call.args pooling_args = [] for i, arg in enumerate(args): if isinstance(arg, tvm.tir.expr.IntImm) or isinstance(arg, tvm.tir.expr.FloatImm): pooling_args.append(arg.value) elif isinstance(arg, tvm.tir.expr.Load) and not include_buffers: pooling_args.append(arg.index) else: pooling_args.append(arg) return pooling_args def make_ethosu_pooling( ifm, pooling_type, pool_shape, ofm_channels, strides, padding, activation="NONE", ifm_layout="NHWC", ofm_layout="NHWC", rounding_mode="TFL", upscale="NONE", ): pooling = ethosu_ops.ethosu_pooling( ifm, lut=relay.const([], dtype="int8"), pooling_type=pooling_type, ifm_scale=1, ifm_zero_point=0, ofm_scale=1, ofm_zero_point=0, pool_shape=pool_shape, ofm_channels=ofm_channels, strides=strides, padding=padding, activation=activation, clip_min=10 if activation == "CLIP" else 0, clip_max=100 if activation == "CLIP" else 0, rounding_mode=rounding_mode, upscale=upscale, ifm_layout=ifm_layout, ofm_layout=ofm_layout, ) return pooling def get_binary_elementwise_args(call, include_buffers=False): args = call.args binary_elementwise_args = [] for i, arg in enumerate(args): if isinstance(arg, tvm.tir.expr.IntImm) or isinstance(arg, tvm.tir.expr.FloatImm): binary_elementwise_args.append(arg.value) elif isinstance(arg, tvm.tir.expr.Load) and not include_buffers: binary_elementwise_args.append(arg.index) else: binary_elementwise_args.append(arg) return binary_elementwise_args def make_ethosu_binary_elementwise( ifm, ifm2, ifm_channels, ifm2_channels, operator_type, ofm_dtype, reversed_operands=False, activation="NONE", ifm_layout="NHWC", ifm2_layout="NHWC", ofm_layout="NHWC", rounding_mode="TFL", ): ethosu_binary_elementwise = ethosu_ops.ethosu_binary_elementwise( ifm=ifm, ifm2=ifm2, lut=relay.const([], dtype="int8"), operator_type=operator_type, ifm_scale=1, ifm_zero_point=0, ifm2_scale=1, ifm2_zero_point=0, ofm_scale=1, ofm_zero_point=0, ifm_channels=ifm_channels, ifm2_channels=ifm2_channels, reversed_operands=reversed_operands, activation=activation, ofm_dtype=ofm_dtype, clip_min=10 if activation == "CLIP" else 0, clip_max=100 if activation == "CLIP" else 0, rounding_mode=rounding_mode, ifm_layout=ifm_layout, ifm2_layout=ifm2_layout, ofm_layout=ofm_layout, ) return ethosu_binary_elementwise def make_ethosu_identity( ifm, lut=relay.const([], dtype="int8"), ifm_scale=1, ifm_zero_point=0, ofm_scale=1, ofm_zero_point=0, activation="NONE", ): identity = ethosu_ops.ethosu_identity( ifm, lut=lut, ifm_scale=ifm_scale, ifm_zero_point=ifm_zero_point, ofm_scale=ofm_scale, ofm_zero_point=ofm_zero_point, activation=activation, ) return identity def make_ethosu_unary_elementwise( ifm, ofm_channels, operator_type, activation="NONE", ifm_layout="NHWC", ofm_layout="NHWC", rounding_mode="TFL", ): ethosu_unary_elementwise = ethosu_ops.ethosu_unary_elementwise( ifm=ifm, lut=relay.const([], dtype="int8"), operator_type=operator_type, ifm_scale=1, ifm_zero_point=0, ofm_scale=1, ofm_zero_point=0, ofm_channels=ofm_channels, activation=activation, clip_min=10 if activation == "CLIP" else 0, clip_max=100 if activation == "CLIP" else 0, rounding_mode=rounding_mode, ifm_layout=ifm_layout, ofm_layout=ofm_layout, ) return ethosu_unary_elementwise
30.29985
108
0.653488
94f913efc0c68f367c79b42ef46760b594f8d2c2
2,802
py
Python
scripts/kernel_config_parser.py
jbauman42/bob-build
acf70b912e6b0af30a856ac94ad0aae299444419
[ "Apache-2.0" ]
1
2021-07-03T23:48:05.000Z
2021-07-03T23:48:05.000Z
scripts/kernel_config_parser.py
jbauman42/bob-build
acf70b912e6b0af30a856ac94ad0aae299444419
[ "Apache-2.0" ]
null
null
null
scripts/kernel_config_parser.py
jbauman42/bob-build
acf70b912e6b0af30a856ac94ad0aae299444419
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2021 Arm Limited. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os logger = logging.getLogger(__name__) g_kernel_configs = dict() def get_config_file_path(kdir): return os.path.join(kdir, '.config') def parse_kernel_config(kdir): """Parse kernel configuration from provided directory""" config_file = get_config_file_path(kdir) config = dict() try: with open(config_file, "rt") as fp: for line in fp.readlines(): try: (key, val) = line.split("=") config[key.strip()] = val.strip().strip('"') except ValueError: pass except IOError as e: logger.error("Failed to open kernel config file in %s:", config_file) return config def get_value(kdir, option): """Return value of the kernel config opption""" global g_kernel_configs if kdir not in g_kernel_configs: g_kernel_configs[kdir] = parse_kernel_config(kdir) return g_kernel_configs[kdir].get(option) def option_enabled(kdir, option): """Return true if a given kernel config option is enabled""" return get_value(kdir, option) == 'y' def get_arch(kdir): arch_dir = os.path.join(kdir, "arch") if not os.path.exists(arch_dir): logger.error("'arch' subdirectory in kernel %s does not exist", kdir) return None # Each directory in $KDIR/arch has a config option with the same name. for arch in os.listdir(arch_dir): if not os.path.isfile(os.path.join(arch_dir, arch, "Kconfig")): continue if option_enabled(kdir, "CONFIG_" + arch.upper()): return arch if option_enabled(kdir, "CONFIG_UML"): return "um" elif option_enabled(kdir, "CONFIG_X86_32"): return "i386" elif option_enabled(kdir, "CONFIG_X86_64"): return "x86_64" elif option_enabled(kdir, "CONFIG_PPC32") or option_enabled(kdir, "CONFIG_PPC64"): return "powerpc" elif (option_enabled(kdir, "CONFIG_SUPERH") or option_enabled(kdir, "CONFIG_SUPERH32") or option_enabled(kdir, "CONFIG_SUPERH64")): return "sh" logger.error("Couldn't get ARCH for kernel %s", kdir) return None
31.133333
93
0.66631
7a55f86cde27e0aa796cad4bd9f4679339b1e7eb
40,340
py
Python
awx/settings/defaults.py
Xiol/awx
80a17987ff636c6750edf20a67c99e27f99fcccd
[ "Apache-2.0" ]
null
null
null
awx/settings/defaults.py
Xiol/awx
80a17987ff636c6750edf20a67c99e27f99fcccd
[ "Apache-2.0" ]
null
null
null
awx/settings/defaults.py
Xiol/awx
80a17987ff636c6750edf20a67c99e27f99fcccd
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2015 Ansible, Inc. # All Rights Reserved. import os import re # noqa import sys from datetime import timedelta from celery.schedules import crontab # global settings from django.conf import global_settings # ugettext lazy from django.utils.translation import ugettext_lazy as _ # Update this module's local settings from the global settings module. this_module = sys.modules[__name__] for setting in dir(global_settings): if setting == setting.upper(): setattr(this_module, setting, getattr(global_settings, setting)) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(__file__)) def is_testing(argv=None): import sys '''Return True if running django or py.test unit tests.''' if 'PYTEST_CURRENT_TEST' in os.environ.keys(): return True argv = sys.argv if argv is None else argv if len(argv) >= 1 and ('py.test' in argv[0] or 'py/test.py' in argv[0]): return True elif len(argv) >= 2 and argv[1] == 'test': return True return False def IS_TESTING(argv=None): return is_testing(argv) if "pytest" in sys.modules: from unittest import mock with mock.patch('__main__.__builtins__.dir', return_value=[]): import ldap else: import ldap DEBUG = True SQL_DEBUG = DEBUG ADMINS = ( # ('Your Name', 'your_email@domain.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'awx.sqlite3'), 'ATOMIC_REQUESTS': True, 'TEST': { # Test database cannot be :memory: for inventory tests. 'NAME': os.path.join(BASE_DIR, 'awx_test.sqlite3'), }, } } # Internationalization # https://docs.djangoproject.com/en/dev/topics/i18n/ # # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'UTC' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True USE_TZ = True STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'ui', 'static'), os.path.join(BASE_DIR, 'static'), ) # Absolute filesystem path to the directory where static file are collected via # the collectstatic command. STATIC_ROOT = os.path.join(BASE_DIR, 'public', 'static') # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/dev/howto/static-files/ STATIC_URL = '/static/' # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = os.path.join(BASE_DIR, 'public', 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = '/media/' LOGIN_URL = '/api/login/' # Absolute filesystem path to the directory to host projects (with playbooks). # This directory should not be web-accessible. PROJECTS_ROOT = os.path.join(BASE_DIR, 'projects') # Absolute filesystem path to the directory for job status stdout (default for # development and tests, default for production defined in production.py). This # directory should not be web-accessible JOBOUTPUT_ROOT = os.path.join(BASE_DIR, 'job_output') # Absolute filesystem path to the directory to store logs LOG_ROOT = os.path.join(BASE_DIR) # The heartbeat file for the tower scheduler SCHEDULE_METADATA_LOCATION = os.path.join(BASE_DIR, '.tower_cycle') # Django gettext files path: locale/<lang-code>/LC_MESSAGES/django.po, django.mo LOCALE_PATHS = ( os.path.join(BASE_DIR, 'locale'), ) # Graph of resources that can have named-url NAMED_URL_GRAPH = {} # Maximum number of the same job that can be waiting to run when launching from scheduler # Note: This setting may be overridden by database settings. SCHEDULE_MAX_JOBS = 10 SITE_ID = 1 # Make this unique, and don't share it with anybody. SECRET_KEY = 'p7z7g1ql4%6+(6nlebb6hdk7sd^&fnjpal308%n%+p^_e6vo1y' # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = [] # HTTP headers and meta keys to search to determine remote host name or IP. Add # additional items to this list, such as "HTTP_X_FORWARDED_FOR", if behind a # reverse proxy. REMOTE_HOST_HEADERS = ['REMOTE_ADDR', 'REMOTE_HOST'] # If Tower is behind a reverse proxy/load balancer, use this setting to # whitelist the proxy IP addresses from which Tower should trust custom # REMOTE_HOST_HEADERS header values # REMOTE_HOST_HEADERS = ['HTTP_X_FORWARDED_FOR', ''REMOTE_ADDR', 'REMOTE_HOST'] # PROXY_IP_WHITELIST = ['10.0.1.100', '10.0.1.101'] # If this setting is an empty list (the default), the headers specified by # REMOTE_HOST_HEADERS will be trusted unconditionally') PROXY_IP_WHITELIST = [] CUSTOM_VENV_PATHS = [] # Note: This setting may be overridden by database settings. STDOUT_MAX_BYTES_DISPLAY = 1048576 # Returned in the header on event api lists as a recommendation to the UI # on how many events to display before truncating/hiding MAX_UI_JOB_EVENTS = 4000 # Returned in index.html, tells the UI if it should make requests # to update job data in response to status changes websocket events UI_LIVE_UPDATES_ENABLED = True # The maximum size of the ansible callback event's res data structure # beyond this limit and the value will be removed MAX_EVENT_RES_DATA = 700000 # Note: This setting may be overridden by database settings. EVENT_STDOUT_MAX_BYTES_DISPLAY = 1024 # The amount of time before a stdout file is expired and removed locally # Note that this can be recreated if the stdout is downloaded LOCAL_STDOUT_EXPIRE_TIME = 2592000 # The number of processes spawned by the callback receiver to process job # events into the database JOB_EVENT_WORKERS = 4 # The maximum size of the job event worker queue before requests are blocked JOB_EVENT_MAX_QUEUE_SIZE = 10000 # Disallow sending session cookies over insecure connections SESSION_COOKIE_SECURE = True # Seconds before sessions expire. # Note: This setting may be overridden by database settings. SESSION_COOKIE_AGE = 1800 # Maximum number of per-user valid, concurrent sessions. # -1 is unlimited # Note: This setting may be overridden by database settings. SESSIONS_PER_USER = -1 CSRF_USE_SESSIONS = False # Disallow sending csrf cookies over insecure connections CSRF_COOKIE_SECURE = True # Limit CSRF cookies to browser sessions CSRF_COOKIE_AGE = None TEMPLATES = [ { 'NAME': 'default', 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'OPTIONS': { 'debug': DEBUG, 'context_processors': [# NOQA 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', 'awx.ui.context_processors.settings', 'awx.ui.context_processors.version', 'social_django.context_processors.backends', 'social_django.context_processors.login_redirect', ], 'loaders': [( 'django.template.loaders.cached.Loader', ('django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader',), )], 'builtins': ['awx.main.templatetags.swagger'], }, 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], }, ] ROOT_URLCONF = 'awx.urls' WSGI_APPLICATION = 'awx.wsgi.application' INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.staticfiles', 'oauth2_provider', 'rest_framework', 'django_extensions', 'channels', 'polymorphic', 'taggit', 'social_django', 'corsheaders', 'awx.conf', 'awx.main', 'awx.api', 'awx.ui', 'awx.sso', 'solo' ] INTERNAL_IPS = ('127.0.0.1',) MAX_PAGE_SIZE = 200 REST_FRAMEWORK = { 'DEFAULT_PAGINATION_CLASS': 'awx.api.pagination.Pagination', 'PAGE_SIZE': 25, 'DEFAULT_AUTHENTICATION_CLASSES': ( 'awx.api.authentication.LoggedOAuth2Authentication', 'awx.api.authentication.SessionAuthentication', 'awx.api.authentication.LoggedBasicAuthentication', ), 'DEFAULT_PERMISSION_CLASSES': ( 'awx.api.permissions.ModelAccessPermission', ), 'DEFAULT_FILTER_BACKENDS': ( 'awx.api.filters.TypeFilterBackend', 'awx.api.filters.FieldLookupBackend', 'rest_framework.filters.SearchFilter', 'awx.api.filters.OrderByBackend', ), 'DEFAULT_PARSER_CLASSES': ( 'awx.api.parsers.JSONParser', ), 'DEFAULT_RENDERER_CLASSES': ( 'rest_framework.renderers.JSONRenderer', 'awx.api.renderers.BrowsableAPIRenderer', ), 'DEFAULT_METADATA_CLASS': 'awx.api.metadata.Metadata', 'EXCEPTION_HANDLER': 'awx.api.views.api_exception_handler', 'VIEW_DESCRIPTION_FUNCTION': 'awx.api.generics.get_view_description', 'NON_FIELD_ERRORS_KEY': '__all__', 'DEFAULT_VERSION': 'v2', #'URL_FORMAT_OVERRIDE': None, } AUTHENTICATION_BACKENDS = ( 'awx.sso.backends.LDAPBackend', 'awx.sso.backends.LDAPBackend1', 'awx.sso.backends.LDAPBackend2', 'awx.sso.backends.LDAPBackend3', 'awx.sso.backends.LDAPBackend4', 'awx.sso.backends.LDAPBackend5', 'awx.sso.backends.RADIUSBackend', 'awx.sso.backends.TACACSPlusBackend', 'social_core.backends.google.GoogleOAuth2', 'social_core.backends.github.GithubOAuth2', 'social_core.backends.github.GithubOrganizationOAuth2', 'social_core.backends.github.GithubTeamOAuth2', 'social_core.backends.azuread.AzureADOAuth2', 'awx.sso.backends.SAMLAuth', 'django.contrib.auth.backends.ModelBackend', ) # Django OAuth Toolkit settings OAUTH2_PROVIDER_APPLICATION_MODEL = 'main.OAuth2Application' OAUTH2_PROVIDER_ACCESS_TOKEN_MODEL = 'main.OAuth2AccessToken' OAUTH2_PROVIDER_REFRESH_TOKEN_MODEL = 'oauth2_provider.RefreshToken' OAUTH2_PROVIDER = {'ACCESS_TOKEN_EXPIRE_SECONDS': 31536000000, 'AUTHORIZATION_CODE_EXPIRE_SECONDS': 600} ALLOW_OAUTH2_FOR_EXTERNAL_USERS = False # LDAP server (default to None to skip using LDAP authentication). # Note: This setting may be overridden by database settings. AUTH_LDAP_SERVER_URI = None # Disable LDAP referrals by default (to prevent certain LDAP queries from # hanging with AD). # Note: This setting may be overridden by database settings. AUTH_LDAP_CONNECTION_OPTIONS = { ldap.OPT_REFERRALS: 0, ldap.OPT_NETWORK_TIMEOUT: 30 } # Radius server settings (default to empty string to skip using Radius auth). # Note: These settings may be overridden by database settings. RADIUS_SERVER = '' RADIUS_PORT = 1812 RADIUS_SECRET = '' # TACACS+ settings (default host to empty string to skip using TACACS+ auth). # Note: These settings may be overridden by database settings. TACACSPLUS_HOST = '' TACACSPLUS_PORT = 49 TACACSPLUS_SECRET = '' TACACSPLUS_SESSION_TIMEOUT = 5 TACACSPLUS_AUTH_PROTOCOL = 'ascii' # Enable / Disable HTTP Basic Authentication used in the API browser # Note: Session limits are not enforced when using HTTP Basic Authentication. # Note: This setting may be overridden by database settings. AUTH_BASIC_ENABLED = True # If set, serve only minified JS for UI. USE_MINIFIED_JS = False # Email address that error messages come from. SERVER_EMAIL = 'root@localhost' # Default email address to use for various automated correspondence from # the site managers. DEFAULT_FROM_EMAIL = 'tower@localhost' # Subject-line prefix for email messages send with django.core.mail.mail_admins # or ...mail_managers. Make sure to include the trailing space. EMAIL_SUBJECT_PREFIX = '[Tower] ' # The email backend to use. For possible shortcuts see django.core.mail. # The default is to use the SMTP backend. # Third-party backends can be specified by providing a Python path # to a module that defines an EmailBackend class. EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # Host for sending email. EMAIL_HOST = 'localhost' # Port for sending email. EMAIL_PORT = 25 # Optional SMTP authentication information for EMAIL_HOST. EMAIL_HOST_USER = '' EMAIL_HOST_PASSWORD = '' EMAIL_USE_TLS = False # Default to skipping isolated host key checking (the initial connection will # hang on an interactive "The authenticity of host example.org can't be # established" message) AWX_ISOLATED_HOST_KEY_CHECKING = False # The number of seconds to sleep between status checks for jobs running on isolated nodes AWX_ISOLATED_CHECK_INTERVAL = 30 # The timeout (in seconds) for launching jobs on isolated nodes AWX_ISOLATED_LAUNCH_TIMEOUT = 600 # Ansible connection timeout (in seconds) for communicating with isolated instances AWX_ISOLATED_CONNECTION_TIMEOUT = 10 # The time (in seconds) between the periodic isolated heartbeat status check AWX_ISOLATED_PERIODIC_CHECK = 600 # Verbosity level for isolated node management tasks AWX_ISOLATED_VERBOSITY = 0 # Memcached django cache configuration # CACHES = { # 'default': { # 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', # 'LOCATION': '127.0.0.1:11211', # 'TIMEOUT': 864000, # 'KEY_PREFIX': 'tower_dev', # } # } DEVSERVER_DEFAULT_ADDR = '0.0.0.0' DEVSERVER_DEFAULT_PORT = '8013' # Set default ports for live server tests. os.environ.setdefault('DJANGO_LIVE_TEST_SERVER_ADDRESS', 'localhost:9013-9199') BROKER_DURABILITY = True BROKER_POOL_LIMIT = None BROKER_URL = 'amqp://guest:guest@localhost:5672//' CELERY_DEFAULT_QUEUE = 'awx_private_queue' CELERYBEAT_SCHEDULE = { 'tower_scheduler': { 'task': 'awx.main.tasks.awx_periodic_scheduler', 'schedule': timedelta(seconds=30), 'options': {'expires': 20,} }, 'admin_checks': { 'task': 'awx.main.tasks.run_administrative_checks', 'schedule': timedelta(days=30) }, 'cluster_heartbeat': { 'task': 'awx.main.tasks.cluster_node_heartbeat', 'schedule': timedelta(seconds=60), 'options': {'expires': 50,} }, 'purge_stdout_files': { 'task': 'awx.main.tasks.purge_old_stdout_files', 'schedule': timedelta(days=7) }, 'gather_analytics': { 'task': 'awx.main.tasks.gather_analytics', 'schedule': crontab(hour=0) }, 'task_manager': { 'task': 'awx.main.scheduler.tasks.run_task_manager', 'schedule': timedelta(seconds=20), 'options': {'expires': 20} }, # 'isolated_heartbeat': set up at the end of production.py and development.py } AWX_INCONSISTENT_TASK_INTERVAL = 60 * 3 AWX_CELERY_QUEUES_STATIC = [ CELERY_DEFAULT_QUEUE, ] AWX_CELERY_BCAST_QUEUES_STATIC = [ 'tower_broadcast_all', ] ASGI_AMQP = { 'INIT_FUNC': 'awx.prepare_env', 'MODEL': 'awx.main.models.channels.ChannelGroup', } # Django Caching Configuration CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': 'memcached:11211', }, } # Social Auth configuration. SOCIAL_AUTH_STRATEGY = 'social_django.strategy.DjangoStrategy' SOCIAL_AUTH_STORAGE = 'social_django.models.DjangoStorage' SOCIAL_AUTH_USER_MODEL = AUTH_USER_MODEL # noqa _SOCIAL_AUTH_PIPELINE_BASE = ( 'social_core.pipeline.social_auth.social_details', 'social_core.pipeline.social_auth.social_uid', 'social_core.pipeline.social_auth.auth_allowed', 'social_core.pipeline.social_auth.social_user', 'social_core.pipeline.user.get_username', 'social_core.pipeline.social_auth.associate_by_email', 'social_core.pipeline.user.create_user', 'awx.sso.pipeline.check_user_found_or_created', 'social_core.pipeline.social_auth.associate_user', 'social_core.pipeline.social_auth.load_extra_data', 'awx.sso.pipeline.set_is_active_for_new_user', 'social_core.pipeline.user.user_details', 'awx.sso.pipeline.prevent_inactive_login', ) SOCIAL_AUTH_PIPELINE = _SOCIAL_AUTH_PIPELINE_BASE + ( 'awx.sso.pipeline.update_user_orgs', 'awx.sso.pipeline.update_user_teams', ) SOCIAL_AUTH_SAML_PIPELINE = _SOCIAL_AUTH_PIPELINE_BASE + ( 'awx.sso.pipeline.update_user_orgs_by_saml_attr', 'awx.sso.pipeline.update_user_teams_by_saml_attr', 'awx.sso.pipeline.update_user_orgs', 'awx.sso.pipeline.update_user_teams', ) SOCIAL_AUTH_LOGIN_URL = '/' SOCIAL_AUTH_LOGIN_REDIRECT_URL = '/sso/complete/' SOCIAL_AUTH_LOGIN_ERROR_URL = '/sso/error/' SOCIAL_AUTH_INACTIVE_USER_URL = '/sso/inactive/' SOCIAL_AUTH_RAISE_EXCEPTIONS = False SOCIAL_AUTH_USERNAME_IS_FULL_EMAIL = False #SOCIAL_AUTH_SLUGIFY_USERNAMES = True SOCIAL_AUTH_CLEAN_USERNAMES = True SOCIAL_AUTH_SANITIZE_REDIRECTS = True SOCIAL_AUTH_REDIRECT_IS_HTTPS = False # Note: These settings may be overridden by database settings. SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = '' SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = '' SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE = ['profile'] SOCIAL_AUTH_GITHUB_KEY = '' SOCIAL_AUTH_GITHUB_SECRET = '' SOCIAL_AUTH_GITHUB_SCOPE = ['user:email', 'read:org'] SOCIAL_AUTH_GITHUB_ORG_KEY = '' SOCIAL_AUTH_GITHUB_ORG_SECRET = '' SOCIAL_AUTH_GITHUB_ORG_NAME = '' SOCIAL_AUTH_GITHUB_ORG_SCOPE = ['user:email', 'read:org'] SOCIAL_AUTH_GITHUB_TEAM_KEY = '' SOCIAL_AUTH_GITHUB_TEAM_SECRET = '' SOCIAL_AUTH_GITHUB_TEAM_ID = '' SOCIAL_AUTH_GITHUB_TEAM_SCOPE = ['user:email', 'read:org'] SOCIAL_AUTH_AZUREAD_OAUTH2_KEY = '' SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET = '' SOCIAL_AUTH_SAML_SP_ENTITY_ID = '' SOCIAL_AUTH_SAML_SP_PUBLIC_CERT = '' SOCIAL_AUTH_SAML_SP_PRIVATE_KEY = '' SOCIAL_AUTH_SAML_ORG_INFO = {} SOCIAL_AUTH_SAML_TECHNICAL_CONTACT = {} SOCIAL_AUTH_SAML_SUPPORT_CONTACT = {} SOCIAL_AUTH_SAML_ENABLED_IDPS = {} SOCIAL_AUTH_SAML_ORGANIZATION_ATTR = {} SOCIAL_AUTH_SAML_TEAM_ATTR = {} # Any ANSIBLE_* settings will be passed to the task runner subprocess # environment # Do not want AWX to ask interactive questions and want it to be friendly with # reprovisioning ANSIBLE_HOST_KEY_CHECKING = False # RHEL has too old of an SSH so ansible will select paramiko and this is VERY # slow. ANSIBLE_PARAMIKO_RECORD_HOST_KEYS = False # Force ansible in color even if we don't have a TTY so we can properly colorize # output ANSIBLE_FORCE_COLOR = True # If tmp generated inventory parsing fails (error state), fail playbook fast ANSIBLE_INVENTORY_UNPARSED_FAILED = True # Additional environment variables to be passed to the ansible subprocesses AWX_TASK_ENV = {} # Flag to enable/disable updating hosts M2M when saving job events. CAPTURE_JOB_EVENT_HOSTS = False # Rebuild Host Smart Inventory memberships. AWX_REBUILD_SMART_MEMBERSHIP = False # By default, allow arbitrary Jinja templating in extra_vars defined on a Job Template ALLOW_JINJA_IN_EXTRA_VARS = 'template' # Enable dynamically pulling roles from a requirement.yml file # when updating SCM projects # Note: This setting may be overridden by database settings. AWX_ROLES_ENABLED = True # Enable dynamically pulling collections from a requirement.yml file # when updating SCM projects # Note: This setting may be overridden by database settings. AWX_COLLECTIONS_ENABLED = True # Enable bubblewrap support for running jobs (playbook runs only). # Note: This setting may be overridden by database settings. AWX_PROOT_ENABLED = True # Command/path to bubblewrap. AWX_PROOT_CMD = 'bwrap' # Additional paths to hide from jobs using bubblewrap. # Note: This setting may be overridden by database settings. AWX_PROOT_HIDE_PATHS = [] # Additional paths to show for jobs using bubbelwrap. # Note: This setting may be overridden by database settings. AWX_PROOT_SHOW_PATHS = [] # The directory in which Tower will create new temporary directories for job # execution and isolation (such as credential files and custom # inventory scripts). # Note: This setting may be overridden by database settings. AWX_PROOT_BASE_PATH = "/tmp" # User definable ansible callback plugins # Note: This setting may be overridden by database settings. AWX_ANSIBLE_CALLBACK_PLUGINS = "" # Automatically remove nodes that have missed their heartbeats after some time AWX_AUTO_DEPROVISION_INSTANCES = False # Enable Pendo on the UI, possible values are 'off', 'anonymous', and 'detailed' # Note: This setting may be overridden by database settings. PENDO_TRACKING_STATE = "off" # Enables Insights data collection for Ansible Tower. # Note: This setting may be overridden by database settings. INSIGHTS_TRACKING_STATE = False # Default list of modules allowed for ad hoc commands. # Note: This setting may be overridden by database settings. AD_HOC_COMMANDS = [ 'command', 'shell', 'yum', 'apt', 'apt_key', 'apt_repository', 'apt_rpm', 'service', 'group', 'user', 'mount', 'ping', 'selinux', 'setup', 'win_ping', 'win_service', 'win_updates', 'win_group', 'win_user', ] INV_ENV_VARIABLE_BLACKLIST = ("HOME", "USER", "_", "TERM") # ---------------- # -- Amazon EC2 -- # ---------------- # AWS does not appear to provide pretty region names via any API, so store the # list of names here. The available region IDs will be pulled from boto. # http://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region EC2_REGION_NAMES = { 'us-east-1': _('US East (Northern Virginia)'), 'us-east-2': _('US East (Ohio)'), 'us-west-2': _('US West (Oregon)'), 'us-west-1': _('US West (Northern California)'), 'ca-central-1': _('Canada (Central)'), 'eu-central-1': _('EU (Frankfurt)'), 'eu-west-1': _('EU (Ireland)'), 'eu-west-2': _('EU (London)'), 'ap-southeast-1': _('Asia Pacific (Singapore)'), 'ap-southeast-2': _('Asia Pacific (Sydney)'), 'ap-northeast-1': _('Asia Pacific (Tokyo)'), 'ap-northeast-2': _('Asia Pacific (Seoul)'), 'ap-south-1': _('Asia Pacific (Mumbai)'), 'sa-east-1': _('South America (Sao Paulo)'), 'us-gov-west-1': _('US West (GovCloud)'), 'cn-north-1': _('China (Beijing)'), } EC2_REGIONS_BLACKLIST = [ 'us-gov-west-1', 'cn-north-1', ] # Inventory variable name/values for determining if host is active/enabled. EC2_ENABLED_VAR = 'ec2_state' EC2_ENABLED_VALUE = 'running' # Inventory variable name containing unique instance ID. EC2_INSTANCE_ID_VAR = 'ec2_id' # Filter for allowed group/host names when importing inventory from EC2. EC2_GROUP_FILTER = r'^.+$' EC2_HOST_FILTER = r'^.+$' EC2_EXCLUDE_EMPTY_GROUPS = True # ------------ # -- VMware -- # ------------ VMWARE_REGIONS_BLACKLIST = [] # Inventory variable name/values for determining whether a host is # active in vSphere. VMWARE_ENABLED_VAR = 'guest.gueststate' VMWARE_ENABLED_VALUE = 'running' # Inventory variable name containing the unique instance ID. VMWARE_INSTANCE_ID_VAR = 'config.instanceuuid' # Filter for allowed group and host names when importing inventory # from VMware. VMWARE_GROUP_FILTER = r'^.+$' VMWARE_HOST_FILTER = r'^.+$' VMWARE_EXCLUDE_EMPTY_GROUPS = True VMWARE_VALIDATE_CERTS = False # --------------------------- # -- Google Compute Engine -- # --------------------------- # It's not possible to get zones in GCE without authenticating, so we # provide a list here. # Source: https://developers.google.com/compute/docs/zones GCE_REGION_CHOICES = [ ('us-east1-b', _('US East 1 (B)')), ('us-east1-c', _('US East 1 (C)')), ('us-east1-d', _('US East 1 (D)')), ('us-east4-a', _('US East 4 (A)')), ('us-east4-b', _('US East 4 (B)')), ('us-east4-c', _('US East 4 (C)')), ('us-central1-a', _('US Central (A)')), ('us-central1-b', _('US Central (B)')), ('us-central1-c', _('US Central (C)')), ('us-central1-f', _('US Central (F)')), ('us-west1-a', _('US West (A)')), ('us-west1-b', _('US West (B)')), ('us-west1-c', _('US West (C)')), ('europe-west1-b', _('Europe West 1 (B)')), ('europe-west1-c', _('Europe West 1 (C)')), ('europe-west1-d', _('Europe West 1 (D)')), ('europe-west2-a', _('Europe West 2 (A)')), ('europe-west2-b', _('Europe West 2 (B)')), ('europe-west2-c', _('Europe West 2 (C)')), ('asia-east1-a', _('Asia East (A)')), ('asia-east1-b', _('Asia East (B)')), ('asia-east1-c', _('Asia East (C)')), ('asia-southeast1-a', _('Asia Southeast (A)')), ('asia-southeast1-b', _('Asia Southeast (B)')), ('asia-northeast1-a', _('Asia Northeast (A)')), ('asia-northeast1-b', _('Asia Northeast (B)')), ('asia-northeast1-c', _('Asia Northeast (C)')), ('australia-southeast1-a', _('Australia Southeast (A)')), ('australia-southeast1-b', _('Australia Southeast (B)')), ('australia-southeast1-c', _('Australia Southeast (C)')), ] GCE_REGIONS_BLACKLIST = [] # Inventory variable name/value for determining whether a host is active # in Google Compute Engine. GCE_ENABLED_VAR = 'status' GCE_ENABLED_VALUE = 'running' # Filter for allowed group and host names when importing inventory from # Google Compute Engine. GCE_GROUP_FILTER = r'^.+$' GCE_HOST_FILTER = r'^.+$' GCE_EXCLUDE_EMPTY_GROUPS = True GCE_INSTANCE_ID_VAR = 'gce_id' # -------------------------------------- # -- Microsoft Azure Resource Manager -- # -------------------------------------- # It's not possible to get zones in Azure without authenticating, so we # provide a list here. AZURE_RM_REGION_CHOICES = [ ('eastus', _('US East')), ('eastus2', _('US East 2')), ('centralus', _('US Central')), ('northcentralus', _('US North Central')), ('southcentralus', _('US South Central')), ('westcentralus', _('US West Central')), ('westus', _('US West')), ('westus2', _('US West 2')), ('canadaeast', _('Canada East')), ('canadacentral', _('Canada Central')), ('brazilsouth', _('Brazil South')), ('northeurope', _('Europe North')), ('westeurope', _('Europe West')), ('ukwest', _('UK West')), ('uksouth', _('UK South')), ('eastasia', _('Asia East')), ('southestasia', _('Asia Southeast')), ('australiaeast', _('Australia East')), ('australiasoutheast', _('Australia Southeast')), ('westindia', _('India West')), ('southindia', _('India South')), ('japaneast', _('Japan East')), ('japanwest', _('Japan West')), ('koreacentral', _('Korea Central')), ('koreasouth', _('Korea South')), ] AZURE_RM_REGIONS_BLACKLIST = [] AZURE_RM_GROUP_FILTER = r'^.+$' AZURE_RM_HOST_FILTER = r'^.+$' AZURE_RM_ENABLED_VAR = 'powerstate' AZURE_RM_ENABLED_VALUE = 'running' AZURE_RM_INSTANCE_ID_VAR = 'id' AZURE_RM_EXCLUDE_EMPTY_GROUPS = True # --------------------- # ----- OpenStack ----- # --------------------- OPENSTACK_ENABLED_VAR = 'status' OPENSTACK_ENABLED_VALUE = 'ACTIVE' OPENSTACK_GROUP_FILTER = r'^.+$' OPENSTACK_HOST_FILTER = r'^.+$' OPENSTACK_EXCLUDE_EMPTY_GROUPS = True OPENSTACK_INSTANCE_ID_VAR = 'openstack.id' # --------------------- # ----- oVirt4 ----- # --------------------- RHV_ENABLED_VAR = 'status' RHV_ENABLED_VALUE = 'up' RHV_GROUP_FILTER = r'^.+$' RHV_HOST_FILTER = r'^.+$' RHV_EXCLUDE_EMPTY_GROUPS = True RHV_INSTANCE_ID_VAR = 'id' # --------------------- # ----- Tower ----- # --------------------- TOWER_ENABLED_VAR = 'remote_tower_enabled' TOWER_ENABLED_VALUE = 'true' TOWER_GROUP_FILTER = r'^.+$' TOWER_HOST_FILTER = r'^.+$' TOWER_EXCLUDE_EMPTY_GROUPS = True TOWER_INSTANCE_ID_VAR = 'remote_tower_id' # --------------------- # ----- Foreman ----- # --------------------- SATELLITE6_ENABLED_VAR = 'foreman.enabled' SATELLITE6_ENABLED_VALUE = 'True' SATELLITE6_GROUP_FILTER = r'^.+$' SATELLITE6_HOST_FILTER = r'^.+$' SATELLITE6_EXCLUDE_EMPTY_GROUPS = True SATELLITE6_INSTANCE_ID_VAR = 'foreman.id' # SATELLITE6_GROUP_PREFIX and SATELLITE6_GROUP_PATTERNS defined in source vars # --------------------- # ----- CloudForms ----- # --------------------- CLOUDFORMS_ENABLED_VAR = 'cloudforms.power_state' CLOUDFORMS_ENABLED_VALUE = 'on' CLOUDFORMS_GROUP_FILTER = r'^.+$' CLOUDFORMS_HOST_FILTER = r'^.+$' CLOUDFORMS_EXCLUDE_EMPTY_GROUPS = True CLOUDFORMS_INSTANCE_ID_VAR = 'cloudforms.id' # --------------------- # ----- Custom ----- # --------------------- #CUSTOM_ENABLED_VAR = #CUSTOM_ENABLED_VALUE = CUSTOM_GROUP_FILTER = r'^.+$' CUSTOM_HOST_FILTER = r'^.+$' CUSTOM_EXCLUDE_EMPTY_GROUPS = False #CUSTOM_INSTANCE_ID_VAR = # --------------------- # ----- SCM ----- # --------------------- #SCM_ENABLED_VAR = #SCM_ENABLED_VALUE = SCM_GROUP_FILTER = r'^.+$' SCM_HOST_FILTER = r'^.+$' SCM_EXCLUDE_EMPTY_GROUPS = False #SCM_INSTANCE_ID_VAR = # --------------------- # -- Activity Stream -- # --------------------- # Defaults for enabling/disabling activity stream. # Note: These settings may be overridden by database settings. ACTIVITY_STREAM_ENABLED = True ACTIVITY_STREAM_ENABLED_FOR_INVENTORY_SYNC = False # Internal API URL for use by inventory scripts and callback plugin. INTERNAL_API_URL = 'http://127.0.0.1:%s' % DEVSERVER_DEFAULT_PORT PERSISTENT_CALLBACK_MESSAGES = True USE_CALLBACK_QUEUE = True CALLBACK_QUEUE = "callback_tasks" SCHEDULER_QUEUE = "scheduler" TASK_COMMAND_PORT = 6559 SOCKETIO_NOTIFICATION_PORT = 6557 SOCKETIO_LISTEN_PORT = 8080 FACT_CACHE_PORT = 6564 # Note: This setting may be overridden by database settings. ORG_ADMINS_CAN_SEE_ALL_USERS = True MANAGE_ORGANIZATION_AUTH = True # Note: This setting may be overridden by database settings. TOWER_ADMIN_ALERTS = True # Note: This setting may be overridden by database settings. TOWER_URL_BASE = "https://towerhost" INSIGHTS_URL_BASE = "https://example.org" INSIGHTS_AGENT_MIME = 'application/example' TOWER_SETTINGS_MANIFEST = {} # Settings related to external logger configuration LOG_AGGREGATOR_ENABLED = False LOG_AGGREGATOR_TCP_TIMEOUT = 5 LOG_AGGREGATOR_VERIFY_CERT = True LOG_AGGREGATOR_LEVEL = 'INFO' # The number of retry attempts for websocket session establishment # If you're encountering issues establishing websockets in clustered Tower, # raising this value can help CHANNEL_LAYER_RECEIVE_MAX_RETRY = 10 # Logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse', }, 'require_debug_true': { '()': 'django.utils.log.RequireDebugTrue', }, 'require_debug_true_or_test': { '()': 'awx.main.utils.RequireDebugTrueOrTest', }, 'external_log_enabled': { '()': 'awx.main.utils.filters.ExternalLoggerEnabled' }, 'dynamic_level_filter': { '()': 'awx.main.utils.filters.DynamicLevelFilter' } }, 'formatters': { 'simple': { 'format': '%(asctime)s %(levelname)-8s %(name)s %(message)s', }, 'json': { '()': 'awx.main.utils.formatters.LogstashFormatter' }, 'timed_import': { '()': 'awx.main.utils.formatters.TimeFormatter', 'format': '%(relativeSeconds)9.3f %(levelname)-8s %(message)s' }, 'dispatcher': { 'format': '%(asctime)s %(levelname)-8s %(name)s PID:%(process)d %(message)s', }, }, 'handlers': { 'console': { '()': 'logging.StreamHandler', 'level': 'DEBUG', 'filters': ['require_debug_true_or_test'], 'formatter': 'simple', }, 'null': { 'class': 'logging.NullHandler', }, 'file': { 'class': 'logging.NullHandler', 'formatter': 'simple', }, 'syslog': { 'level': 'WARNING', 'filters': ['require_debug_false'], 'class': 'logging.NullHandler', 'formatter': 'simple', }, 'external_logger': { 'class': 'awx.main.utils.handlers.AWXProxyHandler', 'formatter': 'json', 'filters': ['external_log_enabled', 'dynamic_level_filter'], }, 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler', }, 'tower_warnings': { # don't define a level here, it's set by settings.LOG_AGGREGATOR_LEVEL 'class': 'logging.handlers.RotatingFileHandler', 'filters': ['require_debug_false', 'dynamic_level_filter'], 'filename': os.path.join(LOG_ROOT, 'tower.log'), 'maxBytes': 1024 * 1024 * 5, # 5 MB 'backupCount': 5, 'formatter':'simple', }, 'callback_receiver': { # don't define a level here, it's set by settings.LOG_AGGREGATOR_LEVEL 'class': 'logging.handlers.RotatingFileHandler', 'filters': ['require_debug_false', 'dynamic_level_filter'], 'filename': os.path.join(LOG_ROOT, 'callback_receiver.log'), 'maxBytes': 1024 * 1024 * 5, # 5 MB 'backupCount': 5, 'formatter':'simple', }, 'dispatcher': { # don't define a level here, it's set by settings.LOG_AGGREGATOR_LEVEL 'class': 'logging.handlers.RotatingFileHandler', 'filters': ['require_debug_false', 'dynamic_level_filter'], 'filename': os.path.join(LOG_ROOT, 'dispatcher.log'), 'maxBytes': 1024 * 1024 * 5, # 5 MB 'backupCount': 5, 'formatter':'dispatcher', }, 'celery.beat': { 'class':'logging.StreamHandler', 'level': 'ERROR' }, # don't log every celerybeat wakeup 'inventory_import': { 'level': 'DEBUG', 'class':'logging.StreamHandler', 'formatter': 'timed_import', }, 'task_system': { # don't define a level here, it's set by settings.LOG_AGGREGATOR_LEVEL 'class': 'logging.handlers.RotatingFileHandler', 'filters': ['require_debug_false', 'dynamic_level_filter'], 'filename': os.path.join(LOG_ROOT, 'task_system.log'), 'maxBytes': 1024 * 1024 * 5, # 5 MB 'backupCount': 5, 'formatter':'simple', }, 'management_playbooks': { 'level': 'DEBUG', 'class':'logging.handlers.RotatingFileHandler', 'filters': ['require_debug_false'], 'filename': os.path.join(LOG_ROOT, 'management_playbooks.log'), 'maxBytes': 1024 * 1024 * 5, # 5 MB 'backupCount': 5, 'formatter':'simple', }, 'system_tracking_migrations': { 'level': 'WARNING', 'class':'logging.handlers.RotatingFileHandler', 'filters': ['require_debug_false'], 'filename': os.path.join(LOG_ROOT, 'tower_system_tracking_migrations.log'), 'maxBytes': 1024 * 1024 * 5, # 5 MB 'backupCount': 5, 'formatter':'simple', }, 'rbac_migrations': { 'level': 'WARNING', 'class':'logging.handlers.RotatingFileHandler', 'filters': ['require_debug_false'], 'filename': os.path.join(LOG_ROOT, 'tower_rbac_migrations.log'), 'maxBytes': 1024 * 1024 * 5, # 5 MB 'backupCount': 5, 'formatter':'simple', }, }, 'loggers': { 'django': { 'handlers': ['console'], }, 'django.request': { 'handlers': ['console', 'file', 'tower_warnings'], 'level': 'WARNING', }, 'kombu': { 'handlers': ['console', 'file', 'tower_warnings'], 'level': 'WARNING', }, 'rest_framework.request': { 'handlers': ['console', 'file', 'tower_warnings'], 'level': 'WARNING', 'propagate': False, }, 'py.warnings': { 'handlers': ['console'], }, 'awx': { 'handlers': ['console', 'file', 'tower_warnings', 'external_logger'], 'level': 'DEBUG', }, 'awx.conf': { 'handlers': ['null'], 'level': 'WARNING', }, 'awx.conf.settings': { 'handlers': ['null'], 'level': 'WARNING', }, 'awx.main': { 'handlers': ['null'] }, 'awx.main.commands.run_callback_receiver': { 'handlers': ['callback_receiver'], 'level': 'INFO' # in debug mode, includes full callback data }, 'awx.main.dispatch': { 'handlers': ['dispatcher'], }, 'awx.isolated.manager.playbooks': { 'handlers': ['management_playbooks'], 'propagate': False }, 'awx.main.commands.inventory_import': { 'handlers': ['inventory_import'], 'propagate': False }, 'awx.main.tasks': { 'handlers': ['task_system', 'external_logger'], 'propagate': False }, 'awx.main.scheduler': { 'handlers': ['task_system', 'external_logger'], 'propagate': False }, 'awx.main.access': { 'level': 'INFO', # very verbose debug-level logs }, 'awx.main.signals': { 'level': 'INFO', # very verbose debug-level logs }, 'awx.api.permissions': { 'level': 'INFO', # very verbose debug-level logs }, 'awx.analytics': { 'handlers': ['external_logger'], 'level': 'INFO', 'propagate': False }, 'django_auth_ldap': { 'handlers': ['console', 'file', 'tower_warnings'], 'level': 'DEBUG', }, 'social': { 'handlers': ['console', 'file', 'tower_warnings'], 'level': 'DEBUG', }, 'system_tracking_migrations': { 'handlers': ['console', 'file', 'tower_warnings'], 'level': 'DEBUG', }, 'rbac_migrations': { 'handlers': ['console', 'file', 'tower_warnings'], 'level': 'DEBUG', }, } } # Apply coloring to messages logged to the console COLOR_LOGS = False # https://github.com/django-polymorphic/django-polymorphic/issues/195 # FIXME: Disabling models.E006 warning until we can renamed Project and InventorySource SILENCED_SYSTEM_CHECKS = ['models.E006'] # Use middleware to get request statistics AWX_REQUEST_PROFILE = False # Delete temporary directories created to store playbook run-time AWX_CLEANUP_PATHS = True MIDDLEWARE = [ 'awx.main.middleware.TimingMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'awx.main.middleware.MigrationRanCheckMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'awx.main.middleware.ActivityStreamMiddleware', 'awx.sso.middleware.SocialAuthMiddleware', 'crum.CurrentRequestUserMiddleware', 'awx.main.middleware.URLModificationMiddleware', 'awx.main.middleware.SessionTimeoutMiddleware', ]
33.147083
89
0.666832
ac8b7b1ce6fd4cb2826df13af5f8c85b5c4169a1
173,371
py
Python
nova/tests/virt/xenapi/test_xenapi.py
bopopescu/nested_quota
6d8443287e29c2c9e03cd4e5c5757424314280ad
[ "Apache-2.0" ]
1
2015-11-25T10:18:22.000Z
2015-11-25T10:18:22.000Z
nova/tests/virt/xenapi/test_xenapi.py
bopopescu/nested_quota
6d8443287e29c2c9e03cd4e5c5757424314280ad
[ "Apache-2.0" ]
9
2015-05-20T11:20:17.000Z
2017-07-27T08:21:33.000Z
nova/tests/virt/xenapi/test_xenapi.py
bopopescu/nested_quota
6d8443287e29c2c9e03cd4e5c5757424314280ad
[ "Apache-2.0" ]
13
2015-05-05T09:34:04.000Z
2017-11-08T02:03:46.000Z
# Copyright (c) 2010 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Test suite for XenAPI.""" import ast import base64 import contextlib import copy import functools import os import re import mock import mox from oslo.config import cfg from nova.compute import api as compute_api from nova.compute import arch from nova.compute import flavors from nova.compute import hvtype from nova.compute import power_state from nova.compute import task_states from nova.compute import utils as compute_utils from nova.compute import vm_states from nova.conductor import api as conductor_api from nova import context from nova import crypto from nova import db from nova import exception from nova import objects from nova.objects import instance as instance_obj from nova.openstack.common import importutils from nova.openstack.common import jsonutils from nova.openstack.common import log as logging from nova import test from nova.tests.db import fakes as db_fakes from nova.tests import fake_instance from nova.tests import fake_network from nova.tests import fake_processutils import nova.tests.image.fake as fake_image from nova.tests import matchers from nova.tests.objects import test_aggregate from nova.tests.virt.xenapi import stubs from nova.virt import fake from nova.virt.xenapi import agent from nova.virt.xenapi.client import session as xenapi_session from nova.virt.xenapi import driver as xenapi_conn from nova.virt.xenapi import fake as xenapi_fake from nova.virt.xenapi import host from nova.virt.xenapi.image import glance from nova.virt.xenapi import pool from nova.virt.xenapi import pool_states from nova.virt.xenapi import vm_utils from nova.virt.xenapi import vmops from nova.virt.xenapi import volume_utils LOG = logging.getLogger(__name__) CONF = cfg.CONF CONF.import_opt('compute_manager', 'nova.service') CONF.import_opt('network_manager', 'nova.service') CONF.import_opt('compute_driver', 'nova.virt.driver') CONF.import_opt('host', 'nova.netconf') CONF.import_opt('default_availability_zone', 'nova.availability_zones') CONF.import_opt('login_timeout', 'nova.virt.xenapi.client.session', group="xenserver") IMAGE_MACHINE = '1' IMAGE_KERNEL = '2' IMAGE_RAMDISK = '3' IMAGE_RAW = '4' IMAGE_VHD = '5' IMAGE_ISO = '6' IMAGE_IPXE_ISO = '7' IMAGE_FROM_VOLUME = '8' IMAGE_FIXTURES = { IMAGE_MACHINE: { 'image_meta': {'name': 'fakemachine', 'size': 0, 'disk_format': 'ami', 'container_format': 'ami'}, }, IMAGE_KERNEL: { 'image_meta': {'name': 'fakekernel', 'size': 0, 'disk_format': 'aki', 'container_format': 'aki'}, }, IMAGE_RAMDISK: { 'image_meta': {'name': 'fakeramdisk', 'size': 0, 'disk_format': 'ari', 'container_format': 'ari'}, }, IMAGE_RAW: { 'image_meta': {'name': 'fakeraw', 'size': 0, 'disk_format': 'raw', 'container_format': 'bare'}, }, IMAGE_VHD: { 'image_meta': {'name': 'fakevhd', 'size': 0, 'disk_format': 'vhd', 'container_format': 'ovf'}, }, IMAGE_ISO: { 'image_meta': {'name': 'fakeiso', 'size': 0, 'disk_format': 'iso', 'container_format': 'bare'}, }, IMAGE_IPXE_ISO: { 'image_meta': {'name': 'fake_ipxe_iso', 'size': 0, 'disk_format': 'iso', 'container_format': 'bare', 'properties': {'ipxe_boot': 'true'}}, }, IMAGE_FROM_VOLUME: { 'image_meta': {'name': 'fake_ipxe_iso', 'properties': {'foo': 'bar'}}, }, } def get_session(): return xenapi_session.XenAPISession('test_url', 'root', 'test_pass') def set_image_fixtures(): image_service = fake_image.FakeImageService() image_service.images.clear() for image_id, image_meta in IMAGE_FIXTURES.items(): image_meta = image_meta['image_meta'] image_meta['id'] = image_id image_service.create(None, image_meta) def get_fake_device_info(): # FIXME: 'sr_uuid', 'introduce_sr_keys', sr_type and vdi_uuid # can be removed from the dict when LP bug #1087308 is fixed fake_vdi_ref = xenapi_fake.create_vdi('fake-vdi', None) fake_vdi_uuid = xenapi_fake.get_record('VDI', fake_vdi_ref)['uuid'] fake = {'block_device_mapping': [{'connection_info': {'driver_volume_type': 'iscsi', 'data': {'sr_uuid': 'falseSR', 'introduce_sr_keys': ['sr_type'], 'sr_type': 'iscsi', 'vdi_uuid': fake_vdi_uuid, 'target_discovered': False, 'target_iqn': 'foo_iqn:foo_volid', 'target_portal': 'localhost:3260', 'volume_id': 'foo_volid', 'target_lun': 1, 'auth_password': 'my-p@55w0rd', 'auth_username': 'johndoe', 'auth_method': u'CHAP'}, }, 'mount_device': 'vda', 'delete_on_termination': False}, ], 'root_device_name': '/dev/sda', 'ephemerals': [], 'swap': None, } return fake def stub_vm_utils_with_vdi_attached_here(function): """vm_utils.with_vdi_attached_here needs to be stubbed out because it calls down to the filesystem to attach a vdi. This provides a decorator to handle that. """ @functools.wraps(function) def decorated_function(self, *args, **kwargs): @contextlib.contextmanager def fake_vdi_attached_here(*args, **kwargs): fake_dev = 'fakedev' yield fake_dev def fake_image_download(*args, **kwargs): pass orig_vdi_attached_here = vm_utils.vdi_attached_here orig_image_download = fake_image._FakeImageService.download try: vm_utils.vdi_attached_here = fake_vdi_attached_here fake_image._FakeImageService.download = fake_image_download return function(self, *args, **kwargs) finally: fake_image._FakeImageService.download = orig_image_download vm_utils.vdi_attached_here = orig_vdi_attached_here return decorated_function def get_create_system_metadata(context, instance_type_id): flavor = db.flavor_get(context, instance_type_id) return flavors.save_flavor_info({}, flavor) def create_instance_with_system_metadata(context, instance_values): instance_values['system_metadata'] = get_create_system_metadata( context, instance_values['instance_type_id']) return db.instance_create(context, instance_values) class XenAPIVolumeTestCase(stubs.XenAPITestBaseNoDB): """Unit tests for Volume operations.""" def setUp(self): super(XenAPIVolumeTestCase, self).setUp() self.flags(disable_process_locking=True, firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver') self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') self.instance = fake_instance.fake_db_instance(name='foo') @classmethod def _make_connection_info(cls): target_iqn = 'iqn.2010-10.org.openstack:volume-00000001' return {'driver_volume_type': 'iscsi', 'data': {'volume_id': 1, 'target_iqn': target_iqn, 'target_portal': '127.0.0.1:3260,fake', 'target_lun': None, 'auth_method': 'CHAP', 'auth_username': 'username', 'auth_password': 'password'}} def test_attach_volume(self): # This shows how to test Ops classes' methods. stubs.stubout_session(self.stubs, stubs.FakeSessionForVolumeTests) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) vm = xenapi_fake.create_vm(self.instance['name'], 'Running') conn_info = self._make_connection_info() self.assertIsNone( conn.attach_volume(None, conn_info, self.instance, '/dev/sdc')) # check that the VM has a VBD attached to it # Get XenAPI record for VBD vbds = xenapi_fake.get_all('VBD') vbd = xenapi_fake.get_record('VBD', vbds[0]) vm_ref = vbd['VM'] self.assertEqual(vm_ref, vm) def test_attach_volume_raise_exception(self): # This shows how to test when exceptions are raised. stubs.stubout_session(self.stubs, stubs.FakeSessionForVolumeFailedTests) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) xenapi_fake.create_vm(self.instance['name'], 'Running') self.assertRaises(exception.VolumeDriverNotFound, conn.attach_volume, None, {'driver_volume_type': 'nonexist'}, self.instance, '/dev/sdc') # FIXME(sirp): convert this to use XenAPITestBaseNoDB class XenAPIVMTestCase(stubs.XenAPITestBase): """Unit tests for VM operations.""" def setUp(self): super(XenAPIVMTestCase, self).setUp() self.useFixture(test.SampleNetworks()) self.network = importutils.import_object(CONF.network_manager) self.flags(disable_process_locking=True, instance_name_template='%d', firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver') self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') db_fakes.stub_out_db_instance_api(self.stubs) xenapi_fake.create_network('fake', 'fake_br1') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) stubs.stubout_get_this_vm_uuid(self.stubs) stubs.stub_out_vm_methods(self.stubs) fake_processutils.stub_out_processutils_execute(self.stubs) self.user_id = 'fake' self.project_id = 'fake' self.context = context.RequestContext(self.user_id, self.project_id) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.conn._session.is_local_connection = False fake_image.stub_out_image_service(self.stubs) set_image_fixtures() stubs.stubout_image_service_download(self.stubs) stubs.stubout_stream_disk(self.stubs) def fake_inject_instance_metadata(self, instance, vm): pass self.stubs.Set(vmops.VMOps, '_inject_instance_metadata', fake_inject_instance_metadata) def fake_safe_copy_vdi(session, sr_ref, instance, vdi_to_copy_ref): name_label = "fakenamelabel" disk_type = "fakedisktype" virtual_size = 777 return vm_utils.create_vdi( session, sr_ref, instance, name_label, disk_type, virtual_size) self.stubs.Set(vm_utils, '_safe_copy_vdi', fake_safe_copy_vdi) def tearDown(self): fake_image.FakeImageService_reset() super(XenAPIVMTestCase, self).tearDown() def test_init_host(self): session = get_session() vm = vm_utils._get_this_vm_ref(session) # Local root disk vdi0 = xenapi_fake.create_vdi('compute', None) vbd0 = xenapi_fake.create_vbd(vm, vdi0) # Instance VDI vdi1 = xenapi_fake.create_vdi('instance-aaaa', None, other_config={'nova_instance_uuid': 'aaaa'}) xenapi_fake.create_vbd(vm, vdi1) # Only looks like instance VDI vdi2 = xenapi_fake.create_vdi('instance-bbbb', None) vbd2 = xenapi_fake.create_vbd(vm, vdi2) self.conn.init_host(None) self.assertEqual(set(xenapi_fake.get_all('VBD')), set([vbd0, vbd2])) def test_instance_exists(self): self.mox.StubOutWithMock(vm_utils, 'lookup') vm_utils.lookup(mox.IgnoreArg(), 'foo').AndReturn(True) self.mox.ReplayAll() self.stubs.Set(objects.Instance, 'name', 'foo') instance = objects.Instance(uuid='fake-uuid') self.assertTrue(self.conn.instance_exists(instance)) def test_instance_not_exists(self): self.mox.StubOutWithMock(vm_utils, 'lookup') vm_utils.lookup(mox.IgnoreArg(), 'bar').AndReturn(None) self.mox.ReplayAll() self.stubs.Set(objects.Instance, 'name', 'bar') instance = objects.Instance(uuid='fake-uuid') self.assertFalse(self.conn.instance_exists(instance)) def test_list_instances_0(self): instances = self.conn.list_instances() self.assertEqual(instances, []) def test_list_instance_uuids_0(self): instance_uuids = self.conn.list_instance_uuids() self.assertEqual(instance_uuids, []) def test_list_instance_uuids(self): uuids = [] for x in xrange(1, 4): instance = self._create_instance(x) uuids.append(instance['uuid']) instance_uuids = self.conn.list_instance_uuids() self.assertEqual(len(uuids), len(instance_uuids)) self.assertEqual(set(uuids), set(instance_uuids)) def test_get_rrd_server(self): self.flags(connection_url='myscheme://myaddress/', group='xenserver') server_info = vm_utils._get_rrd_server() self.assertEqual(server_info[0], 'myscheme') self.assertEqual(server_info[1], 'myaddress') expected_raw_diagnostics = { 'vbd_xvdb_write': '0.0', 'memory_target': '4294967296.0000', 'memory_internal_free': '1415564.0000', 'memory': '4294967296.0000', 'vbd_xvda_write': '0.0', 'cpu0': '0.0042', 'vif_0_tx': '287.4134', 'vbd_xvda_read': '0.0', 'vif_0_rx': '1816.0144', 'vif_2_rx': '0.0', 'vif_2_tx': '0.0', 'vbd_xvdb_read': '0.0', 'last_update': '1328795567', } def test_get_diagnostics(self): def fake_get_rrd(host, vm_uuid): path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(path, 'vm_rrd.xml')) as f: return re.sub(r'\s', '', f.read()) self.stubs.Set(vm_utils, '_get_rrd', fake_get_rrd) expected = self.expected_raw_diagnostics instance = self._create_instance() actual = self.conn.get_diagnostics(instance) self.assertThat(actual, matchers.DictMatches(expected)) def test_get_instance_diagnostics(self): def fake_get_rrd(host, vm_uuid): path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(path, 'vm_rrd.xml')) as f: return re.sub(r'\s', '', f.read()) self.stubs.Set(vm_utils, '_get_rrd', fake_get_rrd) expected = { 'config_drive': False, 'state': 'running', 'driver': 'xenapi', 'version': '1.0', 'uptime': 0, 'hypervisor_os': None, 'cpu_details': [{'time': 0}, {'time': 0}, {'time': 0}, {'time': 0}], 'nic_details': [{'mac_address': '00:00:00:00:00:00', 'rx_drop': 0, 'rx_errors': 0, 'rx_octets': 0, 'rx_packets': 0, 'tx_drop': 0, 'tx_errors': 0, 'tx_octets': 0, 'tx_packets': 0}], 'disk_details': [{'errors_count': 0, 'id': '', 'read_bytes': 0, 'read_requests': 0, 'write_bytes': 0, 'write_requests': 0}], 'memory_details': {'maximum': 8192, 'used': 0}} instance = self._create_instance() actual = self.conn.get_instance_diagnostics(instance) self.assertEqual(expected, actual.serialize()) def test_get_vnc_console(self): instance = self._create_instance(obj=True) session = get_session() conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) vm_ref = vm_utils.lookup(session, instance['name']) console = conn.get_vnc_console(self.context, instance) # Note(sulo): We don't care about session id in test # they will always differ so strip that out actual_path = console.internal_access_path.split('&')[0] expected_path = "/console?ref=%s" % str(vm_ref) self.assertEqual(expected_path, actual_path) def test_get_vnc_console_for_rescue(self): instance = self._create_instance(obj=True) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) rescue_vm = xenapi_fake.create_vm(instance['name'] + '-rescue', 'Running') # Set instance state to rescued instance['vm_state'] = 'rescued' console = conn.get_vnc_console(self.context, instance) # Note(sulo): We don't care about session id in test # they will always differ so strip that out actual_path = console.internal_access_path.split('&')[0] expected_path = "/console?ref=%s" % str(rescue_vm) self.assertEqual(expected_path, actual_path) def test_get_vnc_console_instance_not_ready(self): instance = self._create_instance(obj=True, spawn=False) instance.vm_state = 'building' conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.assertRaises(exception.InstanceNotFound, conn.get_vnc_console, self.context, instance) def test_get_vnc_console_rescue_not_ready(self): instance = self._create_instance(obj=True, spawn=False) instance.vm_state = 'rescued' conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.assertRaises(exception.InstanceNotReady, conn.get_vnc_console, self.context, instance) def test_instance_snapshot_fails_with_no_primary_vdi(self): def create_bad_vbd(session, vm_ref, vdi_ref, userdevice, vbd_type='disk', read_only=False, bootable=False, osvol=False): vbd_rec = {'VM': vm_ref, 'VDI': vdi_ref, 'userdevice': 'fake', 'currently_attached': False} vbd_ref = xenapi_fake._create_object('VBD', vbd_rec) xenapi_fake.after_VBD_create(vbd_ref, vbd_rec) return vbd_ref self.stubs.Set(vm_utils, 'create_vbd', create_bad_vbd) stubs.stubout_instance_snapshot(self.stubs) # Stubbing out firewall driver as previous stub sets alters # xml rpc result parsing stubs.stubout_firewall_driver(self.stubs, self.conn) instance = self._create_instance() image_id = "my_snapshot_id" self.assertRaises(exception.NovaException, self.conn.snapshot, self.context, instance, image_id, lambda *args, **kwargs: None) def test_instance_snapshot(self): expected_calls = [ {'args': (), 'kwargs': {'task_state': task_states.IMAGE_PENDING_UPLOAD}}, {'args': (), 'kwargs': {'task_state': task_states.IMAGE_UPLOADING, 'expected_state': task_states.IMAGE_PENDING_UPLOAD}}] func_call_matcher = matchers.FunctionCallMatcher(expected_calls) image_id = "my_snapshot_id" stubs.stubout_instance_snapshot(self.stubs) stubs.stubout_is_snapshot(self.stubs) # Stubbing out firewall driver as previous stub sets alters # xml rpc result parsing stubs.stubout_firewall_driver(self.stubs, self.conn) instance = self._create_instance() self.fake_upload_called = False def fake_image_upload(_self, ctx, session, inst, vdi_uuids, img_id): self.fake_upload_called = True self.assertEqual(ctx, self.context) self.assertEqual(inst, instance) self.assertIsInstance(vdi_uuids, list) self.assertEqual(img_id, image_id) self.stubs.Set(glance.GlanceStore, 'upload_image', fake_image_upload) self.conn.snapshot(self.context, instance, image_id, func_call_matcher.call) # Ensure VM was torn down vm_labels = [] for vm_ref in xenapi_fake.get_all('VM'): vm_rec = xenapi_fake.get_record('VM', vm_ref) if not vm_rec["is_control_domain"]: vm_labels.append(vm_rec["name_label"]) self.assertEqual(vm_labels, [instance['name']]) # Ensure VBDs were torn down vbd_labels = [] for vbd_ref in xenapi_fake.get_all('VBD'): vbd_rec = xenapi_fake.get_record('VBD', vbd_ref) vbd_labels.append(vbd_rec["vm_name_label"]) self.assertEqual(vbd_labels, [instance['name']]) # Ensure task states changed in correct order self.assertIsNone(func_call_matcher.match()) # Ensure VDIs were torn down for vdi_ref in xenapi_fake.get_all('VDI'): vdi_rec = xenapi_fake.get_record('VDI', vdi_ref) name_label = vdi_rec["name_label"] self.assertFalse(name_label.endswith('snapshot')) self.assertTrue(self.fake_upload_called) def create_vm_record(self, conn, os_type, name): instances = conn.list_instances() self.assertEqual(instances, [name]) # Get Nova record for VM vm_info = conn.get_info({'name': name}) # Get XenAPI record for VM vms = [rec for ref, rec in xenapi_fake.get_all_records('VM').iteritems() if not rec['is_control_domain']] vm = vms[0] self.vm_info = vm_info self.vm = vm def check_vm_record(self, conn, instance_type_id, check_injection): flavor = db.flavor_get(conn, instance_type_id) mem_kib = long(flavor['memory_mb']) << 10 mem_bytes = str(mem_kib << 10) vcpus = flavor['vcpus'] vcpu_weight = flavor['vcpu_weight'] self.assertEqual(self.vm_info['max_mem'], mem_kib) self.assertEqual(self.vm_info['mem'], mem_kib) self.assertEqual(self.vm['memory_static_max'], mem_bytes) self.assertEqual(self.vm['memory_dynamic_max'], mem_bytes) self.assertEqual(self.vm['memory_dynamic_min'], mem_bytes) self.assertEqual(self.vm['VCPUs_max'], str(vcpus)) self.assertEqual(self.vm['VCPUs_at_startup'], str(vcpus)) if vcpu_weight is None: self.assertEqual(self.vm['VCPUs_params'], {}) else: self.assertEqual(self.vm['VCPUs_params'], {'weight': str(vcpu_weight), 'cap': '0'}) # Check that the VM is running according to Nova self.assertEqual(self.vm_info['state'], power_state.RUNNING) # Check that the VM is running according to XenAPI. self.assertEqual(self.vm['power_state'], 'Running') if check_injection: xenstore_data = self.vm['xenstore_data'] self.assertNotIn('vm-data/hostname', xenstore_data) key = 'vm-data/networking/DEADBEEF0001' xenstore_value = xenstore_data[key] tcpip_data = ast.literal_eval(xenstore_value) self.assertEqual(tcpip_data, {'broadcast': '192.168.1.255', 'dns': ['192.168.1.4', '192.168.1.3'], 'gateway': '192.168.1.1', 'gateway_v6': '2001:db8:0:1::1', 'ip6s': [{'enabled': '1', 'ip': '2001:db8:0:1::1', 'netmask': 64, 'gateway': '2001:db8:0:1::1'}], 'ips': [{'enabled': '1', 'ip': '192.168.1.100', 'netmask': '255.255.255.0', 'gateway': '192.168.1.1'}, {'enabled': '1', 'ip': '192.168.1.101', 'netmask': '255.255.255.0', 'gateway': '192.168.1.1'}], 'label': 'test1', 'mac': 'DE:AD:BE:EF:00:01'}) def check_vm_params_for_windows(self): self.assertEqual(self.vm['platform']['nx'], 'true') self.assertEqual(self.vm['HVM_boot_params'], {'order': 'dc'}) self.assertEqual(self.vm['HVM_boot_policy'], 'BIOS order') # check that these are not set self.assertEqual(self.vm['PV_args'], '') self.assertEqual(self.vm['PV_bootloader'], '') self.assertEqual(self.vm['PV_kernel'], '') self.assertEqual(self.vm['PV_ramdisk'], '') def check_vm_params_for_linux(self): self.assertEqual(self.vm['platform']['nx'], 'false') self.assertEqual(self.vm['PV_args'], '') self.assertEqual(self.vm['PV_bootloader'], 'pygrub') # check that these are not set self.assertEqual(self.vm['PV_kernel'], '') self.assertEqual(self.vm['PV_ramdisk'], '') self.assertEqual(self.vm['HVM_boot_params'], {}) self.assertEqual(self.vm['HVM_boot_policy'], '') def check_vm_params_for_linux_with_external_kernel(self): self.assertEqual(self.vm['platform']['nx'], 'false') self.assertEqual(self.vm['PV_args'], 'root=/dev/xvda1') self.assertNotEqual(self.vm['PV_kernel'], '') self.assertNotEqual(self.vm['PV_ramdisk'], '') # check that these are not set self.assertEqual(self.vm['HVM_boot_params'], {}) self.assertEqual(self.vm['HVM_boot_policy'], '') def _list_vdis(self): session = get_session() return session.call_xenapi('VDI.get_all') def _list_vms(self): session = get_session() return session.call_xenapi('VM.get_all') def _check_vdis(self, start_list, end_list): for vdi_ref in end_list: if vdi_ref not in start_list: vdi_rec = xenapi_fake.get_record('VDI', vdi_ref) # If the cache is turned on then the base disk will be # there even after the cleanup if 'other_config' in vdi_rec: if 'image-id' not in vdi_rec['other_config']: self.fail('Found unexpected VDI:%s' % vdi_ref) else: self.fail('Found unexpected VDI:%s' % vdi_ref) def _test_spawn(self, image_ref, kernel_id, ramdisk_id, instance_type_id="3", os_type="linux", hostname="test", architecture="x86-64", instance_id=1, injected_files=None, check_injection=False, create_record=True, empty_dns=False, block_device_info=None, key_data=None): if injected_files is None: injected_files = [] # Fake out inject_instance_metadata def fake_inject_instance_metadata(self, instance, vm): pass self.stubs.Set(vmops.VMOps, '_inject_instance_metadata', fake_inject_instance_metadata) if create_record: instance = objects.Instance(context=self.context) instance.project_id = self.project_id instance.user_id = self.user_id instance.image_ref = image_ref instance.kernel_id = kernel_id instance.ramdisk_id = ramdisk_id instance.root_gb = 20 instance.ephemeral_gb = 0 instance.instance_type_id = instance_type_id instance.os_type = os_type instance.hostname = hostname instance.key_data = key_data instance.architecture = architecture instance.system_metadata = get_create_system_metadata( self.context, instance_type_id) instance.create() else: instance = objects.Instance.get_by_id(self.context, instance_id) network_info = fake_network.fake_get_instance_nw_info(self.stubs) if empty_dns: # NOTE(tr3buchet): this is a terrible way to do this... network_info[0]['network']['subnets'][0]['dns'] = [] image_meta = {} if image_ref: image_meta = IMAGE_FIXTURES[image_ref]["image_meta"] self.conn.spawn(self.context, instance, image_meta, injected_files, 'herp', network_info, block_device_info) self.create_vm_record(self.conn, os_type, instance['name']) self.check_vm_record(self.conn, instance_type_id, check_injection) self.assertEqual(instance['os_type'], os_type) self.assertEqual(instance['architecture'], architecture) def test_spawn_ipxe_iso_success(self): self.mox.StubOutWithMock(vm_utils, 'get_sr_path') vm_utils.get_sr_path(mox.IgnoreArg()).AndReturn('/sr/path') self.flags(ipxe_network_name='test1', ipxe_boot_menu_url='http://boot.example.com', ipxe_mkisofs_cmd='/root/mkisofs', group='xenserver') self.mox.StubOutWithMock(self.conn._session, 'call_plugin_serialized') self.conn._session.call_plugin_serialized( 'ipxe', 'inject', '/sr/path', mox.IgnoreArg(), 'http://boot.example.com', '192.168.1.100', '255.255.255.0', '192.168.1.1', '192.168.1.3', '/root/mkisofs') self.mox.ReplayAll() self._test_spawn(IMAGE_IPXE_ISO, None, None) def test_spawn_ipxe_iso_no_network_name(self): self.flags(ipxe_network_name=None, ipxe_boot_menu_url='http://boot.example.com', group='xenserver') # call_plugin_serialized shouldn't be called self.mox.StubOutWithMock(self.conn._session, 'call_plugin_serialized') self.mox.ReplayAll() self._test_spawn(IMAGE_IPXE_ISO, None, None) def test_spawn_ipxe_iso_no_boot_menu_url(self): self.flags(ipxe_network_name='test1', ipxe_boot_menu_url=None, group='xenserver') # call_plugin_serialized shouldn't be called self.mox.StubOutWithMock(self.conn._session, 'call_plugin_serialized') self.mox.ReplayAll() self._test_spawn(IMAGE_IPXE_ISO, None, None) def test_spawn_ipxe_iso_unknown_network_name(self): self.flags(ipxe_network_name='test2', ipxe_boot_menu_url='http://boot.example.com', group='xenserver') # call_plugin_serialized shouldn't be called self.mox.StubOutWithMock(self.conn._session, 'call_plugin_serialized') self.mox.ReplayAll() self._test_spawn(IMAGE_IPXE_ISO, None, None) def test_spawn_empty_dns(self): # Test spawning with an empty dns list. self._test_spawn(IMAGE_VHD, None, None, os_type="linux", architecture="x86-64", empty_dns=True) self.check_vm_params_for_linux() def test_spawn_not_enough_memory(self): self.assertRaises(exception.InsufficientFreeMemory, self._test_spawn, '1', 2, 3, "4") # m1.xlarge def test_spawn_fail_cleanup_1(self): """Simulates an error while downloading an image. Verifies that the VM and VDIs created are properly cleaned up. """ vdi_recs_start = self._list_vdis() start_vms = self._list_vms() stubs.stubout_fetch_disk_image(self.stubs, raise_failure=True) self.assertRaises(xenapi_fake.Failure, self._test_spawn, '1', 2, 3) # No additional VDI should be found. vdi_recs_end = self._list_vdis() end_vms = self._list_vms() self._check_vdis(vdi_recs_start, vdi_recs_end) # No additional VMs should be found. self.assertEqual(start_vms, end_vms) def test_spawn_fail_cleanup_2(self): """Simulates an error while creating VM record. Verifies that the VM and VDIs created are properly cleaned up. """ vdi_recs_start = self._list_vdis() start_vms = self._list_vms() stubs.stubout_create_vm(self.stubs) self.assertRaises(xenapi_fake.Failure, self._test_spawn, '1', 2, 3) # No additional VDI should be found. vdi_recs_end = self._list_vdis() end_vms = self._list_vms() self._check_vdis(vdi_recs_start, vdi_recs_end) # No additional VMs should be found. self.assertEqual(start_vms, end_vms) def test_spawn_fail_cleanup_3(self): """Simulates an error while attaching disks. Verifies that the VM and VDIs created are properly cleaned up. """ stubs.stubout_attach_disks(self.stubs) vdi_recs_start = self._list_vdis() start_vms = self._list_vms() self.assertRaises(xenapi_fake.Failure, self._test_spawn, '1', 2, 3) # No additional VDI should be found. vdi_recs_end = self._list_vdis() end_vms = self._list_vms() self._check_vdis(vdi_recs_start, vdi_recs_end) # No additional VMs should be found. self.assertEqual(start_vms, end_vms) def test_spawn_raw_glance(self): self._test_spawn(IMAGE_RAW, None, None, os_type=None) self.check_vm_params_for_windows() def test_spawn_vhd_glance_linux(self): self._test_spawn(IMAGE_VHD, None, None, os_type="linux", architecture="x86-64") self.check_vm_params_for_linux() def test_spawn_vhd_glance_windows(self): self._test_spawn(IMAGE_VHD, None, None, os_type="windows", architecture="i386", instance_type_id=5) self.check_vm_params_for_windows() def test_spawn_iso_glance(self): self._test_spawn(IMAGE_ISO, None, None, os_type="windows", architecture="i386") self.check_vm_params_for_windows() def test_spawn_glance(self): def fake_fetch_disk_image(context, session, instance, name_label, image_id, image_type): sr_ref = vm_utils.safe_find_sr(session) image_type_str = vm_utils.ImageType.to_string(image_type) vdi_ref = vm_utils.create_vdi(session, sr_ref, instance, name_label, image_type_str, "20") vdi_role = vm_utils.ImageType.get_role(image_type) vdi_uuid = session.call_xenapi("VDI.get_uuid", vdi_ref) return {vdi_role: dict(uuid=vdi_uuid, file=None)} self.stubs.Set(vm_utils, '_fetch_disk_image', fake_fetch_disk_image) self._test_spawn(IMAGE_MACHINE, IMAGE_KERNEL, IMAGE_RAMDISK) self.check_vm_params_for_linux_with_external_kernel() def test_spawn_boot_from_volume_no_image_meta(self): dev_info = get_fake_device_info() self._test_spawn(None, None, None, block_device_info=dev_info) def test_spawn_boot_from_volume_no_glance_image_meta(self): dev_info = get_fake_device_info() self._test_spawn(IMAGE_FROM_VOLUME, None, None, block_device_info=dev_info) def test_spawn_boot_from_volume_with_image_meta(self): dev_info = get_fake_device_info() self._test_spawn(IMAGE_VHD, None, None, block_device_info=dev_info) def test_spawn_netinject_file(self): self.flags(flat_injected=True) db_fakes.stub_out_db_instance_api(self.stubs, injected=True) self._tee_executed = False def _tee_handler(cmd, **kwargs): actual = kwargs.get('process_input', None) expected = """\ # Injected by Nova on instance boot # # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback auto eth0 iface eth0 inet static address 192.168.1.100 netmask 255.255.255.0 broadcast 192.168.1.255 gateway 192.168.1.1 dns-nameservers 192.168.1.3 192.168.1.4 iface eth0 inet6 static address 2001:db8:0:1::1 netmask 64 gateway 2001:db8:0:1::1 """ self.assertEqual(expected, actual) self._tee_executed = True return '', '' def _readlink_handler(cmd_parts, **kwargs): return os.path.realpath(cmd_parts[2]), '' fake_processutils.fake_execute_set_repliers([ # Capture the tee .../etc/network/interfaces command (r'tee.*interfaces', _tee_handler), (r'readlink -nm.*', _readlink_handler), ]) self._test_spawn(IMAGE_MACHINE, IMAGE_KERNEL, IMAGE_RAMDISK, check_injection=True) self.assertTrue(self._tee_executed) def test_spawn_netinject_xenstore(self): db_fakes.stub_out_db_instance_api(self.stubs, injected=True) self._tee_executed = False def _mount_handler(cmd, *ignore_args, **ignore_kwargs): # When mounting, create real files under the mountpoint to simulate # files in the mounted filesystem # mount point will be the last item of the command list self._tmpdir = cmd[len(cmd) - 1] LOG.debug('Creating files in %s to simulate guest agent', self._tmpdir) os.makedirs(os.path.join(self._tmpdir, 'usr', 'sbin')) # Touch the file using open open(os.path.join(self._tmpdir, 'usr', 'sbin', 'xe-update-networking'), 'w').close() return '', '' def _umount_handler(cmd, *ignore_args, **ignore_kwargs): # Umount would normally make files in the mounted filesystem # disappear, so do that here LOG.debug('Removing simulated guest agent files in %s', self._tmpdir) os.remove(os.path.join(self._tmpdir, 'usr', 'sbin', 'xe-update-networking')) os.rmdir(os.path.join(self._tmpdir, 'usr', 'sbin')) os.rmdir(os.path.join(self._tmpdir, 'usr')) return '', '' def _tee_handler(cmd, *ignore_args, **ignore_kwargs): self._tee_executed = True return '', '' fake_processutils.fake_execute_set_repliers([ (r'mount', _mount_handler), (r'umount', _umount_handler), (r'tee.*interfaces', _tee_handler)]) self._test_spawn('1', 2, 3, check_injection=True) # tee must not run in this case, where an injection-capable # guest agent is detected self.assertFalse(self._tee_executed) def test_spawn_injects_auto_disk_config_to_xenstore(self): instance = self._create_instance(spawn=False) self.mox.StubOutWithMock(self.conn._vmops, '_inject_auto_disk_config') self.conn._vmops._inject_auto_disk_config(instance, mox.IgnoreArg()) self.mox.ReplayAll() self.conn.spawn(self.context, instance, IMAGE_FIXTURES['1']["image_meta"], [], 'herp', '') def test_spawn_vlanmanager(self): self.flags(network_manager='nova.network.manager.VlanManager', vlan_interface='fake0') def dummy(*args, **kwargs): pass self.stubs.Set(vmops.VMOps, '_create_vifs', dummy) # Reset network table xenapi_fake.reset_table('network') # Instance id = 2 will use vlan network (see db/fakes.py) ctxt = self.context.elevated() self.network.conductor_api = conductor_api.LocalAPI() self._create_instance(2, False) networks = self.network.db.network_get_all(ctxt) with mock.patch('nova.objects.network.Network._from_db_object'): for network in networks: self.network.set_network_host(ctxt, network) self.network.allocate_for_instance(ctxt, instance_id=2, instance_uuid='00000000-0000-0000-0000-000000000002', host=CONF.host, vpn=None, rxtx_factor=3, project_id=self.project_id, macs=None) self._test_spawn(IMAGE_MACHINE, IMAGE_KERNEL, IMAGE_RAMDISK, instance_id=2, create_record=False) # TODO(salvatore-orlando): a complete test here would require # a check for making sure the bridge for the VM's VIF is # consistent with bridge specified in nova db def test_spawn_with_network_qos(self): self._create_instance() for vif_ref in xenapi_fake.get_all('VIF'): vif_rec = xenapi_fake.get_record('VIF', vif_ref) self.assertEqual(vif_rec['qos_algorithm_type'], 'ratelimit') self.assertEqual(vif_rec['qos_algorithm_params']['kbps'], str(3 * 10 * 1024)) def test_spawn_ssh_key_injection(self): # Test spawning with key_data on an instance. Should use # agent file injection. self.flags(use_agent_default=True, group='xenserver') actual_injected_files = [] def fake_inject_file(self, method, args): path = base64.b64decode(args['b64_path']) contents = base64.b64decode(args['b64_contents']) actual_injected_files.append((path, contents)) return jsonutils.dumps({'returncode': '0', 'message': 'success'}) self.stubs.Set(stubs.FakeSessionForVMTests, '_plugin_agent_inject_file', fake_inject_file) def fake_encrypt_text(sshkey, new_pass): self.assertEqual("ssh-rsa fake_keydata", sshkey) return "fake" self.stubs.Set(crypto, 'ssh_encrypt_text', fake_encrypt_text) expected_data = ('\n# The following ssh key was injected by ' 'Nova\nssh-rsa fake_keydata\n') injected_files = [('/root/.ssh/authorized_keys', expected_data)] self._test_spawn(IMAGE_VHD, None, None, os_type="linux", architecture="x86-64", key_data='ssh-rsa fake_keydata') self.assertEqual(actual_injected_files, injected_files) def test_spawn_ssh_key_injection_non_rsa(self): # Test spawning with key_data on an instance. Should use # agent file injection. self.flags(use_agent_default=True, group='xenserver') actual_injected_files = [] def fake_inject_file(self, method, args): path = base64.b64decode(args['b64_path']) contents = base64.b64decode(args['b64_contents']) actual_injected_files.append((path, contents)) return jsonutils.dumps({'returncode': '0', 'message': 'success'}) self.stubs.Set(stubs.FakeSessionForVMTests, '_plugin_agent_inject_file', fake_inject_file) def fake_encrypt_text(sshkey, new_pass): raise NotImplementedError("Should not be called") self.stubs.Set(crypto, 'ssh_encrypt_text', fake_encrypt_text) expected_data = ('\n# The following ssh key was injected by ' 'Nova\nssh-dsa fake_keydata\n') injected_files = [('/root/.ssh/authorized_keys', expected_data)] self._test_spawn(IMAGE_VHD, None, None, os_type="linux", architecture="x86-64", key_data='ssh-dsa fake_keydata') self.assertEqual(actual_injected_files, injected_files) def test_spawn_injected_files(self): # Test spawning with injected_files. self.flags(use_agent_default=True, group='xenserver') actual_injected_files = [] def fake_inject_file(self, method, args): path = base64.b64decode(args['b64_path']) contents = base64.b64decode(args['b64_contents']) actual_injected_files.append((path, contents)) return jsonutils.dumps({'returncode': '0', 'message': 'success'}) self.stubs.Set(stubs.FakeSessionForVMTests, '_plugin_agent_inject_file', fake_inject_file) injected_files = [('/tmp/foo', 'foobar')] self._test_spawn(IMAGE_VHD, None, None, os_type="linux", architecture="x86-64", injected_files=injected_files) self.check_vm_params_for_linux() self.assertEqual(actual_injected_files, injected_files) @mock.patch('nova.db.agent_build_get_by_triple') def test_spawn_agent_upgrade(self, mock_get): self.flags(use_agent_default=True, group='xenserver') mock_get.return_value = {"version": "1.1.0", "architecture": "x86-64", "hypervisor": "xen", "os": "windows", "url": "url", "md5hash": "asdf", 'created_at': None, 'updated_at': None, 'deleted_at': None, 'deleted': False, 'id': 1} self._test_spawn(IMAGE_VHD, None, None, os_type="linux", architecture="x86-64") @mock.patch('nova.db.agent_build_get_by_triple') def test_spawn_agent_upgrade_fails_silently(self, mock_get): mock_get.return_value = {"version": "1.1.0", "architecture": "x86-64", "hypervisor": "xen", "os": "windows", "url": "url", "md5hash": "asdf", 'created_at': None, 'updated_at': None, 'deleted_at': None, 'deleted': False, 'id': 1} self._test_spawn_fails_silently_with(exception.AgentError, method="_plugin_agent_agentupdate", failure="fake_error") def test_spawn_with_resetnetwork_alternative_returncode(self): self.flags(use_agent_default=True, group='xenserver') def fake_resetnetwork(self, method, args): fake_resetnetwork.called = True # NOTE(johngarbutt): as returned by FreeBSD and Gentoo return jsonutils.dumps({'returncode': '500', 'message': 'success'}) self.stubs.Set(stubs.FakeSessionForVMTests, '_plugin_agent_resetnetwork', fake_resetnetwork) fake_resetnetwork.called = False self._test_spawn(IMAGE_VHD, None, None, os_type="linux", architecture="x86-64") self.assertTrue(fake_resetnetwork.called) def _test_spawn_fails_silently_with(self, expected_exception_cls, method="_plugin_agent_version", failure=None, value=None): self.flags(use_agent_default=True, agent_version_timeout=0, group='xenserver') def fake_agent_call(self, method, args): if failure: raise xenapi_fake.Failure([failure]) else: return value self.stubs.Set(stubs.FakeSessionForVMTests, method, fake_agent_call) called = {} def fake_add_instance_fault(*args, **kwargs): called["fake_add_instance_fault"] = args[2] self.stubs.Set(compute_utils, 'add_instance_fault_from_exc', fake_add_instance_fault) self._test_spawn(IMAGE_VHD, None, None, os_type="linux", architecture="x86-64") actual_exception = called["fake_add_instance_fault"] self.assertIsInstance(actual_exception, expected_exception_cls) def test_spawn_fails_silently_with_agent_timeout(self): self._test_spawn_fails_silently_with(exception.AgentTimeout, failure="TIMEOUT:fake") def test_spawn_fails_silently_with_agent_not_implemented(self): self._test_spawn_fails_silently_with(exception.AgentNotImplemented, failure="NOT IMPLEMENTED:fake") def test_spawn_fails_silently_with_agent_error(self): self._test_spawn_fails_silently_with(exception.AgentError, failure="fake_error") def test_spawn_fails_silently_with_agent_bad_return(self): error = jsonutils.dumps({'returncode': -1, 'message': 'fake'}) self._test_spawn_fails_silently_with(exception.AgentError, value=error) def test_rescue(self): instance = self._create_instance(spawn=False) xenapi_fake.create_vm(instance['name'], 'Running') session = get_session() vm_ref = vm_utils.lookup(session, instance['name']) swap_vdi_ref = xenapi_fake.create_vdi('swap', None) root_vdi_ref = xenapi_fake.create_vdi('root', None) eph1_vdi_ref = xenapi_fake.create_vdi('eph', None) eph2_vdi_ref = xenapi_fake.create_vdi('eph', None) vol_vdi_ref = xenapi_fake.create_vdi('volume', None) xenapi_fake.create_vbd(vm_ref, swap_vdi_ref, userdevice=2) xenapi_fake.create_vbd(vm_ref, root_vdi_ref, userdevice=0) xenapi_fake.create_vbd(vm_ref, eph1_vdi_ref, userdevice=4) xenapi_fake.create_vbd(vm_ref, eph2_vdi_ref, userdevice=5) xenapi_fake.create_vbd(vm_ref, vol_vdi_ref, userdevice=6, other_config={'osvol': True}) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) image_meta = {'id': IMAGE_VHD, 'disk_format': 'vhd'} conn.rescue(self.context, instance, [], image_meta, '') vm = xenapi_fake.get_record('VM', vm_ref) rescue_name = "%s-rescue" % vm["name_label"] rescue_ref = vm_utils.lookup(session, rescue_name) rescue_vm = xenapi_fake.get_record('VM', rescue_ref) vdi_refs = {} for vbd_ref in rescue_vm['VBDs']: vbd = xenapi_fake.get_record('VBD', vbd_ref) vdi_refs[vbd['VDI']] = vbd['userdevice'] self.assertEqual('1', vdi_refs[root_vdi_ref]) self.assertEqual('2', vdi_refs[swap_vdi_ref]) self.assertEqual('4', vdi_refs[eph1_vdi_ref]) self.assertEqual('5', vdi_refs[eph2_vdi_ref]) self.assertNotIn(vol_vdi_ref, vdi_refs) def test_rescue_preserve_disk_on_failure(self): # test that the original disk is preserved if rescue setup fails # bug #1227898 instance = self._create_instance() session = get_session() image_meta = {'id': IMAGE_VHD, 'disk_format': 'vhd'} vm_ref = vm_utils.lookup(session, instance['name']) vdi_ref, vdi_rec = vm_utils.get_vdi_for_vm_safely(session, vm_ref) # raise an error in the spawn setup process and trigger the # undo manager logic: def fake_start(*args, **kwargs): raise test.TestingException('Start Error') self.stubs.Set(self.conn._vmops, '_start', fake_start) self.assertRaises(test.TestingException, self.conn.rescue, self.context, instance, [], image_meta, '') # confirm original disk still exists: vdi_ref2, vdi_rec2 = vm_utils.get_vdi_for_vm_safely(session, vm_ref) self.assertEqual(vdi_ref, vdi_ref2) self.assertEqual(vdi_rec['uuid'], vdi_rec2['uuid']) def test_unrescue(self): instance = self._create_instance() conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) # Unrescue expects the original instance to be powered off conn.power_off(instance) xenapi_fake.create_vm(instance['name'] + '-rescue', 'Running') conn.unrescue(instance, None) def test_unrescue_not_in_rescue(self): instance = self._create_instance() conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) # Ensure that it will not unrescue a non-rescued instance. self.assertRaises(exception.InstanceNotInRescueMode, conn.unrescue, instance, None) def test_finish_revert_migration(self): instance = self._create_instance() class VMOpsMock(): def __init__(self): self.finish_revert_migration_called = False def finish_revert_migration(self, context, instance, block_info, power_on): self.finish_revert_migration_called = True conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) conn._vmops = VMOpsMock() conn.finish_revert_migration(self.context, instance, None) self.assertTrue(conn._vmops.finish_revert_migration_called) def test_reboot_hard(self): instance = self._create_instance() conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) conn.reboot(self.context, instance, None, "HARD") def test_poll_rebooting_instances(self): self.mox.StubOutWithMock(compute_api.API, 'reboot') compute_api.API.reboot(mox.IgnoreArg(), mox.IgnoreArg(), mox.IgnoreArg()) self.mox.ReplayAll() instance = self._create_instance() instances = [instance] conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) conn.poll_rebooting_instances(60, instances) def test_reboot_soft(self): instance = self._create_instance() conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) conn.reboot(self.context, instance, None, "SOFT") def test_reboot_halted(self): session = get_session() instance = self._create_instance(spawn=False) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) xenapi_fake.create_vm(instance['name'], 'Halted') conn.reboot(self.context, instance, None, "SOFT") vm_ref = vm_utils.lookup(session, instance['name']) vm = xenapi_fake.get_record('VM', vm_ref) self.assertEqual(vm['power_state'], 'Running') def test_reboot_unknown_state(self): instance = self._create_instance(spawn=False) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) xenapi_fake.create_vm(instance['name'], 'Unknown') self.assertRaises(xenapi_fake.Failure, conn.reboot, self.context, instance, None, "SOFT") def test_reboot_rescued(self): instance = self._create_instance() instance['vm_state'] = vm_states.RESCUED conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) real_result = vm_utils.lookup(conn._session, instance['name']) self.mox.StubOutWithMock(vm_utils, 'lookup') vm_utils.lookup(conn._session, instance['name'], True).AndReturn(real_result) self.mox.ReplayAll() conn.reboot(self.context, instance, None, "SOFT") def test_get_console_output_succeeds(self): def fake_get_console_output(instance): self.assertEqual("instance", instance) return "console_log" self.stubs.Set(self.conn._vmops, 'get_console_output', fake_get_console_output) self.assertEqual(self.conn.get_console_output('context', "instance"), "console_log") def _test_maintenance_mode(self, find_host, find_aggregate): real_call_xenapi = self.conn._session.call_xenapi instance = self._create_instance(spawn=True) api_calls = {} # Record all the xenapi calls, and return a fake list of hosts # for the host.get_all call def fake_call_xenapi(method, *args): api_calls[method] = args if method == 'host.get_all': return ['foo', 'bar', 'baz'] return real_call_xenapi(method, *args) self.stubs.Set(self.conn._session, 'call_xenapi', fake_call_xenapi) def fake_aggregate_get(context, host, key): if find_aggregate: return [test_aggregate.fake_aggregate] else: return [] self.stubs.Set(db, 'aggregate_get_by_host', fake_aggregate_get) def fake_host_find(context, session, src, dst): if find_host: return 'bar' else: raise exception.NoValidHost("I saw this one coming...") self.stubs.Set(host, '_host_find', fake_host_find) result = self.conn.host_maintenance_mode('bar', 'on_maintenance') self.assertEqual(result, 'on_maintenance') # We expect the VM.pool_migrate call to have been called to # migrate our instance to the 'bar' host vm_ref = vm_utils.lookup(self.conn._session, instance['name']) host_ref = "foo" expected = (vm_ref, host_ref, {"live": "true"}) self.assertEqual(api_calls.get('VM.pool_migrate'), expected) instance = db.instance_get_by_uuid(self.context, instance['uuid']) self.assertEqual(instance['vm_state'], vm_states.ACTIVE) self.assertEqual(instance['task_state'], task_states.MIGRATING) def test_maintenance_mode(self): self._test_maintenance_mode(True, True) def test_maintenance_mode_no_host(self): self.assertRaises(exception.NoValidHost, self._test_maintenance_mode, False, True) def test_maintenance_mode_no_aggregate(self): self.assertRaises(exception.NotFound, self._test_maintenance_mode, True, False) def test_uuid_find(self): self.mox.StubOutWithMock(db, 'instance_get_all_by_host') fake_inst = fake_instance.fake_db_instance(id=123) fake_inst2 = fake_instance.fake_db_instance(id=456) db.instance_get_all_by_host(self.context, fake_inst['host'], columns_to_join=None, use_slave=False ).AndReturn([fake_inst, fake_inst2]) self.mox.ReplayAll() expected_name = CONF.instance_name_template % fake_inst['id'] inst_uuid = host._uuid_find(self.context, fake_inst['host'], expected_name) self.assertEqual(inst_uuid, fake_inst['uuid']) def test_session_virtapi(self): was = {'called': False} def fake_aggregate_get_by_host(self, *args, **kwargs): was['called'] = True raise test.TestingException() self.stubs.Set(db, "aggregate_get_by_host", fake_aggregate_get_by_host) self.stubs.Set(self.conn._session, "is_slave", True) self.assertRaises(test.TestingException, self.conn._session._get_host_uuid) self.assertTrue(was['called']) def test_per_instance_usage_running(self): instance = self._create_instance(spawn=True) flavor = flavors.get_flavor(3) expected = {instance['uuid']: {'memory_mb': flavor['memory_mb'], 'uuid': instance['uuid']}} actual = self.conn.get_per_instance_usage() self.assertEqual(expected, actual) # Paused instances still consume resources: self.conn.pause(instance) actual = self.conn.get_per_instance_usage() self.assertEqual(expected, actual) def test_per_instance_usage_suspended(self): # Suspended instances do not consume memory: instance = self._create_instance(spawn=True) self.conn.suspend(instance) actual = self.conn.get_per_instance_usage() self.assertEqual({}, actual) def test_per_instance_usage_halted(self): instance = self._create_instance(spawn=True) self.conn.power_off(instance) actual = self.conn.get_per_instance_usage() self.assertEqual({}, actual) def _create_instance(self, instance_id=1, spawn=True, obj=False, **attrs): """Creates and spawns a test instance.""" instance_values = { 'id': instance_id, 'uuid': '00000000-0000-0000-0000-00000000000%d' % instance_id, 'display_name': 'host-%d' % instance_id, 'project_id': self.project_id, 'user_id': self.user_id, 'image_ref': 1, 'kernel_id': 2, 'ramdisk_id': 3, 'root_gb': 80, 'ephemeral_gb': 0, 'instance_type_id': '3', # m1.large 'os_type': 'linux', 'vm_mode': 'hvm', 'architecture': 'x86-64'} instance_values.update(attrs) instance = create_instance_with_system_metadata(self.context, instance_values) network_info = fake_network.fake_get_instance_nw_info(self.stubs) image_meta = {'id': IMAGE_VHD, 'disk_format': 'vhd'} if spawn: self.conn.spawn(self.context, instance, image_meta, [], 'herp', network_info) if obj: instance = objects.Instance._from_db_object( self.context, objects.Instance(), instance, expected_attrs=instance_obj.INSTANCE_DEFAULT_FIELDS) return instance def test_destroy_clean_up_kernel_and_ramdisk(self): def fake_lookup_kernel_ramdisk(session, vm_ref): return "kernel", "ramdisk" self.stubs.Set(vm_utils, "lookup_kernel_ramdisk", fake_lookup_kernel_ramdisk) def fake_destroy_kernel_ramdisk(session, instance, kernel, ramdisk): fake_destroy_kernel_ramdisk.called = True self.assertEqual("kernel", kernel) self.assertEqual("ramdisk", ramdisk) fake_destroy_kernel_ramdisk.called = False self.stubs.Set(vm_utils, "destroy_kernel_ramdisk", fake_destroy_kernel_ramdisk) instance = self._create_instance(spawn=True) network_info = fake_network.fake_get_instance_nw_info(self.stubs) self.conn.destroy(self.context, instance, network_info) vm_ref = vm_utils.lookup(self.conn._session, instance['name']) self.assertIsNone(vm_ref) self.assertTrue(fake_destroy_kernel_ramdisk.called) class XenAPIDiffieHellmanTestCase(test.NoDBTestCase): """Unit tests for Diffie-Hellman code.""" def setUp(self): super(XenAPIDiffieHellmanTestCase, self).setUp() self.alice = agent.SimpleDH() self.bob = agent.SimpleDH() def test_shared(self): alice_pub = self.alice.get_public() bob_pub = self.bob.get_public() alice_shared = self.alice.compute_shared(bob_pub) bob_shared = self.bob.compute_shared(alice_pub) self.assertEqual(alice_shared, bob_shared) def _test_encryption(self, message): enc = self.alice.encrypt(message) self.assertFalse(enc.endswith('\n')) dec = self.bob.decrypt(enc) self.assertEqual(dec, message) def test_encrypt_simple_message(self): self._test_encryption('This is a simple message.') def test_encrypt_message_with_newlines_at_end(self): self._test_encryption('This message has a newline at the end.\n') def test_encrypt_many_newlines_at_end(self): self._test_encryption('Message with lotsa newlines.\n\n\n') def test_encrypt_newlines_inside_message(self): self._test_encryption('Message\nwith\ninterior\nnewlines.') def test_encrypt_with_leading_newlines(self): self._test_encryption('\n\nMessage with leading newlines.') def test_encrypt_really_long_message(self): self._test_encryption(''.join(['abcd' for i in xrange(1024)])) # FIXME(sirp): convert this to use XenAPITestBaseNoDB class XenAPIMigrateInstance(stubs.XenAPITestBase): """Unit test for verifying migration-related actions.""" def setUp(self): super(XenAPIMigrateInstance, self).setUp() self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') self.flags(firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) db_fakes.stub_out_db_instance_api(self.stubs) xenapi_fake.create_network('fake', 'fake_br1') self.user_id = 'fake' self.project_id = 'fake' self.context = context.RequestContext(self.user_id, self.project_id) self.instance_values = {'id': 1, 'project_id': self.project_id, 'user_id': self.user_id, 'image_ref': 1, 'kernel_id': None, 'ramdisk_id': None, 'root_gb': 80, 'ephemeral_gb': 0, 'instance_type_id': '3', # m1.large 'os_type': 'linux', 'architecture': 'x86-64'} migration_values = { 'source_compute': 'nova-compute', 'dest_compute': 'nova-compute', 'dest_host': '10.127.5.114', 'status': 'post-migrating', 'instance_uuid': '15f23e6a-cc6e-4d22-b651-d9bdaac316f7', 'old_instance_type_id': 5, 'new_instance_type_id': 1 } self.migration = db.migration_create( context.get_admin_context(), migration_values) fake_processutils.stub_out_processutils_execute(self.stubs) stubs.stub_out_migration_methods(self.stubs) stubs.stubout_get_this_vm_uuid(self.stubs) def fake_inject_instance_metadata(self, instance, vm): pass self.stubs.Set(vmops.VMOps, '_inject_instance_metadata', fake_inject_instance_metadata) def test_migrate_disk_and_power_off(self): instance = db.instance_create(self.context, self.instance_values) xenapi_fake.create_vm(instance['name'], 'Running') flavor = {"root_gb": 80, 'ephemeral_gb': 0} conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) conn.migrate_disk_and_power_off(self.context, instance, '127.0.0.1', flavor, None) def test_migrate_disk_and_power_off_passes_exceptions(self): instance = db.instance_create(self.context, self.instance_values) xenapi_fake.create_vm(instance['name'], 'Running') flavor = {"root_gb": 80, 'ephemeral_gb': 0} def fake_raise(*args, **kwargs): raise exception.MigrationError(reason='test failure') self.stubs.Set(vmops.VMOps, "_migrate_disk_resizing_up", fake_raise) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.assertRaises(exception.MigrationError, conn.migrate_disk_and_power_off, self.context, instance, '127.0.0.1', flavor, None) def test_migrate_disk_and_power_off_throws_on_zero_gb_resize_down(self): instance = db.instance_create(self.context, self.instance_values) flavor = {"root_gb": 0, 'ephemeral_gb': 0} conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.assertRaises(exception.ResizeError, conn.migrate_disk_and_power_off, self.context, instance, 'fake_dest', flavor, None) def test_migrate_disk_and_power_off_with_zero_gb_old_and_new_works(self): flavor = {"root_gb": 0, 'ephemeral_gb': 0} values = copy.copy(self.instance_values) values["root_gb"] = 0 values["ephemeral_gb"] = 0 instance = db.instance_create(self.context, values) xenapi_fake.create_vm(instance['name'], 'Running') conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) conn.migrate_disk_and_power_off(self.context, instance, '127.0.0.1', flavor, None) def _test_revert_migrate(self, power_on): instance = create_instance_with_system_metadata(self.context, self.instance_values) self.called = False self.fake_vm_start_called = False self.fake_finish_revert_migration_called = False context = 'fake_context' def fake_vm_start(*args, **kwargs): self.fake_vm_start_called = True def fake_vdi_resize(*args, **kwargs): self.called = True def fake_finish_revert_migration(*args, **kwargs): self.fake_finish_revert_migration_called = True self.stubs.Set(stubs.FakeSessionForVMTests, "VDI_resize_online", fake_vdi_resize) self.stubs.Set(vmops.VMOps, '_start', fake_vm_start) self.stubs.Set(vmops.VMOps, 'finish_revert_migration', fake_finish_revert_migration) stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests, product_version=(4, 0, 0), product_brand='XenServer') conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) network_info = fake_network.fake_get_instance_nw_info(self.stubs) image_meta = {'id': instance['image_ref'], 'disk_format': 'vhd'} base = xenapi_fake.create_vdi('hurr', 'fake') base_uuid = xenapi_fake.get_record('VDI', base)['uuid'] cow = xenapi_fake.create_vdi('durr', 'fake') cow_uuid = xenapi_fake.get_record('VDI', cow)['uuid'] conn.finish_migration(self.context, self.migration, instance, dict(base_copy=base_uuid, cow=cow_uuid), network_info, image_meta, resize_instance=True, block_device_info=None, power_on=power_on) self.assertEqual(self.called, True) self.assertEqual(self.fake_vm_start_called, power_on) conn.finish_revert_migration(context, instance, network_info) self.assertEqual(self.fake_finish_revert_migration_called, True) def test_revert_migrate_power_on(self): self._test_revert_migrate(True) def test_revert_migrate_power_off(self): self._test_revert_migrate(False) def _test_finish_migrate(self, power_on): instance = create_instance_with_system_metadata(self.context, self.instance_values) self.called = False self.fake_vm_start_called = False def fake_vm_start(*args, **kwargs): self.fake_vm_start_called = True def fake_vdi_resize(*args, **kwargs): self.called = True self.stubs.Set(vmops.VMOps, '_start', fake_vm_start) self.stubs.Set(stubs.FakeSessionForVMTests, "VDI_resize_online", fake_vdi_resize) stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests, product_version=(4, 0, 0), product_brand='XenServer') conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) network_info = fake_network.fake_get_instance_nw_info(self.stubs) image_meta = {'id': instance['image_ref'], 'disk_format': 'vhd'} conn.finish_migration(self.context, self.migration, instance, dict(base_copy='hurr', cow='durr'), network_info, image_meta, resize_instance=True, block_device_info=None, power_on=power_on) self.assertEqual(self.called, True) self.assertEqual(self.fake_vm_start_called, power_on) def test_finish_migrate_power_on(self): self._test_finish_migrate(True) def test_finish_migrate_power_off(self): self._test_finish_migrate(False) def test_finish_migrate_no_local_storage(self): values = copy.copy(self.instance_values) values["root_gb"] = 0 values["ephemeral_gb"] = 0 instance = create_instance_with_system_metadata(self.context, values) def fake_vdi_resize(*args, **kwargs): raise Exception("This shouldn't be called") self.stubs.Set(stubs.FakeSessionForVMTests, "VDI_resize_online", fake_vdi_resize) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) network_info = fake_network.fake_get_instance_nw_info(self.stubs) image_meta = {'id': instance['image_ref'], 'disk_format': 'vhd'} conn.finish_migration(self.context, self.migration, instance, dict(base_copy='hurr', cow='durr'), network_info, image_meta, resize_instance=True) def test_finish_migrate_no_resize_vdi(self): instance = create_instance_with_system_metadata(self.context, self.instance_values) def fake_vdi_resize(*args, **kwargs): raise Exception("This shouldn't be called") self.stubs.Set(stubs.FakeSessionForVMTests, "VDI_resize_online", fake_vdi_resize) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) network_info = fake_network.fake_get_instance_nw_info(self.stubs) # Resize instance would be determined by the compute call image_meta = {'id': instance['image_ref'], 'disk_format': 'vhd'} conn.finish_migration(self.context, self.migration, instance, dict(base_copy='hurr', cow='durr'), network_info, image_meta, resize_instance=False) @stub_vm_utils_with_vdi_attached_here def test_migrate_too_many_partitions_no_resize_down(self): instance_values = self.instance_values instance = db.instance_create(self.context, instance_values) xenapi_fake.create_vm(instance['name'], 'Running') flavor = db.flavor_get_by_name(self.context, 'm1.small') conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) def fake_get_partitions(partition): return [(1, 2, 3, 4, "", ""), (1, 2, 3, 4, "", "")] self.stubs.Set(vm_utils, '_get_partitions', fake_get_partitions) self.assertRaises(exception.InstanceFaultRollback, conn.migrate_disk_and_power_off, self.context, instance, '127.0.0.1', flavor, None) @stub_vm_utils_with_vdi_attached_here def test_migrate_bad_fs_type_no_resize_down(self): instance_values = self.instance_values instance = db.instance_create(self.context, instance_values) xenapi_fake.create_vm(instance['name'], 'Running') flavor = db.flavor_get_by_name(self.context, 'm1.small') conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) def fake_get_partitions(partition): return [(1, 2, 3, "ext2", "", "boot")] self.stubs.Set(vm_utils, '_get_partitions', fake_get_partitions) self.assertRaises(exception.InstanceFaultRollback, conn.migrate_disk_and_power_off, self.context, instance, '127.0.0.1', flavor, None) def test_migrate_rollback_when_resize_down_fs_fails(self): conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) vmops = conn._vmops self.mox.StubOutWithMock(vmops, '_resize_ensure_vm_is_shutdown') self.mox.StubOutWithMock(vmops, '_apply_orig_vm_name_label') self.mox.StubOutWithMock(vm_utils, 'resize_disk') self.mox.StubOutWithMock(vm_utils, 'migrate_vhd') self.mox.StubOutWithMock(vm_utils, 'destroy_vdi') self.mox.StubOutWithMock(vm_utils, 'get_vdi_for_vm_safely') self.mox.StubOutWithMock(vmops, '_restore_orig_vm_and_cleanup_orphan') instance = objects.Instance(context=self.context, auto_disk_config=True, uuid='uuid') instance.obj_reset_changes() vm_ref = "vm_ref" dest = "dest" flavor = "type" sr_path = "sr_path" vmops._resize_ensure_vm_is_shutdown(instance, vm_ref) vmops._apply_orig_vm_name_label(instance, vm_ref) old_vdi_ref = "old_ref" vm_utils.get_vdi_for_vm_safely(vmops._session, vm_ref).AndReturn( (old_vdi_ref, None)) new_vdi_ref = "new_ref" new_vdi_uuid = "new_uuid" vm_utils.resize_disk(vmops._session, instance, old_vdi_ref, flavor).AndReturn((new_vdi_ref, new_vdi_uuid)) vm_utils.migrate_vhd(vmops._session, instance, new_vdi_uuid, dest, sr_path, 0).AndRaise( exception.ResizeError(reason="asdf")) vm_utils.destroy_vdi(vmops._session, new_vdi_ref) vmops._restore_orig_vm_and_cleanup_orphan(instance) self.mox.ReplayAll() with mock.patch.object(instance, 'save') as mock_save: self.assertRaises(exception.InstanceFaultRollback, vmops._migrate_disk_resizing_down, self.context, instance, dest, flavor, vm_ref, sr_path) self.assertEqual(3, mock_save.call_count) self.assertEqual(60.0, instance.progress) def test_resize_ensure_vm_is_shutdown_cleanly(self): conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) vmops = conn._vmops fake_instance = {'uuid': 'uuid'} self.mox.StubOutWithMock(vm_utils, 'is_vm_shutdown') self.mox.StubOutWithMock(vm_utils, 'clean_shutdown_vm') self.mox.StubOutWithMock(vm_utils, 'hard_shutdown_vm') vm_utils.is_vm_shutdown(vmops._session, "ref").AndReturn(False) vm_utils.clean_shutdown_vm(vmops._session, fake_instance, "ref").AndReturn(True) self.mox.ReplayAll() vmops._resize_ensure_vm_is_shutdown(fake_instance, "ref") def test_resize_ensure_vm_is_shutdown_forced(self): conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) vmops = conn._vmops fake_instance = {'uuid': 'uuid'} self.mox.StubOutWithMock(vm_utils, 'is_vm_shutdown') self.mox.StubOutWithMock(vm_utils, 'clean_shutdown_vm') self.mox.StubOutWithMock(vm_utils, 'hard_shutdown_vm') vm_utils.is_vm_shutdown(vmops._session, "ref").AndReturn(False) vm_utils.clean_shutdown_vm(vmops._session, fake_instance, "ref").AndReturn(False) vm_utils.hard_shutdown_vm(vmops._session, fake_instance, "ref").AndReturn(True) self.mox.ReplayAll() vmops._resize_ensure_vm_is_shutdown(fake_instance, "ref") def test_resize_ensure_vm_is_shutdown_fails(self): conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) vmops = conn._vmops fake_instance = {'uuid': 'uuid'} self.mox.StubOutWithMock(vm_utils, 'is_vm_shutdown') self.mox.StubOutWithMock(vm_utils, 'clean_shutdown_vm') self.mox.StubOutWithMock(vm_utils, 'hard_shutdown_vm') vm_utils.is_vm_shutdown(vmops._session, "ref").AndReturn(False) vm_utils.clean_shutdown_vm(vmops._session, fake_instance, "ref").AndReturn(False) vm_utils.hard_shutdown_vm(vmops._session, fake_instance, "ref").AndReturn(False) self.mox.ReplayAll() self.assertRaises(exception.ResizeError, vmops._resize_ensure_vm_is_shutdown, fake_instance, "ref") def test_resize_ensure_vm_is_shutdown_already_shutdown(self): conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) vmops = conn._vmops fake_instance = {'uuid': 'uuid'} self.mox.StubOutWithMock(vm_utils, 'is_vm_shutdown') self.mox.StubOutWithMock(vm_utils, 'clean_shutdown_vm') self.mox.StubOutWithMock(vm_utils, 'hard_shutdown_vm') vm_utils.is_vm_shutdown(vmops._session, "ref").AndReturn(True) self.mox.ReplayAll() vmops._resize_ensure_vm_is_shutdown(fake_instance, "ref") class XenAPIImageTypeTestCase(test.NoDBTestCase): """Test ImageType class.""" def test_to_string(self): # Can convert from type id to type string. self.assertEqual( vm_utils.ImageType.to_string(vm_utils.ImageType.KERNEL), vm_utils.ImageType.KERNEL_STR) def _assert_role(self, expected_role, image_type_id): self.assertEqual( expected_role, vm_utils.ImageType.get_role(image_type_id)) def test_get_image_role_kernel(self): self._assert_role('kernel', vm_utils.ImageType.KERNEL) def test_get_image_role_ramdisk(self): self._assert_role('ramdisk', vm_utils.ImageType.RAMDISK) def test_get_image_role_disk(self): self._assert_role('root', vm_utils.ImageType.DISK) def test_get_image_role_disk_raw(self): self._assert_role('root', vm_utils.ImageType.DISK_RAW) def test_get_image_role_disk_vhd(self): self._assert_role('root', vm_utils.ImageType.DISK_VHD) class XenAPIDetermineDiskImageTestCase(test.NoDBTestCase): """Unit tests for code that detects the ImageType.""" def assert_disk_type(self, image_meta, expected_disk_type): actual = vm_utils.determine_disk_image_type(image_meta) self.assertEqual(expected_disk_type, actual) def test_machine(self): image_meta = {'id': 'a', 'disk_format': 'ami'} self.assert_disk_type(image_meta, vm_utils.ImageType.DISK) def test_raw(self): image_meta = {'id': 'a', 'disk_format': 'raw'} self.assert_disk_type(image_meta, vm_utils.ImageType.DISK_RAW) def test_vhd(self): image_meta = {'id': 'a', 'disk_format': 'vhd'} self.assert_disk_type(image_meta, vm_utils.ImageType.DISK_VHD) def test_none(self): image_meta = None self.assert_disk_type(image_meta, None) # FIXME(sirp): convert this to use XenAPITestBaseNoDB class XenAPIHostTestCase(stubs.XenAPITestBase): """Tests HostState, which holds metrics from XenServer that get reported back to the Schedulers. """ def setUp(self): super(XenAPIHostTestCase, self).setUp() self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.context = context.get_admin_context() self.flags(use_local=True, group='conductor') self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.instance = fake_instance.fake_db_instance(name='foo') def test_host_state(self): stats = self.conn.get_host_stats() # Values from fake.create_local_srs (ext SR) self.assertEqual(stats['disk_total'], 40000) self.assertEqual(stats['disk_used'], 20000) # Values from fake._plugin_xenhost_host_data self.assertEqual(stats['host_memory_total'], 10) self.assertEqual(stats['host_memory_overhead'], 20) self.assertEqual(stats['host_memory_free'], 30) self.assertEqual(stats['host_memory_free_computed'], 40) self.assertEqual(stats['hypervisor_hostname'], 'fake-xenhost') self.assertThat({'cpu_count': 50}, matchers.DictMatches(stats['host_cpu_info'])) # No VMs running self.assertEqual(stats['vcpus_used'], 0) def test_host_state_vcpus_used(self): stats = self.conn.get_host_stats(True) self.assertEqual(stats['vcpus_used'], 0) xenapi_fake.create_vm(self.instance['name'], 'Running') stats = self.conn.get_host_stats(True) self.assertEqual(stats['vcpus_used'], 4) def test_pci_passthrough_devices_whitelist(self): # NOTE(guillaume-thouvenin): This pci whitelist will be used to # match with _plugin_xenhost_get_pci_device_details method in fake.py. white_list = '{"vendor_id":"10de", "product_id":"11bf"}' self.flags(pci_passthrough_whitelist=[white_list]) stats = self.conn.get_host_stats() self.assertEqual(len(stats['pci_passthrough_devices']), 1) def test_pci_passthrough_devices_no_whitelist(self): stats = self.conn.get_host_stats() self.assertEqual(len(stats['pci_passthrough_devices']), 0) def test_host_state_missing_sr(self): def fake_safe_find_sr(session): raise exception.StorageRepositoryNotFound('not there') self.stubs.Set(vm_utils, 'safe_find_sr', fake_safe_find_sr) self.assertRaises(exception.StorageRepositoryNotFound, self.conn.get_host_stats) def _test_host_action(self, method, action, expected=None): result = method('host', action) if not expected: expected = action self.assertEqual(result, expected) def test_host_reboot(self): self._test_host_action(self.conn.host_power_action, 'reboot') def test_host_shutdown(self): self._test_host_action(self.conn.host_power_action, 'shutdown') def test_host_startup(self): self.assertRaises(NotImplementedError, self.conn.host_power_action, 'host', 'startup') def test_host_maintenance_on(self): self._test_host_action(self.conn.host_maintenance_mode, True, 'on_maintenance') def test_host_maintenance_off(self): self._test_host_action(self.conn.host_maintenance_mode, False, 'off_maintenance') def test_set_enable_host_enable(self): _create_service_entries(self.context, values={'nova': ['fake-mini']}) self._test_host_action(self.conn.set_host_enabled, True, 'enabled') service = db.service_get_by_args(self.context, 'fake-mini', 'nova-compute') self.assertEqual(service.disabled, False) def test_set_enable_host_disable(self): _create_service_entries(self.context, values={'nova': ['fake-mini']}) self._test_host_action(self.conn.set_host_enabled, False, 'disabled') service = db.service_get_by_args(self.context, 'fake-mini', 'nova-compute') self.assertEqual(service.disabled, True) def test_get_host_uptime(self): result = self.conn.get_host_uptime('host') self.assertEqual(result, 'fake uptime') def test_supported_instances_is_included_in_host_state(self): stats = self.conn.get_host_stats() self.assertIn('supported_instances', stats) def test_supported_instances_is_calculated_by_to_supported_instances(self): def to_supported_instances(somedata): self.assertIsNone(somedata) return "SOMERETURNVALUE" self.stubs.Set(host, 'to_supported_instances', to_supported_instances) stats = self.conn.get_host_stats() self.assertEqual("SOMERETURNVALUE", stats['supported_instances']) def test_update_stats_caches_hostname(self): self.mox.StubOutWithMock(host, 'call_xenhost') self.mox.StubOutWithMock(vm_utils, 'scan_default_sr') self.mox.StubOutWithMock(vm_utils, 'list_vms') self.mox.StubOutWithMock(self.conn._session, 'call_xenapi') data = {'disk_total': 0, 'disk_used': 0, 'disk_available': 0, 'supported_instances': 0, 'host_capabilities': [], 'host_hostname': 'foo', 'vcpus_used': 0, } sr_rec = { 'physical_size': 0, 'physical_utilisation': 0, 'virtual_allocation': 0, } for i in range(3): host.call_xenhost(mox.IgnoreArg(), 'host_data', {}).AndReturn(data) vm_utils.scan_default_sr(self.conn._session).AndReturn("ref") vm_utils.list_vms(self.conn._session).AndReturn([]) self.conn._session.call_xenapi('SR.get_record', "ref").AndReturn( sr_rec) if i == 2: # On the third call (the second below) change the hostname data = dict(data, host_hostname='bar') self.mox.ReplayAll() stats = self.conn.get_host_stats(refresh=True) self.assertEqual('foo', stats['hypervisor_hostname']) stats = self.conn.get_host_stats(refresh=True) self.assertEqual('foo', stats['hypervisor_hostname']) class ToSupportedInstancesTestCase(test.NoDBTestCase): def test_default_return_value(self): self.assertEqual([], host.to_supported_instances(None)) def test_return_value(self): self.assertEqual([(arch.X86_64, hvtype.XEN, 'xen')], host.to_supported_instances([u'xen-3.0-x86_64'])) def test_invalid_values_do_not_break(self): self.assertEqual([(arch.X86_64, hvtype.XEN, 'xen')], host.to_supported_instances([u'xen-3.0-x86_64', 'spam'])) def test_multiple_values(self): self.assertEqual( [ (arch.X86_64, hvtype.XEN, 'xen'), (arch.I686, hvtype.XEN, 'hvm') ], host.to_supported_instances([u'xen-3.0-x86_64', 'hvm-3.0-x86_32']) ) # FIXME(sirp): convert this to use XenAPITestBaseNoDB class XenAPIAutoDiskConfigTestCase(stubs.XenAPITestBase): def setUp(self): super(XenAPIAutoDiskConfigTestCase, self).setUp() self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') self.flags(firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.user_id = 'fake' self.project_id = 'fake' self.instance_values = {'id': 1, 'project_id': self.project_id, 'user_id': self.user_id, 'image_ref': 1, 'kernel_id': 2, 'ramdisk_id': 3, 'root_gb': 80, 'ephemeral_gb': 0, 'instance_type_id': '3', # m1.large 'os_type': 'linux', 'architecture': 'x86-64'} self.context = context.RequestContext(self.user_id, self.project_id) def fake_create_vbd(session, vm_ref, vdi_ref, userdevice, vbd_type='disk', read_only=False, bootable=True, osvol=False): pass self.stubs.Set(vm_utils, 'create_vbd', fake_create_vbd) def assertIsPartitionCalled(self, called): marker = {"partition_called": False} def fake_resize_part_and_fs(dev, start, old_sectors, new_sectors, flags): marker["partition_called"] = True self.stubs.Set(vm_utils, "_resize_part_and_fs", fake_resize_part_and_fs) context.RequestContext(self.user_id, self.project_id) session = get_session() disk_image_type = vm_utils.ImageType.DISK_VHD instance = create_instance_with_system_metadata(self.context, self.instance_values) vm_ref = xenapi_fake.create_vm(instance['name'], 'Halted') vdi_ref = xenapi_fake.create_vdi(instance['name'], 'fake') vdi_uuid = session.call_xenapi('VDI.get_record', vdi_ref)['uuid'] vdis = {'root': {'uuid': vdi_uuid, 'ref': vdi_ref}} self.conn._vmops._attach_disks(instance, vm_ref, instance['name'], vdis, disk_image_type, "fake_nw_inf") self.assertEqual(marker["partition_called"], called) def test_instance_not_auto_disk_config(self): """Should not partition unless instance is marked as auto_disk_config. """ self.instance_values['auto_disk_config'] = False self.assertIsPartitionCalled(False) @stub_vm_utils_with_vdi_attached_here def test_instance_auto_disk_config_fails_safe_two_partitions(self): # Should not partition unless fail safes pass. self.instance_values['auto_disk_config'] = True def fake_get_partitions(dev): return [(1, 0, 100, 'ext4', "", ""), (2, 100, 200, 'ext4' "", "")] self.stubs.Set(vm_utils, "_get_partitions", fake_get_partitions) self.assertIsPartitionCalled(False) @stub_vm_utils_with_vdi_attached_here def test_instance_auto_disk_config_fails_safe_badly_numbered(self): # Should not partition unless fail safes pass. self.instance_values['auto_disk_config'] = True def fake_get_partitions(dev): return [(2, 100, 200, 'ext4', "", "")] self.stubs.Set(vm_utils, "_get_partitions", fake_get_partitions) self.assertIsPartitionCalled(False) @stub_vm_utils_with_vdi_attached_here def test_instance_auto_disk_config_fails_safe_bad_fstype(self): # Should not partition unless fail safes pass. self.instance_values['auto_disk_config'] = True def fake_get_partitions(dev): return [(1, 100, 200, 'asdf', "", "")] self.stubs.Set(vm_utils, "_get_partitions", fake_get_partitions) self.assertIsPartitionCalled(False) @stub_vm_utils_with_vdi_attached_here def test_instance_auto_disk_config_passes_fail_safes(self): """Should partition if instance is marked as auto_disk_config=True and virt-layer specific fail-safe checks pass. """ self.instance_values['auto_disk_config'] = True def fake_get_partitions(dev): return [(1, 0, 100, 'ext4', "", "boot")] self.stubs.Set(vm_utils, "_get_partitions", fake_get_partitions) self.assertIsPartitionCalled(True) # FIXME(sirp): convert this to use XenAPITestBaseNoDB class XenAPIGenerateLocal(stubs.XenAPITestBase): """Test generating of local disks, like swap and ephemeral.""" def setUp(self): super(XenAPIGenerateLocal, self).setUp() self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') self.flags(firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) db_fakes.stub_out_db_instance_api(self.stubs) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.user_id = 'fake' self.project_id = 'fake' self.instance_values = {'id': 1, 'project_id': self.project_id, 'user_id': self.user_id, 'image_ref': 1, 'kernel_id': 2, 'ramdisk_id': 3, 'root_gb': 80, 'ephemeral_gb': 0, 'instance_type_id': '3', # m1.large 'os_type': 'linux', 'architecture': 'x86-64'} self.context = context.RequestContext(self.user_id, self.project_id) def fake_create_vbd(session, vm_ref, vdi_ref, userdevice, vbd_type='disk', read_only=False, bootable=True, osvol=False, empty=False, unpluggable=True): return session.call_xenapi('VBD.create', {'VM': vm_ref, 'VDI': vdi_ref}) self.stubs.Set(vm_utils, 'create_vbd', fake_create_vbd) def assertCalled(self, instance, disk_image_type=vm_utils.ImageType.DISK_VHD): context.RequestContext(self.user_id, self.project_id) session = get_session() vm_ref = xenapi_fake.create_vm(instance['name'], 'Halted') vdi_ref = xenapi_fake.create_vdi(instance['name'], 'fake') vdi_uuid = session.call_xenapi('VDI.get_record', vdi_ref)['uuid'] vdi_key = 'root' if disk_image_type == vm_utils.ImageType.DISK_ISO: vdi_key = 'iso' vdis = {vdi_key: {'uuid': vdi_uuid, 'ref': vdi_ref}} self.called = False self.conn._vmops._attach_disks(instance, vm_ref, instance['name'], vdis, disk_image_type, "fake_nw_inf") self.assertTrue(self.called) def test_generate_swap(self): # Test swap disk generation. instance_values = dict(self.instance_values, instance_type_id=5) instance = create_instance_with_system_metadata(self.context, instance_values) def fake_generate_swap(*args, **kwargs): self.called = True self.stubs.Set(vm_utils, 'generate_swap', fake_generate_swap) self.assertCalled(instance) def test_generate_ephemeral(self): # Test ephemeral disk generation. instance_values = dict(self.instance_values, instance_type_id=4) instance = create_instance_with_system_metadata(self.context, instance_values) def fake_generate_ephemeral(*args): self.called = True self.stubs.Set(vm_utils, 'generate_ephemeral', fake_generate_ephemeral) self.assertCalled(instance) def test_generate_iso_blank_root_disk(self): instance_values = dict(self.instance_values, instance_type_id=4) instance_values.pop('kernel_id') instance_values.pop('ramdisk_id') instance = create_instance_with_system_metadata(self.context, instance_values) def fake_generate_ephemeral(*args): pass self.stubs.Set(vm_utils, 'generate_ephemeral', fake_generate_ephemeral) def fake_generate_iso(*args): self.called = True self.stubs.Set(vm_utils, 'generate_iso_blank_root_disk', fake_generate_iso) self.assertCalled(instance, vm_utils.ImageType.DISK_ISO) class XenAPIBWCountersTestCase(stubs.XenAPITestBaseNoDB): FAKE_VMS = {'test1:ref': dict(name_label='test1', other_config=dict(nova_uuid='hash'), domid='12', _vifmap={'0': "a:b:c:d...", '1': "e:f:12:q..."}), 'test2:ref': dict(name_label='test2', other_config=dict(nova_uuid='hash'), domid='42', _vifmap={'0': "a:3:c:d...", '1': "e:f:42:q..."}), } def setUp(self): super(XenAPIBWCountersTestCase, self).setUp() self.stubs.Set(vm_utils, 'list_vms', XenAPIBWCountersTestCase._fake_list_vms) self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') self.flags(firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) def _fake_get_vif_device_map(vm_rec): return vm_rec['_vifmap'] self.stubs.Set(self.conn._vmops, "_get_vif_device_map", _fake_get_vif_device_map) @classmethod def _fake_list_vms(cls, session): return cls.FAKE_VMS.iteritems() @staticmethod def _fake_fetch_bandwidth_mt(session): return {} @staticmethod def _fake_fetch_bandwidth(session): return {'42': {'0': {'bw_in': 21024, 'bw_out': 22048}, '1': {'bw_in': 231337, 'bw_out': 221212121}}, '12': {'0': {'bw_in': 1024, 'bw_out': 2048}, '1': {'bw_in': 31337, 'bw_out': 21212121}}, } def test_get_all_bw_counters(self): instances = [dict(name='test1', uuid='1-2-3'), dict(name='test2', uuid='4-5-6')] self.stubs.Set(vm_utils, 'fetch_bandwidth', self._fake_fetch_bandwidth) result = self.conn.get_all_bw_counters(instances) self.assertEqual(len(result), 4) self.assertIn(dict(uuid='1-2-3', mac_address="a:b:c:d...", bw_in=1024, bw_out=2048), result) self.assertIn(dict(uuid='1-2-3', mac_address="e:f:12:q...", bw_in=31337, bw_out=21212121), result) self.assertIn(dict(uuid='4-5-6', mac_address="a:3:c:d...", bw_in=21024, bw_out=22048), result) self.assertIn(dict(uuid='4-5-6', mac_address="e:f:42:q...", bw_in=231337, bw_out=221212121), result) def test_get_all_bw_counters_in_failure_case(self): """Test that get_all_bw_conters returns an empty list when no data returned from Xenserver. c.f. bug #910045. """ instances = [dict(name='instance-0001', uuid='1-2-3-4-5')] self.stubs.Set(vm_utils, 'fetch_bandwidth', self._fake_fetch_bandwidth_mt) result = self.conn.get_all_bw_counters(instances) self.assertEqual(result, []) # TODO(salvatore-orlando): this class and # nova.tests.virt.test_libvirt.IPTablesFirewallDriverTestCase share a lot of # code. Consider abstracting common code in a base class for firewall driver # testing. # FIXME(sirp): convert this to use XenAPITestBaseNoDB class XenAPIDom0IptablesFirewallTestCase(stubs.XenAPITestBase): _in_rules = [ '# Generated by iptables-save v1.4.10 on Sat Feb 19 00:03:19 2011', '*nat', ':PREROUTING ACCEPT [1170:189210]', ':INPUT ACCEPT [844:71028]', ':OUTPUT ACCEPT [5149:405186]', ':POSTROUTING ACCEPT [5063:386098]', '# Completed on Mon Dec 6 11:54:13 2010', '# Generated by iptables-save v1.4.4 on Mon Dec 6 11:54:13 2010', '*mangle', ':INPUT ACCEPT [969615:281627771]', ':FORWARD ACCEPT [0:0]', ':OUTPUT ACCEPT [915599:63811649]', ':nova-block-ipv4 - [0:0]', '[0:0] -A INPUT -i virbr0 -p tcp -m tcp --dport 67 -j ACCEPT ', '[0:0] -A FORWARD -d 192.168.122.0/24 -o virbr0 -m state --state RELATED' ',ESTABLISHED -j ACCEPT ', '[0:0] -A FORWARD -s 192.168.122.0/24 -i virbr0 -j ACCEPT ', '[0:0] -A FORWARD -i virbr0 -o virbr0 -j ACCEPT ', '[0:0] -A FORWARD -o virbr0 -j REJECT ' '--reject-with icmp-port-unreachable ', '[0:0] -A FORWARD -i virbr0 -j REJECT ' '--reject-with icmp-port-unreachable ', 'COMMIT', '# Completed on Mon Dec 6 11:54:13 2010', '# Generated by iptables-save v1.4.4 on Mon Dec 6 11:54:13 2010', '*filter', ':INPUT ACCEPT [969615:281627771]', ':FORWARD ACCEPT [0:0]', ':OUTPUT ACCEPT [915599:63811649]', ':nova-block-ipv4 - [0:0]', '[0:0] -A INPUT -i virbr0 -p tcp -m tcp --dport 67 -j ACCEPT ', '[0:0] -A FORWARD -d 192.168.122.0/24 -o virbr0 -m state --state RELATED' ',ESTABLISHED -j ACCEPT ', '[0:0] -A FORWARD -s 192.168.122.0/24 -i virbr0 -j ACCEPT ', '[0:0] -A FORWARD -i virbr0 -o virbr0 -j ACCEPT ', '[0:0] -A FORWARD -o virbr0 -j REJECT ' '--reject-with icmp-port-unreachable ', '[0:0] -A FORWARD -i virbr0 -j REJECT ' '--reject-with icmp-port-unreachable ', 'COMMIT', '# Completed on Mon Dec 6 11:54:13 2010', ] _in6_filter_rules = [ '# Generated by ip6tables-save v1.4.4 on Tue Jan 18 23:47:56 2011', '*filter', ':INPUT ACCEPT [349155:75810423]', ':FORWARD ACCEPT [0:0]', ':OUTPUT ACCEPT [349256:75777230]', 'COMMIT', '# Completed on Tue Jan 18 23:47:56 2011', ] def setUp(self): super(XenAPIDom0IptablesFirewallTestCase, self).setUp() self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') self.flags(instance_name_template='%d', firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver') self.user_id = 'mappin' self.project_id = 'fake' stubs.stubout_session(self.stubs, stubs.FakeSessionForFirewallTests, test_case=self) self.context = context.RequestContext(self.user_id, self.project_id) self.network = importutils.import_object(CONF.network_manager) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.fw = self.conn._vmops.firewall_driver def _create_instance_ref(self): return db.instance_create(self.context, {'user_id': self.user_id, 'project_id': self.project_id, 'instance_type_id': 1}) def _create_test_security_group(self): admin_ctxt = context.get_admin_context() secgroup = db.security_group_create(admin_ctxt, {'user_id': self.user_id, 'project_id': self.project_id, 'name': 'testgroup', 'description': 'test group'}) db.security_group_rule_create(admin_ctxt, {'parent_group_id': secgroup['id'], 'protocol': 'icmp', 'from_port': -1, 'to_port': -1, 'cidr': '192.168.11.0/24'}) db.security_group_rule_create(admin_ctxt, {'parent_group_id': secgroup['id'], 'protocol': 'icmp', 'from_port': 8, 'to_port': -1, 'cidr': '192.168.11.0/24'}) db.security_group_rule_create(admin_ctxt, {'parent_group_id': secgroup['id'], 'protocol': 'tcp', 'from_port': 80, 'to_port': 81, 'cidr': '192.168.10.0/24'}) return secgroup def _validate_security_group(self): in_rules = filter(lambda l: not l.startswith('#'), self._in_rules) for rule in in_rules: if 'nova' not in rule: self.assertTrue(rule in self._out_rules, 'Rule went missing: %s' % rule) instance_chain = None for rule in self._out_rules: # This is pretty crude, but it'll do for now # last two octets change if re.search('-d 192.168.[0-9]{1,3}.[0-9]{1,3} -j', rule): instance_chain = rule.split(' ')[-1] break self.assertTrue(instance_chain, "The instance chain wasn't added") security_group_chain = None for rule in self._out_rules: # This is pretty crude, but it'll do for now if '-A %s -j' % instance_chain in rule: security_group_chain = rule.split(' ')[-1] break self.assertTrue(security_group_chain, "The security group chain wasn't added") regex = re.compile('\[0\:0\] -A .* -j ACCEPT -p icmp' ' -s 192.168.11.0/24') self.assertTrue(len(filter(regex.match, self._out_rules)) > 0, "ICMP acceptance rule wasn't added") regex = re.compile('\[0\:0\] -A .* -j ACCEPT -p icmp -m icmp' ' --icmp-type 8 -s 192.168.11.0/24') self.assertTrue(len(filter(regex.match, self._out_rules)) > 0, "ICMP Echo Request acceptance rule wasn't added") regex = re.compile('\[0\:0\] -A .* -j ACCEPT -p tcp --dport 80:81' ' -s 192.168.10.0/24') self.assertTrue(len(filter(regex.match, self._out_rules)) > 0, "TCP port 80/81 acceptance rule wasn't added") def test_static_filters(self): instance_ref = self._create_instance_ref() src_instance_ref = self._create_instance_ref() admin_ctxt = context.get_admin_context() secgroup = self._create_test_security_group() src_secgroup = db.security_group_create(admin_ctxt, {'user_id': self.user_id, 'project_id': self.project_id, 'name': 'testsourcegroup', 'description': 'src group'}) db.security_group_rule_create(admin_ctxt, {'parent_group_id': secgroup['id'], 'protocol': 'tcp', 'from_port': 80, 'to_port': 81, 'group_id': src_secgroup['id']}) db.instance_add_security_group(admin_ctxt, instance_ref['uuid'], secgroup['id']) db.instance_add_security_group(admin_ctxt, src_instance_ref['uuid'], src_secgroup['id']) instance_ref = db.instance_get(admin_ctxt, instance_ref['id']) src_instance_ref = db.instance_get(admin_ctxt, src_instance_ref['id']) network_model = fake_network.fake_get_instance_nw_info(self.stubs, 1) from nova.compute import utils as compute_utils # noqa self.stubs.Set(compute_utils, 'get_nw_info_for_instance', lambda instance: network_model) self.fw.prepare_instance_filter(instance_ref, network_model) self.fw.apply_instance_filter(instance_ref, network_model) self._validate_security_group() # Extra test for TCP acceptance rules for ip in network_model.fixed_ips(): if ip['version'] != 4: continue regex = re.compile('\[0\:0\] -A .* -j ACCEPT -p tcp' ' --dport 80:81 -s %s' % ip['address']) self.assertTrue(len(filter(regex.match, self._out_rules)) > 0, "TCP port 80/81 acceptance rule wasn't added") db.instance_destroy(admin_ctxt, instance_ref['uuid']) def test_filters_for_instance_with_ip_v6(self): self.flags(use_ipv6=True) network_info = fake_network.fake_get_instance_nw_info(self.stubs, 1) rulesv4, rulesv6 = self.fw._filters_for_instance("fake", network_info) self.assertEqual(len(rulesv4), 2) self.assertEqual(len(rulesv6), 1) def test_filters_for_instance_without_ip_v6(self): self.flags(use_ipv6=False) network_info = fake_network.fake_get_instance_nw_info(self.stubs, 1) rulesv4, rulesv6 = self.fw._filters_for_instance("fake", network_info) self.assertEqual(len(rulesv4), 2) self.assertEqual(len(rulesv6), 0) def test_multinic_iptables(self): ipv4_rules_per_addr = 1 ipv4_addr_per_network = 2 ipv6_rules_per_addr = 1 ipv6_addr_per_network = 1 networks_count = 5 instance_ref = self._create_instance_ref() _get_instance_nw_info = fake_network.fake_get_instance_nw_info network_info = _get_instance_nw_info(self.stubs, networks_count, ipv4_addr_per_network) network_info[0]['network']['subnets'][0]['meta']['dhcp_server'] = \ '1.1.1.1' ipv4_len = len(self.fw.iptables.ipv4['filter'].rules) ipv6_len = len(self.fw.iptables.ipv6['filter'].rules) inst_ipv4, inst_ipv6 = self.fw.instance_rules(instance_ref, network_info) self.fw.prepare_instance_filter(instance_ref, network_info) ipv4 = self.fw.iptables.ipv4['filter'].rules ipv6 = self.fw.iptables.ipv6['filter'].rules ipv4_network_rules = len(ipv4) - len(inst_ipv4) - ipv4_len ipv6_network_rules = len(ipv6) - len(inst_ipv6) - ipv6_len # Extra rules are for the DHCP request rules = (ipv4_rules_per_addr * ipv4_addr_per_network * networks_count) + 2 self.assertEqual(ipv4_network_rules, rules) self.assertEqual(ipv6_network_rules, ipv6_rules_per_addr * ipv6_addr_per_network * networks_count) def test_do_refresh_security_group_rules(self): admin_ctxt = context.get_admin_context() instance_ref = self._create_instance_ref() network_info = fake_network.fake_get_instance_nw_info(self.stubs, 1, 1) secgroup = self._create_test_security_group() db.instance_add_security_group(admin_ctxt, instance_ref['uuid'], secgroup['id']) self.fw.prepare_instance_filter(instance_ref, network_info) self.fw.instance_info[instance_ref['id']] = (instance_ref, network_info) self._validate_security_group() # add a rule to the security group db.security_group_rule_create(admin_ctxt, {'parent_group_id': secgroup['id'], 'protocol': 'udp', 'from_port': 200, 'to_port': 299, 'cidr': '192.168.99.0/24'}) # validate the extra rule self.fw.refresh_security_group_rules(secgroup) regex = re.compile('\[0\:0\] -A .* -j ACCEPT -p udp --dport 200:299' ' -s 192.168.99.0/24') self.assertTrue(len(filter(regex.match, self._out_rules)) > 0, "Rules were not updated properly." "The rule for UDP acceptance is missing") def test_provider_firewall_rules(self): # setup basic instance data instance_ref = self._create_instance_ref() # FRAGILE: as in libvirt tests # peeks at how the firewall names chains chain_name = 'inst-%s' % instance_ref['id'] network_info = fake_network.fake_get_instance_nw_info(self.stubs, 1, 1) self.fw.prepare_instance_filter(instance_ref, network_info) self.assertIn('provider', self.fw.iptables.ipv4['filter'].chains) rules = [rule for rule in self.fw.iptables.ipv4['filter'].rules if rule.chain == 'provider'] self.assertEqual(0, len(rules)) admin_ctxt = context.get_admin_context() # add a rule and send the update message, check for 1 rule db.provider_fw_rule_create(admin_ctxt, {'protocol': 'tcp', 'cidr': '10.99.99.99/32', 'from_port': 1, 'to_port': 65535}) self.fw.refresh_provider_fw_rules() rules = [rule for rule in self.fw.iptables.ipv4['filter'].rules if rule.chain == 'provider'] self.assertEqual(1, len(rules)) # Add another, refresh, and make sure number of rules goes to two provider_fw1 = db.provider_fw_rule_create(admin_ctxt, {'protocol': 'udp', 'cidr': '10.99.99.99/32', 'from_port': 1, 'to_port': 65535}) self.fw.refresh_provider_fw_rules() rules = [rule for rule in self.fw.iptables.ipv4['filter'].rules if rule.chain == 'provider'] self.assertEqual(2, len(rules)) # create the instance filter and make sure it has a jump rule self.fw.prepare_instance_filter(instance_ref, network_info) self.fw.apply_instance_filter(instance_ref, network_info) inst_rules = [rule for rule in self.fw.iptables.ipv4['filter'].rules if rule.chain == chain_name] jump_rules = [rule for rule in inst_rules if '-j' in rule.rule] provjump_rules = [] # IptablesTable doesn't make rules unique internally for rule in jump_rules: if 'provider' in rule.rule and rule not in provjump_rules: provjump_rules.append(rule) self.assertEqual(1, len(provjump_rules)) # remove a rule from the db, cast to compute to refresh rule db.provider_fw_rule_destroy(admin_ctxt, provider_fw1['id']) self.fw.refresh_provider_fw_rules() rules = [rule for rule in self.fw.iptables.ipv4['filter'].rules if rule.chain == 'provider'] self.assertEqual(1, len(rules)) class XenAPISRSelectionTestCase(stubs.XenAPITestBaseNoDB): """Unit tests for testing we find the right SR.""" def test_safe_find_sr_raise_exception(self): # Ensure StorageRepositoryNotFound is raise when wrong filter. self.flags(sr_matching_filter='yadayadayada', group='xenserver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) session = get_session() self.assertRaises(exception.StorageRepositoryNotFound, vm_utils.safe_find_sr, session) def test_safe_find_sr_local_storage(self): # Ensure the default local-storage is found. self.flags(sr_matching_filter='other-config:i18n-key=local-storage', group='xenserver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) session = get_session() # This test is only guaranteed if there is one host in the pool self.assertEqual(len(xenapi_fake.get_all('host')), 1) host_ref = xenapi_fake.get_all('host')[0] pbd_refs = xenapi_fake.get_all('PBD') for pbd_ref in pbd_refs: pbd_rec = xenapi_fake.get_record('PBD', pbd_ref) if pbd_rec['host'] != host_ref: continue sr_rec = xenapi_fake.get_record('SR', pbd_rec['SR']) if sr_rec['other_config']['i18n-key'] == 'local-storage': local_sr = pbd_rec['SR'] expected = vm_utils.safe_find_sr(session) self.assertEqual(local_sr, expected) def test_safe_find_sr_by_other_criteria(self): # Ensure the SR is found when using a different filter. self.flags(sr_matching_filter='other-config:my_fake_sr=true', group='xenserver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) session = get_session() host_ref = xenapi_fake.get_all('host')[0] local_sr = xenapi_fake.create_sr(name_label='Fake Storage', type='lvm', other_config={'my_fake_sr': 'true'}, host_ref=host_ref) expected = vm_utils.safe_find_sr(session) self.assertEqual(local_sr, expected) def test_safe_find_sr_default(self): # Ensure the default SR is found regardless of other-config. self.flags(sr_matching_filter='default-sr:true', group='xenserver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) session = get_session() pool_ref = session.call_xenapi('pool.get_all')[0] expected = vm_utils.safe_find_sr(session) self.assertEqual(session.call_xenapi('pool.get_default_SR', pool_ref), expected) def _create_service_entries(context, values={'avail_zone1': ['fake_host1', 'fake_host2'], 'avail_zone2': ['fake_host3'], }): for avail_zone, hosts in values.iteritems(): for service_host in hosts: db.service_create(context, {'host': service_host, 'binary': 'nova-compute', 'topic': 'compute', 'report_count': 0}) return values # FIXME(sirp): convert this to use XenAPITestBaseNoDB class XenAPIAggregateTestCase(stubs.XenAPITestBase): """Unit tests for aggregate operations.""" def setUp(self): super(XenAPIAggregateTestCase, self).setUp() self.flags(connection_url='http://test_url', connection_username='test_user', connection_password='test_pass', group='xenserver') self.flags(instance_name_template='%d', firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver', host='host', compute_driver='xenapi.XenAPIDriver', default_availability_zone='avail_zone1') self.flags(use_local=True, group='conductor') host_ref = xenapi_fake.get_all('host')[0] stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.context = context.get_admin_context() self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.compute = importutils.import_object(CONF.compute_manager) self.api = compute_api.AggregateAPI() values = {'name': 'test_aggr', 'metadata': {'availability_zone': 'test_zone', pool_states.POOL_FLAG: 'XenAPI'}} self.aggr = db.aggregate_create(self.context, values) self.fake_metadata = {pool_states.POOL_FLAG: 'XenAPI', 'master_compute': 'host', 'availability_zone': 'fake_zone', pool_states.KEY: pool_states.ACTIVE, 'host': xenapi_fake.get_record('host', host_ref)['uuid']} def test_pool_add_to_aggregate_called_by_driver(self): calls = [] def pool_add_to_aggregate(context, aggregate, host, slave_info=None): self.assertEqual("CONTEXT", context) self.assertEqual("AGGREGATE", aggregate) self.assertEqual("HOST", host) self.assertEqual("SLAVEINFO", slave_info) calls.append(pool_add_to_aggregate) self.stubs.Set(self.conn._pool, "add_to_aggregate", pool_add_to_aggregate) self.conn.add_to_aggregate("CONTEXT", "AGGREGATE", "HOST", slave_info="SLAVEINFO") self.assertIn(pool_add_to_aggregate, calls) def test_pool_remove_from_aggregate_called_by_driver(self): calls = [] def pool_remove_from_aggregate(context, aggregate, host, slave_info=None): self.assertEqual("CONTEXT", context) self.assertEqual("AGGREGATE", aggregate) self.assertEqual("HOST", host) self.assertEqual("SLAVEINFO", slave_info) calls.append(pool_remove_from_aggregate) self.stubs.Set(self.conn._pool, "remove_from_aggregate", pool_remove_from_aggregate) self.conn.remove_from_aggregate("CONTEXT", "AGGREGATE", "HOST", slave_info="SLAVEINFO") self.assertIn(pool_remove_from_aggregate, calls) def test_add_to_aggregate_for_first_host_sets_metadata(self): def fake_init_pool(id, name): fake_init_pool.called = True self.stubs.Set(self.conn._pool, "_init_pool", fake_init_pool) aggregate = self._aggregate_setup() self.conn._pool.add_to_aggregate(self.context, aggregate, "host") result = db.aggregate_get(self.context, aggregate['id']) self.assertTrue(fake_init_pool.called) self.assertThat(self.fake_metadata, matchers.DictMatches(result['metadetails'])) def test_join_slave(self): # Ensure join_slave gets called when the request gets to master. def fake_join_slave(id, compute_uuid, host, url, user, password): fake_join_slave.called = True self.stubs.Set(self.conn._pool, "_join_slave", fake_join_slave) aggregate = self._aggregate_setup(hosts=['host', 'host2'], metadata=self.fake_metadata) self.conn._pool.add_to_aggregate(self.context, aggregate, "host2", dict(compute_uuid='fake_uuid', url='fake_url', user='fake_user', passwd='fake_pass', xenhost_uuid='fake_uuid')) self.assertTrue(fake_join_slave.called) def test_add_to_aggregate_first_host(self): def fake_pool_set_name_label(self, session, pool_ref, name): fake_pool_set_name_label.called = True self.stubs.Set(xenapi_fake.SessionBase, "pool_set_name_label", fake_pool_set_name_label) self.conn._session.call_xenapi("pool.create", {"name": "asdf"}) metadata = {'availability_zone': 'fake_zone', pool_states.POOL_FLAG: "XenAPI", pool_states.KEY: pool_states.CREATED} aggregate = objects.Aggregate() aggregate.name = 'fake_aggregate' aggregate.metadata = dict(metadata) aggregate.create(self.context) aggregate.add_host('host') self.assertEqual(["host"], aggregate.hosts) self.assertEqual(metadata, aggregate.metadata) self.conn._pool.add_to_aggregate(self.context, aggregate, "host") self.assertTrue(fake_pool_set_name_label.called) def test_remove_from_aggregate_called(self): def fake_remove_from_aggregate(context, aggregate, host): fake_remove_from_aggregate.called = True self.stubs.Set(self.conn._pool, "remove_from_aggregate", fake_remove_from_aggregate) self.conn.remove_from_aggregate(None, None, None) self.assertTrue(fake_remove_from_aggregate.called) def test_remove_from_empty_aggregate(self): result = self._aggregate_setup() self.assertRaises(exception.InvalidAggregateAction, self.conn._pool.remove_from_aggregate, self.context, result, "test_host") def test_remove_slave(self): # Ensure eject slave gets called. def fake_eject_slave(id, compute_uuid, host_uuid): fake_eject_slave.called = True self.stubs.Set(self.conn._pool, "_eject_slave", fake_eject_slave) self.fake_metadata['host2'] = 'fake_host2_uuid' aggregate = self._aggregate_setup(hosts=['host', 'host2'], metadata=self.fake_metadata, aggr_state=pool_states.ACTIVE) self.conn._pool.remove_from_aggregate(self.context, aggregate, "host2") self.assertTrue(fake_eject_slave.called) def test_remove_master_solo(self): # Ensure metadata are cleared after removal. def fake_clear_pool(id): fake_clear_pool.called = True self.stubs.Set(self.conn._pool, "_clear_pool", fake_clear_pool) aggregate = self._aggregate_setup(metadata=self.fake_metadata) self.conn._pool.remove_from_aggregate(self.context, aggregate, "host") result = db.aggregate_get(self.context, aggregate['id']) self.assertTrue(fake_clear_pool.called) self.assertThat({'availability_zone': 'fake_zone', pool_states.POOL_FLAG: 'XenAPI', pool_states.KEY: pool_states.ACTIVE}, matchers.DictMatches(result['metadetails'])) def test_remote_master_non_empty_pool(self): # Ensure AggregateError is raised if removing the master. aggregate = self._aggregate_setup(hosts=['host', 'host2'], metadata=self.fake_metadata) self.assertRaises(exception.InvalidAggregateAction, self.conn._pool.remove_from_aggregate, self.context, aggregate, "host") def _aggregate_setup(self, aggr_name='fake_aggregate', aggr_zone='fake_zone', aggr_state=pool_states.CREATED, hosts=['host'], metadata=None): aggregate = objects.Aggregate() aggregate.name = aggr_name aggregate.metadata = {'availability_zone': aggr_zone, pool_states.POOL_FLAG: 'XenAPI', pool_states.KEY: aggr_state, } if metadata: aggregate.metadata.update(metadata) aggregate.create(self.context) for aggregate_host in hosts: aggregate.add_host(aggregate_host) return aggregate def test_add_host_to_aggregate_invalid_changing_status(self): """Ensure InvalidAggregateAction is raised when adding host while aggregate is not ready. """ aggregate = self._aggregate_setup(aggr_state=pool_states.CHANGING) ex = self.assertRaises(exception.InvalidAggregateAction, self.conn.add_to_aggregate, self.context, aggregate, 'host') self.assertIn('setup in progress', str(ex)) def test_add_host_to_aggregate_invalid_dismissed_status(self): """Ensure InvalidAggregateAction is raised when aggregate is deleted. """ aggregate = self._aggregate_setup(aggr_state=pool_states.DISMISSED) ex = self.assertRaises(exception.InvalidAggregateAction, self.conn.add_to_aggregate, self.context, aggregate, 'fake_host') self.assertIn('aggregate deleted', str(ex)) def test_add_host_to_aggregate_invalid_error_status(self): """Ensure InvalidAggregateAction is raised when aggregate is in error. """ aggregate = self._aggregate_setup(aggr_state=pool_states.ERROR) ex = self.assertRaises(exception.InvalidAggregateAction, self.conn.add_to_aggregate, self.context, aggregate, 'fake_host') self.assertIn('aggregate in error', str(ex)) def test_remove_host_from_aggregate_error(self): # Ensure we can remove a host from an aggregate even if in error. values = _create_service_entries(self.context) fake_zone = values.keys()[0] aggr = self.api.create_aggregate(self.context, 'fake_aggregate', fake_zone) # let's mock the fact that the aggregate is ready! metadata = {pool_states.POOL_FLAG: "XenAPI", pool_states.KEY: pool_states.ACTIVE} db.aggregate_metadata_add(self.context, aggr['id'], metadata) for aggregate_host in values[fake_zone]: aggr = self.api.add_host_to_aggregate(self.context, aggr['id'], aggregate_host) # let's mock the fact that the aggregate is in error! expected = self.api.remove_host_from_aggregate(self.context, aggr['id'], values[fake_zone][0]) self.assertEqual(len(aggr['hosts']) - 1, len(expected['hosts'])) self.assertEqual(expected['metadata'][pool_states.KEY], pool_states.ACTIVE) def test_remove_host_from_aggregate_invalid_dismissed_status(self): """Ensure InvalidAggregateAction is raised when aggregate is deleted. """ aggregate = self._aggregate_setup(aggr_state=pool_states.DISMISSED) self.assertRaises(exception.InvalidAggregateAction, self.conn.remove_from_aggregate, self.context, aggregate, 'fake_host') def test_remove_host_from_aggregate_invalid_changing_status(self): """Ensure InvalidAggregateAction is raised when aggregate is changing. """ aggregate = self._aggregate_setup(aggr_state=pool_states.CHANGING) self.assertRaises(exception.InvalidAggregateAction, self.conn.remove_from_aggregate, self.context, aggregate, 'fake_host') def test_add_aggregate_host_raise_err(self): # Ensure the undo operation works correctly on add. def fake_driver_add_to_aggregate(context, aggregate, host, **_ignore): raise exception.AggregateError( aggregate_id='', action='', reason='') self.stubs.Set(self.compute.driver, "add_to_aggregate", fake_driver_add_to_aggregate) metadata = {pool_states.POOL_FLAG: "XenAPI", pool_states.KEY: pool_states.ACTIVE} db.aggregate_metadata_add(self.context, self.aggr['id'], metadata) db.aggregate_host_add(self.context, self.aggr['id'], 'fake_host') self.assertRaises(exception.AggregateError, self.compute.add_aggregate_host, self.context, host="fake_host", aggregate=jsonutils.to_primitive(self.aggr), slave_info=None) excepted = db.aggregate_get(self.context, self.aggr['id']) self.assertEqual(excepted['metadetails'][pool_states.KEY], pool_states.ERROR) self.assertEqual(excepted['hosts'], []) class MockComputeAPI(object): def __init__(self): self._mock_calls = [] def add_aggregate_host(self, ctxt, aggregate, host_param, host, slave_info): self._mock_calls.append(( self.add_aggregate_host, ctxt, aggregate, host_param, host, slave_info)) def remove_aggregate_host(self, ctxt, aggregate_id, host_param, host, slave_info): self._mock_calls.append(( self.remove_aggregate_host, ctxt, aggregate_id, host_param, host, slave_info)) class StubDependencies(object): """Stub dependencies for ResourcePool.""" def __init__(self): self.compute_rpcapi = MockComputeAPI() def _is_hv_pool(self, *_ignore): return True def _get_metadata(self, *_ignore): return { pool_states.KEY: {}, 'master_compute': 'master' } def _create_slave_info(self, *ignore): return "SLAVE_INFO" class ResourcePoolWithStubs(StubDependencies, pool.ResourcePool): """A ResourcePool, use stub dependencies.""" class HypervisorPoolTestCase(test.NoDBTestCase): fake_aggregate = { 'id': 98, 'hosts': [], 'metadata': { 'master_compute': 'master', pool_states.POOL_FLAG: {}, pool_states.KEY: {} } } def test_slave_asks_master_to_add_slave_to_pool(self): slave = ResourcePoolWithStubs() slave.add_to_aggregate("CONTEXT", self.fake_aggregate, "slave") self.assertIn( (slave.compute_rpcapi.add_aggregate_host, "CONTEXT", jsonutils.to_primitive(self.fake_aggregate), "slave", "master", "SLAVE_INFO"), slave.compute_rpcapi._mock_calls) def test_slave_asks_master_to_remove_slave_from_pool(self): slave = ResourcePoolWithStubs() slave.remove_from_aggregate("CONTEXT", self.fake_aggregate, "slave") self.assertIn( (slave.compute_rpcapi.remove_aggregate_host, "CONTEXT", 98, "slave", "master", "SLAVE_INFO"), slave.compute_rpcapi._mock_calls) class SwapXapiHostTestCase(test.NoDBTestCase): def test_swapping(self): self.assertEqual( "http://otherserver:8765/somepath", pool.swap_xapi_host( "http://someserver:8765/somepath", 'otherserver')) def test_no_port(self): self.assertEqual( "http://otherserver/somepath", pool.swap_xapi_host( "http://someserver/somepath", 'otherserver')) def test_no_path(self): self.assertEqual( "http://otherserver", pool.swap_xapi_host( "http://someserver", 'otherserver')) class XenAPILiveMigrateTestCase(stubs.XenAPITestBaseNoDB): """Unit tests for live_migration.""" def setUp(self): super(XenAPILiveMigrateTestCase, self).setUp() self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') self.flags(firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver', host='host') db_fakes.stub_out_db_instance_api(self.stubs) self.context = context.get_admin_context() def test_live_migration_calls_vmops(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) def fake_live_migrate(context, instance_ref, dest, post_method, recover_method, block_migration, migrate_data): fake_live_migrate.called = True self.stubs.Set(self.conn._vmops, "live_migrate", fake_live_migrate) self.conn.live_migration(None, None, None, None, None) self.assertTrue(fake_live_migrate.called) def test_pre_live_migration(self): # ensure method is present stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.conn.pre_live_migration(None, None, None, None, None) def test_post_live_migration_at_destination(self): # ensure method is present stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) fake_instance = {"name": "name"} fake_network_info = "network_info" def fake_fw(instance, network_info): self.assertEqual(instance, fake_instance) self.assertEqual(network_info, fake_network_info) fake_fw.call_count += 1 def fake_create_kernel_and_ramdisk(context, session, instance, name_label): return "fake-kernel-file", "fake-ramdisk-file" fake_fw.call_count = 0 _vmops = self.conn._vmops self.stubs.Set(_vmops.firewall_driver, 'setup_basic_filtering', fake_fw) self.stubs.Set(_vmops.firewall_driver, 'prepare_instance_filter', fake_fw) self.stubs.Set(_vmops.firewall_driver, 'apply_instance_filter', fake_fw) self.stubs.Set(vm_utils, "create_kernel_and_ramdisk", fake_create_kernel_and_ramdisk) def fake_get_vm_opaque_ref(instance): fake_get_vm_opaque_ref.called = True self.stubs.Set(_vmops, "_get_vm_opaque_ref", fake_get_vm_opaque_ref) fake_get_vm_opaque_ref.called = False def fake_strip_base_mirror_from_vdis(session, vm_ref): fake_strip_base_mirror_from_vdis.called = True self.stubs.Set(vm_utils, "strip_base_mirror_from_vdis", fake_strip_base_mirror_from_vdis) fake_strip_base_mirror_from_vdis.called = False self.conn.post_live_migration_at_destination(None, fake_instance, fake_network_info, None) self.assertEqual(fake_fw.call_count, 3) self.assertTrue(fake_get_vm_opaque_ref.called) self.assertTrue(fake_strip_base_mirror_from_vdis.called) def test_check_can_live_migrate_destination_with_block_migration(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.stubs.Set(vm_utils, "safe_find_sr", lambda _x: "asdf") expected = {'block_migration': True, 'migrate_data': { 'migrate_send_data': "fake_migrate_data", 'destination_sr_ref': 'asdf' } } result = self.conn.check_can_live_migrate_destination(self.context, {'host': 'host'}, {}, {}, True, False) self.assertEqual(expected, result) def test_check_live_migrate_destination_verifies_ip(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) for pif_ref in xenapi_fake.get_all('PIF'): pif_rec = xenapi_fake.get_record('PIF', pif_ref) pif_rec['IP'] = '' pif_rec['IPv6'] = '' self.stubs.Set(vm_utils, "safe_find_sr", lambda _x: "asdf") self.assertRaises(exception.MigrationError, self.conn.check_can_live_migrate_destination, self.context, {'host': 'host'}, {}, {}, True, False) def test_check_can_live_migrate_destination_block_migration_fails(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForFailedMigrateTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.assertRaises(exception.MigrationError, self.conn.check_can_live_migrate_destination, self.context, {'host': 'host'}, {}, {}, True, False) def _add_default_live_migrate_stubs(self, conn): def fake_generate_vdi_map(destination_sr_ref, _vm_ref): pass def fake_get_iscsi_srs(destination_sr_ref, _vm_ref): return [] def fake_get_vm_opaque_ref(instance): return "fake_vm" def fake_lookup_kernel_ramdisk(session, vm): return ("fake_PV_kernel", "fake_PV_ramdisk") self.stubs.Set(conn._vmops, "_generate_vdi_map", fake_generate_vdi_map) self.stubs.Set(conn._vmops, "_get_iscsi_srs", fake_get_iscsi_srs) self.stubs.Set(conn._vmops, "_get_vm_opaque_ref", fake_get_vm_opaque_ref) self.stubs.Set(vm_utils, "lookup_kernel_ramdisk", fake_lookup_kernel_ramdisk) def test_check_can_live_migrate_source_with_block_migrate(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(self.conn) dest_check_data = {'block_migration': True, 'migrate_data': { 'destination_sr_ref': None, 'migrate_send_data': None }} result = self.conn.check_can_live_migrate_source(self.context, {'host': 'host'}, dest_check_data) self.assertEqual(dest_check_data, result) def test_check_can_live_migrate_source_with_block_migrate_iscsi(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(self.conn) def fake_get_iscsi_srs(destination_sr_ref, _vm_ref): return ['sr_ref'] self.stubs.Set(self.conn._vmops, "_get_iscsi_srs", fake_get_iscsi_srs) def fake_make_plugin_call(plugin, method, **args): return "true" self.stubs.Set(self.conn._vmops, "_make_plugin_call", fake_make_plugin_call) dest_check_data = {'block_migration': True, 'migrate_data': { 'destination_sr_ref': None, 'migrate_send_data': None }} result = self.conn.check_can_live_migrate_source(self.context, {'host': 'host'}, dest_check_data) self.assertEqual(dest_check_data, result) def test_check_can_live_migrate_source_with_block_iscsi_fails(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(self.conn) def fake_get_iscsi_srs(destination_sr_ref, _vm_ref): return ['sr_ref'] self.stubs.Set(self.conn._vmops, "_get_iscsi_srs", fake_get_iscsi_srs) def fake_make_plugin_call(plugin, method, **args): return {'returncode': 'error', 'message': 'Plugin not found'} self.stubs.Set(self.conn._vmops, "_make_plugin_call", fake_make_plugin_call) self.assertRaises(exception.MigrationError, self.conn.check_can_live_migrate_source, self.context, {'host': 'host'}, {}) def test_check_can_live_migrate_source_with_block_migrate_fails(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForFailedMigrateTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(self.conn) dest_check_data = {'block_migration': True, 'migrate_data': { 'destination_sr_ref': None, 'migrate_send_data': None }} self.assertRaises(exception.MigrationError, self.conn.check_can_live_migrate_source, self.context, {'host': 'host'}, dest_check_data) def test_check_can_live_migrate_works(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) def fake_aggregate_get_by_host(context, host, key=None): self.assertEqual(CONF.host, host) return [dict(test_aggregate.fake_aggregate, metadetails={"host": "test_host_uuid"})] self.stubs.Set(db, "aggregate_get_by_host", fake_aggregate_get_by_host) self.conn.check_can_live_migrate_destination(self.context, {'host': 'host'}, False, False) def test_check_can_live_migrate_fails(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) def fake_aggregate_get_by_host(context, host, key=None): self.assertEqual(CONF.host, host) return [dict(test_aggregate.fake_aggregate, metadetails={"dest_other": "test_host_uuid"})] self.stubs.Set(db, "aggregate_get_by_host", fake_aggregate_get_by_host) self.assertRaises(exception.MigrationError, self.conn.check_can_live_migrate_destination, self.context, {'host': 'host'}, None, None) def test_live_migration(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) def fake_get_vm_opaque_ref(instance): return "fake_vm" self.stubs.Set(self.conn._vmops, "_get_vm_opaque_ref", fake_get_vm_opaque_ref) def fake_get_host_opaque_ref(context, destination_hostname): return "fake_host" self.stubs.Set(self.conn._vmops, "_get_host_opaque_ref", fake_get_host_opaque_ref) def post_method(context, instance, destination_hostname, block_migration, migrate_data): post_method.called = True self.conn.live_migration(self.conn, None, None, post_method, None) self.assertTrue(post_method.called, "post_method.called") def test_live_migration_on_failure(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) def fake_get_vm_opaque_ref(instance): return "fake_vm" self.stubs.Set(self.conn._vmops, "_get_vm_opaque_ref", fake_get_vm_opaque_ref) def fake_get_host_opaque_ref(context, destination_hostname): return "fake_host" self.stubs.Set(self.conn._vmops, "_get_host_opaque_ref", fake_get_host_opaque_ref) def fake_call_xenapi(*args): raise NotImplementedError() self.stubs.Set(self.conn._vmops._session, "call_xenapi", fake_call_xenapi) def recover_method(context, instance, destination_hostname, block_migration): recover_method.called = True self.assertRaises(NotImplementedError, self.conn.live_migration, self.conn, None, None, None, recover_method) self.assertTrue(recover_method.called, "recover_method.called") def test_live_migration_calls_post_migration(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(self.conn) def post_method(context, instance, destination_hostname, block_migration, migrate_data): post_method.called = True # pass block_migration = True and migrate data migrate_data = {"destination_sr_ref": "foo", "migrate_send_data": "bar"} self.conn.live_migration(self.conn, None, None, post_method, None, True, migrate_data) self.assertTrue(post_method.called, "post_method.called") def test_live_migration_block_cleans_srs(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(self.conn) def fake_get_iscsi_srs(context, instance): return ['sr_ref'] self.stubs.Set(self.conn._vmops, "_get_iscsi_srs", fake_get_iscsi_srs) def fake_forget_sr(context, instance): fake_forget_sr.called = True self.stubs.Set(volume_utils, "forget_sr", fake_forget_sr) def post_method(context, instance, destination_hostname, block_migration, migrate_data): post_method.called = True migrate_data = {"destination_sr_ref": "foo", "migrate_send_data": "bar"} self.conn.live_migration(self.conn, None, None, post_method, None, True, migrate_data) self.assertTrue(post_method.called, "post_method.called") self.assertTrue(fake_forget_sr.called, "forget_sr.called") def test_live_migration_with_block_migration_raises_invalid_param(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(self.conn) def recover_method(context, instance, destination_hostname, block_migration): recover_method.called = True # pass block_migration = True and no migrate data self.assertRaises(exception.InvalidParameterValue, self.conn.live_migration, self.conn, None, None, None, recover_method, True, None) self.assertTrue(recover_method.called, "recover_method.called") def test_live_migration_with_block_migration_fails_migrate_send(self): stubs.stubout_session(self.stubs, stubs.FakeSessionForFailedMigrateTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(self.conn) def recover_method(context, instance, destination_hostname, block_migration): recover_method.called = True # pass block_migration = True and migrate data migrate_data = dict(destination_sr_ref='foo', migrate_send_data='bar') self.assertRaises(exception.MigrationError, self.conn.live_migration, self.conn, None, None, None, recover_method, True, migrate_data) self.assertTrue(recover_method.called, "recover_method.called") def test_live_migrate_block_migration_xapi_call_parameters(self): fake_vdi_map = object() class Session(xenapi_fake.SessionBase): def VM_migrate_send(self_, session, vmref, migrate_data, islive, vdi_map, vif_map, options): self.assertEqual('SOMEDATA', migrate_data) self.assertEqual(fake_vdi_map, vdi_map) stubs.stubout_session(self.stubs, Session) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(conn) def fake_generate_vdi_map(destination_sr_ref, _vm_ref): return fake_vdi_map self.stubs.Set(conn._vmops, "_generate_vdi_map", fake_generate_vdi_map) def dummy_callback(*args, **kwargs): pass conn.live_migration( self.context, instance=dict(name='ignore'), dest=None, post_method=dummy_callback, recover_method=dummy_callback, block_migration="SOMEDATA", migrate_data=dict(migrate_send_data='SOMEDATA', destination_sr_ref="TARGET_SR_OPAQUE_REF")) def test_live_migrate_pool_migration_xapi_call_parameters(self): class Session(xenapi_fake.SessionBase): def VM_pool_migrate(self_, session, vm_ref, host_ref, options): self.assertEqual("fake_ref", host_ref) self.assertEqual({"live": "true"}, options) raise IOError() stubs.stubout_session(self.stubs, Session) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self._add_default_live_migrate_stubs(conn) def fake_get_host_opaque_ref(context, destination): return "fake_ref" self.stubs.Set(conn._vmops, "_get_host_opaque_ref", fake_get_host_opaque_ref) def dummy_callback(*args, **kwargs): pass self.assertRaises(IOError, conn.live_migration, self.context, instance=dict(name='ignore'), dest=None, post_method=dummy_callback, recover_method=dummy_callback, block_migration=False, migrate_data={}) def test_generate_vdi_map(self): stubs.stubout_session(self.stubs, xenapi_fake.SessionBase) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) vm_ref = "fake_vm_ref" def fake_find_sr(_session): self.assertEqual(conn._session, _session) return "source_sr_ref" self.stubs.Set(vm_utils, "safe_find_sr", fake_find_sr) def fake_get_instance_vdis_for_sr(_session, _vm_ref, _sr_ref): self.assertEqual(conn._session, _session) self.assertEqual(vm_ref, _vm_ref) self.assertEqual("source_sr_ref", _sr_ref) return ["vdi0", "vdi1"] self.stubs.Set(vm_utils, "get_instance_vdis_for_sr", fake_get_instance_vdis_for_sr) result = conn._vmops._generate_vdi_map("dest_sr_ref", vm_ref) self.assertEqual({"vdi0": "dest_sr_ref", "vdi1": "dest_sr_ref"}, result) def test_rollback_live_migration_at_destination(self): stubs.stubout_session(self.stubs, xenapi_fake.SessionBase) conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) with mock.patch.object(conn, "destroy") as mock_destroy: conn.rollback_live_migration_at_destination("context", "instance", [], None) self.assertFalse(mock_destroy.called) class XenAPIInjectMetadataTestCase(stubs.XenAPITestBaseNoDB): def setUp(self): super(XenAPIInjectMetadataTestCase, self).setUp() self.flags(connection_url='test_url', connection_password='test_pass', group='xenserver') self.flags(firewall_driver='nova.virt.xenapi.firewall.' 'Dom0IptablesFirewallDriver') stubs.stubout_session(self.stubs, stubs.FakeSessionForVMTests) self.conn = xenapi_conn.XenAPIDriver(fake.FakeVirtAPI(), False) self.xenstore = dict(persist={}, ephem={}) self.called_fake_get_vm_opaque_ref = False def fake_get_vm_opaque_ref(inst, instance): self.called_fake_get_vm_opaque_ref = True if instance["uuid"] == "not_found": raise exception.NotFound self.assertEqual(instance, {'uuid': 'fake'}) return 'vm_ref' def fake_add_to_param_xenstore(inst, vm_ref, key, val): self.assertEqual(vm_ref, 'vm_ref') self.xenstore['persist'][key] = val def fake_remove_from_param_xenstore(inst, vm_ref, key): self.assertEqual(vm_ref, 'vm_ref') if key in self.xenstore['persist']: del self.xenstore['persist'][key] def fake_write_to_xenstore(inst, instance, path, value, vm_ref=None): self.assertEqual(instance, {'uuid': 'fake'}) self.assertEqual(vm_ref, 'vm_ref') self.xenstore['ephem'][path] = jsonutils.dumps(value) def fake_delete_from_xenstore(inst, instance, path, vm_ref=None): self.assertEqual(instance, {'uuid': 'fake'}) self.assertEqual(vm_ref, 'vm_ref') if path in self.xenstore['ephem']: del self.xenstore['ephem'][path] self.stubs.Set(vmops.VMOps, '_get_vm_opaque_ref', fake_get_vm_opaque_ref) self.stubs.Set(vmops.VMOps, '_add_to_param_xenstore', fake_add_to_param_xenstore) self.stubs.Set(vmops.VMOps, '_remove_from_param_xenstore', fake_remove_from_param_xenstore) self.stubs.Set(vmops.VMOps, '_write_to_xenstore', fake_write_to_xenstore) self.stubs.Set(vmops.VMOps, '_delete_from_xenstore', fake_delete_from_xenstore) def test_inject_instance_metadata(self): # Add some system_metadata to ensure it doesn't get added # to xenstore instance = dict(metadata=[{'key': 'a', 'value': 1}, {'key': 'b', 'value': 2}, {'key': 'c', 'value': 3}, # Check xenstore key sanitizing {'key': 'hi.there', 'value': 4}, {'key': 'hi!t.e/e', 'value': 5}], # Check xenstore key sanitizing system_metadata=[{'key': 'sys_a', 'value': 1}, {'key': 'sys_b', 'value': 2}, {'key': 'sys_c', 'value': 3}], uuid='fake') self.conn._vmops._inject_instance_metadata(instance, 'vm_ref') self.assertEqual(self.xenstore, { 'persist': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', 'vm-data/user-metadata/hi_there': '4', 'vm-data/user-metadata/hi_t_e_e': '5', }, 'ephem': {}, }) def test_change_instance_metadata_add(self): # Test XenStore key sanitizing here, too. diff = {'test.key': ['+', 4]} instance = {'uuid': 'fake'} self.xenstore = { 'persist': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', }, 'ephem': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', }, } self.conn._vmops.change_instance_metadata(instance, diff) self.assertEqual(self.xenstore, { 'persist': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', 'vm-data/user-metadata/test_key': '4', }, 'ephem': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', 'vm-data/user-metadata/test_key': '4', }, }) def test_change_instance_metadata_update(self): diff = dict(b=['+', 4]) instance = {'uuid': 'fake'} self.xenstore = { 'persist': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', }, 'ephem': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', }, } self.conn._vmops.change_instance_metadata(instance, diff) self.assertEqual(self.xenstore, { 'persist': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '4', 'vm-data/user-metadata/c': '3', }, 'ephem': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '4', 'vm-data/user-metadata/c': '3', }, }) def test_change_instance_metadata_delete(self): diff = dict(b=['-']) instance = {'uuid': 'fake'} self.xenstore = { 'persist': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', }, 'ephem': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/b': '2', 'vm-data/user-metadata/c': '3', }, } self.conn._vmops.change_instance_metadata(instance, diff) self.assertEqual(self.xenstore, { 'persist': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/c': '3', }, 'ephem': { 'vm-data/user-metadata/a': '1', 'vm-data/user-metadata/c': '3', }, }) def test_change_instance_metadata_not_found(self): instance = {'uuid': 'not_found'} self.conn._vmops.change_instance_metadata(instance, "fake_diff") self.assertTrue(self.called_fake_get_vm_opaque_ref) class XenAPISessionTestCase(test.NoDBTestCase): def _get_mock_xapisession(self, software_version): class MockXapiSession(xenapi_session.XenAPISession): def __init__(_ignore): "Skip the superclass's dirty init" def _get_software_version(_ignore): return software_version return MockXapiSession() def test_local_session(self): session = self._get_mock_xapisession({}) session.is_local_connection = True session.XenAPI = self.mox.CreateMockAnything() session.XenAPI.xapi_local().AndReturn("local_connection") self.mox.ReplayAll() self.assertEqual("local_connection", session._create_session("unix://local")) def test_remote_session(self): session = self._get_mock_xapisession({}) session.is_local_connection = False session.XenAPI = self.mox.CreateMockAnything() session.XenAPI.Session("url").AndReturn("remote_connection") self.mox.ReplayAll() self.assertEqual("remote_connection", session._create_session("url")) def test_get_product_version_product_brand_does_not_fail(self): session = self._get_mock_xapisession({ 'build_number': '0', 'date': '2012-08-03', 'hostname': 'komainu', 'linux': '3.2.0-27-generic', 'network_backend': 'bridge', 'platform_name': 'XCP_Kronos', 'platform_version': '1.6.0', 'xapi': '1.3', 'xen': '4.1.2', 'xencenter_max': '1.10', 'xencenter_min': '1.10' }) self.assertEqual( ((1, 6, 0), None), session._get_product_version_and_brand() ) def test_get_product_version_product_brand_xs_6(self): session = self._get_mock_xapisession({ 'product_brand': 'XenServer', 'product_version': '6.0.50', 'platform_version': '0.0.1' }) self.assertEqual( ((6, 0, 50), 'XenServer'), session._get_product_version_and_brand() ) def test_verify_plugin_version_same(self): session = self._get_mock_xapisession({}) session.PLUGIN_REQUIRED_VERSION = '2.4' self.mox.StubOutWithMock(session, 'call_plugin_serialized') session.call_plugin_serialized('nova_plugin_version', 'get_version', ).AndReturn("2.4") self.mox.ReplayAll() session._verify_plugin_version() def test_verify_plugin_version_compatible(self): session = self._get_mock_xapisession({}) session.XenAPI = xenapi_fake.FakeXenAPI() session.PLUGIN_REQUIRED_VERSION = '2.4' self.mox.StubOutWithMock(session, 'call_plugin_serialized') session.call_plugin_serialized('nova_plugin_version', 'get_version', ).AndReturn("2.5") self.mox.ReplayAll() session._verify_plugin_version() def test_verify_plugin_version_bad_maj(self): session = self._get_mock_xapisession({}) session.XenAPI = xenapi_fake.FakeXenAPI() session.PLUGIN_REQUIRED_VERSION = '2.4' self.mox.StubOutWithMock(session, 'call_plugin_serialized') session.call_plugin_serialized('nova_plugin_version', 'get_version', ).AndReturn("3.0") self.mox.ReplayAll() self.assertRaises(xenapi_fake.Failure, session._verify_plugin_version) def test_verify_plugin_version_bad_min(self): session = self._get_mock_xapisession({}) session.XenAPI = xenapi_fake.FakeXenAPI() session.PLUGIN_REQUIRED_VERSION = '2.4' self.mox.StubOutWithMock(session, 'call_plugin_serialized') session.call_plugin_serialized('nova_plugin_version', 'get_version', ).AndReturn("2.3") self.mox.ReplayAll() self.assertRaises(xenapi_fake.Failure, session._verify_plugin_version) def test_verify_current_version_matches(self): session = self._get_mock_xapisession({}) # Import the plugin to extract its version path = os.path.dirname(__file__) rel_path_elem = "../../../../plugins/xenserver/xenapi/etc/xapi.d/" \ "plugins/nova_plugin_version" for elem in rel_path_elem.split('/'): path = os.path.join(path, elem) path = os.path.realpath(path) plugin_version = None with open(path) as plugin_file: for line in plugin_file: if "PLUGIN_VERSION = " in line: plugin_version = line.strip()[17:].strip('"') self.assertEqual(session.PLUGIN_REQUIRED_VERSION, plugin_version) class XenAPIFakeTestCase(test.NoDBTestCase): def test_query_matches(self): record = {'a': '1', 'b': '2', 'c_d': '3'} tests = {'field "a"="1"': True, 'field "b"="2"': True, 'field "b"="4"': False, 'not field "b"="4"': True, 'field "a"="1" and field "b"="4"': False, 'field "a"="1" or field "b"="4"': True, 'field "c__d"="3"': True, 'field \'b\'=\'2\'': True, } for query in tests.keys(): expected = tests[query] fail_msg = "for test '%s'" % query self.assertEqual(xenapi_fake._query_matches(record, query), expected, fail_msg) def test_query_bad_format(self): record = {'a': '1', 'b': '2', 'c': '3'} tests = ['"a"="1" or "b"="4"', 'a=1', ] for query in tests: fail_msg = "for test '%s'" % query self.assertFalse(xenapi_fake._query_matches(record, query), fail_msg)
42.388998
79
0.599443
a69d585fab8eb70c138a43596cbea29f0663dff6
32,340
py
Python
saleor/graphql/product/types/products.py
GvS666/saleor
f482f7162a966acc58057fdff6fd7eae68aa4a21
[ "CC-BY-4.0" ]
1
2020-11-13T14:25:51.000Z
2020-11-13T14:25:51.000Z
saleor/graphql/product/types/products.py
GvS666/saleor
f482f7162a966acc58057fdff6fd7eae68aa4a21
[ "CC-BY-4.0" ]
13
2021-02-02T22:59:20.000Z
2022-03-12T00:36:53.000Z
saleor/graphql/product/types/products.py
GvS666/saleor
f482f7162a966acc58057fdff6fd7eae68aa4a21
[ "CC-BY-4.0" ]
null
null
null
from dataclasses import asdict from typing import List, Union import graphene import graphene_django_optimizer as gql_optimizer from django.db.models import Prefetch from graphene import relay from graphene_federation import key from graphql.error import GraphQLError from ....core.permissions import ProductPermissions from ....product import models from ....product.templatetags.product_images import ( get_product_image_thumbnail, get_thumbnail, ) from ....product.utils import calculate_revenue_for_variant from ....product.utils.availability import ( get_product_availability, get_variant_availability, ) from ....product.utils.costs import get_margin_for_variant, get_product_costs_data from ....warehouse import models as stock_models from ....warehouse.availability import ( get_available_quantity, get_available_quantity_for_customer, get_quantity_allocated, is_product_in_stock, is_variant_in_stock, ) from ...core.connection import CountableDjangoObjectType from ...core.enums import ReportingPeriod, TaxRateType from ...core.fields import FilterInputConnectionField, PrefetchingConnectionField from ...core.resolvers import resolve_meta, resolve_private_meta from ...core.types import ( Image, MetadataObjectType, Money, MoneyRange, TaxedMoney, TaxedMoneyRange, TaxType, ) from ...decorators import permission_required from ...translations.fields import TranslationField from ...translations.types import ( CategoryTranslation, CollectionTranslation, ProductTranslation, ProductVariantTranslation, ) from ...utils import get_database_id, reporting_period_to_date from ...warehouse.types import Stock from ..filters import AttributeFilterInput from ..resolvers import resolve_attributes from .attributes import Attribute, SelectedAttribute from .digital_contents import DigitalContent def prefetch_products(info, *_args, **_kwargs): """Prefetch products visible to the current user. Can be used with models that have the `products` relationship. The queryset of products being prefetched is filtered based on permissions of the requesting user, to restrict access to unpublished products from non-staff users. """ user = info.context.user qs = models.Product.objects.visible_to_user(user) return Prefetch( "products", queryset=gql_optimizer.query(qs, info), to_attr="prefetched_products", ) def prefetch_products_collection_sorted(info, *_args, **_kwargs): user = info.context.user qs = models.Product.objects.collection_sorted(user) return Prefetch( "products", queryset=gql_optimizer.query(qs, info), to_attr="prefetched_products", ) def resolve_attribute_list( instance: Union[models.Product, models.ProductVariant], *, user ) -> List[SelectedAttribute]: """Resolve attributes from a product into a list of `SelectedAttribute`s. Note: you have to prefetch the below M2M fields. - product_type -> attribute[rel] -> [rel]assignments -> values - product_type -> attribute[rel] -> attribute """ resolved_attributes = [] attributes_qs = None # Retrieve the product type if isinstance(instance, models.Product): product_type = instance.product_type product_type_attributes_assoc_field = "attributeproduct" assigned_attribute_instance_field = "productassignments" assigned_attribute_instance_filters = {"product_id": instance.pk} if hasattr(product_type, "storefront_attributes"): attributes_qs = product_type.storefront_attributes # type: ignore elif isinstance(instance, models.ProductVariant): product_type = instance.product.product_type product_type_attributes_assoc_field = "attributevariant" assigned_attribute_instance_field = "variantassignments" assigned_attribute_instance_filters = {"variant_id": instance.pk} else: raise AssertionError(f"{instance.__class__.__name__} is unsupported") # Retrieve all the product attributes assigned to this product type if not attributes_qs: attributes_qs = getattr(product_type, product_type_attributes_assoc_field) attributes_qs = attributes_qs.get_visible_to_user(user) # An empty QuerySet for unresolved values empty_qs = models.AttributeValue.objects.none() # Goes through all the attributes assigned to the product type # The assigned values are returned as a QuerySet, but will assign a # dummy empty QuerySet if no values are assigned to the given instance. for attr_data_rel in attributes_qs: attr_instance_data = getattr(attr_data_rel, assigned_attribute_instance_field) # Retrieve the instance's associated data attr_data = attr_instance_data.filter(**assigned_attribute_instance_filters) attr_data = attr_data.first() # Return the instance's attribute values if the assignment was found, # otherwise it sets the values as an empty QuerySet values = attr_data.values.all() if attr_data is not None else empty_qs resolved_attributes.append( SelectedAttribute(attribute=attr_data_rel.attribute, values=values) ) return resolved_attributes class Margin(graphene.ObjectType): start = graphene.Int() stop = graphene.Int() class BasePricingInfo(graphene.ObjectType): on_sale = graphene.Boolean(description="Whether it is in sale or not.") discount = graphene.Field( TaxedMoney, description="The discount amount if in sale (null otherwise)." ) discount_local_currency = graphene.Field( TaxedMoney, description="The discount amount in the local currency." ) class VariantPricingInfo(BasePricingInfo): discount_local_currency = graphene.Field( TaxedMoney, description="The discount amount in the local currency." ) price = graphene.Field( TaxedMoney, description="The price, with any discount subtracted." ) price_undiscounted = graphene.Field( TaxedMoney, description="The price without any discount." ) price_local_currency = graphene.Field( TaxedMoney, description="The discounted price in the local currency." ) class Meta: description = "Represents availability of a variant in the storefront." class ProductPricingInfo(BasePricingInfo): price_range = graphene.Field( TaxedMoneyRange, description="The discounted price range of the product variants.", ) price_range_undiscounted = graphene.Field( TaxedMoneyRange, description="The undiscounted price range of the product variants.", ) price_range_local_currency = graphene.Field( TaxedMoneyRange, description=( "The discounted price range of the product variants " "in the local currency." ), ) class Meta: description = "Represents availability of a product in the storefront." @key(fields="id") class ProductVariant(CountableDjangoObjectType, MetadataObjectType): quantity = graphene.Int( required=True, description="Quantity of a product in the store's possession, " "including the allocated stock that is waiting for shipment.", deprecation_reason="This field will be removed in Saleor 2.11. " "Use the stock field instead.", ) quantity_allocated = graphene.Int( required=False, description="Quantity allocated for orders", deprecation_reason="This field will be removed in Saleor 2.11. " "Use the stock field instead.", ) stock_quantity = graphene.Int( required=True, description="Quantity of a product available for sale.", deprecation_reason="This field will be removed in Saleor 2.11. " "Use the stock field instead.", ) price_override = graphene.Field( Money, description=( "Override the base price of a product if necessary. A value of `null` " "indicates that the default product price is used." ), ) pricing = graphene.Field( VariantPricingInfo, description=( "Lists the storefront variant's pricing, the current price and discounts, " "only meant for displaying." ), ) is_available = graphene.Boolean( description="Whether the variant is in stock and visible or not.", deprecation_reason="This field will be removed in Saleor 2.11. " "Use the stock field instead.", ) attributes = gql_optimizer.field( graphene.List( graphene.NonNull(SelectedAttribute), required=True, description="List of attributes assigned to this variant.", ) ) cost_price = graphene.Field(Money, description="Cost price of the variant.") margin = graphene.Int(description="Gross margin percentage value.") quantity_ordered = graphene.Int(description="Total quantity ordered.") revenue = graphene.Field( TaxedMoney, period=graphene.Argument(ReportingPeriod), description=( "Total revenue generated by a variant in given period of time. Note: this " "field should be queried using `reportProductSales` query as it uses " "optimizations suitable for such calculations." ), ) images = gql_optimizer.field( graphene.List( lambda: ProductImage, description="List of images for the product variant." ), model_field="images", ) translation = TranslationField( ProductVariantTranslation, type_name="product variant" ) digital_content = gql_optimizer.field( graphene.Field( DigitalContent, description="Digital content for the product variant." ), model_field="digital_content", ) stock = gql_optimizer.field( graphene.Field( graphene.List(Stock), description="Stocks for the product variant.", country=graphene.String(required=False), ) ) class Meta: description = ( "Represents a version of a product such as different size or color." ) only_fields = ["id", "name", "product", "sku", "track_inventory", "weight"] interfaces = [relay.Node] model = models.ProductVariant @staticmethod def resolve_stock(root: models.ProductVariant, info, country=None): if country is None: return gql_optimizer.query( root.stock.annotate_available_quantity().all(), info ) return gql_optimizer.query( root.stock.annotate_available_quantity().for_country(country).all(), info ) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_digital_content(root: models.ProductVariant, *_args): return getattr(root, "digital_content", None) @staticmethod def resolve_stock_quantity(root: models.ProductVariant, info): country = info.context.country try: stock = stock_models.Stock.objects.get_variant_stock_for_country( country, root ) except stock_models.Stock.DoesNotExist: return 0 return get_available_quantity_for_customer(stock) @staticmethod @gql_optimizer.resolver_hints( prefetch_related=["attributes__values", "attributes__assignment__attribute"] ) def resolve_attributes(root: models.ProductVariant, info): return resolve_attribute_list(root, user=info.context.user) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_margin(root: models.ProductVariant, *_args): return get_margin_for_variant(root) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_cost_price(root: models.ProductVariant, *_args): return root.cost_price @staticmethod def resolve_price(root: models.ProductVariant, *_args): return root.base_price @staticmethod @gql_optimizer.resolver_hints( prefetch_related=("product",), only=["price_override_amount", "currency"] ) def resolve_pricing(root: models.ProductVariant, info): context = info.context availability = get_variant_availability( root, context.discounts, context.country, context.currency, extensions=context.extensions, ) return VariantPricingInfo(**asdict(availability)) @staticmethod def resolve_is_available(root: models.ProductVariant, info): country = info.context.country return is_variant_in_stock(root, country) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_price_override(root: models.ProductVariant, *_args): return root.price_override @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_quantity(root: models.ProductVariant, info): return get_available_quantity(root, info.context.country) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_quantity_ordered(root: models.ProductVariant, *_args): # This field is added through annotation when using the # `resolve_report_product_sales` resolver. return getattr(root, "quantity_ordered", None) @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_quantity_allocated(root: models.ProductVariant, info): country = info.context.country return get_quantity_allocated(root, country) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_revenue(root: models.ProductVariant, *_args, period): start_date = reporting_period_to_date(period) return calculate_revenue_for_variant(root, start_date) @staticmethod def resolve_images(root: models.ProductVariant, *_args): return root.images.all() @classmethod def get_node(cls, info, id): user = info.context.user visible_products = models.Product.objects.visible_to_user(user).values_list( "pk", flat=True ) qs = cls._meta.model.objects.filter(product__id__in=visible_products) return cls.maybe_optimize(info, qs, id) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_private_meta(root, _info): return resolve_private_meta(root, _info) @staticmethod def resolve_meta(root, _info): return resolve_meta(root, _info) @staticmethod def __resolve_reference(root, _info, **_kwargs): return graphene.Node.get_node_from_global_id(_info, root.id) @key(fields="id") class Product(CountableDjangoObjectType, MetadataObjectType): url = graphene.String( description="The storefront URL for the product.", required=True ) thumbnail = graphene.Field( Image, description="The main thumbnail for a product.", size=graphene.Argument(graphene.Int, description="Size of thumbnail."), ) pricing = graphene.Field( ProductPricingInfo, description=( "Lists the storefront product's pricing, the current price and discounts, " "only meant for displaying." ), ) is_available = graphene.Boolean( description="Whether the product is in stock and visible or not." ) base_price = graphene.Field(Money, description="The product's default base price.") minimal_variant_price = graphene.Field( Money, description="The price of the cheapest variant (including discounts)." ) tax_type = graphene.Field( TaxType, description="A type of tax. Assigned by enabled tax gateway" ) attributes = graphene.List( graphene.NonNull(SelectedAttribute), required=True, description="List of attributes assigned to this product.", ) purchase_cost = graphene.Field(MoneyRange) margin = graphene.Field(Margin) image_by_id = graphene.Field( lambda: ProductImage, id=graphene.Argument(graphene.ID, description="ID of a product image."), description="Get a single product image by ID.", ) variants = gql_optimizer.field( graphene.List(ProductVariant, description="List of variants for the product."), model_field="variants", ) images = gql_optimizer.field( graphene.List( lambda: ProductImage, description="List of images for the product." ), model_field="images", ) collections = gql_optimizer.field( graphene.List( lambda: Collection, description="List of collections for the product." ), model_field="collections", ) translation = TranslationField(ProductTranslation, type_name="product") class Meta: description = "Represents an individual item for sale in the storefront." interfaces = [relay.Node] model = models.Product only_fields = [ "category", "charge_taxes", "description", "description_json", "id", "is_published", "name", "slug", "product_type", "publication_date", "seo_description", "seo_title", "updated_at", "weight", ] @staticmethod def resolve_tax_type(root: models.Product, info): tax_data = info.context.extensions.get_tax_code_from_object_meta(root) return TaxType(tax_code=tax_data.code, description=tax_data.description) @staticmethod @gql_optimizer.resolver_hints(prefetch_related="images") def resolve_thumbnail(root: models.Product, info, *, size=255): image = root.get_first_image() if image: url = get_product_image_thumbnail(image, size, method="thumbnail") alt = image.alt return Image(alt=alt, url=info.context.build_absolute_uri(url)) return None @staticmethod def resolve_url(root: models.Product, *_args): return root.get_absolute_url() @staticmethod @gql_optimizer.resolver_hints( prefetch_related=("variants", "collections"), only=["publication_date", "charge_taxes", "price_amount", "currency", "meta"], ) def resolve_pricing(root: models.Product, info): context = info.context availability = get_product_availability( root, context.discounts, context.country, context.currency, context.extensions, ) return ProductPricingInfo(**asdict(availability)) @staticmethod @gql_optimizer.resolver_hints(prefetch_related=("variants")) def resolve_is_available(root: models.Product, info): country = info.context.country in_stock = is_product_in_stock(root, country) return root.is_visible and in_stock @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_base_price(root: models.Product, _info): return root.price @staticmethod @gql_optimizer.resolver_hints( prefetch_related=("variants", "collections"), only=["publication_date", "charge_taxes", "price_amount", "currency", "meta"], ) def resolve_price(root: models.Product, info): price_range = root.get_price_range(info.context.discounts) price = info.context.extensions.apply_taxes_to_product( root, price_range.start, info.context.country ) return price.net @staticmethod @gql_optimizer.resolver_hints( prefetch_related=[ Prefetch( "product_type__attributeproduct", queryset=models.AttributeProduct.objects.filter( attribute__visible_in_storefront=True ).prefetch_related("productassignments__values", "attribute"), to_attr="storefront_attributes", ) ] ) def resolve_attributes(root: models.Product, info): return resolve_attribute_list(root, user=info.context.user) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_purchase_cost(root: models.Product, *_args): purchase_cost, _ = get_product_costs_data(root) return purchase_cost @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_margin(root: models.Product, *_args): _, margin = get_product_costs_data(root) return Margin(margin[0], margin[1]) @staticmethod def resolve_image_by_id(root: models.Product, info, id): pk = get_database_id(info, id, ProductImage) try: return root.images.get(pk=pk) except models.ProductImage.DoesNotExist: raise GraphQLError("Product image not found.") @staticmethod @gql_optimizer.resolver_hints(model_field="images") def resolve_images(root: models.Product, *_args, **_kwargs): return root.images.all() @staticmethod def resolve_variants(root: models.Product, *_args, **_kwargs): return root.variants.all() @staticmethod def resolve_collections(root: models.Product, *_args): return root.collections.all() @classmethod def get_node(cls, info, pk): if info.context: qs = cls._meta.model.objects.visible_to_user(info.context.user) return cls.maybe_optimize(info, qs, pk) return None @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_private_meta(root, _info): return resolve_private_meta(root, _info) @staticmethod def resolve_meta(root, _info): return resolve_meta(root, _info) @staticmethod def __resolve_reference(root, _info, **_kwargs): return graphene.Node.get_node_from_global_id(_info, root.id) @key(fields="id") class ProductType(CountableDjangoObjectType, MetadataObjectType): products = gql_optimizer.field( PrefetchingConnectionField( Product, description="List of products of this type." ), prefetch_related=prefetch_products, ) tax_rate = TaxRateType(description="A type of tax rate.") tax_type = graphene.Field( TaxType, description="A type of tax. Assigned by enabled tax gateway" ) variant_attributes = graphene.List( Attribute, description="Variant attributes of that product type." ) product_attributes = graphene.List( Attribute, description="Product attributes of that product type." ) available_attributes = gql_optimizer.field( FilterInputConnectionField(Attribute, filter=AttributeFilterInput()) ) class Meta: description = ( "Represents a type of product. It defines what attributes are available to " "products of this type." ) interfaces = [relay.Node] model = models.ProductType only_fields = [ "has_variants", "id", "is_digital", "is_shipping_required", "name", "slug", "weight", "tax_type", ] @staticmethod def resolve_tax_type(root: models.ProductType, info): tax_data = info.context.extensions.get_tax_code_from_object_meta(root) return TaxType(tax_code=tax_data.code, description=tax_data.description) @staticmethod def resolve_tax_rate(root: models.ProductType, _info, **_kwargs): # FIXME this resolver should be dropped after we drop tax_rate from API if not hasattr(root, "meta"): return None tax = root.meta.get("taxes", {}).get("vatlayer", {}) return tax.get("code") @staticmethod @gql_optimizer.resolver_hints( prefetch_related="product_attributes__attributeproduct" ) def resolve_product_attributes(root: models.ProductType, *_args, **_kwargs): return root.product_attributes.product_attributes_sorted().all() @staticmethod @gql_optimizer.resolver_hints( prefetch_related="variant_attributes__attributevariant" ) def resolve_variant_attributes(root: models.ProductType, *_args, **_kwargs): return root.variant_attributes.variant_attributes_sorted().all() @staticmethod def resolve_products(root: models.ProductType, info, **_kwargs): if hasattr(root, "prefetched_products"): return root.prefetched_products # type: ignore qs = root.products.visible_to_user(info.context.user) return gql_optimizer.query(qs, info) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_available_attributes(root: models.ProductType, info, **kwargs): qs = models.Attribute.objects.get_unassigned_attributes(root.pk) return resolve_attributes(info, qs=qs, **kwargs) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_private_meta(root, _info): return resolve_private_meta(root, _info) @staticmethod def resolve_meta(root, _info): return resolve_meta(root, _info) @staticmethod def __resolve_reference(root, _info, **_kwargs): return graphene.Node.get_node_from_global_id(_info, root.id) @key(fields="id") class Collection(CountableDjangoObjectType, MetadataObjectType): products = gql_optimizer.field( PrefetchingConnectionField( Product, description="List of products in this collection." ), prefetch_related=prefetch_products_collection_sorted, ) background_image = graphene.Field( Image, size=graphene.Int(description="Size of the image.") ) translation = TranslationField(CollectionTranslation, type_name="collection") class Meta: description = "Represents a collection of products." only_fields = [ "description", "description_json", "id", "is_published", "name", "publication_date", "seo_description", "seo_title", "slug", ] interfaces = [relay.Node] model = models.Collection @staticmethod def resolve_background_image(root: models.Collection, info, size=None, **_kwargs): if root.background_image: return Image.get_adjusted( image=root.background_image, alt=root.background_image_alt, size=size, rendition_key_set="background_images", info=info, ) @staticmethod def resolve_products(root: models.Collection, info, **_kwargs): if hasattr(root, "prefetched_products"): return root.prefetched_products # type: ignore qs = root.products.collection_sorted(info.context.user) return gql_optimizer.query(qs, info) @classmethod def get_node(cls, info, id): if info.context: user = info.context.user qs = cls._meta.model.objects.visible_to_user(user) return cls.maybe_optimize(info, qs, id) return None @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_private_meta(root, _info): return resolve_private_meta(root, _info) @staticmethod def resolve_meta(root, _info): return resolve_meta(root, _info) @staticmethod def __resolve_reference(root, _info, **_kwargs): return graphene.Node.get_node_from_global_id(_info, root.id) @key(fields="id") class Category(CountableDjangoObjectType, MetadataObjectType): ancestors = PrefetchingConnectionField( lambda: Category, description="List of ancestors of the category." ) products = gql_optimizer.field( PrefetchingConnectionField( Product, description="List of products in the category." ), prefetch_related=prefetch_products, ) # Deprecated. To remove in #5022 url = graphene.String(description="The storefront's URL for the category.") children = PrefetchingConnectionField( lambda: Category, description="List of children of the category." ) background_image = graphene.Field( Image, size=graphene.Int(description="Size of the image.") ) translation = TranslationField(CategoryTranslation, type_name="category") class Meta: description = ( "Represents a single category of products. Categories allow to organize " "products in a tree-hierarchies which can be used for navigation in the " "storefront." ) only_fields = [ "description", "description_json", "id", "level", "name", "parent", "seo_description", "seo_title", "slug", ] interfaces = [relay.Node] model = models.Category @staticmethod def resolve_ancestors(root: models.Category, info, **_kwargs): qs = root.get_ancestors() return gql_optimizer.query(qs, info) @staticmethod def resolve_background_image(root: models.Category, info, size=None, **_kwargs): if root.background_image: return Image.get_adjusted( image=root.background_image, alt=root.background_image_alt, size=size, rendition_key_set="background_images", info=info, ) @staticmethod def resolve_children(root: models.Category, info, **_kwargs): qs = root.children.all() return gql_optimizer.query(qs, info) # Deprecated. To remove in #5022 @staticmethod def resolve_url(root: models.Category, _info): return root.get_absolute_url() @staticmethod def resolve_products(root: models.Category, info, **_kwargs): # If the category has no children, we use the prefetched data. children = root.children.all() if not children and hasattr(root, "prefetched_products"): return root.prefetched_products # Otherwise we want to include products from child categories which # requires performing additional logic. tree = root.get_descendants(include_self=True) qs = models.Product.objects.published() qs = qs.filter(category__in=tree) return gql_optimizer.query(qs, info) @staticmethod @permission_required(ProductPermissions.MANAGE_PRODUCTS) def resolve_private_meta(root, _info): return resolve_private_meta(root, _info) @staticmethod def resolve_meta(root, _info): return resolve_meta(root, _info) @staticmethod def __resolve_reference(root, _info, **_kwargs): return graphene.Node.get_node_from_global_id(_info, root.id) @key(fields="id") class ProductImage(CountableDjangoObjectType): url = graphene.String( required=True, description="The URL of the image.", size=graphene.Int(description="Size of the image."), ) class Meta: description = "Represents a product image." only_fields = ["alt", "id", "sort_order"] interfaces = [relay.Node] model = models.ProductImage @staticmethod def resolve_url(root: models.ProductImage, info, *, size=None): if size: url = get_thumbnail(root.image, size, method="thumbnail") else: url = root.image.url return info.context.build_absolute_uri(url) @staticmethod def __resolve_reference(root, _info, **_kwargs): return graphene.Node.get_node_from_global_id(_info, root.id) class MoveProductInput(graphene.InputObjectType): product_id = graphene.ID( description="The ID of the product to move.", required=True ) sort_order = graphene.Int( description=( "The relative sorting position of the product (from -inf to +inf) " "starting from the first given product's actual position." ) )
35.499451
88
0.675232
f4cd140ec3bbb68040d45159323e479b9d92e426
8,490
py
Python
openselfsup/models/necks.py
bin20192019/OpenSelfSup
6891da7612b9ddfbd06beb7ffad3592513d190bb
[ "Apache-2.0" ]
2
2020-06-23T14:28:24.000Z
2020-06-23T14:28:31.000Z
openselfsup/models/necks.py
Yipeng-Sun/OpenSelfSup
55af4e9ba1934e1e1c18f208481db97ed507db76
[ "Apache-2.0" ]
null
null
null
openselfsup/models/necks.py
Yipeng-Sun/OpenSelfSup
55af4e9ba1934e1e1c18f208481db97ed507db76
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn from distutils.version import StrictVersion from mmcv.cnn import kaiming_init, normal_init from .registry import NECKS from .utils import build_norm_layer @NECKS.register_module class LinearNeck(nn.Module): def __init__(self, in_channels, out_channels, with_avg_pool=True): super(LinearNeck, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(in_channels, out_channels) def init_weights(self, init_linear='normal'): assert init_linear in ['normal', 'kaiming'], \ "Undefined init_linear: {}".format(init_linear) for m in self.modules(): if isinstance(m, nn.Linear): if init_linear == 'normal': normal_init(m, std=0.01) else: kaiming_init(m, mode='fan_in', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): assert len(x) == 1 if self.with_avg_pool: x = self.avgpool(x[0]) return [self.fc(x.view(x.size(0), -1))] @NECKS.register_module class NonLinearNeckV0(nn.Module): '''The non-linear neck in ODC ''' def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(NonLinearNeckV0, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.mlp = nn.Sequential( nn.Linear(in_channels, hid_channels), nn.BatchNorm1d(hid_channels, momentum=0.001, affine=False), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(hid_channels, out_channels), nn.ReLU(inplace=True)) def init_weights(self, init_linear='normal'): assert init_linear in ['normal', 'kaiming'], \ "Undefined init_linear: {}".format(init_linear) for m in self.modules(): if isinstance(m, nn.Linear): if init_linear == 'normal': normal_init(m, std=0.01) else: kaiming_init(m, mode='fan_in', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): assert len(x) == 1 if self.with_avg_pool: x = self.avgpool(x[0]) return [self.mlp(x.view(x.size(0), -1))] @NECKS.register_module class NonLinearNeckV1(nn.Module): '''The non-linear neck in MoCO v2: fc-relu-fc ''' def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(NonLinearNeckV1, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.mlp = nn.Sequential( nn.Linear(in_channels, hid_channels), nn.ReLU(inplace=True), nn.Linear(hid_channels, out_channels)) def init_weights(self, init_linear='normal'): assert init_linear in ['normal', 'kaiming'], \ "Undefined init_linear: {}".format(init_linear) for m in self.modules(): if isinstance(m, nn.Linear): if init_linear == 'normal': normal_init(m, std=0.01) else: kaiming_init(m, mode='fan_in', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): assert len(x) == 1 if self.with_avg_pool: x = self.avgpool(x[0]) return [self.mlp(x.view(x.size(0), -1))] @NECKS.register_module class NonLinearNeckSimCLR(nn.Module): '''SimCLR non-linear neck. Structure: fc(no_bias)-bn(has_bias)-[relu-fc(no_bias)-bn(no_bias)]. The substructures in [] can be repeated. For the SimCLR default setting, the repeat time is 1. However, PyTorch does not support to specify (weight=True, bias=False). It only support \"affine\" including the weight and bias. Hence, the second BatchNorm has bias in this implementation. This is different from the offical implementation of SimCLR. Since SyncBatchNorm in pytorch<1.4.0 does not support 2D input, the input is expanded to 4D with shape: (N,C,1,1). I am not sure if this workaround has no bugs. See the pull request here: https://github.com/pytorch/pytorch/pull/29626 Arguments: num_layers (int): number of fc layers, it is 2 in the SimCLR default setting. ''' def __init__(self, in_channels, hid_channels, out_channels, num_layers=2, with_avg_pool=True): super(NonLinearNeckSimCLR, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) if StrictVersion(torch.__version__) < StrictVersion("1.4.0"): self.expand_for_syncbn = True else: self.expand_for_syncbn = False self.relu = nn.ReLU(inplace=True) self.fc0 = nn.Linear(in_channels, hid_channels, bias=False) _, self.bn0 = build_norm_layer( dict(type='SyncBN'), hid_channels) self.fc_names = [] self.bn_names = [] for i in range(1, num_layers): this_channels = out_channels if i == num_layers - 1 \ else hid_channels self.add_module( "fc{}".format(i), nn.Linear(hid_channels, this_channels, bias=False)) self.add_module( "bn{}".format(i), build_norm_layer(dict(type='SyncBN'), this_channels)[1]) self.fc_names.append("fc{}".format(i)) self.bn_names.append("bn{}".format(i)) def init_weights(self, init_linear='normal'): assert init_linear in ['normal', 'kaiming'], \ "Undefined init_linear: {}".format(init_linear) for m in self.modules(): if isinstance(m, nn.Linear): if init_linear == 'normal': normal_init(m, std=0.01) else: kaiming_init(m, mode='fan_in', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _forward_syncbn(self, module, x): assert x.dim() == 2 if self.expand_for_syncbn: x = module(x.unsqueeze(-1).unsqueeze(-1)).squeeze(-1).squeeze(-1) else: x = module(x) return x def forward(self, x): assert len(x) == 1 if self.with_avg_pool: x = self.avgpool(x[0]) x = x.view(x.size(0), -1) x = self.fc0(x) x = self._forward_syncbn(self.bn0, x) for fc_name, bn_name in zip(self.fc_names, self.bn_names): fc = getattr(self, fc_name) bn = getattr(self, bn_name) x = self.relu(x) x = fc(x) x = self._forward_syncbn(bn, x) return [x] @NECKS.register_module class AvgPoolNeck(nn.Module): def __init__(self): super(AvgPoolNeck, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) def init_weights(self, **kwargs): pass def forward(self, x): assert len(x) == 1 return [self.avg_pool(x[0])]
36.437768
94
0.560777
9628e35d2c3e438f9c2a9a4704b129e5e7a3b650
4,176
py
Python
icevision/parsers/voc_parser.py
Addono/icevision
5207de65f780735bdf8ed9d4d01ce72ad852aa9c
[ "Apache-2.0" ]
null
null
null
icevision/parsers/voc_parser.py
Addono/icevision
5207de65f780735bdf8ed9d4d01ce72ad852aa9c
[ "Apache-2.0" ]
null
null
null
icevision/parsers/voc_parser.py
Addono/icevision
5207de65f780735bdf8ed9d4d01ce72ad852aa9c
[ "Apache-2.0" ]
1
2021-03-20T16:54:45.000Z
2021-03-20T16:54:45.000Z
__all__ = ["voc", "VocXmlParser", "VocMaskParser"] import xml.etree.ElementTree as ET from icevision.imports import * from icevision.utils import * from icevision.core import * from icevision.parsers.parser import * from icevision.parsers.defaults import * from icevision.parsers.mixins import * def voc( annotations_dir: Union[str, Path], images_dir: Union[str, Path], class_map: Optional[ClassMap] = None, masks_dir: Optional[Union[str, Path]] = None, idmap: Optional[IDMap] = None, ): if not masks_dir: return VocXmlParser( annotations_dir=annotations_dir, images_dir=images_dir, class_map=class_map, idmap=idmap, ) else: return VocMaskParser( annotations_dir=annotations_dir, images_dir=images_dir, masks_dir=masks_dir, class_map=class_map, idmap=idmap, ) class VocXmlParser(Parser, FilepathMixin, SizeMixin, LabelsMixin, BBoxesMixin): def __init__( self, annotations_dir: Union[str, Path], images_dir: Union[str, Path], class_map: Optional[ClassMap] = None, idmap: Optional[IDMap] = None, ): super().__init__(class_map=class_map, idmap=idmap) self.images_dir = Path(images_dir) self.annotations_dir = Path(annotations_dir) self.annotation_files = get_files(self.annotations_dir, extensions=[".xml"]) def __len__(self): return len(self.annotation_files) def __iter__(self): yield from self.annotation_files def prepare(self, o): tree = ET.parse(str(o)) self._root = tree.getroot() self._filename = self._root.find("filename").text self._size = self._root.find("size") def imageid(self, o) -> Hashable: return str(Path(self._filename).stem) def filepath(self, o) -> Union[str, Path]: return self.images_dir / self._filename def image_width_height(self, o) -> Tuple[int, int]: return get_image_size(self.filepath(o)) def labels(self, o) -> List[Hashable]: labels = [] for object in self._root.iter("object"): label = object.find("name").text labels.append(label) return labels def bboxes(self, o) -> List[BBox]: def to_int(x): return int(float(x)) bboxes = [] for object in self._root.iter("object"): xml_bbox = object.find("bndbox") xmin = to_int(xml_bbox.find("xmin").text) ymin = to_int(xml_bbox.find("ymin").text) xmax = to_int(xml_bbox.find("xmax").text) ymax = to_int(xml_bbox.find("ymax").text) bbox = BBox.from_xyxy(xmin, ymin, xmax, ymax) bboxes.append(bbox) return bboxes class VocMaskParser(VocXmlParser, MasksMixin): def __init__( self, annotations_dir: Union[str, Path], images_dir: Union[str, Path], masks_dir: Union[str, Path], class_map: Optional[ClassMap] = None, idmap: Optional[IDMap] = None, ): super().__init__( annotations_dir=annotations_dir, images_dir=images_dir, class_map=class_map, idmap=idmap, ) self.masks_dir = masks_dir self.mask_files = get_image_files(masks_dir) self._imageid2maskfile = {self.imageid_mask(o): o for o in self.mask_files} # filter annotations masks_ids = frozenset(self._imageid2maskfile.keys()) self._intersection = [] for item in super().__iter__(): super().prepare(item) if super().imageid(item) in masks_ids: self._intersection.append(item) def __len__(self): return len(self._intersection) def __iter__(self): yield from self._intersection def imageid_mask(self, o) -> Hashable: """Should return the same as `imageid` from parent parser.""" return str(Path(o).stem) def masks(self, o) -> List[Mask]: mask_file = self._imageid2maskfile[self.imageid(o)] return [VocMaskFile(mask_file)]
30.26087
84
0.612308
347534963123a3e9a56866b756814c55afd74e11
6,833
py
Python
Traveling_Salesperson/genSalesperson.py
Wason1797/Fun-Python
1432aec98423f13cc228c34c53bdb19ba4efe1da
[ "MIT" ]
11
2018-11-21T19:34:48.000Z
2019-01-13T04:30:44.000Z
Traveling_Salesperson/genSalesperson.py
Wason1797/Fun-Python
1432aec98423f13cc228c34c53bdb19ba4efe1da
[ "MIT" ]
null
null
null
Traveling_Salesperson/genSalesperson.py
Wason1797/Fun-Python
1432aec98423f13cc228c34c53bdb19ba4efe1da
[ "MIT" ]
null
null
null
import pygame import sys from pygame.locals import * import random as rd import math as mt BLACK = (0, 0, 0) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) WHITE = (255, 255, 255) pygame.init() pygame.font.init() window = pygame.display.set_mode((700, 500), 0, 32) pygame.display.set_caption('Traveling Salesperson Genetic Approach') _with, _height = window.get_size() cities = [] # cities = [(385, 121), (109, 259), (381, 213), # (188, 454), (308, 322), (274, 454), (176, 106), (563, 206)] num_cities = 9 population = [] p_size = 600 # p_size mus not be greater than factorial(num_cities) max_generations = 40 fitness = [] min_distance = 0 best_path = [] def swap(arr, index_a, index_b): arr[index_a], arr[index_b] = arr[index_b], arr[index_a] def text_to_screen(text, x, y, size, _color=(200, 000, 000), font_type='Arial'): text = str(text) font = pygame.font.SysFont(font_type, size) text = font.render(text, True, _color) window.blit(text, (x, y)) def draw_circle(start, radius, _color): pygame.draw.circle(window, _color, start, radius) def draw_line(start, end, _stroke, _color): pygame.draw.line(window, _color, start, end, _stroke) def calculate_distance(point_a, point_b): return pow((point_a[0] - point_b[0]), 2) + pow((point_a[1] - point_b[1]), 2) def calculate_path_distance(points, _order): total_distance = 0 for j in range(len(_order)-1): total_distance += calculate_distance(points[_order[j]], points[_order[j+1]]) return total_distance def setup(): for counter in range(num_cities): cities.append((rd.randint(5, _with-10), rd.randint(5, _height-10))) first_order = list(range(num_cities)) shuffle(first_order, num_cities//2) population.append(first_order) for counter in range(p_size-1): while first_order in population: next_order = first_order.copy() shuffle(next_order, num_cities//2) first_order = next_order.copy() population.append(first_order) def calculate_population_fitness(): min_distance_local = mt.inf best_path_local = [] for ind in population: _distance = calculate_path_distance(cities, ind) if _distance < min_distance_local: min_distance_local = _distance best_path_local = ind.copy() fitness.append(1/(_distance+1)) return best_path_local, min_distance_local def normalize_fitness(): fit_sum = 0 for fit in fitness: fit_sum += fit for index in range(len(fitness)): fitness[index] = fitness[index]/fit_sum def shuffle(arr, times): for counter in range(times): index_a = rd.randint(0, len(arr)-1) index_b = rd.randint(0, len(arr)-1) swap(arr, index_a, index_b) def pick_fitness_based(pop_arr, fit_arr): index = 0 r = rd.random() while r > 0: r = r - fit_arr[index] index += 1 index -= 1 return pop_arr[index].copy() def mutate(_parent, _rate): for counter in range(num_cities): if rd.random() < _rate: index = rd.randint(0, len(_parent)-1) % (len(_parent)-1) swap(_parent, index, index+1) def cross_over_b(order_a, order_b): new_order = [] index = 0 while index < len(order_a)-1: dist_a = calculate_distance(cities[order_a[index]], cities[order_a[index+1]]) dist_b = calculate_distance(cities[order_b[index]], cities[order_b[index+1]]) if dist_a < dist_b: new_order.append(order_a[index]) new_order.append(order_a[index+1]) else: new_order.append(order_b[index]) new_order.append(order_b[index + 1]) index += 2 return new_order def cross_over(order_a, order_b): start = rd.randint(0, (len(order_a)-1)) if start == (len(order_a)-1): start -= 1 end = rd.randint(start+1, (len(order_a)-1)) new_order = order_a[start:end] for item in order_b: if item not in new_order: new_order.append(item) return new_order def next_generation(): new_population = [] for j in range(len(population)): order_a = pick_fitness_based(population, fitness) order_b = pick_fitness_based(population, fitness) order = cross_over(order_a, order_b) mutate(order, 0.25) new_population.append(order) return new_population if __name__ == '__main__': generation_count = 0 new_min_distance = 1 setup() best_path, min_distance = calculate_population_fitness() normalize_fitness() stop_draw = None range_search = range(len(population[0])-1) range_best = range(len(best_path)-1) print(cities) while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if stop_draw is None: for path in population: for city in cities: draw_circle(city, 7, RED) for i in range_search: draw_line(cities[path[i]], cities[path[i+1]], 1, WHITE) for i in range_best: draw_line(cities[best_path[i]], cities[best_path[i+1]], 4, GREEN) text_to_screen("Generation: " + str(generation_count) + " Distance: " + str(min_distance), 10, _height-21, 20, WHITE) pygame.display.update() pygame.time.wait(1) window.fill(BLACK) stop_draw = True elif generation_count < max_generations: population = next_generation() fitness.clear() new_best_path, new_min_distance = calculate_population_fitness() if new_min_distance <= min_distance: min_distance = new_min_distance best_path = new_best_path print(generation_count) print(best_path) print(min_distance) normalize_fitness() generation_count += 1 stop_draw = None print(new_min_distance) print(min_distance / new_min_distance) # elif min_distance/new_min_distance < 0.9999: # print(new_min_distance) # print(min_distance / new_min_distance) # population = next_generation() # fitness.clear() # new_best_path, new_min_distance = calculate_population_fitness() # if new_min_distance < min_distance: # min_distance = new_min_distance # best_path = new_best_path # print(generation_count) # print(best_path) # print(min_distance) # normalize_fitness() # generation_count += 1 # stop_draw = None
31.344037
133
0.610566
e2d2f1bcbfe013b282d95daa72fb77f9b1a86141
757
py
Python
acme_test.py
stefanoruiz/acme
027dbcbab797aac7272b63f07aeccbc6f6d936ed
[ "MIT" ]
null
null
null
acme_test.py
stefanoruiz/acme
027dbcbab797aac7272b63f07aeccbc6f6d936ed
[ "MIT" ]
null
null
null
acme_test.py
stefanoruiz/acme
027dbcbab797aac7272b63f07aeccbc6f6d936ed
[ "MIT" ]
null
null
null
import unittest from acme import Product from acme_report import generate_products, ADJECTIVES, NOUNS class AcmeProductTests(unittest.TestCase): """Making sure Acme products are the tops!""" def test_default_product_price(self): """Test default product price being 10.""" prod = Product('Test Product') self.assertEqual(prod.price, 10) def test_explosiveness(self): """Test explosiveness.""" prod = Product('Test Product') self.assertTrue(prod.explode(), '...boom!') class AcmeReportTests(unittest.TestCase): def test_default_num_products(self): prod = generate_products() print(len(prod)) self.assertTrue(prod, 25) if __name__ == '__main__': unittest.main()
28.037037
60
0.676354
a9bdb0b80954ff5e2bf48ea98c59a51d8e5665e8
11,397
py
Python
test/test_lsh.py
andriyor/datasketch
ec36c20caeda6a1fbcbefcd92161bb9d2a8b8d78
[ "MIT" ]
null
null
null
test/test_lsh.py
andriyor/datasketch
ec36c20caeda6a1fbcbefcd92161bb9d2a8b8d78
[ "MIT" ]
null
null
null
test/test_lsh.py
andriyor/datasketch
ec36c20caeda6a1fbcbefcd92161bb9d2a8b8d78
[ "MIT" ]
null
null
null
import unittest import pickle import numpy as np import mockredis from mock import patch from datasketch.lsh import MinHashLSH from datasketch.minhash import MinHash from datasketch.weighted_minhash import WeightedMinHashGenerator def fake_redis(**kwargs): redis = mockredis.mock_redis_client(**kwargs) redis.connection_pool = None redis.response_callbacks = None return redis class TestMinHashLSH(unittest.TestCase): def test_init(self): lsh = MinHashLSH(threshold=0.8) self.assertTrue(lsh.is_empty()) b1, r1 = lsh.b, lsh.r lsh = MinHashLSH(threshold=0.8, weights=(0.2,0.8)) b2, r2 = lsh.b, lsh.r self.assertTrue(b1 < b2) self.assertTrue(r1 > r2) def test__H(self): ''' Check _H output consistent bytes length given the same concatenated hash value size ''' for l in range(2, 128+1, 16): lsh = MinHashLSH(num_perm=128) m = MinHash() m.update("abcdefg".encode("utf8")) m.update("1234567".encode("utf8")) lsh.insert("m", m) sizes = [len(H) for ht in lsh.hashtables for H in ht] self.assertTrue(all(sizes[0] == s for s in sizes)) def test_insert(self): lsh = MinHashLSH(threshold=0.5, num_perm=16) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) for t in lsh.hashtables: self.assertTrue(len(t) >= 1) items = [] for H in t: items.extend(t[H]) self.assertTrue("a" in items) self.assertTrue("b" in items) self.assertTrue("a" in lsh) self.assertTrue("b" in lsh) for i, H in enumerate(lsh.keys["a"]): self.assertTrue("a" in lsh.hashtables[i][H]) m3 = MinHash(18) self.assertRaises(ValueError, lsh.insert, "c", m3) def test_query(self): lsh = MinHashLSH(threshold=0.5, num_perm=16) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) result = lsh.query(m1) self.assertTrue("a" in result) result = lsh.query(m2) self.assertTrue("b" in result) m3 = MinHash(18) self.assertRaises(ValueError, lsh.query, m3) def test_query_buffer(self): lsh = MinHashLSH(threshold=0.5, num_perm=16) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) lsh.add_to_query_buffer(m1) result = lsh.collect_query_buffer() self.assertTrue("a" in result) lsh.add_to_query_buffer(m2) result = lsh.collect_query_buffer() self.assertTrue("b" in result) m3 = MinHash(18) self.assertRaises(ValueError, lsh.add_to_query_buffer, m3) def test_remove(self): lsh = MinHashLSH(threshold=0.5, num_perm=16) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) lsh.remove("a") self.assertTrue("a" not in lsh.keys) for table in lsh.hashtables: for H in table: self.assertGreater(len(table[H]), 0) self.assertTrue("a" not in table[H]) self.assertRaises(ValueError, lsh.remove, "c") def test_pickle(self): lsh = MinHashLSH(threshold=0.5, num_perm=16) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) lsh2 = pickle.loads(pickle.dumps(lsh)) result = lsh2.query(m1) self.assertTrue("a" in result) result = lsh2.query(m2) self.assertTrue("b" in result) def test_insert_redis(self): with patch('redis.Redis', fake_redis) as mock_redis: lsh = MinHashLSH(threshold=0.5, num_perm=16, storage_config={ 'type': 'redis', 'redis': {'host': 'localhost', 'port': 6379} }) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) for t in lsh.hashtables: self.assertTrue(len(t) >= 1) items = [] for H in t: items.extend(t[H]) self.assertTrue(pickle.dumps("a") in items) self.assertTrue(pickle.dumps("b") in items) self.assertTrue("a" in lsh) self.assertTrue("b" in lsh) for i, H in enumerate(lsh.keys[pickle.dumps("a")]): self.assertTrue(pickle.dumps("a") in lsh.hashtables[i][H]) m3 = MinHash(18) self.assertRaises(ValueError, lsh.insert, "c", m3) def test_query_redis(self): with patch('redis.Redis', fake_redis) as mock_redis: lsh = MinHashLSH(threshold=0.5, num_perm=16, storage_config={ 'type': 'redis', 'redis': {'host': 'localhost', 'port': 6379} }) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) result = lsh.query(m1) self.assertTrue("a" in result) result = lsh.query(m2) self.assertTrue("b" in result) m3 = MinHash(18) self.assertRaises(ValueError, lsh.query, m3) def test_query_buffer_redis(self): with patch('redis.Redis', fake_redis) as mock_redis: lsh = MinHashLSH(threshold=0.5, num_perm=16, storage_config={ 'type': 'redis', 'redis': {'host': 'localhost', 'port': 6379} }) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) lsh.query(m1) lsh.add_to_query_buffer(m1) result = lsh.collect_query_buffer() self.assertTrue("a" in result) lsh.add_to_query_buffer(m2) result = lsh.collect_query_buffer() self.assertTrue("b" in result) m3 = MinHash(18) self.assertRaises(ValueError, lsh.add_to_query_buffer, m3) def test_insertion_session(self): lsh = MinHashLSH(threshold=0.5, num_perm=16) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) data = [("a", m1), ("b", m2)] with lsh.insertion_session() as session: for key, minhash in data: session.insert(key, minhash) for t in lsh.hashtables: self.assertTrue(len(t) >= 1) items = [] for H in t: items.extend(t[H]) self.assertTrue("a" in items) self.assertTrue("b" in items) self.assertTrue("a" in lsh) self.assertTrue("b" in lsh) for i, H in enumerate(lsh.keys["a"]): self.assertTrue("a" in lsh.hashtables[i][H]) def test_get_counts(self): lsh = MinHashLSH(threshold=0.5, num_perm=16) m1 = MinHash(16) m1.update("a".encode("utf8")) m2 = MinHash(16) m2.update("b".encode("utf8")) lsh.insert("a", m1) lsh.insert("b", m2) counts = lsh.get_counts() self.assertEqual(len(counts), lsh.b) for table in counts: self.assertEqual(sum(table.values()), 2) class TestWeightedMinHashLSH(unittest.TestCase): def test_init(self): lsh = MinHashLSH(threshold=0.8) self.assertTrue(lsh.is_empty()) b1, r1 = lsh.b, lsh.r lsh = MinHashLSH(threshold=0.8, weights=(0.2,0.8)) b2, r2 = lsh.b, lsh.r self.assertTrue(b1 < b2) self.assertTrue(r1 > r2) def test__H(self): ''' Check _H output consistent bytes length given the same concatenated hash value size ''' mg = WeightedMinHashGenerator(100, sample_size=128) for l in range(2, mg.sample_size+1, 16): m = mg.minhash(np.random.randint(1, 99999999, 100)) lsh = MinHashLSH(num_perm=128) lsh.insert("m", m) sizes = [len(H) for ht in lsh.hashtables for H in ht] self.assertTrue(all(sizes[0] == s for s in sizes)) def test_insert(self): lsh = MinHashLSH(threshold=0.5, num_perm=4) mg = WeightedMinHashGenerator(10, 4) m1 = mg.minhash(np.random.uniform(1, 10, 10)) m2 = mg.minhash(np.random.uniform(1, 10, 10)) lsh.insert("a", m1) lsh.insert("b", m2) for t in lsh.hashtables: self.assertTrue(len(t) >= 1) items = [] for H in t: items.extend(t[H]) self.assertTrue("a" in items) self.assertTrue("b" in items) self.assertTrue("a" in lsh) self.assertTrue("b" in lsh) for i, H in enumerate(lsh.keys["a"]): self.assertTrue("a" in lsh.hashtables[i][H]) mg = WeightedMinHashGenerator(10, 5) m3 = mg.minhash(np.random.uniform(1, 10, 10)) self.assertRaises(ValueError, lsh.insert, "c", m3) def test_query(self): lsh = MinHashLSH(threshold=0.5, num_perm=4) mg = WeightedMinHashGenerator(10, 4) m1 = mg.minhash(np.random.uniform(1, 10, 10)) m2 = mg.minhash(np.random.uniform(1, 10, 10)) lsh.insert("a", m1) lsh.insert("b", m2) result = lsh.query(m1) self.assertTrue("a" in result) result = lsh.query(m2) self.assertTrue("b" in result) mg = WeightedMinHashGenerator(10, 5) m3 = mg.minhash(np.random.uniform(1, 10, 10)) self.assertRaises(ValueError, lsh.query, m3) def test_remove(self): lsh = MinHashLSH(threshold=0.5, num_perm=4) mg = WeightedMinHashGenerator(10, 4) m1 = mg.minhash(np.random.uniform(1, 10, 10)) m2 = mg.minhash(np.random.uniform(1, 10, 10)) lsh.insert("a", m1) lsh.insert("b", m2) lsh.remove("a") self.assertTrue("a" not in lsh.keys) for table in lsh.hashtables: for H in table: self.assertGreater(len(table[H]), 0) self.assertTrue("a" not in table[H]) self.assertRaises(ValueError, lsh.remove, "c") def test_pickle(self): lsh = MinHashLSH(threshold=0.5, num_perm=4) mg = WeightedMinHashGenerator(10, 4) m1 = mg.minhash(np.random.uniform(1, 10, 10)) m2 = mg.minhash(np.random.uniform(1, 10, 10)) lsh.insert("a", m1) lsh.insert("b", m2) lsh2 = pickle.loads(pickle.dumps(lsh)) result = lsh2.query(m1) self.assertTrue("a" in result) result = lsh2.query(m2) self.assertTrue("b" in result) if __name__ == "__main__": unittest.main()
34.432024
77
0.548741
98f5ce526a5e55dda9761a579a504359b4349cc7
4,141
py
Python
tests/modeltests/m2m_recursive/models.py
rawwell/django
6b3264671ead4604f26cbd2b71e8d6a02945bf0c
[ "BSD-3-Clause" ]
1
2016-05-08T12:24:22.000Z
2016-05-08T12:24:22.000Z
tests/modeltests/m2m_recursive/models.py
rawwell/django
6b3264671ead4604f26cbd2b71e8d6a02945bf0c
[ "BSD-3-Clause" ]
null
null
null
tests/modeltests/m2m_recursive/models.py
rawwell/django
6b3264671ead4604f26cbd2b71e8d6a02945bf0c
[ "BSD-3-Clause" ]
1
2015-11-19T14:45:16.000Z
2015-11-19T14:45:16.000Z
""" 28. Many-to-many relationships between the same two tables In this example, A Person can have many friends, who are also people. Friendship is a symmetrical relationship - if I am your friend, you are my friend. A person can also have many idols - but while I may idolize you, you may not think the same of me. 'Idols' is an example of a non-symmetrical m2m field. Only recursive m2m fields may be non-symmetrical, and they are symmetrical by default. This test validates that the m2m table will create a mangled name for the m2m table if there will be a clash, and tests that symmetry is preserved where appropriate. """ from django.db import models class Person(models.Model): name = models.CharField(max_length=20) friends = models.ManyToManyField('self') idols = models.ManyToManyField('self', symmetrical=False, related_name='stalkers') def __unicode__(self): return self.name __test__ = {'API_TESTS':""" >>> a = Person(name='Anne') >>> a.save() >>> b = Person(name='Bill') >>> b.save() >>> c = Person(name='Chuck') >>> c.save() >>> d = Person(name='David') >>> d.save() # Add some friends in the direction of field definition # Anne is friends with Bill and Chuck >>> a.friends.add(b,c) # David is friends with Anne and Chuck - add in reverse direction >>> d.friends.add(a,c) # Who is friends with Anne? >>> a.friends.all() [<Person: Bill>, <Person: Chuck>, <Person: David>] # Who is friends with Bill? >>> b.friends.all() [<Person: Anne>] # Who is friends with Chuck? >>> c.friends.all() [<Person: Anne>, <Person: David>] # Who is friends with David? >>> d.friends.all() [<Person: Anne>, <Person: Chuck>] # Bill is already friends with Anne - add Anne again, but in the reverse direction >>> b.friends.add(a) # Who is friends with Anne? >>> a.friends.all() [<Person: Bill>, <Person: Chuck>, <Person: David>] # Who is friends with Bill? >>> b.friends.all() [<Person: Anne>] # Remove Anne from Bill's friends >>> b.friends.remove(a) # Who is friends with Anne? >>> a.friends.all() [<Person: Chuck>, <Person: David>] # Who is friends with Bill? >>> b.friends.all() [] # Clear Anne's group of friends >>> a.friends.clear() # Who is friends with Anne? >>> a.friends.all() [] # Reverse relationships should also be gone # Who is friends with Chuck? >>> c.friends.all() [<Person: David>] # Who is friends with David? >>> d.friends.all() [<Person: Chuck>] # Add some idols in the direction of field definition # Anne idolizes Bill and Chuck >>> a.idols.add(b,c) # Bill idolizes Anne right back >>> b.idols.add(a) # David is idolized by Anne and Chuck - add in reverse direction >>> d.stalkers.add(a,c) # Who are Anne's idols? >>> a.idols.all() [<Person: Bill>, <Person: Chuck>, <Person: David>] # Who is stalking Anne? >>> a.stalkers.all() [<Person: Bill>] # Who are Bill's idols? >>> b.idols.all() [<Person: Anne>] # Who is stalking Bill? >>> b.stalkers.all() [<Person: Anne>] # Who are Chuck's idols? >>> c.idols.all() [<Person: David>] # Who is stalking Chuck? >>> c.stalkers.all() [<Person: Anne>] # Who are David's idols? >>> d.idols.all() [] # Who is stalking David >>> d.stalkers.all() [<Person: Anne>, <Person: Chuck>] # Bill is already being stalked by Anne - add Anne again, but in the reverse direction >>> b.stalkers.add(a) # Who are Anne's idols? >>> a.idols.all() [<Person: Bill>, <Person: Chuck>, <Person: David>] # Who is stalking Anne? [<Person: Bill>] # Who are Bill's idols >>> b.idols.all() [<Person: Anne>] # Who is stalking Bill? >>> b.stalkers.all() [<Person: Anne>] # Remove Anne from Bill's list of stalkers >>> b.stalkers.remove(a) # Who are Anne's idols? >>> a.idols.all() [<Person: Chuck>, <Person: David>] # Who is stalking Anne? >>> a.stalkers.all() [<Person: Bill>] # Who are Bill's idols? >>> b.idols.all() [<Person: Anne>] # Who is stalking Bill? >>> b.stalkers.all() [] # Clear Anne's group of idols >>> a.idols.clear() # Who are Anne's idols >>> a.idols.all() [] # Reverse relationships should also be gone # Who is stalking Chuck? >>> c.stalkers.all() [] # Who is friends with David? >>> d.stalkers.all() [<Person: Chuck>] """}
21.455959
86
0.665298
f41cc159541442b91f30c2fbba895ae7afe0576e
14,254
py
Python
manimlib/mobject/svg/code_mobject.py
adornetejr/manim
e0715ceeff4778d11ef4ac31f8f8f2b56a2187ad
[ "MIT" ]
8
2021-09-25T06:00:53.000Z
2022-03-12T03:31:04.000Z
manimlib/mobject/svg/code_mobject.py
adornetejr/manim
e0715ceeff4778d11ef4ac31f8f8f2b56a2187ad
[ "MIT" ]
1
2020-07-27T01:15:41.000Z
2020-07-27T01:15:41.000Z
manimlib/mobject/svg/code_mobject.py
adornetejr/manim
e0715ceeff4778d11ef4ac31f8f8f2b56a2187ad
[ "MIT" ]
1
2020-11-19T06:24:49.000Z
2020-11-19T06:24:49.000Z
import html from manimlib.constants import * from manimlib.container.container import Container from manimlib.mobject.geometry import Rectangle, Dot, RoundedRectangle from manimlib.mobject.shape_matchers import SurroundingRectangle from manimlib.mobject.svg.text_mobject import Paragraph from manimlib.mobject.types.vectorized_mobject import VGroup import re from pygments import highlight from pygments.lexers import get_lexer_by_name from pygments.formatters.html import HtmlFormatter ''' 1) Code is VGroup() with three things 1.1) Code[0] is Code.background_mobject which can be a 1.1.1) Rectangle() if background == "rectangle" 1.1.2) VGroup() of Rectangle() and Dot() for three buttons if background == "window" 1.2) Code[1] is Code.line_numbers Which is a Paragraph() object, this mean you can use Code.line_numbers[0] or Code[1][0] to access first line number 1.3) Code[2] is Code.code 1.3.1) Which is a Paragraph() with color highlighted, this mean you can use Code.code[1] or Code[2][1] line number 1 Code.code[1][0] or Code.code[1][0] first character of line number 1 Code.code[1][0:5] or Code.code[1][0:5] first five characters of line number 1 ''' class Code(VGroup): CONFIG = { "tab_width": 3, "line_spacing": 0.1, "scale_factor": 0.5, "run_time": 1, "font": 'Monospac821 BT', 'stroke_width': 0, 'margin': 0.3, 'indentation_char': " ", "background": "rectangle", # or window "corner_radius": 0.2, 'insert_line_no': True, 'line_no_from': 1, "line_no_buff": 0.4, 'style': 'vim', 'language': 'cpp', 'generate_html_file': False } def __init__(self, file_name=None, **kwargs): Container.__init__(self, **kwargs) self.file_name = file_name or self.file_name self.ensure_valid_file() self.style = self.style.lower() self.gen_html_string() strati = self.html_string.find("background:") self.background_color = self.html_string[strati + 12:strati + 19] self.gen_code_json() self.code = self.gen_colored_lines() if self.insert_line_no: self.line_numbers = self.gen_line_numbers() self.line_numbers.next_to(self.code, direction=LEFT, buff=self.line_no_buff) if self.background == "rectangle": if self.insert_line_no: forground = VGroup(self.code, self.line_numbers) else: forground = self.code self.background_mobject = SurroundingRectangle(forground, buff=self.margin, color=self.background_color, fill_color=self.background_color, stroke_width=0, fill_opacity=1, ) self.background_mobject.round_corners(self.corner_radius) else: if self.insert_line_no: forground = VGroup(self.code, self.line_numbers) else: forground = self.code height = forground.get_height() + 0.1 * 3 + 2 * self.margin width = forground.get_width() + 0.1 * 3 + 2 * self.margin rrect = RoundedRectangle(corner_radius=self.corner_radius, height=height, width=width, stroke_width=0, color=self.background_color, fill_opacity=1) red_button = Dot(radius=0.1, stroke_width=0, color='#ff5f56') red_button.shift(LEFT * 0.1 * 3) yellow_button = Dot(radius=0.1, stroke_width=0, color='#ffbd2e') green_button = Dot(radius=0.1, stroke_width=0, color='#27c93f') green_button.shift(RIGHT * 0.1 * 3) buttons = VGroup(red_button, yellow_button, green_button) buttons.shift( UP * (height / 2 - 0.1 * 2 - 0.05) + LEFT * (width / 2 - 0.1 * 5 - self.corner_radius / 2 - 0.05)) self.background_mobject = VGroup(rrect, buttons) x = (height - forground.get_height()) / 2 - 0.1 * 3 self.background_mobject.shift(forground.get_center()) self.background_mobject.shift(UP * x) if self.insert_line_no: VGroup.__init__(self, self.background_mobject, self.line_numbers, *self.code, **kwargs) else: VGroup.__init__(self, self.background_mobject, Dot(fill_opacity=0, stroke_opacity=0), *self.code, **kwargs) self.move_to(np.array([0, 0, 0])) def apply_points_function_about_point(self, func, about_point=None, about_edge=None): if about_point is None: if about_edge is None: about_edge = self.get_corner(UP + LEFT) about_point = self.get_critical_point(about_edge) for mob in self.family_members_with_points(): mob.points -= about_point mob.points = func(mob.points) mob.points += about_point return self def ensure_valid_file(self): if self.file_name is None: raise Exception("Must specify file for Code") possible_paths = [ os.path.join(os.path.join("assets", "codes"), self.file_name), self.file_name, ] for path in possible_paths: if os.path.exists(path): self.file_path = path return raise IOError("No file matching %s in codes directory" % self.file_name) def gen_line_numbers(self): line_numbers_array = [] for line_no in range(0, self.code_json.__len__()): number = str(self.line_no_from + line_no) line_numbers_array.append(number) line_numbers = Paragraph(*[i for i in line_numbers_array], line_spacing=self.line_spacing, alignment="right", font=self.font, stroke_width=self.stroke_width).scale(self.scale_factor) return line_numbers def gen_colored_lines(self): lines_text = [] for line_no in range(0, self.code_json.__len__()): line_str = "" for word_index in range(self.code_json[line_no].__len__()): line_str = line_str + self.code_json[line_no][word_index][0] lines_text.append(self.tab_spaces[line_no] * "\t" + line_str) code = Paragraph(*[i for i in lines_text], line_spacing=self.line_spacing, tab_width=self.tab_width, alignment="left", font=self.font, stroke_width=self.stroke_width).scale(self.scale_factor) for line_no in range(code.__len__()): line = code[line_no] line_char_index = self.tab_spaces[line_no] for word_index in range(self.code_json[line_no].__len__()): line[line_char_index:line_char_index + self.code_json[line_no][word_index][0].__len__()].set_color( self.code_json[line_no][word_index][1]) line_char_index += self.code_json[line_no][word_index][0].__len__() return code def gen_html_string(self): file = open(self.file_path, "r") code_str = file.read() file.close() self.html_string = hilite_me(code_str, self.language, {}, self.style, self.insert_line_no, "border:solid gray;border-width:.1em .1em .1em .8em;padding:.2em .6em;") if self.generate_html_file: os.makedirs(os.path.join("assets", "codes", "generated_html_files"), exist_ok=True) file = open(os.path.join("assets", "codes", "generated_html_files", self.file_name + ".html"), "w") file.write(self.html_string) file.close() def gen_code_json(self): if self.background_color == "#111111" or \ self.background_color == "#272822" or \ self.background_color == "#202020" or \ self.background_color == "#000000": self.default_color = "#ffffff" else: self.default_color = "#000000" for i in range(3, -1, -1): self.html_string = self.html_string.replace("</" + " " * i, "</") for i in range(10, -1, -1): self.html_string = self.html_string.replace("</span>" + " " * i, " " * i + "</span>") self.html_string = self.html_string.replace("background-color:", "background:") if self.insert_line_no: start_point = self.html_string.find("</td><td><pre") start_point = start_point + 9 else: start_point = self.html_string.find("<pre") self.html_string = self.html_string[start_point:] # print(self.html_string) lines = self.html_string.split("\n") lines = lines[0:lines.__len__() - 2] start_point = lines[0].find(">") lines[0] = lines[0][start_point + 1:] # print(lines) self.code_json = [] self.tab_spaces = [] code_json_line_index = -1 for line_index in range(0, lines.__len__()): if lines[line_index].__len__() == 0: continue # print(lines[line_index]) self.code_json.append([]) code_json_line_index = code_json_line_index + 1 if lines[line_index].startswith(self.indentation_char): start_point = lines[line_index].find("<") starting_string = lines[line_index][:start_point] indentation_char_count = lines[line_index][:start_point].count(self.indentation_char) if starting_string.__len__() != indentation_char_count * self.indentation_char.__len__(): lines[line_index] = "\t" * indentation_char_count + starting_string[starting_string.rfind( self.indentation_char) + self.indentation_char.__len__():] + \ lines[line_index][start_point:] else: lines[line_index] = "\t" * indentation_char_count + lines[line_index][start_point:] indentation_char_count = 0 while lines[line_index][indentation_char_count] == '\t': indentation_char_count = indentation_char_count + 1 self.tab_spaces.append(indentation_char_count) # print(lines[line_index]) lines[line_index] = self.correct_non_span(lines[line_index]) # print(lines[line_index]) words = lines[line_index].split("<span") for word_index in range(1, words.__len__()): color_index = words[word_index].find("color:") if color_index == -1: color = self.default_color else: starti = words[word_index][color_index:].find("#") color = words[word_index][color_index + starti:color_index + starti + 7] start_point = words[word_index].find(">") end_point = words[word_index].find("</span>") text = words[word_index][start_point + 1:end_point] text = html.unescape(text) if text != "": # print(text, "'" + color + "'") self.code_json[code_json_line_index].append([text, color]) # print(self.code_json) def correct_non_span(self, line_str): words = line_str.split("</span>") line_str = "" for i in range(0, words.__len__()): if i != words.__len__() - 1: j = words[i].find("<span") else: j = words[i].__len__() temp = "" starti = -1 for k in range(0, j): if words[i][k] == "\t" and starti == -1: continue else: if starti == -1: starti = k temp = temp + words[i][k] if temp != "": if i != words.__len__() - 1: temp = '<span style="color:' + self.default_color + '">' + words[i][starti:j] + "</span>" else: temp = '<span style="color:' + self.default_color + '">' + words[i][starti:j] temp = temp + words[i][j:] words[i] = temp if words[i] != "": line_str = line_str + words[i] + "</span>" return line_str def hilite_me(code, lexer, options, style, linenos, divstyles): lexer = lexer or 'python' style = style or 'colorful' defstyles = 'overflow:auto;width:auto;' formatter = HtmlFormatter(style=style, linenos=False, noclasses=True, cssclass='', cssstyles=defstyles + divstyles, prestyles='margin: 0') html = highlight(code, get_lexer_by_name(lexer, **options), formatter) if linenos: html = insert_line_numbers(html) html = "<!-- HTML generated using hilite.me -->" + html return html def get_default_style(): return 'border:solid gray;border-width:.1em .1em .1em .8em;padding:.2em .6em;' def insert_line_numbers(html): match = re.search('(<pre[^>]*>)(.*)(</pre>)', html, re.DOTALL) if not match: return html pre_open = match.group(1) pre = match.group(2) pre_close = match.group(3) html = html.replace(pre_close, '</pre></td></tr></table>') numbers = range(1, pre.count('\n') + 1) format = '%' + str(len(str(numbers[-1]))) + 'i' lines = '\n'.join(format % i for i in numbers) html = html.replace(pre_open, '<table><tr><td>' + pre_open + lines + '</pre></td><td>' + pre_open) return html
45.832797
120
0.553459
f7d2deebe80a7c830aaf677e6fac86bcee59cbd0
210
py
Python
0171_ExcelSheetColumnNumber.py
yingzhuo1994/LeetCode
636eef90867d21e3439d258ec99fbb8e5ad5a742
[ "MIT" ]
null
null
null
0171_ExcelSheetColumnNumber.py
yingzhuo1994/LeetCode
636eef90867d21e3439d258ec99fbb8e5ad5a742
[ "MIT" ]
null
null
null
0171_ExcelSheetColumnNumber.py
yingzhuo1994/LeetCode
636eef90867d21e3439d258ec99fbb8e5ad5a742
[ "MIT" ]
null
null
null
class Solution: def titleToNumber(self, columnTitle: str) -> int: start = ord('A') - 1 num = 0 for ch in columnTitle: num = 26 * num + ord(ch) - start return num
26.25
53
0.519048
053139008841aaaa7a775f24f87d778d9a2ef329
77
py
Python
utils/drop_database.py
nixorn/iamripbackend
659ee43bc0c42a459665cab74ab66385e4e2937f
[ "MIT" ]
null
null
null
utils/drop_database.py
nixorn/iamripbackend
659ee43bc0c42a459665cab74ab66385e4e2937f
[ "MIT" ]
null
null
null
utils/drop_database.py
nixorn/iamripbackend
659ee43bc0c42a459665cab74ab66385e4e2937f
[ "MIT" ]
null
null
null
from models import * from engine import * Base.metadata.drop_all(engine)
9.625
30
0.753247
bc8a606361aaae624e62cad2d789d729e6df67fe
306
py
Python
src/presence/presences/menu_presences/away.py
SumanthAkula/valorant-rpc
88f62496cc297aa681d9467ce45e6669ae1f438f
[ "MIT" ]
null
null
null
src/presence/presences/menu_presences/away.py
SumanthAkula/valorant-rpc
88f62496cc297aa681d9467ce45e6669ae1f438f
[ "MIT" ]
null
null
null
src/presence/presences/menu_presences/away.py
SumanthAkula/valorant-rpc
88f62496cc297aa681d9467ce45e6669ae1f438f
[ "MIT" ]
null
null
null
def presence(rpc,client=None,data=None,content_data=None,config=None): rpc.update( state="Away", details=f"Menu - {content_data['queue_aliases'][data['queueId']] if data['queueId'] != '' else 'Custom Setup'}", large_image="game_icon_yellow", large_text="VALORANT", )
43.714286
120
0.643791
60ecea16b47e08b28dc13a7e6b9d73a380e6beac
1,399
py
Python
k8v/printer.py
jasonhanks/k8v
e41d6b6d670567abc9dc37b423b4d48ef82a4d0e
[ "MIT" ]
1
2022-01-17T03:51:12.000Z
2022-01-17T03:51:12.000Z
k8v/printer.py
jasonhanks/k8v
e41d6b6d670567abc9dc37b423b4d48ef82a4d0e
[ "MIT" ]
null
null
null
k8v/printer.py
jasonhanks/k8v
e41d6b6d670567abc9dc37b423b4d48ef82a4d0e
[ "MIT" ]
null
null
null
import k8v class Printer: """The Printer is responsible for using the Formatters to generate the output properly.""" def __init__(self, config: k8v.config.Config): self.config = config def print(self, resource, num: int = 1, max: int = 1, delim: str = ""): """Print the specified resources according to the specified Formatter.""" self.config.formatter.begin_resource() self.config.formatter.print(resource, delim) self.config.formatter.end_resource(num == max) # Print related objects recusively if needed if self.config.related and len(resource._related) > 0: for n, r in enumerate(resource._related): self.print(r, n, len(resource._related), delim + self.config.delimeter) def print_all(self, resources: list) -> int: """Properly format a list of resources found by the tool.""" # Print any beginning formatting needed (ex: JSON needs [ to begin the List) self.config.formatter.begin() # Format each resource and print() it to the output file for num, resource in enumerate(resources): self.print(resource, num, len(resources) - 1, "") # Print any closing formatting needed (ex: JSON needs ] to close the List) self.config.formatter.end() # return how many resources were printed return len(resources)
38.861111
94
0.652609
5a6de8942f83c5ca4bfd88ae6b1110297dea4078
1,300
py
Python
jorldy/config/icm_ppo/atari.py
kakaoenterprise/JORLDY
0d41e148cb9d680aa4df2727e0a813eb792d9a1b
[ "Apache-2.0" ]
300
2021-11-03T07:06:34.000Z
2022-03-24T02:23:56.000Z
jorldy/config/icm_ppo/atari.py
kakaoenterprise/JORLDY
0d41e148cb9d680aa4df2727e0a813eb792d9a1b
[ "Apache-2.0" ]
37
2021-11-04T04:31:07.000Z
2022-03-30T01:40:49.000Z
jorldy/config/icm_ppo/atari.py
kakaoenterprise/JORLDY
0d41e148cb9d680aa4df2727e0a813eb792d9a1b
[ "Apache-2.0" ]
45
2021-11-03T08:05:56.000Z
2022-03-24T08:35:05.000Z
### ICM PPO Atari Config ### env = { # "name": it should be defined in the command. ex) python main.py --config config.AGENT.atari --env.name breakout "render": False, "gray_img": True, "img_width": 84, "img_height": 84, "stack_frame": 4, "no_op": True, "skip_frame": 4, "reward_clip": True, "episodic_life": True, } agent = { "name": "icm_ppo", "network": "discrete_policy_value", "head": "cnn", "gamma": 0.99, "batch_size": 32, "n_step": 128, "n_epoch": 3, "_lambda": 0.95, "epsilon_clip": 0.1, "vf_coef": 1.0, "ent_coef": 0.01, "clip_grad_norm": 1.0, "lr_decay": True, # Parameters for Curiosity-driven Exploration "icm_network": "icm_cnn", # icm_mlp, icm_cnn, icm_multi "beta": 0.2, "lamb": 1.0, "eta": 0.1, "extrinsic_coeff": 1.0, "intrinsic_coeff": 1.0, } optim = { "name": "adam", "lr": 2.5e-4, } train = { "training": True, "load_path": None, "run_step": 30000000, "print_period": 10000, "save_period": 100000, "eval_iteration": 5, "eval_time_limit": None, "record": True, "record_period": 300000, # distributed setting "distributed_batch_size": 1024, "update_period": agent["n_step"], "num_workers": 32, }
22.033898
117
0.575385
02551de7238239f5c6cc54ee3f88e862ea7261fa
8,277
py
Python
IPython/frontend/qt/console/pygments_highlighter.py
tinyclues/ipython
71e32606b0242772b81c9be0d40751ba47d95f2c
[ "BSD-3-Clause-Clear" ]
2
2015-04-21T12:12:43.000Z
2015-04-21T12:12:54.000Z
IPython/frontend/qt/console/pygments_highlighter.py
tinyclues/ipython
71e32606b0242772b81c9be0d40751ba47d95f2c
[ "BSD-3-Clause-Clear" ]
1
2015-07-16T22:26:53.000Z
2015-07-16T22:26:53.000Z
IPython/frontend/qt/console/pygments_highlighter.py
ivanov/ipython
62cc379d3b454923cb48e94663f385f54ec806cc
[ "BSD-3-Clause-Clear" ]
null
null
null
# System library imports. from IPython.external.qt import QtGui from pygments.formatters.html import HtmlFormatter from pygments.lexer import RegexLexer, _TokenType, Text, Error from pygments.lexers import PythonLexer from pygments.styles import get_style_by_name def get_tokens_unprocessed(self, text, stack=('root',)): """ Split ``text`` into (tokentype, text) pairs. Monkeypatched to store the final stack on the object itself. """ pos = 0 tokendefs = self._tokens if hasattr(self, '_saved_state_stack'): statestack = list(self._saved_state_stack) else: statestack = list(stack) statetokens = tokendefs[statestack[-1]] while 1: for rexmatch, action, new_state in statetokens: m = rexmatch(text, pos) if m: if type(action) is _TokenType: yield pos, action, m.group() else: for item in action(self, m): yield item pos = m.end() if new_state is not None: # state transition if isinstance(new_state, tuple): for state in new_state: if state == '#pop': statestack.pop() elif state == '#push': statestack.append(statestack[-1]) else: statestack.append(state) elif isinstance(new_state, int): # pop del statestack[new_state:] elif new_state == '#push': statestack.append(statestack[-1]) else: assert False, "wrong state def: %r" % new_state statetokens = tokendefs[statestack[-1]] break else: try: if text[pos] == '\n': # at EOL, reset state to "root" pos += 1 statestack = ['root'] statetokens = tokendefs['root'] yield pos, Text, u'\n' continue yield pos, Error, text[pos] pos += 1 except IndexError: break self._saved_state_stack = list(statestack) # Monkeypatch! RegexLexer.get_tokens_unprocessed = get_tokens_unprocessed class PygmentsBlockUserData(QtGui.QTextBlockUserData): """ Storage for the user data associated with each line. """ syntax_stack = ('root',) def __init__(self, **kwds): for key, value in kwds.iteritems(): setattr(self, key, value) QtGui.QTextBlockUserData.__init__(self) def __repr__(self): attrs = ['syntax_stack'] kwds = ', '.join([ '%s=%r' % (attr, getattr(self, attr)) for attr in attrs ]) return 'PygmentsBlockUserData(%s)' % kwds class PygmentsHighlighter(QtGui.QSyntaxHighlighter): """ Syntax highlighter that uses Pygments for parsing. """ #--------------------------------------------------------------------------- # 'QSyntaxHighlighter' interface #--------------------------------------------------------------------------- def __init__(self, parent, lexer=None): super(PygmentsHighlighter, self).__init__(parent) self._document = QtGui.QTextDocument() self._formatter = HtmlFormatter(nowrap=True) self._lexer = lexer if lexer else PythonLexer() self.set_style('default') def highlightBlock(self, string): """ Highlight a block of text. """ prev_data = self.currentBlock().previous().userData() if prev_data is not None: self._lexer._saved_state_stack = prev_data.syntax_stack elif hasattr(self._lexer, '_saved_state_stack'): del self._lexer._saved_state_stack # Lex the text using Pygments index = 0 for token, text in self._lexer.get_tokens(string): length = len(text) self.setFormat(index, length, self._get_format(token)) index += length if hasattr(self._lexer, '_saved_state_stack'): data = PygmentsBlockUserData( syntax_stack=self._lexer._saved_state_stack) self.currentBlock().setUserData(data) # Clean up for the next go-round. del self._lexer._saved_state_stack #--------------------------------------------------------------------------- # 'PygmentsHighlighter' interface #--------------------------------------------------------------------------- def set_style(self, style): """ Sets the style to the specified Pygments style. """ if isinstance(style, basestring): style = get_style_by_name(style) self._style = style self._clear_caches() def set_style_sheet(self, stylesheet): """ Sets a CSS stylesheet. The classes in the stylesheet should correspond to those generated by: pygmentize -S <style> -f html Note that 'set_style' and 'set_style_sheet' completely override each other, i.e. they cannot be used in conjunction. """ self._document.setDefaultStyleSheet(stylesheet) self._style = None self._clear_caches() #--------------------------------------------------------------------------- # Protected interface #--------------------------------------------------------------------------- def _clear_caches(self): """ Clear caches for brushes and formats. """ self._brushes = {} self._formats = {} def _get_format(self, token): """ Returns a QTextCharFormat for token or None. """ if token in self._formats: return self._formats[token] if self._style is None: result = self._get_format_from_document(token, self._document) else: result = self._get_format_from_style(token, self._style) self._formats[token] = result return result def _get_format_from_document(self, token, document): """ Returns a QTextCharFormat for token by """ code, html = self._formatter._format_lines([(token, 'dummy')]).next() self._document.setHtml(html) return QtGui.QTextCursor(self._document).charFormat() def _get_format_from_style(self, token, style): """ Returns a QTextCharFormat for token by reading a Pygments style. """ result = QtGui.QTextCharFormat() for key, value in style.style_for_token(token).items(): if value: if key == 'color': result.setForeground(self._get_brush(value)) elif key == 'bgcolor': result.setBackground(self._get_brush(value)) elif key == 'bold': result.setFontWeight(QtGui.QFont.Bold) elif key == 'italic': result.setFontItalic(True) elif key == 'underline': result.setUnderlineStyle( QtGui.QTextCharFormat.SingleUnderline) elif key == 'sans': result.setFontStyleHint(QtGui.QFont.SansSerif) elif key == 'roman': result.setFontStyleHint(QtGui.QFont.Times) elif key == 'mono': result.setFontStyleHint(QtGui.QFont.TypeWriter) return result def _get_brush(self, color): """ Returns a brush for the color. """ result = self._brushes.get(color) if result is None: qcolor = self._get_color(color) result = QtGui.QBrush(qcolor) self._brushes[color] = result return result def _get_color(self, color): """ Returns a QColor built from a Pygments color string. """ qcolor = QtGui.QColor() qcolor.setRgb(int(color[:2], base=16), int(color[2:4], base=16), int(color[4:6], base=16)) return qcolor
36.786667
80
0.524224
5f064f42bb9bfc71bbe42420c6f467701cdaa847
1,639
py
Python
cvl/merge_dense_infos.py
MartinHahner/SeeingThroughFog
3b568af0ad190c9f4cf6a4a826f69332844bff99
[ "MIT" ]
4
2021-08-16T03:56:22.000Z
2021-11-11T13:29:31.000Z
cvl/merge_dense_infos.py
MartinHahner/SeeingThroughFog
3b568af0ad190c9f4cf6a4a826f69332844bff99
[ "MIT" ]
null
null
null
cvl/merge_dense_infos.py
MartinHahner/SeeingThroughFog
3b568af0ad190c9f4cf6a4a826f69332844bff99
[ "MIT" ]
2
2022-01-12T13:42:05.000Z
2022-01-19T04:45:05.000Z
import os import pickle from pathlib import Path dir_path = Path(os.path.dirname(os.path.realpath(__file__))) pkl_dir = dir_path.parent.parent.parent / 'data' / 'dense' save_file = f'{pkl_dir}/dense_dbinfos_train_clear.pkl' day_file = f'{pkl_dir}/dense_dbinfos_train_clear_day.pkl' night_file = f'{pkl_dir}/dense_dbinfos_train_clear_night.pkl' with open(str(day_file), 'rb') as df: day_dict = pickle.load(df) with open(str(night_file), 'rb') as nf: night_dict = pickle.load(nf) save_dict = {} for key in day_dict: save_dict[key] = day_dict[key] + night_dict[key] with open(save_file, 'wb') as f: pickle.dump(save_dict, f) for stage in ['train', 'val', 'trainval']: save_file = f'{pkl_dir}/dense_infos_{stage}_clear.pkl' day_file = f'{pkl_dir}/dense_infos_{stage}_clear_day.pkl' night_file = f'{pkl_dir}/dense_infos_{stage}_clear_night.pkl' with open(str(day_file), 'rb') as df: day_infos = pickle.load(df) with open(str(night_file), 'rb') as nf: night_infos = pickle.load(nf) with open(save_file, 'wb') as f: pickle.dump(day_infos + night_infos, f) for condition in ['clear', 'light_fog', 'dense_fog', 'snow']: save_file = f'{pkl_dir}/dense_infos_test_{condition}.pkl' day_file = f'{pkl_dir}/dense_infos_test_{condition}_day.pkl' night_file = f'{pkl_dir}/dense_infos_test_{condition}_night.pkl' with open(str(day_file), 'rb') as df: day_infos = pickle.load(df) with open(str(night_file), 'rb') as nf: night_infos = pickle.load(nf) with open(save_file, 'wb') as f: pickle.dump(day_infos + night_infos, f)
26.868852
68
0.685784
4edb1dc6b18c709422f328b3e35edf46c0580a2f
6,127
py
Python
shs/input/frames/extra_panel.py
ansobolev/shs
7a5f61bd66fe1e8ae047a4d3400b055175a53f4e
[ "MIT" ]
1
2016-06-22T13:30:25.000Z
2016-06-22T13:30:25.000Z
shs/input/frames/extra_panel.py
ansobolev/shs
7a5f61bd66fe1e8ae047a4d3400b055175a53f4e
[ "MIT" ]
1
2017-12-01T04:49:45.000Z
2017-12-01T04:49:45.000Z
shs/input/frames/extra_panel.py
ansobolev/shs
7a5f61bd66fe1e8ae047a4d3400b055175a53f4e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import wx from shs.input.dialogs.add_block import AddBlockDlg #import fdf_base as fdf import wx.lib.agw.ultimatelistctrl as ulc 'A class collection representing extra options panel' class ExtraPN(wx.ScrolledWindow): blocks = {} def __init__(self, *args, **kwds): wx.ScrolledWindow.__init__(self, *args, **kwds) self.OptL = wx.StaticText(self, -1, 'Option') self.ValL = wx.StaticText(self, -1, 'Value') self.OptTE = wx.TextCtrl(self, -1) self.ValTE = wx.TextCtrl(self, -1) self.ExtraList = ulc.UltimateListCtrl(self, -1, agwStyle=wx.LC_REPORT | wx.LC_VRULES | wx.LC_HRULES | ulc.ULC_HAS_VARIABLE_ROW_HEIGHT) self.AddBtn = wx.Button(self, -1, 'Add') self.AddBlockBtn = wx.Button(self, -1, 'Add block') self.RmBtn = wx.Button(self, -1, 'Remove') self.fdf_opts = {} #binding events self.Bind(wx.EVT_BUTTON, self.OnAddBtn, self.AddBtn) self.Bind(wx.EVT_BUTTON, self.OnAddBlockBtn, self.AddBlockBtn) self.Bind(wx.EVT_BUTTON, self.OnRmBtn, self.RmBtn) self.__set_properties() self.__do_layout() def OnAddBtn(self, evt): # add value if self.OptTE.GetValue() and self.ValTE.GetValue(): ind = self.ExtraList.InsertStringItem(sys.maxint, self.OptTE.GetValue()) self.ExtraList.SetStringItem(ind, 1, self.ValTE.GetValue()) self.OptTE.SetValue('') self.ValTE.SetValue('') def OnRmBtn(self, evt): # delete item for _ in range(self.ExtraList.GetSelectedItemCount()): row = self.ExtraList.GetFirstSelected() # delete from blocks if block is being deleted if self.ExtraList.GetItem(row,0).GetText() in self.blocks.keys(): opt = self.ExtraList.GetItem(row,0).GetText() # unbind button self.Unbind(wx.EVT_BUTTON, self.blocks[opt][0]) # destroy button self.blocks[opt][0].Destroy() # pop from blocks self.blocks.pop(opt) self.ExtraList.DeleteItem(row) def OnAddBlockBtn(self, evt): # add block dlg = AddBlockDlg(self, def_opt = self.OptTE.GetValue()) if dlg.ShowModal() == wx.ID_OK: opt, val = dlg.GetBlock() self.add_block(opt, val) dlg.Destroy() def OnShowBtn(self, evt): for old_opt, [btn, old_val] in self.blocks.iteritems(): btn_id = btn.GetId() if btn_id == evt.GetId(): # allow to change option and value via dlg dlg = AddBlockDlg(self, def_opt = old_opt, def_val = old_val) if dlg.ShowModal() == wx.ID_OK: # delete old_opt self.blocks.pop(old_opt) # insert new_opt new_opt, new_val = dlg.GetBlock() self.blocks[new_opt] = [btn, new_val] # change value in list item, = [i for i in range(self.ExtraList.GetItemCount()) if self.ExtraList.GetItem(i, 0).GetText() == old_opt] self.ExtraList.SetStringItem(item, 0, new_opt) dlg.Destroy() break def add_block(self, opt, val): # 'show' button show_btn = wx.Button(self.ExtraList, -1, 'Show') # add to blocks self.blocks[opt] = [show_btn, val] # add to list ind = self.ExtraList.InsertStringItem(sys.maxint, opt) self.ExtraList.SetItemWindow(ind, 1, show_btn, expand=True) # bind show_btn self.Bind(wx.EVT_BUTTON, self.OnShowBtn, show_btn) def populate(self, d): 'Populates extras pane with values from fdf dictionary' for key, t_val in d.iteritems(): try: if t_val.__class__.__name__ == 'BlockValue': self.add_block(key, '\n'.join([' '.join(s) for s in t_val.value])) else: ind = self.ExtraList.InsertStringItem(sys.maxint, key) self.ExtraList.SetStringItem(ind, 1, str(t_val)) except IndexError: continue def extract(self): s = "" items = [] for i in range(self.ExtraList.GetItemCount()): items.append([self.ExtraList.GetItem(itemOrId=i, col=j).GetText() for j in range(2)]) for k, v in items: if k in self.blocks: s += ("%block {0}\n" " {1}\n" "%endblock {0}\n").format(k, self.blocks[k][1]) else: s += "{0:<25}\t{1}\n".format(k, v) return s def __set_properties(self): self.SetScrollRate(0, 10) self.ExtraList.InsertColumn(0, 'Option', width = 250) self.ExtraList.InsertColumn(1, 'Value', width = 400) def __do_layout(self): opt_sizer = wx.GridSizer(rows=2, cols=2, vgap=5, hgap=5) opt_sizer.Add(self.OptL, 0, wx.ALL|wx.ALIGN_CENTER, 0) opt_sizer.Add(self.ValL, 0, wx.ALL|wx.ALIGN_CENTER, 0) opt_sizer.Add(self.OptTE, 1, wx.ALL|wx.EXPAND, 0) opt_sizer.Add(self.ValTE, 1, wx.ALL|wx.EXPAND, 0) btn_sizer = wx.BoxSizer(wx.HORIZONTAL) btn_sizer.Add(self.AddBtn, 0, wx.ALL, 5) btn_sizer.Add(self.AddBlockBtn, 0, wx.ALL, 5) btn_sizer.Add(self.RmBtn, 0, wx.ALL, 5) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(opt_sizer, 0, wx.ALL|wx.EXPAND, 5) sizer.Add(btn_sizer, 0, wx.ALL, 0) sizer.Add(self.ExtraList, 1, wx.ALL|wx.EXPAND, 5) self.SetSizer(sizer) self.Layout() if __name__ == '__main__': 'A simple test' app = wx.App() f = wx.Frame(None, -1) p = ExtraPN(f, -1) s = wx.BoxSizer(wx.VERTICAL) s.Add(p, 1, wx.EXPAND, 0) f.SetSizer(s) f.Layout() app.SetTopWindow(f) f.Show() app.MainLoop()
36.041176
130
0.5559
f7c80f58201e0a3a660e42da363b92892a8b7b27
5,196
py
Python
data/p3BR/R1/benchmark/startQiskit_QC2.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R1/benchmark/startQiskit_QC2.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R1/benchmark/startQiskit_QC2.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=3 # total number=4 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_QC2.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_belem") circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
28.549451
140
0.627213
1cbf3b0f4b43124d1e902ac76d5b7bedacd8e8b1
3,202
py
Python
src/common/api_covalent.py
wengzilla/staketaxcsv
c52210106ec8194973f6ff178a307c77699e094e
[ "MIT" ]
140
2021-12-11T23:37:46.000Z
2022-03-29T23:04:36.000Z
src/common/api_covalent.py
wengzilla/staketaxcsv
c52210106ec8194973f6ff178a307c77699e094e
[ "MIT" ]
80
2021-12-17T15:13:47.000Z
2022-03-31T13:33:53.000Z
src/common/api_covalent.py
wengzilla/staketaxcsv
c52210106ec8194973f6ff178a307c77699e094e
[ "MIT" ]
52
2021-12-12T00:37:17.000Z
2022-03-29T23:25:09.000Z
import logging import requests from common.Singleton import Singleton from settings_csv import COVALENT_API_KEY, COVALENT_NODE # Documentation: https://www.covalenthq.com/docs/developer/ class CovalentAPI(metaclass=Singleton): def __init__(self, chain_id): if not COVALENT_API_KEY: raise TypeError("Empty API_KEY") self._session = requests.Session() self._session.auth = ('', COVALENT_API_KEY) self._chain_id = chain_id def get_transactions(self, address, block_signed_at_asc=False, no_logs=False, page_number=None, page_size=None): """ Retrieve all transactions for address including their decoded log events. This endpoint does a deep-crawl of the blockchain to retrieve all kinds of transactions that references the address. :param str address: Passing in an ENS resolves automatically. :param bool block_signed_at_asc: Sort the transactions in chronological ascending order. By default it's set to false and returns transactions in chronological descending order. :param bool no_logs: Setting this to true will omit decoded event logs, resulting in lighter and faster responses. By default it's set to false. :param int page_number: The specific page to be returned. :param int page_size: The number of results per page. """ endpoint = f"v1/{self._chain_id}/address/{address}/transactions_v2" params = { "block-signed-at-asc": block_signed_at_asc, "no-logs": no_logs, "page-number": page_number, "page-size": page_size, } data, status_code = self._query(endpoint, params) if status_code == 200: data_obj = data.get("data", {}) has_more = (data_obj["pagination"].get("has_more", False) if "pagination" in data_obj and data_obj["pagination"] else False) return data_obj.get("items", []), has_more else: return None def get_transaction(self, txhash, no_logs=False): """ Retrieve the transaction data with their decoded event logs. :param str txhash: Transaction hash. :param bool no_logs: Setting this to true will omit decoded event logs, resulting in lighter and faster responses. By default it's set to false. """ endpoint = f"v1/{self._chain_id}/transaction_v2/{txhash}" params = { "no-logs": no_logs, } data, status_code = self._query(endpoint, params) if status_code == 200: return data.get("data", {}).get("items", []) else: return None def _query(self, endpoint, params=None): url = f"{COVALENT_NODE}/{endpoint}" logging.info("Querying Covalent endpoint %s...", url) response = self._session.get(url, params=params) response_json = response.json() if not response.ok: logging.error("Error querying Covalent endpoint %s: %s", url, response_json.get("error_message", "unknown")) return response_json, response.status_code
39.530864
84
0.637726
d03debe5557f3fefecf66f0c60e60cc74459c11b
1,314
py
Python
tests/unit/test_external_scripts.py
davidjsherman/repo2docker
4da2e1e71565b26a4bf1d0f0d26ae7c2373a1fd7
[ "BSD-3-Clause" ]
1,047
2017-05-25T03:37:21.000Z
2020-08-09T19:36:56.000Z
tests/unit/test_external_scripts.py
davidjsherman/repo2docker
4da2e1e71565b26a4bf1d0f0d26ae7c2373a1fd7
[ "BSD-3-Clause" ]
810
2017-05-24T20:50:49.000Z
2020-08-05T15:56:38.000Z
tests/unit/test_external_scripts.py
davidjsherman/repo2docker
4da2e1e71565b26a4bf1d0f0d26ae7c2373a1fd7
[ "BSD-3-Clause" ]
253
2017-06-02T20:23:05.000Z
2020-08-04T17:23:22.000Z
"""Test if assemble scripts from outside of r2d repo are accepted.""" import time from repo2docker.app import Repo2Docker from repo2docker.buildpacks import PythonBuildPack def test_Repo2Docker_external_build_scripts(tmpdir): tempfile = tmpdir.join("absolute-script") tempfile.write("Hello World of Absolute Paths!") class MockBuildPack(PythonBuildPack): def detect(self): return True def get_build_script_files(self): files = {str(tempfile): "/tmp/my_extra_script"} files.update(super().get_build_script_files()) return files app = Repo2Docker(repo=str(tmpdir)) app.buildpacks = [MockBuildPack] app.initialize() app.build() container = app.start_container() # give the container a chance to start tic = 180 while container.status != "running" or tic < 0: time.sleep(1) tic -= 1 assert container.status == "running" try: status, output = container._c.exec_run(["sh", "-c", "cat /tmp/my_extra_script"]) assert status == 0 assert output.decode("utf-8") == "Hello World of Absolute Paths!" finally: container.stop(timeout=1) container.reload() assert container.status == "exited", container.status container.remove()
30.55814
88
0.653729
7f553aca99a45abdb6da1d9d9546eca3fcd4a465
1,163
py
Python
datavalidation/libraries/meta/wrrapers.py
lifus/data-validation-benchmark
fca70230da3cb9e60ac4014b4a4c7c77b78027da
[ "Apache-2.0" ]
null
null
null
datavalidation/libraries/meta/wrrapers.py
lifus/data-validation-benchmark
fca70230da3cb9e60ac4014b4a4c7c77b78027da
[ "Apache-2.0" ]
null
null
null
datavalidation/libraries/meta/wrrapers.py
lifus/data-validation-benchmark
fca70230da3cb9e60ac4014b4a4c7c77b78027da
[ "Apache-2.0" ]
null
null
null
import os import importlib import collections """ Searches for libraries in `datavalidation.libraries` module Expects Wrapper and VALIDATORS variables to be defined in library's package Stores wrappers for libraries for later invocations """ def __package_path(): return os.path.dirname( os.path.dirname( os.path.abspath( __file__ ) ) ) def __package_children(): return os.listdir( __package_path() ) def __get_libraries_names_wrappers_and_validators(): for name in __package_children(): try: library = importlib.import_module( 'datavalidation.libraries.{}'.format(name) ) yield name, library.Wrapper, library.VALIDATORS except (AttributeError, ImportError): pass def __get_wrappers(): wrappers = collections.defaultdict(dict) for name, wrapper, validators in __get_libraries_names_wrappers_and_validators(): for validator_type, validator in validators.items(): wrappers[validator_type][name] = wrapper(validator) return wrappers ALL = __get_wrappers()
22.803922
85
0.66466
f900ba33f451bcba8dc12d20d62a59b65c4e0cfc
1,169
py
Python
pycon/finaid/migrations/0005_auto_20150827_1147.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
154
2015-01-17T02:29:24.000Z
2022-03-20T20:37:24.000Z
pycon/finaid/migrations/0005_auto_20150827_1147.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
316
2015-01-10T04:01:50.000Z
2020-09-30T20:18:08.000Z
pycon/finaid/migrations/0005_auto_20150827_1147.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
89
2015-01-10T05:25:21.000Z
2022-02-27T03:28:59.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.utils.timezone import now def forward(apps, schema_editor): FinancialAidReviewData = apps.get_model('finaid', 'FinancialAidReviewData') # Where when_grant_letter_sent is not-null, we want grant_letter_sent to be True FinancialAidReviewData.objects.exclude(when_grant_letter_sent=None).update(grant_letter_sent=True) FinancialAidReviewData.objects.filter(when_grant_letter_sent=None).update(grant_letter_sent=False) def backward(apps, schema_editor): FinancialAidReviewData = apps.get_model('finaid', 'FinancialAidReviewData') # Where grant_letter_sent is True and when_grant_letter_sent is None, # set when_grant_letter_sent to current timestamp for lack of an alternative FinancialAidReviewData.objects.filter(grant_letter_sent=True, when_grant_letter_sent=None).update(when_grant_letter_sent=now()) class Migration(migrations.Migration): dependencies = [ ('finaid', '0004_financialaidreviewdata_grant_letter_sent'), ] operations = [ migrations.RunPython(forward, backward) ]
35.424242
131
0.78272
9d9ed59583a450b255724af2a79e262c4749e647
4,067
py
Python
tensorflow_io/core/python/experimental/azure_ops.py
burgerkingeater/io
f2de208f474d6ba4926e2c7f9e901e102ca5c254
[ "Apache-2.0" ]
null
null
null
tensorflow_io/core/python/experimental/azure_ops.py
burgerkingeater/io
f2de208f474d6ba4926e2c7f9e901e102ca5c254
[ "Apache-2.0" ]
null
null
null
tensorflow_io/core/python/experimental/azure_ops.py
burgerkingeater/io
f2de208f474d6ba4926e2c7f9e901e102ca5c254
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tensorflow-io azure file system import""" import tensorflow_io.core.python.ops # pylint: disable=unused-import def authenticate_with_device_code(account_name): """Setup storage tokens by authenticating with device code and use management APIs Args: account_name (str): The storage account name for which to authenticate """ import urllib # pylint: disable=import-outside-toplevel import json # pylint: disable=import-outside-toplevel import os # pylint: disable=import-outside-toplevel from tensorflow.python.platform import ( # pylint: disable=import-outside-toplevel tf_logging as log, ) try: from adal import ( # pylint: disable=import-outside-toplevel AuthenticationContext, ) except ModuleNotFoundError: log.error( "Please install adal library with `python -m pip install -U adal`" "to use the device code authentication method" ) return ctx = AuthenticationContext("https://login.microsoftonline.com/common") storage_resource = "https://management.azure.com/" # Current multi-tenant client registerd in my AzureAD tenant client_id = "8c375311-7f4c-406c-84f8-03dfe11ba2d3" device_code = ctx.acquire_user_code(resource=storage_resource, client_id=client_id) # Display authentication message to user to action in their browser log.warn(device_code["message"]) token_response = ctx.acquire_token_with_device_code( resource=storage_resource, user_code_info=device_code, client_id=client_id ) headers = {"Authorization": "Bearer " + token_response["accessToken"]} subscription_list_req = urllib.request.Request( url="https://management.azure.com/subscriptions?api-version=2016-06-01", headers=headers, ) with urllib.request.urlopen(subscription_list_req) as f: subscriptions = json.load(f) subscriptions = subscriptions["value"] storage_account = None for subscription in subscriptions: url = "https://management.azure.com/subscriptions/{}/providers/Microsoft.Storage/storageAccounts?api-version=2019-04-01".format( subscription["subscriptionId"] ) storage_account_list_req = urllib.request.Request(url=url, headers=headers) with urllib.request.urlopen(storage_account_list_req) as f: storage_accounts = json.load(f) storage_accounts = storage_accounts["value"] account_by_name = [s for s in storage_accounts if s.get("name") == account_name] if any(account_by_name): storage_account = account_by_name[0] break if storage_account is None: log.error( "Couldn't find storage account {} in any " "available subscription".format(account_name) ) return url = "https://management.azure.com/{}/listKeys?api-version=2019-04-01".format( storage_account["id"] ) storage_list_keys_req = urllib.request.Request( url=url, headers=headers, method="POST" ) with urllib.request.urlopen(storage_list_keys_req) as f: account_keys = json.load(f) os.environ["TF_AZURE_STORAGE_KEY"] = account_keys["keys"][0]["value"] log.info( "Successfully set account key environment for {} " "storage account".format(account_name) )
36.63964
136
0.68478
d2e50c75c865d23cc31e512d9faaa748acf73b1a
171
py
Python
server/db_repository/manage.py
Lazarus118/virtual-queue
fde79ec6e051f372b1054d8d3790bdaf5eb31cc3
[ "CC-BY-3.0" ]
null
null
null
server/db_repository/manage.py
Lazarus118/virtual-queue
fde79ec6e051f372b1054d8d3790bdaf5eb31cc3
[ "CC-BY-3.0" ]
null
null
null
server/db_repository/manage.py
Lazarus118/virtual-queue
fde79ec6e051f372b1054d8d3790bdaf5eb31cc3
[ "CC-BY-3.0" ]
null
null
null
#!/usr/bin/env python from migrate.versioning.shell import main if __name__ == '__main__': main(six='<module 'six' from 'S:\python\venv\lib\site-packages\six.pyc'>')
28.5
78
0.707602
71e7559f4d26901d6450278a88d26cf770c1c32c
4,764
py
Python
cinder/tests/unit/api/contrib/test_volume_tenant_attribute.py
tlakshman26/cinder-new-branch
80ba191522d1756c1871a104fbdb91008cffaaa3
[ "Apache-2.0" ]
null
null
null
cinder/tests/unit/api/contrib/test_volume_tenant_attribute.py
tlakshman26/cinder-new-branch
80ba191522d1756c1871a104fbdb91008cffaaa3
[ "Apache-2.0" ]
null
null
null
cinder/tests/unit/api/contrib/test_volume_tenant_attribute.py
tlakshman26/cinder-new-branch
80ba191522d1756c1871a104fbdb91008cffaaa3
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import uuid from lxml import etree import webob from cinder import context from cinder import objects from cinder import test from cinder.tests.unit.api import fakes from cinder.tests.unit import fake_volume from cinder import volume PROJECT_ID = '88fd1da4-f464-4a87-9ce5-26f2f40743b9' def fake_volume_get(*args, **kwargs): ctx = context.RequestContext('non-admin', 'fake', False) vol = { 'id': 'fake', 'project_id': PROJECT_ID, } return fake_volume.fake_volume_obj(ctx, **vol) def fake_volume_get_all(*args, **kwargs): return objects.VolumeList(objects=[fake_volume_get()]) def app(): # no auth, just let environ['cinder.context'] pass through api = fakes.router.APIRouter() mapper = fakes.urlmap.URLMap() mapper['/v2'] = api return mapper class VolumeTenantAttributeTest(test.TestCase): def setUp(self): super(VolumeTenantAttributeTest, self).setUp() self.stubs.Set(volume.API, 'get', fake_volume_get) self.stubs.Set(volume.API, 'get_all', fake_volume_get_all) self.UUID = uuid.uuid4() def test_get_volume_allowed(self): ctx = context.RequestContext('admin', 'fake', True) req = webob.Request.blank('/v2/fake/volumes/%s' % self.UUID) req.method = 'GET' req.environ['cinder.context'] = ctx res = req.get_response(app()) vol = json.loads(res.body)['volume'] self.assertEqual(vol['os-vol-tenant-attr:tenant_id'], PROJECT_ID) def test_get_volume_unallowed(self): ctx = context.RequestContext('non-admin', 'fake', False) req = webob.Request.blank('/v2/fake/volumes/%s' % self.UUID) req.method = 'GET' req.environ['cinder.context'] = ctx res = req.get_response(app()) vol = json.loads(res.body)['volume'] self.assertNotIn('os-vol-tenant-attr:tenant_id', vol) def test_list_detail_volumes_allowed(self): ctx = context.RequestContext('admin', 'fake', True) req = webob.Request.blank('/v2/fake/volumes/detail') req.method = 'GET' req.environ['cinder.context'] = ctx res = req.get_response(app()) vol = json.loads(res.body)['volumes'] self.assertEqual(vol[0]['os-vol-tenant-attr:tenant_id'], PROJECT_ID) def test_list_detail_volumes_unallowed(self): ctx = context.RequestContext('non-admin', 'fake', False) req = webob.Request.blank('/v2/fake/volumes/detail') req.method = 'GET' req.environ['cinder.context'] = ctx res = req.get_response(app()) vol = json.loads(res.body)['volumes'] self.assertNotIn('os-vol-tenant-attr:tenant_id', vol[0]) def test_list_simple_volumes_no_tenant_id(self): ctx = context.RequestContext('admin', 'fake', True) req = webob.Request.blank('/v2/fake/volumes') req.method = 'GET' req.environ['cinder.context'] = ctx res = req.get_response(app()) vol = json.loads(res.body)['volumes'] self.assertNotIn('os-vol-tenant-attr:tenant_id', vol[0]) def test_get_volume_xml(self): ctx = context.RequestContext('admin', 'fake', True) req = webob.Request.blank('/v2/fake/volumes/%s' % self.UUID) req.method = 'GET' req.accept = 'application/xml' req.environ['cinder.context'] = ctx res = req.get_response(app()) vol = etree.XML(res.body) tenant_key = ('{http://docs.openstack.org/volume/ext/' 'volume_tenant_attribute/api/v2}tenant_id') self.assertEqual(vol.get(tenant_key), PROJECT_ID) def test_list_volumes_detail_xml(self): ctx = context.RequestContext('admin', 'fake', True) req = webob.Request.blank('/v2/fake/volumes/detail') req.method = 'GET' req.accept = 'application/xml' req.environ['cinder.context'] = ctx res = req.get_response(app()) vol = list(etree.XML(res.body))[0] tenant_key = ('{http://docs.openstack.org/volume/ext/' 'volume_tenant_attribute/api/v2}tenant_id') self.assertEqual(vol.get(tenant_key), PROJECT_ID)
36.930233
77
0.652813
f36e37e3e6683581056551db4cdac09ea6857ae5
4,664
py
Python
src/pew/pythonista/webview.py
dylanmccall/pyeverywhere
2b23b4a70d5b7b958716596688d9989afa024e8d
[ "Apache-2.0" ]
7
2016-06-08T22:18:44.000Z
2022-01-16T16:53:33.000Z
src/pew/pythonista/webview.py
dylanmccall/pyeverywhere
2b23b4a70d5b7b958716596688d9989afa024e8d
[ "Apache-2.0" ]
21
2015-09-02T19:20:16.000Z
2021-10-24T00:44:29.000Z
src/pew/pythonista/webview.py
dylanmccall/pyeverywhere
2b23b4a70d5b7b958716596688d9989afa024e8d
[ "Apache-2.0" ]
12
2018-04-24T02:54:33.000Z
2021-09-13T09:35:22.000Z
import logging import console import ui from objc_util import * NSURLCache = ObjCClass('NSURLCache') NSURLRequest = ObjCClass('NSURLRequest') NSUserDefaults = ObjCClass('NSUserDefaults') UIColor = ObjCClass('UIColor') WKWebView = ObjCClass('WKWebView') WKWebViewConfiguration = ObjCClass('WKWebViewConfiguration') USE_WKWEBKIT = False @ui.in_background def show_alert(title, message=""): console.alert(title, message) class PEWThread(object): """ PEWThread is a subclass of the Python threading.Thread object that allows it to work with some native platforms that require additional handling when interacting with the GUI. The API for PEWThread mimics threading.Thread exactly, so please refer to that for API documentation. """ def __init__(self, group=None, target=None, name=None, args=(), kwargs={}): self.target = target self.args = args self.kwargs = kwargs def start(self): self.run() @ui.in_background def run(self): self.target(*self.args, **self.kwargs) class NativeWebView(object): def __init__(self, name="WebView", size=None): self.view = ui.View() self.view.name = name self.view.background_color = 'black' if USE_WKWEBKIT: self.nativeView = ObjCInstance(self.view._objc_ptr) self.config = WKWebViewConfiguration.new().autorelease() self.config.requiresUserActionForMediaPlayback = False self.webview = WKWebView.alloc().initWithFrame_configuration_(self.nativeView.bounds(), self.config) # self.webview = WKWebView.new().autorelease() flex_width, flex_height = (1 << 1), (1 << 4) self.webview.setAutoresizingMask_(flex_width | flex_height) self.nativeView.addSubview_(self.webview) else: cache = NSURLCache.alloc().initWithMemoryCapacity_diskCapacity_diskPath_(0, 0, None) NSURLCache.setSharedURLCache_(cache) NSUserDefaults.standardUserDefaults().setInteger_forKey_(0, "WebKitCacheModelPreferenceKey") NSUserDefaults.standardUserDefaults().synchronize() # NSUserDefaults.standardUserDefaults().setBool_forKey_(False, "WebKitDiskImageCacheEnabled") # // [[NSUserDefaults standardUserDefaults] setBool:NO forKey:@"WebKitOfflineWebApplicationCacheEnabled"]; self.webview = ui.WebView() self.nativeView = ObjCInstance(self.webview).webView() self.nativeView.setMediaPlaybackRequiresUserAction_(False) self.nativeView.backgroundColor = UIColor.colorWithRed_green_blue_alpha_(0.0, 0.0, 0.0, 1.0) self.nativeView.setOpaque_(False) self.webview.delegate = self self.webview.flex = 'WH' self.view.add_subview(self.webview) def show(self): self.view.present('fullscreen', hide_title_bar=True) @on_main_thread def load_url(self, url): if USE_WKWEBKIT: if url.lower().startswith("file://"): # Sadly, this does not appear to work. I'm leaving the code in place # in case someone can figure this out, but so far all the googling # I've done suggests loadFileURL is at least somewhat broken. urldir = url lastslash = url.rfind('/') lastpart = url[lastslash:] if len(lastpart) > 0 and lastpart.find(".") != -1: urldir = url[:lastslash] self.webview.loadFileURL_allowingReadAccessToURL_(nsurl(url), nsurl(urldir)) else: self.webview.loadRequest_(NSURLRequest.requestWithURL_(nsurl(url))) else: self.webview.load_url(url) def reload(self): self.webview.reload() def get_user_agent(self): return "" def set_user_agent(self, user_agent): pass def evaluate_javascript(self, js): if USE_WKWEBKIT: self.webview.evaluateJavaScript_completionHandler_(js, 0) else: self.webview.evaluate_javascript(js) def webview_should_start_load(self, webview, url, nav_type): #self.evaluate_javascript("$('#search_bar').val('%s');" % url) return self.webview_should_start_load(self, url, nav_type) def webview_did_start_load(self, webview): return self.webview_did_start_load(self) def webview_did_finish_load(self, webview): return self.webview_did_finish_load(self) def webview_did_fail_load(self, webview, error_code, error_msg): return self.webview_did_fail_load(self, error_code, error_msg)
37.918699
121
0.661878
a456a31206cc3dc35f20b96d699e4213ec16cd0f
1,942
py
Python
WEEKS/CD_Sata-Structures/_RESOURCES/python-prac/Overflow/coding-problems-master/Linked_Lists/max_difference_subll.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
5
2021-06-02T23:44:25.000Z
2021-12-27T16:21:57.000Z
WEEKS/CD_Sata-Structures/_RESOURCES/python-prac/Overflow/coding-problems-master/Linked_Lists/max_difference_subll.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
22
2021-05-31T01:33:25.000Z
2021-10-18T18:32:39.000Z
WEEKS/CD_Sata-Structures/_RESOURCES/python-prac/Overflow/coding-problems-master/Linked_Lists/max_difference_subll.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
3
2021-06-19T03:37:47.000Z
2021-08-31T00:49:51.000Z
""" Maximum Difference Sub-Linked List Given a linked list of integers, find and return the sub-linked list of k consecutive elements where the difference between the smallest element and the largest element is the largest possible. If there are several sub-linked lists of k elements in items so that all these sub-linked list have the same largest possible difference, return the sub-linked list that occurs first. Input: 42 -> 17 -> 99 -> 12 -> 65 -> 77 -> 11 -> 26, 5 Output: 99 -> 12 -> 65 -> 77 -> 11 ========================================= Using 2 pointers (start and end), traverse the linked list and compare the results. But first, move the end pointer for k places. Time Complexity: O(N) Space Complexity: O(1) """ ############ # Solution # ############ # import ListNode class from ll_helpers.py from ll_helpers import ListNode def max_diference_subll(ll, k): if ll is None: return None start, end = ll, ll # move the end pointer for k-1 places for i in range(1, k): end = end.next if end is None: return None result_start, result_end = start, end while end is not None: # compare the result with the current sub-linked list if abs(result_start.val - result_end.val) < abs(start.val - end.val): result_start, result_end = start, end # move the both pointers start = start.next end = end.next # cut the original linked list result_end.next = None return result_start ########### # Testing # ########### # import build_ll and print_ll methods from ll_helpers.py from ll_helpers import build_ll, print_ll # Test 1 # Correct result => 99 -> 12 -> 65 -> 77 -> 11 print_ll(max_diference_subll(build_ll([42, 17, 99, 12, 65, 77, 11, 26]), 5)) # Test 2 # Correct result => 14 -> 58 -> 11 -> 63 -> 77 print_ll(max_diference_subll(build_ll([36, 14, 58, 11, 63, 77, 46, 32, 87]), 5))
27.742857
100
0.636972
a94cd8cfe35c5f03365cfdd83cb4345207fd7f0b
3,644
py
Python
sdk/python/pulumi_azure_native/machinelearningservices/list_machine_learning_compute_nodes.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/machinelearningservices/list_machine_learning_compute_nodes.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/machinelearningservices/list_machine_learning_compute_nodes.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs __all__ = [ 'ListMachineLearningComputeNodesResult', 'AwaitableListMachineLearningComputeNodesResult', 'list_machine_learning_compute_nodes', ] @pulumi.output_type class ListMachineLearningComputeNodesResult: """ Compute node information related to a AmlCompute. """ def __init__(__self__, compute_type=None, next_link=None, nodes=None): if compute_type and not isinstance(compute_type, str): raise TypeError("Expected argument 'compute_type' to be a str") pulumi.set(__self__, "compute_type", compute_type) if next_link and not isinstance(next_link, str): raise TypeError("Expected argument 'next_link' to be a str") pulumi.set(__self__, "next_link", next_link) if nodes and not isinstance(nodes, list): raise TypeError("Expected argument 'nodes' to be a list") pulumi.set(__self__, "nodes", nodes) @property @pulumi.getter(name="computeType") def compute_type(self) -> str: """ The type of compute Expected value is 'AmlCompute'. """ return pulumi.get(self, "compute_type") @property @pulumi.getter(name="nextLink") def next_link(self) -> str: """ The continuation token. """ return pulumi.get(self, "next_link") @property @pulumi.getter def nodes(self) -> Sequence['outputs.AmlComputeNodeInformationResponseResult']: """ The collection of returned AmlCompute nodes details. """ return pulumi.get(self, "nodes") class AwaitableListMachineLearningComputeNodesResult(ListMachineLearningComputeNodesResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListMachineLearningComputeNodesResult( compute_type=self.compute_type, next_link=self.next_link, nodes=self.nodes) def list_machine_learning_compute_nodes(compute_name: Optional[str] = None, resource_group_name: Optional[str] = None, workspace_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListMachineLearningComputeNodesResult: """ Compute node information related to a AmlCompute. API Version: 2021-01-01. :param str compute_name: Name of the Azure Machine Learning compute. :param str resource_group_name: Name of the resource group in which workspace is located. :param str workspace_name: Name of Azure Machine Learning workspace. """ __args__ = dict() __args__['computeName'] = compute_name __args__['resourceGroupName'] = resource_group_name __args__['workspaceName'] = workspace_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:machinelearningservices:listMachineLearningComputeNodes', __args__, opts=opts, typ=ListMachineLearningComputeNodesResult).value return AwaitableListMachineLearningComputeNodesResult( compute_type=__ret__.compute_type, next_link=__ret__.next_link, nodes=__ret__.nodes)
37.183673
177
0.679199
0067fa657315e6c8f82661af4c3209cb30e10ee2
33,002
py
Python
pysolr.py
aptivate/pysolr
fdc88353e028d8668d389d9dca4003509726904c
[ "BSD-3-Clause" ]
null
null
null
pysolr.py
aptivate/pysolr
fdc88353e028d8668d389d9dca4003509726904c
[ "BSD-3-Clause" ]
null
null
null
pysolr.py
aptivate/pysolr
fdc88353e028d8668d389d9dca4003509726904c
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import datetime import logging import re import requests import time import types import ast try: # Prefer lxml, if installed. from lxml import etree as ET except ImportError: try: from xml.etree import cElementTree as ET except ImportError: raise ImportError("No suitable ElementTree implementation was found.") try: # Prefer simplejson, if installed. import simplejson as json except ImportError: import json try: # Python 3.X from urllib.parse import urlencode except ImportError: # Python 2.X from urllib import urlencode try: # Python 3.X import html.entities as htmlentities except ImportError: # Python 2.X import htmlentitydefs as htmlentities try: # Python 2.X unicode_char = unichr except NameError: # Python 3.X unicode_char = chr # Ugh. long = int __author__ = 'Daniel Lindsley, Joseph Kocherhans, Jacob Kaplan-Moss' __all__ = ['Solr'] __version__ = (3, 1, 0) def get_version(): return "%s.%s.%s" % __version__[:3] DATETIME_REGEX = re.compile('^(?P<year>\d{4})-(?P<month>\d{2})-(?P<day>\d{2})T(?P<hour>\d{2}):(?P<minute>\d{2}):(?P<second>\d{2})(\.\d+)?Z$') class NullHandler(logging.Handler): def emit(self, record): pass # Add the ``NullHandler`` to avoid logging by default while still allowing # others to attach their own handlers. LOG = logging.getLogger('pysolr') h = NullHandler() LOG.addHandler(h) # For debugging... if False: LOG.setLevel(logging.DEBUG) stream = logging.StreamHandler() LOG.addHandler(stream) def is_py3(): try: basestring return False except NameError: return True IS_PY3 = is_py3() def force_unicode(value): """ Forces a bytestring to become a Unicode string. """ if IS_PY3: # Python 3.X if isinstance(value, bytes): value = value.decode('utf-8', errors='replace') elif not isinstance(value, str): value = str(value) else: # Python 2.X if isinstance(value, str): value = value.decode('utf-8', 'replace') elif not isinstance(value, basestring): value = unicode(value) return value def force_bytes(value): """ Forces a Unicode string to become a bytestring. """ if IS_PY3: if isinstance(value, str): value = value.encode('utf-8', 'backslashreplace') else: if isinstance(value, unicode): value = value.encode('utf-8') return value def unescape_html(text): """ Removes HTML or XML character references and entities from a text string. @param text The HTML (or XML) source text. @return The plain text, as a Unicode string, if necessary. Source: http://effbot.org/zone/re-sub.htm#unescape-html """ def fixup(m): text = m.group(0) if text[:2] == "&#": # character reference try: if text[:3] == "&#x": return unicode_char(int(text[3:-1], 16)) else: return unicode_char(int(text[2:-1])) except ValueError: pass else: # named entity try: text = unicode_char(htmlentities.name2codepoint[text[1:-1]]) except KeyError: pass return text # leave as is return re.sub("&#?\w+;", fixup, text) def safe_urlencode(params, doseq=0): """ UTF-8-safe version of safe_urlencode The stdlib safe_urlencode prior to Python 3.x chokes on UTF-8 values which can't fail down to ascii. """ if IS_PY3: return urlencode(params, doseq) if hasattr(params, "items"): params = params.items() new_params = list() for k, v in params: k = k.encode("utf-8") if isinstance(v, (list, tuple)): new_params.append((k, [force_bytes(i) for i in v])) else: new_params.append((k, force_bytes(v))) return urlencode(new_params, doseq) def is_valid_xml_char_ordinal(i): """ Defines whether char is valid to use in xml document XML standard defines a valid char as:: Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF] """ return ( # conditions ordered by presumed frequency 0x20 <= i <= 0xD7FF or i in (0x9, 0xA, 0xD) or 0xE000 <= i <= 0xFFFD or 0x10000 <= i <= 0x10FFFF ) def clean_xml_string(s): """ Cleans string from invalid xml chars Solution was found there:: http://stackoverflow.com/questions/8733233/filtering-out-certain-bytes-in-python """ return ''.join(c for c in s if is_valid_xml_char_ordinal(ord(c))) class SolrError(Exception): pass class Results(object): def __init__(self, docs, hits, highlighting=None, facets=None, spellcheck=None, stats=None, qtime=None, debug=None, grouped=None): self.docs = docs self.hits = hits self.highlighting = highlighting or {} self.facets = facets or {} self.spellcheck = spellcheck or {} self.stats = stats or {} self.qtime = qtime self.debug = debug or {} self.grouped = grouped or {} def __len__(self): return len(self.docs) def __iter__(self): return iter(self.docs) class Solr(object): """ The main object for working with Solr. Optionally accepts ``decoder`` for an alternate JSON decoder instance. Default is ``json.JSONDecoder()``. Optionally accepts ``timeout`` for wait seconds until giving up on a request. Default is ``60`` seconds. Usage:: solr = pysolr.Solr('http://localhost:8983/solr') # With a 10 second timeout. solr = pysolr.Solr('http://localhost:8983/solr', timeout=10) """ def __init__(self, url, decoder=None, timeout=60): self.decoder = decoder or json.JSONDecoder() self.url = url self.timeout = timeout self.log = self._get_log() self.session = requests.Session() self.session.stream = False def _get_log(self): return LOG def _create_full_url(self, path=''): if len(path): return '/'.join([self.url.rstrip('/'), path.lstrip('/')]) # No path? No problem. return self.url def _send_request(self, method, path='', body=None, headers=None, files=None): url = self._create_full_url(path) method = method.lower() log_body = body if headers is None: headers = {} if log_body is None: log_body = '' elif not isinstance(log_body, str): log_body = repr(body) self.log.debug("Starting request to '%s' (%s) with body '%s'...", url, method, log_body[:10]) start_time = time.time() try: requests_method = getattr(self.session, method, 'get') except AttributeError as err: raise SolrError("Unable to send HTTP method '{0}.".format(method)) try: # Everything except the body can be Unicode. The body must be # encoded to bytes to work properly on Py3. bytes_body = body if bytes_body is not None: bytes_body = force_bytes(body) if not 'content-type' in [key.lower() for key in headers.keys()]: headers['Content-type'] = 'application/xml; charset=UTF-8' resp = requests_method(url, data=bytes_body, headers=headers, files=files, timeout=self.timeout) except requests.exceptions.Timeout as err: error_message = "Connection to server '%s' timed out: %s" self.log.error(error_message, url, err, exc_info=True) raise SolrError(error_message % (url, err)) except requests.exceptions.ConnectionError as err: error_message = "Failed to connect to server at '%s', are you sure that URL is correct? Checking it in a browser might help: %s" params = (url, err) self.log.error(error_message, *params, exc_info=True) raise SolrError(error_message % params) end_time = time.time() self.log.info("Finished '%s' (%s) with body '%s' in %0.3f seconds.", url, method, log_body[:10], end_time - start_time) if int(resp.status_code) != 200: error_message = self._extract_error(resp) self.log.error(error_message, extra={'data': {'headers': resp.headers, 'response': resp.content}}) raise SolrError(error_message) return force_unicode(resp.content) def _select(self, params): # specify json encoding of results params['wt'] = 'json' params_encoded = safe_urlencode(params, True) if len(params_encoded) < 1024: # Typical case. path = 'select/?%s' % params_encoded return self._send_request('get', path) else: # Handles very long queries by submitting as a POST. path = 'select/' headers = { 'Content-type': 'application/x-www-form-urlencoded; charset=utf-8', } return self._send_request('post', path, body=params_encoded, headers=headers) def _mlt(self, params): # specify json encoding of results params['wt'] = 'json' path = 'mlt/?%s' % safe_urlencode(params, True) return self._send_request('get', path) def _suggest_terms(self, params): # specify json encoding of results params['wt'] = 'json' path = 'terms/?%s' % safe_urlencode(params, True) return self._send_request('get', path) def _update(self, message, clean_ctrl_chars=True, commit=True, waitFlush=None, waitSearcher=None): """ Posts the given xml message to http://<self.url>/update and returns the result. Passing `sanitize` as False will prevent the message from being cleaned of control characters (default True). This is done by default because these characters would cause Solr to fail to parse the XML. Only pass False if you're positive your data is clean. """ path = 'update/' # Per http://wiki.apache.org/solr/UpdateXmlMessages, we can append a # ``commit=true`` to the URL and have the commit happen without a # second request. query_vars = [] if commit is not None: query_vars.append('commit=%s' % str(bool(commit)).lower()) if waitFlush is not None: query_vars.append('waitFlush=%s' % str(bool(waitFlush)).lower()) if waitSearcher is not None: query_vars.append('waitSearcher=%s' % str(bool(waitSearcher)).lower()) if query_vars: path = '%s?%s' % (path, '&'.join(query_vars)) # Clean the message of ctrl characters. if clean_ctrl_chars: message = sanitize(message) return self._send_request('post', path, message, {'Content-type': 'text/xml; charset=utf-8'}) def _extract_error(self, resp): """ Extract the actual error message from a solr response. """ reason = resp.headers.get('reason', None) full_html = None if reason is None: reason, full_html = self._scrape_response(resp.headers, resp.content) msg = "[Reason: %s]" % reason if reason is None: msg += "\n%s" % unescape_html(full_html) return msg def _scrape_response(self, headers, response): """ Scrape the html response. """ # identify the responding server server_type = None server_string = headers.get('server', '') if server_string and 'jetty' in server_string.lower(): server_type = 'jetty' if server_string and 'coyote' in server_string.lower(): import lxml.html server_type = 'tomcat' reason = None full_html = '' dom_tree = None if server_type == 'tomcat': # Tomcat doesn't produce a valid XML response soup = lxml.html.fromstring(response) body_node = soup.find('body') p_nodes = body_node.cssselect('p') for p_node in p_nodes: children = p_node.getchildren() if len(children) >= 2 and 'message' in children[0].text.lower(): reason = children[1].text if len(children) >= 2 and hasattr(children[0], 'renderContents'): if 'description' in children[0].renderContents().lower(): if reason is None: reason = children[1].renderContents() else: reason += ", " + children[1].renderContents() if reason is None: from lxml.html.clean import clean_html full_html = clean_html(response) else: # Let's assume others do produce a valid XML response try: dom_tree = ET.fromstring(response) reason_node = None # html page might be different for every server if server_type == 'jetty': reason_node = dom_tree.find('body/pre') else: reason_node = dom_tree.find('head/title') if reason_node is not None: reason = reason_node.text if reason is None: full_html = ET.tostring(dom_tree) except SyntaxError as err: full_html = "%s" % response full_html = full_html.replace('\n', '') full_html = full_html.replace('\r', '') full_html = full_html.replace('<br/>', '') full_html = full_html.replace('<br />', '') full_html = full_html.strip() return reason, full_html # Conversion ############################################################# def _from_python(self, value): """ Converts python values to a form suitable for insertion into the xml we send to solr. """ if hasattr(value, 'strftime'): if hasattr(value, 'hour'): value = "%sZ" % value.isoformat() else: value = "%sT00:00:00Z" % value.isoformat() elif isinstance(value, bool): if value: value = 'true' else: value = 'false' else: if IS_PY3: # Python 3.X if isinstance(value, bytes): value = str(value, errors='replace') else: # Python 2.X if isinstance(value, str): value = unicode(value, errors='replace') value = "{0}".format(value) return clean_xml_string(value) def _to_python(self, value): """ Converts values from Solr to native Python values. """ if isinstance(value, (int, float, long, complex)): return value if isinstance(value, (list, tuple)): value = value[0] if value == 'true': return True elif value == 'false': return False is_string = False if IS_PY3: if isinstance(value, bytes): value = force_unicode(value) if isinstance(value, str): is_string = True else: if isinstance(value, str): value = force_unicode(value) if isinstance(value, basestring): is_string = True if is_string == True: possible_datetime = DATETIME_REGEX.search(value) if possible_datetime: date_values = possible_datetime.groupdict() for dk, dv in date_values.items(): date_values[dk] = int(dv) return datetime.datetime(date_values['year'], date_values['month'], date_values['day'], date_values['hour'], date_values['minute'], date_values['second']) try: # This is slightly gross but it's hard to tell otherwise what the # string's original type might have been. return ast.literal_eval(value) except (ValueError, SyntaxError): # If it fails, continue on. pass return value def _is_null_value(self, value): """ Check if a given value is ``null``. Criteria for this is based on values that shouldn't be included in the Solr ``add`` request at all. """ if value is None: return True if IS_PY3: # Python 3.X if isinstance(value, str) and len(value) == 0: return True else: # Python 2.X if isinstance(value, basestring) and len(value) == 0: return True # TODO: This should probably be removed when solved in core Solr level? return False # API Methods ############################################################ def search(self, q, **kwargs): """ Performs a search and returns the results. Requires a ``q`` for a string version of the query to run. Optionally accepts ``**kwargs`` for additional options to be passed through the Solr URL. Usage:: # All docs. results = solr.search('*:*') # Search with highlighting. results = solr.search('ponies', **{ 'hl': 'true', 'hl.fragsize': 10, }) """ params = {'q': q} params.update(kwargs) response = self._select(params) # TODO: make result retrieval lazy and allow custom result objects result = self.decoder.decode(response) result_kwargs = {} if result.get('debug'): result_kwargs['debug'] = result['debug'] if result.get('highlighting'): result_kwargs['highlighting'] = result['highlighting'] if result.get('facet_counts'): result_kwargs['facets'] = result['facet_counts'] if result.get('spellcheck'): result_kwargs['spellcheck'] = result['spellcheck'] if result.get('stats'): result_kwargs['stats'] = result['stats'] if 'QTime' in result.get('responseHeader', {}): result_kwargs['qtime'] = result['responseHeader']['QTime'] if result.get('grouped'): result_kwargs['grouped'] = result['grouped'] response = result.get('response') or {} numFound = response.get('numFound', 0) self.log.debug("Found '%s' search results.", numFound) return Results(response.get('docs', ()), numFound, **result_kwargs) def more_like_this(self, q, mltfl, **kwargs): """ Finds and returns results similar to the provided query. Requires Solr 1.3+. Usage:: similar = solr.more_like_this('id:doc_234', 'text') """ params = { 'q': q, 'mlt.fl': mltfl, } params.update(kwargs) response = self._mlt(params) result = self.decoder.decode(response) if result['response'] is None: result['response'] = { 'docs': [], 'numFound': 0, } self.log.debug("Found '%s' MLT results.", result['response']['numFound']) return Results(result['response']['docs'], result['response']['numFound']) def suggest_terms(self, fields, prefix, **kwargs): """ Accepts a list of field names and a prefix Returns a dictionary keyed on field name containing a list of ``(term, count)`` pairs Requires Solr 1.4+. """ params = { 'terms.fl': fields, 'terms.prefix': prefix, } params.update(kwargs) response = self._suggest_terms(params) result = self.decoder.decode(response) terms = result.get("terms", {}) res = {} # in Solr 1.x the value of terms is a flat list: # ["field_name", ["dance",23,"dancers",10,"dancing",8,"dancer",6]] # # in Solr 3.x the value of terms is a dict: # {"field_name": ["dance",23,"dancers",10,"dancing",8,"dancer",6]} if isinstance(terms, (list, tuple)): terms = dict(zip(terms[0::2], terms[1::2])) for field, values in terms.items(): tmp = list() while values: tmp.append((values.pop(0), values.pop(0))) res[field] = tmp self.log.debug("Found '%d' Term suggestions results.", sum(len(j) for i, j in res.items())) return res def _build_doc(self, doc, boost=None): doc_elem = ET.Element('doc') for key, value in doc.items(): if key == 'boost': doc_elem.set('boost', force_unicode(value)) continue # To avoid multiple code-paths we'd like to treat all of our values as iterables: if isinstance(value, (list, tuple)): values = value else: values = (value, ) for bit in values: if self._is_null_value(bit): continue attrs = {'name': key} if boost and key in boost: attrs['boost'] = force_unicode(boost[key]) field = ET.Element('field', **attrs) field.text = self._from_python(bit) doc_elem.append(field) return doc_elem def add(self, docs, commit=True, boost=None, commitWithin=None, waitFlush=None, waitSearcher=None): """ Adds or updates documents. Requires ``docs``, which is a list of dictionaries. Each key is the field name and each value is the value to index. Optionally accepts ``commit``. Default is ``True``. Optionally accepts ``boost``. Default is ``None``. Optionally accepts ``commitWithin``. Default is ``None``. Optionally accepts ``waitFlush``. Default is ``None``. Optionally accepts ``waitSearcher``. Default is ``None``. Usage:: solr.add([ { "id": "doc_1", "title": "A test document", }, { "id": "doc_2", "title": "The Banana: Tasty or Dangerous?", }, ]) """ start_time = time.time() self.log.debug("Starting to build add request...") message = ET.Element('add') if commitWithin: message.set('commitWithin', commitWithin) for doc in docs: message.append(self._build_doc(doc, boost=boost)) # This returns a bytestring. Ugh. m = ET.tostring(message, encoding='utf-8') # Convert back to Unicode please. m = force_unicode(m) end_time = time.time() self.log.debug("Built add request of %s docs in %0.2f seconds.", len(message), end_time - start_time) return self._update(m, commit=commit, waitFlush=waitFlush, waitSearcher=waitSearcher) def delete(self, id=None, q=None, commit=True, waitFlush=None, waitSearcher=None): """ Deletes documents. Requires *either* ``id`` or ``query``. ``id`` is if you know the specific document id to remove. ``query`` is a Lucene-style query indicating a collection of documents to delete. Optionally accepts ``commit``. Default is ``True``. Optionally accepts ``waitFlush``. Default is ``None``. Optionally accepts ``waitSearcher``. Default is ``None``. Usage:: solr.delete(id='doc_12') solr.delete(q='*:*') """ if id is None and q is None: raise ValueError('You must specify "id" or "q".') elif id is not None and q is not None: raise ValueError('You many only specify "id" OR "q", not both.') elif id is not None: m = '<delete><id>%s</id></delete>' % id elif q is not None: m = '<delete><query>%s</query></delete>' % q return self._update(m, commit=commit, waitFlush=waitFlush, waitSearcher=waitSearcher) def commit(self, waitFlush=None, waitSearcher=None, expungeDeletes=None): """ Forces Solr to write the index data to disk. Optionally accepts ``expungeDeletes``. Default is ``None``. Optionally accepts ``waitFlush``. Default is ``None``. Optionally accepts ``waitSearcher``. Default is ``None``. Usage:: solr.commit() """ if expungeDeletes is not None: msg = '<commit expungeDeletes="%s" />' % str(bool(expungeDeletes)).lower() else: msg = '<commit />' return self._update(msg, waitFlush=waitFlush, waitSearcher=waitSearcher) def optimize(self, waitFlush=None, waitSearcher=None, maxSegments=None): """ Tells Solr to streamline the number of segments used, essentially a defragmentation operation. Optionally accepts ``maxSegments``. Default is ``None``. Optionally accepts ``waitFlush``. Default is ``None``. Optionally accepts ``waitSearcher``. Default is ``None``. Usage:: solr.optimize() """ if maxSegments: msg = '<optimize maxSegments="%d" />' % maxSegments else: msg = '<optimize />' return self._update(msg, waitFlush=waitFlush, waitSearcher=waitSearcher) def extract(self, file_obj, extractOnly=True, **kwargs): """ POSTs a file to the Solr ExtractingRequestHandler so rich content can be processed using Apache Tika. See the Solr wiki for details: http://wiki.apache.org/solr/ExtractingRequestHandler The ExtractingRequestHandler has a very simply model: it extracts contents and metadata from the uploaded file and inserts it directly into the index. This is rarely useful as it allows no way to store additional data or otherwise customize the record. Instead, by default we'll use the extract-only mode to extract the data without indexing it so the caller has the opportunity to process it as appropriate; call with ``extractOnly=False`` if you want to insert with no additional processing. Returns None if metadata cannot be extracted; otherwise returns a dictionary containing at least two keys: :contents: Extracted full-text content, if applicable :metadata: key:value pairs of text strings """ if not hasattr(file_obj, "name"): raise ValueError("extract() requires file-like objects which have a defined name property") params = { "extractOnly": "true" if extractOnly else "false", "lowernames": "true", "wt": "json", } params.update(kwargs) try: # We'll provide the file using its true name as Tika may use that # as a file type hint: resp = self._send_request('post', 'update/extract', body=params, files={'file': (file_obj.name, file_obj)}) except (IOError, SolrError) as err: self.log.error("Failed to extract document metadata: %s", err, exc_info=True) raise try: data = json.loads(resp) except ValueError as err: self.log.error("Failed to load JSON response: %s", err, exc_info=True) raise data['contents'] = data.pop(file_obj.name, None) data['metadata'] = metadata = {} raw_metadata = data.pop("%s_metadata" % file_obj.name, None) if raw_metadata: # The raw format is somewhat annoying: it's a flat list of # alternating keys and value lists while raw_metadata: metadata[raw_metadata.pop()] = raw_metadata.pop() return data class SolrCoreAdmin(object): """ Handles core admin operations: see http://wiki.apache.org/solr/CoreAdmin Operations offered by Solr are: 1. STATUS 2. CREATE 3. RELOAD 4. RENAME 5. ALIAS 6. SWAP 7. UNLOAD 8. LOAD (not currently implemented) """ def __init__(self, url, *args, **kwargs): super(SolrCoreAdmin, self).__init__(*args, **kwargs) self.url = url def _get_url(self, url, params={}, headers={}): resp = requests.get(url, params=params, headers=headers) if resp.status_code != requests.codes.ok: resp.raise_for_status() return force_unicode(resp.content) def status(self, core=None): """http://wiki.apache.org/solr/CoreAdmin#head-9be76f5a459882c5c093a7a1456e98bea7723953""" params = { 'action': 'STATUS', } if core is not None: params.update(core=core) return self._get_url(self.url, params=params) def create(self, name, instance_dir=None, config='solrconfig.xml', schema='schema.xml'): """http://wiki.apache.org/solr/CoreAdmin#head-7ca1b98a9df8b8ca0dcfbfc49940ed5ac98c4a08""" params = { 'action': 'CREATE', 'name': name, 'config': config, 'schema': schema, } if instance_dir is None: params.update(instanceDir=name) else: params.update(instanceDir=instance_dir) return self._get_url(self.url, params=params) def reload(self, core): """http://wiki.apache.org/solr/CoreAdmin#head-3f125034c6a64611779442539812067b8b430930""" params = { 'action': 'RELOAD', 'core': core, } return self._get_url(self.url, params=params) def rename(self, core, other): """http://wiki.apache.org/solr/CoreAdmin#head-9473bee1abed39e8583ba45ef993bebb468e3afe""" params = { 'action': 'RENAME', 'core': core, 'other': other, } return self._get_url(self.url, params=params) def swap(self, core, other): """http://wiki.apache.org/solr/CoreAdmin#head-928b872300f1b66748c85cebb12a59bb574e501b""" params = { 'action': 'SWAP', 'core': core, 'other': other, } return self._get_url(self.url, params=params) def unload(self, core): """http://wiki.apache.org/solr/CoreAdmin#head-f5055a885932e2c25096a8856de840b06764d143""" params = { 'action': 'UNLOAD', 'core': core, } return self._get_url(self.url, params=params) def load(self, core): raise NotImplementedError('Solr 1.4 and below do not support this operation.') # Using two-tuples to preserve order. REPLACEMENTS = ( # Nuke nasty control characters. (b'\x00', b''), # Start of heading (b'\x01', b''), # Start of heading (b'\x02', b''), # Start of text (b'\x03', b''), # End of text (b'\x04', b''), # End of transmission (b'\x05', b''), # Enquiry (b'\x06', b''), # Acknowledge (b'\x07', b''), # Ring terminal bell (b'\x08', b''), # Backspace (b'\x0b', b''), # Vertical tab (b'\x0c', b''), # Form feed (b'\x0e', b''), # Shift out (b'\x0f', b''), # Shift in (b'\x10', b''), # Data link escape (b'\x11', b''), # Device control 1 (b'\x12', b''), # Device control 2 (b'\x13', b''), # Device control 3 (b'\x14', b''), # Device control 4 (b'\x15', b''), # Negative acknowledge (b'\x16', b''), # Synchronous idle (b'\x17', b''), # End of transmission block (b'\x18', b''), # Cancel (b'\x19', b''), # End of medium (b'\x1a', b''), # Substitute character (b'\x1b', b''), # Escape (b'\x1c', b''), # File separator (b'\x1d', b''), # Group separator (b'\x1e', b''), # Record separator (b'\x1f', b''), # Unit separator ) def sanitize(data): fixed_string = force_bytes(data) for bad, good in REPLACEMENTS: fixed_string = fixed_string.replace(bad, good) return force_unicode(fixed_string)
31.251894
170
0.56039
5276e555943cfbe2a5abc9fef47679f0415d5d72
20,509
py
Python
src/sentry/migrations/0052_migrate_project_members.py
Casecommons/sentry
b69a2373a658c5c775671fe9985c3fa4f2eafcfd
[ "BSD-3-Clause" ]
null
null
null
src/sentry/migrations/0052_migrate_project_members.py
Casecommons/sentry
b69a2373a658c5c775671fe9985c3fa4f2eafcfd
[ "BSD-3-Clause" ]
null
null
null
src/sentry/migrations/0052_migrate_project_members.py
Casecommons/sentry
b69a2373a658c5c775671fe9985c3fa4f2eafcfd
[ "BSD-3-Clause" ]
null
null
null
# encoding: utf-8 import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): "Write your forwards methods here." for project in orm['sentry.Project'].objects.all(): if not project.owner: continue if not project.team: team = orm['sentry.Team'].objects.create( owner=project.owner, slug=project.slug, name=project.name, ) project.team = team project.save() else: team = project.team for member in project.member_set.all(): if not member.user: continue tm = orm['sentry.TeamMember'].objects.create( team=team, user=member.user, ) key = orm['sentry.ProjectKey'].objects.get_or_create( project=project, user=tm.user, )[0] def backwards(self, orm): "Write your backwards methods here." models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'sentry.user': { 'Meta': {'object_name': 'User', 'db_table': "'auth_user'"}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 4, 5, 3, 30, 7, 526220)'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 4, 5, 3, 30, 7, 526083)'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'sentry.event': { 'Meta': {'unique_together': "(('project', 'event_id'),)", 'object_name': 'Event', 'db_table': "'sentry_message'"}, 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'culprit': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True'}), 'data': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'event_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'db_column': "'message_id'"}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'event_set'", 'null': 'True', 'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'default': '40', 'db_index': 'True', 'blank': 'True'}), 'logger': ('django.db.models.fields.CharField', [], {'default': "'root'", 'max_length': '64', 'db_index': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'server_name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'db_index': 'True'}), 'site': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'db_index': 'True'}), 'time_spent': ('django.db.models.fields.FloatField', [], {'null': 'True'}) }, 'sentry.filtervalue': { 'Meta': {'unique_together': "(('project', 'key', 'value'),)", 'object_name': 'FilterValue'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'sentry.group': { 'Meta': {'unique_together': "(('project', 'logger', 'culprit', 'checksum'),)", 'object_name': 'Group', 'db_table': "'sentry_groupedmessage'"}, 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'culprit': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True'}), 'data': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'default': '40', 'db_index': 'True', 'blank': 'True'}), 'logger': ('django.db.models.fields.CharField', [], {'default': "'root'", 'max_length': '64', 'db_index': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'score': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1', 'db_index': 'True'}), 'views': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sentry.View']", 'symmetrical': 'False', 'blank': 'True'}) }, 'sentry.groupbookmark': { 'Meta': {'unique_together': "(('project', 'user', 'group'),)", 'object_name': 'GroupBookmark'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'bookmark_set'", 'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'bookmark_set'", 'to': "orm['sentry.Project']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sentry_bookmark_set'", 'to': "orm['sentry.User']"}) }, 'sentry.groupmeta': { 'Meta': {'unique_together': "(('group', 'key'),)", 'object_name': 'GroupMeta'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'value': ('django.db.models.fields.TextField', [], {}) }, 'sentry.messagecountbyminute': { 'Meta': {'unique_together': "(('project', 'group', 'date'),)", 'object_name': 'MessageCountByMinute'}, 'date': ('django.db.models.fields.DateTimeField', [], {}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'sentry.messagefiltervalue': { 'Meta': {'unique_together': "(('project', 'key', 'value', 'group'),)", 'object_name': 'MessageFilterValue'}, 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'sentry.messageindex': { 'Meta': {'unique_together': "(('column', 'value', 'object_id'),)", 'object_name': 'MessageIndex'}, 'column': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'sentry.option': { 'Meta': {'object_name': 'Option'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}), 'value': ('picklefield.fields.PickledObjectField', [], {}) }, 'sentry.pendingteammember': { 'Meta': {'unique_together': "(('team', 'email'),)", 'object_name': 'PendingTeamMember'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'pending_member_set'", 'to': "orm['sentry.Team']"}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'sentry.project': { 'Meta': {'object_name': 'Project'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sentry_owned_project_set'", 'null': 'True', 'to': "orm['sentry.User']"}), 'public': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Team']", 'null': 'True'}) }, 'sentry.projectcountbyminute': { 'Meta': {'unique_together': "(('project', 'date'),)", 'object_name': 'ProjectCountByMinute'}, 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'sentry.projectdomain': { 'Meta': {'unique_together': "(('project', 'domain'),)", 'object_name': 'ProjectDomain'}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'domain_set'", 'to': "orm['sentry.Project']"}) }, 'sentry.projectkey': { 'Meta': {'object_name': 'ProjectKey'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'key_set'", 'to': "orm['sentry.Project']"}), 'public_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'secret_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.User']", 'null': 'True'}) }, 'sentry.projectmember': { 'Meta': {'unique_together': "(('project', 'user'),)", 'object_name': 'ProjectMember'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'member_set'", 'to': "orm['sentry.Project']"}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sentry_project_set'", 'to': "orm['sentry.User']"}) }, 'sentry.projectoption': { 'Meta': {'unique_together': "(('project', 'key'),)", 'object_name': 'ProjectOption', 'db_table': "'sentry_projectoptions'"}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']"}), 'value': ('picklefield.fields.PickledObjectField', [], {}) }, 'sentry.searchdocument': { 'Meta': {'unique_together': "(('project', 'group'),)", 'object_name': 'SearchDocument'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_changed': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']"}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'total_events': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}) }, 'sentry.searchtoken': { 'Meta': {'unique_together': "(('document', 'field', 'token'),)", 'object_name': 'SearchToken'}, 'document': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'token_set'", 'to': "orm['sentry.SearchDocument']"}), 'field': ('django.db.models.fields.CharField', [], {'default': "'text'", 'max_length': '64'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}), 'token': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'sentry.team': { 'Meta': {'object_name': 'Team'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.User']"}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}) }, 'sentry.teammember': { 'Meta': {'unique_together': "(('team', 'user'),)", 'object_name': 'TeamMember'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'member_set'", 'to': "orm['sentry.Team']"}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sentry_teammember_set'", 'to': "orm['sentry.User']"}) }, 'sentry.view': { 'Meta': {'object_name': 'View'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'path': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'verbose_name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'verbose_name_plural': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}) } } complete_apps = ['sentry']
75.959259
182
0.550539
90b74a1dee5d5c5926f1deeea4ee6a3ccd96d768
365
py
Python
CPFrontend/common/MachineConfig.py
Conpancol/PyHeroku
16b157a23c77cd794d246a56cf8575766e48689c
[ "MIT" ]
null
null
null
CPFrontend/common/MachineConfig.py
Conpancol/PyHeroku
16b157a23c77cd794d246a56cf8575766e48689c
[ "MIT" ]
null
null
null
CPFrontend/common/MachineConfig.py
Conpancol/PyHeroku
16b157a23c77cd794d246a56cf8575766e48689c
[ "MIT" ]
null
null
null
import os class MachineConfigurator: """configurations""" def __init__(self): self.backend = "" self.local_backend = 'http://localhost:4567' def getBackend(self): envvar = os.getenv('BACKEND_URL') print(envvar) if envvar is None: return self.local_backend else: return envvar
19.210526
52
0.580822
67a352ce7f5efee2457a851c9663b9fc0de6d21b
6,254
py
Python
tools/pytest/testing/test_assertinterpret.py
servo-wpt-sync/web-platform-tests
56e2df852354bc2b89e6d17a9dbafd280d24203c
[ "BSD-3-Clause" ]
4
2020-09-09T15:28:01.000Z
2021-12-01T00:59:56.000Z
tools/pytest/testing/test_assertinterpret.py
063095/web-platform-tests
255d54144a82ce76d8e50a4aa8de284151119f8b
[ "BSD-3-Clause" ]
1
2021-03-31T20:23:55.000Z
2021-03-31T20:23:55.000Z
tools/pytest/testing/test_assertinterpret.py
063095/web-platform-tests
255d54144a82ce76d8e50a4aa8de284151119f8b
[ "BSD-3-Clause" ]
1
2020-03-31T17:20:54.000Z
2020-03-31T17:20:54.000Z
"PYTEST_DONT_REWRITE" import py import pytest from _pytest.assertion import util def exvalue(): return py.std.sys.exc_info()[1] def f(): return 2 def test_not_being_rewritten(): assert "@py_builtins" not in globals() def test_assert(): try: assert f() == 3 except AssertionError: e = exvalue() s = str(e) assert s.startswith('assert 2 == 3\n') def test_assert_with_explicit_message(): try: assert f() == 3, "hello" except AssertionError: e = exvalue() assert e.msg == 'hello' def test_assert_within_finally(): excinfo = pytest.raises(ZeroDivisionError, """ try: 1/0 finally: i = 42 """) s = excinfo.exconly() assert py.std.re.search("division.+by zero", s) is not None #def g(): # A.f() #excinfo = getexcinfo(TypeError, g) #msg = getmsg(excinfo) #assert msg.find("must be called with A") != -1 def test_assert_multiline_1(): try: assert (f() == 3) except AssertionError: e = exvalue() s = str(e) assert s.startswith('assert 2 == 3\n') def test_assert_multiline_2(): try: assert (f() == (4, 3)[-1]) except AssertionError: e = exvalue() s = str(e) assert s.startswith('assert 2 ==') def test_in(): try: assert "hi" in [1, 2] except AssertionError: e = exvalue() s = str(e) assert s.startswith("assert 'hi' in") def test_is(): try: assert 1 is 2 except AssertionError: e = exvalue() s = str(e) assert s.startswith("assert 1 is 2") def test_attrib(): class Foo(object): b = 1 i = Foo() try: assert i.b == 2 except AssertionError: e = exvalue() s = str(e) assert s.startswith("assert 1 == 2") def test_attrib_inst(): class Foo(object): b = 1 try: assert Foo().b == 2 except AssertionError: e = exvalue() s = str(e) assert s.startswith("assert 1 == 2") def test_len(): l = list(range(42)) try: assert len(l) == 100 except AssertionError: e = exvalue() s = str(e) assert s.startswith("assert 42 == 100") assert "where 42 = len([" in s def test_assert_non_string_message(): class A: def __str__(self): return "hello" try: assert 0 == 1, A() except AssertionError: e = exvalue() assert e.msg == "hello" def test_assert_keyword_arg(): def f(x=3): return False try: assert f(x=5) except AssertionError: e = exvalue() assert "x=5" in e.msg def test_private_class_variable(): class X: def __init__(self): self.__v = 41 def m(self): assert self.__v == 42 try: X().m() except AssertionError: e = exvalue() assert "== 42" in e.msg # These tests should both fail, but should fail nicely... class WeirdRepr: def __repr__(self): return '<WeirdRepr\nsecond line>' def bug_test_assert_repr(): v = WeirdRepr() try: assert v == 1 except AssertionError: e = exvalue() assert e.msg.find('WeirdRepr') != -1 assert e.msg.find('second line') != -1 assert 0 def test_assert_non_string(): try: assert 0, ['list'] except AssertionError: e = exvalue() assert e.msg.find("list") != -1 def test_assert_implicit_multiline(): try: x = [1,2,3] assert x != [1, 2, 3] except AssertionError: e = exvalue() assert e.msg.find('assert [1, 2, 3] !=') != -1 def test_assert_with_brokenrepr_arg(): class BrokenRepr: def __repr__(self): 0 / 0 e = AssertionError(BrokenRepr()) if e.msg.find("broken __repr__") == -1: pytest.fail("broken __repr__ not handle correctly") def test_multiple_statements_per_line(): try: a = 1; assert a == 2 except AssertionError: e = exvalue() assert "assert 1 == 2" in e.msg def test_power(): try: assert 2**3 == 7 except AssertionError: e = exvalue() assert "assert (2 ** 3) == 7" in e.msg def test_assert_customizable_reprcompare(monkeypatch): monkeypatch.setattr(util, '_reprcompare', lambda *args: 'hello') try: assert 3 == 4 except AssertionError: e = exvalue() s = str(e) assert "hello" in s def test_assert_long_source_1(): try: assert len == [ (None, ['somet text', 'more text']), ] except AssertionError: e = exvalue() s = str(e) assert 're-run' not in s assert 'somet text' in s def test_assert_long_source_2(): try: assert(len == [ (None, ['somet text', 'more text']), ]) except AssertionError: e = exvalue() s = str(e) assert 're-run' not in s assert 'somet text' in s def test_assert_raise_alias(testdir): testdir.makepyfile(""" "PYTEST_DONT_REWRITE" import sys EX = AssertionError def test_hello(): raise EX("hello" "multi" "line") """) result = testdir.runpytest() result.stdout.fnmatch_lines([ "*def test_hello*", "*raise EX*", "*1 failed*", ]) def test_assert_raise_subclass(): class SomeEx(AssertionError): def __init__(self, *args): super(SomeEx, self).__init__() try: raise SomeEx("hello") except AssertionError: s = str(exvalue()) assert 're-run' not in s assert 'could not determine' in s def test_assert_raises_in_nonzero_of_object_pytest_issue10(): class A(object): def __nonzero__(self): raise ValueError(42) def __lt__(self, other): return A() def __repr__(self): return "<MY42 object>" def myany(x): return True try: assert not(myany(A() < 0)) except AssertionError: e = exvalue() s = str(e) assert "<MY42 object> < 0" in s
22.741818
68
0.543972
85c6ed30b0aa741bcbfe05ae7d2d67d7da75a1cc
58
py
Python
Codewars/7kyu/thinkful-string-drills-repeater/Python/solution1.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
7
2017-09-20T16:40:39.000Z
2021-08-31T18:15:08.000Z
Codewars/7kyu/thinkful-string-drills-repeater/Python/solution1.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
null
null
null
Codewars/7kyu/thinkful-string-drills-repeater/Python/solution1.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
null
null
null
# Python - 3.6.0 repeater = lambda string, n: string * n
14.5
39
0.637931
42c032e7557fb58d4774eb03e9fa17226601d8a1
1,654
py
Python
averageActivity.py
choonlog/Global-Stabilization
28e6cda176833ec911a009fbf6a09c39af8caea9
[ "BSD-2-Clause" ]
1
2020-03-11T16:43:00.000Z
2020-03-11T16:43:00.000Z
averageActivity.py
choonlog/Global-Stabilization
28e6cda176833ec911a009fbf6a09c39af8caea9
[ "BSD-2-Clause" ]
null
null
null
averageActivity.py
choonlog/Global-Stabilization
28e6cda176833ec911a009fbf6a09c39af8caea9
[ "BSD-2-Clause" ]
null
null
null
import json from pprint import pprint import matplotlib.pyplot as plt with open('sm.json') as data_file: data = json.load(data_file) attrKeyList = data["attractors"].keys() eachActivity = [] dic = {} for attrKey in attrKeyList: if data["attractors"][attrKey]["type"] == "point": pointRatio = data["attractors"][attrKey]["ratio"] pointValue = data["attractors"][attrKey]["value"] pointAttr = data["state_key"][pointValue] for eachNode in pointAttr: nodeRatio = float(eachNode) * float(pointRatio) eachActivity.append(nodeRatio) dic[pointValue] = eachActivity else: eachActivity = [] elif data["attractors"][attrKey]["type"] == "cyclic": cyclicRatio = data["attractors"][attrKey]["ratio"] cyclicValue = data["attractors"][attrKey]["value"] cyclicLength = len(cyclicValue) for eachValue in cyclicValue: cyclicAttr = data["state_key"][eachValue] for eachNode in cyclicAttr: nodeRatio = float(eachNode) * float(cyclicRatio) * (1/cyclicLength) eachActivity.append(nodeRatio) dic[eachValue] = eachActivity else: eachActivity = [] averageActivity = [] for k in range(0, len(data["labels"])): averageActivity.append(0) for eachValue in data["state_key"]: z = 0 for eachNode in dic[eachValue]: averageActivity[z] = float(averageActivity[z]) + float(eachNode) z = z + 1 else: z = 0 for i in averageActivity: print(i, end=" ")
30.62963
84
0.588271
3bf20bc0c7990cbddc180e0cefd4ccd66dbb525e
1,602
py
Python
Src/Tests/interop/net/field/__init__.py
Enerccio/ironpython26-fixed
e302db14f05396a378adb438565a829e66acbf94
[ "MS-PL" ]
1
2020-02-11T06:02:40.000Z
2020-02-11T06:02:40.000Z
Src/Languages/IronPython/Tests/interop/net/field/__init__.py
rudimk/dlr-dotnet
71d11769f99d6ff1516ddbaed091a359eb46c670
[ "MS-PL" ]
null
null
null
Src/Languages/IronPython/Tests/interop/net/field/__init__.py
rudimk/dlr-dotnet
71d11769f99d6ff1516ddbaed091a359eb46c670
[ "MS-PL" ]
1
2018-11-21T04:10:23.000Z
2018-11-21T04:10:23.000Z
##################################################################################### # # Copyright (c) Microsoft Corporation. All rights reserved. # # This source code is subject to terms and conditions of the Microsoft Public License. A # copy of the license can be found in the License.html file at the root of this distribution. If # you cannot locate the Microsoft Public License, please send an email to # ironpy@microsoft.com. By using this source code in any fashion, you are agreeing to be bound # by the terms of the Microsoft Public License. # # You must not remove this notice, or any other, from this software. # # ##################################################################################### ''' * Where the field is defined - value type (enum), reference type, - generic value/reference type (bound with value/reference type) * Field type - value type: built-in number types, enum, user defined struct - reference type, interface? - Nullable<T> - array of something - generic type parameter and its' constructed type * Field modifier - const (literal), - readonly - static / instance * set/get via Type|object (dot) (Static|Intance) Field * set value with something with different type, or, none - convert succeed, or fail * repeating from the derived class or its instance * (python) __set__/__get__/__delete__/__str__/__repr__ * (python) Type.__dict__['Field'], and possible __set__/__get__, GetValue/SetValue * Use field as by-ref arguments * Other operations against field - Augment: +=, <<= - Continuous dot operator - Call operator: () '''
39.073171
96
0.656679
afaacbd71ffce0f05197fb0a4d593b8420bdae63
2,187
py
Python
cnns/data_utils/img_proc.py
johnwlambert/dlupi-heteroscedastic-dropou
057dd079fce7ec8833b818b77fd694c01a1adcbc
[ "MIT" ]
39
2018-04-04T13:29:03.000Z
2022-03-12T23:57:33.000Z
cnns/data_utils/img_proc.py
johnwlambert/dlupi-heteroscedastic-dropou
057dd079fce7ec8833b818b77fd694c01a1adcbc
[ "MIT" ]
5
2018-04-30T12:14:38.000Z
2021-04-26T23:52:18.000Z
cnns/data_utils/img_proc.py
johnwlambert/dlupi-heteroscedastic-dropou
057dd079fce7ec8833b818b77fd694c01a1adcbc
[ "MIT" ]
10
2018-05-14T09:14:55.000Z
2021-11-10T00:23:21.000Z
# John Lambert, Alan Luo, Ozan Sener import torch import cv2 import numpy as np def normalize_tensor(tensor, mean, std): """ No pre - processing was applied to training images besides scaling to the range of the tanh activation function[-1, 1]. """ for i in range(tensor.size(0)): img = tensor[i] for t, m, s in zip(img, mean, std): t.sub_(m).div_(s) tensor[i] = img return tensor def convert_rgb2lab( images, batch_size): # [128, 3, 32, 32] """ INPUT: images should be NCHW AB channel values are in the range [-128,128] L channel values are in the range [0,100] """ images_np = images.numpy() images_np_nhwc = np.rollaxis(images_np,1,4) # NCHW to NHWC images_LAB = torch.FloatTensor( images.size() ).zero_() # empty NCHW array to hold LAB for i in range( images_np_nhwc.shape[0] ): img_lab = cv2.cvtColor(images_np_nhwc[i], cv2.COLOR_BGR2Lab ) # HWC images_LAB[i] = torch.from_numpy( np.rollaxis( img_lab, 2, 0 ) ) # to CHW images_L = images_LAB[:,0,:,:].contiguous().view(images.size(0), 1, images.size(2), images.size(3) ) # channel 0 images_AB = images_LAB[:,1:,:,:] # channels 1 and 2 return images_L, images_AB def create_im_masks_from_dets(use_bw_mask, ims, dets): # (images_t,labels_t): """ Accept PyTorch Tensor TODO: - Convert ops to PyTorch (and not NumPy) - Process by batches # TRY BOTH WAYS # WHITE PIXELS IN BBOX REGIONS # ACTUAL PIXEL VALUES IN BBOX REGIONS """ # read in ImageNet image im = cv2.imread(fname) im_h, im_w, im_c = im.shape # read in its x,y,w,h coordinate detections dets = [ (100 ,100 ,200 ,350), (350 ,200 ,100 ,250) ] # for each detection, find the union of the areas mask_im = np.zeros((im_h ,im_w ,im_c)).astype(np.uint8) for det in dets: x ,y ,w ,h = det if use_bw_mask: mask_im[y: y +h ,x: x +w ,:] = 255 # np.ones((h,w,im_c)).astype(np.uint8) else: mask_im[y: y +h ,x: x +w ,:] = im[y: y +h ,x: x +w ,:] # return the image, with everything outside of the union as black return mask_im
33.136364
114
0.616369
7339f8c186250af524341307a69c247ac60f65eb
2,617
py
Python
bridge/jobs/templatetags/tableheader.py
kirillyat/klever
259cc1345df91a47bc028f813613f063a8465429
[ "Apache-2.0" ]
16
2018-07-14T15:37:02.000Z
2020-07-11T14:26:59.000Z
bridge/jobs/templatetags/tableheader.py
kirillyat/klever
259cc1345df91a47bc028f813613f063a8465429
[ "Apache-2.0" ]
2
2019-10-28T22:32:31.000Z
2020-04-24T09:24:20.000Z
bridge/jobs/templatetags/tableheader.py
kirillyat/klever
259cc1345df91a47bc028f813613f063a8465429
[ "Apache-2.0" ]
10
2018-11-09T12:54:15.000Z
2021-10-31T17:01:39.000Z
from django import template register = template.Library() class TableHeader(template.Node): def __init__(self, columns, titles): self._columns = columns self._titles = titles def render_th(self, colspan, rowspan, title): return f'<th colspan="{colspan}" rowspan="{rowspan}">{title}</th>' def render_items(self, columns, titles): max_depth = 0 column_matrix = [] for column in columns: column_list = column.split(':') max_depth = max(max_depth, len(column_list)) column_prefix_list = [] for i in range(len(column_list)): column_prefix_list.append(':'.join(column_list[:(i + 1)])) column_matrix.append(column_prefix_list) header_html = '' for row in range(max_depth): prev_cell = None header_html += '<tr>' for column in column_matrix: if len(column) <= row: continue if prev_cell: if column[row] == prev_cell['column']: # Just stretch the previous column prev_cell['columns'] += 1 continue else: header_html += self.render_th(prev_cell['columns'], prev_cell['rows'], prev_cell['title']) prev_cell = {'column': column[row], 'rows': 1, 'columns': 1} if column[row] in titles: prev_cell['title'] = titles[column[row]] else: prev_cell['title'] = column[row].split(':')[-1] if len(column) == row + 1: # The last item in the list, need vertical stretch prev_cell['rows'] = max_depth - len(column) + 1 if prev_cell: header_html += self.render_th(prev_cell['columns'], prev_cell['rows'], prev_cell['title']) header_html += '</tr>' return header_html def render(self, context): columns = self._columns.resolve(context) titles = self._titles.resolve(context) or {} return self.render_items(columns, titles) @register.tag def tableheader(parser, token): try: tag_name, columns, titles = token.split_contents() except ValueError: raise template.TemplateSyntaxError('%r tag requires exactly two arguments: ' 'list of columns and its titles' % token.contents.split()[0]) return TableHeader(parser.compile_filter(columns), parser.compile_filter(titles))
37.927536
114
0.550248
fd30fe6dd05abef588152bb7d64bd29692e5a6b8
395
py
Python
gibprosj/gibprosj/wsgi.py
Anderzz/gib2-prosjekt
9e5796e09e151a2b24c94d875b947c334dffecbe
[ "MIT" ]
null
null
null
gibprosj/gibprosj/wsgi.py
Anderzz/gib2-prosjekt
9e5796e09e151a2b24c94d875b947c334dffecbe
[ "MIT" ]
null
null
null
gibprosj/gibprosj/wsgi.py
Anderzz/gib2-prosjekt
9e5796e09e151a2b24c94d875b947c334dffecbe
[ "MIT" ]
null
null
null
""" WSGI config for gibprosj project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/4.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'gibprosj.settings') application = get_wsgi_application()
20.789474
78
0.782278
e2edae1b2fa99cbe6ba11f3516cc97f4ff6f1c2b
1,149
py
Python
weberp/apps/expenses/views.py
askar-alty/erp
cf5496fd7feed9d79705bbf5a034d1b13b96a98a
[ "MIT" ]
null
null
null
weberp/apps/expenses/views.py
askar-alty/erp
cf5496fd7feed9d79705bbf5a034d1b13b96a98a
[ "MIT" ]
null
null
null
weberp/apps/expenses/views.py
askar-alty/erp
cf5496fd7feed9d79705bbf5a034d1b13b96a98a
[ "MIT" ]
null
null
null
from django.views.generic.list import ListView from . import models class ExpenseListView(ListView): model = models.Expense template_name = 'expenses/expenses_list.html' context_object_name = 'expenses' def get_context_data(self, **kwargs): context = super(ExpenseListView, self).get_context_data(**kwargs) return context def get_queryset(self): expenses = models.Expense.objects.all() expenses_list = [] for expense in expenses: expenses_list.append({ 'contractor': expense.contractor, 'item': expense.item, 'frequency_type': expense.frequency_type, 'products': [product for product in expense.products.all()], 'products_total_price': expense.products_total_price, 'products_number_in_pack': expense.products_number_in_pack, 'products_weight_in_pack': expense.products_weight_in_pack, 'products_count_in_pack': expense.products_count_in_pack, 'updated': expense.updated.isoformat() }) return expenses_list
35.90625
76
0.643168
33c9130e67b0faf948eb791c913bceabc00e84b4
4,423
py
Python
Lib/site-packages/pyqtlineeditprogressbar/demo.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
null
null
null
Lib/site-packages/pyqtlineeditprogressbar/demo.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
Lib/site-packages/pyqtlineeditprogressbar/demo.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
null
null
null
""" Demo source for PyQtLineEditProgressBar """ import time from PyQt5 import QtCore from PyQt5 import QtGui from PyQt5 import QtWidgets import pyqtlineeditprogressbar as pqtpbar from pyqtlineeditprogressbar import PyQtLineEditProgressBar def find_color_name(color_value): name = 'CUSTOM color' for color_name in pqtpbar.EMBEDDED_COLORS: if pqtpbar.EMBEDDED_COLORS[color_name] == color_value: name = "DEFAULT {}".format(color_name) return('with {} [{}]'.format(name, color_value)) default_color_value = pqtpbar.EMBEDDED_COLORS[pqtpbar.DEFAULT_COLOR_NAME] class Dialog(QtWidgets.QDialog): def __init__(self, parent=None): QtWidgets.QDialog .__init__(self, parent) mainLayout = QtWidgets.QVBoxLayout() self.setWindowTitle("PyQtLineEditProgressBar Demo") self.lineedit1 = PyQtLineEditProgressBar() self.lineedit1.setAlignment(QtCore.Qt.AlignCenter) #self.lineedit1.setSizePolicy() self.lineedit1.setText(self.lineedit1.getBehavior() + " {}".format(find_color_name(default_color_value)) ) self.lineedit2 = PyQtLineEditProgressBar(behavior=pqtpbar.STARTS_EMPTY_FILLS_RIGHT_TO_LEFT, progressbar_color=pqtpbar.DEFAULT_COLOR_RED) self.lineedit2.setAlignment(QtCore.Qt.AlignCenter) self.lineedit2.setText(self.lineedit2.getBehavior() + " {}".format(find_color_name(pqtpbar.DEFAULT_COLOR_RED)) ) self.lineedit3 = PyQtLineEditProgressBar(behavior=pqtpbar.STARTS_FULL_EMPTIES_LEFT_TO_RIGHT, progressbar_color=pqtpbar.DEFAULT_COLOR_ORANGE) self.lineedit3.setAlignment(QtCore.Qt.AlignCenter) self.lineedit3.setText(self.lineedit3.getBehavior() + " {}".format(find_color_name(pqtpbar.DEFAULT_COLOR_ORANGE)) ) self.lineedit4 = PyQtLineEditProgressBar(behavior=pqtpbar.STARTS_FULL_EMPTIES_RIGHT_TO_LEFT, progressbar_color=pqtpbar.DEFAULT_COLOR_BLUE) self.lineedit4.setAlignment(QtCore.Qt.AlignCenter) self.lineedit4.setText(self.lineedit4.getBehavior() + " {}".format(find_color_name(pqtpbar.DEFAULT_COLOR_BLUE)) ) self.lineedit5 = PyQtLineEditProgressBar(progressbar_color=pqtpbar.DEFAULT_COLOR_YELLOW) self.lineedit5.setAlignment(QtCore.Qt.AlignCenter) self.lineedit5.setText(self.lineedit5.getBehavior() + " {}".format(find_color_name(pqtpbar.DEFAULT_COLOR_YELLOW)) ) self.lineedit6 = PyQtLineEditProgressBar(behavior=pqtpbar.STARTS_EMPTY_FILLS_RIGHT_TO_LEFT, progressbar_color=pqtpbar.DEFAULT_COLOR_PURPLE) self.lineedit6.setAlignment(QtCore.Qt.AlignCenter) self.lineedit6.setText(self.lineedit6.getBehavior() + " {}".format(find_color_name(pqtpbar.DEFAULT_COLOR_PURPLE)) ) self.lineedit7 = PyQtLineEditProgressBar(behavior=pqtpbar.STARTS_FULL_EMPTIES_RIGHT_TO_LEFT, progressbar_color="#32a893") self.lineedit7.setAlignment(QtCore.Qt.AlignCenter) self.lineedit7.setText(self.lineedit7.getBehavior() + " {}".format(find_color_name("#32a893")) ) mainLayout.addWidget(self.lineedit1) mainLayout.addWidget(self.lineedit2) mainLayout.addWidget(self.lineedit3) mainLayout.addWidget(self.lineedit4) mainLayout.addWidget(self.lineedit5) mainLayout.addWidget(self.lineedit6) mainLayout.addWidget(self.lineedit7) button = QtWidgets.QPushButton('Update Progress') button.clicked.connect(self.buttonClicked) mainLayout.addWidget(button) self.setLayout(mainLayout) def buttonClicked(self): self.lineedit1.updateProgress(0.1) #self.lineedit1.setText(self.lineedit1.getBehavior()) self.lineedit2.updateProgress(0.1) #self.lineedit2.setText(self.lineedit2.getBehavior()) self.lineedit3.updateProgress(0.1) #self.lineedit3.setText(self.lineedit3.getBehavior()) self.lineedit4.updateProgress(0.1) #self.lineedit4.setText(self.lineedit4.getBehavior()) self.lineedit5.updateProgress(0.1) #self.lineedit5.setText(self.lineedit5.getBehavior()) self.lineedit6.updateProgress(0.1) #self.lineedit6.setText(self.lineedit6.getBehavior()) self.lineedit7.updateProgress(0.1) time.sleep(1) # ---------------------------------------------------------------------------- def main(): app = QtWidgets.QApplication([]) window = Dialog() #window.resize(400, 50) window.setFixedSize(350, 350) window.show() app.exec_() # ---------------------------------------------------------------------------- # ----------------------------- main ----------------------------------------- # ---------------------------------------------------------------------------- if __name__ == "__main__": main()
38.798246
117
0.737508
6ec05231c6f8658db7db8de31f4c23279216bdc6
495
py
Python
configs/selfsup/_base_/models/deepcluster/r18.py
Westlake-AI/openmixup
ea81250819e740dd823e30cb7ce382d14a3c1b91
[ "Apache-2.0" ]
10
2021-12-30T10:22:27.000Z
2022-03-30T02:31:38.000Z
configs/selfsup/_base_/models/deepcluster/r18.py
Westlake-AI/openmixup
ea81250819e740dd823e30cb7ce382d14a3c1b91
[ "Apache-2.0" ]
3
2022-01-20T21:02:48.000Z
2022-03-19T13:49:45.000Z
configs/selfsup/_base_/models/deepcluster/r18.py
Westlake-AI/openmixup
ea81250819e740dd823e30cb7ce382d14a3c1b91
[ "Apache-2.0" ]
null
null
null
# model settings model = dict( type='DeepCluster', backbone=dict( type='ResNet', depth=18, num_stages=4, out_indices=(3,), # no conv-1, x-1: stage-x norm_cfg=dict(type='BN'), style='pytorch'), neck=dict(type='AvgPoolNeck'), head=dict( type='ClsHead', loss=dict(type='CrossEntropyLoss', loss_weight=1.0), with_avg_pool=False, # already has avgpool in the neck in_channels=512, num_classes=10000) )
27.5
63
0.587879
3ced1b6a7c5cbf7e8b773c58f28072f575668652
2,259
py
Python
deep_qa/layers/backend/envelope.py
richarajpal/deep_qa
d918335a1bed71b9cfccf1d5743321cee9c61952
[ "Apache-2.0" ]
459
2017-02-08T13:40:17.000Z
2021-12-12T12:57:48.000Z
deep_qa/layers/backend/envelope.py
nelson-liu/deep_qa
00d36306759cb1c232489f68844371fb727ce2c8
[ "Apache-2.0" ]
176
2017-01-26T01:19:41.000Z
2018-04-22T19:16:01.000Z
deep_qa/layers/backend/envelope.py
nelson-liu/deep_qa
00d36306759cb1c232489f68844371fb727ce2c8
[ "Apache-2.0" ]
154
2017-01-26T01:00:30.000Z
2021-02-05T10:44:42.000Z
from overrides import overrides from keras import backend as K from ..masked_layer import MaskedLayer class Envelope(MaskedLayer): """ Given a probability distribution over a begin index and an end index of some sequence, this ``Layer`` computes an envelope over the sequence, a probability that each element lies within "begin" and "end". Specifically, the computation done here is the following:: after_span_begin = K.cumsum(span_begin, axis=-1) after_span_end = K.cumsum(span_end, axis=-1) before_span_end = 1 - after_span_end envelope = after_span_begin * before_span_end Inputs: - span_begin: tensor with shape ``(batch_size, sequence_length)``, representing a probability distribution over a start index in the sequence - span_end: tensor with shape ``(batch_size, sequence_length)``, representing a probability distribution over an end index in the sequence Outputs: - envelope: tensor with shape ``(batch_size, sequence_length)``, representing a probability for each index of the sequence belonging in the span If there is a mask associated with either of the inputs, we ignore it, assuming that you used the mask correctly when you computed your probability distributions. But we support masking in this layer, so that you have an output mask if you really need it. We just return the first mask that is not ``None`` (or ``None``, if both are ``None``). """ def __init__(self, **kwargs): super(Envelope, self).__init__(**kwargs) @overrides def compute_mask(self, inputs, mask=None): # pylint: disable=unused-argument span_begin_mask, span_end_mask = mask return span_begin_mask if span_begin_mask is not None else span_end_mask @overrides def compute_output_shape(self, input_shape): span_begin_shape, _ = input_shape return span_begin_shape @overrides def call(self, inputs, mask=None): span_begin, span_end = inputs after_span_begin = K.cumsum(span_begin, axis=-1) after_span_end = K.cumsum(span_end, axis=-1) before_span_end = 1.0 - after_span_end return after_span_begin * before_span_end
40.339286
99
0.702081
3ffe9be4a59b9d108e8d6ffc071ff132385b77b3
4,526
py
Python
drf_chunked_upload/management/commands/delete_expired_uploads.py
daviddavis/drf-chunked-upload
b946677ca1b6e4017309049b8ad0bb5b200008c8
[ "MIT-0" ]
1
2021-07-04T10:49:42.000Z
2021-07-04T10:49:42.000Z
drf_chunked_upload/management/commands/delete_expired_uploads.py
daviddavis/drf-chunked-upload
b946677ca1b6e4017309049b8ad0bb5b200008c8
[ "MIT-0" ]
null
null
null
drf_chunked_upload/management/commands/delete_expired_uploads.py
daviddavis/drf-chunked-upload
b946677ca1b6e4017309049b8ad0bb5b200008c8
[ "MIT-0" ]
1
2021-07-04T10:49:44.000Z
2021-07-04T10:49:44.000Z
from __future__ import print_function from collections import Counter from six import iteritems import django.apps from django.core.management.base import BaseCommand from django.utils import timezone from django.utils.translation import ugettext as _ from drf_chunked_upload.settings import EXPIRATION_DELTA from drf_chunked_upload.models import ChunkedUpload PROMPT_MSG = _(u'Do you want to delete {obj}?') VALID_RESP = { "yes": True, "y": True, "ye": True, "no": False, "n": False } class Command(BaseCommand): # Has to be a ChunkedUpload subclass base_model = ChunkedUpload help = 'Deletes chunked uploads that have already expired.' def add_arguments(self, parser): parser.add_argument( 'models', metavar='app.model', nargs='*', help='Any app.model classes you want to clean up. Default is all ChunkedUpload subclasses within a project.', ) parser.add_argument( '-i', '--interactive', action='store_true', dest='interactive', default=False, help='Prompt for confirmation before each deletion.', ) parser.add_argument( '-k', '--keep-record', action='store_false', dest='delete_record', default=True, help="Don't delete upload records, just uploaded files on disk.", ) def handle(self, *args, **options): filter_models = options.get('models', None) interactive = options.get('interactive') delete_record = options.get('delete_record') upload_models = self.get_models(filter_models=filter_models) for model in upload_models: self.process_model(model, interactive=interactive, delete_record=delete_record) def _get_filter_model(self, model): model_app, model_name = model.split('.') try: model_cls = django.apps.apps.get_app_config(model_app).get_model(model_name) except LookupError as e: print("WARNING: {}", e) else: if issubclass(model_cls, self.base_model): return model_cls print("WARNING: Model {} is not a subclass of ChunkedUpload and will be skipped.".format(model)) return None def get_models(self, filter_models=None): upload_models = [] if filter_models: # the models were specified and # we want to process only them for model in filter_models: model = self._get_filter_model(model) if model: upload_models.append(model) else: # no models were specified and we want # to find all ChunkedUpload classes upload_models = \ [m for m in django.apps.apps.get_models() if issubclass(m, self.base_model)] return upload_models def process_model(self, model, interactive=False, delete_record=True): print('Processing uploads for model {}.{}...'.format( model._meta.app_label, model.__name__, )) count = Counter({state[0]: 0 for state in model.STATUS_CHOICES}) chunked_uploads = model.objects.filter( created_at__lt=(timezone.now() - EXPIRATION_DELTA) ) if delete_record == False: chunked_uploads = chunked_uploads.exclude(file__isnull=True) for chunked_upload in chunked_uploads: if interactive and not self.get_confirmation(chunked_upload): continue count[chunked_upload.status] += 1 # Deleting objects individually to call delete method explicitly if delete_record: chunked_upload.delete() else: chunked_upload.delete_file() chunked_upload.save() for state, number in iteritems(count): print( '{} {} upload{}s were deleted.'.format( number, dict(model.STATUS_CHOICES)[state].lower(), (' file' if not delete_record else ''), ) ) def get_confirmation(self, chunked_upload): prompt = PROMPT_MSG.format(obj=chunked_upload) + u' (y/n): ' while True not in ('y', 'n'): answer = VALID_RESP.get(raw_input(prompt).lower(), None) if answer is not None: return answer
32.561151
121
0.595007
fd81b025aac35e387605c9fe472d2d86e1037ede
21,559
py
Python
tests/hwsim/run-tests.py
AstroProfundis/hostap
f4830bed661f4adff51f50a0d37c64ceb748e780
[ "Unlicense" ]
null
null
null
tests/hwsim/run-tests.py
AstroProfundis/hostap
f4830bed661f4adff51f50a0d37c64ceb748e780
[ "Unlicense" ]
null
null
null
tests/hwsim/run-tests.py
AstroProfundis/hostap
f4830bed661f4adff51f50a0d37c64ceb748e780
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python2 # # Test case executor # Copyright (c) 2013-2015, Jouni Malinen <j@w1.fi> # # This software may be distributed under the terms of the BSD license. # See README for more details. import os import re import sys import time from datetime import datetime import argparse import subprocess import termios import logging logger = logging.getLogger() try: import sqlite3 sqlite3_imported = True except ImportError: sqlite3_imported = False scriptsdir = os.path.dirname(os.path.realpath(sys.modules[__name__].__file__)) sys.path.append(os.path.join(scriptsdir, '..', '..', 'wpaspy')) from wpasupplicant import WpaSupplicant from hostapd import HostapdGlobal from check_kernel import check_kernel from wlantest import Wlantest from utils import HwsimSkip def set_term_echo(fd, enabled): [iflag, oflag, cflag, lflag, ispeed, ospeed, cc] = termios.tcgetattr(fd) if enabled: lflag |= termios.ECHO else: lflag &= ~termios.ECHO termios.tcsetattr(fd, termios.TCSANOW, [iflag, oflag, cflag, lflag, ispeed, ospeed, cc]) def reset_devs(dev, apdev): ok = True for d in dev: try: d.reset() except Exception, e: logger.info("Failed to reset device " + d.ifname) print str(e) ok = False wpas = None try: wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') ifaces = wpas.global_request("INTERFACES").splitlines() for iface in ifaces: if iface.startswith("wlan"): wpas.interface_remove(iface) except Exception, e: pass if wpas: wpas.close_ctrl() try: hapd = HostapdGlobal() hapd.flush() hapd.remove('wlan3-3') hapd.remove('wlan3-2') for ap in apdev: hapd.remove(ap['ifname']) except Exception, e: logger.info("Failed to remove hostapd interface") print str(e) ok = False return ok def add_log_file(conn, test, run, type, path): if not os.path.exists(path): return contents = None with open(path, 'r') as f: contents = f.read() if contents is None: return sql = "INSERT INTO logs(test,run,type,contents) VALUES(?, ?, ?, ?)" params = (test, run, type, sqlite3.Binary(contents)) try: conn.execute(sql, params) conn.commit() except Exception, e: print "sqlite: " + str(e) print "sql: %r" % (params, ) def report(conn, prefill, build, commit, run, test, result, duration, logdir, sql_commit=True): if conn: if not build: build = '' if not commit: commit = '' if prefill: conn.execute('DELETE FROM results WHERE test=? AND run=? AND result=?', (test, run, 'NOTRUN')) sql = "INSERT INTO results(test,result,run,time,duration,build,commitid) VALUES(?, ?, ?, ?, ?, ?, ?)" params = (test, result, run, time.time(), duration, build, commit) try: conn.execute(sql, params) if sql_commit: conn.commit() except Exception, e: print "sqlite: " + str(e) print "sql: %r" % (params, ) if result == "FAIL": for log in [ "log", "log0", "log1", "log2", "log3", "log5", "hostapd", "dmesg", "hwsim0", "hwsim0.pcapng" ]: add_log_file(conn, test, run, log, logdir + "/" + test + "." + log) class DataCollector(object): def __init__(self, logdir, testname, tracing, dmesg): self._logdir = logdir self._testname = testname self._tracing = tracing self._dmesg = dmesg def __enter__(self): if self._tracing: output = os.path.abspath(os.path.join(self._logdir, '%s.dat' % (self._testname, ))) self._trace_cmd = subprocess.Popen(['trace-cmd', 'record', '-o', output, '-e', 'mac80211', '-e', 'cfg80211', '-e', 'printk', 'sh', '-c', 'echo STARTED ; read l'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=open('/dev/null', 'w'), cwd=self._logdir) l = self._trace_cmd.stdout.read(7) while self._trace_cmd.poll() is None and not 'STARTED' in l: l += self._trace_cmd.stdout.read(1) res = self._trace_cmd.returncode if res: print "Failed calling trace-cmd: returned exit status %d" % res sys.exit(1) def __exit__(self, type, value, traceback): if self._tracing: self._trace_cmd.stdin.write('DONE\n') self._trace_cmd.wait() if self._dmesg: output = os.path.join(self._logdir, '%s.dmesg' % (self._testname, )) num = 0 while os.path.exists(output): output = os.path.join(self._logdir, '%s.dmesg-%d' % (self._testname, num)) num += 1 subprocess.call(['dmesg', '-c'], stdout=open(output, 'w')) def rename_log(logdir, basename, testname, dev): try: import getpass srcname = os.path.join(logdir, basename) dstname = os.path.join(logdir, testname + '.' + basename) num = 0 while os.path.exists(dstname): dstname = os.path.join(logdir, testname + '.' + basename + '-' + str(num)) num = num + 1 os.rename(srcname, dstname) if dev: dev.relog() subprocess.call(['chown', '-f', getpass.getuser(), srcname]) except Exception, e: logger.info("Failed to rename log files") logger.info(e) def main(): tests = [] test_modules = [] files = os.listdir(scriptsdir) for t in files: m = re.match(r'(test_.*)\.py$', t) if m: logger.debug("Import test cases from " + t) mod = __import__(m.group(1)) test_modules.append(mod.__name__.replace('test_', '', 1)) for key,val in mod.__dict__.iteritems(): if key.startswith("test_"): tests.append(val) test_names = list(set([t.__name__.replace('test_', '', 1) for t in tests])) run = None parser = argparse.ArgumentParser(description='hwsim test runner') parser.add_argument('--logdir', metavar='<directory>', help='log output directory for all other options, ' + 'must be given if other log options are used') group = parser.add_mutually_exclusive_group() group.add_argument('-d', const=logging.DEBUG, action='store_const', dest='loglevel', default=logging.INFO, help="verbose debug output") group.add_argument('-q', const=logging.WARNING, action='store_const', dest='loglevel', help="be quiet") parser.add_argument('-S', metavar='<sqlite3 db>', dest='database', help='database to write results to') parser.add_argument('--prefill-tests', action='store_true', dest='prefill', help='prefill test database with NOTRUN before all tests') parser.add_argument('--commit', metavar='<commit id>', help='commit ID, only for database') parser.add_argument('-b', metavar='<build>', dest='build', help='build ID') parser.add_argument('-L', action='store_true', dest='update_tests_db', help='List tests (and update descriptions in DB)') parser.add_argument('-T', action='store_true', dest='tracing', help='collect tracing per test case (in log directory)') parser.add_argument('-D', action='store_true', dest='dmesg', help='collect dmesg per test case (in log directory)') parser.add_argument('--shuffle-tests', action='store_true', dest='shuffle_tests', help='Shuffle test cases to randomize order') parser.add_argument('--split', help='split tests for parallel execution (<server number>/<total servers>)') parser.add_argument('--no-reset', action='store_true', dest='no_reset', help='Do not reset devices at the end of the test') parser.add_argument('--long', action='store_true', help='Include test cases that take long time') parser.add_argument('-f', dest='testmodules', metavar='<test module>', help='execute only tests from these test modules', type=str, choices=[[]] + test_modules, nargs='+') parser.add_argument('-l', metavar='<modules file>', dest='mfile', help='test modules file name') parser.add_argument('-i', action='store_true', dest='stdin_ctrl', help='stdin-controlled test case execution') parser.add_argument('tests', metavar='<test>', nargs='*', type=str, help='tests to run (only valid without -f)', choices=[[]] + test_names) args = parser.parse_args() if (args.tests and args.testmodules) or (args.tests and args.mfile) or (args.testmodules and args.mfile): print 'Invalid arguments - only one of (test, test modules, modules file) can be given.' sys.exit(2) if args.database: if not sqlite3_imported: print "No sqlite3 module found" sys.exit(2) conn = sqlite3.connect(args.database) conn.execute('CREATE TABLE IF NOT EXISTS results (test,result,run,time,duration,build,commitid)') conn.execute('CREATE TABLE IF NOT EXISTS tests (test,description)') conn.execute('CREATE TABLE IF NOT EXISTS logs (test,run,type,contents)') else: conn = None if conn: run = int(time.time()) # read the modules from the modules file if args.mfile: args.testmodules = [] with open(args.mfile) as f: for line in f.readlines(): line = line.strip() if not line or line.startswith('#'): continue args.testmodules.append(line) tests_to_run = [] if args.tests: for selected in args.tests: for t in tests: name = t.__name__.replace('test_', '', 1) if name == selected: tests_to_run.append(t) else: for t in tests: name = t.__name__.replace('test_', '', 1) if args.testmodules: if not t.__module__.replace('test_', '', 1) in args.testmodules: continue tests_to_run.append(t) if args.update_tests_db: for t in tests_to_run: name = t.__name__.replace('test_', '', 1) if t.__doc__ is None: print name + " - MISSING DESCRIPTION" else: print name + " - " + t.__doc__ if conn: sql = 'INSERT OR REPLACE INTO tests(test,description) VALUES (?, ?)' params = (name, t.__doc__) try: conn.execute(sql, params) except Exception, e: print "sqlite: " + str(e) print "sql: %r" % (params,) if conn: conn.commit() conn.close() sys.exit(0) if not args.logdir: if os.path.exists('logs/current'): args.logdir = 'logs/current' else: args.logdir = 'logs' # Write debug level log to a file and configurable verbosity to stdout logger.setLevel(logging.DEBUG) stdout_handler = logging.StreamHandler() stdout_handler.setLevel(args.loglevel) logger.addHandler(stdout_handler) file_name = os.path.join(args.logdir, 'run-tests.log') log_handler = logging.FileHandler(file_name) log_handler.setLevel(logging.DEBUG) fmt = "%(asctime)s %(levelname)s %(message)s" log_formatter = logging.Formatter(fmt) log_handler.setFormatter(log_formatter) logger.addHandler(log_handler) dev0 = WpaSupplicant('wlan0', '/tmp/wpas-wlan0') dev1 = WpaSupplicant('wlan1', '/tmp/wpas-wlan1') dev2 = WpaSupplicant('wlan2', '/tmp/wpas-wlan2') dev = [ dev0, dev1, dev2 ] apdev = [ ] apdev.append({"ifname": 'wlan3', "bssid": "02:00:00:00:03:00"}) apdev.append({"ifname": 'wlan4', "bssid": "02:00:00:00:04:00"}) for d in dev: if not d.ping(): logger.info(d.ifname + ": No response from wpa_supplicant") return logger.info("DEV: " + d.ifname + ": " + d.p2p_dev_addr()) for ap in apdev: logger.info("APDEV: " + ap['ifname']) passed = [] skipped = [] failed = [] # make sure nothing is left over from previous runs # (if there were any other manual runs or we crashed) if not reset_devs(dev, apdev): if conn: conn.close() conn = None sys.exit(1) if args.dmesg: subprocess.call(['dmesg', '-c'], stdout=open('/dev/null', 'w')) if conn and args.prefill: for t in tests_to_run: name = t.__name__.replace('test_', '', 1) report(conn, False, args.build, args.commit, run, name, 'NOTRUN', 0, args.logdir, sql_commit=False) conn.commit() if args.split: vals = args.split.split('/') split_server = int(vals[0]) split_total = int(vals[1]) logger.info("Parallel execution - %d/%d" % (split_server, split_total)) split_server -= 1 tests_to_run.sort(key=lambda t: t.__name__) tests_to_run = [x for i,x in enumerate(tests_to_run) if i % split_total == split_server] if args.shuffle_tests: from random import shuffle shuffle(tests_to_run) count = 0 if args.stdin_ctrl: print "READY" sys.stdout.flush() num_tests = 0 else: num_tests = len(tests_to_run) if args.stdin_ctrl: set_term_echo(sys.stdin.fileno(), False) while True: if args.stdin_ctrl: test = sys.stdin.readline() if not test: break test = test.splitlines()[0] if test == '': break t = None for tt in tests: name = tt.__name__.replace('test_', '', 1) if name == test: t = tt break if not t: print "NOT-FOUND" sys.stdout.flush() continue else: if len(tests_to_run) == 0: break t = tests_to_run.pop(0) name = t.__name__.replace('test_', '', 1) open('/dev/kmsg', 'w').write('running hwsim test case %s\n' % name) if log_handler: log_handler.stream.close() logger.removeHandler(log_handler) file_name = os.path.join(args.logdir, name + '.log') log_handler = logging.FileHandler(file_name) log_handler.setLevel(logging.DEBUG) log_handler.setFormatter(log_formatter) logger.addHandler(log_handler) reset_ok = True with DataCollector(args.logdir, name, args.tracing, args.dmesg): count = count + 1 msg = "START {} {}/{}".format(name, count, num_tests) logger.info(msg) if args.loglevel == logging.WARNING: print msg sys.stdout.flush() if t.__doc__: logger.info("Test: " + t.__doc__) start = datetime.now() for d in dev: try: d.dump_monitor() if not d.ping(): raise Exception("PING failed for {}".format(d.ifname)) if not d.global_ping(): raise Exception("Global PING failed for {}".format(d.ifname)) d.request("NOTE TEST-START " + name) except Exception, e: logger.info("Failed to issue TEST-START before " + name + " for " + d.ifname) logger.info(e) print "FAIL " + name + " - could not start test" if conn: conn.close() conn = None if args.stdin_ctrl: set_term_echo(sys.stdin.fileno(), True) sys.exit(1) try: if t.func_code.co_argcount > 2: params = {} params['logdir'] = args.logdir params['long'] = args.long t(dev, apdev, params) elif t.func_code.co_argcount > 1: t(dev, apdev) else: t(dev) result = "PASS" except HwsimSkip, e: logger.info("Skip test case: %s" % e) result = "SKIP" except NameError, e: import traceback logger.info(e) traceback.print_exc() result = "FAIL" except Exception, e: import traceback logger.info(e) traceback.print_exc() if args.loglevel == logging.WARNING: print "Exception: " + str(e) result = "FAIL" for d in dev: try: d.dump_monitor() d.request("NOTE TEST-STOP " + name) except Exception, e: logger.info("Failed to issue TEST-STOP after {} for {}".format(name, d.ifname)) logger.info(e) result = "FAIL" wpas = None try: wpas = WpaSupplicant(global_iface="/tmp/wpas-wlan5") rename_log(args.logdir, 'log5', name, wpas) if not args.no_reset: wpas.remove_ifname() except Exception, e: pass if wpas: wpas.close_ctrl() if args.no_reset: print "Leaving devices in current state" else: reset_ok = reset_devs(dev, apdev) for i in range(0, 3): rename_log(args.logdir, 'log' + str(i), name, dev[i]) try: hapd = HostapdGlobal() except Exception, e: print "Failed to connect to hostapd interface" print str(e) reset_ok = False result = "FAIL" hapd = None rename_log(args.logdir, 'hostapd', name, hapd) if hapd: del hapd hapd = None wt = Wlantest() rename_log(args.logdir, 'hwsim0.pcapng', name, wt) rename_log(args.logdir, 'hwsim0', name, wt) if os.path.exists(os.path.join(args.logdir, 'fst-wpa_supplicant')): rename_log(args.logdir, 'fst-wpa_supplicant', name, None) if os.path.exists(os.path.join(args.logdir, 'fst-hostapd')): rename_log(args.logdir, 'fst-hostapd', name, None) end = datetime.now() diff = end - start if result == 'PASS' and args.dmesg: if not check_kernel(os.path.join(args.logdir, name + '.dmesg')): logger.info("Kernel issue found in dmesg - mark test failed") result = 'FAIL' if result == 'PASS': passed.append(name) elif result == 'SKIP': skipped.append(name) else: failed.append(name) report(conn, args.prefill, args.build, args.commit, run, name, result, diff.total_seconds(), args.logdir) result = "{} {} {} {}".format(result, name, diff.total_seconds(), end) logger.info(result) if args.loglevel == logging.WARNING: print result sys.stdout.flush() if not reset_ok: print "Terminating early due to device reset failure" break if args.stdin_ctrl: set_term_echo(sys.stdin.fileno(), True) if log_handler: log_handler.stream.close() logger.removeHandler(log_handler) file_name = os.path.join(args.logdir, 'run-tests.log') log_handler = logging.FileHandler(file_name) log_handler.setLevel(logging.DEBUG) log_handler.setFormatter(log_formatter) logger.addHandler(log_handler) if conn: conn.close() if len(failed): logger.info("passed {} test case(s)".format(len(passed))) logger.info("skipped {} test case(s)".format(len(skipped))) logger.info("failed tests: " + ' '.join(failed)) if args.loglevel == logging.WARNING: print "failed tests: " + ' '.join(failed) sys.exit(1) logger.info("passed all {} test case(s)".format(len(passed))) if len(skipped): logger.info("skipped {} test case(s)".format(len(skipped))) if args.loglevel == logging.WARNING: print "passed all {} test case(s)".format(len(passed)) if len(skipped): print "skipped {} test case(s)".format(len(skipped)) if __name__ == "__main__": main()
37.690559
174
0.536249
c35108d24d724653b32511186642fab722de77de
1,637
py
Python
source/_static/solutions/lesson06/exc2_solution_linear_classifier_with_polar_coordinate_transformation.py
janEbert/deeplearning540.github.io
4a13e12503b029e8abc06bb1f499f89399e4142a
[ "MIT" ]
6
2021-03-01T07:00:32.000Z
2022-03-23T15:33:53.000Z
source/_static/solutions/lesson06/exc2_solution_linear_classifier_with_polar_coordinate_transformation.py
janEbert/deeplearning540.github.io
4a13e12503b029e8abc06bb1f499f89399e4142a
[ "MIT" ]
17
2021-02-22T13:16:37.000Z
2022-03-23T16:42:47.000Z
source/_static/solutions/lesson06/exc2_solution_linear_classifier_with_polar_coordinate_transformation.py
janEbert/deeplearning540.github.io
4a13e12503b029e8abc06bb1f499f89399e4142a
[ "MIT" ]
14
2021-02-22T11:38:28.000Z
2022-01-12T15:08:48.000Z
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.datasets import load_wine from sklearn.linear_model import RidgeClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler def plot_prediction(X, y, y_pred, *, title=''): if isinstance(X, pd.DataFrame): X = X.to_numpy() fig, (left, right) = plt.subplots(ncols=2, figsize=(14, 6)) fig.suptitle(title) left.set(title='Ground truth labels') left.scatter(*X.transpose(), c=y) right.set(title='Predicted labels') right.scatter(*X.transpose(), c=y_pred) df = pd.read_csv('data.csv', index_col=0) df = df.assign( radius=df[['x', 'y']].pow(2).sum(axis=1), phi=np.arctan2(df['x'], df['y']), ) features = df[['radius', 'phi']] target = df['target'] X_train, X_test, y_train, y_test = train_test_split( features, target, test_size=0.3, random_state=0, shuffle=True, ) model = RidgeClassifier() model.fit(X_train, y_train) cm_train = confusion_matrix(y_train, model.predict(X_train)) print( 'Confusion matrix for training data:', cm_train, f'Accuracy: {np.diag(cm_train).sum() / cm_train.sum()}', sep='\n', ) cm_test = confusion_matrix(y_test, model.predict(X_test)) print( 'Confusion matrix for test data:', cm_test, f'Accuracy: {np.diag(cm_test).sum() / cm_test.sum()}', sep='\n', ) plot_prediction(X_train, y_train, model.predict(X_train), title='Training data') plot_prediction(X_test, y_test, model.predict(X_test), title='Test data') plt.show()
28.224138
80
0.701283
c659a16e8d2b18d6cbd00506fb956851ff5bebe5
908
py
Python
other/inet_suite.py
sshyran/testoob
729fa6a17660d0bd8c75907a89ed6998180b5765
[ "Apache-2.0" ]
null
null
null
other/inet_suite.py
sshyran/testoob
729fa6a17660d0bd8c75907a89ed6998180b5765
[ "Apache-2.0" ]
null
null
null
other/inet_suite.py
sshyran/testoob
729fa6a17660d0bd8c75907a89ed6998180b5765
[ "Apache-2.0" ]
null
null
null
import unittest, urllib class NewsSitesTestCase(unittest.TestCase): def testSlashdot(self): urllib.urlopen("http://www.slashdot.org").read() def testWired(self): urllib.urlopen("http://www.wired.com").read() def testTheOnion(self): urllib.urlopen("http://www.theonion.com").read() class OtherSitesTestCase(unittest.TestCase): def testYahoo(self): urllib.urlopen("http://www.yahoo.com").read() def testGoogle(self): urllib.urlopen("http://www.google.com").read() def testPython(self): urllib.urlopen("http://www.python.org").read() def testThinlet(self): urllib.urlopen("http://thinlet.sourceforge.net").read() def suite(): result = unittest.TestSuite() result.addTest( unittest.makeSuite(NewsSitesTestCase) ) result.addTest( unittest.makeSuite(OtherSitesTestCase) ) return result
34.923077
64
0.659692
bcbb5ee2761d1213793ae56f221a4b6eb7a5e252
67
py
Python
configure-repos/config.py
grobalex/github-scripts-
891d17cf20645e39415723dd8f5e91a610ea2267
[ "MIT" ]
null
null
null
configure-repos/config.py
grobalex/github-scripts-
891d17cf20645e39415723dd8f5e91a610ea2267
[ "MIT" ]
null
null
null
configure-repos/config.py
grobalex/github-scripts-
891d17cf20645e39415723dd8f5e91a610ea2267
[ "MIT" ]
null
null
null
# config.py: githuburl = 'github.ccs.neu.edu' githuborg = 'CS5500'
16.75
32
0.701493
2394b3c750055942bd5d7d45e427cba0f773c70b
25,899
py
Python
Kernels/Research/FFT/FFT.py
WoodData/EndpointAI
8e4d145ff45cf5559ab009eba4f423e944dc6975
[ "Apache-2.0" ]
190
2020-09-22T02:14:29.000Z
2022-03-28T02:35:57.000Z
Kernels/Research/FFT/FFT.py
chuancqc/EndpointAI
ab67cefeae3c06f1c93f66812bcf988c14e72ff1
[ "Apache-2.0" ]
2
2021-08-30T10:06:22.000Z
2021-11-05T20:37:58.000Z
Kernels/Research/FFT/FFT.py
chuancqc/EndpointAI
ab67cefeae3c06f1c93f66812bcf988c14e72ff1
[ "Apache-2.0" ]
80
2020-09-13T17:48:56.000Z
2022-03-19T10:45:05.000Z
# # # Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the License); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os.path import numpy as np import itertools import scipy.fftpack import scipy.fft import argparse import sys parser = argparse.ArgumentParser(description='Pattern generation') parser.add_argument('-f', nargs='?',type = str, default="", help="Path to folder containing Patterns folder") parser.add_argument('-r', nargs='?',type = str, help="CMSIS Root") # -r is pointing to Pattern generation folder # CMSIS/DSP/Testing/PatternGeneration/ args = parser.parse_args() if args.r: sys.path.append(args.r) else: sys.path.append("PatternGeneration") import Tools # Those patterns are used for tests and benchmarks. # For tests, there is the need to add tests for saturation # Radix 2,3 and 5 # Primary blocks are 8,6,5,4,3,2 # We take the square and then all combinations PRIMARY=[8,6,5,4,3,2] def cartesian(*somelists): r=[] for element in itertools.product(*somelists): r.append(list(element)) return(r) SECOND = [x*y for (x,y) in cartesian(PRIMARY,PRIMARY)] THIRD = [x*y for (x,y) in cartesian(SECOND,PRIMARY)] FFTSIZES = PRIMARY + SECOND + THIRD FFTSIZES = sorted(list(set(FFTSIZES))) + [4096] def iseven(a): return(a%2==0) # The real FFT size is only working on even length FFTs REALFFTSIZES=list(filter(iseven,FFTSIZES))[1:-1] + [4096] FFT2DSIZES=[(4,9),(8,4),(64,4)] # [512, 384, 2, 3, 4, 5, 6, 256, 8, 9, 10, 128, 12, 15, 16, 144, # 18, 20, 150, 24, 25, 27, 30, 32, 288, 160, 36, 40, # 45, 48, 50, 180, 54, 60, 64, 320, 192, 200, 72, 75, 80, # 216, 90, 96, 100, 108, 240, 120, 125] #FFTSIZES=[4, 8, 6, 10, 15,16,32,64,9,27,81,5,25,125] SINES=[0.25,0.5,0.9] NOISES=[0.1,0.4] FIXEDPOINTSCALING = [0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12] def scaling(nb): return(1.0 / (1 << FIXEDPOINTSCALING[nb-1])) #print(FFTSIZES) #print(REALFFTSIZES) #print(FFT2DSIZES) # #quit() def asReal(a): #return(a.view(dtype=np.float64)) return(a.reshape(np.size(a)).view(dtype=np.float64)) def noiseSignal(nb): return(np.random.randn(nb)) def sineSignal(freqRatio,nb): fc = nb / 2.0 f = freqRatio*fc time = np.arange(0,nb) return(np.sin(2 * np.pi * f * time/nb)) def noisySineSignal(noiseAmp,r,nb): return(noiseAmp*noiseSignal(nb) + r*sineSignal(0.25,nb)) def stepSignal(r,nb): na = int(nb/2) nb = nb - na return(np.concatenate((np.zeros(na), r*np.ones(nb)))) def writeFFTForSignal(config,mode,sig,i,nb,signame): sig = sig / 4.0 fft=scipy.fftpack.fft(sig) sigfft = sig fftoutput = fft if mode == Tools.Q15 or mode == Tools.Q31: fftoutput = fftoutput * scaling(nb) maxVal = np.max(np.abs(fft)) sigifft = fft / maxVal / 2.0 ifftoutput = sig / maxVal / 2.0 if mode == Tools.Q15 or mode == Tools.Q31: ifftoutput = ifftoutput / 4.0 config.writeInput(i, asReal(sigfft),"ComplexInputFFTSamples_%s_%d_" % (signame,nb)) config.writeInput(i, asReal(fftoutput),"ComplexOutputFFTSamples_%s_%d_" % (signame,nb)) config.writeInput(i, asReal(sigifft),"ComplexInputIFFTSamples_%s_%d_" % (signame,nb)) config.writeInput(i, asReal(ifftoutput),"ComplexOutputIFFTSamples_%s_%d_" % (signame,nb)) def writeRFFTForSignal(config,mode,sig,i,nb,signame): sig = sig / 4.0 rfft=scipy.fft.rfft(sig) sigfft = sig fftoutput = rfft if mode == Tools.Q15 or mode == Tools.Q31: fftoutput = fftoutput * scaling(int(nb/2)) maxVal = np.max(np.abs(rfft)) sigifft = rfft / maxVal / 2.0 ifftoutput = sig / maxVal / 2.0 if mode == Tools.Q15 or mode == Tools.Q31: ifftoutput = ifftoutput / 4.0 config.writeInput(i, asReal(sigfft),"RealInputRFFTSamples_%s_%d_" % (signame,nb)) config.writeInput(i, asReal(fftoutput),"ComplexOutputRFFTSamples_%s_%d_" % (signame,nb)) config.writeInput(i, asReal(sigifft),"ComplexInputRIFFTSamples_%s_%d_" % (signame,nb)) config.writeInput(i, asReal(ifftoutput),"RealOutputRIFFTSamples_%s_%d_" % (signame,nb)) def writeCFFTTests(configs): i = 1 # Write FFT tests for sinusoid for nb in FFTSIZES: sig = noisySineSignal(0.05,0.7,nb) sigc = np.array([complex(x) for x in sig]) for config,mode in configs: writeFFTForSignal(config,mode,sigc,i,nb,"Noisy") i = i + 1 # Write FFT tests for step for nb in FFTSIZES: sig = stepSignal(0.5,nb) sigc = np.array([complex(x) for x in sig]) for config,mode in configs: writeFFTForSignal(config,mode,sigc,i,nb,"Step") i = i + 1 ############################# # Used for benchmarks # ## Add a new size for benchmark BENCHSIZE = 4096 sig = noisySineSignal(0.05,0.7,BENCHSIZE) sigc = np.array([complex(x) for x in sig]) for config,mode in configs: writeFFTForSignal(config,mode,sigc,i,BENCHSIZE,"Noisy") i = i + 1 return(i) def asReal2D(a): #return(a.view(dtype=np.float64)) return(a.reshape(np.size(a)).view(dtype=np.float64)) def writeFFT2DForSignal(config,mode,sig,i,rows,cols,signame): fft=scipy.fft.fftn(sig) sigfft = sig fftoutput = fft sigifft = sig ifftoutput = scipy.fft.ifftn(sigifft) if mode == Tools.Q15 or mode == Tools.Q31: fftoutput = fftoutput * scaling(rows) * scaling(cols) ifftoutput = ifftoutput / 4.0 config.writeInput(i, asReal2D(sigfft),"ComplexInputFFTSamples_%s_%d_%d_" % (signame,rows,cols)) config.writeInput(i, asReal2D(fftoutput),"ComplexOutputFFTSamples_%s_%d_%d_" % (signame,rows,cols)) config.writeInput(i, asReal2D(sigifft),"ComplexInputIFFTSamples_%s_%d_%d_" % (signame,rows,cols)) config.writeInput(i, asReal2D(ifftoutput),"ComplexOutputIFFTSamples_%s_%d_%d_" % (signame,rows,cols)) def writeCFFT2DTests(configs): i = 1 # Write FFT2D tests for sinusoid fr = 10 fc = 10 for (rows,cols) in FFT2DSIZES: [X, Y] = np.meshgrid(2 * np.pi * np.arange(cols) * fr, 2 * np.pi * np.arange(rows) * fc) sig = Tools.normalize(np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)) sigc = np.array([[complex(y) for y in x] for x in sig]) for config,mode in configs: writeFFT2DForSignal(config,mode,sigc,i,rows,cols,"Noisy") i = i + 1 ############################# # Used for benchmarks # ## Add a new size for benchmark BENCHSIZE = 4096 sig = noisySineSignal(0.05,0.7,BENCHSIZE) sigc = np.array([complex(x) for x in sig]) for config,mode in configs: writeFFT2DForSignal(config,mode,sigc,i,64,64,"Noisy") i = i + 1 return(i) def writeRFFTTests(configs): i = 1 # Write FFT tests for sinusoid for nb in REALFFTSIZES: sig = noisySineSignal(0.05,0.7,nb) for config,mode in configs: writeRFFTForSignal(config,mode,sig,i,nb,"Noisy") i = i + 1 # Write FFT tests for step for nb in REALFFTSIZES: sig = stepSignal(0.5,nb) for config,mode in configs: writeRFFTForSignal(config,mode,sig,i,nb,"Step") i = i + 1 ############################# # Used for benchmarks # ## Add a new size for benchmark BENCHSIZE = 4096 sig = noisySineSignal(0.05,0.7,BENCHSIZE) for config,mode in configs: writeRFFTForSignal(config,mode,sig,i,BENCHSIZE,"Noisy") i = i + 1 return(i) def generatePatterns(): PATTERNDIR = os.path.join(args.f,"Patterns","DSP","FFT","CFFT","CFFT") PARAMDIR = os.path.join(args.f,"Parameters","DSP","FFT","CFFT","CFFT") configf64=Tools.Config(PATTERNDIR,PARAMDIR,"f64") configf32=Tools.Config(PATTERNDIR,PARAMDIR,"f32") configf16=Tools.Config(PATTERNDIR,PARAMDIR,"f16") configq31=Tools.Config(PATTERNDIR,PARAMDIR,"q31") configq15=Tools.Config(PATTERNDIR,PARAMDIR,"q15") print("CFFT") allConfigs=[(configf64,Tools.F64), (configf32,Tools.F32), (configf16,Tools.F16), (configq31,Tools.Q31), (configq15,Tools.Q15)] writeCFFTTests(allConfigs) PATTERNDIR = os.path.join(args.f,"Patterns","DSP","FFT","CFFT2D","CFFT2D") PARAMDIR = os.path.join(args.f,"Parameters","DSP","FFT","CFFT2D","CFFT2D") configf64=Tools.Config(PATTERNDIR,PARAMDIR,"f64") configf32=Tools.Config(PATTERNDIR,PARAMDIR,"f32") configf16=Tools.Config(PATTERNDIR,PARAMDIR,"f16") configq31=Tools.Config(PATTERNDIR,PARAMDIR,"q31") configq15=Tools.Config(PATTERNDIR,PARAMDIR,"q15") print("CFFT2D") allConfigs=[(configf64,Tools.F64), (configf32,Tools.F32), (configf16,Tools.F16), (configq31,Tools.Q31), (configq15,Tools.Q15)] writeCFFT2DTests(allConfigs) PATTERNDIR = os.path.join(args.f,"Patterns","DSP","FFT","RFFT","RFFT") PARAMDIR = os.path.join(args.f,"Parameters","DSP","FFT","RFFT","RFFT") configf64=Tools.Config(PATTERNDIR,PARAMDIR,"f64") configf32=Tools.Config(PATTERNDIR,PARAMDIR,"f32") configf16=Tools.Config(PATTERNDIR,PARAMDIR,"f16") configq31=Tools.Config(PATTERNDIR,PARAMDIR,"q31") configq15=Tools.Config(PATTERNDIR,PARAMDIR,"q15") print("RFFT") allConfigs=[(configf64,Tools.F64), (configf32,Tools.F32), (configf16,Tools.F16), (configq31,Tools.Q31), (configq15,Tools.Q15)] writeRFFTTests(allConfigs) if __name__ == '__main__': generatePatterns()
74.852601
15,892
0.547241
194350c2fa9a9e23c8bda1e3a697fc9a3df6f491
1,973
py
Python
nova/api/validation/extra_specs/traits.py
zjzh/nova
7bb21723171c59b93e28f5d508c2b6df39220f13
[ "Apache-2.0" ]
1,874
2015-01-04T05:18:34.000Z
2022-03-31T03:30:28.000Z
nova/api/validation/extra_specs/traits.py
zjzh/nova
7bb21723171c59b93e28f5d508c2b6df39220f13
[ "Apache-2.0" ]
40
2015-04-13T02:32:42.000Z
2022-02-16T02:28:06.000Z
nova/api/validation/extra_specs/traits.py
zjzh/nova
7bb21723171c59b93e28f5d508c2b6df39220f13
[ "Apache-2.0" ]
1,996
2015-01-04T15:11:51.000Z
2022-03-31T11:03:13.000Z
# Copyright 2020 Red Hat, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Validators for ``traits`` namespaced extra specs.""" import os_traits from nova.api.validation.extra_specs import base EXTRA_SPEC_VALIDATORS = [] for trait in os_traits.get_traits(): EXTRA_SPEC_VALIDATORS.append( base.ExtraSpecValidator( name=f'trait{{group}}:{trait}', description=f'Require or forbid trait {trait}.', value={ 'type': str, 'enum': [ 'required', 'forbidden', ], }, parameters=[ { 'name': 'group', 'pattern': r'([a-zA-Z0-9_-]{1,64})?', }, ], ) ) EXTRA_SPEC_VALIDATORS.append( base.ExtraSpecValidator( name='trait{group}:CUSTOM_{trait}', description=( 'Require or forbid trait CUSTOM_{trait}.' ), value={ 'type': str, 'enum': [ 'required', 'forbidden', ], }, parameters=[ { 'name': 'group', 'pattern': r'([a-zA-Z0-9_-]{1,64})?', }, { 'name': 'trait', 'pattern': r'[A-Z0-9_]+', }, ], ) ) def register(): return EXTRA_SPEC_VALIDATORS
26.662162
75
0.519513
898e5bf5773e75b6d8e3a1ba553cbd4418406be7
1,323
py
Python
src/rank.py
MyEyes/twitch-tsumego
ef7c477030af3a99dbfa35513321125b76879cb5
[ "MIT" ]
null
null
null
src/rank.py
MyEyes/twitch-tsumego
ef7c477030af3a99dbfa35513321125b76879cb5
[ "MIT" ]
null
null
null
src/rank.py
MyEyes/twitch-tsumego
ef7c477030af3a99dbfa35513321125b76879cb5
[ "MIT" ]
null
null
null
import PySimpleGUI as sg import threading import time W = 30 # name width def open_window(): while True: event, value = window.read() if event == sg.WIN_CLOSED: break window.close() def update(players, last): i = 1 for (k,v) in sorted(players.items(), key=lambda x: -x[1]): entry = f"{i}. {k.ljust(W-10)} {str(v).rjust(3)}" window[i].update(entry) i+=1 if i > 5: break if last: window[0].update(f"{last} ({players[last]})".ljust(W)) window.refresh() sg.theme('DarkPurple') # Add a touch of color font = {'font': 'Courier 16', 'text_color': 'white'} font2 = {'font': 'Sans-Serif 20', 'text_color': 'white'} # All the stuff inside your window. layout = [ [sg.Text(''.ljust(W+10), key=1, **font)], [sg.Text(''.ljust(W+10), key=2, **font)], [sg.Text(''.ljust(W+10), key=3, **font)], [sg.Text(''.ljust(W+10), key=4, **font)], [sg.Text(''.ljust(W+10), key=5, **font)], [sg.Text(' ', **font)], [sg.Text('Last correct answer:', **font2)], [sg.Text(''.ljust(W+10), key=0, **font2)], ] # Create the Window window = sg.Window('Top Players', layout) t = threading.Thread(target=open_window) t.start() time.sleep(1)
26.46
62
0.530612
427ac6f0c1e1936cbf29a742edd3843d21d6703e
1,107
py
Python
src/pylero/priority_option_id.py
yuxisun1217/pylero
0210eb2243e02ab218f19a224e94eb63081f13e3
[ "MIT" ]
null
null
null
src/pylero/priority_option_id.py
yuxisun1217/pylero
0210eb2243e02ab218f19a224e94eb63081f13e3
[ "MIT" ]
null
null
null
src/pylero/priority_option_id.py
yuxisun1217/pylero
0210eb2243e02ab218f19a224e94eb63081f13e3
[ "MIT" ]
null
null
null
# -*- coding: utf8 -*- from __future__ import absolute_import, division, print_function from __future__ import unicode_literals from pylero.base_polarion import BasePolarion class PriorityOptionId(BasePolarion): """Object to handle the Polarion WSDL tns5:PriorityOptionId class Attributes: id (string) """ _cls_suds_map = {"id": "id", "uri": "_uri", "_unresolved": "_unresolved"} _id_field = "id" _obj_client = "builder_client" _obj_struct = "tns5:PriorityOptionId" def __init__(self, id=None, uri=None, suds_object=None): """PriorityOptionID Constructor Args: id: value of the priority uri: the SubterraURI of the priority suds_object: the Polarion Plan object Returns: None References: _WorkItem.priority """ super(self.__class__, self).__init__(id, suds_object) class ArrayOfPriorityOptionId(BasePolarion): _obj_client = "builder_client" _obj_struct = "tns5:ArrayOfPriorityOptionId"
26.357143
69
0.634146
4b3d41aca1780fc944db1264a5e283cfb651234e
1,753
py
Python
join_annovar_vcf.py
sensecollective/bioinformatics_scripts
3a23611f382b7f3dd60e5e2abe841b84408c0d44
[ "BSD-3-Clause" ]
7
2016-03-23T11:31:06.000Z
2021-05-20T19:07:38.000Z
join_annovar_vcf.py
raonyguimaraes/bioinformatics_scripts
3a23611f382b7f3dd60e5e2abe841b84408c0d44
[ "BSD-3-Clause" ]
null
null
null
join_annovar_vcf.py
raonyguimaraes/bioinformatics_scripts
3a23611f382b7f3dd60e5e2abe841b84408c0d44
[ "BSD-3-Clause" ]
8
2016-06-01T19:28:46.000Z
2022-01-09T01:26:10.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from optparse import OptionParser import os from time import time import datetime import csv __author__ = "Raony Guimarães" __copyright__ = "Copyright 2011, The Exome Pipeline" __credits__ = ["Raony Guimarães"] __license__ = "GPL" __version__ = "1.0.1" __maintainer__ = "Raony Guimarães" __email__ = "raonyguimaraes@gmail.com" __status__ = "Production" #run example #python gatk.py -i alignment/exome.sorted.bam parser = OptionParser() parser.add_option("-a", dest="annovar_file", help="CSV Generated by annovar", metavar="ANN") parser.add_option("-v", dest="vcf_file", help="VCF File Generated by GATK", metavar="VCF") (options, args) = parser.parse_args() annovar_file = csv.reader(open(options.annovar_file, "rb")) header = annovar_file.next() print header #self.variants_array = array(list(annovar_file)) # 10 e 11 variants = {} for line in annovar_file: variant = {} variant['sift'] = line[10] variant['polyphen'] = line[11] variant_id = "%s-%s" % (line[15], line[16]) variants[variant_id] = variant print len(variants) vcf_file=open(options.vcf_file, 'r') out_file=open(options.vcf_file+'.annovar.vcf', 'w') for line in vcf_file: if line.startswith('#'): out_file.writelines(line) else: line = line.split('\t') variant_id = "%s-%s" % (line[0], line[1]) if variant_id in variants: if variants[variant_id]['sift'] != '': line[7] = line[7]+';ANN_SIFT=%s' % (variants[variant_id]['sift']) if variants[variant_id]['polyphen'] != '': line[7] = line[7]+';ANN_POLYPHEN=%s' % (variants[variant_id]['polyphen']) out_file.writelines("\t".join(line)) else: out_file.writelines("\t".join(line))
26.164179
79
0.667998
b59881c23c09af14294421402be935cdcabae142
10,045
py
Python
scrapy_do/schedule.py
umairwaheed/scrapy-do
2425601ed5f18ef2e11449dc6ebb3c4c7169986a
[ "BSD-3-Clause" ]
null
null
null
scrapy_do/schedule.py
umairwaheed/scrapy-do
2425601ed5f18ef2e11449dc6ebb3c4c7169986a
[ "BSD-3-Clause" ]
null
null
null
scrapy_do/schedule.py
umairwaheed/scrapy-do
2425601ed5f18ef2e11449dc6ebb3c4c7169986a
[ "BSD-3-Clause" ]
null
null
null
#------------------------------------------------------------------------------- # Author: Lukasz Janyst <lukasz@jany.st> # Date: 02.12.2017 # # Licensed under the 3-Clause BSD License, see the LICENSE file for details. #------------------------------------------------------------------------------- """ Functionality related to the database of jobs. """ import dateutil.parser import sqlite3 import uuid from scrapy_do.utils import TimeStamper from datetime import datetime from enum import Enum #------------------------------------------------------------------------------- class Status(Enum): """ Status of the job. """ SCHEDULED = 1 PENDING = 2 RUNNING = 3 CANCELED = 4 SUCCESSFUL = 5 FAILED = 6 #------------------------------------------------------------------------------- class Actor(Enum): """ An entity responsible for job creation. """ SCHEDULER = 1 USER = 2 #------------------------------------------------------------------------------- class Job: """ A bin for all the parameters of a job. """ status = TimeStamper('_status') actor = TimeStamper('_actor') schedule = TimeStamper('_schedule') project = TimeStamper('_project') spider = TimeStamper('_spider') duration = TimeStamper('_duration') #--------------------------------------------------------------------------- def __init__(self, status=None, actor=None, schedule=None, project=None, spider=None, timestamp=None, duration=None): self.identifier = str(uuid.uuid4()) self._status = status self._actor = actor self._schedule = schedule self._project = project self._spider = spider self.timestamp = timestamp or datetime.now() self._duration = duration #--------------------------------------------------------------------------- def __str__(self): s = 'Job[id="{}", actor="{}", schedule="{}", project="{}", spider="{}"]' s = s.format(self.identifier, self.actor.name, self.schedule, self.project, self.spider) return s #--------------------------------------------------------------------------- def to_dict(self): """ Return all the parameters of the job as a dictionary """ d = { 'identifier': self.identifier, 'status': self.status.name, 'actor': self.actor.name, 'schedule': self.schedule, 'project': self.project, 'spider': self.spider, 'timestamp': str(self.timestamp), 'duration': self.duration } return d #------------------------------------------------------------------------------- def _record_to_job(x): job = Job(status=Status(x[1]), actor=Actor(x[2]), schedule=x[3], project=x[4], spider=x[5], timestamp=dateutil.parser.parse(x[6]), duration=x[7]) job.identifier = x[0] return job #------------------------------------------------------------------------------- class Schedule: """ A persistent database of jobs. :param database: A file name where the database will be stored :param table: Name of the table containing the schedule """ #--------------------------------------------------------------------------- def __init__(self, database=None, table='schedule'): #----------------------------------------------------------------------- # Create the database and the main table #----------------------------------------------------------------------- self.database = database or ':memory:' self.table = table self.db = sqlite3.connect(self.database, detect_types=sqlite3.PARSE_DECLTYPES) query = "CREATE TABLE IF NOT EXISTS {table} (" \ "identifier VARCHAR(36) PRIMARY KEY, " \ "status INTEGER NOT NULL, " \ "actor INTEGER NOT NULL, " \ "schedule VARCHAR(255), " \ "project VARCHAR(255) NOT NULL, " \ "spider VARCHAR(255) NOT NULL, " \ "timestamp DATETIME NOT NULL, " \ "duration INTEGER" \ ")" query = query.format(table=self.table) self.db.execute(query) #----------------------------------------------------------------------- # Create the metadata table #----------------------------------------------------------------------- query = 'CREATE TABLE IF NOT EXISTS schedule_metadata (' \ 'key VARCHAR(255) PRIMARY KEY ON CONFLICT IGNORE, ' \ 'value VARCHAR(255) NOT NULL ' \ ')' self.db.execute(query) query = 'INSERT INTO schedule_metadata ' \ '(key, value) values ("version", "1") ' self.db.execute(query) self.db.commit() #--------------------------------------------------------------------------- def get_metadata(self, key): """ Retrieve the matadata info with a given key """ query = "SELECT * FROM schedule_metadata WHERE key=?" response = self.db.execute(query, (key, )) response = dict(response) return response[key] #--------------------------------------------------------------------------- def get_jobs(self, job_status): """ Retrieve a list of jobs with a given status :param job_status: One of :class:`statuses <Status>` """ query = "SELECT * FROM {table} WHERE status=? ORDER BY timestamp DESC" query = query.format(table=self.table) response = self.db.execute(query, (job_status.value, )) return [_record_to_job(rec) for rec in response] #--------------------------------------------------------------------------- def get_active_jobs(self): """ Retrieve all the active jobs. Ie. all the jobs whose status is one of the following: :data:`SCHEDULED <Status.SCHEDULED>`, :data:`PENDING <Status.PENDING>`, or :data:`RUNNING <Status.RUNNING>`. """ query = "SELECT * FROM {table} WHERE " \ "status=1 OR status=2 OR status=3 "\ "ORDER BY timestamp DESC" query = query.format(table=self.table) response = self.db.execute(query) return [_record_to_job(rec) for rec in response] #--------------------------------------------------------------------------- def get_completed_jobs(self): """ Retrieve all the completed jobs. Ie. all the jobs whose status is one of the following: :data:`SUCCESSFUL <Status.SUCCESSFUL>`, :data:`FAILED <Status.FAILED>`, or :data:`CANCELED <Status.CANCELED>`. """ query = "SELECT * FROM {table} WHERE " \ "status=4 OR status=5 OR status=6 "\ "ORDER BY timestamp DESC" query = query.format(table=self.table) response = self.db.execute(query) return [_record_to_job(rec) for rec in response] #--------------------------------------------------------------------------- def get_scheduled_jobs(self, project): """ Retrieve all the scheduled jobs for the given project. """ query = "SELECT * FROM {table} WHERE " \ "status=1 AND project=?" \ "ORDER BY timestamp DESC" query = query.format(table=self.table) response = self.db.execute(query, (project, )) return [_record_to_job(rec) for rec in response] #--------------------------------------------------------------------------- def get_job(self, identifier): """ Retrieve a job by id :param identifier: A string identifier of the job """ query = "SELECT * FROM {table} WHERE identifier=?" query = query.format(table=self.table) response = self.db.execute(query, (identifier, )) rec = response.fetchone() if rec is None: raise ValueError('No such job: "{}"'.format(identifier)) return _record_to_job(rec) #--------------------------------------------------------------------------- def add_job(self, job): """ Add a job to the database :param job: A :class:`Job <Job>` object """ query = "INSERT INTO {table}" \ "(identifier, status, actor, schedule, project, spider, " \ "timestamp, duration) " \ "values (?, ?, ?, ?, ?, ?, ?, ?)" query = query.format(table=self.table) self.db.execute(query, (job.identifier, job.status.value, job.actor.value, job.schedule, job.project, job.spider, job.timestamp, job.duration)) self.db.commit() #--------------------------------------------------------------------------- def commit_job(self, job): """ Modify an existing job :param job: A :class:`Job <Job>` object """ query = "REPLACE INTO {table}" \ "(identifier, status, actor, schedule, project, spider, " \ "timestamp, duration) " \ "values (?, ?, ?, ?, ?, ?, ?, ?)" query = query.format(table=self.table) self.db.execute(query, (job.identifier, job.status.value, job.actor.value, job.schedule, job.project, job.spider, job.timestamp, job.duration)) self.db.commit() #--------------------------------------------------------------------------- def remove_job(self, job_id): """ Remove a job from the database :param identifier: A string identifier of the job """ query = "DELETE FROM {table} WHERE identifier=?" query = query.format(table=self.table) self.db.execute(query, (job_id,)) self.db.commit()
37.203704
80
0.452364
6446bc7cca8344fd1a4eca62cf19c51496e48aca
1,691
py
Python
GenerativeModels/BGAN/generator.py
rexwangcc/gengine
25a49e19aca8527fec9c661b80e6d5598ac30ed1
[ "MIT" ]
null
null
null
GenerativeModels/BGAN/generator.py
rexwangcc/gengine
25a49e19aca8527fec9c661b80e6d5598ac30ed1
[ "MIT" ]
null
null
null
GenerativeModels/BGAN/generator.py
rexwangcc/gengine
25a49e19aca8527fec9c661b80e6d5598ac30ed1
[ "MIT" ]
null
null
null
from __future__ import print_function import torch.nn as nn class Generator(nn.Module): def __init__(self, ngpu, nz, ngf, nc): """The model definition of the generator. This class refers to the PyTorch DCGAN TUTORIAL: https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html Args: ngpu (int): The number of GPUs available. If this is 0, code will run in CPU mode. If this number is greater than 0 it will run on that number of GPUs. nz (int): The size of the latent z vector. ngf (int): The depth of feature maps propagated through the discriminator. nc (int): The number of the channels of the input images. """ super().__init__() self.ngpu = ngpu self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): # Use parallel computing across GPUs if the hardware # had multiple available GPUs if input.is_cuda and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output
35.229167
112
0.564755
85283afcf23ff587e6466a66537f6697024e3bee
33,980
py
Python
tensorflow_tts/models/fastspeech.py
speechcatch/TensorFlowTTS
2f52a315a8c99ff018e9de1898937627040d557e
[ "Apache-2.0" ]
null
null
null
tensorflow_tts/models/fastspeech.py
speechcatch/TensorFlowTTS
2f52a315a8c99ff018e9de1898937627040d557e
[ "Apache-2.0" ]
null
null
null
tensorflow_tts/models/fastspeech.py
speechcatch/TensorFlowTTS
2f52a315a8c99ff018e9de1898937627040d557e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 The FastSpeech Authors, The HuggingFace Inc. team and Minh Nguyen (@dathudeptrai) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tensorflow Model modules for FastSpeech.""" import numpy as np import tensorflow as tf from tensorflow_tts.models import BaseModel def get_initializer(initializer_range=0.02): """Creates a `tf.initializers.truncated_normal` with the given range. Args: initializer_range: float, initializer range for stddev. Returns: TruncatedNormal initializer with stddev = `initializer_range`. """ return tf.keras.initializers.TruncatedNormal(stddev=initializer_range) def gelu(x): """Gaussian Error Linear unit.""" cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0))) return x * cdf def gelu_new(x): """Smoother gaussian Error Linear Unit.""" cdf = 0.5 * (1.0 + tf.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf def swish(x): """Swish activation function.""" return tf.nn.swish(x) def mish(x): return x * tf.math.tanh(tf.math.softplus(x)) ACT2FN = { "identity": tf.keras.layers.Activation("linear"), "tanh": tf.keras.layers.Activation("tanh"), "gelu": tf.keras.layers.Activation(gelu), "relu": tf.keras.activations.relu, "swish": tf.keras.layers.Activation(swish), "gelu_new": tf.keras.layers.Activation(gelu_new), "mish": tf.keras.layers.Activation(mish), } class TFEmbedding(tf.keras.layers.Embedding): """Faster version of embedding.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def call(self, inputs): inputs = tf.cast(inputs, tf.int32) outputs = tf.gather(self.embeddings, inputs) return outputs class TFFastSpeechEmbeddings(tf.keras.layers.Layer): """Construct charactor/phoneme/positional/speaker embeddings.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.vocab_size = config.vocab_size self.hidden_size = config.encoder_self_attention_params.hidden_size self.initializer_range = config.initializer_range self.config = config self.position_embeddings = TFEmbedding( config.max_position_embeddings + 1, self.hidden_size, weights=[ self._sincos_embedding( self.hidden_size, self.config.max_position_embeddings ) ], name="position_embeddings", trainable=False, ) if config.n_speakers > 1: self.encoder_speaker_embeddings = TFEmbedding( config.n_speakers, self.hidden_size, embeddings_initializer=get_initializer(self.initializer_range), name="speaker_embeddings", ) self.speaker_fc = tf.keras.layers.Dense( units=self.hidden_size, name="speaker_fc" ) def build(self, input_shape): """Build shared charactor/phoneme embedding layers.""" with tf.name_scope("charactor_embeddings"): self.charactor_embeddings = self.add_weight( "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def call(self, inputs, training=False): """Get charactor embeddings of inputs. Args: 1. charactor, Tensor (int32) shape [batch_size, length]. 2. speaker_id, Tensor (int32) shape [batch_size] Returns: Tensor (float32) shape [batch_size, length, embedding_size]. """ return self._embedding(inputs, training=training) def _embedding(self, inputs, training=False): """Applies embedding based on inputs tensor.""" input_ids, speaker_ids = inputs input_shape = tf.shape(input_ids) seq_length = input_shape[1] position_ids = tf.range(1, seq_length + 1, dtype=tf.int32)[tf.newaxis, :] # create embeddings inputs_embeds = tf.gather(self.charactor_embeddings, input_ids) position_embeddings = self.position_embeddings(position_ids) # sum embedding embeddings = inputs_embeds + tf.cast(position_embeddings, inputs_embeds.dtype) if self.config.n_speakers > 1: speaker_embeddings = self.encoder_speaker_embeddings(speaker_ids) speaker_features = tf.math.softplus(self.speaker_fc(speaker_embeddings)) # extended speaker embeddings extended_speaker_features = speaker_features[:, tf.newaxis, :] embeddings += extended_speaker_features return embeddings def _sincos_embedding( self, hidden_size, max_positional_embedding, ): position_enc = np.array( [ [ pos / np.power(10000, 2.0 * (i // 2) / hidden_size) for i in range(hidden_size) ] for pos in range(max_positional_embedding + 1) ] ) position_enc[:, 0::2] = np.sin(position_enc[:, 0::2]) position_enc[:, 1::2] = np.cos(position_enc[:, 1::2]) # pad embedding. position_enc[0] = 0.0 return position_enc def resize_positional_embeddings(self, new_size): self.position_embeddings = TFEmbedding( new_size + 1, self.hidden_size, weights=[self._sincos_embedding(self.hidden_size, new_size)], name="position_embeddings", trainable=False, ) class TFFastSpeechSelfAttention(tf.keras.layers.Layer): """Self attention module for fastspeech.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.all_head_size = self.num_attention_heads * config.attention_head_size self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query", ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value", ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, x, batch_size): """Transpose to calculate attention scores.""" x = tf.reshape( x, (batch_size, -1, self.num_attention_heads, self.config.attention_head_size), ) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs, training=False): """Call logic.""" hidden_states, attention_mask = inputs batch_size = tf.shape(hidden_states)[0] mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast( tf.shape(key_layer)[-1], attention_scores.dtype ) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # extended_attention_masks for self attention encoder. extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :] extended_attention_mask = tf.cast( extended_attention_mask, attention_scores.dtype ) extended_attention_mask = (1.0 - extended_attention_mask) * -1e9 attention_scores = attention_scores + extended_attention_mask # Normalize the attention scores to probabilities. attention_probs = tf.nn.softmax(attention_scores, axis=-1) attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape(context_layer, (batch_size, -1, self.all_head_size)) outputs = ( (context_layer, attention_probs) if self.output_attentions else (context_layer,) ) return outputs class TFFastSpeechSelfOutput(tf.keras.layers.Layer): """Fastspeech output of self attention module.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.LayerNorm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, inputs, training=False): """Call logic.""" hidden_states, input_tensor = inputs hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFFastSpeechAttention(tf.keras.layers.Layer): """Fastspeech attention module.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.self_attention = TFFastSpeechSelfAttention(config, name="self") self.dense_output = TFFastSpeechSelfOutput(config, name="output") def call(self, inputs, training=False): input_tensor, attention_mask = inputs self_outputs = self.self_attention( [input_tensor, attention_mask], training=training ) attention_output = self.dense_output( [self_outputs[0], input_tensor], training=training ) masked_attention_output = attention_output * tf.cast( tf.expand_dims(attention_mask, 2), dtype=attention_output.dtype ) outputs = (masked_attention_output,) + self_outputs[ 1: ] # add attentions if we output them return outputs class TFFastSpeechIntermediate(tf.keras.layers.Layer): """Intermediate representation module.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.conv1d_1 = tf.keras.layers.Conv1D( config.intermediate_size, kernel_size=config.intermediate_kernel_size, kernel_initializer=get_initializer(config.initializer_range), padding="same", name="conv1d_1", ) self.conv1d_2 = tf.keras.layers.Conv1D( config.hidden_size, kernel_size=config.intermediate_kernel_size, kernel_initializer=get_initializer(config.initializer_range), padding="same", name="conv1d_2", ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def call(self, inputs): """Call logic.""" hidden_states, attention_mask = inputs hidden_states = self.conv1d_1(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.conv1d_2(hidden_states) masked_hidden_states = hidden_states * tf.cast( tf.expand_dims(attention_mask, 2), dtype=hidden_states.dtype ) return masked_hidden_states class TFFastSpeechOutput(tf.keras.layers.Layer): """Output module.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.LayerNorm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, inputs, training=False): """Call logic.""" hidden_states, input_tensor = inputs hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFFastSpeechLayer(tf.keras.layers.Layer): """Fastspeech module (FFT module on the paper).""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.attention = TFFastSpeechAttention(config, name="attention") self.intermediate = TFFastSpeechIntermediate(config, name="intermediate") self.bert_output = TFFastSpeechOutput(config, name="output") def call(self, inputs, training=False): """Call logic.""" hidden_states, attention_mask = inputs attention_outputs = self.attention( [hidden_states, attention_mask], training=training ) attention_output = attention_outputs[0] intermediate_output = self.intermediate( [attention_output, attention_mask], training=training ) layer_output = self.bert_output( [intermediate_output, attention_output], training=training ) masked_layer_output = layer_output * tf.cast( tf.expand_dims(attention_mask, 2), dtype=layer_output.dtype ) outputs = (masked_layer_output,) + attention_outputs[ 1: ] # add attentions if we output them return outputs class TFFastSpeechEncoder(tf.keras.layers.Layer): """Fast Speech encoder module.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [ TFFastSpeechLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers) ] def call(self, inputs, training=False): """Call logic.""" hidden_states, attention_mask = inputs all_hidden_states = () all_attentions = () for _, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( [hidden_states, attention_mask], training=training ) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # outputs, (hidden states), (attentions) class TFFastSpeechDecoder(TFFastSpeechEncoder): """Fast Speech decoder module.""" def __init__(self, config, **kwargs): self.is_compatible_encoder = kwargs.pop("is_compatible_encoder", True) super().__init__(config, **kwargs) self.config = config # create decoder positional embedding self.decoder_positional_embeddings = TFEmbedding( config.max_position_embeddings + 1, config.hidden_size, weights=[self._sincos_embedding()], name="position_embeddings", trainable=False, ) if self.is_compatible_encoder is False: self.project_compatible_decoder = tf.keras.layers.Dense( units=config.hidden_size, name="project_compatible_decoder" ) if config.n_speakers > 1: self.decoder_speaker_embeddings = TFEmbedding( config.n_speakers, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="speaker_embeddings", ) self.speaker_fc = tf.keras.layers.Dense( units=config.hidden_size, name="speaker_fc" ) def call(self, inputs, training=False): hidden_states, speaker_ids, encoder_mask, decoder_pos = inputs if self.is_compatible_encoder is False: hidden_states = self.project_compatible_decoder(hidden_states) # calculate new hidden states. hidden_states += tf.cast( self.decoder_positional_embeddings(decoder_pos), hidden_states.dtype ) if self.config.n_speakers > 1: speaker_embeddings = self.decoder_speaker_embeddings(speaker_ids) speaker_features = tf.math.softplus(self.speaker_fc(speaker_embeddings)) # extended speaker embeddings extended_speaker_features = speaker_features[:, tf.newaxis, :] hidden_states += extended_speaker_features return super().call([hidden_states, encoder_mask], training=training) def _sincos_embedding(self): position_enc = np.array( [ [ pos / np.power(10000, 2.0 * (i // 2) / self.config.hidden_size) for i in range(self.config.hidden_size) ] for pos in range(self.config.max_position_embeddings + 1) ] ) position_enc[:, 0::2] = np.sin(position_enc[:, 0::2]) position_enc[:, 1::2] = np.cos(position_enc[:, 1::2]) # pad embedding. position_enc[0] = 0.0 return position_enc class TFTacotronPostnet(tf.keras.layers.Layer): """Tacotron-2 postnet.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.conv_batch_norm = [] for i in range(config.n_conv_postnet): conv = tf.keras.layers.Conv1D( filters=config.postnet_conv_filters if i < config.n_conv_postnet - 1 else config.num_mels, kernel_size=config.postnet_conv_kernel_sizes, padding="same", name="conv_._{}".format(i), ) batch_norm = tf.keras.layers.BatchNormalization( axis=-1, name="batch_norm_._{}".format(i) ) self.conv_batch_norm.append((conv, batch_norm)) self.dropout = tf.keras.layers.Dropout( rate=config.postnet_dropout_rate, name="dropout" ) self.activation = [tf.nn.tanh] * (config.n_conv_postnet - 1) + [tf.identity] def call(self, inputs, training=False): """Call logic.""" outputs, mask = inputs extended_mask = tf.cast(tf.expand_dims(mask, axis=2), outputs.dtype) for i, (conv, bn) in enumerate(self.conv_batch_norm): outputs = conv(outputs) outputs = bn(outputs) outputs = self.activation[i](outputs) outputs = self.dropout(outputs, training=training) return outputs * extended_mask class TFFastSpeechDurationPredictor(tf.keras.layers.Layer): """FastSpeech duration predictor module.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.conv_layers = [] for i in range(config.num_duration_conv_layers): self.conv_layers.append( tf.keras.layers.Conv1D( config.duration_predictor_filters, config.duration_predictor_kernel_sizes, padding="same", name="conv_._{}".format(i), ) ) self.conv_layers.append( tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="LayerNorm_._{}".format(i) ) ) self.conv_layers.append(tf.keras.layers.Activation(tf.nn.relu6)) self.conv_layers.append( tf.keras.layers.Dropout(config.duration_predictor_dropout_probs) ) self.conv_layers_sequence = tf.keras.Sequential(self.conv_layers) self.output_layer = tf.keras.layers.Dense(1) def call(self, inputs, training=False): """Call logic.""" encoder_hidden_states, attention_mask = inputs attention_mask = tf.cast( tf.expand_dims(attention_mask, 2), encoder_hidden_states.dtype ) # mask encoder hidden states masked_encoder_hidden_states = encoder_hidden_states * attention_mask # pass though first layer outputs = self.conv_layers_sequence(masked_encoder_hidden_states) outputs = self.output_layer(outputs) masked_outputs = outputs * attention_mask return tf.squeeze(tf.nn.relu6(masked_outputs), -1) # make sure positive value. class TFFastSpeechLengthRegulator(tf.keras.layers.Layer): """FastSpeech lengthregulator module.""" def __init__(self, config, **kwargs): """Init variables.""" self.enable_tflite_convertible = kwargs.pop("enable_tflite_convertible", False) super().__init__(**kwargs) self.config = config def call(self, inputs, training=False): """Call logic. Args: 1. encoder_hidden_states, Tensor (float32) shape [batch_size, length, hidden_size] 2. durations_gt, Tensor (float32/int32) shape [batch_size, length] """ encoder_hidden_states, durations_gt = inputs outputs, encoder_masks = self._length_regulator( encoder_hidden_states, durations_gt ) return outputs, encoder_masks def _length_regulator(self, encoder_hidden_states, durations_gt): """Length regulator logic.""" sum_durations = tf.reduce_sum(durations_gt, axis=-1) # [batch_size] max_durations = tf.reduce_max(sum_durations) input_shape = tf.shape(encoder_hidden_states) batch_size = input_shape[0] hidden_size = input_shape[-1] # initialize output hidden states and encoder masking. if self.enable_tflite_convertible: # There is only 1 batch in inference, so we don't have to use # `tf.While` op with 3-D output tensor. repeats = durations_gt[0] real_length = tf.reduce_sum(repeats) pad_size = max_durations - real_length # masks : [max_durations] masks = tf.sequence_mask([real_length], max_durations, dtype=tf.int32) repeat_encoder_hidden_states = tf.repeat( encoder_hidden_states[0], repeats=repeats, axis=0 ) repeat_encoder_hidden_states = tf.expand_dims( tf.pad(repeat_encoder_hidden_states, [[0, pad_size], [0, 0]]), 0 ) # [1, max_durations, hidden_size] outputs = repeat_encoder_hidden_states encoder_masks = masks else: outputs = tf.zeros( shape=[0, max_durations, hidden_size], dtype=encoder_hidden_states.dtype ) encoder_masks = tf.zeros(shape=[0, max_durations], dtype=tf.int32) def condition( i, batch_size, outputs, encoder_masks, encoder_hidden_states, durations_gt, max_durations, ): return tf.less(i, batch_size) def body( i, batch_size, outputs, encoder_masks, encoder_hidden_states, durations_gt, max_durations, ): repeats = durations_gt[i] real_length = tf.reduce_sum(repeats) pad_size = max_durations - real_length masks = tf.sequence_mask([real_length], max_durations, dtype=tf.int32) repeat_encoder_hidden_states = tf.repeat( encoder_hidden_states[i], repeats=repeats, axis=0 ) repeat_encoder_hidden_states = tf.expand_dims( tf.pad(repeat_encoder_hidden_states, [[0, pad_size], [0, 0]]), 0 ) # [1, max_durations, hidden_size] outputs = tf.concat([outputs, repeat_encoder_hidden_states], axis=0) encoder_masks = tf.concat([encoder_masks, masks], axis=0) return [ i + 1, batch_size, outputs, encoder_masks, encoder_hidden_states, durations_gt, max_durations, ] # initialize iteration i. i = tf.constant(0, dtype=tf.int32) _, _, outputs, encoder_masks, _, _, _, = tf.while_loop( condition, body, [ i, batch_size, outputs, encoder_masks, encoder_hidden_states, durations_gt, max_durations, ], shape_invariants=[ i.get_shape(), batch_size.get_shape(), tf.TensorShape( [ None, None, self.config.encoder_self_attention_params.hidden_size, ] ), tf.TensorShape([None, None]), encoder_hidden_states.get_shape(), durations_gt.get_shape(), max_durations.get_shape(), ], ) return outputs, encoder_masks class TFFastSpeech(BaseModel): """TF Fastspeech module.""" def __init__(self, config, **kwargs): """Init layers for fastspeech.""" self.enable_tflite_convertible = kwargs.pop("enable_tflite_convertible", False) super().__init__(**kwargs) self.embeddings = TFFastSpeechEmbeddings(config, name="embeddings") self.encoder = TFFastSpeechEncoder( config.encoder_self_attention_params, name="encoder" ) self.duration_predictor = TFFastSpeechDurationPredictor( config, dtype=tf.float32, name="duration_predictor" ) self.length_regulator = TFFastSpeechLengthRegulator( config, enable_tflite_convertible=self.enable_tflite_convertible, name="length_regulator", ) self.decoder = TFFastSpeechDecoder( config.decoder_self_attention_params, is_compatible_encoder=config.encoder_self_attention_params.hidden_size == config.decoder_self_attention_params.hidden_size, name="decoder", ) self.mel_dense = tf.keras.layers.Dense( units=config.num_mels, dtype=tf.float32, name="mel_before" ) self.postnet = TFTacotronPostnet( config=config, dtype=tf.float32, name="postnet" ) self.setup_inference_fn() def _build(self): """Dummy input for building model.""" # fake inputs input_ids = tf.convert_to_tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], tf.int32) speaker_ids = tf.convert_to_tensor([0], tf.int32) duration_gts = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], tf.int32) self(input_ids, speaker_ids, duration_gts) def resize_positional_embeddings(self, new_size): self.embeddings.resize_positional_embeddings(new_size) self._build() def call( self, input_ids, speaker_ids, duration_gts, training=False, **kwargs, ): """Call logic.""" attention_mask = tf.math.not_equal(input_ids, 0) embedding_output = self.embeddings([input_ids, speaker_ids], training=training) encoder_output = self.encoder( [embedding_output, attention_mask], training=training ) last_encoder_hidden_states = encoder_output[0] # duration predictor, here use last_encoder_hidden_states, u can use more hidden_states layers # rather than just use last_hidden_states of encoder for duration_predictor. duration_outputs = self.duration_predictor( [last_encoder_hidden_states, attention_mask] ) # [batch_size, length] length_regulator_outputs, encoder_masks = self.length_regulator( [last_encoder_hidden_states, duration_gts], training=training ) # create decoder positional embedding decoder_pos = tf.range( 1, tf.shape(length_regulator_outputs)[1] + 1, dtype=tf.int32 ) masked_decoder_pos = tf.expand_dims(decoder_pos, 0) * encoder_masks decoder_output = self.decoder( [length_regulator_outputs, speaker_ids, encoder_masks, masked_decoder_pos], training=training, ) last_decoder_hidden_states = decoder_output[0] # here u can use sum or concat more than 1 hidden states layers from decoder. mel_before = self.mel_dense(last_decoder_hidden_states) mel_after = ( self.postnet([mel_before, encoder_masks], training=training) + mel_before ) outputs = (mel_before, mel_after, duration_outputs) return outputs def _inference(self, input_ids, speaker_ids, speed_ratios, **kwargs): """Call logic.""" attention_mask = tf.math.not_equal(input_ids, 0) embedding_output = self.embeddings([input_ids, speaker_ids], training=False) encoder_output = self.encoder( [embedding_output, attention_mask], training=False ) last_encoder_hidden_states = encoder_output[0] # duration predictor, here use last_encoder_hidden_states, u can use more hidden_states layers # rather than just use last_hidden_states of encoder for duration_predictor. duration_outputs = self.duration_predictor( [last_encoder_hidden_states, attention_mask] ) # [batch_size, length] # duration_outputs = tf.math.exp(duration_outputs) - 1.0 # fix if speed_ratios is None: speed_ratios = tf.convert_to_tensor(np.array([1.0]), dtype=tf.float32) speed_ratios = tf.expand_dims(speed_ratios, 1) duration_outputs = tf.cast( tf.math.round(duration_outputs * speed_ratios), tf.int32 ) length_regulator_outputs, encoder_masks = self.length_regulator( [last_encoder_hidden_states, duration_outputs], training=False ) # create decoder positional embedding decoder_pos = tf.range( 1, tf.shape(length_regulator_outputs)[1] + 1, dtype=tf.int32 ) masked_decoder_pos = tf.expand_dims(decoder_pos, 0) * encoder_masks decoder_output = self.decoder( [length_regulator_outputs, speaker_ids, encoder_masks, masked_decoder_pos], training=False, ) last_decoder_hidden_states = decoder_output[0] # here u can use sum or concat more than 1 hidden states layers from decoder. mel_before = self.mel_dense(last_decoder_hidden_states) mel_after = ( self.postnet([mel_before, encoder_masks], training=False) + mel_before ) outputs = (mel_before, mel_after, duration_outputs) return outputs def setup_inference_fn(self): self.inference = tf.function( self._inference, experimental_relax_shapes=True, input_signature=[ tf.TensorSpec(shape=[None, None], dtype=tf.int32, name="input_ids"), tf.TensorSpec(shape=[None,], dtype=tf.int32, name="speaker_ids"), tf.TensorSpec(shape=[None,], dtype=tf.float32, name="speed_ratios"), ], ) self.inference_tflite = tf.function( self._inference, experimental_relax_shapes=True, input_signature=[ tf.TensorSpec(shape=[1, None], dtype=tf.int32, name="input_ids"), tf.TensorSpec(shape=[1,], dtype=tf.int32, name="speaker_ids"), tf.TensorSpec(shape=[1,], dtype=tf.float32, name="speed_ratios"), ], )
37.381738
102
0.615686
e6ca616c63b56737940af6232e7e6088f3026a18
42,423
py
Python
tools/eval_rcnn.py
kaancolak/PointRCNN
eeca9bef79baaebfef3c45b1ea929168e37c3071
[ "MIT" ]
null
null
null
tools/eval_rcnn.py
kaancolak/PointRCNN
eeca9bef79baaebfef3c45b1ea929168e37c3071
[ "MIT" ]
null
null
null
tools/eval_rcnn.py
kaancolak/PointRCNN
eeca9bef79baaebfef3c45b1ea929168e37c3071
[ "MIT" ]
null
null
null
import _init_path import os import numpy as np import torch from torch.utils.data import DataLoader import torch.nn.functional as F from lib.net.point_rcnn import PointRCNN from lib.datasets.kitti_rcnn_dataset import KittiRCNNDataset import tools.train_utils.train_utils as train_utils from lib.utils.bbox_transform import decode_bbox_target from tools.kitti_object_eval_python.evaluate import evaluate as kitti_evaluate from lib.config import cfg, cfg_from_file, save_config_to_file, cfg_from_list import argparse import lib.utils.kitti_utils as kitti_utils import lib.utils.iou3d.iou3d_utils as iou3d_utils from datetime import datetime import logging import re import glob import time from tensorboardX import SummaryWriter import tqdm np.random.seed(1024) # set the same seed parser = argparse.ArgumentParser(description="arg parser") parser.add_argument('--cfg_file', type=str, default='cfgs/default.yml', help='specify the config for evaluation') parser.add_argument("--eval_mode", type=str, default='rpn', required=True, help="specify the evaluation mode") parser.add_argument('--eval_all', action='store_true', default=False, help='whether to evaluate all checkpoints') parser.add_argument('--test', action='store_true', default=False, help='evaluate without ground truth') parser.add_argument("--ckpt", type=str, default=None, help="specify a checkpoint to be evaluated") parser.add_argument("--rpn_ckpt", type=str, default=None, help="specify the checkpoint of rpn if trained separated") parser.add_argument("--rcnn_ckpt", type=str, default=None, help="specify the checkpoint of rcnn if trained separated") parser.add_argument('--batch_size', type=int, default=1, help='batch size for evaluation') parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader') parser.add_argument("--extra_tag", type=str, default='default', help="extra tag for multiple evaluation") parser.add_argument('--output_dir', type=str, default=None, help='specify an output directory if needed') parser.add_argument("--ckpt_dir", type=str, default=None, help="specify a ckpt directory to be evaluated if needed") parser.add_argument('--save_result', action='store_true', default=False, help='save evaluation results to files') parser.add_argument('--save_rpn_feature', action='store_true', default=False, help='save features for separately rcnn training and evaluation') parser.add_argument('--random_select', action='store_true', default=True, help='sample to the same number of points') parser.add_argument('--start_epoch', default=0, type=int, help='ignore the checkpoint smaller than this epoch') parser.add_argument("--rcnn_eval_roi_dir", type=str, default=None, help='specify the saved rois for rcnn evaluation when using rcnn_offline mode') parser.add_argument("--rcnn_eval_feature_dir", type=str, default=None, help='specify the saved features for rcnn evaluation when using rcnn_offline mode') parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER, help='set extra config keys if needed') args = parser.parse_args() def create_logger(log_file): log_format = '%(asctime)s %(levelname)5s %(message)s' logging.basicConfig(level=logging.INFO, format=log_format, filename=log_file) console = logging.StreamHandler() console.setLevel(logging.INFO) console.setFormatter(logging.Formatter(log_format)) logging.getLogger(__name__).addHandler(console) return logging.getLogger(__name__) def save_kitti_format(sample_id, calib, bbox3d, kitti_output_dir, scores, img_shape): corners3d = kitti_utils.boxes3d_to_corners3d(bbox3d) img_boxes, _ = calib.corners3d_to_img_boxes(corners3d) img_boxes[:, 0] = np.clip(img_boxes[:, 0], 0, img_shape[1] - 1) img_boxes[:, 1] = np.clip(img_boxes[:, 1], 0, img_shape[0] - 1) img_boxes[:, 2] = np.clip(img_boxes[:, 2], 0, img_shape[1] - 1) img_boxes[:, 3] = np.clip(img_boxes[:, 3], 0, img_shape[0] - 1) img_boxes_w = img_boxes[:, 2] - img_boxes[:, 0] img_boxes_h = img_boxes[:, 3] - img_boxes[:, 1] box_valid_mask = np.logical_and(img_boxes_w < img_shape[1] * 0.8, img_boxes_h < img_shape[0] * 0.8) kitti_output_file = os.path.join(kitti_output_dir, '%06d.txt' % sample_id) with open(kitti_output_file, 'w') as f: for k in range(bbox3d.shape[0]): if box_valid_mask[k] == 0: continue x, z, ry = bbox3d[k, 0], bbox3d[k, 2], bbox3d[k, 6] beta = np.arctan2(z, x) alpha = -np.sign(beta) * np.pi / 2 + beta + ry print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f' % (cfg.CLASSES, alpha, img_boxes[k, 0], img_boxes[k, 1], img_boxes[k, 2], img_boxes[k, 3], bbox3d[k, 3], bbox3d[k, 4], bbox3d[k, 5], bbox3d[k, 0], bbox3d[k, 1], bbox3d[k, 2], bbox3d[k, 6], scores[k]), file=f) def save_rpn_features(seg_result, rpn_scores_raw, pts_features, backbone_xyz, backbone_features, kitti_features_dir, sample_id): pts_intensity = pts_features[:, 0] output_file = os.path.join(kitti_features_dir, '%06d.npy' % sample_id) xyz_file = os.path.join(kitti_features_dir, '%06d_xyz.npy' % sample_id) seg_file = os.path.join(kitti_features_dir, '%06d_seg.npy' % sample_id) intensity_file = os.path.join(kitti_features_dir, '%06d_intensity.npy' % sample_id) np.save(output_file, backbone_features) np.save(xyz_file, backbone_xyz) np.save(seg_file, seg_result) np.save(intensity_file, pts_intensity) rpn_scores_raw_file = os.path.join(kitti_features_dir, '%06d_rawscore.npy' % sample_id) np.save(rpn_scores_raw_file, rpn_scores_raw) def eval_one_epoch_rpn(model, dataloader, epoch_id, result_dir, logger): np.random.seed(1024) mode = 'TEST' if args.test else 'EVAL' if args.save_rpn_feature: kitti_features_dir = os.path.join(result_dir, 'features') os.makedirs(kitti_features_dir, exist_ok=True) if args.save_result or args.save_rpn_feature: kitti_output_dir = os.path.join(result_dir, 'detections', 'data') seg_output_dir = os.path.join(result_dir, 'seg_result') os.makedirs(kitti_output_dir, exist_ok=True) os.makedirs(seg_output_dir, exist_ok=True) logger.info('---- EPOCH %s RPN EVALUATION ----' % epoch_id) model.eval() thresh_list = [0.1, 0.3, 0.5, 0.7, 0.9] total_recalled_bbox_list, total_gt_bbox = [0] * 5, 0 dataset = dataloader.dataset cnt = max_num = rpn_iou_avg = 0 progress_bar = tqdm.tqdm(total=len(dataloader), leave=True, desc='eval') for data in dataloader: sample_id_list, pts_rect, pts_features, pts_input = \ data['sample_id'], data['pts_rect'], data['pts_features'], data['pts_input'] sample_id = sample_id_list[0] cnt += len(sample_id_list) if not args.test: rpn_cls_label, rpn_reg_label = data['rpn_cls_label'], data['rpn_reg_label'] gt_boxes3d = data['gt_boxes3d'] rpn_cls_label = torch.from_numpy(rpn_cls_label).cuda(non_blocking=True).long() if gt_boxes3d.shape[1] == 0: # (B, M, 7) pass # logger.info('%06d: No gt box' % sample_id) else: gt_boxes3d = torch.from_numpy(gt_boxes3d).cuda(non_blocking=True).float() inputs = torch.from_numpy(pts_input).cuda(non_blocking=True).float() input_data = {'pts_input': inputs} # model inference ret_dict = model(input_data) rpn_cls, rpn_reg = ret_dict['rpn_cls'], ret_dict['rpn_reg'] backbone_xyz, backbone_features = ret_dict['backbone_xyz'], ret_dict['backbone_features'] rpn_scores_raw = rpn_cls[:, :, 0] rpn_scores = torch.sigmoid(rpn_scores_raw) seg_result = (rpn_scores > cfg.RPN.SCORE_THRESH).long() # proposal layer rois, roi_scores_raw = model.rpn.proposal_layer(rpn_scores_raw, rpn_reg, backbone_xyz) # (B, M, 7) batch_size = rois.shape[0] # calculate recall and save results to file for bs_idx in range(batch_size): cur_sample_id = sample_id_list[bs_idx] cur_scores_raw = roi_scores_raw[bs_idx] # (N) cur_boxes3d = rois[bs_idx] # (N, 7) cur_seg_result = seg_result[bs_idx] cur_pts_rect = pts_rect[bs_idx] # calculate recall if not args.test: cur_rpn_cls_label = rpn_cls_label[bs_idx] cur_gt_boxes3d = gt_boxes3d[bs_idx] k = cur_gt_boxes3d.__len__() - 1 while k > 0 and cur_gt_boxes3d[k].sum() == 0: k -= 1 cur_gt_boxes3d = cur_gt_boxes3d[:k + 1] recalled_num = 0 if cur_gt_boxes3d.shape[0] > 0: iou3d = iou3d_utils.boxes_iou3d_gpu(cur_boxes3d, cur_gt_boxes3d[:, 0:7]) gt_max_iou, _ = iou3d.max(dim=0) for idx, thresh in enumerate(thresh_list): total_recalled_bbox_list[idx] += (gt_max_iou > thresh).sum().item() recalled_num = (gt_max_iou > 0.7).sum().item() total_gt_bbox += cur_gt_boxes3d.__len__() fg_mask = cur_rpn_cls_label > 0 correct = ((cur_seg_result == cur_rpn_cls_label) & fg_mask).sum().float() union = fg_mask.sum().float() + (cur_seg_result > 0).sum().float() - correct rpn_iou = correct / torch.clamp(union, min=1.0) rpn_iou_avg += rpn_iou.item() # save result if args.save_rpn_feature: # save features to file save_rpn_features(seg_result[bs_idx].float().cpu().numpy(), rpn_scores_raw[bs_idx].float().cpu().numpy(), pts_features[bs_idx], backbone_xyz[bs_idx].cpu().numpy(), backbone_features[bs_idx].cpu().numpy().transpose(1, 0), kitti_features_dir, cur_sample_id) if args.save_result or args.save_rpn_feature: cur_pred_cls = cur_seg_result.cpu().numpy() output_file = os.path.join(seg_output_dir, '%06d.npy' % cur_sample_id) if not args.test: cur_gt_cls = cur_rpn_cls_label.cpu().numpy() output_data = np.concatenate( (cur_pts_rect.reshape(-1, 3), cur_gt_cls.reshape(-1, 1), cur_pred_cls.reshape(-1, 1)), axis=1) else: output_data = np.concatenate((cur_pts_rect.reshape(-1, 3), cur_pred_cls.reshape(-1, 1)), axis=1) np.save(output_file, output_data.astype(np.float16)) # save as kitti format calib = dataset.get_calib(cur_sample_id) cur_boxes3d = cur_boxes3d.cpu().numpy() image_shape = dataset.get_image_shape(cur_sample_id) save_kitti_format(cur_sample_id, calib, cur_boxes3d, kitti_output_dir, cur_scores_raw, image_shape) disp_dict = {'mode': mode, 'recall': '%d/%d' % (total_recalled_bbox_list[3], total_gt_bbox), 'rpn_iou': rpn_iou_avg / max(cnt, 1.0)} progress_bar.set_postfix(disp_dict) progress_bar.update() progress_bar.close() logger.info(str(datetime.now())) logger.info('-------------------performance of epoch %s---------------------' % epoch_id) logger.info('max number of objects: %d' % max_num) logger.info('rpn iou avg: %f' % (rpn_iou_avg / max(cnt, 1.0))) ret_dict = {'max_obj_num': max_num, 'rpn_iou': rpn_iou_avg / cnt} for idx, thresh in enumerate(thresh_list): cur_recall = total_recalled_bbox_list[idx] / max(total_gt_bbox, 1.0) logger.info('total bbox recall(thresh=%.3f): %d / %d = %f' % (thresh, total_recalled_bbox_list[idx], total_gt_bbox, cur_recall)) ret_dict['rpn_recall(thresh=%.2f)' % thresh] = cur_recall logger.info('result is saved to: %s' % result_dir) return ret_dict def eval_one_epoch_rcnn(model, dataloader, epoch_id, result_dir, logger): np.random.seed(1024) MEAN_SIZE = torch.from_numpy(cfg.CLS_MEAN_SIZE[0]).cuda() mode = 'TEST' if args.test else 'EVAL' final_output_dir = os.path.join(result_dir, 'final_result', 'data') os.makedirs(final_output_dir, exist_ok=True) if args.save_result: roi_output_dir = os.path.join(result_dir, 'roi_result', 'data') refine_output_dir = os.path.join(result_dir, 'refine_result', 'data') os.makedirs(roi_output_dir, exist_ok=True) os.makedirs(refine_output_dir, exist_ok=True) logger.info('---- EPOCH %s RCNN EVALUATION ----' % epoch_id) model.eval() thresh_list = [0.1, 0.3, 0.5, 0.7, 0.9] total_recalled_bbox_list, total_gt_bbox = [0] * 5, 0 total_roi_recalled_bbox_list = [0] * 5 dataset = dataloader.dataset cnt = final_total = total_cls_acc = total_cls_acc_refined = 0 progress_bar = tqdm.tqdm(total=len(dataloader), leave=True, desc='eval') for data in dataloader: sample_id = data['sample_id'] cnt += 1 assert args.batch_size == 1, 'Only support bs=1 here' input_data = {} for key, val in data.items(): if key != 'sample_id': input_data[key] = torch.from_numpy(val).contiguous().cuda(non_blocking=True).float() roi_boxes3d = input_data['roi_boxes3d'] roi_scores = input_data['roi_scores'] if cfg.RCNN.ROI_SAMPLE_JIT: for key, val in input_data.items(): if key in ['gt_iou', 'gt_boxes3d']: continue input_data[key] = input_data[key].unsqueeze(dim=0) else: pts_input = torch.cat((input_data['pts_input'], input_data['pts_features']), dim=-1) input_data['pts_input'] = pts_input ret_dict = model(input_data) rcnn_cls = ret_dict['rcnn_cls'] rcnn_reg = ret_dict['rcnn_reg'] # bounding box regression anchor_size = MEAN_SIZE if cfg.RCNN.SIZE_RES_ON_ROI: roi_size = input_data['roi_size'] anchor_size = roi_size pred_boxes3d = decode_bbox_target(roi_boxes3d, rcnn_reg, anchor_size=anchor_size, loc_scope=cfg.RCNN.LOC_SCOPE, loc_bin_size=cfg.RCNN.LOC_BIN_SIZE, num_head_bin=cfg.RCNN.NUM_HEAD_BIN, get_xz_fine=True, get_y_by_bin=cfg.RCNN.LOC_Y_BY_BIN, loc_y_scope=cfg.RCNN.LOC_Y_SCOPE, loc_y_bin_size=cfg.RCNN.LOC_Y_BIN_SIZE, get_ry_fine=True) # scoring if rcnn_cls.shape[1] == 1: raw_scores = rcnn_cls.view(-1) norm_scores = torch.sigmoid(raw_scores) pred_classes = (norm_scores > cfg.RCNN.SCORE_THRESH).long() else: pred_classes = torch.argmax(rcnn_cls, dim=1).view(-1) cls_norm_scores = F.softmax(rcnn_cls, dim=1) raw_scores = rcnn_cls[:, pred_classes] norm_scores = cls_norm_scores[:, pred_classes] # evaluation disp_dict = {'mode': mode} if not args.test: gt_boxes3d = input_data['gt_boxes3d'] gt_iou = input_data['gt_iou'] # calculate recall gt_num = gt_boxes3d.shape[0] if gt_num > 0: iou3d = iou3d_utils.boxes_iou3d_gpu(pred_boxes3d, gt_boxes3d) gt_max_iou, _ = iou3d.max(dim=0) refined_iou, _ = iou3d.max(dim=1) for idx, thresh in enumerate(thresh_list): total_recalled_bbox_list[idx] += (gt_max_iou > thresh).sum().item() recalled_num = (gt_max_iou > 0.7).sum().item() total_gt_bbox += gt_num iou3d_in = iou3d_utils.boxes_iou3d_gpu(roi_boxes3d, gt_boxes3d) gt_max_iou_in, _ = iou3d_in.max(dim=0) for idx, thresh in enumerate(thresh_list): total_roi_recalled_bbox_list[idx] += (gt_max_iou_in > thresh).sum().item() # classification accuracy cls_label = (gt_iou > cfg.RCNN.CLS_FG_THRESH).float() cls_valid_mask = ((gt_iou >= cfg.RCNN.CLS_FG_THRESH) | (gt_iou <= cfg.RCNN.CLS_BG_THRESH)).float() cls_acc = ((pred_classes == cls_label.long()).float() * cls_valid_mask).sum() / max(cls_valid_mask.sum(), 1.0) iou_thresh = 0.7 if cfg.CLASSES == 'Car' else 0.5 cls_label_refined = (gt_iou >= iou_thresh).float() cls_acc_refined = (pred_classes == cls_label_refined.long()).float().sum() / max(cls_label_refined.shape[0], 1.0) total_cls_acc += cls_acc.item() total_cls_acc_refined += cls_acc_refined.item() disp_dict['recall'] = '%d/%d' % (total_recalled_bbox_list[3], total_gt_bbox) disp_dict['cls_acc_refined'] = '%.2f' % cls_acc_refined.item() progress_bar.set_postfix(disp_dict) progress_bar.update() image_shape = dataset.get_image_shape(sample_id) if args.save_result: # save roi and refine results roi_boxes3d_np = roi_boxes3d.cpu().numpy() pred_boxes3d_np = pred_boxes3d.cpu().numpy() calib = dataset.get_calib(sample_id) save_kitti_format(sample_id, calib, roi_boxes3d_np, roi_output_dir, roi_scores, image_shape) save_kitti_format(sample_id, calib, pred_boxes3d_np, refine_output_dir, raw_scores.cpu().numpy(), image_shape) # NMS and scoring # scores thresh inds = norm_scores > cfg.RCNN.SCORE_THRESH if inds.sum() == 0: continue pred_boxes3d_selected = pred_boxes3d[inds] raw_scores_selected = raw_scores[inds] # NMS thresh boxes_bev_selected = kitti_utils.boxes3d_to_bev_torch(pred_boxes3d_selected) keep_idx = iou3d_utils.nms_gpu(boxes_bev_selected, raw_scores_selected, cfg.RCNN.NMS_THRESH) pred_boxes3d_selected = pred_boxes3d_selected[keep_idx] scores_selected = raw_scores_selected[keep_idx] pred_boxes3d_selected, scores_selected = pred_boxes3d_selected.cpu().numpy(), scores_selected.cpu().numpy() calib = dataset.get_calib(sample_id) final_total += pred_boxes3d_selected.shape[0] save_kitti_format(sample_id, calib, pred_boxes3d_selected, final_output_dir, scores_selected, image_shape) progress_bar.close() # dump empty files split_file = os.path.join(dataset.imageset_dir, '..', '..', 'ImageSets', dataset.split + '.txt') split_file = os.path.abspath(split_file) image_idx_list = [x.strip() for x in open(split_file).readlines()] empty_cnt = 0 for k in range(image_idx_list.__len__()): cur_file = os.path.join(final_output_dir, '%s.txt' % image_idx_list[k]) if not os.path.exists(cur_file): with open(cur_file, 'w') as temp_f: pass empty_cnt += 1 logger.info('empty_cnt=%d: dump empty file %s' % (empty_cnt, cur_file)) ret_dict = {'empty_cnt': empty_cnt} logger.info('-------------------performance of epoch %s---------------------' % epoch_id) logger.info(str(datetime.now())) avg_cls_acc = (total_cls_acc / max(cnt, 1.0)) avg_cls_acc_refined = (total_cls_acc_refined / max(cnt, 1.0)) avg_det_num = (final_total / max(cnt, 1.0)) logger.info('final average detections: %.3f' % avg_det_num) logger.info('final average cls acc: %.3f' % avg_cls_acc) logger.info('final average cls acc refined: %.3f' % avg_cls_acc_refined) ret_dict['rcnn_cls_acc'] = avg_cls_acc ret_dict['rcnn_cls_acc_refined'] = avg_cls_acc_refined ret_dict['rcnn_avg_num'] = avg_det_num for idx, thresh in enumerate(thresh_list): cur_roi_recall = total_roi_recalled_bbox_list[idx] / max(total_gt_bbox, 1.0) logger.info('total roi bbox recall(thresh=%.3f): %d / %d = %f' % (thresh, total_roi_recalled_bbox_list[idx], total_gt_bbox, cur_roi_recall)) ret_dict['rpn_recall(thresh=%.2f)' % thresh] = cur_roi_recall for idx, thresh in enumerate(thresh_list): cur_recall = total_recalled_bbox_list[idx] / max(total_gt_bbox, 1.0) logger.info('total bbox recall(thresh=%.3f): %d / %d = %f' % (thresh, total_recalled_bbox_list[idx], total_gt_bbox, cur_recall)) ret_dict['rcnn_recall(thresh=%.2f)' % thresh] = cur_recall if cfg.TEST.SPLIT != 'test': logger.info('Averate Precision:') name_to_class = {'Car': 0, 'Pedestrian': 1, 'Cyclist': 2} ap_result_str, ap_dict = kitti_evaluate(dataset.label_dir, final_output_dir, label_split_file=split_file, current_class=name_to_class[cfg.CLASSES]) logger.info(ap_result_str) ret_dict.update(ap_dict) logger.info('result is saved to: %s' % result_dir) return ret_dict def eval_one_epoch_joint(model, dataloader, epoch_id, result_dir, logger): np.random.seed(666) MEAN_SIZE = torch.from_numpy(cfg.CLS_MEAN_SIZE[0]).cuda() mode = 'TEST' if args.test else 'EVAL' final_output_dir = os.path.join(result_dir, 'final_result', 'data') os.makedirs(final_output_dir, exist_ok=True) if args.save_result: roi_output_dir = os.path.join(result_dir, 'roi_result', 'data') refine_output_dir = os.path.join(result_dir, 'refine_result', 'data') rpn_output_dir = os.path.join(result_dir, 'rpn_result', 'data') os.makedirs(rpn_output_dir, exist_ok=True) os.makedirs(roi_output_dir, exist_ok=True) os.makedirs(refine_output_dir, exist_ok=True) logger.info('---- EPOCH %s JOINT EVALUATION ----' % epoch_id) logger.info('==> Output file: %s' % result_dir) model.eval() thresh_list = [0.1, 0.3, 0.5, 0.7, 0.9] total_recalled_bbox_list, total_gt_bbox = [0] * 5, 0 total_roi_recalled_bbox_list = [0] * 5 dataset = dataloader.dataset cnt = final_total = total_cls_acc = total_cls_acc_refined = total_rpn_iou = 0 progress_bar = tqdm.tqdm(total=len(dataloader), leave=True, desc='eval') # print(type(dataloader)) for data in dataloader: cnt += 1 # print(data) sample_id, pts_rect, pts_features, pts_input = \ data['sample_id'], data['pts_rect'], data['pts_features'], data['pts_input'] batch_size = len(sample_id) print(pts_input.shape) print(type(pts_input)) inputs = torch.from_numpy(pts_input).cuda(non_blocking=True).float() print("---------") print(inputs.shape) print("Inputs shape :") print(inputs) # print(inputs.size) input_data = {'pts_input': inputs} # print(input_data) # model inference ret_dict = model(input_data) # print("-----------------------------") # print("-----------------------------") # print("-----------------------------") # # print(ret_dict) print("---------") roi_scores_raw = ret_dict['roi_scores_raw'] # (B, M) roi_boxes3d = ret_dict['rois'] # (B, M, 7) # print("-----------------------------") # print("-----------------------------") # print("-----------------------------") # print(roi_boxes3d) seg_result = ret_dict['seg_result'].long() # (B, N) seg_result_numpy = seg_result.cpu().detach().numpy() print(seg_result_numpy.shape) counter = 0 counter2 = 0 for x in np.nditer(seg_result_numpy): if x == 1: counter = counter + 1 elif x == 0: counter2 = counter2 + 1 print(counter) print(counter2) rcnn_cls = ret_dict['rcnn_cls'].view(batch_size, -1, ret_dict['rcnn_cls'].shape[1]) rcnn_reg = ret_dict['rcnn_reg'].view(batch_size, -1, ret_dict['rcnn_reg'].shape[1]) # (B, M, C) # bounding box regression anchor_size = MEAN_SIZE if cfg.RCNN.SIZE_RES_ON_ROI: assert False pred_boxes3d = decode_bbox_target(roi_boxes3d.view(-1, 7), rcnn_reg.view(-1, rcnn_reg.shape[-1]), anchor_size=anchor_size, loc_scope=cfg.RCNN.LOC_SCOPE, loc_bin_size=cfg.RCNN.LOC_BIN_SIZE, num_head_bin=cfg.RCNN.NUM_HEAD_BIN, get_xz_fine=True, get_y_by_bin=cfg.RCNN.LOC_Y_BY_BIN, loc_y_scope=cfg.RCNN.LOC_Y_SCOPE, loc_y_bin_size=cfg.RCNN.LOC_Y_BIN_SIZE, get_ry_fine=True).view(batch_size, -1, 7) # print(pred_boxes3d) # scoring if rcnn_cls.shape[2] == 1: raw_scores = rcnn_cls # (B, M, 1) norm_scores = torch.sigmoid(raw_scores) pred_classes = (norm_scores > cfg.RCNN.SCORE_THRESH).long() else: pred_classes = torch.argmax(rcnn_cls, dim=1).view(-1) cls_norm_scores = F.softmax(rcnn_cls, dim=1) raw_scores = rcnn_cls[:, pred_classes] norm_scores = cls_norm_scores[:, pred_classes] # evaluation recalled_num = gt_num = rpn_iou = 0 if not args.test: if not cfg.RPN.FIXED: rpn_cls_label, rpn_reg_label = data['rpn_cls_label'], data['rpn_reg_label'] rpn_cls_label = torch.from_numpy(rpn_cls_label).cuda(non_blocking=True).long() gt_boxes3d = data['gt_boxes3d'] for k in range(batch_size): # calculate recall cur_gt_boxes3d = gt_boxes3d[k] tmp_idx = cur_gt_boxes3d.__len__() - 1 while tmp_idx >= 0 and cur_gt_boxes3d[tmp_idx].sum() == 0: tmp_idx -= 1 if tmp_idx >= 0: cur_gt_boxes3d = cur_gt_boxes3d[:tmp_idx + 1] cur_gt_boxes3d = torch.from_numpy(cur_gt_boxes3d).cuda(non_blocking=True).float() iou3d = iou3d_utils.boxes_iou3d_gpu(pred_boxes3d[k], cur_gt_boxes3d) gt_max_iou, _ = iou3d.max(dim=0) refined_iou, _ = iou3d.max(dim=1) for idx, thresh in enumerate(thresh_list): total_recalled_bbox_list[idx] += (gt_max_iou > thresh).sum().item() recalled_num += (gt_max_iou > 0.7).sum().item() gt_num += cur_gt_boxes3d.shape[0] total_gt_bbox += cur_gt_boxes3d.shape[0] # original recall iou3d_in = iou3d_utils.boxes_iou3d_gpu(roi_boxes3d[k], cur_gt_boxes3d) gt_max_iou_in, _ = iou3d_in.max(dim=0) for idx, thresh in enumerate(thresh_list): total_roi_recalled_bbox_list[idx] += (gt_max_iou_in > thresh).sum().item() if not cfg.RPN.FIXED: fg_mask = rpn_cls_label > 0 correct = ((seg_result == rpn_cls_label) & fg_mask).sum().float() union = fg_mask.sum().float() + (seg_result > 0).sum().float() - correct rpn_iou = correct / torch.clamp(union, min=1.0) total_rpn_iou += rpn_iou.item() disp_dict = {'mode': mode, 'recall': '%d/%d' % (total_recalled_bbox_list[3], total_gt_bbox)} progress_bar.set_postfix(disp_dict) progress_bar.update() if args.save_result: # save roi and refine results roi_boxes3d_np = roi_boxes3d.cpu().numpy() pred_boxes3d_np = pred_boxes3d.cpu().numpy() roi_scores_raw_np = roi_scores_raw.cpu().numpy() raw_scores_np = raw_scores.cpu().numpy() rpn_cls_np = ret_dict['rpn_cls'].cpu().numpy() rpn_xyz_np = ret_dict['backbone_xyz'].cpu().numpy() seg_result_np = seg_result.cpu().numpy() output_data = np.concatenate((rpn_xyz_np, rpn_cls_np.reshape(batch_size, -1, 1), seg_result_np.reshape(batch_size, -1, 1)), axis=2) for k in range(batch_size): cur_sample_id = sample_id[k] calib = dataset.get_calib(cur_sample_id) image_shape = dataset.get_image_shape(cur_sample_id) save_kitti_format(cur_sample_id, calib, roi_boxes3d_np[k], roi_output_dir, roi_scores_raw_np[k], image_shape) save_kitti_format(cur_sample_id, calib, pred_boxes3d_np[k], refine_output_dir, raw_scores_np[k], image_shape) output_file = os.path.join(rpn_output_dir, '%06d.npy' % cur_sample_id) np.save(output_file, output_data.astype(np.float32)) # scores thresh inds = norm_scores > cfg.RCNN.SCORE_THRESH for k in range(batch_size): cur_inds = inds[k].view(-1) if cur_inds.sum() == 0: continue pred_boxes3d_selected = pred_boxes3d[k, cur_inds] raw_scores_selected = raw_scores[k, cur_inds] norm_scores_selected = norm_scores[k, cur_inds] # NMS thresh # rotated nms boxes_bev_selected = kitti_utils.boxes3d_to_bev_torch(pred_boxes3d_selected) keep_idx = iou3d_utils.nms_gpu(boxes_bev_selected, raw_scores_selected, cfg.RCNN.NMS_THRESH).view(-1) pred_boxes3d_selected = pred_boxes3d_selected[keep_idx] scores_selected = raw_scores_selected[keep_idx] pred_boxes3d_selected, scores_selected = pred_boxes3d_selected.cpu().numpy(), scores_selected.cpu().numpy() cur_sample_id = sample_id[k] calib = dataset.get_calib(cur_sample_id) final_total += pred_boxes3d_selected.shape[0] image_shape = dataset.get_image_shape(cur_sample_id) save_kitti_format(cur_sample_id, calib, pred_boxes3d_selected, final_output_dir, scores_selected, image_shape) progress_bar.close() # dump empty files split_file = os.path.join(dataset.imageset_dir, '..', '..', 'ImageSets', dataset.split + '.txt') split_file = os.path.abspath(split_file) image_idx_list = [x.strip() for x in open(split_file).readlines()] empty_cnt = 0 for k in range(image_idx_list.__len__()): cur_file = os.path.join(final_output_dir, '%s.txt' % image_idx_list[k]) if not os.path.exists(cur_file): with open(cur_file, 'w') as temp_f: pass empty_cnt += 1 logger.info('empty_cnt=%d: dump empty file %s' % (empty_cnt, cur_file)) ret_dict = {'empty_cnt': empty_cnt} logger.info('-------------------performance of epoch %s---------------------' % epoch_id) logger.info(str(datetime.now())) avg_rpn_iou = (total_rpn_iou / max(cnt, 1.0)) avg_cls_acc = (total_cls_acc / max(cnt, 1.0)) avg_cls_acc_refined = (total_cls_acc_refined / max(cnt, 1.0)) avg_det_num = (final_total / max(len(dataset), 1.0)) logger.info('final average detections: %.3f' % avg_det_num) logger.info('final average rpn_iou refined: %.3f' % avg_rpn_iou) logger.info('final average cls acc: %.3f' % avg_cls_acc) logger.info('final average cls acc refined: %.3f' % avg_cls_acc_refined) ret_dict['rpn_iou'] = avg_rpn_iou ret_dict['rcnn_cls_acc'] = avg_cls_acc ret_dict['rcnn_cls_acc_refined'] = avg_cls_acc_refined ret_dict['rcnn_avg_num'] = avg_det_num for idx, thresh in enumerate(thresh_list): cur_roi_recall = total_roi_recalled_bbox_list[idx] / max(total_gt_bbox, 1.0) logger.info('total roi bbox recall(thresh=%.3f): %d / %d = %f' % (thresh, total_roi_recalled_bbox_list[idx], total_gt_bbox, cur_roi_recall)) ret_dict['rpn_recall(thresh=%.2f)' % thresh] = cur_roi_recall for idx, thresh in enumerate(thresh_list): cur_recall = total_recalled_bbox_list[idx] / max(total_gt_bbox, 1.0) logger.info('total bbox recall(thresh=%.3f): %d / %d = %f' % (thresh, total_recalled_bbox_list[idx], total_gt_bbox, cur_recall)) ret_dict['rcnn_recall(thresh=%.2f)' % thresh] = cur_recall if cfg.TEST.SPLIT != 'test': logger.info('Averate Precision:') name_to_class = {'Car': 0, 'Pedestrian': 1, 'Cyclist': 2} ap_result_str, ap_dict = kitti_evaluate(dataset.label_dir, final_output_dir, label_split_file=split_file, current_class=name_to_class[cfg.CLASSES]) logger.info(ap_result_str) ret_dict.update(ap_dict) logger.info('result is saved to: %s' % result_dir) return ret_dict def eval_one_epoch(model, dataloader, epoch_id, result_dir, logger): if cfg.RPN.ENABLED and not cfg.RCNN.ENABLED: ret_dict = eval_one_epoch_rpn(model, dataloader, epoch_id, result_dir, logger) elif not cfg.RPN.ENABLED and cfg.RCNN.ENABLED: ret_dict = eval_one_epoch_rcnn(model, dataloader, epoch_id, result_dir, logger) elif cfg.RPN.ENABLED and cfg.RCNN.ENABLED: ret_dict = eval_one_epoch_joint(model, dataloader, epoch_id, result_dir, logger) else: raise NotImplementedError return ret_dict def load_part_ckpt(model, filename, logger, total_keys=-1): if os.path.isfile(filename): logger.info("==> Loading part model from checkpoint '{}'".format(filename)) checkpoint = torch.load(filename) model_state = checkpoint['model_state'] update_model_state = {key: val for key, val in model_state.items() if key in model.state_dict()} state_dict = model.state_dict() state_dict.update(update_model_state) model.load_state_dict(state_dict) update_keys = update_model_state.keys().__len__() if update_keys == 0: raise RuntimeError logger.info("==> Done (loaded %d/%d)" % (update_keys, total_keys)) else: raise FileNotFoundError def load_ckpt_based_on_args(model, logger): if args.ckpt is not None: train_utils.load_checkpoint(model, filename=args.ckpt, logger=logger) total_keys = model.state_dict().keys().__len__() if cfg.RPN.ENABLED and args.rpn_ckpt is not None: load_part_ckpt(model, filename=args.rpn_ckpt, logger=logger, total_keys=total_keys) if cfg.RCNN.ENABLED and args.rcnn_ckpt is not None: load_part_ckpt(model, filename=args.rcnn_ckpt, logger=logger, total_keys=total_keys) def eval_single_ckpt(root_result_dir): root_result_dir = os.path.join(root_result_dir, 'eval') # set epoch_id and output dir num_list = re.findall(r'\d+', args.ckpt) if args.ckpt is not None else [] epoch_id = num_list[-1] if num_list.__len__() > 0 else 'no_number' root_result_dir = os.path.join(root_result_dir, 'epoch_%s' % epoch_id, cfg.TEST.SPLIT) if args.test: root_result_dir = os.path.join(root_result_dir, 'test_mode') if args.extra_tag != 'default': root_result_dir = os.path.join(root_result_dir, args.extra_tag) os.makedirs(root_result_dir, exist_ok=True) log_file = os.path.join(root_result_dir, 'log_eval_one.txt') logger = create_logger(log_file) logger.info('**********************Start logging**********************') for key, val in vars(args).items(): logger.info("{:16} {}".format(key, val)) save_config_to_file(cfg, logger=logger) # create dataloader & network test_loader = create_dataloader(logger) model = PointRCNN(num_classes=test_loader.dataset.num_class, use_xyz=True, mode='TEST') model.cuda() # copy important files to backup backup_dir = os.path.join(root_result_dir, 'backup_files') os.makedirs(backup_dir, exist_ok=True) os.system('cp *.py %s/' % backup_dir) os.system('cp ../lib/net/*.py %s/' % backup_dir) os.system('cp ../lib/datasets/kitti_rcnn_dataset.py %s/' % backup_dir) # load checkpoint load_ckpt_based_on_args(model, logger) # start evaluation eval_one_epoch(model, test_loader, epoch_id, root_result_dir, logger) def get_no_evaluated_ckpt(ckpt_dir, ckpt_record_file): ckpt_list = glob.glob(os.path.join(ckpt_dir, '*checkpoint_epoch_*.pth')) ckpt_list.sort(key=os.path.getmtime) evaluated_ckpt_list = [float(x.strip()) for x in open(ckpt_record_file, 'r').readlines()] for cur_ckpt in ckpt_list: num_list = re.findall('checkpoint_epoch_(.*).pth', cur_ckpt) if num_list.__len__() == 0: continue epoch_id = num_list[-1] if float(epoch_id) not in evaluated_ckpt_list and int(float(epoch_id)) >= args.start_epoch: return epoch_id, cur_ckpt return -1, None def repeat_eval_ckpt(root_result_dir, ckpt_dir): root_result_dir = os.path.join(root_result_dir, 'eval', 'eval_all_' + args.extra_tag) os.makedirs(root_result_dir, exist_ok=True) log_file = os.path.join(root_result_dir, 'log_eval_all_%s.txt' % cfg.TEST.SPLIT) logger = create_logger(log_file) logger.info('**********************Start logging**********************') # save config for key, val in vars(args).items(): logger.info("{:16} {}".format(key, val)) save_config_to_file(cfg, logger=logger) # create dataloader & network test_loader = create_dataloader(logger) model = PointRCNN(num_classes=test_loader.dataset.num_class, use_xyz=True, mode='TEST') model.cuda() # copy important files to backup backup_dir = os.path.join(root_result_dir, 'backup_files') os.makedirs(backup_dir, exist_ok=True) os.system('cp *.py %s/' % backup_dir) os.system('cp ../lib/net/*.py %s/' % backup_dir) os.system('cp ../lib/datasets/kitti_rcnn_dataset.py %s/' % backup_dir) # evaluated ckpt record ckpt_record_file = os.path.join(root_result_dir, 'eval_list_%s.txt' % cfg.TEST.SPLIT) with open(ckpt_record_file, 'a'): pass # tensorboard log tb_log = SummaryWriter(log_dir=os.path.join(root_result_dir, 'tensorboard_%s' % cfg.TEST.SPLIT)) while True: # check whether there is checkpoint which is not evaluated cur_epoch_id, cur_ckpt = get_no_evaluated_ckpt(ckpt_dir, ckpt_record_file) if cur_epoch_id == -1 or int(float(cur_epoch_id)) < args.start_epoch: wait_second = 30 print('Wait %s second for next check: %s' % (wait_second, ckpt_dir)) time.sleep(wait_second) continue # load checkpoint train_utils.load_checkpoint(model, filename=cur_ckpt) # start evaluation cur_result_dir = os.path.join(root_result_dir, 'epoch_%s' % cur_epoch_id, cfg.TEST.SPLIT) tb_dict = eval_one_epoch(model, test_loader, cur_epoch_id, cur_result_dir, logger) step = int(float(cur_epoch_id)) if step == float(cur_epoch_id): for key, val in tb_dict.items(): tb_log.add_scalar(key, val, step) # record this epoch which has been evaluated with open(ckpt_record_file, 'a') as f: print('%s' % cur_epoch_id, file=f) logger.info('Epoch %s has been evaluated' % cur_epoch_id) def create_dataloader(logger): mode = 'TEST' if args.test else 'EVAL' DATA_PATH = os.path.join('..', 'data') # create dataloader test_set = KittiRCNNDataset(root_dir=DATA_PATH, npoints=cfg.RPN.NUM_POINTS, split=cfg.TEST.SPLIT, mode=mode, random_select=args.random_select, rcnn_eval_roi_dir=args.rcnn_eval_roi_dir, rcnn_eval_feature_dir=args.rcnn_eval_feature_dir, classes=cfg.CLASSES, logger=logger) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.workers, collate_fn=test_set.collate_batch) return test_loader if __name__ == "__main__": # merge config and log to file if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) cfg.TAG = os.path.splitext(os.path.basename(args.cfg_file))[0] if args.eval_mode == 'rpn': cfg.RPN.ENABLED = True cfg.RCNN.ENABLED = False root_result_dir = os.path.join('../', 'output', 'rpn', cfg.TAG) ckpt_dir = os.path.join('../', 'output', 'rpn', cfg.TAG, 'ckpt') elif args.eval_mode == 'rcnn': cfg.RCNN.ENABLED = True cfg.RPN.ENABLED = cfg.RPN.FIXED = True root_result_dir = os.path.join('../', 'output', 'rcnn', cfg.TAG) ckpt_dir = os.path.join('../', 'output', 'rcnn', cfg.TAG, 'ckpt') elif args.eval_mode == 'rcnn_offline': cfg.RCNN.ENABLED = True cfg.RPN.ENABLED = False root_result_dir = os.path.join('../', 'output', 'rcnn', cfg.TAG) ckpt_dir = os.path.join('../', 'output', 'rcnn', cfg.TAG, 'ckpt') assert args.rcnn_eval_roi_dir is not None and args.rcnn_eval_feature_dir is not None else: raise NotImplementedError if args.ckpt_dir is not None: ckpt_dir = args.ckpt_dir if args.output_dir is not None: root_result_dir = args.output_dir os.makedirs(root_result_dir, exist_ok=True) with torch.no_grad(): if args.eval_all: assert os.path.exists(ckpt_dir), '%s' % ckpt_dir repeat_eval_ckpt(root_result_dir, ckpt_dir) else: eval_single_ckpt(root_result_dir)
45.372193
125
0.621314
557f90b0870602c2c34c121033cbf688ebe233bb
477
py
Python
font/param.py
Programish/ascii
6f946fead975d93908b82744a402fd8918643742
[ "MIT" ]
null
null
null
font/param.py
Programish/ascii
6f946fead975d93908b82744a402fd8918643742
[ "MIT" ]
null
null
null
font/param.py
Programish/ascii
6f946fead975d93908b82744a402fd8918643742
[ "MIT" ]
null
null
null
# charsets PRINTABLE_ASCII = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;?@[\\]^_`{|}~ ' # ... # fonts DEFAULT_FONT = 'DejaVuSansMono.ttf' # DEFAULT_SIZE = 18 # DEFAULT_DIM = (15, 23) # DEFAULT_OFFSET = (2, 0) DEFAULT_SIZE = 15 DEFAULT_DIM = (18, 9) DEFAULT_OFFSET = (0, 0) # transform # DEFAULT_TRANSPOSE_SCALE = [0.5, 0.25] # DEFAULT_AFFINE_SCALE = 0.1 DEFAULT_TRANSPOSE_SCALE = [0.5, 0.25] DEFAULT_AFFINE_SCALE = 0.1
25.105263
115
0.666667
aa6e1eaea543b8c828071659c19f1506c7a7c0a7
3,684
py
Python
prepare.py
foolishflyfox/Person_reID_baseline_pytorch
08fc955071feff75bc7101eb6db1eb856e5d1e88
[ "MIT" ]
null
null
null
prepare.py
foolishflyfox/Person_reID_baseline_pytorch
08fc955071feff75bc7101eb6db1eb856e5d1e88
[ "MIT" ]
null
null
null
prepare.py
foolishflyfox/Person_reID_baseline_pytorch
08fc955071feff75bc7101eb6db1eb856e5d1e88
[ "MIT" ]
null
null
null
import os from shutil import copyfile # You only need to change this line to your dataset download path download_path = '/home/zzheng/Downloads/Market' if not os.path.isdir(download_path): print('please change the download_path') save_path = download_path + '/pytorch' if not os.path.isdir(save_path): os.mkdir(save_path) #----------------------------------------- #query query_path = download_path + '/query' query_save_path = download_path + '/pytorch/query' if not os.path.isdir(query_save_path): os.mkdir(query_save_path) for root, dirs, files in os.walk(query_path, topdown=True): for name in files: if not name[-3:]=='jpg': continue ID = name.split('_') src_path = query_path + '/' + name dst_path = query_save_path + '/' + ID[0] if not os.path.isdir(dst_path): os.mkdir(dst_path) copyfile(src_path, dst_path + '/' + name) #----------------------------------------- #multi-query query_path = download_path + '/gt_bbox' # for dukemtmc-reid, we do not need multi-query if os.path.isdir(query_path): query_save_path = download_path + '/pytorch/multi-query' if not os.path.isdir(query_save_path): os.mkdir(query_save_path) for root, dirs, files in os.walk(query_path, topdown=True): for name in files: if not name[-3:]=='jpg': continue ID = name.split('_') src_path = query_path + '/' + name dst_path = query_save_path + '/' + ID[0] if not os.path.isdir(dst_path): os.mkdir(dst_path) copyfile(src_path, dst_path + '/' + name) #----------------------------------------- #gallery gallery_path = download_path + '/bounding_box_test' gallery_save_path = download_path + '/pytorch/gallery' if not os.path.isdir(gallery_save_path): os.mkdir(gallery_save_path) for root, dirs, files in os.walk(gallery_path, topdown=True): for name in files: if not name[-3:]=='jpg': continue ID = name.split('_') src_path = gallery_path + '/' + name dst_path = gallery_save_path + '/' + ID[0] if not os.path.isdir(dst_path): os.mkdir(dst_path) copyfile(src_path, dst_path + '/' + name) #--------------------------------------- #train_all train_path = download_path + '/bounding_box_train' train_save_path = download_path + '/pytorch/train_all' if not os.path.isdir(train_save_path): os.mkdir(train_save_path) for root, dirs, files in os.walk(train_path, topdown=True): for name in files: if not name[-3:]=='jpg': continue ID = name.split('_') src_path = train_path + '/' + name dst_path = train_save_path + '/' + ID[0] if not os.path.isdir(dst_path): os.mkdir(dst_path) copyfile(src_path, dst_path + '/' + name) #--------------------------------------- #train_val train_path = download_path + '/bounding_box_train' train_save_path = download_path + '/pytorch/train' val_save_path = download_path + '/pytorch/val' if not os.path.isdir(train_save_path): os.mkdir(train_save_path) os.mkdir(val_save_path) for root, dirs, files in os.walk(train_path, topdown=True): for name in files: if not name[-3:]=='jpg': continue ID = name.split('_') src_path = train_path + '/' + name dst_path = train_save_path + '/' + ID[0] if not os.path.isdir(dst_path): os.mkdir(dst_path) dst_path = val_save_path + '/' + ID[0] #first image is used as val image os.mkdir(dst_path) copyfile(src_path, dst_path + '/' + name)
33.798165
85
0.591477
ac0f04b42265675964a1051e0298dee0ef3e2679
53,360
py
Python
openfold/utils/loss.py
ychnh/openfold
e61a00d063c0f2d939d24963929cea2b413d3e8e
[ "Apache-2.0" ]
1
2022-02-11T15:43:36.000Z
2022-02-11T15:43:36.000Z
openfold/utils/loss.py
ychnh/openfold
e61a00d063c0f2d939d24963929cea2b413d3e8e
[ "Apache-2.0" ]
null
null
null
openfold/utils/loss.py
ychnh/openfold
e61a00d063c0f2d939d24963929cea2b413d3e8e
[ "Apache-2.0" ]
1
2022-02-22T05:53:03.000Z
2022-02-22T05:53:03.000Z
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import logging import ml_collections import numpy as np import torch import torch.nn as nn from torch.distributions.bernoulli import Bernoulli from typing import Dict, Optional, Tuple from openfold.np import residue_constants from openfold.utils import feats from openfold.utils.rigid_utils import Rotation, Rigid from openfold.utils.tensor_utils import ( tree_map, tensor_tree_map, masked_mean, permute_final_dims, batched_gather, ) def softmax_cross_entropy(logits, labels): loss = -1 * torch.sum( labels * torch.nn.functional.log_softmax(logits, dim=-1), dim=-1, ) return loss def sigmoid_cross_entropy(logits, labels): log_p = torch.log(torch.sigmoid(logits)) log_not_p = torch.log(torch.sigmoid(-logits)) loss = -labels * log_p - (1 - labels) * log_not_p return loss def torsion_angle_loss( a, # [*, N, 7, 2] a_gt, # [*, N, 7, 2] a_alt_gt, # [*, N, 7, 2] ): # [*, N, 7] norm = torch.norm(a, dim=-1) # [*, N, 7, 2] a = a / norm.unsqueeze(-1) # [*, N, 7] diff_norm_gt = torch.norm(a - a_gt, dim=-1) diff_norm_alt_gt = torch.norm(a - a_alt_gt, dim=-1) min_diff = torch.minimum(diff_norm_gt ** 2, diff_norm_alt_gt ** 2) # [*] l_torsion = torch.mean(min_diff, dim=(-1, -2)) l_angle_norm = torch.mean(torch.abs(norm - 1), dim=(-1, -2)) an_weight = 0.02 return l_torsion + an_weight * l_angle_norm def compute_fape( pred_frames: Rigid, target_frames: Rigid, frames_mask: torch.Tensor, pred_positions: torch.Tensor, target_positions: torch.Tensor, positions_mask: torch.Tensor, length_scale: float, l1_clamp_distance: Optional[float] = None, eps=1e-8, ) -> torch.Tensor: """ Computes FAPE loss. Args: pred_frames: [*, N_frames] Rigid object of predicted frames target_frames: [*, N_frames] Rigid object of ground truth frames frames_mask: [*, N_frames] binary mask for the frames pred_positions: [*, N_pts, 3] predicted atom positions target_positions: [*, N_pts, 3] ground truth positions positions_mask: [*, N_pts] positions mask length_scale: Length scale by which the loss is divided l1_clamp_distance: Cutoff above which distance errors are disregarded eps: Small value used to regularize denominators Returns: [*] loss tensor """ # [*, N_frames, N_pts, 3] local_pred_pos = pred_frames.invert()[..., None].apply( pred_positions[..., None, :, :], ) local_target_pos = target_frames.invert()[..., None].apply( target_positions[..., None, :, :], ) error_dist = torch.sqrt( torch.sum((local_pred_pos - local_target_pos) ** 2, dim=-1) + eps ) if l1_clamp_distance is not None: error_dist = torch.clamp(error_dist, min=0, max=l1_clamp_distance) normed_error = error_dist / length_scale normed_error = normed_error * frames_mask[..., None] normed_error = normed_error * positions_mask[..., None, :] # FP16-friendly averaging. Roughly equivalent to: # # norm_factor = ( # torch.sum(frames_mask, dim=-1) * # torch.sum(positions_mask, dim=-1) # ) # normed_error = torch.sum(normed_error, dim=(-1, -2)) / (eps + norm_factor) # # ("roughly" because eps is necessarily duplicated in the latter) normed_error = torch.sum(normed_error, dim=-1) normed_error = ( normed_error / (eps + torch.sum(frames_mask, dim=-1))[..., None] ) normed_error = torch.sum(normed_error, dim=-1) normed_error = normed_error / (eps + torch.sum(positions_mask, dim=-1)) return normed_error def backbone_loss( backbone_rigid_tensor: torch.Tensor, backbone_rigid_mask: torch.Tensor, traj: torch.Tensor, use_clamped_fape: Optional[torch.Tensor] = None, clamp_distance: float = 10.0, loss_unit_distance: float = 10.0, eps: float = 1e-4, **kwargs, ) -> torch.Tensor: pred_aff = Rigid.from_tensor_7(traj) pred_aff = Rigid( Rotation(rot_mats=pred_aff.get_rots().get_rot_mats(), quats=None), pred_aff.get_trans(), ) # DISCREPANCY: DeepMind somehow gets a hold of a tensor_7 version of # backbone tensor, normalizes it, and then turns it back to a rotation # matrix. To avoid a potentially numerically unstable rotation matrix # to quaternion conversion, we just use the original rotation matrix # outright. This one hasn't been composed a bunch of times, though, so # it might be fine. gt_aff = Rigid.from_tensor_4x4(backbone_rigid_tensor) fape_loss = compute_fape( pred_aff, gt_aff[None], backbone_rigid_mask[None], pred_aff.get_trans(), gt_aff[None].get_trans(), backbone_rigid_mask[None], l1_clamp_distance=clamp_distance, length_scale=loss_unit_distance, eps=eps, ) if use_clamped_fape is not None: unclamped_fape_loss = compute_fape( pred_aff, gt_aff[None], backbone_rigid_mask[None], pred_aff.get_trans(), gt_aff[None].get_trans(), backbone_rigid_mask[None], l1_clamp_distance=None, length_scale=loss_unit_distance, eps=eps, ) fape_loss = fape_loss * use_clamped_fape + unclamped_fape_loss * ( 1 - use_clamped_fape ) # Average over the batch dimension fape_loss = torch.mean(fape_loss) return fape_loss def sidechain_loss( sidechain_frames: torch.Tensor, sidechain_atom_pos: torch.Tensor, rigidgroups_gt_frames: torch.Tensor, rigidgroups_alt_gt_frames: torch.Tensor, rigidgroups_gt_exists: torch.Tensor, renamed_atom14_gt_positions: torch.Tensor, renamed_atom14_gt_exists: torch.Tensor, alt_naming_is_better: torch.Tensor, clamp_distance: float = 10.0, length_scale: float = 10.0, eps: float = 1e-4, **kwargs, ) -> torch.Tensor: renamed_gt_frames = ( 1.0 - alt_naming_is_better[..., None, None, None] ) * rigidgroups_gt_frames + alt_naming_is_better[ ..., None, None, None ] * rigidgroups_alt_gt_frames # Steamroll the inputs sidechain_frames = sidechain_frames[-1] batch_dims = sidechain_frames.shape[:-4] sidechain_frames = sidechain_frames.view(*batch_dims, -1, 4, 4) sidechain_frames = Rigid.from_tensor_4x4(sidechain_frames) renamed_gt_frames = renamed_gt_frames.view(*batch_dims, -1, 4, 4) renamed_gt_frames = Rigid.from_tensor_4x4(renamed_gt_frames) rigidgroups_gt_exists = rigidgroups_gt_exists.reshape(*batch_dims, -1) sidechain_atom_pos = sidechain_atom_pos[-1] sidechain_atom_pos = sidechain_atom_pos.view(*batch_dims, -1, 3) renamed_atom14_gt_positions = renamed_atom14_gt_positions.view( *batch_dims, -1, 3 ) renamed_atom14_gt_exists = renamed_atom14_gt_exists.view(*batch_dims, -1) fape = compute_fape( sidechain_frames, renamed_gt_frames, rigidgroups_gt_exists, sidechain_atom_pos, renamed_atom14_gt_positions, renamed_atom14_gt_exists, l1_clamp_distance=clamp_distance, length_scale=length_scale, eps=eps, ) return fape def fape_loss( out: Dict[str, torch.Tensor], batch: Dict[str, torch.Tensor], config: ml_collections.ConfigDict, ) -> torch.Tensor: bb_loss = backbone_loss( traj=out["sm"]["frames"], **{**batch, **config.backbone}, ) sc_loss = sidechain_loss( out["sm"]["sidechain_frames"], out["sm"]["positions"], **{**batch, **config.sidechain}, ) loss = config.backbone.weight * bb_loss + config.sidechain.weight * sc_loss # Average over the batch dimension loss = torch.mean(loss) return loss def supervised_chi_loss( angles_sin_cos: torch.Tensor, unnormalized_angles_sin_cos: torch.Tensor, aatype: torch.Tensor, seq_mask: torch.Tensor, chi_mask: torch.Tensor, chi_angles_sin_cos: torch.Tensor, chi_weight: float, angle_norm_weight: float, eps=1e-6, **kwargs, ) -> torch.Tensor: """ Implements Algorithm 27 (torsionAngleLoss) Args: angles_sin_cos: [*, N, 7, 2] predicted angles unnormalized_angles_sin_cos: The same angles, but unnormalized aatype: [*, N] residue indices seq_mask: [*, N] sequence mask chi_mask: [*, N, 7] angle mask chi_angles_sin_cos: [*, N, 7, 2] ground truth angles chi_weight: Weight for the angle component of the loss angle_norm_weight: Weight for the normalization component of the loss Returns: [*] loss tensor """ pred_angles = angles_sin_cos[..., 3:, :] residue_type_one_hot = torch.nn.functional.one_hot( aatype, residue_constants.restype_num + 1, ) chi_pi_periodic = torch.einsum( "...ij,jk->ik", residue_type_one_hot.type(angles_sin_cos.dtype), angles_sin_cos.new_tensor(residue_constants.chi_pi_periodic), ) true_chi = chi_angles_sin_cos[None] shifted_mask = (1 - 2 * chi_pi_periodic).unsqueeze(-1) true_chi_shifted = shifted_mask * true_chi sq_chi_error = torch.sum((true_chi - pred_angles) ** 2, dim=-1) sq_chi_error_shifted = torch.sum( (true_chi_shifted - pred_angles) ** 2, dim=-1 ) sq_chi_error = torch.minimum(sq_chi_error, sq_chi_error_shifted) # The ol' switcheroo sq_chi_error = sq_chi_error.permute( *range(len(sq_chi_error.shape))[1:-2], 0, -2, -1 ) sq_chi_loss = masked_mean( chi_mask[..., None, :, :], sq_chi_error, dim=(-1, -2, -3) ) loss = chi_weight * sq_chi_loss angle_norm = torch.sqrt( torch.sum(unnormalized_angles_sin_cos ** 2, dim=-1) + eps ) norm_error = torch.abs(angle_norm - 1.0) norm_error = norm_error.permute( *range(len(norm_error.shape))[1:-2], 0, -2, -1 ) angle_norm_loss = masked_mean( seq_mask[..., None, :, None], norm_error, dim=(-1, -2, -3) ) loss = loss + angle_norm_weight * angle_norm_loss # Average over the batch dimension loss = torch.mean(loss) return loss def compute_plddt(logits: torch.Tensor) -> torch.Tensor: num_bins = logits.shape[-1] bin_width = 1.0 / num_bins bounds = torch.arange( start=0.5 * bin_width, end=1.0, step=bin_width, device=logits.device ) probs = torch.nn.functional.softmax(logits, dim=-1) pred_lddt_ca = torch.sum( probs * bounds.view(*((1,) * len(probs.shape[:-1])), *bounds.shape), dim=-1, ) return pred_lddt_ca * 100 def lddt( all_atom_pred_pos: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_mask: torch.Tensor, cutoff: float = 15.0, eps: float = 1e-10, per_residue: bool = True, ) -> torch.Tensor: n = all_atom_mask.shape[-2] dmat_true = torch.sqrt( eps + torch.sum( ( all_atom_positions[..., None, :] - all_atom_positions[..., None, :, :] ) ** 2, dim=-1, ) ) dmat_pred = torch.sqrt( eps + torch.sum( ( all_atom_pred_pos[..., None, :] - all_atom_pred_pos[..., None, :, :] ) ** 2, dim=-1, ) ) dists_to_score = ( (dmat_true < cutoff) * all_atom_mask * permute_final_dims(all_atom_mask, (1, 0)) * (1.0 - torch.eye(n, device=all_atom_mask.device)) ) dist_l1 = torch.abs(dmat_true - dmat_pred) score = ( (dist_l1 < 0.5).type(dist_l1.dtype) + (dist_l1 < 1.0).type(dist_l1.dtype) + (dist_l1 < 2.0).type(dist_l1.dtype) + (dist_l1 < 4.0).type(dist_l1.dtype) ) score = score * 0.25 dims = (-1,) if per_residue else (-2, -1) norm = 1.0 / (eps + torch.sum(dists_to_score, dim=dims)) score = norm * (eps + torch.sum(dists_to_score * score, dim=dims)) return score def lddt_ca( all_atom_pred_pos: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_mask: torch.Tensor, cutoff: float = 15.0, eps: float = 1e-10, per_residue: bool = True, ) -> torch.Tensor: ca_pos = residue_constants.atom_order["CA"] all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :] all_atom_positions = all_atom_positions[..., ca_pos, :] all_atom_mask = all_atom_mask[..., ca_pos : (ca_pos + 1)] # keep dim return lddt( all_atom_pred_pos, all_atom_positions, all_atom_mask, cutoff=cutoff, eps=eps, per_residue=per_residue, ) def lddt_loss( logits: torch.Tensor, all_atom_pred_pos: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_mask: torch.Tensor, resolution: torch.Tensor, cutoff: float = 15.0, no_bins: int = 50, min_resolution: float = 0.1, max_resolution: float = 3.0, eps: float = 1e-10, **kwargs, ) -> torch.Tensor: n = all_atom_mask.shape[-2] ca_pos = residue_constants.atom_order["CA"] all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :] all_atom_positions = all_atom_positions[..., ca_pos, :] all_atom_mask = all_atom_mask[..., ca_pos : (ca_pos + 1)] # keep dim score = lddt( all_atom_pred_pos, all_atom_positions, all_atom_mask, cutoff=cutoff, eps=eps ) score = score.detach() bin_index = torch.floor(score * no_bins).long() bin_index = torch.clamp(bin_index, max=(no_bins - 1)) lddt_ca_one_hot = torch.nn.functional.one_hot( bin_index, num_classes=no_bins ) errors = softmax_cross_entropy(logits, lddt_ca_one_hot) all_atom_mask = all_atom_mask.squeeze(-1) loss = torch.sum(errors * all_atom_mask, dim=-1) / ( eps + torch.sum(all_atom_mask, dim=-1) ) loss = loss * ( (resolution >= min_resolution) & (resolution <= max_resolution) ) # Average over the batch dimension loss = torch.mean(loss) return loss def distogram_loss( logits, pseudo_beta, pseudo_beta_mask, min_bin=2.3125, max_bin=21.6875, no_bins=64, eps=1e-6, **kwargs, ): boundaries = torch.linspace( min_bin, max_bin, no_bins - 1, device=logits.device, ) boundaries = boundaries ** 2 dists = torch.sum( (pseudo_beta[..., None, :] - pseudo_beta[..., None, :, :]) ** 2, dim=-1, keepdims=True, ) true_bins = torch.sum(dists > boundaries, dim=-1) errors = softmax_cross_entropy( logits, torch.nn.functional.one_hot(true_bins, no_bins), ) square_mask = pseudo_beta_mask[..., None] * pseudo_beta_mask[..., None, :] # FP16-friendly sum. Equivalent to: # mean = (torch.sum(errors * square_mask, dim=(-1, -2)) / # (eps + torch.sum(square_mask, dim=(-1, -2)))) denom = eps + torch.sum(square_mask, dim=(-1, -2)) mean = errors * square_mask mean = torch.sum(mean, dim=-1) mean = mean / denom[..., None] mean = torch.sum(mean, dim=-1) # Average over the batch dimensions mean = torch.mean(mean) return mean def _calculate_bin_centers(boundaries: torch.Tensor): step = boundaries[1] - boundaries[0] bin_centers = boundaries + step / 2 bin_centers = torch.cat( [bin_centers, (bin_centers[-1] + step).unsqueeze(-1)], dim=0 ) return bin_centers def _calculate_expected_aligned_error( alignment_confidence_breaks: torch.Tensor, aligned_distance_error_probs: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: bin_centers = _calculate_bin_centers(alignment_confidence_breaks) return ( torch.sum(aligned_distance_error_probs * bin_centers, dim=-1), bin_centers[-1], ) def compute_predicted_aligned_error( logits: torch.Tensor, max_bin: int = 31, no_bins: int = 64, **kwargs, ) -> Dict[str, torch.Tensor]: """Computes aligned confidence metrics from logits. Args: logits: [*, num_res, num_res, num_bins] the logits output from PredictedAlignedErrorHead. max_bin: Maximum bin value no_bins: Number of bins Returns: aligned_confidence_probs: [*, num_res, num_res, num_bins] the predicted aligned error probabilities over bins for each residue pair. predicted_aligned_error: [*, num_res, num_res] the expected aligned distance error for each pair of residues. max_predicted_aligned_error: [*] the maximum predicted error possible. """ boundaries = torch.linspace( 0, max_bin, steps=(no_bins - 1), device=logits.device ) aligned_confidence_probs = torch.nn.functional.softmax(logits, dim=-1) ( predicted_aligned_error, max_predicted_aligned_error, ) = _calculate_expected_aligned_error( alignment_confidence_breaks=boundaries, aligned_distance_error_probs=aligned_confidence_probs, ) return { "aligned_confidence_probs": aligned_confidence_probs, "predicted_aligned_error": predicted_aligned_error, "max_predicted_aligned_error": max_predicted_aligned_error, } def compute_tm( logits: torch.Tensor, residue_weights: Optional[torch.Tensor] = None, max_bin: int = 31, no_bins: int = 64, eps: float = 1e-8, **kwargs, ) -> torch.Tensor: if residue_weights is None: residue_weights = logits.new_ones(logits.shape[-2]) boundaries = torch.linspace( 0, max_bin, steps=(no_bins - 1), device=logits.device ) bin_centers = _calculate_bin_centers(boundaries) torch.sum(residue_weights) n = logits.shape[-2] clipped_n = max(n, 19) d0 = 1.24 * (clipped_n - 15) ** (1.0 / 3) - 1.8 probs = torch.nn.functional.softmax(logits, dim=-1) tm_per_bin = 1.0 / (1 + (bin_centers ** 2) / (d0 ** 2)) predicted_tm_term = torch.sum(probs * tm_per_bin, dim=-1) normed_residue_mask = residue_weights / (eps + residue_weights.sum()) per_alignment = torch.sum(predicted_tm_term * normed_residue_mask, dim=-1) weighted = per_alignment * residue_weights argmax = (weighted == torch.max(weighted)).nonzero()[0] return per_alignment[tuple(argmax)] def tm_loss( logits, final_affine_tensor, backbone_rigid_tensor, backbone_rigid_mask, resolution, max_bin=31, no_bins=64, min_resolution: float = 0.1, max_resolution: float = 3.0, eps=1e-8, **kwargs, ): pred_affine = Rigid.from_tensor_7(final_affine_tensor) backbone_rigid = Rigid.from_tensor_4x4(backbone_rigid_tensor) def _points(affine): pts = affine.get_trans()[..., None, :, :] return affine.invert()[..., None].apply(pts) sq_diff = torch.sum( (_points(pred_affine) - _points(backbone_rigid)) ** 2, dim=-1 ) sq_diff = sq_diff.detach() boundaries = torch.linspace( 0, max_bin, steps=(no_bins - 1), device=logits.device ) boundaries = boundaries ** 2 true_bins = torch.sum(sq_diff[..., None] > boundaries, dim=-1) errors = softmax_cross_entropy( logits, torch.nn.functional.one_hot(true_bins, no_bins) ) square_mask = ( backbone_rigid_mask[..., None] * backbone_rigid_mask[..., None, :] ) loss = torch.sum(errors * square_mask, dim=-1) scale = 0.5 # hack to help FP16 training along denom = eps + torch.sum(scale * square_mask, dim=(-1, -2)) loss = loss / denom[..., None] loss = torch.sum(loss, dim=-1) loss = loss * scale loss = loss * ( (resolution >= min_resolution) & (resolution <= max_resolution) ) # Average over the loss dimension loss = torch.mean(loss) return loss def between_residue_bond_loss( pred_atom_positions: torch.Tensor, # (*, N, 37/14, 3) pred_atom_mask: torch.Tensor, # (*, N, 37/14) residue_index: torch.Tensor, # (*, N) aatype: torch.Tensor, # (*, N) tolerance_factor_soft=12.0, tolerance_factor_hard=12.0, eps=1e-6, ) -> Dict[str, torch.Tensor]: """Flat-bottom loss to penalize structural violations between residues. This is a loss penalizing any violation of the geometry around the peptide bond between consecutive amino acids. This loss corresponds to Jumper et al. (2021) Suppl. Sec. 1.9.11, eq 44, 45. Args: pred_atom_positions: Atom positions in atom37/14 representation pred_atom_mask: Atom mask in atom37/14 representation residue_index: Residue index for given amino acid, this is assumed to be monotonically increasing. aatype: Amino acid type of given residue tolerance_factor_soft: soft tolerance factor measured in standard deviations of pdb distributions tolerance_factor_hard: hard tolerance factor measured in standard deviations of pdb distributions Returns: Dict containing: * 'c_n_loss_mean': Loss for peptide bond length violations * 'ca_c_n_loss_mean': Loss for violations of bond angle around C spanned by CA, C, N * 'c_n_ca_loss_mean': Loss for violations of bond angle around N spanned by C, N, CA * 'per_residue_loss_sum': sum of all losses for each residue * 'per_residue_violation_mask': mask denoting all residues with violation present. """ # Get the positions of the relevant backbone atoms. this_ca_pos = pred_atom_positions[..., :-1, 1, :] this_ca_mask = pred_atom_mask[..., :-1, 1] this_c_pos = pred_atom_positions[..., :-1, 2, :] this_c_mask = pred_atom_mask[..., :-1, 2] next_n_pos = pred_atom_positions[..., 1:, 0, :] next_n_mask = pred_atom_mask[..., 1:, 0] next_ca_pos = pred_atom_positions[..., 1:, 1, :] next_ca_mask = pred_atom_mask[..., 1:, 1] has_no_gap_mask = (residue_index[..., 1:] - residue_index[..., :-1]) == 1.0 # Compute loss for the C--N bond. c_n_bond_length = torch.sqrt( eps + torch.sum((this_c_pos - next_n_pos) ** 2, dim=-1) ) # The C-N bond to proline has slightly different length because of the ring. next_is_proline = aatype[..., 1:] == residue_constants.resname_to_idx["PRO"] gt_length = ( ~next_is_proline ) * residue_constants.between_res_bond_length_c_n[ 0 ] + next_is_proline * residue_constants.between_res_bond_length_c_n[ 1 ] gt_stddev = ( ~next_is_proline ) * residue_constants.between_res_bond_length_stddev_c_n[ 0 ] + next_is_proline * residue_constants.between_res_bond_length_stddev_c_n[ 1 ] c_n_bond_length_error = torch.sqrt(eps + (c_n_bond_length - gt_length) ** 2) c_n_loss_per_residue = torch.nn.functional.relu( c_n_bond_length_error - tolerance_factor_soft * gt_stddev ) mask = this_c_mask * next_n_mask * has_no_gap_mask c_n_loss = torch.sum(mask * c_n_loss_per_residue, dim=-1) / ( torch.sum(mask, dim=-1) + eps ) c_n_violation_mask = mask * ( c_n_bond_length_error > (tolerance_factor_hard * gt_stddev) ) # Compute loss for the angles. ca_c_bond_length = torch.sqrt( eps + torch.sum((this_ca_pos - this_c_pos) ** 2, dim=-1) ) n_ca_bond_length = torch.sqrt( eps + torch.sum((next_n_pos - next_ca_pos) ** 2, dim=-1) ) c_ca_unit_vec = (this_ca_pos - this_c_pos) / ca_c_bond_length[..., None] c_n_unit_vec = (next_n_pos - this_c_pos) / c_n_bond_length[..., None] n_ca_unit_vec = (next_ca_pos - next_n_pos) / n_ca_bond_length[..., None] ca_c_n_cos_angle = torch.sum(c_ca_unit_vec * c_n_unit_vec, dim=-1) gt_angle = residue_constants.between_res_cos_angles_ca_c_n[0] gt_stddev = residue_constants.between_res_bond_length_stddev_c_n[0] ca_c_n_cos_angle_error = torch.sqrt( eps + (ca_c_n_cos_angle - gt_angle) ** 2 ) ca_c_n_loss_per_residue = torch.nn.functional.relu( ca_c_n_cos_angle_error - tolerance_factor_soft * gt_stddev ) mask = this_ca_mask * this_c_mask * next_n_mask * has_no_gap_mask ca_c_n_loss = torch.sum(mask * ca_c_n_loss_per_residue, dim=-1) / ( torch.sum(mask, dim=-1) + eps ) ca_c_n_violation_mask = mask * ( ca_c_n_cos_angle_error > (tolerance_factor_hard * gt_stddev) ) c_n_ca_cos_angle = torch.sum((-c_n_unit_vec) * n_ca_unit_vec, dim=-1) gt_angle = residue_constants.between_res_cos_angles_c_n_ca[0] gt_stddev = residue_constants.between_res_cos_angles_c_n_ca[1] c_n_ca_cos_angle_error = torch.sqrt( eps + torch.square(c_n_ca_cos_angle - gt_angle) ) c_n_ca_loss_per_residue = torch.nn.functional.relu( c_n_ca_cos_angle_error - tolerance_factor_soft * gt_stddev ) mask = this_c_mask * next_n_mask * next_ca_mask * has_no_gap_mask c_n_ca_loss = torch.sum(mask * c_n_ca_loss_per_residue, dim=-1) / ( torch.sum(mask, dim=-1) + eps ) c_n_ca_violation_mask = mask * ( c_n_ca_cos_angle_error > (tolerance_factor_hard * gt_stddev) ) # Compute a per residue loss (equally distribute the loss to both # neighbouring residues). per_residue_loss_sum = ( c_n_loss_per_residue + ca_c_n_loss_per_residue + c_n_ca_loss_per_residue ) per_residue_loss_sum = 0.5 * ( torch.nn.functional.pad(per_residue_loss_sum, (0, 1)) + torch.nn.functional.pad(per_residue_loss_sum, (1, 0)) ) # Compute hard violations. violation_mask = torch.max( torch.stack( [c_n_violation_mask, ca_c_n_violation_mask, c_n_ca_violation_mask], dim=-2, ), dim=-2, )[0] violation_mask = torch.maximum( torch.nn.functional.pad(violation_mask, (0, 1)), torch.nn.functional.pad(violation_mask, (1, 0)), ) return { "c_n_loss_mean": c_n_loss, "ca_c_n_loss_mean": ca_c_n_loss, "c_n_ca_loss_mean": c_n_ca_loss, "per_residue_loss_sum": per_residue_loss_sum, "per_residue_violation_mask": violation_mask, } def between_residue_clash_loss( atom14_pred_positions: torch.Tensor, atom14_atom_exists: torch.Tensor, atom14_atom_radius: torch.Tensor, residue_index: torch.Tensor, overlap_tolerance_soft=1.5, overlap_tolerance_hard=1.5, eps=1e-10, ) -> Dict[str, torch.Tensor]: """Loss to penalize steric clashes between residues. This is a loss penalizing any steric clashes due to non bonded atoms in different peptides coming too close. This loss corresponds to the part with different residues of Jumper et al. (2021) Suppl. Sec. 1.9.11, eq 46. Args: atom14_pred_positions: Predicted positions of atoms in global prediction frame atom14_atom_exists: Mask denoting whether atom at positions exists for given amino acid type atom14_atom_radius: Van der Waals radius for each atom. residue_index: Residue index for given amino acid. overlap_tolerance_soft: Soft tolerance factor. overlap_tolerance_hard: Hard tolerance factor. Returns: Dict containing: * 'mean_loss': average clash loss * 'per_atom_loss_sum': sum of all clash losses per atom, shape (N, 14) * 'per_atom_clash_mask': mask whether atom clashes with any other atom shape (N, 14) """ fp_type = atom14_pred_positions.dtype # Create the distance matrix. # (N, N, 14, 14) dists = torch.sqrt( eps + torch.sum( ( atom14_pred_positions[..., :, None, :, None, :] - atom14_pred_positions[..., None, :, None, :, :] ) ** 2, dim=-1, ) ) # Create the mask for valid distances. # shape (N, N, 14, 14) dists_mask = ( atom14_atom_exists[..., :, None, :, None] * atom14_atom_exists[..., None, :, None, :] ).type(fp_type) # Mask out all the duplicate entries in the lower triangular matrix. # Also mask out the diagonal (atom-pairs from the same residue) -- these atoms # are handled separately. dists_mask = dists_mask * ( residue_index[..., :, None, None, None] < residue_index[..., None, :, None, None] ) # Backbone C--N bond between subsequent residues is no clash. c_one_hot = torch.nn.functional.one_hot( residue_index.new_tensor(2), num_classes=14 ) c_one_hot = c_one_hot.reshape( *((1,) * len(residue_index.shape[:-1])), *c_one_hot.shape ) c_one_hot = c_one_hot.type(fp_type) n_one_hot = torch.nn.functional.one_hot( residue_index.new_tensor(0), num_classes=14 ) n_one_hot = n_one_hot.reshape( *((1,) * len(residue_index.shape[:-1])), *n_one_hot.shape ) n_one_hot = n_one_hot.type(fp_type) neighbour_mask = ( residue_index[..., :, None, None, None] + 1 ) == residue_index[..., None, :, None, None] c_n_bonds = ( neighbour_mask * c_one_hot[..., None, None, :, None] * n_one_hot[..., None, None, None, :] ) dists_mask = dists_mask * (1.0 - c_n_bonds) # Disulfide bridge between two cysteines is no clash. cys = residue_constants.restype_name_to_atom14_names["CYS"] cys_sg_idx = cys.index("SG") cys_sg_idx = residue_index.new_tensor(cys_sg_idx) cys_sg_idx = cys_sg_idx.reshape( *((1,) * len(residue_index.shape[:-1])), 1 ).squeeze(-1) cys_sg_one_hot = torch.nn.functional.one_hot(cys_sg_idx, num_classes=14) disulfide_bonds = ( cys_sg_one_hot[..., None, None, :, None] * cys_sg_one_hot[..., None, None, None, :] ) dists_mask = dists_mask * (1.0 - disulfide_bonds) # Compute the lower bound for the allowed distances. # shape (N, N, 14, 14) dists_lower_bound = dists_mask * ( atom14_atom_radius[..., :, None, :, None] + atom14_atom_radius[..., None, :, None, :] ) # Compute the error. # shape (N, N, 14, 14) dists_to_low_error = dists_mask * torch.nn.functional.relu( dists_lower_bound - overlap_tolerance_soft - dists ) # Compute the mean loss. # shape () mean_loss = torch.sum(dists_to_low_error) / (1e-6 + torch.sum(dists_mask)) # Compute the per atom loss sum. # shape (N, 14) per_atom_loss_sum = torch.sum(dists_to_low_error, dim=(-4, -2)) + torch.sum( dists_to_low_error, axis=(-3, -1) ) # Compute the hard clash mask. # shape (N, N, 14, 14) clash_mask = dists_mask * ( dists < (dists_lower_bound - overlap_tolerance_hard) ) # Compute the per atom clash. # shape (N, 14) per_atom_clash_mask = torch.maximum( torch.amax(clash_mask, axis=(-4, -2)), torch.amax(clash_mask, axis=(-3, -1)), ) return { "mean_loss": mean_loss, # shape () "per_atom_loss_sum": per_atom_loss_sum, # shape (N, 14) "per_atom_clash_mask": per_atom_clash_mask, # shape (N, 14) } def within_residue_violations( atom14_pred_positions: torch.Tensor, atom14_atom_exists: torch.Tensor, atom14_dists_lower_bound: torch.Tensor, atom14_dists_upper_bound: torch.Tensor, tighten_bounds_for_loss=0.0, eps=1e-10, ) -> Dict[str, torch.Tensor]: """Loss to penalize steric clashes within residues. This is a loss penalizing any steric violations or clashes of non-bonded atoms in a given peptide. This loss corresponds to the part with the same residues of Jumper et al. (2021) Suppl. Sec. 1.9.11, eq 46. Args: atom14_pred_positions ([*, N, 14, 3]): Predicted positions of atoms in global prediction frame. atom14_atom_exists ([*, N, 14]): Mask denoting whether atom at positions exists for given amino acid type atom14_dists_lower_bound ([*, N, 14]): Lower bound on allowed distances. atom14_dists_upper_bound ([*, N, 14]): Upper bound on allowed distances tighten_bounds_for_loss ([*, N]): Extra factor to tighten loss Returns: Dict containing: * 'per_atom_loss_sum' ([*, N, 14]): sum of all clash losses per atom, shape * 'per_atom_clash_mask' ([*, N, 14]): mask whether atom clashes with any other atom shape """ # Compute the mask for each residue. dists_masks = 1.0 - torch.eye(14, device=atom14_atom_exists.device)[None] dists_masks = dists_masks.reshape( *((1,) * len(atom14_atom_exists.shape[:-2])), *dists_masks.shape ) dists_masks = ( atom14_atom_exists[..., :, :, None] * atom14_atom_exists[..., :, None, :] * dists_masks ) # Distance matrix dists = torch.sqrt( eps + torch.sum( ( atom14_pred_positions[..., :, :, None, :] - atom14_pred_positions[..., :, None, :, :] ) ** 2, dim=-1, ) ) # Compute the loss. dists_to_low_error = torch.nn.functional.relu( atom14_dists_lower_bound + tighten_bounds_for_loss - dists ) dists_to_high_error = torch.nn.functional.relu( dists - (atom14_dists_upper_bound - tighten_bounds_for_loss) ) loss = dists_masks * (dists_to_low_error + dists_to_high_error) # Compute the per atom loss sum. per_atom_loss_sum = torch.sum(loss, dim=-2) + torch.sum(loss, dim=-1) # Compute the violations mask. violations = dists_masks * ( (dists < atom14_dists_lower_bound) | (dists > atom14_dists_upper_bound) ) # Compute the per atom violations. per_atom_violations = torch.maximum( torch.max(violations, dim=-2)[0], torch.max(violations, axis=-1)[0] ) return { "per_atom_loss_sum": per_atom_loss_sum, "per_atom_violations": per_atom_violations, } def find_structural_violations( batch: Dict[str, torch.Tensor], atom14_pred_positions: torch.Tensor, violation_tolerance_factor: float, clash_overlap_tolerance: float, **kwargs, ) -> Dict[str, torch.Tensor]: """Computes several checks for structural violations.""" # Compute between residue backbone violations of bonds and angles. connection_violations = between_residue_bond_loss( pred_atom_positions=atom14_pred_positions, pred_atom_mask=batch["atom14_atom_exists"], residue_index=batch["residue_index"], aatype=batch["aatype"], tolerance_factor_soft=violation_tolerance_factor, tolerance_factor_hard=violation_tolerance_factor, ) # Compute the Van der Waals radius for every atom # (the first letter of the atom name is the element type). # Shape: (N, 14). atomtype_radius = [ residue_constants.van_der_waals_radius[name[0]] for name in residue_constants.atom_types ] atomtype_radius = atom14_pred_positions.new_tensor(atomtype_radius) atom14_atom_radius = ( batch["atom14_atom_exists"] * atomtype_radius[batch["residx_atom14_to_atom37"]] ) # Compute the between residue clash loss. between_residue_clashes = between_residue_clash_loss( atom14_pred_positions=atom14_pred_positions, atom14_atom_exists=batch["atom14_atom_exists"], atom14_atom_radius=atom14_atom_radius, residue_index=batch["residue_index"], overlap_tolerance_soft=clash_overlap_tolerance, overlap_tolerance_hard=clash_overlap_tolerance, ) # Compute all within-residue violations (clashes, # bond length and angle violations). restype_atom14_bounds = residue_constants.make_atom14_dists_bounds( overlap_tolerance=clash_overlap_tolerance, bond_length_tolerance_factor=violation_tolerance_factor, ) atom14_atom_exists = batch["atom14_atom_exists"] atom14_dists_lower_bound = atom14_pred_positions.new_tensor( restype_atom14_bounds["lower_bound"] )[batch["aatype"]] atom14_dists_upper_bound = atom14_pred_positions.new_tensor( restype_atom14_bounds["upper_bound"] )[batch["aatype"]] residue_violations = within_residue_violations( atom14_pred_positions=atom14_pred_positions, atom14_atom_exists=batch["atom14_atom_exists"], atom14_dists_lower_bound=atom14_dists_lower_bound, atom14_dists_upper_bound=atom14_dists_upper_bound, tighten_bounds_for_loss=0.0, ) # Combine them to a single per-residue violation mask (used later for LDDT). per_residue_violations_mask = torch.max( torch.stack( [ connection_violations["per_residue_violation_mask"], torch.max( between_residue_clashes["per_atom_clash_mask"], dim=-1 )[0], torch.max(residue_violations["per_atom_violations"], dim=-1)[0], ], dim=-1, ), dim=-1, )[0] return { "between_residues": { "bonds_c_n_loss_mean": connection_violations["c_n_loss_mean"], # () "angles_ca_c_n_loss_mean": connection_violations[ "ca_c_n_loss_mean" ], # () "angles_c_n_ca_loss_mean": connection_violations[ "c_n_ca_loss_mean" ], # () "connections_per_residue_loss_sum": connection_violations[ "per_residue_loss_sum" ], # (N) "connections_per_residue_violation_mask": connection_violations[ "per_residue_violation_mask" ], # (N) "clashes_mean_loss": between_residue_clashes["mean_loss"], # () "clashes_per_atom_loss_sum": between_residue_clashes[ "per_atom_loss_sum" ], # (N, 14) "clashes_per_atom_clash_mask": between_residue_clashes[ "per_atom_clash_mask" ], # (N, 14) }, "within_residues": { "per_atom_loss_sum": residue_violations[ "per_atom_loss_sum" ], # (N, 14) "per_atom_violations": residue_violations[ "per_atom_violations" ], # (N, 14), }, "total_per_residue_violations_mask": per_residue_violations_mask, # (N) } def find_structural_violations_np( batch: Dict[str, np.ndarray], atom14_pred_positions: np.ndarray, config: ml_collections.ConfigDict, ) -> Dict[str, np.ndarray]: to_tensor = lambda x: torch.tensor(x) batch = tree_map(to_tensor, batch, np.ndarray) atom14_pred_positions = to_tensor(atom14_pred_positions) out = find_structural_violations(batch, atom14_pred_positions, **config) to_np = lambda x: np.array(x) np_out = tensor_tree_map(to_np, out) return np_out def extreme_ca_ca_distance_violations( pred_atom_positions: torch.Tensor, # (N, 37(14), 3) pred_atom_mask: torch.Tensor, # (N, 37(14)) residue_index: torch.Tensor, # (N) max_angstrom_tolerance=1.5, eps=1e-6, ) -> torch.Tensor: """Counts residues whose Ca is a large distance from its neighbour. Measures the fraction of CA-CA pairs between consecutive amino acids that are more than 'max_angstrom_tolerance' apart. Args: pred_atom_positions: Atom positions in atom37/14 representation pred_atom_mask: Atom mask in atom37/14 representation residue_index: Residue index for given amino acid, this is assumed to be monotonically increasing. max_angstrom_tolerance: Maximum distance allowed to not count as violation. Returns: Fraction of consecutive CA-CA pairs with violation. """ this_ca_pos = pred_atom_positions[..., :-1, 1, :] this_ca_mask = pred_atom_mask[..., :-1, 1] next_ca_pos = pred_atom_positions[..., 1:, 1, :] next_ca_mask = pred_atom_mask[..., 1:, 1] has_no_gap_mask = (residue_index[..., 1:] - residue_index[..., :-1]) == 1.0 ca_ca_distance = torch.sqrt( eps + torch.sum((this_ca_pos - next_ca_pos) ** 2, dim=-1) ) violations = ( ca_ca_distance - residue_constants.ca_ca ) > max_angstrom_tolerance mask = this_ca_mask * next_ca_mask * has_no_gap_mask mean = masked_mean(mask, violations, -1) return mean def compute_violation_metrics( batch: Dict[str, torch.Tensor], atom14_pred_positions: torch.Tensor, # (N, 14, 3) violations: Dict[str, torch.Tensor], ) -> Dict[str, torch.Tensor]: """Compute several metrics to assess the structural violations.""" ret = {} extreme_ca_ca_violations = extreme_ca_ca_distance_violations( pred_atom_positions=atom14_pred_positions, pred_atom_mask=batch["atom14_atom_exists"], residue_index=batch["residue_index"], ) ret["violations_extreme_ca_ca_distance"] = extreme_ca_ca_violations ret["violations_between_residue_bond"] = masked_mean( batch["seq_mask"], violations["between_residues"][ "connections_per_residue_violation_mask" ], dim=-1, ) ret["violations_between_residue_clash"] = masked_mean( mask=batch["seq_mask"], value=torch.max( violations["between_residues"]["clashes_per_atom_clash_mask"], dim=-1, )[0], dim=-1, ) ret["violations_within_residue"] = masked_mean( mask=batch["seq_mask"], value=torch.max( violations["within_residues"]["per_atom_violations"], dim=-1 )[0], dim=-1, ) ret["violations_per_residue"] = masked_mean( mask=batch["seq_mask"], value=violations["total_per_residue_violations_mask"], dim=-1, ) return ret def compute_violation_metrics_np( batch: Dict[str, np.ndarray], atom14_pred_positions: np.ndarray, violations: Dict[str, np.ndarray], ) -> Dict[str, np.ndarray]: to_tensor = lambda x: torch.tensor(x) batch = tree_map(to_tensor, batch, np.ndarray) atom14_pred_positions = to_tensor(atom14_pred_positions) violations = tree_map(to_tensor, violations, np.ndarray) out = compute_violation_metrics(batch, atom14_pred_positions, violations) to_np = lambda x: np.array(x) return tree_map(to_np, out, torch.Tensor) def violation_loss( violations: Dict[str, torch.Tensor], atom14_atom_exists: torch.Tensor, eps=1e-6, **kwargs, ) -> torch.Tensor: num_atoms = torch.sum(atom14_atom_exists) l_clash = torch.sum( violations["between_residues"]["clashes_per_atom_loss_sum"] + violations["within_residues"]["per_atom_loss_sum"] ) l_clash = l_clash / (eps + num_atoms) loss = ( violations["between_residues"]["bonds_c_n_loss_mean"] + violations["between_residues"]["angles_ca_c_n_loss_mean"] + violations["between_residues"]["angles_c_n_ca_loss_mean"] + l_clash ) return loss def compute_renamed_ground_truth( batch: Dict[str, torch.Tensor], atom14_pred_positions: torch.Tensor, eps=1e-10, ) -> Dict[str, torch.Tensor]: """ Find optimal renaming of ground truth based on the predicted positions. Alg. 26 "renameSymmetricGroundTruthAtoms" This renamed ground truth is then used for all losses, such that each loss moves the atoms in the same direction. Args: batch: Dictionary containing: * atom14_gt_positions: Ground truth positions. * atom14_alt_gt_positions: Ground truth positions with renaming swaps. * atom14_atom_is_ambiguous: 1.0 for atoms that are affected by renaming swaps. * atom14_gt_exists: Mask for which atoms exist in ground truth. * atom14_alt_gt_exists: Mask for which atoms exist in ground truth after renaming. * atom14_atom_exists: Mask for whether each atom is part of the given amino acid type. atom14_pred_positions: Array of atom positions in global frame with shape Returns: Dictionary containing: alt_naming_is_better: Array with 1.0 where alternative swap is better. renamed_atom14_gt_positions: Array of optimal ground truth positions after renaming swaps are performed. renamed_atom14_gt_exists: Mask after renaming swap is performed. """ pred_dists = torch.sqrt( eps + torch.sum( ( atom14_pred_positions[..., None, :, None, :] - atom14_pred_positions[..., None, :, None, :, :] ) ** 2, dim=-1, ) ) atom14_gt_positions = batch["atom14_gt_positions"] gt_dists = torch.sqrt( eps + torch.sum( ( atom14_gt_positions[..., None, :, None, :] - atom14_gt_positions[..., None, :, None, :, :] ) ** 2, dim=-1, ) ) atom14_alt_gt_positions = batch["atom14_alt_gt_positions"] alt_gt_dists = torch.sqrt( eps + torch.sum( ( atom14_alt_gt_positions[..., None, :, None, :] - atom14_alt_gt_positions[..., None, :, None, :, :] ) ** 2, dim=-1, ) ) lddt = torch.sqrt(eps + (pred_dists - gt_dists) ** 2) alt_lddt = torch.sqrt(eps + (pred_dists - alt_gt_dists) ** 2) atom14_gt_exists = batch["atom14_gt_exists"] atom14_atom_is_ambiguous = batch["atom14_atom_is_ambiguous"] mask = ( atom14_gt_exists[..., None, :, None] * atom14_atom_is_ambiguous[..., None, :, None] * atom14_gt_exists[..., None, :, None, :] * (1.0 - atom14_atom_is_ambiguous[..., None, :, None, :]) ) per_res_lddt = torch.sum(mask * lddt, dim=(-1, -2, -3)) alt_per_res_lddt = torch.sum(mask * alt_lddt, dim=(-1, -2, -3)) fp_type = atom14_pred_positions.dtype alt_naming_is_better = (alt_per_res_lddt < per_res_lddt).type(fp_type) renamed_atom14_gt_positions = ( 1.0 - alt_naming_is_better[..., None, None] ) * atom14_gt_positions + alt_naming_is_better[ ..., None, None ] * atom14_alt_gt_positions renamed_atom14_gt_mask = ( 1.0 - alt_naming_is_better[..., None] ) * atom14_gt_exists + alt_naming_is_better[..., None] * batch[ "atom14_alt_gt_exists" ] return { "alt_naming_is_better": alt_naming_is_better, "renamed_atom14_gt_positions": renamed_atom14_gt_positions, "renamed_atom14_gt_exists": renamed_atom14_gt_mask, } def experimentally_resolved_loss( logits: torch.Tensor, atom37_atom_exists: torch.Tensor, all_atom_mask: torch.Tensor, resolution: torch.Tensor, min_resolution: float, max_resolution: float, eps: float = 1e-8, **kwargs, ) -> torch.Tensor: errors = sigmoid_cross_entropy(logits, all_atom_mask) loss = torch.sum(errors * atom37_atom_exists, dim=-1) loss = loss / (eps + torch.sum(atom37_atom_exists, dim=(-1, -2))) loss = torch.sum(loss, dim=-1) loss = loss * ( (resolution >= min_resolution) & (resolution <= max_resolution) ) loss = torch.mean(loss) return loss def masked_msa_loss(logits, true_msa, bert_mask, eps=1e-8, **kwargs): """ Computes BERT-style masked MSA loss. Implements subsection 1.9.9. Args: logits: [*, N_seq, N_res, 23] predicted residue distribution true_msa: [*, N_seq, N_res] true MSA bert_mask: [*, N_seq, N_res] MSA mask Returns: Masked MSA loss """ errors = softmax_cross_entropy( logits, torch.nn.functional.one_hot(true_msa, num_classes=23) ) # FP16-friendly averaging. Equivalent to: # loss = ( # torch.sum(errors * bert_mask, dim=(-1, -2)) / # (eps + torch.sum(bert_mask, dim=(-1, -2))) # ) loss = errors * bert_mask loss = torch.sum(loss, dim=-1) scale = 0.5 denom = eps + torch.sum(scale * bert_mask, dim=(-1, -2)) loss = loss / denom[..., None] loss = torch.sum(loss, dim=-1) loss = loss * scale loss = torch.mean(loss) return loss def compute_drmsd(structure_1, structure_2, mask=None): if(mask is not None): structure_1 = structure_1 * mask[..., None] structure_2 = structure_2 * mask[..., None] d1 = structure_1[..., :, None, :] - structure_1[..., None, :, :] d2 = structure_2[..., :, None, :] - structure_2[..., None, :, :] d1 = d1 ** 2 d2 = d2 ** 2 d1 = torch.sqrt(torch.sum(d1, dim=-1)) d2 = torch.sqrt(torch.sum(d2, dim=-1)) drmsd = d1 - d2 drmsd = drmsd ** 2 drmsd = torch.sum(drmsd, dim=(-1, -2)) n = d1.shape[-1] if mask is None else torch.sum(mask, dim=-1) drmsd = drmsd * (1 / (n * (n - 1))) drmsd = torch.sqrt(drmsd) return drmsd def compute_drmsd_np(structure_1, structure_2, mask=None): structure_1 = torch.tensor(structure_1) structure_2 = torch.tensor(structure_2) if(mask is not None): mask = torch.tensor(mask) return compute_drmsd(structure_1, structure_2, mask) class AlphaFoldLoss(nn.Module): """Aggregation of the various losses described in the supplement""" def __init__(self, config): super(AlphaFoldLoss, self).__init__() self.config = config def forward(self, out, batch, _return_breakdown=False): if "violation" not in out.keys(): out["violation"] = find_structural_violations( batch, out["sm"]["positions"][-1], **self.config.violation, ) if "renamed_atom14_gt_positions" not in out.keys(): batch.update( compute_renamed_ground_truth( batch, out["sm"]["positions"][-1], ) ) loss_fns = { "distogram": lambda: distogram_loss( logits=out["distogram_logits"], **{**batch, **self.config.distogram}, ), "experimentally_resolved": lambda: experimentally_resolved_loss( logits=out["experimentally_resolved_logits"], **{**batch, **self.config.experimentally_resolved}, ), "fape": lambda: fape_loss( out, batch, self.config.fape, ), "lddt": lambda: lddt_loss( logits=out["lddt_logits"], all_atom_pred_pos=out["final_atom_positions"], **{**batch, **self.config.lddt}, ), "masked_msa": lambda: masked_msa_loss( logits=out["masked_msa_logits"], **{**batch, **self.config.masked_msa}, ), "supervised_chi": lambda: supervised_chi_loss( out["sm"]["angles"], out["sm"]["unnormalized_angles"], **{**batch, **self.config.supervised_chi}, ), "violation": lambda: violation_loss( out["violation"], **batch, ), } if(self.config.tm.enabled): loss_fns["tm"] = lambda: tm_loss( logits=out["tm_logits"], **{**batch, **out, **self.config.tm}, ) cum_loss = 0. losses = {} for loss_name, loss_fn in loss_fns.items(): weight = self.config[loss_name].weight loss = loss_fn() if(torch.isnan(loss) or torch.isinf(loss)): logging.warning(f"{loss_name} loss is NaN. Skipping...") loss = loss.new_tensor(0., requires_grad=True) cum_loss = cum_loss + weight * loss losses[loss_name] = loss.detach().clone() losses["unscaled_loss"] = cum_loss.detach().clone() # Scale the loss by the square root of the minimum of the crop size and # the (average) sequence length. See subsection 1.9. seq_len = torch.mean(batch["seq_length"].float()) crop_len = batch["aatype"].shape[-1] cum_loss = cum_loss * torch.sqrt(min(seq_len, crop_len)) if(not _return_breakdown): return cum_loss return cum_loss, losses
32.656059
82
0.630266
09021cb002427d97a2baf0916dea8a153dca19f5
31,534
py
Python
utility.py
kant/RenderStackNode
19876fc75a03edf36ae27837d193509907adbd4a
[ "Apache-2.0" ]
null
null
null
utility.py
kant/RenderStackNode
19876fc75a03edf36ae27837d193509907adbd4a
[ "Apache-2.0" ]
null
null
null
utility.py
kant/RenderStackNode
19876fc75a03edf36ae27837d193509907adbd4a
[ "Apache-2.0" ]
null
null
null
import os import logging import time import re import numpy as np from itertools import groupby from collections import deque from functools import lru_cache, wraps import bpy from mathutils import Color, Vector from .preferences import get_pref # init logger LOG_FORMAT = "%(asctime)s - RSN-%(levelname)s - %(message)s" logging.basicConfig(format=LOG_FORMAT) logger = logging.getLogger('mylogger') # get the update time def timefn(fn): @wraps(fn) def measure_time(*args, **kwargs): t1 = time.time() result = fn(*args, **kwargs) t2 = time.time() s = f'{(t2 - t1) * 1000: .4f} ms' bpy.context.window_manager.rsn_tree_time = s logger.info(f"RSN Tree: update took{s}\n") return result return measure_time def source_attr(src_obj, scr_data_path): def get_obj_and_attr(obj, data_path): path = data_path.split('.') if len(path) == 1: return obj, path[0] else: back_obj = getattr(obj, path[0]) back_path = '.'.join(path[1:]) return get_obj_and_attr(back_obj, back_path) return get_obj_and_attr(src_obj, scr_data_path) def compare(obj: object, attr: str, val): """Use for compare and apply attribute since some properties change may cause depsgraph changes""" try: if getattr(obj, attr) != val: setattr(obj, attr, val) logger.debug(f'Attribute "{attr}" SET “{val}”') except AttributeError as e: logger.info(e) class RSN_NodeTree: """To store context node tree for getting data in renderstack""" def get_context_tree(self, return_name=False): try: name = bpy.context.space_data.edit_tree.name return bpy.context.space_data.edit_tree.name if return_name else bpy.data.node_groups[name] except: return None def set_wm_node_tree(self, node_tree_name): bpy.context.window_manager.rsn_cur_tree_name = node_tree_name def get_wm_node_tree(self, get_name=False): name = bpy.context.window_manager.rsn_cur_tree_name if get_name: return name else: return bpy.data.node_groups[name] def set_context_tree_as_wm_tree(self): tree_name = self.get_context_tree(return_name=1) if tree_name: self.set_wm_node_tree(tree_name) # class RSN_Gpaph: # def __init__(self, node_tree, root_node_name): # self.nt = node_tree # self.root_node = self.get_node_from_name(root_node_name) # # def get_children_from_node(self, root_node, pass_mute=True) -> list: # """Depth first search # :parm root_node: a blender node # nodes append from left to right, from top to bottom # """ # node_list = [] # # # @lru_cache(maxsize=None) # def get_sub_node(node, pass_mute_node=True): # """Recursion # :parm node: a blender node # # """ # for i, input in enumerate(node.inputs): # if input.is_linked: # try: # sub_node = input.links[0].from_node # if sub_node.mute and pass_mute_node: continue # # get_sub_node(sub_node) # # This error shows when the dragging the link off viewer node(Works well with knife tool) # # this seems to be a blender error # except IndexError: # pass # else: # continue # # Skip the reroute node # if node.bl_idname != 'NodeReroute': # if len(node_list) == 0 or (len(node_list) != 0 and node.name != node_list[-1]): # node_list.append(node.name) # # get_sub_node(root_node, pass_mute) class RSN_Nodes: """Tree method""" def __init__(self, node_tree, root_node_name): self.nt = node_tree self.root_node = self.get_node_from_name(root_node_name) def get_node_from_name(self, name): return self.nt.nodes.get(name) def get_root_node(self): return self.root_node def get_children_from_node(self, root_node, pass_mute=True): """Depth first search :parm root_node: a blender node """ node_list = [] def append_node_to_list(node): """Skip the reroute node""" if node.bl_idname != 'NodeReroute': if len(node_list) == 0 or (len(node_list) != 0 and node.name != node_list[-1]): node_list.append(node.name) # @lru_cache(maxsize=None) def get_sub_node(node, pass_mute_node=True): """Recursion :parm node: a blender node """ for i, input in enumerate(node.inputs): if input.is_linked: try: sub_node = input.links[0].from_node if sub_node.mute and pass_mute_node: continue else: get_sub_node(sub_node) # This error shows when the dragging the link off viewer node(Works well with knife tool) # this seems to be a blender error except IndexError: pass else: continue # nodes append from left to right, from top to bottom append_node_to_list(node) get_sub_node(root_node, pass_mute) return node_list def get_sub_node_dict_from_node_list(self, node_list, parent_node_type, black_list=None): """Use Task node as separator to get sub nodes in this task :parm node_list: :parm parent_node_type: node.bl_idname: str :parm black_list: list node.bl_idname that you want to skip """ node_list_dict = {} if not black_list: black_list = ['RSNodeTaskListNode', 'RSNodeRenderListNode'] node_list[:] = [node for node in node_list if self.nt.nodes[node].bl_idname not in black_list] # separate nodes with the node type input children_node_list = [list(g) for k, g in groupby(node_list, lambda name: self.nt.nodes[name].bl_idname == parent_node_type) if not k] # get the node type input parent_node_list = [node for node in node_list if self.nt.nodes[node].bl_idname == parent_node_type] # make a dict {parent name:[children list]} for i in range(len(parent_node_list)): try: node_list_dict[parent_node_list[i]] = children_node_list[i] # release the node behind the parent except IndexError: pass return node_list_dict def get_children_from_var_node(self, var_node, active, pass_mute=True): """Depth first search for the Variants children :parm var_node: a blender node :parm active:the active input of the Variants node """ black_list = [] # list of nodes to remove from the origin node list def append_node_to_list(node): """Skip the reroute node""" if node.bl_idname != 'NodeReroute': if len(black_list) == 0 or (len(black_list) != 0 and node.name != black_list[-1]): if node.bl_idname != 'RSNodeVariantsNode': black_list.append(node.name) # @lru_cache(maxsize=None) def get_sub_node(node, pass_mute_node=True): """Recursion :parm node: a blender node """ for i, input in enumerate(node.inputs): if input.is_linked and True in (i != active, node.bl_idname != 'RSNodeVariantsNode'): try: sub_node = input.links[0].from_node if sub_node.mute and pass_mute_node: continue else: get_sub_node(sub_node) # This error shows when the dragging the link off viewer node(Works well with knife tool) # this seems to be a blender error except IndexError: pass else: continue # nodes append from left to right, from top to bottom append_node_to_list(node) get_sub_node(var_node, pass_mute) return black_list def get_children_from_task(self, task_name, return_dict=False, type='RSNodeTaskNode'): """pack method for task node :parm task_name: name of the task node :parm return_dict: return dict instead of node list {'task node name':[ children node name1, children node name2] } :parm type: the bl_idname of the node (key for the dict) """ task = self.get_node_from_name(task_name) try: node_list = self.get_children_from_node(task) # VariantsNodeProperty node in each task # only one set VariantsNodeProperty node will be active var_collect = {} for node_name in node_list: set_var_node = self.nt.nodes[node_name] if set_var_node.bl_idname == 'RSNodeSetVariantsNode': for item in set_var_node.node_collect: if item.use: var_collect[item.name] = item.active break for node_name, active in var_collect.items(): var_node = self.nt.nodes[node_name] black_list = self.get_children_from_var_node(var_node, active) node_list = [i for i in node_list if i not in black_list] # return clean node list if not return_dict: return node_list else: return self.get_sub_node_dict_from_node_list(node_list=node_list, parent_node_type=type) except AttributeError: pass def get_children_from_render_list(self, return_dict=False, type='RSNodeTaskNode'): """pack method for render list node(get all task) """ render_list = self.get_node_from_name(self.root_node.name) node_list = self.get_children_from_node(render_list) if not return_dict: return node_list else: return self.get_sub_node_dict_from_node_list(node_list=node_list, parent_node_type=type) def graph(self): node_list = self.get_children_from_node(self.root_node) def get_task_data(self, task_name, task_dict): """transfer nodes to data :parm task_name: name of the task node :parm task_dict: parse dict {'task node name':[ children node name1, children node name2] } """ task_data = {} for node_name in task_dict[task_name]: node = self.nt.nodes[node_name] node.debug() # task node task_node = self.nt.nodes[task_name] task_data['name'] = task_name task_data['label'] = task_node.label # old method/nodes ##################### # Object select Nodes if node.bl_idname == 'RSNodePropertyInputNode': if 'property' not in task_data: task_data['property'] = {} task_data['property'].update(node.get_data()) elif node.bl_idname == 'RSNodeObjectDataNode': if 'object_data' not in task_data: task_data['object_data'] = {} task_data['object_data'].update(node.get_data()) elif node.bl_idname == 'RSNodeObjectModifierNode': if 'object_modifier' not in task_data: task_data['object_modifier'] = {} task_data['object_modifier'].update(node.get_data()) elif node.bl_idname in 'RSNodeObjectDisplayNode': if 'object_display' not in task_data: task_data['object_display'] = {} task_data['object_display'].update(node.get_data()) elif node.bl_idname == 'RSNodeCollectionDisplayNode': if 'collection_display' not in task_data: task_data['collection_display'] = {} task_data['collection_display'].update(node.get_data()) elif node.bl_idname == 'RSNodeObjectMaterialNode': if 'object_material' not in task_data: task_data['object_material'] = {} task_data['object_material'].update(node.get_data()) elif node.bl_idname == 'RSNodeObjectPSRNode': if 'object_psr' not in task_data: task_data['object_psr'] = {} task_data['object_psr'].update(node.get_data()) elif node.bl_idname == 'RSNodeViewLayerPassesNode': if 'view_layer_passes' not in task_data: task_data['view_layer_passes'] = {} task_data['view_layer_passes'].update(node.get_data()) elif node.bl_idname == 'RSNodeSmtpEmailNode': if 'email' not in task_data: task_data['email'] = {} task_data['email'].update(node.get_data()) elif node.bl_idname == 'RSNodeScriptsNode': if node.type == 'SINGLE': if 'scripts' not in task_data: task_data['scripts'] = {} task_data['scripts'].update(node.get_data()) else: if 'scripts_file' not in task_data: task_data['scripts_file'] = {} task_data['scripts_file'].update(node.get_data()) # Single node else: try: task_data.update(node.get_data()) except TypeError: pass return task_data class RenderQueue(): def __init__(self, nodetree, render_list_node): """init a rsn queue :parm nodetree: a blender node tree(rsn node tree) :parm render_list_node: render_list_node """ self.nt = nodetree self.root_node = render_list_node self.task_queue = deque() self.task_list = [] self.init_queue() def init_queue(self): for item in self.root_node.task_list: if item.render: self.task_queue.append(item.name) self.task_list.append(item.name) # for processing visualization bpy.context.window_manager.rsn_cur_task_list = ','.join(self.task_list) def is_empty(self): return len(self.task_queue) == 0 def get_frame_range(self): self.force_update() # if not frame range node input, consider as render single frmae frame_start = frame_end = bpy.context.scene.frame_start frame_step = bpy.context.scene.frame_step # search frame range node node_list = bpy.context.window_manager.rsn_node_list.split(',') frame_range_nodes = [self.nt.nodes[name] for name in node_list if self.nt.nodes[name].bl_idname == 'RSNodeFrameRangeInputNode'] # get the last frame range node for current task if len(frame_range_nodes) != 0: node = frame_range_nodes[-1] frame_start = node.frame_start frame_end = node.frame_end frame_step = node.frame_step return frame_start, frame_end, frame_step def force_update(self): if not self.is_empty(): self.nt.nodes[self.task_queue[0]].is_active_task = True def pop(self): if not self.is_empty(): return self.task_queue.popleft() def clear_queue(self): self.task_queue.clear() bpy.context.window_manager.rsn_cur_task_list = '' class RSN_OLD_TaskUpdater(): def __init__(self, node_tree, task_data): self.task_data = task_data self.nt = node_tree def warning_node_color(self, node_name, msg=''): """ :parm e: error message use try to catch error because user may use task info node to input settings """ try: node = self.nt.nodes[node_name] node.set_warning(msg=msg) except Exception as e: print(e) def update_all(self): if not self.task_data: return None pref = get_pref() self.update_camera() self.update_color_management() self.update_res() self.update_render_engine() self.update_property() self.update_collection_display() self.update_object_display() self.update_object_psr() self.update_object_data() self.update_object_material() self.update_object_modifier() self.update_frame_range() self.updata_view_layer() self.update_image_format() self.update_slots() self.update_world() self.ssm_light_studio() if pref.node_task.update_scripts: self.updata_scripts() if pref.node_task.update_path: self.update_path() if pref.node_task.update_view_layer_passes: self.update_view_layer_passes() self.send_email() def update_color_management(self): """may change in 2.93 version""" if 'ev' in self.task_data: vs = bpy.context.scene.view_settings compare(vs, 'exposure', self.task_data['ev']) compare(vs, 'gamma', self.task_data['gamma']) try: compare(vs, 'view_transform', self.task_data['view_transform']) compare(vs, 'look', self.task_data['look']) except: # ocio change in 2.93 pass def update_path(self): dir = self.make_path() postfix = self.get_postfix() rn = bpy.context.scene.render compare(rn, 'use_file_extension', 1) compare(rn, 'filepath', os.path.join(dir, postfix)) def make_path(self): """only save files will work""" task = self.task_data if 'path' in task: if task['path'] == '//': directory_path = bpy.path.abspath(task['path']) else: directory_path = os.path.dirname(task['path']) try: if not os.path.exists(directory_path): os.makedirs(directory_path) return directory_path except Exception as e: self.report({'ERROR'}, f'File Path: No Such a Path') else: return '//' def get_postfix(self): """path expression""" scn = bpy.context.scene cam = scn.camera blend_name = '' postfix = '' if 'path' in self.task_data: postfix = self.task_data["path_expression"] # replace camera name if cam: postfix = postfix.replace('$camera', cam.name) else: postfix = postfix # replace engine postfix = postfix.replace('$engine', bpy.context.scene.render.engine) # replace res postfix = postfix.replace('$res', f"{scn.render.resolution_x}x{scn.render.resolution_y}") # replace label postfix = postfix.replace('$label', self.task_data["label"]) # replace view_layer postfix = postfix.replace('$vl', bpy.context.view_layer.name) # version_ postfix = postfix.replace('$V', self.task_data["version"]) # frame completion STYLE = re.findall(r'([$]F\d)', postfix) if len(STYLE) > 0: c_frame = bpy.context.scene.frame_current for i, string in enumerate(STYLE): format = f'0{STYLE[i][-1:]}d' postfix = postfix.replace(STYLE[i], f'{c_frame:{format}}') # time format TIME = re.findall(r'([$]T{.*?})', postfix) if len(TIME) > 0: for i, string in enumerate(TIME): format = time.strftime(TIME[i][3:-1], time.localtime()) postfix = postfix.replace(TIME[i], format) # replace filename try: blend_name = bpy.path.basename(bpy.data.filepath)[:-6] postfix = postfix.replace('$blend', blend_name) except Exception: return 'untitled' return postfix def update_view_layer_passes(self): """each view layer will get a file output node but I recommend to save an Multilayer exr file instead of use this node """ if 'view_layer_passes' in self.task_data: for node_name, dict in self.task_data['view_layer_passes'].items(): try: bpy.ops.rsn.creat_compositor_node( view_layer=self.task_data['view_layer_passes'][node_name]['view_layer'], use_passes=self.task_data['view_layer_passes'][node_name]['use_passes']) except Exception as e: logger.warning(f'View Layer Passes {node_name} error', exc_info=e) else: bpy.ops.rsn.creat_compositor_node(use_passes=0, view_layer=bpy.context.window.view_layer.name) def update_property(self): if 'property' in self.task_data: for node_name, dict in self.task_data['property'].items(): try: obj = eval(dict['full_data_path']) value = dict['value'] if obj != value: exec(f"{dict['full_data_path']}={value}") except Exception as e: self.warning_node_color(node_name, f'Full data path error!\n{e}') def update_object_display(self): if 'object_display' in self.task_data: for node_name, dict in self.task_data['object_display'].items(): ob = eval(dict['object']) compare(ob, 'hide_viewport', dict['hide_viewport']) compare(ob, 'hide_render', dict['hide_render']) def update_collection_display(self): if 'collection_display' in self.task_data: for node_name, dict in self.task_data['collection_display'].items(): ob = eval(dict['collection']) compare(ob, 'hide_viewport', dict['hide_viewport']) compare(ob, 'hide_render', dict['hide_render']) def update_object_psr(self): if 'object_psr' in self.task_data: for node_name, dict in self.task_data['object_psr'].items(): ob = eval(dict['object']) if 'location' in dict: compare(ob, 'location', dict['location']) if 'scale' in dict: compare(ob, 'scale', dict['scale']) if 'rotation' in dict: compare(ob, 'rotation_euler', dict['rotation']) def update_object_material(self): if 'object_material' in self.task_data: for node_name, dict in self.task_data['object_material'].items(): ob = eval(dict['object']) try: if ob.material_slots[dict['slot_index']].material.name != dict['new_material']: ob.material_slots[dict['slot_index']].material = bpy.data.materials[dict['new_material']] except Exception as e: pass def update_object_data(self): if 'object_data' in self.task_data: for node_name, dict in self.task_data['object_data'].items(): ob = eval(dict['object']) value = dict['value'] obj, attr = source_attr(ob.data, dict['data_path']) compare(obj, attr, value) def update_object_modifier(self): if 'object_modifier' in self.task_data: for node_name, dict in self.task_data['object_modifier'].items(): ob = eval(dict['object']) value = dict['value'] match = re.match(r"modifiers[[](.*?)[]]", dict['data_path']) name = match.group(1) if name: data_path = dict['data_path'].split('.')[-1] modifier = ob.modifiers[name[1:-1]] compare(modifier, data_path, value) def update_slots(self): if 'render_slot' in self.task_data: compare(bpy.data.images['Render Result'].render_slots, 'active_index', self.task_data['render_slot']) def update_world(self): if 'world' in self.task_data: if bpy.context.scene.world.name != self.task_data['world']: bpy.context.scene.world = bpy.data.worlds[self.task_data['world']] def ssm_light_studio(self): if 'ssm_light_studio' in self.task_data: index = self.task_data['ssm_light_studio'] try: compare(bpy.context.scene.ssm, 'light_studio_index', index) except Exception as e: logger.warning(f'SSM LightStudio node error', exc_info=e) def send_email(self): if 'email' in self.task_data: for node_name, email_dict in self.task_data['email'].items(): try: bpy.ops.rsn.send_email(subject=email_dict['subject'], content=email_dict['content'], sender_name=email_dict['sender_name'], email=email_dict['email']) except Exception as e: self.warning_node_color(node_name, str(e)) def updata_view_layer(self): if 'view_layer' in self.task_data and bpy.context.window.view_layer.name != self.task_data['view_layer']: bpy.context.window.view_layer = bpy.context.scene.view_layers[self.task_data['view_layer']] def updata_scripts(self): if 'scripts' in self.task_data: for node_name, value in self.task_data['scripts'].items(): try: exec(value) except Exception as e: self.warning_node_color(node_name, str(e)) if 'scripts_file' in self.task_data: for node_name, file_name in self.task_data['scripts_file'].items(): try: c = bpy.data.texts[file_name].as_string() exec(c) except Exception as e: self.warning_node_color(node_name, str(e)) def update_image_format(self): if 'image_settings' in self.task_data: rn = bpy.context.scene.render image_settings = self.task_data['image_settings'] compare(rn.image_settings, 'file_format', image_settings['file_format']) compare(rn.image_settings, 'color_mode', image_settings['color_mode']) compare(rn.image_settings, 'color_depth', image_settings['color_depth']) compare(rn.image_settings, 'use_preview', image_settings['use_preview']) compare(rn.image_settings, 'compression', image_settings['compression']) compare(rn.image_settings, 'quality', image_settings['quality']) compare(rn, 'film_transparent', image_settings['transparent']) def update_frame_range(self): if "frame_start" in self.task_data: scn = bpy.context.scene compare(scn, 'frame_start', self.task_data['frame_start']) compare(scn, 'frame_end', self.task_data['frame_end']) compare(scn, 'frame_step', self.task_data['frame_step']) def update_render_engine(self): engines = ['BLENDER_EEVEE', 'BLENDER_WORKBENCH'] + [engine.bl_idname for engine in bpy.types.RenderEngine.__subclasses__()] has_engine = None # engine settings if 'engine' in self.task_data: if self.task_data['engine'] in engines: compare(bpy.context.scene.render, 'engine', self.task_data['engine']) has_engine = True # samples if 'samples' in self.task_data: if self.task_data['engine'] == "BLENDER_EEVEE": compare(bpy.context.scene.eevee, 'taa_render_samples', self.task_data['samples']) elif self.task_data['engine'] == "CYCLES": compare(bpy.context.scene.cycles, 'samples', self.task_data['samples']) # CYCLES if 'cycles_light_path' in self.task_data: for key, value in self.task_data['cycles_light_path'].items(): compare(bpy.context.scene.cycles, key, value) if not has_engine: return None # luxcore if 'luxcore_half' in self.task_data and 'BlendLuxCore' in bpy.context.preferences.addons: if not bpy.context.scene.luxcore.halt.enable: bpy.context.scene.luxcore.halt.enable = True if self.task_data['luxcore_half']['use_samples'] is False and self.task_data['luxcore_half'][ 'use_time'] is False: bpy.context.scene.luxcore.halt.use_samples = True elif self.task_data['luxcore_half']['use_samples'] is True and self.task_data['luxcore_half'][ 'use_time'] is False: if not bpy.context.scene.luxcore.halt.use_samples: bpy.context.scene.luxcore.halt.use_samples = True if bpy.context.scene.luxcore.halt.use_time: bpy.context.scene.luxcore.halt.use_time = False compare(bpy.context.scene.luxcore.halt, 'samples', self.task_data['luxcore_half']['samples']) elif self.task_data['luxcore_half']['use_samples'] is False and self.task_data['luxcore_half'][ 'use_time'] is True: if bpy.context.scene.luxcore.halt.use_samples: bpy.context.scene.luxcore.halt.use_samples = False if not bpy.context.scene.luxcore.halt.use_time: bpy.context.scene.luxcore.halt.use_time = True compare(bpy.context.scene.luxcore.halt, 'time', self.task_data['luxcore_half']['time']) # octane elif 'octane' in self.task_data and 'octane' in bpy.context.preferences.addons: for key, value in self.task_data['octane'].items(): compare(bpy.context.scene.octane, key, value) def update_res(self): if 'res_x' in self.task_data: rn = bpy.context.scene.render compare(rn, 'resolution_x', self.task_data['res_x']) compare(rn, 'resolution_y', self.task_data['res_y']) compare(rn, 'resolution_percentage', self.task_data['res_scale']) def update_camera(self): if 'camera' in self.task_data and self.task_data['camera']: cam = eval(self.task_data['camera']) if cam: compare(bpy.context.scene, 'camera', cam)
38.787208
115
0.568371
1f025ca0866e4c65c06369a8bbc75e717140fd0b
1,236
py
Python
2015/06/fc_2015_06_08.py
mfwarren/FreeCoding
58ac87f35ad2004a3514782556762ee0ed72c39a
[ "MIT" ]
null
null
null
2015/06/fc_2015_06_08.py
mfwarren/FreeCoding
58ac87f35ad2004a3514782556762ee0ed72c39a
[ "MIT" ]
1
2015-04-27T01:43:45.000Z
2015-04-27T01:43:45.000Z
2015/06/fc_2015_06_08.py
mfwarren/FreeCoding
58ac87f35ad2004a3514782556762ee0ed72c39a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # imports go here import matplotlib.pyplot as plt from sklearn import datasets, svm, metrics # # Free Coding session for 2015-06-08 # Written by Matt Warren # digits = datasets.load_digits() images = list(zip(digits.images, digits.target)) for i, (image, label) in enumerate(images[:4]): plt.subplot(2, 4, i + 1) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Training: %i' % label) n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) classifier = svm.SVC(gamma=0.001) classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2]) expected = digits.target[n_samples / 2:] predicted = classifier.predict(data[n_samples / 2:]) print("report %s\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) images_and_predictions = list(zip(digits.images[n_samples / 2:], predicted)) for i, (image, prediction) in enumerate(images_and_predictions[:4]): plt.subplot(2, 4, i + 5) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Prediction: %i' % prediction) plt.show()
30.9
91
0.713592
8d3821361d8f670feadf94d5e15bb148a849f793
10
py
Python
HonkaiPython/test5.py
ReZeroE/Honkai-Impact-AutoPlay-Driver
096b23cce401dd32dc8ada5d06464e3d902d0b59
[ "MIT" ]
null
null
null
HonkaiPython/test5.py
ReZeroE/Honkai-Impact-AutoPlay-Driver
096b23cce401dd32dc8ada5d06464e3d902d0b59
[ "MIT" ]
null
null
null
HonkaiPython/test5.py
ReZeroE/Honkai-Impact-AutoPlay-Driver
096b23cce401dd32dc8ada5d06464e3d902d0b59
[ "MIT" ]
null
null
null
import wmi
10
10
0.9
b0bef04c62f0481be11ea23f10033dd38ca931cd
20,252
py
Python
smart_home/Camera.py
shanbs/netatmo-api-python
bb714189868bb5235ad4d1241dd4818fe633fe70
[ "MIT" ]
null
null
null
smart_home/Camera.py
shanbs/netatmo-api-python
bb714189868bb5235ad4d1241dd4818fe633fe70
[ "MIT" ]
null
null
null
smart_home/Camera.py
shanbs/netatmo-api-python
bb714189868bb5235ad4d1241dd4818fe633fe70
[ "MIT" ]
null
null
null
""" coding=utf-8 """ import imghdr import time from urllib.error import URLError from . import NoDevice, postRequest, _BASE_URL _GETHOMEDATA_REQ = _BASE_URL + "api/gethomedata" _GETCAMERAPICTURE_REQ = _BASE_URL + "api/getcamerapicture" _GETEVENTSUNTIL_REQ = _BASE_URL + "api/geteventsuntil" class CameraData: """ List the Netatmo cameras informations (Homes, cameras, modules, events, persons) Args: authData (ClientAuth): Authentication information with a working access Token """ def __init__(self, authData, size=15): self.getAuthToken = authData.accessToken postParams = {"access_token": self.getAuthToken, "size": size} resp = postRequest(_GETHOMEDATA_REQ, postParams) if "body" not in resp: raise URLError("No data returned by Netatmo server") self.rawData = resp["body"] self.homes = {d["id"]: d for d in self.rawData["homes"]} if not self.homes: raise NoDevice("No camera available") self.persons = dict() self.events = dict() self.outdoor_events = dict() self.cameras = dict() self.modules = dict() self.lastEvent = dict() self.outdoor_lastEvent = dict() self.types = dict() self.default_home = None self.default_camera = None for i in range(len(self.rawData["homes"])): nameHome = self.rawData["homes"][i]["name"] if nameHome not in self.cameras: self.cameras[nameHome] = dict() if nameHome not in self.types: self.types[nameHome] = dict() for p in self.rawData["homes"][i]["persons"]: self.persons[p["id"]] = p if "events" in self.rawData["homes"][i]: self.default_home = self.rawData["homes"][i]["name"] for e in self.rawData["homes"][i]["events"]: if e["type"] == "outdoor": if e["camera_id"] not in self.outdoor_events: self.outdoor_events[e["camera_id"]] = dict() self.outdoor_events[e["camera_id"]][e["time"]] = e elif e["type"] != "outdoor": if e["camera_id"] not in self.events: self.events[e["camera_id"]] = dict() self.events[e["camera_id"]][e["time"]] = e for c in self.rawData["homes"][i]["cameras"]: self.cameras[nameHome][c["id"]] = c if c["type"] == "NACamera" and "modules" in c: for m in c["modules"]: self.modules[m["id"]] = m self.modules[m["id"]]["cam_id"] = c["id"] for t in self.rawData["homes"][i]["cameras"]: self.types[nameHome][t["type"]] = t for camera in self.events: self.lastEvent[camera] = self.events[camera][ sorted(self.events[camera])[-1] ] for camera in self.outdoor_events: self.outdoor_lastEvent[camera] = self.outdoor_events[camera][ sorted(self.outdoor_events[camera])[-1] ] if self.modules != {}: self.default_module = list(self.modules.values())[0]["name"] else: self.default_module = None if self.default_home is not None and len(self.cameras) > 0: self.default_camera = list(self.cameras[self.default_home].values())[0] def homeById(self, hid): return None if hid not in self.homes else self.homes[hid] def homeByName(self, home=None): if not home: return self.homeByName(self.default_home) for key, value in self.homes.items(): if value["name"] == home: return self.homes[key] def cameraById(self, cid): for home, cam in self.cameras.items(): if cid in self.cameras[home]: return self.cameras[home][cid] return None def cameraByName(self, camera=None, home=None): if not camera and not home: return self.default_camera elif home and camera: if home not in self.cameras: return None for cam_id in self.cameras[home]: if self.cameras[home][cam_id]["name"] == camera: return self.cameras[home][cam_id] elif not home and camera: for home, cam_ids in self.cameras.items(): for cam_id in cam_ids: if self.cameras[home][cam_id]["name"] == camera: return self.cameras[home][cam_id] else: return list(self.cameras[home].values())[0] return None def moduleById(self, mid): return None if mid not in self.modules else self.modules[mid] def moduleByName(self, module=None, camera=None, home=None): if not module: if self.default_module: return self.moduleByName(self.default_module) else: return None cam = None if camera or home: cam = self.cameraByName(camera, home) if not cam: return None for key, value in self.modules.items(): if value["name"] == module: if cam and value["cam_id"] != cam["id"]: return None return self.modules[key] return None def cameraType(self, camera=None, home=None, cid=None): """ Return the type of a given camera. """ cameratype = None if cid: camera_data = self.cameraById(cid) else: camera_data = self.cameraByName(camera=camera, home=home) if camera_data: cameratype = camera_data["type"] return cameratype def cameraUrls(self, camera=None, home=None, cid=None): """ Return the vpn_url and the local_url (if available) of a given camera in order to access to its live feed """ local_url = None vpn_url = None if cid: camera_data = self.cameraById(cid) else: camera_data = self.cameraByName(camera=camera, home=home) if camera_data: vpn_url = camera_data["vpn_url"] if camera_data["is_local"]: try: resp = postRequest( "{0}/command/ping".format(camera_data["vpn_url"]), dict() ) temp_local_url = resp["local_url"] except URLError: return None, None try: resp = postRequest( "{0}/command/ping".format(temp_local_url), dict() ) if temp_local_url == resp["local_url"]: local_url = temp_local_url except URLError: pass return vpn_url, local_url def personsAtHome(self, home=None): """ Return the list of known persons who are currently at home """ if not home: home = self.default_home home_data = self.homeByName(home) atHome = [] for p in home_data["persons"]: # Only check known persons if "pseudo" in p: if not p["out_of_sight"]: atHome.append(p["pseudo"]) return atHome def getCameraPicture(self, image_id, key): """ Download a specific image (of an event or user face) from the camera """ postParams = { "access_token": self.getAuthToken, "image_id": image_id, "key": key, } resp = postRequest(_GETCAMERAPICTURE_REQ, postParams) image_type = imghdr.what("NONE.FILE", resp) return resp, image_type def getProfileImage(self, name): """ Retrieve the face of a given person """ for p in self.persons: if "pseudo" in self.persons[p]: if name == self.persons[p]["pseudo"]: image_id = self.persons[p]["face"]["id"] key = self.persons[p]["face"]["key"] return self.getCameraPicture(image_id, key) return None, None def updateEvent(self, event=None, home=None, cameratype=None): """ Update the list of event with the latest ones """ if not home: home = self.default_home if cameratype == "NACamera": # for the Welcome camera if not event: # If not event is provided we need to retrieve the oldest of # the last event seen by each camera listEvent = dict() for cam_id in self.lastEvent: listEvent[self.lastEvent[cam_id]["time"]] = self.lastEvent[cam_id] event = listEvent[sorted(listEvent)[0]] if cameratype == "NOC": # for the Presence camera if not event: # If not event is provided we need to retrieve the oldest of # the last event seen by each camera listEvent = dict() for cam_id in self.outdoor_lastEvent: listEvent[ self.outdoor_lastEvent[cam_id]["time"] ] = self.outdoor_lastEvent[cam_id] event = listEvent[sorted(listEvent)[0]] home_data = self.homeByName(home) postParams = { "access_token": self.getAuthToken, "home_id": home_data["id"], "event_id": event["id"], } resp = postRequest(_GETEVENTSUNTIL_REQ, postParams) eventList = resp["body"]["events_list"] for e in eventList: if e["type"] == "outdoor": self.outdoor_events[e["camera_id"]][e["time"]] = e elif e["type"] != "outdoor": self.events[e["camera_id"]][e["time"]] = e for camera in self.events: self.lastEvent[camera] = self.events[camera][ sorted(self.events[camera])[-1] ] for camera in self.outdoor_events: self.outdoor_lastEvent[camera] = self.outdoor_events[camera][ sorted(self.outdoor_events[camera])[-1] ] def personSeenByCamera(self, name, home=None, camera=None, exclude=0): """ Return True if a specific person has been seen by a camera """ try: cam_id = self.cameraByName(camera=camera, home=home)["id"] except TypeError: print("personSeenByCamera: Camera name or home is unknown") return False # Check in the last event is someone known has been seen if exclude: limit = time.time() - exclude array_time_event = sorted(self.events[cam_id]) array_time_event.reverse() for time_ev in array_time_event: if time_ev < limit: return False elif self.events[cam_id][time_ev]["type"] == "person": person_id = self.events[cam_id][time_ev]["person_id"] if "pseudo" in self.persons[person_id]: if self.persons[person_id]["pseudo"] == name: return True elif self.lastEvent[cam_id]["type"] == "person": person_id = self.lastEvent[cam_id]["person_id"] if "pseudo" in self.persons[person_id]: if self.persons[person_id]["pseudo"] == name: return True return False def _knownPersons(self): known_persons = dict() for p_id, p in self.persons.items(): if "pseudo" in p: known_persons[p_id] = p return known_persons def knownPersonsNames(self): names = [] for p_id, p in self._knownPersons().items(): names.append(p["pseudo"]) return names def someoneKnownSeen(self, home=None, camera=None, exclude=0): """ Return True if someone known has been seen """ try: cam_id = self.cameraByName(camera=camera, home=home)["id"] except TypeError: print("someoneKnownSeen: Camera name or home is unknown") return False if exclude: limit = time.time() - exclude array_time_event = sorted(self.events[cam_id]) array_time_event.reverse() for time_ev in array_time_event: if time_ev < limit: return False elif self.events[cam_id][time_ev]["type"] == "person": if ( self.events[cam_id][time_ev]["person_id"] in self._knownPersons() ): return True # Check in the last event is someone known has been seen elif self.lastEvent[cam_id]["type"] == "person": if self.lastEvent[cam_id]["person_id"] in self._knownPersons(): return True return False def someoneUnknownSeen(self, home=None, camera=None, exclude=0): """ Return True if someone unknown has been seen """ try: cam_id = self.cameraByName(camera=camera, home=home)["id"] except TypeError: print("someoneUnknownSeen: Camera name or home is unknown") return False if exclude: limit = time.time() - exclude array_time_event = sorted(self.events[cam_id]) array_time_event.reverse() for time_ev in array_time_event: if time_ev < limit: return False elif self.events[cam_id][time_ev]["type"] == "person": if ( self.events[cam_id][time_ev]["person_id"] not in self._knownPersons() ): return True # Check in the last event is someone known has been seen elif self.lastEvent[cam_id]["type"] == "person": if self.lastEvent[cam_id]["person_id"] not in self._knownPersons(): return True return False def motionDetected(self, home=None, camera=None, exclude=0): """ Return True if movement has been detected """ try: cam_id = self.cameraByName(camera=camera, home=home)["id"] except TypeError: print("motionDetected: Camera name or home is unknown") return False if exclude: limit = time.time() - exclude array_time_event = sorted(self.events[cam_id]) array_time_event.reverse() for time_ev in array_time_event: if time_ev < limit: return False elif self.events[cam_id][time_ev]["type"] == "movement": return True elif self.lastEvent[cam_id]["type"] == "movement": return True return False def outdoormotionDetected(self, home=None, camera=None, offset=0): """ Return True if outdoor movement has been detected """ try: cam_id = self.cameraByName(camera=camera, home=home)["id"] except TypeError: print("outdoormotionDetected: Camera name or home is unknown") return False if cam_id in self.lastEvent: if self.lastEvent[cam_id]["type"] == "movement": if self.lastEvent[cam_id][ "video_status" ] == "recording" and self.lastEvent[cam_id]["time"] + offset > int( time.time() ): return True return False def humanDetected(self, home=None, camera=None, offset=0): """ Return True if a human has been detected """ try: cam_id = self.cameraByName(camera=camera, home=home)["id"] except TypeError: print("personSeenByCamera: Camera name or home is unknown") return False if self.outdoor_lastEvent[cam_id]["video_status"] == "recording": for e in self.outdoor_lastEvent[cam_id]["event_list"]: if e["type"] == "human" and e["time"] + offset > int(time.time()): return True return False def animalDetected(self, home=None, camera=None, offset=0): """ Return True if an animal has been detected """ try: cam_id = self.cameraByName(camera=camera, home=home)["id"] except TypeError: print("animalDetected: Camera name or home is unknown") return False if self.outdoor_lastEvent[cam_id]["video_status"] == "recording": for e in self.outdoor_lastEvent[cam_id]["event_list"]: if e["type"] == "animal" and e["time"] + offset > int(time.time()): return True return False def carDetected(self, home=None, camera=None, offset=0): """ Return True if a car has been detected """ try: cam_id = self.cameraByName(camera=camera, home=home)["id"] except TypeError: print("carDetected: Camera name or home is unknown") return False if self.outdoor_lastEvent[cam_id]["video_status"] == "recording": for e in self.outdoor_lastEvent[cam_id]["event_list"]: if e["type"] == "vehicle" and e["time"] + offset > int(time.time()): return True return False def moduleMotionDetected(self, module=None, home=None, camera=None, exclude=0): """ Return True if movement has been detected """ try: mod = self.moduleByName(module, camera=camera, home=home) mod_id = mod["id"] cam_id = mod["cam_id"] except TypeError: print( "moduleMotionDetected: Module name or" "Camera name or home is unknown" ) return False if exclude: limit = time.time() - exclude array_time_event = sorted(self.events[cam_id]) array_time_event.reverse() for time_ev in array_time_event: if time_ev < limit: return False elif ( self.events[cam_id][time_ev]["type"] == "tag_big_move" or self.events[cam_id][time_ev]["type"] == "tag_small_move" ) and self.events[cam_id][time_ev]["module_id"] == mod_id: return True elif ( self.lastEvent[cam_id]["type"] == "tag_big_move" or self.lastEvent[cam_id]["type"] == "tag_small_move" ) and self.lastEvent[cam_id]["module_id"] == mod_id: return True return False def moduleOpened(self, module=None, home=None, camera=None, exclude=0): """ Return True if module status is open """ try: mod = self.moduleByName(module, camera=camera, home=home) mod_id = mod["id"] cam_id = mod["cam_id"] except TypeError: print("moduleOpened: Camera name, or home, or module is unknown") return False if exclude: limit = time.time() - exclude array_time_event = sorted(self.events[cam_id]) array_time_event.reverse() for time_ev in array_time_event: if time_ev < limit: return False elif ( self.events[cam_id][time_ev]["type"] == "tag_open" and self.events[cam_id][time_ev]["module_id"] == mod_id ): return True elif ( self.lastEvent[cam_id]["type"] == "tag_open" and self.lastEvent[cam_id]["module_id"] == mod_id ): return True return False
38.428843
87
0.531947
fcd798960b94dd8ff2cf47e8889b7b765b9ffc57
24,477
py
Python
zaza/openstack/utilities/generic.py
freyes/zaza-openstack-tests
c9834315f996966aaedd95d712a991df7a449eb8
[ "ECL-2.0", "Apache-2.0" ]
5
2019-08-09T02:39:12.000Z
2021-05-18T14:19:51.000Z
zaza/openstack/utilities/generic.py
freyes/zaza-openstack-tests
c9834315f996966aaedd95d712a991df7a449eb8
[ "ECL-2.0", "Apache-2.0" ]
350
2019-05-13T10:28:33.000Z
2022-03-30T13:35:16.000Z
zaza/openstack/utilities/generic.py
freyes/zaza-openstack-tests
c9834315f996966aaedd95d712a991df7a449eb8
[ "ECL-2.0", "Apache-2.0" ]
72
2019-04-18T06:05:01.000Z
2022-03-29T05:41:40.000Z
# Copyright 2018 Canonical Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Collection of functions that did not fit anywhere else.""" import asyncio import logging import os import socket import subprocess import telnetlib import tempfile import yaml from zaza import model from zaza.openstack.utilities import exceptions as zaza_exceptions from zaza.openstack.utilities.os_versions import UBUNTU_OPENSTACK_RELEASE from zaza.utilities import juju as juju_utils def assertActionRanOK(action): """Assert that the remote action ran successfully. Example usage:: self.assertActionRanOK(model.run_action( unit, 'pause', model_name=self.model_name)) self.assertActionRanOK(model.run_action_on_leader( unit, 'pause', model_name=self.model_name)) :param action: Action object to check. :type action: juju.action.Action :raises: AssertionError if the assertion fails. """ if action.status != 'completed': msg = ("Action '{name}' exited with status '{status}': " "'{message}'").format(**action.data) raise AssertionError(msg) def assertRemoteRunOK(run_output): """Use with zaza.model.run_on_unit. Example usage:: self.assertRemoteRunOK(zaza.model.run_on_unit( unit, 'ls /tmp/')) :param action: Dict returned from remote run. :type action: dict :raises: AssertionError if the assertion fails. """ if int(run_output['Code']) != 0: raise AssertionError("Command failed: {}".format(run_output)) def dict_to_yaml(dict_data): """Return YAML from dictionary. :param dict_data: Dictionary data :type dict_data: dict :returns: YAML dump :rtype: string """ return yaml.dump(dict_data, default_flow_style=False) def get_network_config(net_topology, ignore_env_vars=False, net_topology_file="network.yaml"): """Get network info from environment. Get network info from network.yaml, override the values if specific environment variables are set for the undercloud. This function may be used when running network configuration from CLI to pass in network configuration settings from a YAML file. :param net_topology: Network topology name from network.yaml :type net_topology: string :param ignore_env_vars: Ignore enviroment variables or not :type ignore_env_vars: boolean :returns: Dictionary of network configuration :rtype: dict """ if os.path.exists(net_topology_file): net_info = get_yaml_config(net_topology_file)[net_topology] else: raise Exception("Network topology file: {} not found." .format(net_topology_file)) if not ignore_env_vars: logging.info("Consuming network environment variables as overrides " "for the undercloud.") net_info.update(get_undercloud_env_vars()) logging.info("Network info: {}".format(dict_to_yaml(net_info))) return net_info def get_unit_hostnames(units, fqdn=False): """Return a dict of juju unit names to hostnames.""" host_names = {} for unit in units: cmd = 'hostname' if fqdn: cmd = cmd + ' -f' output = model.run_on_unit(unit.entity_id, cmd) hostname = output['Stdout'].strip() host_names[unit.entity_id] = hostname return host_names def get_pkg_version(application, pkg, model_name=None): """Return package version. :param application: Application name :type application: string :param pkg: Package name :type pkg: string :param model_name: Name of model to query. :type model_name: str :returns: List of package version :rtype: list """ versions = [] units = model.get_units(application, model_name=model_name) for unit in units: cmd = 'dpkg -l | grep {}'.format(pkg) out = juju_utils.remote_run(unit.entity_id, cmd, model_name=model_name) versions.append(out.split('\n')[0].split()[2]) if len(set(versions)) != 1: raise Exception('Unexpected output from pkg version check') return versions[0] def get_undercloud_env_vars(): """Get environment specific undercloud network configuration settings. Get environment specific undercloud network configuration settings from environment variables. For each testing substrate, specific undercloud network configuration settings should be exported into the environment to enable testing on that substrate. Note: *Overcloud* settings should be declared by the test caller and should not be overridden here. Return a dictionary compatible with zaza.openstack.configure.network functions' expected key structure. Example exported environment variables: export default_gateway="172.17.107.1" export external_net_cidr="172.17.107.0/24" export external_dns="10.5.0.2" export start_floating_ip="172.17.107.200" export end_floating_ip="172.17.107.249" Example o-c-t & uosci non-standard environment variables: export NET_ID="a705dd0f-5571-4818-8c30-4132cc494668" export GATEWAY="172.17.107.1" export CIDR_EXT="172.17.107.0/24" export NAME_SERVER="10.5.0.2" export FIP_RANGE="172.17.107.200:172.17.107.249" :returns: Network environment variables :rtype: dict """ # Handle OSCI environment variables # Note: TEST_* is the only prefix honored _vars = {} _vars['net_id'] = os.environ.get('TEST_NET_ID') _vars['external_dns'] = os.environ.get('TEST_NAME_SERVER') _vars['default_gateway'] = os.environ.get('TEST_GATEWAY') _vars['external_net_cidr'] = os.environ.get('TEST_CIDR_EXT') # Take FIP_RANGE and create start and end floating ips _fip_range = os.environ.get('TEST_FIP_RANGE') if _fip_range is not None and ':' in _fip_range: _vars['start_floating_ip'] = os.environ.get( 'TEST_FIP_RANGE').split(':')[0] _vars['end_floating_ip'] = os.environ.get( 'TEST_FIP_RANGE').split(':')[1] # zaza.openstack.configure.network functions variables still take priority # for local testing. Override OSCI settings. _keys = ['default_gateway', 'start_floating_ip', 'end_floating_ip', 'external_dns', 'external_net_cidr'] for _key in _keys: _val = os.environ.get(_key) if _val: _vars[_key] = _val # Remove keys and items with a None value for k, v in list(_vars.items()): if not v: del _vars[k] return _vars def get_yaml_config(config_file): """Return configuration from YAML file. :param config_file: Configuration file name :type config_file: string :returns: Dictionary of configuration :rtype: dict """ # Note in its original form get_mojo_config it would do a search pattern # through mojo stage directories. This version assumes the yaml file is in # the pwd. logging.info('Using config %s' % (config_file)) return yaml.safe_load(open(config_file, 'r').read()) def set_origin(application, origin='openstack-origin', pocket='distro'): """Set the configuration option for origin source. :param application: Name of application to upgrade series :type application: str :param origin: The configuration setting variable name for changing origin source. (openstack-origin or source) :type origin: str :param pocket: Origin source cloud pocket. i.e. 'distro' or 'cloud:xenial-newton' :type pocket: str :returns: None :rtype: None """ logging.info("Set origin on {} to {}".format(application, origin)) model.set_application_config(application, {origin: pocket}) async def async_set_origin(application, origin='openstack-origin', pocket='distro'): """Set the configuration option for origin source. :param application: Name of application to upgrade series :type application: str :param origin: The configuration setting variable name for changing origin source. (openstack-origin or source) :type origin: str :param pocket: Origin source cloud pocket. i.e. 'distro' or 'cloud:xenial-newton' :type pocket: str :returns: None :rtype: None """ logging.info("Set origin on {} to {}".format(application, origin)) await model.async_set_application_config(application, {origin: pocket}) def run_via_ssh(unit_name, cmd): """Run command on unit via ssh. For executing commands on units when the juju agent is down. :param unit_name: Unit Name :param cmd: Command to execute on remote unit :type cmd: str :returns: None :rtype: None """ if "sudo" not in cmd: cmd = "sudo {}".format(cmd) cmd = ['juju', 'ssh', unit_name, cmd] logging.info("Running {} on {}".format(cmd, unit_name)) try: subprocess.check_call(cmd) except subprocess.CalledProcessError as e: logging.warn("Failed command {} on {}".format(cmd, unit_name)) logging.warn(e) async def async_run_via_ssh(unit_name, cmd, raise_exceptions=False): """Run command on unit via ssh. For executing commands on units when the juju agent is down. :param unit_name: Unit Name :param cmd: Command to execute on remote unit :type cmd: str :returns: None :rtype: None """ if "sudo" not in cmd: # cmd.insert(0, "sudo") cmd = "sudo {}".format(cmd) cmd = ['juju', 'ssh', unit_name, cmd] try: await check_call(cmd) except subprocess.CalledProcessError as e: logging.warn("Failed command {} on {}".format(cmd, unit_name)) logging.warn(e) if raise_exceptions: raise e def check_commands_on_units(commands, units): """Check that all commands in a list exit zero on all units in a list. :param commands: list of bash commands :param units: list of unit pointers :returns: None if successful; Failure message otherwise """ logging.debug('Checking exit codes for {} commands on {} ' 'units...'.format(len(commands), len(units))) for u in units: for cmd in commands: output = model.run_on_unit(u.entity_id, cmd) if int(output['Code']) == 0: logging.debug('{} `{}` returned {} ' '(OK)'.format(u.entity_id, cmd, output['Code'])) else: return ('{} `{}` returned {} ' '{}'.format(u.entity_id, cmd, output['Code'], output)) return None def reboot(unit_name): """Reboot unit. :param unit_name: Unit Name :type unit_name: str :returns: None :rtype: None """ # NOTE: When used with series upgrade the agent will be down. # Even juju run will not work cmd = ['juju', 'ssh', unit_name, 'sudo', 'reboot', '&&', 'exit'] try: subprocess.check_call(cmd) except subprocess.CalledProcessError as e: logging.info(e) pass async def async_reboot(unit_name): """Reboot unit. :param unit_name: Unit Name :type unit_name: str :returns: None :rtype: None """ # NOTE: When used with series upgrade the agent will be down. # Even juju run will not work await async_run_via_ssh(unit_name, "sudo reboot && exit") async def check_call(cmd): """Asynchronous function to check a subprocess call. :param cmd: Command to execute :type cmd: List[str] :returns: None :rtype: None """ proc = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE) stdout, stderr = await proc.communicate() stdout = stdout.decode('utf-8') stderr = stderr.decode('utf-8') if proc.returncode != 0: logging.warn("STDOUT: {}".format(stdout)) logging.warn("STDERR: {}".format(stderr)) raise subprocess.CalledProcessError(proc.returncode, cmd) else: if stderr: logging.info("STDERR: {} ({})".format(stderr, ' '.join(cmd))) if stdout: logging.info("STDOUT: {} ({})".format(stdout, ' '.join(cmd))) def set_dpkg_non_interactive_on_unit( unit_name, apt_conf_d="/etc/apt/apt.conf.d/50unattended-upgrades"): """Set dpkg options on unit. :param unit_name: Unit Name :type unit_name: str :param apt_conf_d: Apt.conf file to update :type apt_conf_d: str """ DPKG_NON_INTERACTIVE = 'DPkg::options { "--force-confdef"; };' # Check if the option exists. If not, add it to the apt.conf.d file cmd = ("grep '{option}' {file_name} || echo '{option}' >> {file_name}" .format(option=DPKG_NON_INTERACTIVE, file_name=apt_conf_d)) model.run_on_unit(unit_name, cmd) async def async_set_dpkg_non_interactive_on_unit( unit_name, apt_conf_d="/etc/apt/apt.conf.d/50unattended-upgrades"): """Set dpkg options on unit. :param unit_name: Unit Name :type unit_name: str :param apt_conf_d: Apt.conf file to update :type apt_conf_d: str """ DPKG_NON_INTERACTIVE = 'DPkg::options { "--force-confdef"; };' # Check if the option exists. If not, add it to the apt.conf.d file cmd = ("grep '{option}' {file_name} || echo '{option}' >> {file_name}" .format(option=DPKG_NON_INTERACTIVE, file_name=apt_conf_d)) await model.async_run_on_unit(unit_name, cmd) def get_process_id_list(unit_name, process_name, expect_success=True): """Get a list of process ID(s). Get a list of process ID(s) from a single sentry juju unit for a single process name. :param unit_name: Amulet sentry instance (juju unit) :param process_name: Process name :param expect_success: If False, expect the PID to be missing, raise if it is present. :returns: List of process IDs :raises: zaza_exceptions.ProcessIdsFailed """ cmd = 'pidof -x "{}"'.format(process_name) if not expect_success: cmd += " || exit 0 && exit 1" results = model.run_on_unit(unit_name=unit_name, command=cmd) code = results.get("Code", 1) try: code = int(code) except ValueError: code = 1 error = results.get("Stderr") output = results.get("Stdout") if code != 0: msg = ('{} `{}` returned {} ' '{} with error {}'.format(unit_name, cmd, code, output, error)) raise zaza_exceptions.ProcessIdsFailed(msg) return str(output).split() def get_unit_process_ids(unit_processes, expect_success=True): """Get unit process ID(s). Construct a dict containing unit sentries, process names, and process IDs. :param unit_processes: A dictionary of unit names to list of process names. :param expect_success: if False expect the processes to not be running, raise if they are. :returns: Dictionary of unit names to dictionary of process names to PIDs. :raises: zaza_exceptions.ProcessIdsFailed """ pid_dict = {} for unit_name, process_list in unit_processes.items(): pid_dict[unit_name] = {} for process in process_list: pids = get_process_id_list( unit_name, process, expect_success=expect_success) pid_dict[unit_name].update({process: pids}) return pid_dict def validate_unit_process_ids(expected, actual): """Validate process id quantities for services on units. :returns: True if the PIDs are validated, raises an exception if it is not the case. :raises: zaza_exceptions.UnitCountMismatch :raises: zaza_exceptions.UnitNotFound :raises: zaza_exceptions.ProcessNameCountMismatch :raises: zaza_exceptions.ProcessNameMismatch :raises: zaza_exceptions.PIDCountMismatch """ logging.debug('Checking units for running processes...') logging.debug('Expected PIDs: {}'.format(expected)) logging.debug('Actual PIDs: {}'.format(actual)) if len(actual) != len(expected): msg = ('Unit count mismatch. expected, actual: {}, ' '{} '.format(len(expected), len(actual))) raise zaza_exceptions.UnitCountMismatch(msg) for (e_unit_name, e_proc_names) in expected.items(): if e_unit_name in actual.keys(): a_proc_names = actual[e_unit_name] else: msg = ('Expected unit ({}) not found in actual dict data.'. format(e_unit_name)) raise zaza_exceptions.UnitNotFound(msg) if len(e_proc_names.keys()) != len(a_proc_names.keys()): msg = ('Process name count mismatch. expected, actual: {}, ' '{}'.format(len(expected), len(actual))) raise zaza_exceptions.ProcessNameCountMismatch(msg) for (e_proc_name, e_pids), (a_proc_name, a_pids) in \ zip(e_proc_names.items(), a_proc_names.items()): if e_proc_name != a_proc_name: msg = ('Process name mismatch. expected, actual: {}, ' '{}'.format(e_proc_name, a_proc_name)) raise zaza_exceptions.ProcessNameMismatch(msg) a_pids_length = len(a_pids) fail_msg = ('PID count mismatch. {} ({}) expected, actual: ' '{}, {} ({})'.format(e_unit_name, e_proc_name, e_pids, a_pids_length, a_pids)) # If expected is a list, ensure at least one PID quantity match if isinstance(e_pids, list) and \ a_pids_length not in e_pids: raise zaza_exceptions.PIDCountMismatch(fail_msg) # If expected is not bool and not list, # ensure PID quantities match elif not isinstance(e_pids, bool) and \ not isinstance(e_pids, list) and \ a_pids_length != e_pids: raise zaza_exceptions.PIDCountMismatch(fail_msg) # If expected is bool True, ensure 1 or more PIDs exist elif isinstance(e_pids, bool) and \ e_pids is True and a_pids_length < 1: raise zaza_exceptions.PIDCountMismatch(fail_msg) # If expected is bool False, ensure 0 PIDs exist elif isinstance(e_pids, bool) and \ e_pids is False and a_pids_length != 0: raise zaza_exceptions.PIDCountMismatch(fail_msg) else: logging.debug('PID check OK: {} {} {}: ' '{}'.format(e_unit_name, e_proc_name, e_pids, a_pids)) return True def get_ubuntu_release(ubuntu_name): """Get index of Ubuntu release. Returns the index of the name of the Ubuntu release in UBUNTU_OPENSTACK_RELEASE. :param ubuntu_name: Name of the Ubuntu release. :type ubuntu_name: string :returns: Index of the Ubuntu release :rtype: integer :raises: zaza_exceptions.UbuntuReleaseNotFound """ ubuntu_releases = list(UBUNTU_OPENSTACK_RELEASE.keys()) try: index = ubuntu_releases.index(ubuntu_name) except ValueError: msg = ('Could not find Ubuntu release {} in {}'. format(ubuntu_name, UBUNTU_OPENSTACK_RELEASE)) raise zaza_exceptions.UbuntuReleaseNotFound(msg) return index def get_file_contents(unit, f): """Get contents of a file on a remote unit.""" return model.run_on_unit(unit.entity_id, "cat {}".format(f))['Stdout'] def is_port_open(port, address): """Determine if TCP port is accessible. Connect to the MySQL port on the VIP. :param port: Port number :type port: str :param address: IP address :type port: str :returns: True if port is reachable :rtype: boolean """ try: telnetlib.Telnet(address, port) return True except socket.error as e: if e.errno == 113: logging.error("could not connect to {}:{}" .format(address, port)) if e.errno == 111: logging.error("connection refused connecting" " to {}:{}".format(address, port)) return False def port_knock_units(units, port=22, expect_success=True): """Check if specific port is open on units. Open a TCP socket to check for a listening sevice on each listed juju unit. :param units: list of unit pointers :param port: TCP port number, default to 22 :param timeout: Connect timeout, default to 15 seconds :expect_success: True by default, set False to invert logic :returns: None if successful, Failure message otherwise """ for u in units: host = u.public_address connected = is_port_open(port, host) if not connected and expect_success: return 'Socket connect failed.' elif connected and not expect_success: return 'Socket connected unexpectedly.' def get_series(unit): """Ubuntu release name running on unit.""" result = model.run_on_unit(unit.entity_id, "lsb_release -cs") return result['Stdout'].strip() def systemctl(unit, service, command="restart"): """Run systemctl command on a unit. :param unit: Unit object or unit name :type unit: Union[Unit,string] :param service: Name of service to act on :type service: string :param command: Name of command. i.e. start, stop, restart :type command: string :raises: AssertionError if the command is unsuccessful :returns: None if successful """ cmd = "/bin/systemctl {} {}".format(command, service) # Check if this is a unit object or string name of a unit try: unit.entity_id except AttributeError: unit = model.get_unit_from_name(unit) result = model.run_on_unit( unit.entity_id, cmd) assert int(result['Code']) == 0, ( "{} of {} on {} failed".format(command, service, unit.entity_id)) def get_mojo_cacert_path(): """Retrieve cacert from Mojo storage location. :returns: Path to cacert :rtype: str :raises: zaza_exceptions.CACERTNotFound :raises: :class:`zaza_exceptions.CACERTNotfound` """ try: cert_dir = os.environ['MOJO_LOCAL_DIR'] except KeyError: raise zaza_exceptions.CACERTNotFound( "Could not find cacert.pem, MOJO_LOCAL_DIR unset") cacert = os.path.join(cert_dir, 'cacert.pem') if os.path.exists(cacert): return cacert else: raise zaza_exceptions.CACERTNotFound("Could not find cacert.pem") def attach_file_resource(application_name, resource_name, file_content, file_suffix=".txt"): """Attaches a file as a Juju resource given the file content and suffix. The file content will be written into a temporary file with the given suffix, and it will be attached to the Juju application. :param application_name: Juju application name. :type application_name: string :param resource_name: Juju resource name. :type resource_name: string :param file_content: The content of the file that will be attached :type file_content: string :param file_suffix: File suffix. This should be used to set the file extension for applications that are sensitive to this. :type file_suffix: string :returns: None """ with tempfile.NamedTemporaryFile(mode='w', suffix=file_suffix) as fp: fp.write(file_content) fp.flush() model.attach_resource( application_name, resource_name, fp.name)
34.523272
79
0.642317
93631f15fac62212612113e64d74692065984b44
1,960
py
Python
config/wsgi.py
zubbyik/git-cookie
3cee273877130cb37983ac9ae9bb9ca00601bf3f
[ "BSD-3-Clause" ]
null
null
null
config/wsgi.py
zubbyik/git-cookie
3cee273877130cb37983ac9ae9bb9ca00601bf3f
[ "BSD-3-Clause" ]
null
null
null
config/wsgi.py
zubbyik/git-cookie
3cee273877130cb37983ac9ae9bb9ca00601bf3f
[ "BSD-3-Clause" ]
null
null
null
""" WSGI config for cookie_site project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os import sys from django.core.wsgi import get_wsgi_application # This allows easy placement of apps within the interior # cookie_site directory. app_path = os.path.abspath(os.path.join( os.path.dirname(os.path.abspath(__file__)), os.pardir)) sys.path.append(os.path.join(app_path, 'cookie_site')) if os.environ.get('DJANGO_SETTINGS_MODULE') == 'config.settings.production': from raven.contrib.django.raven_compat.middleware.wsgi import Sentry # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "config.settings.production" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.production") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. application = get_wsgi_application() if os.environ.get('DJANGO_SETTINGS_MODULE') == 'config.settings.production': application = Sentry(application) # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
45.581395
79
0.796939
8c677bdc337d41a8f3c51f25a8180f3b05fcff3b
27,086
py
Python
sympy/geometry/plane.py
yupbank/sympy
66d7aef9dc1b26055af22e27ba42004c40b95d7c
[ "BSD-3-Clause" ]
1
2021-11-19T03:38:42.000Z
2021-11-19T03:38:42.000Z
sympy/geometry/plane.py
yupbank/sympy
66d7aef9dc1b26055af22e27ba42004c40b95d7c
[ "BSD-3-Clause" ]
3
2022-02-04T14:45:16.000Z
2022-02-04T14:45:45.000Z
sympy/geometry/plane.py
yupbank/sympy
66d7aef9dc1b26055af22e27ba42004c40b95d7c
[ "BSD-3-Clause" ]
null
null
null
"""Geometrical Planes. Contains ======== Plane """ from sympy.core import Dummy, Rational, S, Symbol from sympy.core.symbol import _symbol from sympy.functions.elementary.trigonometric import cos, sin, acos, asin, sqrt from .entity import GeometryEntity from .line import (Line, Ray, Segment, Line3D, LinearEntity, LinearEntity3D, Ray3D, Segment3D) from .point import Point, Point3D from sympy.matrices import Matrix from sympy.polys.polytools import cancel from sympy.solvers import solve, linsolve from sympy.utilities.iterables import uniq, is_sequence from sympy.utilities.misc import filldedent, func_name, Undecidable from mpmath.libmp.libmpf import prec_to_dps import random class Plane(GeometryEntity): """ A plane is a flat, two-dimensional surface. A plane is the two-dimensional analogue of a point (zero-dimensions), a line (one-dimension) and a solid (three-dimensions). A plane can generally be constructed by two types of inputs. They are three non-collinear points and a point and the plane's normal vector. Attributes ========== p1 normal_vector Examples ======== >>> from sympy import Plane, Point3D >>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) Plane(Point3D(1, 1, 1), (-1, 2, -1)) >>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2)) Plane(Point3D(1, 1, 1), (-1, 2, -1)) >>> Plane(Point3D(1, 1, 1), normal_vector=(1,4,7)) Plane(Point3D(1, 1, 1), (1, 4, 7)) """ def __new__(cls, p1, a=None, b=None, **kwargs): p1 = Point3D(p1, dim=3) if a and b: p2 = Point(a, dim=3) p3 = Point(b, dim=3) if Point3D.are_collinear(p1, p2, p3): raise ValueError('Enter three non-collinear points') a = p1.direction_ratio(p2) b = p1.direction_ratio(p3) normal_vector = tuple(Matrix(a).cross(Matrix(b))) else: a = kwargs.pop('normal_vector', a) evaluate = kwargs.get('evaluate', True) if is_sequence(a) and len(a) == 3: normal_vector = Point3D(a).args if evaluate else a else: raise ValueError(filldedent(''' Either provide 3 3D points or a point with a normal vector expressed as a sequence of length 3''')) if all(coord.is_zero for coord in normal_vector): raise ValueError('Normal vector cannot be zero vector') return GeometryEntity.__new__(cls, p1, normal_vector, **kwargs) def __contains__(self, o): x, y, z = map(Dummy, 'xyz') k = self.equation(x, y, z) if isinstance(o, (LinearEntity, LinearEntity3D)): t = Dummy() d = Point3D(o.arbitrary_point(t)) e = k.subs([(x, d.x), (y, d.y), (z, d.z)]) return e.equals(0) try: o = Point(o, dim=3, strict=True) d = k.xreplace(dict(zip((x, y, z), o.args))) return d.equals(0) except TypeError: return False def _eval_evalf(self, prec=15, **options): pt, tup = self.args dps = prec_to_dps(prec) pt = pt.evalf(n=dps, **options) tup = tuple([i.evalf(n=dps, **options) for i in tup]) return self.func(pt, normal_vector=tup, evaluate=False) def angle_between(self, o): """Angle between the plane and other geometric entity. Parameters ========== LinearEntity3D, Plane. Returns ======= angle : angle in radians Notes ===== This method accepts only 3D entities as it's parameter, but if you want to calculate the angle between a 2D entity and a plane you should first convert to a 3D entity by projecting onto a desired plane and then proceed to calculate the angle. Examples ======== >>> from sympy import Point3D, Line3D, Plane >>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3)) >>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2)) >>> a.angle_between(b) -asin(sqrt(21)/6) """ if isinstance(o, LinearEntity3D): a = Matrix(self.normal_vector) b = Matrix(o.direction_ratio) c = a.dot(b) d = sqrt(sum([i**2 for i in self.normal_vector])) e = sqrt(sum([i**2 for i in o.direction_ratio])) return asin(c/(d*e)) if isinstance(o, Plane): a = Matrix(self.normal_vector) b = Matrix(o.normal_vector) c = a.dot(b) d = sqrt(sum([i**2 for i in self.normal_vector])) e = sqrt(sum([i**2 for i in o.normal_vector])) return acos(c/(d*e)) def arbitrary_point(self, u=None, v=None): """ Returns an arbitrary point on the Plane. If given two parameters, the point ranges over the entire plane. If given 1 or no parameters, returns a point with one parameter which, when varying from 0 to 2*pi, moves the point in a circle of radius 1 about p1 of the Plane. Examples ======== >>> from sympy import Plane, Ray >>> from sympy.abc import u, v, t, r >>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0)) >>> p.arbitrary_point(u, v) Point3D(1, u + 1, v + 1) >>> p.arbitrary_point(t) Point3D(1, cos(t) + 1, sin(t) + 1) While arbitrary values of u and v can move the point anywhere in the plane, the single-parameter point can be used to construct a ray whose arbitrary point can be located at angle t and radius r from p.p1: >>> Ray(p.p1, _).arbitrary_point(r) Point3D(1, r*cos(t) + 1, r*sin(t) + 1) Returns ======= Point3D """ circle = v is None if circle: u = _symbol(u or 't', real=True) else: u = _symbol(u or 'u', real=True) v = _symbol(v or 'v', real=True) x, y, z = self.normal_vector a, b, c = self.p1.args # x1, y1, z1 is a nonzero vector parallel to the plane if x.is_zero and y.is_zero: x1, y1, z1 = S.One, S.Zero, S.Zero else: x1, y1, z1 = -y, x, S.Zero # x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1 x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1)))) if circle: x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1)) x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2)) p = Point3D(a + x1*cos(u) + x2*sin(u), \ b + y1*cos(u) + y2*sin(u), \ c + z1*cos(u) + z2*sin(u)) else: p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v) return p @staticmethod def are_concurrent(*planes): """Is a sequence of Planes concurrent? Two or more Planes are concurrent if their intersections are a common line. Parameters ========== planes: list Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1)) >>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1)) >>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9)) >>> Plane.are_concurrent(a, b) True >>> Plane.are_concurrent(a, b, c) False """ planes = list(uniq(planes)) for i in planes: if not isinstance(i, Plane): raise ValueError('All objects should be Planes but got %s' % i.func) if len(planes) < 2: return False planes = list(planes) first = planes.pop(0) sol = first.intersection(planes[0]) if sol == []: return False else: line = sol[0] for i in planes[1:]: l = first.intersection(i) if not l or l[0] not in line: return False return True def distance(self, o): """Distance between the plane and another geometric entity. Parameters ========== Point3D, LinearEntity3D, Plane. Returns ======= distance Notes ===== This method accepts only 3D entities as it's parameter, but if you want to calculate the distance between a 2D entity and a plane you should first convert to a 3D entity by projecting onto a desired plane and then proceed to calculate the distance. Examples ======== >>> from sympy import Point3D, Line3D, Plane >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1)) >>> b = Point3D(1, 2, 3) >>> a.distance(b) sqrt(3) >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2)) >>> a.distance(c) 0 """ if self.intersection(o) != []: return S.Zero if isinstance(o, (Segment3D, Ray3D)): a, b = o.p1, o.p2 pi, = self.intersection(Line3D(a, b)) if pi in o: return self.distance(pi) elif a in Segment3D(pi, b): return self.distance(a) else: assert isinstance(o, Segment3D) is True return self.distance(b) # following code handles `Point3D`, `LinearEntity3D`, `Plane` a = o if isinstance(o, Point3D) else o.p1 n = Point3D(self.normal_vector).unit d = (a - self.p1).dot(n) return abs(d) def equals(self, o): """ Returns True if self and o are the same mathematical entities. Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1)) >>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2)) >>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6)) >>> a.equals(a) True >>> a.equals(b) True >>> a.equals(c) False """ if isinstance(o, Plane): a = self.equation() b = o.equation() return cancel(a/b).is_constant() else: return False def equation(self, x=None, y=None, z=None): """The equation of the Plane. Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1)) >>> a.equation() -23*x + 11*y - 2*z + 16 >>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6)) >>> a.equation() 6*x + 6*y + 6*z - 42 """ x, y, z = [i if i else Symbol(j, real=True) for i, j in zip((x, y, z), 'xyz')] a = Point3D(x, y, z) b = self.p1.direction_ratio(a) c = self.normal_vector return (sum(i*j for i, j in zip(b, c))) def intersection(self, o): """ The intersection with other geometrical entity. Parameters ========== Point, Point3D, LinearEntity, LinearEntity3D, Plane Returns ======= List Examples ======== >>> from sympy import Point3D, Line3D, Plane >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1)) >>> b = Point3D(1, 2, 3) >>> a.intersection(b) [Point3D(1, 2, 3)] >>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2)) >>> a.intersection(c) [Point3D(2, 2, 2)] >>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3)) >>> e = Plane(Point3D(2, 0, 0), normal_vector=(3, 4, -3)) >>> d.intersection(e) [Line3D(Point3D(78/23, -24/23, 0), Point3D(147/23, 321/23, 23))] """ if not isinstance(o, GeometryEntity): o = Point(o, dim=3) if isinstance(o, Point): if o in self: return [o] else: return [] if isinstance(o, (LinearEntity, LinearEntity3D)): # recast to 3D p1, p2 = o.p1, o.p2 if isinstance(o, Segment): o = Segment3D(p1, p2) elif isinstance(o, Ray): o = Ray3D(p1, p2) elif isinstance(o, Line): o = Line3D(p1, p2) else: raise ValueError('unhandled linear entity: %s' % o.func) if o in self: return [o] else: t = Dummy() # unnamed else it may clash with a symbol in o a = Point3D(o.arbitrary_point(t)) p1, n = self.p1, Point3D(self.normal_vector) # TODO: Replace solve with solveset, when this line is tested c = solve((a - p1).dot(n), t) if not c: return [] else: c = [i for i in c if i.is_real is not False] if len(c) > 1: c = [i for i in c if i.is_real] if len(c) != 1: raise Undecidable("not sure which point is real") p = a.subs(t, c[0]) if p not in o: return [] # e.g. a segment might not intersect a plane return [p] if isinstance(o, Plane): if self.equals(o): return [self] if self.is_parallel(o): return [] else: x, y, z = map(Dummy, 'xyz') a, b = Matrix([self.normal_vector]), Matrix([o.normal_vector]) c = list(a.cross(b)) d = self.equation(x, y, z) e = o.equation(x, y, z) result = list(linsolve([d, e], x, y, z))[0] for i in (x, y, z): result = result.subs(i, 0) return [Line3D(Point3D(result), direction_ratio=c)] def is_coplanar(self, o): """ Returns True if `o` is coplanar with self, else False. Examples ======== >>> from sympy import Plane >>> o = (0, 0, 0) >>> p = Plane(o, (1, 1, 1)) >>> p2 = Plane(o, (2, 2, 2)) >>> p == p2 False >>> p.is_coplanar(p2) True """ if isinstance(o, Plane): x, y, z = map(Dummy, 'xyz') return not cancel(self.equation(x, y, z)/o.equation(x, y, z)).has(x, y, z) if isinstance(o, Point3D): return o in self elif isinstance(o, LinearEntity3D): return all(i in self for i in self) elif isinstance(o, GeometryEntity): # XXX should only be handling 2D objects now return all(i == 0 for i in self.normal_vector[:2]) def is_parallel(self, l): """Is the given geometric entity parallel to the plane? Parameters ========== LinearEntity3D or Plane Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12)) >>> a.is_parallel(b) True """ if isinstance(l, LinearEntity3D): a = l.direction_ratio b = self.normal_vector c = sum([i*j for i, j in zip(a, b)]) if c == 0: return True else: return False elif isinstance(l, Plane): a = Matrix(l.normal_vector) b = Matrix(self.normal_vector) if a.cross(b).is_zero_matrix: return True else: return False def is_perpendicular(self, l): """is the given geometric entity perpendicualar to the given plane? Parameters ========== LinearEntity3D or Plane Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1)) >>> a.is_perpendicular(b) True """ if isinstance(l, LinearEntity3D): a = Matrix(l.direction_ratio) b = Matrix(self.normal_vector) if a.cross(b).is_zero_matrix: return True else: return False elif isinstance(l, Plane): a = Matrix(l.normal_vector) b = Matrix(self.normal_vector) if a.dot(b) == 0: return True else: return False else: return False @property def normal_vector(self): """Normal vector of the given plane. Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) >>> a.normal_vector (-1, 2, -1) >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7)) >>> a.normal_vector (1, 4, 7) """ return self.args[1] @property def p1(self): """The only defining point of the plane. Others can be obtained from the arbitrary_point method. See Also ======== sympy.geometry.point.Point3D Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) >>> a.p1 Point3D(1, 1, 1) """ return self.args[0] def parallel_plane(self, pt): """ Plane parallel to the given plane and passing through the point pt. Parameters ========== pt: Point3D Returns ======= Plane Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6)) >>> a.parallel_plane(Point3D(2, 3, 5)) Plane(Point3D(2, 3, 5), (2, 4, 6)) """ a = self.normal_vector return Plane(pt, normal_vector=a) def perpendicular_line(self, pt): """A line perpendicular to the given plane. Parameters ========== pt: Point3D Returns ======= Line3D Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> a.perpendicular_line(Point3D(9, 8, 7)) Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13)) """ a = self.normal_vector return Line3D(pt, direction_ratio=a) def perpendicular_plane(self, *pts): """ Return a perpendicular passing through the given points. If the direction ratio between the points is the same as the Plane's normal vector then, to select from the infinite number of possible planes, a third point will be chosen on the z-axis (or the y-axis if the normal vector is already parallel to the z-axis). If less than two points are given they will be supplied as follows: if no point is given then pt1 will be self.p1; if a second point is not given it will be a point through pt1 on a line parallel to the z-axis (if the normal is not already the z-axis, otherwise on the line parallel to the y-axis). Parameters ========== pts: 0, 1 or 2 Point3D Returns ======= Plane Examples ======== >>> from sympy import Plane, Point3D >>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0) >>> Z = (0, 0, 1) >>> p = Plane(a, normal_vector=Z) >>> p.perpendicular_plane(a, b) Plane(Point3D(0, 0, 0), (1, 0, 0)) """ if len(pts) > 2: raise ValueError('No more than 2 pts should be provided.') pts = list(pts) if len(pts) == 0: pts.append(self.p1) if len(pts) == 1: x, y, z = self.normal_vector if x == y == 0: dir = (0, 1, 0) else: dir = (0, 0, 1) pts.append(pts[0] + Point3D(*dir)) p1, p2 = [Point(i, dim=3) for i in pts] l = Line3D(p1, p2) n = Line3D(p1, direction_ratio=self.normal_vector) if l in n: # XXX should an error be raised instead? # there are infinitely many perpendicular planes; x, y, z = self.normal_vector if x == y == 0: # the z axis is the normal so pick a pt on the y-axis p3 = Point3D(0, 1, 0) # case 1 else: # else pick a pt on the z axis p3 = Point3D(0, 0, 1) # case 2 # in case that point is already given, move it a bit if p3 in l: p3 *= 2 # case 3 else: p3 = p1 + Point3D(*self.normal_vector) # case 4 return Plane(p1, p2, p3) def projection_line(self, line): """Project the given line onto the plane through the normal plane containing the line. Parameters ========== LinearEntity or LinearEntity3D Returns ======= Point3D, Line3D, Ray3D or Segment3D Notes ===== For the interaction between 2D and 3D lines(segments, rays), you should convert the line to 3D by using this method. For example for finding the intersection between a 2D and a 3D line, convert the 2D line to a 3D line by projecting it on a required plane and then proceed to find the intersection between those lines. Examples ======== >>> from sympy import Plane, Line, Line3D, Point3D >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1)) >>> b = Line(Point3D(1, 1), Point3D(2, 2)) >>> a.projection_line(b) Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3)) >>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) >>> a.projection_line(c) Point3D(1, 1, 1) """ if not isinstance(line, (LinearEntity, LinearEntity3D)): raise NotImplementedError('Enter a linear entity only') a, b = self.projection(line.p1), self.projection(line.p2) if a == b: # projection does not imply intersection so for # this case (line parallel to plane's normal) we # return the projection point return a if isinstance(line, (Line, Line3D)): return Line3D(a, b) if isinstance(line, (Ray, Ray3D)): return Ray3D(a, b) if isinstance(line, (Segment, Segment3D)): return Segment3D(a, b) def projection(self, pt): """Project the given point onto the plane along the plane normal. Parameters ========== Point or Point3D Returns ======= Point3D Examples ======== >>> from sympy import Plane, Point3D >>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1)) The projection is along the normal vector direction, not the z axis, so (1, 1) does not project to (1, 1, 2) on the plane A: >>> b = Point3D(1, 1) >>> A.projection(b) Point3D(5/3, 5/3, 2/3) >>> _ in A True But the point (1, 1, 2) projects to (1, 1) on the XY-plane: >>> XY = Plane((0, 0, 0), (0, 0, 1)) >>> XY.projection((1, 1, 2)) Point3D(1, 1, 0) """ rv = Point(pt, dim=3) if rv in self: return rv return self.intersection(Line3D(rv, rv + Point3D(self.normal_vector)))[0] def random_point(self, seed=None): """ Returns a random point on the Plane. Returns ======= Point3D Examples ======== >>> from sympy import Plane >>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0)) >>> r = p.random_point(seed=42) # seed value is optional >>> r.n(3) Point3D(2.29, 0, -1.35) The random point can be moved to lie on the circle of radius 1 centered on p1: >>> c = p.p1 + (r - p.p1).unit >>> c.distance(p.p1).equals(1) True """ if seed is not None: rng = random.Random(seed) else: rng = random u, v = Dummy('u'), Dummy('v') params = { u: 2*Rational(rng.gauss(0, 1)) - 1, v: 2*Rational(rng.gauss(0, 1)) - 1} return self.arbitrary_point(u, v).subs(params) def parameter_value(self, other, u, v=None): """Return the parameter(s) corresponding to the given point. Examples ======== >>> from sympy import pi, Plane >>> from sympy.abc import t, u, v >>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0)) By default, the parameter value returned defines a point that is a distance of 1 from the Plane's p1 value and in line with the given point: >>> on_circle = p.arbitrary_point(t).subs(t, pi/4) >>> on_circle.distance(p.p1) 1 >>> p.parameter_value(on_circle, t) {t: pi/4} Moving the point twice as far from p1 does not change the parameter value: >>> off_circle = p.p1 + (on_circle - p.p1)*2 >>> off_circle.distance(p.p1) 2 >>> p.parameter_value(off_circle, t) {t: pi/4} If the 2-value parameter is desired, supply the two parameter symbols and a replacement dictionary will be returned: >>> p.parameter_value(on_circle, u, v) {u: sqrt(10)/10, v: sqrt(10)/30} >>> p.parameter_value(off_circle, u, v) {u: sqrt(10)/5, v: sqrt(10)/15} """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other, Point): raise ValueError("other must be a point") if other == self.p1: return other if isinstance(u, Symbol) and v is None: delta = self.arbitrary_point(u) - self.p1 eq = delta - (other - self.p1).unit sol = solve(eq, u, dict=True) elif isinstance(u, Symbol) and isinstance(v, Symbol): pt = self.arbitrary_point(u, v) sol = solve(pt - other, (u, v), dict=True) else: raise ValueError('expecting 1 or 2 symbols') if not sol: raise ValueError("Given point is not on %s" % func_name(self)) return sol[0] # {t: tval} or {u: uval, v: vval} @property def ambient_dimension(self): return self.p1.ambient_dimension
30.53664
89
0.507716
2eda4baa616d44ac3c9449539453b03caff1b9d8
17,996
py
Python
src/Img/filters.py
souji-28/puzzle-python
c4ea07041e7fa617ebfe2c1cbf117eb345c7ce1e
[ "MIT" ]
60
2018-10-13T01:09:04.000Z
2022-03-19T18:44:17.000Z
src/python/Img/filters.py
bertrand-sifre/Zolver
b98bb7899b459ce4efef72b3abedc453005a0a25
[ "MIT" ]
5
2019-01-21T15:00:18.000Z
2022-02-18T14:24:28.000Z
src/python/Img/filters.py
bertrand-sifre/Zolver
b98bb7899b459ce4efef72b3abedc453005a0a25
[ "MIT" ]
15
2019-10-02T04:44:36.000Z
2021-12-24T20:52:03.000Z
import colorsys from colorsys import rgb_to_hls import cv2 import numpy as np import math, pickle, os from Img.Pixel import Pixel, flatten_colors from Puzzle.Edge import Edge from Puzzle.Enums import directions, TypeEdge from Puzzle.PuzzlePiece import PuzzlePiece import matplotlib.pyplot as plt import matplotlib import scipy, sklearn.preprocessing import itertools from Img.peak_detect import * COUNT = 0 def get_relative_angles(cnt, export=False, sigma=5): """ Get the relative angles of points of a contour 2 by 2 :param cnt: contour to analyze :param export: export of the signature with pickle and figure :param sigma: coefficient used in gaussian filter (the higher the smoother) :type cnt: list of tuple of points :return: list of angles """ global COUNT COUNT = COUNT + 1 length = len(cnt) angles = [] last = np.pi cnt_tmp = np.array(cnt) cnt = np.append(cnt, cnt_tmp, axis=0) cnt = np.append(cnt, cnt_tmp, axis=0) for i in range(0, len(cnt) - 1): dir = (cnt[i + 1][0] - cnt[i][0], cnt[i + 1][1] - cnt[i][1]) angle = math.atan2(-dir[1], dir[0]) while (angle < last - np.pi): angle += 2 * np.pi while (angle > last + np.pi): angle -= 2 * np.pi angles.append(angle) last = angle angles = np.diff(angles) k = [0.33,0.33,0.33,0.33,0.33] angles = scipy.ndimage.convolve(angles, k, mode='constant', cval=0.0) angles = scipy.ndimage.filters.gaussian_filter(angles, sigma) angles = np.roll(np.array(angles), -length) angles = angles[0:length] if export: pickle.dump(angles, open("/tmp/save" + str(COUNT) + ".p", "wb")) plt.plot(np.append(angles, angles)) plt.savefig("/tmp/fig" + str(COUNT) + ".png") plt.clf() plt.cla() plt.close() return angles def is_maximum_local(index, relative_angles, radius): """ Determine if a point at index is a maximum local in radius range of relative_angles function :param index: index of the point to check in relative_angles list :param relative_angles: list of angles :param radius: radius used to check neighbors :return: Boolean """ start = max(0, index - radius) end = min(relative_angles.shape[0] - 1, index + radius) for i in range(start, end + 1): if relative_angles[i] > relative_angles[index]: return False return True def longest_peak(relative_angles): """ Find the longest area < 0 :param relative_angles: list of angles :return: coordinates of the area """ length = relative_angles.shape[0] longest = (0, 0) j = 0 for i in range(length): if relative_angles[i] >= 0: j = i if i - j > longest[1] - longest[0]: longest = (j, i) return longest def distance_signature(relative_angles): """ Distance of each points to the line formed by first and last points :param relative_angles: list of angles :return: List of floats """ length = relative_angles.shape[0] l1 = np.array([0, relative_angles[0]]) l2 = np.array([length - 1, relative_angles[-1]]) signature = np.zeros((length, 1)) for i in range(length): assert(np.linalg.norm(l2 - l1) != 0) signature[i] = np.linalg.norm(np.cross(l2 - l1, l1 - np.array([i, relative_angles[i]]))) / np.linalg.norm(l2 - l1) return signature def flat_score(relative_angles): """ Compute the flat score of relative_angles :param relative_angles: list of angles :return: List of floats """ length = relative_angles.shape[0] distances = distance_signature(relative_angles) diff = 0 for i in range(length): diff = max(diff, abs(distances[i])) return diff def indent_score(relative_angles): """ Compute score for indent part :param relative_angles: list of angles :return: List of floats """ length = relative_angles.shape[0] peak = longest_peak(relative_angles) while peak[0] > 0 and not is_maximum_local(peak[0], relative_angles, 10): peak = (peak[0] - 1, peak[1]) while peak[1] < length - 1 and not is_maximum_local(peak[1], relative_angles, 10): peak = (peak[0], peak[1] + 1) shape = np.zeros((peak[0] + length - peak[1], 1)) for i in range(peak[0] + 1): shape[i] = relative_angles[i] for i in range(peak[1], length): shape[i - peak[1] + peak[0]] = relative_angles[i] # FIX FOR FUNCTIONS > 0 if shape.shape[0] == 1: return flat_score(relative_angles) return flat_score(shape) def outdent_score(relative_angles): """ Compute score for outdent part :param relative_angles: list of angles :return: List of floats """ return indent_score(-relative_angles) def compute_comp(combs_l, relative_angles, method='correlate'): """ Compute score for each combinations of 4 points and return the index of the best :param combs_l: list of combinations of 4 points :param relative_angles: List of angles :return: Int """ # Combinations of 4 points global COUNT MY_COUNT = 0 results_glob = [] for comb_t in combs_l: # Roll the values of relative angles for this combination offset = len(relative_angles) - comb_t[3] - 1 relative_angles_tmp = np.roll(relative_angles, offset) comb_t += offset comb_t = [(0, comb_t[0]), (comb_t[0], comb_t[1]), (comb_t[1], comb_t[2]), (comb_t[2], comb_t[3])] results_comp = [] for comb in comb_t: hole, head, border = 0, 0, 0 if method == 'flat': hole = indent_score(np.ravel(np.array(relative_angles_tmp[comb[0]:comb[1]]))) head = outdent_score(np.ravel(np.array(relative_angles_tmp[comb[0]:comb[1]]))) border = flat_score(np.ravel(np.array(relative_angles_tmp[comb[0]:comb[1]]))) if hole != border: results_comp.append(np.min([hole, head])) else: results_comp.append(border) results_glob.append(np.sum(results_comp)) return np.argmin(np.array(results_glob)) def peaks_inside(comb, peaks): """ Check the number of peaks inside comb :param comb: Tuple of coordinates :param peaks: List of peaks to check :return: Int """ cpt = [] if len(comb) == 0: return cpt for peak in peaks: if peak > comb[0] and peak < comb[-1]: cpt.append(peak) return cpt def is_pattern(comb, peaks): """ Check if the peaks formed an outdent or an indent pattern :param comb: Tuple of coordinates :param peaks: List of peaks :return: Int """ cpt = len(peaks_inside(comb, peaks)) return cpt == 0 or cpt == 2 or cpt == 3 def is_acceptable_comb(combs, peaks, length): """ Check if a combination is composed of acceptable patterns. Used to filter the obviously bad combinations quickly. :param comb: Tuple of coordinates :param peaks: List of peaks :param length: Length of the signature (used for offset computation) :return: Boolean """ offset = length - combs[3] - 1 combs_tmp = combs + offset peaks_tmp = (peaks + offset) % length return is_pattern([0, combs_tmp[0]], peaks_tmp) and is_pattern([combs_tmp[0], combs_tmp[1]], peaks_tmp) and is_pattern([combs_tmp[1], combs_tmp[2]], peaks_tmp) and is_pattern([combs_tmp[2], combs_tmp[3]], peaks_tmp) def type_peak(peaks_pos_inside, peaks_neg_inside): """ Determine the type of lists of pos and neg peaks :param peaks_pos_inside: List of positive peaks :param peaks_neg_inside: List of negative peaks :return: TypeEdge """ if len(peaks_pos_inside) == 0 and len(peaks_neg_inside) == 0: return TypeEdge.BORDER if len(peaks_inside(peaks_pos_inside, peaks_neg_inside)) == 2: return TypeEdge.HOLE if len(peaks_inside(peaks_neg_inside, peaks_pos_inside)) == 2: return TypeEdge.HEAD return TypeEdge.UNDEFINED def my_find_corner_signature(cnt, green=False): """ Determine the corner/edge positions by analyzing contours. :param cnt: contour to analyze :param green: boolean used to activate green background mode :type cnt: list of tuple of points :return: Corners coordinates, Edges lists of points, type of pieces """ edges = [] combs_final = [] types_pieces = [] sigma = 5 max_sigma = 12 if not green: sigma = 5 max_sigma = 15 while sigma <= max_sigma: print("Smooth curve with sigma={}...".format(sigma)) tmp_combs_final = [] # Find relative angles cnt_convert = [c[0] for c in cnt] relative_angles = get_relative_angles(np.array(cnt_convert), export=False, sigma=sigma) relative_angles = np.array(relative_angles) relative_angles_inverse = -np.array(relative_angles) extr_tmp = detect_peaks(relative_angles, mph=0.3*np.max(relative_angles)) relative_angles = np.roll(relative_angles, int(len(relative_angles) / 2)) extr_tmp = np.append(extr_tmp, (detect_peaks(relative_angles, mph=0.3*max(relative_angles)) - int(len(relative_angles) / 2)) % len(relative_angles), axis=0) relative_angles = np.roll(relative_angles, -int(len(relative_angles) / 2)) extr_tmp = np.unique(extr_tmp) extr_tmp_inverse = detect_peaks(relative_angles_inverse, mph=0.3*np.max(relative_angles_inverse)) relative_angles_inverse = np.roll(relative_angles_inverse, int(len(relative_angles_inverse) / 2)) extr_tmp_inverse = np.append(extr_tmp_inverse, (detect_peaks(relative_angles_inverse, mph=0.3*max(relative_angles_inverse)) - int(len(relative_angles_inverse) / 2)) % len(relative_angles_inverse), axis=0) relative_angles_inverse = np.roll(relative_angles_inverse, -int(len(relative_angles_inverse) / 2)) extr_tmp_inverse = np.unique(extr_tmp_inverse) extr = extr_tmp extr_inverse = extr_tmp_inverse relative_angles = sklearn.preprocessing.normalize(relative_angles[:,np.newaxis], axis=0).ravel() # Build list of permutations of 4 points combs = itertools.permutations(extr, 4) combs_l = list(combs) OFFSET_LOW = len(relative_angles) / 8 OFFSET_HIGH = len(relative_angles) / 2.0 for icomb, comb in enumerate(combs_l): if ((comb[0] > comb[1]) and (comb[1] > comb[2]) and (comb[2] > comb[3]) and ((comb[0] - comb[1]) > OFFSET_LOW) and ((comb[0] - comb[1]) < OFFSET_HIGH) and ((comb[1] - comb[2]) > OFFSET_LOW) and ((comb[1] - comb[2]) < OFFSET_HIGH) and ((comb[2] - comb[3]) > OFFSET_LOW) and ((comb[2] - comb[3]) < OFFSET_HIGH) and ((comb[3] + (len(relative_angles) - comb[0])) > OFFSET_LOW) and ((comb[3] + (len(relative_angles) - comb[0])) < OFFSET_HIGH)): if is_acceptable_comb((comb[3], comb[2], comb[1], comb[0]), extr, len(relative_angles)) and is_acceptable_comb((comb[3], comb[2], comb[1], comb[0]), extr_inverse, len(relative_angles)): tmp_combs_final.append((comb[3], comb[2], comb[1], comb[0])) sigma += 1 if len(tmp_combs_final) == 0: continue best_fit = tmp_combs_final[compute_comp(tmp_combs_final, relative_angles, method='flat')] # Roll the values of relative angles for this combination offset = len(relative_angles) - best_fit[3] - 1 relative_angles = np.roll(relative_angles, offset) best_fit += offset extr = (extr + offset) % len(relative_angles) extr_inverse = (extr_inverse + offset) % len(relative_angles) tmp_types_pieces = [] no_undefined = True for best_comb in [[0, best_fit[0]], [best_fit[0], best_fit[1]], [best_fit[1], best_fit[2]], [best_fit[2], best_fit[3]]]: pos_peaks_inside = peaks_inside(best_comb, extr) neg_peaks_inside = peaks_inside(best_comb, extr_inverse) pos_peaks_inside.sort() neg_peaks_inside.sort() tmp_types_pieces.append(type_peak(pos_peaks_inside, neg_peaks_inside)) if (tmp_types_pieces[-1] == TypeEdge.UNDEFINED): no_undefined = False combs_final = tmp_combs_final types_pieces = tmp_types_pieces if no_undefined: break if (len(types_pieces) != 0 and types_pieces[-1] == TypeEdge.UNDEFINED): print("UNDEFINED FOUND - try to continue but something bad happened :(") print(tmp_types_pieces[-1]) best_fit_tmp = best_fit - offset for i in range(3): edges.append(cnt[best_fit_tmp[i]:best_fit_tmp[i + 1]]) edges.append(np.concatenate((cnt[best_fit_tmp[3]:], cnt[:best_fit_tmp[0]]), axis=0)) edges = [np.array([x[0] for x in e]) for e in edges] # quick'n'dirty fix of the shape types_pieces.append(types_pieces[0]) return best_fit, edges, types_pieces[1:] def angle_between(v1, v2): """ Return the angles between two tuples :param v1: first tuple of coordinates :param v2: second tuple of coordinates :return: distance Float """ return math.atan2(-v1[1], v1[0]) - math.atan2(-v2[1], v2[0]) def export_contours(img, img_bw, contours, path, modulo, viewer=None, green=False): """ Find the corners/shapes of all contours and build an array of puzzle Pieces :param img: matrix of the img :param img_bw: matrix of the img in black and white :param contours: lists of tuples of coordinates of contours :param path: Path used to export pieces img :path viewer: Object used for GUI display :param green: boolean used to activate green background mode :return: puzzle Piece array """ puzzle_pieces = [] list_img = [] out_color = np.zeros_like(img) for idx, cnt in enumerate(contours): corners, edges_shape, types_edges = my_find_corner_signature(cnt, green) if corners is None: return None mask_border = np.zeros_like(img_bw) mask_full = np.zeros_like(img_bw) mask_full = cv2.drawContours(mask_full, contours, idx, 255, -1) mask_border = cv2.drawContours(mask_border, contours, idx, 255, 1) img_piece = np.zeros_like(img) img_piece[mask_full == 255] = img[mask_full == 255] pixels = [] for x, y in tuple(zip(*np.where(mask_full == 255))): pixels.append(Pixel((x, y), img_piece[x, y])) color_vect = [] # go faster, use only a subset of the img with the piece x_bound, y_bound, w_bound, h_bound = cv2.boundingRect(cnt) img_piece_tiny = img_piece[y_bound:y_bound + h_bound, x_bound:x_bound + w_bound] mask_border_tiny = mask_border[y_bound:y_bound + h_bound, x_bound:x_bound + w_bound] mask_full_tiny = mask_full[y_bound:y_bound + h_bound, x_bound:x_bound + w_bound] mask_around_tiny = np.zeros_like(mask_full_tiny) mask_inv_border_tiny = cv2.bitwise_not(mask_border_tiny) mask_full_tiny = cv2.bitwise_and(mask_full_tiny, mask_full_tiny, mask=mask_inv_border_tiny) for i in range(4): color_edge = [] for ip, p in enumerate(edges_shape[i]): CIRCLE_SIZE = 5 if ip != 0: p2 = edges_shape[i][ip - 1] cv2.circle(mask_around_tiny, (p2[0] - x_bound, p2[1] - y_bound), CIRCLE_SIZE, 0, -1) cv2.circle(mask_around_tiny, (p[0] - x_bound, p[1] - y_bound), CIRCLE_SIZE, 255, -1) mask_around_tiny = cv2.bitwise_and(mask_around_tiny, mask_around_tiny, mask=mask_full_tiny) neighbors_color = [] for y, x in tuple(zip(*np.where(mask_around_tiny == 255))): neighbors_color.append(img_piece_tiny[y, x]) rgb = flatten_colors(neighbors_color) hsl = np.array(colorsys.rgb_to_hls(rgb[2] / 255.0, rgb[1] / 255.0, rgb[0] / 255.0)) color_edge.append(hsl) out_color[p[1], p[0]] = rgb color_vect.append(np.array(color_edge)) edges = [] cpt = 0 for s, c in zip(edges_shape, color_vect): edges.append(Edge(s, c, type=types_edges[cpt])) cpt += 1 for i, e in enumerate(edges): e.direction = directions[i] if e.type == TypeEdge.BORDER: e.connected = True puzzle_pieces.append(PuzzlePiece(edges, pixels)) mask_border = np.zeros_like(img_bw) for i in range(4): for p in edges_shape[i]: mask_border[p[1], p[0]] = 255 out = np.zeros_like(img_bw) out[mask_border == 255] = img_bw[mask_border == 255] x, y, w, h = cv2.boundingRect(cnt) out2 = out[y:y + h, x:x + w] list_img.append(out2) max_height = max([x.shape[0] for x in list_img]) max_width = max([x.shape[1] for x in list_img]) pieces_img = np.zeros([max_height * (int(len(list_img) / modulo) + 1), max_width * modulo], dtype=np.uint8) for index, image in enumerate(list_img): pieces_img[(max_height * int(index / modulo)):(max_height * int(index / modulo) + image.shape[0]), (max_width * (index % modulo)):(max_width * (index % modulo) + image.shape[1])] = image cv2.imwrite("/tmp/color_border.png", out_color) cv2.imwrite(path, pieces_img) if viewer: viewer.addImage("Extracted colored border", "/tmp/color_border.png") return puzzle_pieces
35.635644
219
0.622083
1f0f9144cd9b1772e635bc457f7aa93f6e1dd456
2,443
py
Python
train.py
qingquansong/CSCE689
8f23ffed5dff3652499b8bba9075fd1c109f7056
[ "MIT" ]
null
null
null
train.py
qingquansong/CSCE689
8f23ffed5dff3652499b8bba9075fd1c109f7056
[ "MIT" ]
null
null
null
train.py
qingquansong/CSCE689
8f23ffed5dff3652499b8bba9075fd1c109f7056
[ "MIT" ]
null
null
null
import torch from torch.autograd import Variable import time import os import sys from utils import AverageMeter, calculate_accuracy def train_epoch(epoch, data_loader, model, criterion, optimizer, opt, epoch_logger, batch_logger): print('train at epoch {}'.format(epoch)) model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() accuracies = AverageMeter() end_time = time.time() for i, (inputs, targets) in enumerate(data_loader): data_time.update(time.time() - end_time) if not opt.no_cuda: targets = targets.cuda(async=True) inputs = Variable(inputs) targets = Variable(targets) outputs = model(inputs) loss = criterion(outputs, targets) acc = calculate_accuracy(outputs, targets) losses.update(loss.data, inputs.size(0)) accuracies.update(acc, inputs.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end_time) end_time = time.time() batch_logger.log({ 'epoch': epoch, 'batch': i + 1, 'iter': (epoch - 1) * len(data_loader) + (i + 1), 'loss': losses.val, 'acc': accuracies.val, 'lr': optimizer.param_groups[0]['lr'] }) print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc {acc.val:.3f} ({acc.avg:.3f})'.format( epoch, i + 1, len(data_loader), batch_time=batch_time, data_time=data_time, loss=losses, acc=accuracies)) epoch_logger.log({ 'epoch': epoch, 'loss': losses.avg, 'acc': accuracies.avg, 'lr': optimizer.param_groups[0]['lr'] }) if epoch % opt.checkpoint == 0: save_file_path = os.path.join(opt.result_path, 'save_{}.pth'.format(epoch)) states = { 'epoch': epoch + 1, 'arch': opt.arch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), } torch.save(states, save_file_path)
29.792683
69
0.536226
430e338db9a22ccfcb1e9ef756c92e8664988e2b
131
py
Python
zpipe/utils/__init__.py
jheo4/zpipe
8cc3ac38b0f999ae4c1a29e63818457c4b7d6cf6
[ "MIT" ]
1
2020-06-28T02:31:08.000Z
2020-06-28T02:31:08.000Z
zpipe/utils/__init__.py
jheo4/zpipe
8cc3ac38b0f999ae4c1a29e63818457c4b7d6cf6
[ "MIT" ]
6
2020-06-28T01:52:45.000Z
2020-07-10T03:55:41.000Z
zpipe/utils/__init__.py
jheo4/zpipe
8cc3ac38b0f999ae4c1a29e63818457c4b7d6cf6
[ "MIT" ]
null
null
null
from .pickles import send_zero_copy from .pickles import recv_zero_copy from .pickles import pickle_keypoints from .ztypes import *
32.75
37
0.847328
2dfcb53b595e67627c600df6ce26b0fc296bc9e7
413
py
Python
proyecto_encuestas/wsgi.py
JCYanes/ProyectoEncuestas
a19ac8df5607f322bfce98c7edf5387987021a8a
[ "MIT" ]
null
null
null
proyecto_encuestas/wsgi.py
JCYanes/ProyectoEncuestas
a19ac8df5607f322bfce98c7edf5387987021a8a
[ "MIT" ]
null
null
null
proyecto_encuestas/wsgi.py
JCYanes/ProyectoEncuestas
a19ac8df5607f322bfce98c7edf5387987021a8a
[ "MIT" ]
null
null
null
""" WSGI config for proyecto_encuestas project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proyecto_encuestas.settings') application = get_wsgi_application()
24.294118
78
0.79661
fc0f9da2eef29657ba68dfa3929ecd42789e1da6
13,112
py
Python
Astar/Astar_algorithm.py
ShervinAmbrose/Path-Finding-Algorithms-Visualised
ee93cfe98d2b9db13ba3cedaec6828b32d5de9f3
[ "MIT" ]
null
null
null
Astar/Astar_algorithm.py
ShervinAmbrose/Path-Finding-Algorithms-Visualised
ee93cfe98d2b9db13ba3cedaec6828b32d5de9f3
[ "MIT" ]
null
null
null
Astar/Astar_algorithm.py
ShervinAmbrose/Path-Finding-Algorithms-Visualised
ee93cfe98d2b9db13ba3cedaec6828b32d5de9f3
[ "MIT" ]
1
2021-10-02T03:36:30.000Z
2021-10-02T03:36:30.000Z
import pygame import sys import math import random ''' Change this to change the screen size and number of boxes recommended is WIN = 800, ROWS = 50 you can aslo change it to WIN = 400, ROWS = 25 ''' WIN = 800 ROWS = 50 CAPTION = 'A* path finding algorithm' SCREEN = pygame.display.set_mode((WIN, WIN)) '''Number of parentCell neighbours, Choose 4 or 8 only. Each cell can either have 4 neighbours (Right, Bottom, Left, Top) Or 8 neighbours (Right, Bottom-Right, Bottom, Bottom-Left, Left, Top-Left, Top, Top-Right) Recommended is 8 ''' neigh = 4 GREEN = (0, 255, 0) PURPLE = (255, 0, 255) YELLOW = (255, 255, 0) WHITE = (255, 255, 255) BLACK = (0, 0, 0) GREY = (128, 128, 128) TURQUOISE = (64, 224, 208) ''' Main Class for entire code ''' class App(object): def __init__(self): self.done = False self.grid = [] self.gridSize = WIN // ROWS self.startDone = False self.endDone = True self.barrierDone = True self.barriers = False self.startCoord = None self.endCoord = None self.barrierPos = [] self.pathDict = {} self.pathFound = True self.removeBarrier = [] ''' Stores the (x, y) co-ordinates ''' def makeGrid(self): for i in range(ROWS): self.grid.append([]) for j in range(ROWS): self.grid[i].append((j * self.gridSize, i * self.gridSize)) self.drawGrid() ''' Draws vertical and horizontal line on the (x, y) co-ordinates ''' def drawGrid(self): for i in range(ROWS): pygame.draw.line( SCREEN, BLACK, (0, self.grid[i][i][0]), (WIN, self.grid[i][i][0])) for j in range(ROWS): pygame.draw.line( SCREEN, BLACK, (self.grid[i][j][1], 0), (self.grid[i][j][1], WIN)) pygame.display.update() ''' One draw Function to draw the start, end, barriers, erase-bariers and the output path. ''' def draw(self, coord, colour): x, y = coord pygame.draw.rect( SCREEN, colour, (self.grid[x][y][1], self.grid[x][y][0], self.gridSize, self.gridSize)) pygame.display.update() self.drawGrid() ''' Different H and G scores to play with ''' def h(self, start, end): x1, y1 = start x2, y2 = end # return abs(y1 - y2) + abs(x1 - x2) return min(abs(x1 - x2), abs(y1 - y2)) * 14 + abs(abs(x1 - x2) - abs(y1 - y2)) * 10 def g(self, start, currentCell): x1, y1 = start x2, y2 = currentCell # return abs(y1 - y2) + abs(x1 - x2) return min(abs(x1 - x2), abs(y1 - y2)) * 14 + abs(abs(x1 - x2) - abs(y1 - y2)) * 10 '''Neighbours of parent cell, Column x Row''' def algoNeighbours(self, cell): k = [] if neigh == 8: n = [(cell[0] + 1, cell[1]), (cell[0] + 1, cell[1] + 1), (cell[0], cell[1] + 1), (cell[0] - 1, cell[1] + 1), (cell[0] - 1, cell[1]), (cell[0] - 1, cell[1] - 1), (cell[0], cell[1] - 1), (cell[0] + 1, cell[1] - 1)] elif neigh == 4: n = [(cell[0] + 1, cell[1]), (cell[0], cell[1] + 1), (cell[0] - 1, cell[1]), (cell[0], cell[1] - 1)] for i in range(neigh): if n[i][0] >= 0 and n[i][1] >= 0 and n[i][0] < ROWS and n[i][1] < ROWS and n[i] not in self.barrierPos and n[i] != self.startCoord and n[i] not in self.pathDict: k.append(n[i]) return k def reconstructNeighbours(self, cell, cellDict): k = [] if neigh == 8: n = [(cell[0] + 1, cell[1]), (cell[0] + 1, cell[1] + 1), (cell[0], cell[1] + 1), (cell[0] - 1, cell[1] + 1), (cell[0] - 1, cell[1]), (cell[0] - 1, cell[1] - 1), (cell[0], cell[1] - 1), (cell[0] + 1, cell[1] - 1)] elif neigh == 4: n = [(cell[0] + 1, cell[1]), (cell[0], cell[1] + 1), (cell[0] - 1, cell[1]), (cell[0], cell[1] - 1)] for i in range(neigh): if n[i][0] >= 0 and n[i][1] >= 0 and n[i][0] < ROWS and n[i][1] < ROWS and n[i] not in self.barrierPos and n[i] in self.pathDict and n[i] not in cellDict: k.append(n[i]) if n[i] == self.endCoord: k.append(n[i]) return k def reconstructPath(self, cell): k = [] if neigh == 8: n = [(cell[0] + 1, cell[1]), (cell[0] + 1, cell[1] + 1), (cell[0], cell[1] + 1), (cell[0] - 1, cell[1] + 1), (cell[0] - 1, cell[1]), (cell[0] - 1, cell[1] - 1), (cell[0], cell[1] - 1), (cell[0] + 1, cell[1] - 1)] elif neigh == 4: n = [(cell[0] + 1, cell[1]), (cell[0], cell[1] + 1), (cell[0] - 1, cell[1]), (cell[0], cell[1] - 1)] for i in range(neigh): if n[i][0] >= 0 and n[i][1] >= 0 and n[i][0] < ROWS and n[i][1] < ROWS and n[i] not in self.barrierPos and n[i] in self.pathDict: k.append(n[i]) return k def algoCalcultions(self, lowestF, costDict): if len(lowestF) == 1: return lowestF[0] else: tempHcost = min(value[1] for key, value in costDict.items() if key in lowestF) for key in lowestF: data = costDict[key] if data[1] == tempHcost: return key else: continue ''' Basic working of algorithm is that it takes the starting cell as parentCell and determines its neighbours(children), the G, H and F cost of each neighbour is calculated and the neighbour with lowest F cost becomes the new parent cell, this process is repeated until the parentCell is equal to the endCoordinate. ''' def algorithm(self): parentCell = self.startCoord costDict = {} while parentCell != self.endCoord: children = self.algoNeighbours(parentCell) for i in range(len(children)): gCost = self.g(self.startCoord, children[i]) hCost = self.h(children[i], self.endCoord) fCost = gCost + hCost if children[i] != self.endCoord: self.draw(children[i], YELLOW) costDict[children[i]] = [gCost, hCost, fCost] if costDict: tempFcost = min(data[2] for data in costDict.values()) lowestF = [key for key, value in costDict.items() if value[2] == tempFcost] parentCell = self.algoCalcultions(lowestF, costDict) if parentCell == self.endCoord: break self.pathDict[parentCell] = costDict.pop(parentCell) else: self.noSolution() if parentCell != self.endCoord: self.draw(parentCell, WHITE) ''' Once the cells from start to end are explored, each explored cell is assigned a number ''' number = 1 parentCell = self.startCoord cellDict = {} children = self.reconstructNeighbours(parentCell, cellDict) for child in children: cellDict[child] = number number += 1 cell = 1 while parentCell != self.endCoord: parentCell = [key for key, value in cellDict.items() if value == cell] children = self.reconstructNeighbours(parentCell[0], cellDict) if len(children) > 0 and children[0] == self.endCoord: break for child in children: cellDict[child] = number # self.draw(child, PURPLE) number += 1 cell += 1 ''' After assigning numbers to each cell, the path from end to star is determined by choosing the endCell as parentCell, then determining its neighbours and choosing the neighbour with lowest number as the new parent cell ''' donePath = False startCoordNeigh = self.reconstructPath(self.startCoord) reversedCellDict = {} keysList = cellDict.keys() reversedKeysList = list(reversed(keysList)) for key in reversedKeysList: reversedCellDict[key] = cellDict.pop(key) endCoordNeigh = self.reconstructPath(self.endCoord) for key in reversedKeysList: if key in endCoordNeigh: parentCell = key break while not donePath: self.draw(parentCell, PURPLE) children = [] children = self.reconstructPath(parentCell) if len(children) == 1: del reversedCellDict[parentCell] del self.pathDict[parentCell] parentCell = children[0] else: del reversedCellDict[parentCell] del self.pathDict[parentCell] temp = min( value for key, value in reversedCellDict.items() if key in children) tempCell = [key for key, value in reversedCellDict.items() if value == temp] parentCell = tempCell[0] if parentCell in startCoordNeigh: self.draw(parentCell, PURPLE) donePath = True ''' Takes the mouse (x, y) position and converts it to the grid's (x, y) coordinate ''' def coordCalculation(self, pos): x, y = pos x = x // self.gridSize y = y // self.gridSize return (x, y) ''' If no solution is found press escape or the cross mark ''' def noSolution(self): running = True keys = pygame.key.get_pressed() while running: for event in pygame.event.get(): if event.type == pygame.QUIT or keys[pygame.K_ESCAPE]: running = False pygame.quit() sys.exit() ''' An event loop for calling start, end and barrier. ''' def callEvent(self): keys = pygame.key.get_pressed() for event in pygame.event.get(): if event.type == pygame.QUIT or keys[pygame.K_ESCAPE]: self.done = True if event.type == pygame.MOUSEBUTTONDOWN and event.button == 1: if not self.startDone: self.startCoord = self.coordCalculation(event.pos) self.draw(self.startCoord, GREEN) self.startDone = True self.endDone = False elif not self.endDone: self.endCoord = self.coordCalculation(event.pos) self.draw(self.endCoord, TURQUOISE) self.endDone = True self.pathFound = False self.barrierDone = False elif not self.barrierDone: self.barriers = True if pygame.mouse.get_pressed()[2] == 1: (x, y) = self.coordCalculation(pygame.mouse.get_pos()) if (x, y) != self.startCoord and (x, y) != self.endCoord: self.removeBarrier.append((x, y)) self.draw((x, y), GREY) self.barrierPos = list( set(self.barrierPos) - set(self.removeBarrier)) self.removeBarrier = [] if not keys[pygame.K_SPACE]: if self.barriers and pygame.mouse.get_pressed()[0] == 1: (x, y) = self.coordCalculation(pygame.mouse.get_pos()) self.barrierPos.append((x, y)) self.draw((x, y), BLACK) self.barrierPos = list( set(self.barrierPos) - set(self.removeBarrier)) self.removeBarrier = [] else: self.barriers = False self.barrierDone = True if not self.pathFound: self.algorithm() self.pathFound = True ''' Press 'c' to clear the display and start over again ''' if keys[pygame.K_c]: SCREEN.fill(GREY) self.makeGrid() self.barrierDone = True self.barriers = False self.startDone = False self.endDone = True self.barrierPos = [] self.pathFound = False self.pathDict = {} self.removeBarrier = [] if keys[pygame.K_r]: for i in range((ROWS * ROWS) // 6): x = random.randint(0, ROWS - 1) y = random.randint(0, ROWS - 1) if (x, y) != self.startCoord and (x, y) != self.endCoord: self.barrierPos.append((x, y)) self.draw((x, y), BLACK) def mainLoop(self): SCREEN.fill(GREY) self.makeGrid() while not self.done: self.callEvent() def main(): pygame.init() pygame.display.set_caption(CAPTION) App().mainLoop() pygame.quit() sys.exit() if __name__ == "__main__": main()
36.121212
173
0.515024
9365366b67c4d4be66f707509648d03770ee12ee
17,614
py
Python
src/olympia/scanners/tasks.py
dnutiu/addons-server
f42e8d44fc21bf9d40968b1732f62d8465a8389e
[ "BSD-3-Clause" ]
1
2020-11-30T18:58:30.000Z
2020-11-30T18:58:30.000Z
src/olympia/scanners/tasks.py
dnutiu/addons-server
f42e8d44fc21bf9d40968b1732f62d8465a8389e
[ "BSD-3-Clause" ]
null
null
null
src/olympia/scanners/tasks.py
dnutiu/addons-server
f42e8d44fc21bf9d40968b1732f62d8465a8389e
[ "BSD-3-Clause" ]
null
null
null
import os import uuid from django.conf import settings import requests import waffle import yara from django_statsd.clients import statsd import olympia.core.logger from olympia import amo from olympia.amo.celery import create_chunked_tasks_signatures, task from olympia.amo.decorators import use_primary_db from olympia.constants.scanners import ( ABORTED, ABORTING, COMPLETED, CUSTOMS, MAD, RUNNING, SCANNERS, WAT, YARA, ) from olympia.devhub.tasks import validation_task from olympia.files.models import FileUpload from olympia.files.utils import SafeZip from olympia.versions.models import Version from .models import ( ImproperScannerQueryRuleStateError, ScannerQueryResult, ScannerQueryRule, ScannerResult, ScannerRule) log = olympia.core.logger.getLogger('z.scanners.task') def run_scanner(results, upload_pk, scanner, api_url, api_key): """ Run a scanner on a FileUpload via RPC and store the results. - `results` are the validation results passed in the validation chain. This task is a validation task, which is why it must receive the validation results as first argument. - `upload_pk` is the FileUpload ID. """ scanner_name = SCANNERS.get(scanner) log.info('Starting scanner "%s" task for FileUpload %s.', scanner_name, upload_pk) if not results['metadata']['is_webextension']: log.info('Not running scanner "%s" for FileUpload %s, it is not a ' 'webextension.', scanner_name, upload_pk) return results upload = FileUpload.objects.get(pk=upload_pk) try: if not os.path.exists(upload.path): raise ValueError('File "{}" does not exist.'.format(upload.path)) scanner_result = ScannerResult(upload=upload, scanner=scanner) with statsd.timer('devhub.{}'.format(scanner_name)): _run_scanner_for_url( scanner_result, upload.get_authenticated_download_url(), scanner, api_url, api_key) scanner_result.save() if scanner_result.has_matches: statsd.incr('devhub.{}.has_matches'.format(scanner_name)) for scanner_rule in scanner_result.matched_rules.all(): statsd.incr( 'devhub.{}.rule.{}.match'.format( scanner_name, scanner_rule.id ) ) statsd.incr('devhub.{}.success'.format(scanner_name)) log.info('Ending scanner "%s" task for FileUpload %s.', scanner_name, upload_pk) except Exception: statsd.incr('devhub.{}.failure'.format(scanner_name)) # We log the exception but we do not raise to avoid perturbing the # submission flow. log.exception('Error in scanner "%s" task for FileUpload %s.', scanner_name, upload_pk) return results def _run_scanner_for_url(scanner_result, url, scanner, api_url, api_key): """ Inner function to run a scanner on a particular URL via RPC and add results to the given scanner_result. The caller is responsible for saving the scanner_result to the database. """ json_payload = { 'api_key': api_key, 'download_url': url, } response = requests.post(url=api_url, json=json_payload, timeout=settings.SCANNER_TIMEOUT) try: data = response.json() except ValueError: # Log the response body when JSON decoding has failed. raise ValueError(response.text) if response.status_code != 200 or 'error' in data: raise ValueError(data) scanner_result.results = data @validation_task def run_customs(results, upload_pk): """ Run the customs scanner on a FileUpload and store the results. This task is intended to be run as part of the submission process only. When a version is created from a FileUpload, the files are removed. In addition, we usually delete old FileUpload entries after 180 days. - `results` are the validation results passed in the validation chain. This task is a validation task, which is why it must receive the validation results as first argument. - `upload_pk` is the FileUpload ID. """ return run_scanner( results, upload_pk, scanner=CUSTOMS, api_url=settings.CUSTOMS_API_URL, api_key=settings.CUSTOMS_API_KEY, ) @validation_task def run_wat(results, upload_pk): """ Run the wat scanner on a FileUpload and store the results. This task is intended to be run as part of the submission process only. When a version is created from a FileUpload, the files are removed. In addition, we usually delete old FileUpload entries after 180 days. - `results` are the validation results passed in the validation chain. This task is a validation task, which is why it must receive the validation results as first argument. - `upload_pk` is the FileUpload ID. """ return run_scanner( results, upload_pk, scanner=WAT, api_url=settings.WAT_API_URL, api_key=settings.WAT_API_KEY, ) @validation_task def run_yara(results, upload_pk): """ Apply a set of Yara rules on a FileUpload and store the Yara results (matches). This task is intended to be run as part of the submission process only. When a version is created from a FileUpload, the files are removed. In addition, we usually delete old FileUpload entries after 180 days. - `results` are the validation results passed in the validation chain. This task is a validation task, which is why it must receive the validation results as first argument. - `upload_pk` is the FileUpload ID. """ log.info('Starting yara task for FileUpload %s.', upload_pk) if not results['metadata']['is_webextension']: log.info('Not running yara for FileUpload %s, it is not a ' 'webextension.', upload_pk) return results try: upload = FileUpload.objects.get(pk=upload_pk) scanner_result = ScannerResult(upload=upload, scanner=YARA) _run_yara_for_path(scanner_result, upload.path) scanner_result.save() if scanner_result.has_matches: statsd.incr('devhub.yara.has_matches') for scanner_rule in scanner_result.matched_rules.all(): statsd.incr( 'devhub.yara.rule.{}.match'.format(scanner_rule.id) ) statsd.incr('devhub.yara.success') log.info('Ending scanner "yara" task for FileUpload %s.', upload_pk) except Exception: statsd.incr('devhub.yara.failure') # We log the exception but we do not raise to avoid perturbing the # submission flow. log.exception('Error in scanner "yara" task for FileUpload %s.', upload_pk, exc_info=True) return results def _run_yara_for_path(scanner_result, path, definition=None): """ Inner function to run yara on a particular path and add results to the given scanner_result. The caller is responsible for saving the scanner_result to the database. Takes an optional definition to run a single arbitrary yara rule, otherwise uses all active yara ScannerRules. """ with statsd.timer('devhub.yara'): if definition is None: # Retrieve then concatenate all the active/valid Yara rules. definition = '\n'.join( ScannerRule.objects.filter( scanner=YARA, is_active=True, definition__isnull=False ).values_list('definition', flat=True) ) # Initialize external variables so that compilation works, we'll # override them later when matching. externals = ScannerRule.get_yara_externals() rules = yara.compile(source=definition, externals=externals) zip_file = SafeZip(source=path) for zip_info in zip_file.info_list: if not zip_info.is_dir(): file_content = zip_file.read(zip_info).decode( errors='ignore' ) filename = zip_info.filename # Fill externals variable for this file. externals['is_json_file'] = filename.endswith('.json') externals['is_manifest_file'] = filename == 'manifest.json' externals['is_locale_file'] = ( filename.startswith('_locales/') and filename.endswith('/messages.json') ) for match in rules.match( data=file_content, externals=externals): # Also add the filename to the meta dict in results. meta = {**match.meta, 'filename': filename} scanner_result.add_yara_result( rule=match.rule, tags=match.tags, meta=meta ) zip_file.close() @task @use_primary_db def mark_yara_query_rule_as_completed_or_aborted(query_rule_pk): """ Mark a ScannerQueryRule as completed/aborted. """ rule = ScannerQueryRule.objects.get(pk=query_rule_pk) try: if rule.state == RUNNING: log.info('Marking Yara Query Rule %s as completed', rule.pk) rule.change_state_to(COMPLETED) elif rule.state == ABORTING: log.info('Marking Yara Query Rule %s as aborted', rule.pk) rule.change_state_to(ABORTED) except ImproperScannerQueryRuleStateError: log.error('Not marking rule as completed or aborted for rule %s in ' 'mark_yara_query_rule_as_completed_or_aborted, its state is ' '%s', rule.pk, rule.get_state_display()) @task def run_yara_query_rule(query_rule_pk): """ Run a specific ScannerQueryRule on multiple Versions. Needs the rule to be a the SCHEDULED state, otherwise does nothing. """ # We're not forcing this task to happen on primary db to let the replicas # handle the Version query below, but we want to fetch the rule using the # primary db in all cases. rule = ScannerQueryRule.objects.using('default').get(pk=query_rule_pk) try: rule.change_state_to(RUNNING) except ImproperScannerQueryRuleStateError: log.error('Not proceeding with run_yara_query_rule on rule %s because ' 'its state is %s', rule.pk, rule.get_state_display()) return log.info('Fetching versions for run_yara_query_rule on rule %s', rule.pk) # Build a huge list of all pks we're going to run the tasks on. qs = Version.unfiltered.filter( addon__type=amo.ADDON_EXTENSION, files__is_webextension=True, ) if not rule.run_on_disabled_addons: qs = qs.exclude(addon__status=amo.STATUS_DISABLED) qs = qs.values_list('id', flat=True).order_by('pk') # Build the workflow using a group of tasks dealing with 250 files at a # time, chained to a task that marks the query as completed. chunk_size = 250 chunked_tasks = create_chunked_tasks_signatures( run_yara_query_rule_on_versions_chunk, list(qs), chunk_size, task_args=(query_rule_pk,)) # Force the group id to be generated for those tasks, and store it in the # result backend. group_result = chunked_tasks.freeze() group_result.save() rule.update( task_count=len(chunked_tasks), celery_group_result_id=uuid.UUID(group_result.id) ) workflow = ( chunked_tasks | mark_yara_query_rule_as_completed_or_aborted.si(query_rule_pk) ) log.info('Running workflow of %s tasks for run_yara_query_rule on rule %s', len(chunked_tasks), rule.pk) # Fire it up. workflow.apply_async() @task(ignore_result=False) # We want the results to track completion rate. @use_primary_db def run_yara_query_rule_on_versions_chunk(version_pks, query_rule_pk): """ Task to run a specific ScannerQueryRule on a list of versions. Needs the rule to be a the RUNNING state, otherwise does nothing. """ log.info( 'Running Yara Query Rule %s on versions %s-%s.', query_rule_pk, version_pks[0], version_pks[-1]) rule = ScannerQueryRule.objects.get(pk=query_rule_pk) if rule.state != RUNNING: log.info( 'Not doing anything for Yara Query Rule %s on versions %s-%s ' 'since rule state is %s.', query_rule_pk, version_pks[0], version_pks[-1], rule.get_state_display()) return for version_pk in version_pks: try: version = Version.unfiltered.all().no_transforms().get( pk=version_pk) _run_yara_query_rule_on_version(version, rule) except Exception: log.exception( 'Error in run_yara_query_rule_on_version task for Version %s.', version_pk) def _run_yara_query_rule_on_version(version, rule): """ Run a specific ScannerQueryRule on a Version. """ file_ = version.all_files[0] scanner_result = ScannerQueryResult(version=version, scanner=YARA) try: _run_yara_for_path( scanner_result, file_.current_file_path, definition=rule.definition) except FileNotFoundError: # Fallback in case the file was disabled/re-enabled and not yet moved, # we try the other possible path. This shouldn't happen too often. tried_path = file_.current_file_path fallback_path = ( file_.file_path if tried_path == file_.guarded_file_path else file_.guarded_file_path ) _run_yara_for_path( scanner_result, fallback_path, definition=rule.definition) # Unlike ScannerResult, we only want to save ScannerQueryResult if there is # a match, there would be too many things to save otherwise and we don't # really care about non-matches. if scanner_result.results: scanner_result.save() # FIXME: run_action ? return scanner_result @task @use_primary_db def call_mad_api(all_results, upload_pk): """ Call the machine learning API (mad-server) for a given FileUpload. This task is the callback of the Celery chord in the validation chain. It receives all the results returned by all the tasks in this chord. - `all_results` are the results returned by all the tasks in the chord. - `upload_pk` is the FileUpload ID. """ # This task is the callback of a Celery chord and receives all the results # returned by all the tasks in this chord. The first task registered in the # chord is `forward_linter_results()`: results = all_results[0] # In case of a validation (linter) error, we do want to skip this task. # This is similar to the behavior of all other tasks decorated with # `@validation_task` but, because this task is the callback of a Celery # chord, we cannot use this decorator. if results['errors'] > 0: return results if not waffle.switch_is_active('enable-mad'): log.debug('Skipping scanner "mad" task, switch is off') return results log.info('Starting scanner "mad" task for FileUpload %s.', upload_pk) if not results['metadata']['is_webextension']: log.info( 'Not calling scanner "mad" for FileUpload %s, it is not ' 'a webextension.', upload_pk, ) return results try: # TODO: retrieve all scanner results and pass each result to the API. customs_results = ScannerResult.objects.get( upload_id=upload_pk, scanner=CUSTOMS ) scanMapKeys = customs_results.results.get('scanMap', {}).keys() if len(scanMapKeys) < 2: log.info( 'Not calling scanner "mad" for FileUpload %s, scanMap is too ' 'small.', upload_pk ) statsd.incr('devhub.mad.skip') return results with statsd.timer('devhub.mad'): json_payload = {'scanners': {'customs': customs_results.results}} response = requests.post( url=settings.MAD_API_URL, json=json_payload, timeout=settings.MAD_API_TIMEOUT, ) try: data = response.json() except ValueError: # Log the response body when JSON decoding has failed. raise ValueError(response.text) if response.status_code != 200: raise ValueError(data) default_score = -1 ScannerResult.objects.create( upload_id=upload_pk, scanner=MAD, results=data, score=data.get('ensemble', default_score), ) # Update the individual scanner results scores. customs_score = ( data.get('scanners', {}) .get('customs', {}) .get('score', default_score) ) customs_results.update(score=customs_score) statsd.incr('devhub.mad.success') log.info('Ending scanner "mad" task for FileUpload %s.', upload_pk) except Exception: statsd.incr('devhub.mad.failure') # We log the exception but we do not raise to avoid perturbing the # submission flow. log.exception( 'Error in scanner "mad" task for FileUpload %s.', upload_pk ) return results
36.094262
79
0.644544
15ce7420a0e24295159ce14d6794de9cbeea0a07
959
py
Python
MovingFile.py
3n5/functions-python
be42f7b2108f8ed481956ce1c1ddc356c4ce17d6
[ "MIT" ]
2
2020-12-29T06:32:43.000Z
2020-12-29T06:32:45.000Z
MovingFile.py
h4r3/functions-python
be42f7b2108f8ed481956ce1c1ddc356c4ce17d6
[ "MIT" ]
null
null
null
MovingFile.py
h4r3/functions-python
be42f7b2108f8ed481956ce1c1ddc356c4ce17d6
[ "MIT" ]
null
null
null
"""Move the files that match the csv list to another folder.""" def file_move_based_on_csv(): import shutil import glob import csv _from=r'C:/Users/USER/Desktop/_from' #Source directory #[[apple],[banana],[grape]] _to=r'C:/Users/USER/Desktop/_to' #Destination Directory [] _csv=r'C:/Users/USER/Downloads/archive/reference.csv'#[[apple],[banana]] with open(_csv, 'r') as csvfile: # , encoding='shift_jis' csv_reader = csv.reader(csvfile, delimiter=',', quotechar='"') for file1 in csv_reader: file = glob.glob('{0}/[{1}*'.format(','.join(file1))) if len(file) == 0: pass elif len(file) == 1: shutil.move(','.join(file), _to) #shutil.copy(','.join(file),_to ) else: for file2 in file: shutil.move(file2, _to) #shutil.copy(i2,_to) #if copy
41.695652
87
0.53806
ac411e7fb7644e0ef64a2f57c840fed485752ba4
19,658
py
Python
yauber_algo/_algo/tests/test_featurewiz_apply.py
LongNguyen1012/yauber-algo
40f7d805408a788e7f363ec02d3315ff379cc069
[ "MIT" ]
1
2019-02-09T15:34:34.000Z
2019-02-09T15:34:34.000Z
yauber_algo/_algo/tests/test_featurewiz_apply.py
LongNguyen1012/yauber-algo
40f7d805408a788e7f363ec02d3315ff379cc069
[ "MIT" ]
null
null
null
yauber_algo/_algo/tests/test_featurewiz_apply.py
LongNguyen1012/yauber-algo
40f7d805408a788e7f363ec02d3315ff379cc069
[ "MIT" ]
2
2018-10-10T16:01:59.000Z
2018-11-27T16:50:56.000Z
import unittest from yauber_algo.errors import * class ApplyTestCase(unittest.TestCase): def test_percent_rank_category(self): import yauber_algo.sanitychecks as sc from numpy import array, nan, inf import os import sys import pandas as pd import numpy as np from yauber_algo.algo import apply # # Function settings # algo = 'apply' func = apply with sc.SanityChecker(algo) as s: # # Check regular algorithm logic # s.check_regular( array([nan, nan, 6, 7, 8, 9, 6]), func, ( array([3, 2, 1, 4, 3, 2, 1]), 3, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='rolling' ) s.check_regular( array([nan, nan, 6, nan, nan, 9, 6]), func, ( array([3, 2, 1, 4, 3, 2, 1]), 3, np.sum, array([0, 0, 0, 1, 1, 1, 1]), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='category' ) s.check_regular( array([nan, nan, nan, nan, nan, nan, nan]), func, ( array([3, 2, 1, 4, 3, 2, 1]), 3, np.sum, array([0, 0, 0, 1, 1, 1, 1]), # category= 3, # return_as_cat= True, # exclude_nan= ), suffix='category_ret_as_cat_number_not_exists' ) s.check_regular( None, func, ( np.arange(0, 101), 3, np.sum, np.arange(0, 101), 3, # return_as_cat= True, # exclude_nan= ), suffix='category_more_than_100_unique_cats', exception=YaUberAlgoArgumentError ) s.check_regular( array([nan, nan, 6, 6, 6, 6, 6]), func, ( array([3, 2, 1, 4, 3, 2, 1]), 3, np.sum, array([0, 0, 0, 1, 1, 1, 1]), # category= 0, # return_as_cat= True, # exclude_nan= ), suffix='category_exact' ) s.check_regular( array([nan, nan, 6, 6, 6, 6, 6]), func, ( array([3, 2, 1, nan, nan, nan, nan]), 3, np.sum, array([0, 0, 0, 1, 1, 1, 1]), # category= 0, # return_as_cat= True, # exclude_nan= ), suffix='category_ret_nan' ) s.check_regular( array([nan, nan, nan, nan, nan, nan, nan]), func, ( array([3, 2, 1, 4, 1, nan, nan]), 3, np.sum, array([0, 0, 0, 1, 1, 1, 1]), # category= array([1, 1, 1, 1, 1, 1, 1]), # return_as_cat= True, # exclude_nan= ), suffix='category_ret_nan_if_arr_nan' ) s.check_regular( array([nan, nan, 6, 7, 8, 9, 6]), func, ( array([3, 2, 1, 4, 3, 2, 1]), 0, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='zero_period', exception=YaUberAlgoArgumentError, ) s.check_regular( array([nan, nan, 6, 7, 8, 9, 6]), func, ( array([3, 2, 1, 4, 3, 2, 1]), -1, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='neg_period', exception=YaUberAlgoArgumentError, ) s.check_regular( func(array([3, 2, 1, 4, 3, 2, 1]), 3, np.sum), func, ( array([3, 2, 1, 4, 3, 2, 1]), 3, np.sum, array([1, 1, 1, 1, 1, 1, 1]), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='rolling_and_categorical_equal' ) s.check_regular( array([nan, nan, nan, nan, 8, 9, 6]), func, ( array([3, nan, 1, 4, 3, 2, 1]), 3, np.sum, None, # category= None, # return_as_cat= False, # exclude_nan= ), suffix='rolling_not_exclude_nan' ) # # NAN / INF # # s.check_naninf( array([nan, nan, nan, nan, 8, 9, nan]), func, ( array([inf, nan, 1, 4, 3, 2, inf]), 3, np.sum, None, # category= None, # return_as_cat= False, # exclude_nan= ), suffix='rolling' ) s.check_naninf( array([nan, nan, 1, 5, 8, 9, nan]), func, ( array([inf, nan, 1, 4, 3, 2, inf]), 3, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='rolling_naninf_excluded' ) s.check_series( pd.Series(array([nan, nan, 6, 7, 8, 9, 6])), func, ( pd.Series(array([3, 2, 1, 4, 3, 2, 1])), 3, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='rolling' ) s.check_series( pd.Series(array([nan, nan, 6, 7, 8, 9, 6])), func, ( pd.Series(array([3, 2, 1, 4, 3, 2, 1])), 3, np.sum, pd.Series(array([0, 0, 0, 0, 0, 0, 0])), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='categorical' ) s.check_series( pd.Series(array([nan, nan, 6, 7, 8, 9, 6])), func, ( pd.Series(array([3, 2, 1, 4, 3, 2, 1])), 3, np.sum, pd.Series(array([0, 0, 0, 0, 0, 0, 0])), # category= pd.Series(array([0, 0, 0, 0, 0, 0, 0])), # return_as_cat= True, # exclude_nan= ), suffix='categorical_ret_as' ) s.check_regular( array([nan, nan, 6, 7, nan, nan, 6]), func, ( array([3, 2, 1, 4, 3, 2, 1]), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1]), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='categorical' ) s.check_naninf( array([nan, nan, 6, nan, nan, nan, nan]), func, ( array([3, 2, 1, nan, 3, 2, inf]), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1]), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='categorical' ) s.check_naninf( array([nan, nan, 6, nan, nan, nan, nan]), func, ( array([3, 2, 1, 2, 3, 2, 4]), 3, np.sum, array([0, 0, 0, inf, 1, 1, nan]), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='nan_for_category' ) s.check_naninf( array([nan, nan, 6, 6, 6, 6, 6]), func, ( array([3, 2, 1, 2, 3, 2, 4]), 3, np.sum, array([0, 0, 0, inf, 1, 1, nan]), # category= 0, # return_as_cat= True, # exclude_nan= ), suffix='return_as_cat_ignore_codex', ignore_nan_argument_position_check=True, ) s.check_naninf( array([nan, nan, nan, nan, nan, 6, 6]), func, ( array([3, 2, 1, 2, 3, 2, nan]), 3, np.sum, array([0, 0, 1, inf, 1, 1, nan]), # category= 1, # return_as_cat= True, # exclude_nan= ), suffix='return_as_cat_non_NAN_if_reference_with_valid_window', ignore_nan_argument_position_check=True, ) s.check_naninf( array([nan, nan, nan, nan, nan, 6, nan]), func, ( array([3, 2, 1, 2, 3, 2, nan]), 3, np.sum, array([0, 0, 1, inf, 1, 1, 1]), # category= 1, # return_as_cat= True, # exclude_nan= ), suffix='return_as_cat_NOT_ignore_codex_if_same_cat', ) s.check_naninf( array([nan, nan, nan, nan, nan, nan, nan]), func, ( array([3, 2, 1, 2, 3, 2, nan]), 3, np.sum, array([0, 0, 1, inf, 1, 1, nan]), # category= 0, # return_as_cat= True, # exclude_nan= ), suffix='return_as_cat_widows_less_period', ) s.check_dtype_float( array([nan, nan, 6, 7, 8, 9, 6], dtype=np.float), func, ( array([3, 2, 1, 4, 3, 2, 1], dtype=np.float), 3, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='rolling' ) s.check_dtype_float( array([nan, nan, 6, 5, nan, nan, 9], dtype=np.float), func, ( array([3, 2, 1, 2, 3, 2, 4], dtype=np.float), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1], dtype=np.float), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='category' ) s.check_dtype_float( array([nan, nan, 6, 5, 5, 5, 5], dtype=np.float), func, ( array([3, 2, 1, 2, 3, 2, 4], dtype=np.float), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1], dtype=np.float), # category= array([0, 0, 0, 0, 0, 0, 0], dtype=np.float), True, # exclude_nan= ), suffix='category_ret_as' ) s.check_dtype_bool( array([nan, nan, 3, 3, 3, 3, 3], dtype=np.float), func, ( array([1, 1, 1, 1, 1, 1, 1], dtype=np.bool), 3, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='rolling' ) s.check_dtype_bool( array([nan, nan, 3, 3, nan, nan, 3], dtype=np.float), func, ( array([1, 1, 1, 1, 1, 1, 1], dtype=np.bool), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1], dtype=np.bool), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='category' ) s.check_dtype_bool( array([nan, nan, 6, 5, 5, 5, 5], dtype=np.float), func, ( array([3, 2, 1, 2, 3, 2, 4], dtype=np.float), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1], dtype=np.bool), # category= array([0, 0, 0, 0, 0, 0, 0], dtype=np.bool), True, # exclude_nan= ), suffix='category_ret_as' ) s.check_dtype_int( array([nan, nan, 6, 7, 8, 9, 6], dtype=np.float), func, ( array([3, 2, 1, 4, 3, 2, 1], dtype=np.int32), 3, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='rolling' ) s.check_dtype_int( array([nan, nan, 6, 5, nan, nan, 9], dtype=np.float), func, ( array([3, 2, 1, 2, 3, 2, 4], dtype=np.int32), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1], dtype=np.int32), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='category' ) s.check_dtype_int( array([nan, nan, 6, 5, 5, 5, 5], dtype=np.float), func, ( array([3, 2, 1, 2, 3, 2, 4], dtype=np.float), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1], dtype=np.int32), # category= array([0, 0, 0, 0, 0, 0, 0], dtype=np.int32), True, # exclude_nan= ), suffix='category_ret_as' ) s.check_dtype_object( func, ( array([3, 2, 1, 4, 3, 2, 1], dtype=np.object), 3, np.sum, None, # category= None, # return_as_cat= True, # exclude_nan= ), suffix='rolling' ) s.check_dtype_object( func, ( array([3, 2, 1, 2, 3, 2, 4], dtype=np.object), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1], dtype=np.object), # category= None, # return_as_cat= True, # exclude_nan= ), suffix='category' ) s.check_dtype_object( func, ( array([3, 2, 1, 2, 3, 2, 4], dtype=np.float), 3, np.sum, array([0, 0, 0, 0, 1, 1, 1], dtype=np.float), # category= array([0, 0, 0, 0, 0, 0, 0], dtype=np.object), True, # exclude_nan= ), suffix='category_ret_as' ) s.check_futref(5, 1, func, ( np.random.random(100), 5, np.sum, ), suffix='rolling' ) s.check_window_consistency(5, 1, func, ( np.random.random(100), 5, np.sum, ), suffix='rolling' ) s.check_futref(5, 1, func, ( np.random.random(100), 5, np.sum, np.random.random_integers(0, 3, 100), ), suffix='category' ) s.check_window_consistency(5, 1, func, ( np.random.random(100), 5, np.sum, np.random.random_integers(0, 3, 100), ), suffix='category' ) s.check_futref(5, 1, func, ( np.random.random(100), 5, np.sum, np.random.random_integers(0, 3, 100), np.random.random_integers(0, 3, 100), ), suffix='category_ret_as' ) s.check_window_consistency(5, 1, func, ( np.random.random(100), 5, np.sum, np.random.random_integers(0, 3, 100), np.random.random_integers(0, 3, 100), ), suffix='category_ret_as' )
32.983221
80
0.303744
c8adebe0a9b393298ed3581f18877962497bd05d
10,336
py
Python
sdk/python/pulumi_azure_native/apimanagement/v20191201/notification_recipient_user.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/apimanagement/v20191201/notification_recipient_user.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/apimanagement/v20191201/notification_recipient_user.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['NotificationRecipientUserArgs', 'NotificationRecipientUser'] @pulumi.input_type class NotificationRecipientUserArgs: def __init__(__self__, *, notification_name: pulumi.Input[str], resource_group_name: pulumi.Input[str], service_name: pulumi.Input[str], user_id: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a NotificationRecipientUser resource. :param pulumi.Input[str] notification_name: Notification Name Identifier. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] service_name: The name of the API Management service. :param pulumi.Input[str] user_id: User identifier. Must be unique in the current API Management service instance. """ pulumi.set(__self__, "notification_name", notification_name) pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "service_name", service_name) if user_id is not None: pulumi.set(__self__, "user_id", user_id) @property @pulumi.getter(name="notificationName") def notification_name(self) -> pulumi.Input[str]: """ Notification Name Identifier. """ return pulumi.get(self, "notification_name") @notification_name.setter def notification_name(self, value: pulumi.Input[str]): pulumi.set(self, "notification_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="serviceName") def service_name(self) -> pulumi.Input[str]: """ The name of the API Management service. """ return pulumi.get(self, "service_name") @service_name.setter def service_name(self, value: pulumi.Input[str]): pulumi.set(self, "service_name", value) @property @pulumi.getter(name="userId") def user_id(self) -> Optional[pulumi.Input[str]]: """ User identifier. Must be unique in the current API Management service instance. """ return pulumi.get(self, "user_id") @user_id.setter def user_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_id", value) class NotificationRecipientUser(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, notification_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service_name: Optional[pulumi.Input[str]] = None, user_id: Optional[pulumi.Input[str]] = None, __props__=None): """ Recipient User details. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] notification_name: Notification Name Identifier. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] service_name: The name of the API Management service. :param pulumi.Input[str] user_id: User identifier. Must be unique in the current API Management service instance. """ ... @overload def __init__(__self__, resource_name: str, args: NotificationRecipientUserArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Recipient User details. :param str resource_name: The name of the resource. :param NotificationRecipientUserArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(NotificationRecipientUserArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, notification_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service_name: Optional[pulumi.Input[str]] = None, user_id: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = NotificationRecipientUserArgs.__new__(NotificationRecipientUserArgs) if notification_name is None and not opts.urn: raise TypeError("Missing required property 'notification_name'") __props__.__dict__["notification_name"] = notification_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name if service_name is None and not opts.urn: raise TypeError("Missing required property 'service_name'") __props__.__dict__["service_name"] = service_name __props__.__dict__["user_id"] = user_id __props__.__dict__["name"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:apimanagement/v20191201:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement/v20170301:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement/v20170301:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement/v20180101:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement/v20180101:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement/v20180601preview:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement/v20180601preview:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement/v20190101:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement/v20190101:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement/v20191201preview:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement/v20191201preview:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement/v20200601preview:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement/v20200601preview:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement/v20201201:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement/v20201201:NotificationRecipientUser"), pulumi.Alias(type_="azure-native:apimanagement/v20210101preview:NotificationRecipientUser"), pulumi.Alias(type_="azure-nextgen:apimanagement/v20210101preview:NotificationRecipientUser")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(NotificationRecipientUser, __self__).__init__( 'azure-native:apimanagement/v20191201:NotificationRecipientUser', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'NotificationRecipientUser': """ Get an existing NotificationRecipientUser resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = NotificationRecipientUserArgs.__new__(NotificationRecipientUserArgs) __props__.__dict__["name"] = None __props__.__dict__["type"] = None __props__.__dict__["user_id"] = None return NotificationRecipientUser(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type for API Management resource. """ return pulumi.get(self, "type") @property @pulumi.getter(name="userId") def user_id(self) -> pulumi.Output[Optional[str]]: """ API Management UserId subscribed to notification. """ return pulumi.get(self, "user_id")
49.932367
1,733
0.685178
e416282f8fbefd82b41349bdfbe90a9d976edf76
346
py
Python
src/aims_ui/table_utils.py
ONSdigital/address-index-ui
57867604744f7bf6e2d596fc649bb8d3bf9baf11
[ "MIT" ]
null
null
null
src/aims_ui/table_utils.py
ONSdigital/address-index-ui
57867604744f7bf6e2d596fc649bb8d3bf9baf11
[ "MIT" ]
1
2022-03-11T20:46:21.000Z
2022-03-11T20:46:21.000Z
src/aims_ui/table_utils.py
ONSdigital/address-index-ui
57867604744f7bf6e2d596fc649bb8d3bf9baf11
[ "MIT" ]
1
2021-04-11T08:02:33.000Z
2021-04-11T08:02:33.000Z
def create_table(table_headers, table_rows): """Given array of table headers, and an array of arrays for each row, format as table""" ths = [{'value': header_name} for header_name in table_headers] trs = [{ 'tds': [{ 'value': col_val } for col_val in row] } for row in table_rows] return {'ths': ths, 'trs': trs}
31.454545
90
0.635838
9bdc9b56996ef117cc846c8408d3e5dc9ccd5fa9
1,147
py
Python
_zadania/2_python_controlflow/comprehension_dict_c.py
Khayn/2021-12-elearning-pythonana
a54e407adc8fb8c3a5fd2522735ae09cdef6540a
[ "MIT" ]
null
null
null
_zadania/2_python_controlflow/comprehension_dict_c.py
Khayn/2021-12-elearning-pythonana
a54e407adc8fb8c3a5fd2522735ae09cdef6540a
[ "MIT" ]
null
null
null
_zadania/2_python_controlflow/comprehension_dict_c.py
Khayn/2021-12-elearning-pythonana
a54e407adc8fb8c3a5fd2522735ae09cdef6540a
[ "MIT" ]
null
null
null
""" * Assignment: Comprehension Dict Reverse * Required: yes * Complexity: easy * Lines of code: 1 lines * Time: 3 min English: 1. Use dict comprehension to reverse dict: that is: change keys for values and values for keys 2. Run doctests - all must succeed Polish: 1. Użyj rozwinięcia słownikowego do odwócenia słownika: to jest: zamień klucze z wartościami i wartości z kluczami 2. Uruchom doctesty - wszystkie muszą się powieść Hints: * `dict.items()` Tests: >>> import sys; sys.tracebacklimit = 0 >>> assert type(result) is dict >>> assert all(type(x) is str for x in result.keys()) >>> assert all(type(x) is int for x in result.values()) >>> assert len(result.keys()) == 3 >>> assert 'virginica' in result.keys() >>> assert 'setosa' in result.keys() >>> assert 'versicolor' in result.keys() >>> assert 0 in result.values() >>> assert 1 in result.values() >>> assert 2 in result.values() >>> result {'virginica': 0, 'setosa': 1, 'versicolor': 2} """ DATA = { 0: 'virginica', 1: 'setosa', 2: 'versicolor'} # dict[str,int]: result = ...
23.895833
65
0.625109
0015aef0840b512b0935c1270f8969bd1f363388
5,247
py
Python
main.py
cody-shearer/mtg-data-load
bb4bee53edf8269903dcdce6d035300f7cf13b5f
[ "Apache-2.0" ]
null
null
null
main.py
cody-shearer/mtg-data-load
bb4bee53edf8269903dcdce6d035300f7cf13b5f
[ "Apache-2.0" ]
null
null
null
main.py
cody-shearer/mtg-data-load
bb4bee53edf8269903dcdce6d035300f7cf13b5f
[ "Apache-2.0" ]
null
null
null
# This file will run on startup and update card data. # All vintage legal, non token, non rear facing creature cards will be loaded. # Data is stored in a local MariaDB instance and in the file system. # All card data is pulled from the Scryfall API Oracle Card data set found here https://scryfall.com/docs/api/bulk-data # Images come from the Scryfall Imagery API for art_crop found here https://scryfall.com/docs/api/images import json import mariadb import os import requests import time import urllib3 import uuid from io import BytesIO from PIL import Image def main(): cards = [] # stop mysql, pi zero cannot handle parsing ~70 MB of json with mysql running os.system('/etc/init.d/mysql stop') for card in get_oracle_cards(): cmc = card['cmc'] legality = card['legalities']['vintage'] if 'image_uris' in card: art_uri = card['image_uris']['art_crop'] # only select the front face of 2 faced cards if 'card_faces' in card: card = card['card_faces'][0] if 'image_uris' in card: # dual faced cards sometimes have card art and front face art, front face is preferred art_uri = card['image_uris']['art_crop'] if 'Creature' in card['type_line'] and legality != 'not_legal': cards.append([ card['name'], card['mana_cost'].replace('{', '').replace('}', ''), card['type_line'], card['oracle_text'], card['artist'], card['power'], card['toughness'], cmc, art_uri]) os.system('/etc/init.d/mysql start') conn = mariadb.connect(host='127.0.0.1', user='root', password= 'pass', db='mtg') create_temp_table(conn) insert_cards(conn, cards) print('Data loaded to MySql') del cards upsert(conn) print('Data merged') # make folders as needed path = '/home/pi/card_images/' if not os.path.exists(path): os.mkdir(path) for i in range(0, 21): cmc_path = path + str(i) if not os.path.exists(cmc_path): os.mkdir(cmc_path) print('File structure created') for card in get_cards_missing_images(conn): # wait as requested by API. needed to prevent IP ban. time.sleep(0.05) try: response = requests.get(card[2]) img = Image.open(BytesIO(response.content)) except: pass else: file_path = '/home/pi/card_images/' + \ str(card[1]) + '/' + str(uuid.uuid1()) + '.png' img = img.convert(mode='L') img = img.resize((304, 245)) img.save(file_path) update_card_image(conn, card[0], file_path) print(card[0]) print('Done!') def get_oracle_cards(): http = urllib3.PoolManager() bulkrequest = http.request('GET', 'https://api.scryfall.com/bulk-data') bulkdata = json.loads(bulkrequest.data) oracleurl = [obj for obj in bulkdata['data'] if obj['name'] == 'Oracle Cards'][0]['download_uri'] return json.loads(http.request('GET', oracleurl).data) def create_temp_table(connection): cursor = connection.cursor() sql = ( 'create temporary table \ mtg.oracle_staging \ select \ name, mana_cost, type, rules, artist, power, toughness, cmc, art_uri \ from \ mtg.oracle_cards \ limit 0') cursor.execute(sql) connection.commit() def insert_cards(connection, cards): cursor = connection.cursor() sql = ( 'insert into mtg.oracle_staging \ (name, mana_cost, type, rules, artist, power, toughness, cmc, art_uri) \ values \ (%s, %s, %s, %s, %s, %s, %s, %s, %s)') cursor.executemany(sql, cards) connection.commit() def upsert(connection): cursor = connection.cursor() sql = ( 'insert into \ mtg.oracle_cards ( \ name, mana_cost, type, rules, artist, power, toughness, cmc, art_uri) \ select \ os.name, os.mana_cost, os.type, os.rules, os.artist, os.power, os.toughness, os.cmc, os.art_uri \ from \ mtg.oracle_staging os \ on duplicate key update \ name = os.name, mana_cost = os.mana_cost, type = os.type, rules = os.rules, artist = os.artist, power = os.power, toughness = os.toughness, cmc = os.cmc, art_uri = os.art_uri') cursor.execute(sql) connection.commit() def get_cards_missing_images(connection): cursor = connection.cursor() sql = ( 'select \ id, cmc, art_uri, art_file \ from \ mtg.oracle_cards \ where \ art_file is null \ and not art_uri is null') cursor.execute(sql) return cursor.fetchall() def update_card_image(connection, card_id, art_file): cursor = connection.cursor() sql = ( 'update \ mtg.oracle_cards \ set \ art_file = %s \ where \ id = %s') cursor.execute(sql, (art_file, card_id)) connection.commit() if __name__ == '__main__': main()
29.477528
188
0.581475
18ccf2d33ad60893ed9bdaf8bdebc6026ae90390
3,568
py
Python
pymc/tests/test_convergence.py
CamDavidsonPilon/pymc
26f05e60d0d414e8c3dc59d4d8fabe3ae3cfbcf9
[ "MIT" ]
1
2019-03-02T09:28:34.000Z
2019-03-02T09:28:34.000Z
pymc/tests/test_convergence.py
kforeman/pymc
5783207904097c7443bfa834c0dbcc68aa38fb76
[ "MIT" ]
null
null
null
pymc/tests/test_convergence.py
kforeman/pymc
5783207904097c7443bfa834c0dbcc68aa38fb76
[ "MIT" ]
3
2015-05-11T06:17:00.000Z
2019-06-17T23:22:46.000Z
# # # Test of convergence diagnostics # # from __future__ import with_statement from numpy.testing import assert_equal, assert_array_equal, assert_approx_equal, TestCase import unittest import numpy as np import pymc import pymc.examples.weibull_fit as model import os import warnings import copy S = pymc.MCMC(model, 'ram') S.sample(10000, 2000, progress_bar=0) # a = S.a.trace() # b = S.b.trace() # Known data for testing integrated autocorrelation time = 2.28 x = np.array([0.98073604, 0.98073604, 0.98073604, 0.98073604, 0.98073604, 0.41424798, 0.58398493, 0.27391045, 0.27391045, 0.27391045, 0.27391045, 0.27391045, 0.72886149, 0.72886149, 0.72886149, 0.67478139, 0.67478139, 0.67478139, 0.67478139, 0.67478139, 0.67478139, 0.27720909, 0.6026456, 0.6026456, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.47108579, 0.34546653, 0.34546653, 0.5441314, 0.5441314, 0.5441314, 0.5441314, 0.5441314, 0.5441314, 0.5441314, 0.5441314, 0.37344506, 0.37344506, 0.83126209, 0.83126209, 0.3439339, 0.3439339, 0.3439339, 0.34551721, 0.34551721, 0.34551721, 0.44112754, 0.44112754, 0.44112754, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.55397635, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.36521137, 0.32755692]) DIR = 'testresults' class test_geweke(TestCase): def test_simple(self): scores = pymc.geweke(S, intervals=20) a_scores = scores['a'] assert_equal(len(a_scores), 20) # If the model has converged, 95% the scores should lie # within 2 standard deviations of zero, under standard normal model assert(sum(np.abs(np.array(a_scores)[:, 1]) > 1.96) < 2) # Plot diagnostics (if plotting is available) try: from pymc.Matplot import geweke_plot as plot plot(scores, path=DIR, verbose=0) except ImportError: pass class test_gelman_rubin(TestCase): """Unit test for Gelman-Rubin diagnostic""" def test_fail(self): pass def test_simple(self): S2 = copy.copy(S) S2.sample(10000, 2000, progress_bar=0) gr = pymc.gelman_rubin(S2) for i in gr: assert_approx_equal(gr[i], 1., 2) class test_iat(TestCase): def test_simple(self): iat = pymc.iat(x) # IAT should be approximately 2.28 assert_approx_equal(iat, 2.28, 2) if __name__ == "__main__": original_filters = warnings.filters[:] warnings.simplefilter("ignore") try: import nose C = nose.config.Config(verbosity=1) nose.runmodule(config=C) finally: warnings.filters = original_filters # TODO: Restore in 2.2 # with warnings.catch_warnings(): # warnings.simplefilter('ignore', FutureWarning) # import nose # C =nose.config.Config(verbosity=1) # nose.runmodule(config=C)
31.575221
89
0.627803
bccd03aee10ff6467b759416d0a4cd969dea3d1d
3,176
py
Python
meraki_sdk/models/update_organization_branding_policy_model.py
meraki/meraki-python-sdk
9894089eb013318243ae48869cc5130eb37f80c0
[ "MIT" ]
37
2019-04-24T14:01:33.000Z
2022-01-28T01:37:21.000Z
meraki_sdk/models/update_organization_branding_policy_model.py
ankita66666666/meraki-python-sdk
9894089eb013318243ae48869cc5130eb37f80c0
[ "MIT" ]
10
2019-07-09T16:35:11.000Z
2021-12-07T03:47:53.000Z
meraki_sdk/models/update_organization_branding_policy_model.py
ankita66666666/meraki-python-sdk
9894089eb013318243ae48869cc5130eb37f80c0
[ "MIT" ]
17
2019-04-30T23:53:21.000Z
2022-02-07T22:57:44.000Z
# -*- coding: utf-8 -*- """ meraki_sdk This file was automatically generated for meraki by APIMATIC v2.0 ( https://apimatic.io ). """ import meraki_sdk.models.admin_settings_model import meraki_sdk.models.help_settings_1_model class UpdateOrganizationBrandingPolicyModel(object): """Implementation of the 'updateOrganizationBrandingPolicy' model. TODO: type model description here. Attributes: name (string): Name of the Dashboard branding policy. enabled (bool): Boolean indicating whether this policy is enabled. admin_settings (AdminSettingsModel): Settings for describing which kinds of admins this policy applies to. help_settings (HelpSettings1Model): Settings for describing the modifications to various Help page features. Each property in this object accepts one of 'default or inherit' (do not modify functionality), 'hide' (remove the section from Dashboard), or 'show' (always show the section on Dashboard). Some properties in this object also accept custom HTML used to replace the section on Dashboard; see the documentation for each property to see the allowed values. """ # Create a mapping from Model property names to API property names _names = { "name":'name', "enabled":'enabled', "admin_settings":'adminSettings', "help_settings":'helpSettings' } def __init__(self, name=None, enabled=None, admin_settings=None, help_settings=None): """Constructor for the UpdateOrganizationBrandingPolicyModel class""" # Initialize members of the class self.name = name self.enabled = enabled self.admin_settings = admin_settings self.help_settings = help_settings @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary name = dictionary.get('name') enabled = dictionary.get('enabled') admin_settings = meraki_sdk.models.admin_settings_model.AdminSettingsModel.from_dictionary(dictionary.get('adminSettings')) if dictionary.get('adminSettings') else None help_settings = meraki_sdk.models.help_settings_1_model.HelpSettings1Model.from_dictionary(dictionary.get('helpSettings')) if dictionary.get('helpSettings') else None # Return an object of this model return cls(name, enabled, admin_settings, help_settings)
36.930233
177
0.634446
29e852a50ccd38ddc1a5ef2502d94131095c12a8
567
py
Python
userbot/plugins/bye.py
n8wachT/telegrrrrrr
ad254bda0710c1a38dae21f84a45cf94031fa66d
[ "MIT" ]
null
null
null
userbot/plugins/bye.py
n8wachT/telegrrrrrr
ad254bda0710c1a38dae21f84a45cf94031fa66d
[ "MIT" ]
null
null
null
userbot/plugins/bye.py
n8wachT/telegrrrrrr
ad254bda0710c1a38dae21f84a45cf94031fa66d
[ "MIT" ]
null
null
null
# For @UniBorg # Courtesy @yasirsiddiqui """ .leave """ from telethon.tl.functions.channels import LeaveChannelRequest from userbot.utils import admin_cmd import time @borg.on(admin_cmd("bye", outgoing=True)) async def leave(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`Jaa Rha Hu Mai Toh Bc Gaand Marao.....!`") time.sleep(3) if '-' in str(e.chat_id): await borg(LeaveChannelRequest(e.chat_id)) else: await e.edit('`Sir This is Not A Chat`')
14.921053
73
0.594356
627793941435a3f084ac4e5115c255a0a002bb47
2,050
py
Python
qiskit/providers/ibmq/job/utils.py
Sahar2/qiskit-ibmq-provider
a7fa886f5b34123bf7bb903840e32b1bf4cc30b5
[ "Apache-2.0" ]
1
2020-07-14T20:09:52.000Z
2020-07-14T20:09:52.000Z
qiskit/providers/ibmq/job/utils.py
Sahar2/qiskit-ibmq-provider
a7fa886f5b34123bf7bb903840e32b1bf4cc30b5
[ "Apache-2.0" ]
null
null
null
qiskit/providers/ibmq/job/utils.py
Sahar2/qiskit-ibmq-provider
a7fa886f5b34123bf7bb903840e32b1bf4cc30b5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Utilities for working with IBM Q Jobs.""" from datetime import datetime, timezone def current_utc_time(): """Gets the current time in UTC format. Returns: str: current time in UTC format. """ datetime.utcnow().replace(tzinfo=timezone.utc).isoformat() def is_job_queued(api_job_status_response): """Checks whether a job has been queued or not. Args: api_job_status_response (dict): status response of the job. Returns: Pair[boolean, int]: a pair indicating if the job is queued and in which position. """ is_queued, position = False, 0 if 'infoQueue' in api_job_status_response: if 'status' in api_job_status_response['infoQueue']: queue_status = api_job_status_response['infoQueue']['status'] is_queued = queue_status == 'PENDING_IN_QUEUE' if 'position' in api_job_status_response['infoQueue']: position = api_job_status_response['infoQueue']['position'] return is_queued, position def build_error_report(results): """Build an user-friendly error report for a failed job. Args: results (dict): result section of the job response. Returns: str: the error report. """ error_list = [] for index, result in enumerate(results): if not result['success']: error_list.append('Experiment {}: {}'.format(index, result['status'])) error_report = 'The following experiments failed:\n{}'.format('\n'.join(error_list)) return error_report
31.538462
88
0.681463
ccf767d357292de4362302b8eb9b50f1b9ba7416
22,256
py
Python
test/functional/test_framework/mininode.py
lihuanghai/bitcoin
624da15f8c55219f4ca3e0877a17799990299504
[ "MIT" ]
3
2021-11-15T14:58:10.000Z
2021-11-17T09:59:42.000Z
test/functional/test_framework/mininode.py
lihuanghai/bitcoin
624da15f8c55219f4ca3e0877a17799990299504
[ "MIT" ]
1
2017-01-08T20:32:43.000Z
2017-01-08T20:32:43.000Z
test/functional/test_framework/mininode.py
lihuanghai/bitcoin
624da15f8c55219f4ca3e0877a17799990299504
[ "MIT" ]
1
2019-09-02T00:49:46.000Z
2019-09-02T00:49:46.000Z
#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin P2P network half-a-node. This python code was modified from ArtForz' public domain half-a-node, as found in the mini-node branch of http://github.com/jgarzik/pynode. P2PConnection: A low-level connection object to a node's P2P interface P2PInterface: A high-level interface object for communicating to a node over P2P P2PDataStore: A p2p interface class that keeps a store of transactions and blocks and can respond correctly to getdata and getheaders messages""" import asyncio from collections import defaultdict from io import BytesIO import logging import struct import sys import threading from test_framework.messages import * from test_framework.util import wait_until logger = logging.getLogger("TestFramework.mininode") MESSAGEMAP = { b"addr": msg_addr, b"block": msg_block, b"blocktxn": msg_blocktxn, b"cmpctblock": msg_cmpctblock, b"feefilter": msg_feefilter, b"getaddr": msg_getaddr, b"getblocks": msg_getblocks, b"getblocktxn": msg_getblocktxn, b"getdata": msg_getdata, b"getheaders": msg_getheaders, b"headers": msg_headers, b"inv": msg_inv, b"mempool": msg_mempool, b"ping": msg_ping, b"pong": msg_pong, b"reject": msg_reject, b"sendcmpct": msg_sendcmpct, b"sendheaders": msg_sendheaders, b"tx": msg_tx, b"verack": msg_verack, b"version": msg_version, } MAGIC_BYTES = { "mainnet": b"\xf9\xbe\xb4\xd9", # mainnet "testnet3": b"\x0b\x11\x09\x07", # testnet3 "regtest": b"\xfa\xbf\xb5\xda", # regtest } class P2PConnection(asyncio.Protocol): """A low-level connection object to a node's P2P interface. This class is responsible for: - opening and closing the TCP connection to the node - reading bytes from and writing bytes to the socket - deserializing and serializing the P2P message header - logging messages as they are sent and received This class contains no logic for handing the P2P message payloads. It must be sub-classed and the on_message() callback overridden.""" def __init__(self): # The underlying transport of the connection. # Should only call methods on this from the NetworkThread, c.f. call_soon_threadsafe self._transport = None @property def is_connected(self): return self._transport is not None def peer_connect(self, dstaddr, dstport, net="regtest"): assert not self.is_connected self.dstaddr = dstaddr self.dstport = dstport # The initial message to send after the connection was made: self.on_connection_send_msg = None self.recvbuf = b"" self.network = net logger.debug('Connecting to Bitcoin Node: %s:%d' % (self.dstaddr, self.dstport)) loop = NetworkThread.network_event_loop conn_gen_unsafe = loop.create_connection(lambda: self, host=self.dstaddr, port=self.dstport) conn_gen = lambda: loop.call_soon_threadsafe(loop.create_task, conn_gen_unsafe) return conn_gen def peer_disconnect(self): # Connection could have already been closed by other end. NetworkThread.network_event_loop.call_soon_threadsafe(lambda: self._transport and self._transport.abort()) # Connection and disconnection methods def connection_made(self, transport): """asyncio callback when a connection is opened.""" assert not self._transport logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport)) self._transport = transport if self.on_connection_send_msg: self.send_message(self.on_connection_send_msg) self.on_connection_send_msg = None # Never used again self.on_open() def connection_lost(self, exc): """asyncio callback when a connection is closed.""" if exc: logger.warning("Connection lost to {}:{} due to {}".format(self.dstaddr, self.dstport, exc)) else: logger.debug("Closed connection to: %s:%d" % (self.dstaddr, self.dstport)) self._transport = None self.recvbuf = b"" self.on_close() # Socket read methods def data_received(self, t): """asyncio callback when data is read from the socket.""" if len(t) > 0: self.recvbuf += t self._on_data() def _on_data(self): """Try to read P2P messages from the recv buffer. This method reads data from the buffer in a loop. It deserializes, parses and verifies the P2P header, then passes the P2P payload to the on_message callback for processing.""" try: while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = self.recvbuf[4+12+4:4+12+4+4] if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen: return msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("got bad checksum " + repr(self.recvbuf)) self.recvbuf = self.recvbuf[4+12+4+4+msglen:] if command not in MESSAGEMAP: raise ValueError("Received unknown command from %s:%d: '%s' %s" % (self.dstaddr, self.dstport, command, repr(msg))) f = BytesIO(msg) t = MESSAGEMAP[command]() t.deserialize(f) self._log_message("receive", t) self.on_message(t) except Exception as e: logger.exception('Error reading message:', repr(e)) raise def on_message(self, message): """Callback for processing a P2P payload. Must be overridden by derived class.""" raise NotImplementedError # Socket write methods def send_message(self, message): """Send a P2P message over the socket. This method takes a P2P payload, builds the P2P header and adds the message to the send buffer to be sent over the socket.""" if not self.is_connected: raise IOError('Not connected') self._log_message("send", message) tmsg = self._build_message(message) def maybe_write(): if not self._transport: return # Python <3.4.4 does not have is_closing, so we have to check for # its existence explicitly as long as Bitcoin Core supports all # Python 3.4 versions. if hasattr(self._transport, 'is_closing') and self._transport.is_closing(): return self._transport.write(tmsg) NetworkThread.network_event_loop.call_soon_threadsafe(maybe_write) # Class utility methods def _build_message(self, message): """Build a serialized P2P message""" command = message.command data = message.serialize() tmsg = MAGIC_BYTES[self.network] tmsg += command tmsg += b"\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data return tmsg def _log_message(self, direction, msg): """Logs a message being sent or received over the connection.""" if direction == "send": log_message = "Send message to " elif direction == "receive": log_message = "Received message from " log_message += "%s:%d: %s" % (self.dstaddr, self.dstport, repr(msg)[:500]) if len(log_message) > 500: log_message += "... (msg truncated)" logger.debug(log_message) class P2PInterface(P2PConnection): """A high-level P2P interface class for communicating with a Bitcoin node. This class provides high-level callbacks for processing P2P message payloads, as well as convenience methods for interacting with the node over P2P. Individual testcases should subclass this and override the on_* methods if they want to alter message handling behaviour.""" def __init__(self): super().__init__() # Track number of messages of each type received and the most recent # message of each type self.message_count = defaultdict(int) self.last_message = {} # A count of the number of ping messages we've sent to the node self.ping_counter = 1 # The network services received from the peer self.nServices = 0 def peer_connect(self, *args, services=NODE_NETWORK|NODE_WITNESS, send_version=True, **kwargs): create_conn = super().peer_connect(*args, **kwargs) if send_version: # Send a version msg vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.on_connection_send_msg = vt # Will be sent soon after connection_made return create_conn # Message receiving methods def on_message(self, message): """Receive message and dispatch message to appropriate callback. We keep a count of how many of each message type has been received and the most recent message of each type.""" with mininode_lock: try: command = message.command.decode('ascii') self.message_count[command] += 1 self.last_message[command] = message getattr(self, 'on_' + command)(message) except: print("ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0])) raise # Callback methods. Can be overridden by subclasses in individual test # cases to provide custom message handling behaviour. def on_open(self): pass def on_close(self): pass def on_addr(self, message): pass def on_block(self, message): pass def on_blocktxn(self, message): pass def on_cmpctblock(self, message): pass def on_feefilter(self, message): pass def on_getaddr(self, message): pass def on_getblocks(self, message): pass def on_getblocktxn(self, message): pass def on_getdata(self, message): pass def on_getheaders(self, message): pass def on_headers(self, message): pass def on_mempool(self, message): pass def on_pong(self, message): pass def on_reject(self, message): pass def on_sendcmpct(self, message): pass def on_sendheaders(self, message): pass def on_tx(self, message): pass def on_inv(self, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): self.send_message(want) def on_ping(self, message): self.send_message(msg_pong(message.nonce)) def on_verack(self, message): self.verack_received = True def on_version(self, message): assert message.nVersion >= MIN_VERSION_SUPPORTED, "Version {} received. Test framework only supports versions greater than {}".format(message.nVersion, MIN_VERSION_SUPPORTED) self.send_message(msg_verack()) self.nServices = message.nServices # Connection helper methods def wait_for_disconnect(self, timeout=60): test_function = lambda: not self.is_connected wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message receiving helper methods def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getdata(self, timeout=60): """Waits for a getdata message. Receiving any getdata message will satisfy the predicate. the last_message["getdata"] value must be explicitly cleared before calling this method, or this will return immediately with success. TODO: change this method to take a hash value and only return true if the correct block/tx has been requested.""" test_function = lambda: self.last_message.get("getdata") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getheaders(self, timeout=60): """Waits for a getheaders message. Receiving any getheaders message will satisfy the predicate. the last_message["getheaders"] value must be explicitly cleared before calling this method, or this will return immediately with success. TODO: change this method to take a hash value and only return true if the correct block header has been requested.""" test_function = lambda: self.last_message.get("getheaders") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_inv(self, expected_inv, timeout=60): """Waits for an INV message and checks that the first inv object in the message was as expected.""" if len(expected_inv) > 1: raise NotImplementedError("wait_for_inv() will only verify the first inv object") test_function = lambda: self.last_message.get("inv") and \ self.last_message["inv"].inv[0].type == expected_inv[0].type and \ self.last_message["inv"].inv[0].hash == expected_inv[0].hash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_verack(self, timeout=60): test_function = lambda: self.message_count["verack"] wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message sending helper functions def send_and_ping(self, message): self.send_message(message) self.sync_with_ping() # Sync up with the node def sync_with_ping(self, timeout=60): self.send_message(msg_ping(nonce=self.ping_counter)) test_function = lambda: self.last_message.get("pong") and self.last_message["pong"].nonce == self.ping_counter wait_until(test_function, timeout=timeout, lock=mininode_lock) self.ping_counter += 1 # One lock for synchronizing all data access between the network event loop (see # NetworkThread below) and the thread running the test logic. For simplicity, # P2PConnection acquires this lock whenever delivering a message to a P2PInterface. # This lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the P2PInterface or P2PConnection. mininode_lock = threading.RLock() class NetworkThread(threading.Thread): network_event_loop = None def __init__(self): super().__init__(name="NetworkThread") # There is only one event loop and no more than one thread must be created assert not self.network_event_loop NetworkThread.network_event_loop = asyncio.new_event_loop() def run(self): """Start the network thread.""" self.network_event_loop.run_forever() def close(self, timeout=10): """Close the connections and network event loop.""" self.network_event_loop.call_soon_threadsafe(self.network_event_loop.stop) wait_until(lambda: not self.network_event_loop.is_running(), timeout=timeout) self.network_event_loop.close() self.join(timeout) class P2PDataStore(P2PInterface): """A P2P data store class. Keeps a block and transaction store and responds correctly to getdata and getheaders requests.""" def __init__(self): super().__init__() self.reject_code_received = None self.reject_reason_received = None # store of blocks. key is block hash, value is a CBlock object self.block_store = {} self.last_block_hash = '' # store of txs. key is txid, value is a CTransaction object self.tx_store = {} self.getdata_requests = [] def on_getdata(self, message): """Check for the tx/block in our stores and if found, reply with an inv message.""" for inv in message.inv: self.getdata_requests.append(inv.hash) if (inv.type & MSG_TYPE_MASK) == MSG_TX and inv.hash in self.tx_store.keys(): self.send_message(msg_tx(self.tx_store[inv.hash])) elif (inv.type & MSG_TYPE_MASK) == MSG_BLOCK and inv.hash in self.block_store.keys(): self.send_message(msg_block(self.block_store[inv.hash])) else: logger.debug('getdata message type {} received.'.format(hex(inv.type))) def on_getheaders(self, message): """Search back through our block store for the locator, and reply with a headers message if found.""" locator, hash_stop = message.locator, message.hashstop # Assume that the most recent block added is the tip if not self.block_store: return headers_list = [self.block_store[self.last_block_hash]] maxheaders = 2000 while headers_list[-1].sha256 not in locator.vHave: # Walk back through the block store, adding headers to headers_list # as we go. prev_block_hash = headers_list[-1].hashPrevBlock if prev_block_hash in self.block_store: prev_block_header = CBlockHeader(self.block_store[prev_block_hash]) headers_list.append(prev_block_header) if prev_block_header.sha256 == hash_stop: # if this is the hashstop header, stop here break else: logger.debug('block hash {} not found in block store'.format(hex(prev_block_hash))) break # Truncate the list if there are too many headers headers_list = headers_list[:-maxheaders - 1:-1] response = msg_headers(headers_list) if response is not None: self.send_message(response) def on_reject(self, message): """Store reject reason and code for testing.""" self.reject_code_received = message.code self.reject_reason_received = message.reason def send_blocks_and_test(self, blocks, rpc, success=True, request_block=True, reject_code=None, reject_reason=None, timeout=60): """Send blocks to test node and test whether the tip advances. - add all blocks to our block_store - send a headers message for the final block - the on_getheaders handler will ensure that any getheaders are responded to - if request_block is True: wait for getdata for each of the blocks. The on_getdata handler will ensure that any getdata messages are responded to - if success is True: assert that the node's tip advances to the most recent block - if success is False: assert that the node's tip doesn't advance - if reject_code and reject_reason are set: assert that the correct reject message is received""" with mininode_lock: self.reject_code_received = None self.reject_reason_received = None for block in blocks: self.block_store[block.sha256] = block self.last_block_hash = block.sha256 self.send_message(msg_headers([CBlockHeader(blocks[-1])])) if request_block: wait_until(lambda: blocks[-1].sha256 in self.getdata_requests, timeout=timeout, lock=mininode_lock) if success: wait_until(lambda: rpc.getbestblockhash() == blocks[-1].hash, timeout=timeout) else: assert rpc.getbestblockhash() != blocks[-1].hash if reject_code is not None: wait_until(lambda: self.reject_code_received == reject_code, lock=mininode_lock) if reject_reason is not None: wait_until(lambda: self.reject_reason_received == reject_reason, lock=mininode_lock) def send_txs_and_test(self, txs, rpc, success=True, expect_disconnect=False, reject_code=None, reject_reason=None): """Send txs to test node and test whether they're accepted to the mempool. - add all txs to our tx_store - send tx messages for all txs - if success is True/False: assert that the txs are/are not accepted to the mempool - if expect_disconnect is True: Skip the sync with ping - if reject_code and reject_reason are set: assert that the correct reject message is received.""" with mininode_lock: self.reject_code_received = None self.reject_reason_received = None for tx in txs: self.tx_store[tx.sha256] = tx for tx in txs: self.send_message(msg_tx(tx)) if expect_disconnect: self.wait_for_disconnect() else: self.sync_with_ping() raw_mempool = rpc.getrawmempool() if success: # Check that all txs are now in the mempool for tx in txs: assert tx.hash in raw_mempool, "{} not found in mempool".format(tx.hash) else: # Check that none of the txs are now in the mempool for tx in txs: assert tx.hash not in raw_mempool, "{} tx found in mempool".format(tx.hash) if reject_code is not None: wait_until(lambda: self.reject_code_received == reject_code, lock=mininode_lock) if reject_reason is not None: wait_until(lambda: self.reject_reason_received == reject_reason, lock=mininode_lock)
40.539162
182
0.649937
b926d175e8b4cf6ebcae58efc449be5ad52207b9
18,648
py
Python
nova/tests/api/openstack/compute/plugins/v3/test_keypairs.py
SnabbCo/nova
d156d7fdf241569da2c27ae02ec88e6ef448f7e2
[ "Apache-2.0" ]
2
2016-04-19T08:20:39.000Z
2021-10-03T16:00:37.000Z
nova/tests/api/openstack/compute/plugins/v3/test_keypairs.py
SnabbCo/nova
d156d7fdf241569da2c27ae02ec88e6ef448f7e2
[ "Apache-2.0" ]
null
null
null
nova/tests/api/openstack/compute/plugins/v3/test_keypairs.py
SnabbCo/nova
d156d7fdf241569da2c27ae02ec88e6ef448f7e2
[ "Apache-2.0" ]
1
2020-07-24T06:34:03.000Z
2020-07-24T06:34:03.000Z
# Copyright 2011 Eldar Nugaev # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob from nova.api.openstack.compute.plugins.v3 import keypairs from nova import db from nova import exception from nova.openstack.common import jsonutils from nova.openstack.common import policy as common_policy from nova import policy from nova import quota from nova import test from nova.tests.api.openstack import fakes from nova.tests.objects import test_keypair QUOTAS = quota.QUOTAS keypair_data = { 'public_key': 'FAKE_KEY', 'fingerprint': 'FAKE_FINGERPRINT', } def fake_keypair(name): return dict(test_keypair.fake_keypair, name=name, **keypair_data) def db_key_pair_get_all_by_user(self, user_id): return [fake_keypair('FAKE')] def db_key_pair_create(self, keypair): return fake_keypair(name=keypair['name']) def db_key_pair_destroy(context, user_id, name): if not (user_id and name): raise Exception() def db_key_pair_create_duplicate(context, keypair): raise exception.KeyPairExists(key_name=keypair.get('name', '')) class KeypairsTest(test.TestCase): def setUp(self): super(KeypairsTest, self).setUp() self.Controller = keypairs.Controller() fakes.stub_out_networking(self.stubs) fakes.stub_out_rate_limiting(self.stubs) self.stubs.Set(db, "key_pair_get_all_by_user", db_key_pair_get_all_by_user) self.stubs.Set(db, "key_pair_create", db_key_pair_create) self.stubs.Set(db, "key_pair_destroy", db_key_pair_destroy) self.flags( osapi_compute_extension=[ 'nova.api.openstack.compute.contrib.select_extensions'], osapi_compute_ext_list=['Keypairs']) self.app = fakes.wsgi_app_v3(init_only=('keypairs', 'servers')) def test_keypair_list(self): req = webob.Request.blank('/v3/keypairs') res = req.get_response(self.app) self.assertEqual(res.status_int, 200) res_dict = jsonutils.loads(res.body) response = {'keypairs': [{'keypair': dict(keypair_data, name='FAKE')}]} self.assertEqual(res_dict, response) def test_keypair_create(self): body = {'keypair': {'name': 'create_test'}} req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 201) res_dict = jsonutils.loads(res.body) self.assertTrue(len(res_dict['keypair']['fingerprint']) > 0) self.assertTrue(len(res_dict['keypair']['private_key']) > 0) def test_keypair_create_without_keypair(self): body = {'foo': None} req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 400) jsonutils.loads(res.body) def test_keypair_create_without_name(self): body = {'keypair': {'public_key': 'public key'}} req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 400) res_dict = jsonutils.loads(res.body) self.assertEqual("Invalid input for field/attribute keypair. " "Value: {u'public_key': u'public key'}. " "'name' is a required property", res_dict['badRequest']['message']) def test_keypair_create_with_empty_name(self): body = {'keypair': {'name': ''}} req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 400) res_dict = jsonutils.loads(res.body) self.assertEqual("Invalid input for field/attribute name. " "Value: . u'' is too short", res_dict['badRequest']['message']) def test_keypair_create_with_name_too_long(self): name = 'a' * 256 body = { 'keypair': { 'name': name } } req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 400) res_dict = jsonutils.loads(res.body) expected_message = "Invalid input for field/attribute name. "\ "Value: %s. u'%s' is too long" % (name, name) self.assertEqual(expected_message, res_dict['badRequest']['message']) def test_keypair_create_with_non_alphanumeric_name(self): body = { 'keypair': { 'name': 'test/keypair' } } req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) res_dict = jsonutils.loads(res.body) self.assertEqual(res.status_int, 400) res_dict = jsonutils.loads(res.body) self.assertEqual( "Invalid input for field/attribute name. Value: test/keypair. " "u'test/keypair' does not match '^(?! )[a-zA-Z0-9. _-]+(?<! )$'", res_dict['badRequest']['message']) def test_keypair_import(self): body = { 'keypair': { 'name': 'create_test', 'public_key': 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDBYIznA' 'x9D7118Q1VKGpXy2HDiKyUTM8XcUuhQpo0srqb9rboUp4' 'a9NmCwpWpeElDLuva707GOUnfaBAvHBwsRXyxHJjRaI6Y' 'Qj2oLJwqvaSaWUbyT1vtryRqy6J3TecN0WINY71f4uymi' 'MZP0wby4bKBcYnac8KiCIlvkEl0ETjkOGUq8OyWRmn7lj' 'j5SESEUdBP0JnuTFKddWTU/wD6wydeJaUhBTqOlHn0kX1' 'GyqoNTE1UEhcM5ZRWgfUZfTjVyDF2kGj3vJLCJtJ8LoGc' 'j7YaN4uPg1rBle+izwE/tLonRrds+cev8p6krSSrxWOwB' 'bHkXa6OciiJDvkRzJXzf', }, } req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 201) # FIXME(ja): sholud we check that public_key was sent to create? res_dict = jsonutils.loads(res.body) self.assertTrue(len(res_dict['keypair']['fingerprint']) > 0) self.assertNotIn('private_key', res_dict['keypair']) def test_keypair_import_quota_limit(self): def fake_quotas_count(self, context, resource, *args, **kwargs): return 100 self.stubs.Set(QUOTAS, "count", fake_quotas_count) body = { 'keypair': { 'name': 'create_test', 'public_key': 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDBYIznA' 'x9D7118Q1VKGpXy2HDiKyUTM8XcUuhQpo0srqb9rboUp4' 'a9NmCwpWpeElDLuva707GOUnfaBAvHBwsRXyxHJjRaI6Y' 'Qj2oLJwqvaSaWUbyT1vtryRqy6J3TecN0WINY71f4uymi' 'MZP0wby4bKBcYnac8KiCIlvkEl0ETjkOGUq8OyWRmn7lj' 'j5SESEUdBP0JnuTFKddWTU/wD6wydeJaUhBTqOlHn0kX1' 'GyqoNTE1UEhcM5ZRWgfUZfTjVyDF2kGj3vJLCJtJ8LoGc' 'j7YaN4uPg1rBle+izwE/tLonRrds+cev8p6krSSrxWOwB' 'bHkXa6OciiJDvkRzJXzf', }, } req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 413) res_dict = jsonutils.loads(res.body) self.assertEqual( "Quota exceeded, too many key pairs.", res_dict['overLimit']['message']) def test_keypair_create_quota_limit(self): def fake_quotas_count(self, context, resource, *args, **kwargs): return 100 self.stubs.Set(QUOTAS, "count", fake_quotas_count) body = { 'keypair': { 'name': 'create_test', }, } req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 413) res_dict = jsonutils.loads(res.body) self.assertEqual( "Quota exceeded, too many key pairs.", res_dict['overLimit']['message']) def test_keypair_create_duplicate(self): self.stubs.Set(db, "key_pair_create", db_key_pair_create_duplicate) body = {'keypair': {'name': 'create_duplicate'}} req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 409) res_dict = jsonutils.loads(res.body) self.assertEqual( "Key pair 'create_duplicate' already exists.", res_dict['conflictingRequest']['message']) def test_keypair_import_bad_key(self): body = { 'keypair': { 'name': 'create_test', 'public_key': 'ssh-what negative', }, } req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 400) res_dict = jsonutils.loads(res.body) self.assertEqual( 'Keypair data is invalid: failed to generate fingerprint', res_dict['badRequest']['message']) def test_keypair_delete(self): req = webob.Request.blank('/v3/keypairs/FAKE') req.method = 'DELETE' req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 204) def test_keypair_get_keypair_not_found(self): req = webob.Request.blank('/v3/keypairs/DOESNOTEXIST') res = req.get_response(self.app) self.assertEqual(res.status_int, 404) def test_keypair_delete_not_found(self): def db_key_pair_get_not_found(context, user_id, name): raise exception.KeypairNotFound(user_id=user_id, name=name) self.stubs.Set(db, "key_pair_get", db_key_pair_get_not_found) req = webob.Request.blank('/v3/keypairs/WHAT') res = req.get_response(self.app) self.assertEqual(res.status_int, 404) def test_keypair_show(self): def _db_key_pair_get(context, user_id, name): return dict(test_keypair.fake_keypair, name='foo', public_key='XXX', fingerprint='YYY') self.stubs.Set(db, "key_pair_get", _db_key_pair_get) req = webob.Request.blank('/v3/keypairs/FAKE') req.method = 'GET' req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) res_dict = jsonutils.loads(res.body) self.assertEqual(res.status_int, 200) self.assertEqual('foo', res_dict['keypair']['name']) self.assertEqual('XXX', res_dict['keypair']['public_key']) self.assertEqual('YYY', res_dict['keypair']['fingerprint']) def test_keypair_show_not_found(self): def _db_key_pair_get(context, user_id, name): raise exception.KeypairNotFound(user_id=user_id, name=name) self.stubs.Set(db, "key_pair_get", _db_key_pair_get) req = webob.Request.blank('/v3/keypairs/FAKE') req.method = 'GET' req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) self.assertEqual(res.status_int, 404) def test_show_server(self): self.stubs.Set(db, 'instance_get', fakes.fake_instance_get()) self.stubs.Set(db, 'instance_get_by_uuid', fakes.fake_instance_get()) req = webob.Request.blank('/v3/servers/1') req.headers['Content-Type'] = 'application/json' response = req.get_response(self.app) self.assertEqual(response.status_int, 200) res_dict = jsonutils.loads(response.body) self.assertIn('key_name', res_dict['server']) self.assertEqual(res_dict['server']['key_name'], '') def test_detail_servers(self): self.stubs.Set(db, 'instance_get_all_by_filters', fakes.fake_instance_get_all_by_filters()) self.stubs.Set(db, 'instance_get_by_uuid', fakes.fake_instance_get()) req = webob.Request.blank('/v3/servers/detail') res = req.get_response(self.app) server_dicts = jsonutils.loads(res.body)['servers'] self.assertEqual(len(server_dicts), 5) for server_dict in server_dicts: self.assertIn('key_name', server_dict) self.assertEqual(server_dict['key_name'], '') def test_keypair_create_with_invalid_keypair_body(self): body = {'alpha': {'name': 'create_test'}} req = webob.Request.blank('/v3/keypairs') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['Content-Type'] = 'application/json' res = req.get_response(self.app) jsonutils.loads(res.body) self.assertEqual(res.status_int, 400) class KeypairPolicyTest(test.TestCase): def setUp(self): super(KeypairPolicyTest, self).setUp() self.KeyPairController = keypairs.KeypairController() def _db_key_pair_get(context, user_id, name): return dict(test_keypair.fake_keypair, name='foo', public_key='XXX', fingerprint='YYY') self.stubs.Set(db, "key_pair_get", _db_key_pair_get) self.stubs.Set(db, "key_pair_get_all_by_user", db_key_pair_get_all_by_user) self.stubs.Set(db, "key_pair_create", db_key_pair_create) self.stubs.Set(db, "key_pair_destroy", db_key_pair_destroy) def test_keypair_list_fail_policy(self): rules = {'compute_extension:v3:keypairs:index': common_policy.parse_rule('role:admin')} policy.set_rules(rules) req = fakes.HTTPRequestV3.blank('/keypairs') self.assertRaises(exception.Forbidden, self.KeyPairController.index, req) def test_keypair_list_pass_policy(self): rules = {'compute_extension:v3:keypairs:index': common_policy.parse_rule('')} policy.set_rules(rules) req = fakes.HTTPRequestV3.blank('/keypairs') res = self.KeyPairController.index(req) self.assertIn('keypairs', res) def test_keypair_show_fail_policy(self): rules = {'compute_extension:v3:keypairs:show': common_policy.parse_rule('role:admin')} policy.set_rules(rules) req = fakes.HTTPRequestV3.blank('/keypairs/FAKE') self.assertRaises(exception.Forbidden, self.KeyPairController.show, req, 'FAKE') def test_keypair_show_pass_policy(self): rules = {'compute_extension:v3:keypairs:show': common_policy.parse_rule('')} policy.set_rules(rules) req = fakes.HTTPRequestV3.blank('/keypairs/FAKE') res = self.KeyPairController.show(req, 'FAKE') self.assertIn('keypair', res) def test_keypair_create_fail_policy(self): rules = {'compute_extension:v3:keypairs:create': common_policy.parse_rule('role:admin')} policy.set_rules(rules) req = fakes.HTTPRequestV3.blank('/keypairs') req.method = 'POST' self.assertRaises(exception.Forbidden, self.KeyPairController.create, req, body={'keypair': {'name': 'create_test'}}) def test_keypair_create_pass_policy(self): body = {'keypair': {'name': 'create_test'}} rules = {'compute_extension:v3:keypairs:create': common_policy.parse_rule('')} policy.set_rules(rules) req = fakes.HTTPRequestV3.blank('/keypairs') req.method = 'POST' res = self.KeyPairController.create(req, body=body) self.assertIn('keypair', res) def test_keypair_delete_fail_policy(self): rules = {'compute_extension:v3:keypairs:delete': common_policy.parse_rule('role:admin')} policy.set_rules(rules) req = fakes.HTTPRequestV3.blank('/keypairs/FAKE') req.method = 'DELETE' self.assertRaises(exception.Forbidden, self.KeyPairController.delete, req, 'FAKE') def test_keypair_delete_pass_policy(self): rules = {'compute_extension:v3:keypairs:delete': common_policy.parse_rule('')} policy.set_rules(rules) req = fakes.HTTPRequestV3.blank('/keypairs/FAKE') req.method = 'DELETE' self.assertIsNone(self.KeyPairController.delete(req, 'FAKE'))
39.424947
79
0.61036
20d8f1aed3be39447ba8899b5f580669c3afed1f
76
py
Python
Ygdra.Python/ygdra/__init__.py
bsherwin/ProjectY
1fdbc595030c006b252530e685a6d4fd313a13c2
[ "MIT" ]
null
null
null
Ygdra.Python/ygdra/__init__.py
bsherwin/ProjectY
1fdbc595030c006b252530e685a6d4fd313a13c2
[ "MIT" ]
null
null
null
Ygdra.Python/ygdra/__init__.py
bsherwin/ProjectY
1fdbc595030c006b252530e685a6d4fd313a13c2
[ "MIT" ]
null
null
null
from .ygdra import * from .dataprofile import * from .lambdaYgdra import *
15.2
26
0.75
1a1a98422eca65eed3ccbc8120c323eebc7ef9c4
1,347
py
Python
wyrd/constrained_types/primitives.py
meadsteve/constrained_types
2a3b87a0b14be70ee2de963acf0eebf302dfe1d9
[ "MIT" ]
1
2021-05-03T08:53:33.000Z
2021-05-03T08:53:33.000Z
wyrd/constrained_types/primitives.py
meadsteve/constrained_types
2a3b87a0b14be70ee2de963acf0eebf302dfe1d9
[ "MIT" ]
16
2020-10-11T07:46:39.000Z
2020-10-25T13:29:05.000Z
wyrd/constrained_types/primitives.py
meadsteve/constrained_types
2a3b87a0b14be70ee2de963acf0eebf302dfe1d9
[ "MIT" ]
null
null
null
from typing import Any, ClassVar, List from .core import Constrained, Constraint from .helpers import validate class ConstrainedInt(int, Constrained[int]): _constraints: ClassVar[List[Constraint]] = [] def __init__(self, value: Any): super(int, self).__init__() self._validate(self) @classmethod def _validate(cls, value): validate(value, cls._constraints) # For integration with pydantic @classmethod def __get_validators__(cls): yield lambda v: cls(v) class ConstrainedString(str, Constrained[str]): _constraints: ClassVar[List[Constraint]] = [] def __init__(self, value: Any): super(str, self).__init__() self._validate(self) @classmethod def _validate(cls, value): validate(value, cls._constraints) # For integration with pydantic @classmethod def __get_validators__(cls): yield lambda v: cls(v) class ConstrainedFloat(float, Constrained[float]): _constraints: ClassVar[List[Constraint]] = [] def __init__(self, value: Any): super(float, self).__init__() self._validate(self) @classmethod def _validate(cls, value): validate(value, cls._constraints) # For integration with pydantic @classmethod def __get_validators__(cls): yield lambda v: cls(v)
24.053571
50
0.668151
641560f6de282f94cacc78333ab05b94c4181fa6
2,110
py
Python
package/spack-savanna/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
1
2018-07-17T07:45:09.000Z
2018-07-17T07:45:09.000Z
package/spack-savanna/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
null
null
null
package/spack-savanna/package.py
ctuning/ck-spack
307934efce1be2d4f104251275c82fbc70127105
[ "BSD-3-Clause" ]
null
null
null
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the LICENSE file for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * from distutils.dir_util import copy_tree class Savanna(MakefilePackage): """CODARcode Savanna runtime framework for high performance, workflow management using Swift/T and ADIOS. """ homepage = "https://github.com/CODARcode/savanna" url = "https://github.com/CODARcode/savanna/archive/v0.5.tar.gz" version('develop', git='https://github.com/CODARcode/savanna.git', branch='master', submodules=True) version('0.5', git='https://github.com/CODARcode/savanna.git', tag='0.5', submodules=True) variant('tau', default=False, description='Enable TAU profiling support') depends_on('mpi') depends_on('stc') depends_on('adios +fortran +zlib +sz +zfp +staging') depends_on('mpix-launch-swift') depends_on('tau', when='+tau') def install(self, spec, prefix): copy_tree('.', prefix)
40.576923
78
0.671564
9c6ea378f78734db2a600c111810107590bf502a
4,129
py
Python
setup.py
fatelei/sqlfluff
c5bdd2203c75df7b98ed233a9b36e5628cd43c90
[ "MIT" ]
3,024
2020-10-01T11:03:51.000Z
2022-03-31T16:42:00.000Z
setup.py
fatelei/sqlfluff
c5bdd2203c75df7b98ed233a9b36e5628cd43c90
[ "MIT" ]
2,395
2020-09-30T12:59:21.000Z
2022-03-31T22:05:29.000Z
setup.py
fatelei/sqlfluff
c5bdd2203c75df7b98ed233a9b36e5628cd43c90
[ "MIT" ]
246
2020-10-02T17:08:03.000Z
2022-03-30T17:43:51.000Z
#!/usr/bin/env python """The script for setting up sqlfluff.""" import sys if sys.version_info[0] < 3: raise Exception("SQLFluff does not support Python 2. Please upgrade to Python 3.") import configparser from os.path import dirname from os.path import join from setuptools import find_packages, setup # Get the global config info as currently stated # (we use the config file to avoid actually loading any python here) config = configparser.ConfigParser() config.read(["src/sqlfluff/config.ini"]) version = config.get("sqlfluff", "version") def read(*names, **kwargs): """Read a file and return the contents as a string.""" return open( join(dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8") ).read() setup( name="sqlfluff", version=version, license="MIT License", description="The SQL Linter for Humans", long_description=read("README.md"), # Make sure pypi is expecting markdown! long_description_content_type="text/markdown", author="Alan Cruickshank", author_email="alan@designingoverload.com", url="https://github.com/sqlfluff/sqlfluff", python_requires=">=3.6", keywords=[ "sqlfluff", "sql", "linter", "formatter", "bigquery", "exasol", "hive", "mysql", "postgres", "redshift", "snowflake", "sqlite", "teradata", "tsql", "dbt", ], project_urls={ "Homepage": "https://www.sqlfluff.com", "Documentation": "https://docs.sqlfluff.com", "Changes": "https://github.com/sqlfluff/sqlfluff/blob/main/CHANGELOG.md", "Source": "https://github.com/sqlfluff/sqlfluff", "Issue Tracker": "https://github.com/sqlfluff/sqlfluff/issues", "Twitter": "https://twitter.com/SQLFluff", "Chat": "https://github.com/sqlfluff/sqlfluff#sqlfluff-on-slack", }, packages=find_packages(where="src"), package_dir={"": "src"}, include_package_data=True, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers "Development Status :: 4 - Beta", # 'Development Status :: 5 - Production/Stable', "Environment :: Console", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: Unix", "Operating System :: POSIX", "Operating System :: MacOS", "Operating System :: Microsoft :: Windows", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Utilities", "Topic :: Software Development :: Quality Assurance", ], install_requires=[ # Core "click>=7.1", "colorama>=0.3", "configparser", "oyaml", "Jinja2", # Used for diffcover plugin "diff-cover>=2.5.0", # Used for .sqlfluffignore "pathspec", # Used for finding os-specific application config dirs "appdirs", # Cached property for performance gains "cached-property", # dataclasses backport for python 3.6 "dataclasses; python_version < '3.7'", # better type hints for older python versions "typing_extensions", # We provide a testing library for plugins in sqlfluff.testing "pytest", # For parsing pyproject.toml "toml", # For returning exceptions from multiprocessing.Pool.map() "tblib", ], entry_points={ "console_scripts": [ "sqlfluff = sqlfluff.cli.commands:cli", ], "diff_cover": ["sqlfluff = sqlfluff.diff_quality_plugin"], "sqlfluff": ["sqlfluff = sqlfluff.core.plugin.lib"], }, )
32.007752
90
0.604747
675a5c3108ff79c3c584239320584e006708a20d
273
py
Python
setup.py
searchivarius/DeepNLP-models-Pytorch
91a40f767a6ac0ba7004f1bc015ad8a5debf4203
[ "MIT" ]
3,067
2017-11-10T01:25:25.000Z
2022-03-31T08:41:25.000Z
setup.py
fanlidublin/DeepNLP-models-Pytorch
ceeb4221b176790229cd20c6ca4c05f625bdf02e
[ "MIT" ]
12
2017-11-17T08:33:39.000Z
2021-04-25T14:43:30.000Z
setup.py
fanlidublin/DeepNLP-models-Pytorch
ceeb4221b176790229cd20c6ca4c05f625bdf02e
[ "MIT" ]
729
2017-11-10T01:35:33.000Z
2022-03-31T08:41:33.000Z
from distutils.core import setup from Cython.Build import cythonize from Cython.Distutils import build_ext from distutils.extension import Extension setup(name="Corpus",cmdclass = {'build_ext': build_ext},ext_modules = [Extension("Corpus", ["Corpus.pyx"],language='c++')])
45.5
123
0.783883
30d7779dec522ffda896f3a19f77563b8a92f827
6,320
py
Python
presqt/targets/zenodo/functions/fetch.py
craig-willis/presqt
b920527bf8998696f516d65a50f0a5c3862c4558
[ "Apache-2.0" ]
null
null
null
presqt/targets/zenodo/functions/fetch.py
craig-willis/presqt
b920527bf8998696f516d65a50f0a5c3862c4558
[ "Apache-2.0" ]
null
null
null
presqt/targets/zenodo/functions/fetch.py
craig-willis/presqt
b920527bf8998696f516d65a50f0a5c3862c4558
[ "Apache-2.0" ]
null
null
null
import requests from rest_framework import status from presqt.targets.zenodo.utilities import ( zenodo_validation_check, zenodo_fetch_resources_helper, zenodo_fetch_resource_helper) from presqt.utilities import PresQTValidationError, PresQTResponseException def zenodo_fetch_resources(token, search_parameter): """ Fetch all users repos from Zenodo. Parameters ---------- token : str User's Zenodo token search_parameter : dict The search parameter passed to the API View Gets passed formatted as {'title': 'search_info'} Returns ------- List of dictionary objects that represent Zenodo resources. Dictionary must be in the following format { "kind": "container", "kind_name": "folder", "id": "12345", "container": "None", "title": "Folder Name" } """ try: auth_parameter = zenodo_validation_check(token) except PresQTValidationError: raise PresQTValidationError("Token is invalid. Response returned a 401 status code.", status.HTTP_401_UNAUTHORIZED) # Let's build them resources if search_parameter: if 'title' in search_parameter: search_parameters = search_parameter['title'].replace(' ', '+') base_url = 'https://zenodo.org/api/records?q=title:"{}"&sort=most_recent'.format( search_parameters) zenodo_projects = requests.get(base_url, params=auth_parameter).json()['hits']['hits'] is_record = True elif 'id' in search_parameter: base_url = 'https://zenodo.org/api/records?q=conceptrecid:{}'.format(search_parameter['id']) zenodo_projects = requests.get(base_url, params=auth_parameter).json()['hits']['hits'] is_record = True else: base_url = "https://zenodo.org/api/deposit/depositions" zenodo_projects = requests.get(base_url, params=auth_parameter).json() is_record = False resources = zenodo_fetch_resources_helper(zenodo_projects, auth_parameter, is_record) return resources def zenodo_fetch_resource(token, resource_id): """ Fetch the Zenodo resource matching the resource_id given. Parameters ---------- token : str User's Zenodo token resource_id : str ID of the resource requested Returns ------- A dictionary object that represents the Zenodo resource. Dictionary must be in the following format: { "kind": "container", "kind_name": "repo", "id": "12345", "title": "23296359282_934200ec59_o.jpg", "date_created": "2019-05-13T14:54:17.129170Z", "date_modified": "2019-05-13T14:54:17.129170Z", "hashes": { "md5": "aaca7ef067dcab7cb8d79c36243823e4", }, "extra": { "any": extra, "values": here } } """ try: auth_parameter = zenodo_validation_check(token) except PresQTValidationError: raise PresQTValidationError("Token is invalid. Response returned a 401 status code.", status.HTTP_401_UNAUTHORIZED) # Let's first try to get the record with this id. if len(resource_id) <= 7: base_url = "https://zenodo.org/api/records/{}".format(resource_id) zenodo_project = requests.get(base_url, params=auth_parameter) if zenodo_project.status_code == 200: # We found the record, pass the project to our function. resource = zenodo_fetch_resource_helper(zenodo_project.json(), resource_id, True) else: # We need to get the resource from the depositions base_url = "https://zenodo.org/api/deposit/depositions/{}".format(resource_id) zenodo_project = requests.get(base_url, params=auth_parameter) if zenodo_project.status_code != 200: raise PresQTResponseException("The resource could not be found by the requesting user.", status.HTTP_404_NOT_FOUND) else: resource = zenodo_fetch_resource_helper( zenodo_project.json(), resource_id, False, False) else: # We got ourselves a file. base_url = "https://zenodo.org/api/files/{}".format(resource_id) zenodo_project = requests.get(base_url, params=auth_parameter) if zenodo_project.status_code == 200: # Contents returns a list of the single file resource = zenodo_fetch_resource_helper( zenodo_project.json()['contents'][0], resource_id, True, True) else: # We need to loop through the users depositions and see if the file is there. base_url = 'https://zenodo.org/api/deposit/depositions' zenodo_projects = requests.get(base_url, params=auth_parameter).json() for entry in zenodo_projects: project_files = requests.get(entry['links']['self'], params=auth_parameter).json() for entry in project_files['files']: if entry['id'] == resource_id: resource = { "kind": "item", "kind_name": "file", "id": resource_id, "title": entry['filename'], "date_created": None, "date_modified": None, "hashes": { "md5": entry['checksum'] }, "extra": {}} # We found the file, break out of file loop break # If the file wasn't found, we want to continue looping through the other projects. else: continue # File has been found, break out of project loop break # File not found, raise exception else: raise PresQTResponseException("The resource could not be found by the requesting user.", status.HTTP_404_NOT_FOUND) return resource
40
104
0.580854
8e7c9eba66bcb1d687d080e938aaf337453f49d1
2,655
py
Python
tests/model/model_constructor_test.py
nickgaya/bravado-core
16e752963bfceb4adfa43724085bc4127eefcd59
[ "BSD-3-Clause" ]
122
2015-04-22T17:31:18.000Z
2021-11-08T10:29:57.000Z
tests/model/model_constructor_test.py
nickgaya/bravado-core
16e752963bfceb4adfa43724085bc4127eefcd59
[ "BSD-3-Clause" ]
364
2015-04-10T22:19:23.000Z
2022-02-25T08:55:10.000Z
tests/model/model_constructor_test.py
nickgaya/bravado-core
16e752963bfceb4adfa43724085bc4127eefcd59
[ "BSD-3-Clause" ]
118
2015-04-20T15:11:53.000Z
2021-12-09T10:03:34.000Z
# -*- coding: utf-8 -*- import pytest from bravado_core.schema import collapsed_properties def test_simple(user_type, user_kwargs): user = user_type(**user_kwargs) assert user.firstName == 'Darwin' assert user.userStatus == 9 assert user.id == 999 assert user.lastName is None assert user.email is None assert user.password is None def test_init_from_dict(user_type, user_kwargs): user = user_type._from_dict(user_kwargs) assert user.firstName == 'Darwin' assert user.userStatus == 9 assert user.id == 999 assert user.lastName is None assert user.email is None assert user.password is None def test_empty_kwargs(user_type): user = user_type() assert user.firstName is None assert user.userStatus is None assert user.id is None assert user.lastName is None assert user.email is None assert user.password is None def test_additionalProperties_defaults_to_true_when_not_present(user_type, user_kwargs): # verify exra kwargs are attached to the model as attributes when # additionalProperties is not present user_kwargs['foo'] = 'bar' user = user_type(**user_kwargs) assert user.foo == 'bar' assert 'foo' in dir(user) def test_additionalProperties_true(definitions_spec, user_type, user_kwargs): # verify exra kwargs are attached to the model as attributes when # additionalProperties is True user_type._model_spec['additionalProperties'] = True user_kwargs['foo'] = 'bar' # additional prop user = user_type(**user_kwargs) assert user.foo == 'bar' assert 'foo' in dir(user) assert set(user) == set(definitions_spec['User']['properties'].keys()).union({'foo'}) def test_additionalProperties_false(user_type, user_kwargs): # verify exra kwargs are caught during model construction when # additionalProperties is False user_type._model_spec['additionalProperties'] = False user_kwargs['foo'] = 'bar' # additional prop with pytest.raises(AttributeError) as excinfo: user_type(**user_kwargs) assert "does not have attributes for: ['foo']" in str(excinfo.value) def test_allOf(cat_swagger_spec, cat_type, cat_kwargs): cat = cat_type(**cat_kwargs) assert cat.id == 12 assert cat.category == {'id': 42, 'name': 'Feline'} assert cat.name == 'Oskar' assert cat.photoUrls == ['example.com/img1', 'example.com/img2'] assert cat.tags == [{'id': 1, 'name': 'cute'}] assert cat.neutered is True assert set(cat) == set( collapsed_properties( cat_swagger_spec.spec_dict['definitions']['Cat'], cat_swagger_spec, ).keys(), )
33.1875
89
0.700565
6909bf3508e24903ccbc8d53cbe01dd9b0e6a191
70
py
Python
main.py
deut-erium/pyfractal
d62d1d3e8e34924c4272b171d82d62f47a1d1745
[ "MIT" ]
12
2020-05-30T13:53:11.000Z
2021-08-17T04:56:01.000Z
main.py
deut-erium/pyfractal
d62d1d3e8e34924c4272b171d82d62f47a1d1745
[ "MIT" ]
1
2020-05-30T10:56:15.000Z
2020-05-30T13:55:05.000Z
main.py
deut-erium/pyfractal
d62d1d3e8e34924c4272b171d82d62f47a1d1745
[ "MIT" ]
null
null
null
from pyfractal import GUI if __name__ == '__main__': GUI().run()
14
26
0.657143
b64b8f242d6dac3e1d306f9cb946681cd37d5b3c
3,445
py
Python
src/val_lfw.py
yangfly/insightface
82bc323e0362580a4b5a793393c2dca05551270b
[ "MIT" ]
18
2019-05-14T06:41:46.000Z
2021-12-24T02:15:42.000Z
repos/insightface/src/val_lfw.py
batermj/DeepVideoAnalytics
daad116b87370fce1799b7948af73b92f617cf41
[ "BSD-3-Clause", "Apache-2.0", "MIT" ]
null
null
null
repos/insightface/src/val_lfw.py
batermj/DeepVideoAnalytics
daad116b87370fce1799b7948af73b92f617cf41
[ "BSD-3-Clause", "Apache-2.0", "MIT" ]
3
2018-03-29T08:18:58.000Z
2020-06-29T11:43:50.000Z
from __future__ import division import numpy as np import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), 'eval')) import lfw import sklearn from sklearn.decomposition import PCA lfw_dir = '/raid5data/dplearn/lfw_mtcnn2' lfw_pairs = lfw.read_pairs(os.path.join(lfw_dir, 'pairs.txt')) lfw_paths, issame_list = lfw.get_paths(lfw_dir, lfw_pairs, 'jpg') model_dir = '../model' models = ['sphereface_p0_20-lfw-0006.npy'] models = ['sphereface-64-p0_0_96_95_0-lfw-0001.npy'] models = ['sphereface_p0_20-lfw-0006.npy', 'sphereface-64-p0_0_96_95_0-lfw-0001.npy'] models = ['sphereface-20-p0_0_96_112_0-lfw-0022.npy','sphereface-20-p0_0_96_95_0-lfw-0021.npy', 'sphereface-20-p0_40_96_112_0-lfw-0022.npy'] models = ['sphereface-20-p0_0_96_112_0-lfw-0022.npy','sphereface-20-p0_0_96_95_0-lfw-0021.npy', 'sphereface-36-p0_0_96_112_0-lfw-0022.npy'] models = ['sphereface-20-p0_0_96_112_0-lfw-0022.npy','sphereface-20-p0_0_96_95_0-lfw-0021.npy'] models = ['sphereface-20-p0_0_96_112_0-lfw-0022.npy','sphereface-20-p0_0_96_95_0-lfw-0021.npy', 'sphereface-36-p0_0_96_112_0-lfw-0022.npy'] models = ['sphereface-20-p0_0_96_112_0-lfw-0022.npy','sphereface-20-p0_0_96_95_0-lfw-0021.npy', 'sphereface-36-p0_0_96_95_0-lfw-0021.npy'] models = [ #'sphereface-20-p0_0_96_112_0-lfw-0022.npy', #'sphereface-20-p0_0_96_95_0-lfw-0021.npy', #'sphereface-20-p0_0_80_95_0-lfw-0021.npy', #'sphereface-36-p0_0_96_95_0-lfw-0021.npy', 'sphereface-s60-p0_0_96_112_0-lfw-0031.npy', 'sphereface-s60-p0_0_96_95_0-lfw-0021.npy', 'sphereface2-s60-p0_0_96_112_0-lfw-0021.npy', 'sphereface3-s60-p0_0_96_95_0-lfw-0023.npy', #'sphereface-s60-p0_0_80_95_0-lfw-0025.npy', #'sphereface-s60-p16_0_96_112_0-lfw-0023.npy', #'spherefacec-s60-p0_0_96_112_0-lfw-0021.npy', ] models = [ '../model31/sphere-m51-p0_0_96_112_0-lfw-0083.npy', '../model/softmax-m53-p0_0_96_112_0-lfw-0026.npy', #'../model32/sphere-m30-p0_0_96_112_0-lfw-0092.npy', ] #models = models[0:3] concat = True pca = False weights = None #weights = [0.5, 1.0, 0.5] F = None ii = 0 for m in models: model = m #model = os.path.join(model_dir, m) X = np.load(model) X1 = X[0:(X.shape[0]//2),:] X2 = X[(X.shape[0]//2):,:] print(X.shape, X1.shape, X2.shape) #X1 = sklearn.preprocessing.normalize(X1) #X2 = sklearn.preprocessing.normalize(X2) XX = X1+X2 XX = sklearn.preprocessing.normalize(XX) if weights is not None: weight = weights[ii] XX *= weight if F is None: F = XX else: if concat: F = np.concatenate((F,XX), axis=1) else: F += XX ii+=1 #if concat: # F = np.concatenate((F,X2), axis=1) #else: # F += X2 print(F.shape) npca = 0 if concat and pca: #F = sklearn.preprocessing.normalize(F) npca = 180 #pca = PCA(n_components=512) #F = pca.fit_transform(F) for npca in xrange(512,513,1): _, _, accuracy, val, val_std, far = lfw.evaluate(F, issame_list, nrof_folds=10, pca=npca) print('[%d]Accuracy: %1.5f+-%1.5f' % (npca, np.mean(accuracy), np.std(accuracy))) else: F = sklearn.preprocessing.normalize(F) _, _, accuracy, val, val_std, far = lfw.evaluate(F, issame_list, nrof_folds=10, pca=npca) print('[%d]Accuracy: %1.5f+-%1.5f' % (0, np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
37.043011
140
0.67402
a5c008801b6907bd7a5f886c5256330ddff1ecd3
6,604
py
Python
hyppo/independence/kmerf.py
zdbzdb1212/hyppo
5092beedec0a0c13ffa69f7a77f4ee30f3294256
[ "MIT" ]
1
2021-12-14T10:32:18.000Z
2021-12-14T10:32:18.000Z
hyppo/independence/kmerf.py
zdbzdb1212/hyppo
5092beedec0a0c13ffa69f7a77f4ee30f3294256
[ "MIT" ]
null
null
null
hyppo/independence/kmerf.py
zdbzdb1212/hyppo
5092beedec0a0c13ffa69f7a77f4ee30f3294256
[ "MIT" ]
2
2021-11-03T19:34:39.000Z
2021-11-30T19:28:40.000Z
from typing import NamedTuple import numpy as np from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.metrics import pairwise_distances from ._utils import _CheckInputs, sim_matrix from .base import IndependenceTest from .dcorr import _dcorr FOREST_TYPES = { "classifier": RandomForestClassifier, "regressor": RandomForestRegressor, } class KMERFTestOutput(NamedTuple): stat: float pvalue: float kmerf_dict: dict class KMERF(IndependenceTest): r""" Kernel Mean Embedding Random Forest (KMERF) test statistic and p-value. The KMERF test statistic is a kernel method for calculating independence by using a random forest induced similarity matrix as an input, and has been shown to have especially high gains in finite sample testing power in high dimensional settings :footcite:p:`shenLearningInterpretableCharacteristic2020`. Parameters ---------- forest : "regressor", "classifier", default: "regressor" Type of forest used when running the independence test. If the `y` input in ``test`` is categorial, use the "classifier" keyword. ntrees : int, default: 500 The number of trees used in the random forest. **kwargs Additional arguments used for the forest (see :class:`sklearn.ensemble.RandomForestClassifier` or :class:`sklearn.ensemble.RandomForestRegressor`) Notes ----- A description of KMERF in greater detail can be found in :footcite:p:`shenLearningInterpretableCharacteristic2020`. It is computed using the following steps: Let :math:`x` and :math:`y` be :math:`(n, p)` and :math:`(n, 1)` samples of random variables :math:`X` and :math:`Y`. + Run random forest with :math:`m` trees. Independent bootstrap samples of size :math:`n_{b} \leq n` are drawn to build a tree each time; each tree structure within the forest is denoted as :math:`\phi_w \in \mathbf{P}`, :math:`w \in \{ 1, \ldots, m \}`; :math:`\phi_w(x_i)` denotes the partition assigned to :math:`x_i`. + Calculate the proximity kernel: .. math:: \mathbf{K}^{\mathbf{x}}_{ij} = \frac{1}{m} \sum_{w = 1}^{m} I(\phi_w(x_i) = \phi_w(x_j)) where :math:`I(\cdot)`$` is the indicator function for how often two observations lie in the same partition. + Compute the induced kernel correlation: Let .. math:: \mathbf{L}^{\mathbf{x}}_{ij}= \begin{cases} \mathbf{K}^{\mathbf{x}}_{ij} - \frac{1}{n-2} \sum_{t=1}^{n} \mathbf{K}^{\mathbf{x}}_{it} - \frac{1}{n-2} \sum_{s=1}^{n} \mathbf{K}^{\mathbf{x}}_{sj} + \frac{1}{(n-1)(n-2)} \sum_{s,t=1}^{n} \mathbf{K}^{\mathbf{x}}_{st} & \mbox{when} \ i \neq j \\ 0 & \mbox{ otherwise} \end{cases} + Then let :math:`\mathbf{K}^{\mathbf{y}}` be the Euclidean distance induced kernel, and similarly compute :math:`\mathbf{L}^{\mathbf{y}}` from :math:`\mathbf{K}^{\mathbf{y}}`. The unbiased kernel correlation equals .. math:: \mathrm{KMERF}_n(\mathbf{x}, \mathbf{y}) = \frac{1}{n(n-3)} \mathrm{tr} \left( \mathbf{L}^{\mathbf{x}} \mathbf{L}^{\mathbf{y}} \right) The p-value returned is calculated using a permutation test using :meth:`hyppo.tools.perm_test`. References ---------- .. footbibliography:: """ def __init__(self, forest="regressor", ntrees=500, **kwargs): if forest in FOREST_TYPES.keys(): self.clf = FOREST_TYPES[forest](n_estimators=ntrees, **kwargs) else: raise ValueError("Forest must be of type classification or regression") IndependenceTest.__init__(self) def statistic(self, x, y): r""" Helper function that calculates the KMERF test statistic. Parameters ---------- x,y : ndarray Input data matrices. ``x`` and ``y`` must have the same number of samples. That is, the shapes must be ``(n, p)`` and ``(n, 1)`` where `n` is the number of samples and `p` is the number of dimensions. Returns ------- stat : float The computed KMERF statistic. """ y = y.reshape(-1) self.clf.fit(x, y) distx = np.sqrt(1 - sim_matrix(self.clf, x)) y = y.reshape(-1, 1) disty = pairwise_distances(y, metric="euclidean") stat = _dcorr(distx, disty, bias=False, is_fast=False) self.stat = stat # get normalalized feature importances importances = self.clf.feature_importances_ importances -= np.min(importances) self.importances = importances / np.max(importances) return stat def test(self, x, y, reps=1000, workers=1, random_state=None): r""" Calculates the KMERF test statistic and p-value. Parameters ---------- x,y : ndarray Input data matrices. ``x`` and ``y`` must have the same number of samples. That is, the shapes must be ``(n, p)`` and ``(n, 1)`` where `n` is the number of samples and `p` is the number of dimensions. reps : int, default: 1000 The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value. workers : int, default: 1 The number of cores to parallelize the p-value computation over. Supply ``-1`` to use all cores available to the Process. Returns ------- stat : float The computed KMERF statistic. pvalue : float The computed KMERF p-value. kmerf_dict : dict Contains additional useful returns containing the following keys: - feat_importance : ndarray An array containing the importance of each dimension Examples -------- >>> import numpy as np >>> from hyppo.independence import KMERF >>> x = np.arange(100) >>> y = x >>> '%.1f, %.2f' % KMERF().test(x, y)[:1] # doctest: +SKIP '1.0, 0.001' """ check_input = _CheckInputs(x, y, reps=reps) x, y = check_input() stat, pvalue = super(KMERF, self).test( x, y, reps, workers, is_distsim=False, random_state=random_state ) kmerf_dict = {"feat_importance": self.importances} return KMERFTestOutput(stat, pvalue, kmerf_dict)
35.12766
88
0.602059
ba1f5244d61e9c47da19cb867237941e08bc843a
141
py
Python
web/Viewer/urls.py
carstenfuchs/hallcam
4ef0d805d1b28918aa6ab0a078b1e1668c0aac27
[ "MIT" ]
null
null
null
web/Viewer/urls.py
carstenfuchs/hallcam
4ef0d805d1b28918aa6ab0a078b1e1668c0aac27
[ "MIT" ]
null
null
null
web/Viewer/urls.py
carstenfuchs/hallcam
4ef0d805d1b28918aa6ab0a078b1e1668c0aac27
[ "MIT" ]
null
null
null
from django.urls import path from .views import welcome app_name = 'viewer' urlpatterns = [ path('', welcome.view, name='welcome'), ]
14.1
43
0.687943
a91d591251f0d2cf4b6860812a53dcda668a72d9
7,375
py
Python
src/main/python/programmingtheiot/cda/system/SensorAdapterManager.py
NULishengZhang/piot-python-components
006674bc42443bb2a843bfd7dfa5b55be9843961
[ "MIT" ]
null
null
null
src/main/python/programmingtheiot/cda/system/SensorAdapterManager.py
NULishengZhang/piot-python-components
006674bc42443bb2a843bfd7dfa5b55be9843961
[ "MIT" ]
null
null
null
src/main/python/programmingtheiot/cda/system/SensorAdapterManager.py
NULishengZhang/piot-python-components
006674bc42443bb2a843bfd7dfa5b55be9843961
[ "MIT" ]
null
null
null
##### # # This class is part of the Programming the Internet of Things project. # # It is provided as a simple shell to guide the student and assist with # implementation for the Programming the Internet of Things exercises, # and designed to be modified by the student as needed. # import logging from importlib import import_module from apscheduler.schedulers.background import BackgroundScheduler import programmingtheiot.common.ConfigConst as ConfigConst from programmingtheiot.common.ConfigUtil import ConfigUtil from programmingtheiot.common.IDataMessageListener import IDataMessageListener from programmingtheiot.cda.sim.SensorDataGenerator import SensorDataGenerator from programmingtheiot.cda.sim.HumiditySensorSimTask import HumiditySensorSimTask from programmingtheiot.cda.sim.TemperatureSensorSimTask import TemperatureSensorSimTask from programmingtheiot.cda.sim.PressureSensorSimTask import PressureSensorSimTask class SensorAdapterManager(object): """ Shell representation of class for student implementation. """ # SensorAdapterManager Constructor def __init__(self, useEmulator=False): configUtil = ConfigUtil() # set default pollRate self.pollRate = configUtil.getInteger( section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.POLL_CYCLES_KEY,defaultVal=ConfigConst.DEFAULT_POLL_CYCLES) # set default useEmulator if not useEmulator: self.useEmulator = configUtil.getBoolean(section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.ENABLE_EMULATOR_KEY) else: self.useEmulator = useEmulator # set default locationID self.locationID = configUtil.getProperty( section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.DEVICE_LOCATION_ID_KEY, defaultVal=ConfigConst.NOT_SET) # check if pollRate is valid if self.pollRate <= 0: self.pollRate = ConfigConst.DEFAULT_POLL_CYCLES # set scheduler job self.scheduler = BackgroundScheduler() self.scheduler.add_job( self.handleTelemetry, 'interval', seconds=self.pollRate) self.dataMsgListener = None if self.useEmulator: logging.info("Emulators will be used!") # load the temperature sensor emulator (you can use either `import_module()` as shown, or `__import__()`) tempModule = import_module('programmingtheiot.cda.emulated.TemperatureSensorEmulatorTask', 'TemperatureSensorEmulatorTask') teClazz = getattr(tempModule, 'TemperatureSensorEmulatorTask') self.tempAdapter = teClazz() # load the pressure sensor emulator (you can use either `import_module()` as shown, or `__import__()`) pressureModule = import_module('programmingtheiot.cda.emulated.PressureSensorEmulatorTask', 'PressureSensorEmulatorTask') prClazz = getattr(pressureModule, 'PressureSensorEmulatorTask') self.pressureAdapter = prClazz() # load the humidity sensor emulator (you can use either `import_module()` as shown, or `__import__()`) humidityModule = import_module('programmingtheiot.cda.emulated.HumiditySensorEmulatorTask', 'HumiditySensorEmulatorTask') hmClazz = getattr(humidityModule, 'HumiditySensorEmulatorTask') self.humidityAdapter = hmClazz() else: self.dataGenerator = SensorDataGenerator() # set temperature data tempFloor = configUtil.getFloat( section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.TEMP_SIM_FLOOR_KEY, defaultVal= SensorDataGenerator.LOW_NORMAL_INDOOR_TEMP) tempCeiling = configUtil.getFloat( section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.TEMP_SIM_CEILING_KEY, defaultVal= SensorDataGenerator.HI_NORMAL_INDOOR_TEMP) tempData = self.dataGenerator.generateDailyIndoorTemperatureDataSet( minValue=tempFloor, maxValue=tempCeiling, useSeconds=False) self.tempAdapter = TemperatureSensorSimTask(dataSet=tempData) # set pressure data pressureFloor =configUtil.getFloat( section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.PRESSURE_SIM_FLOOR_KEY, defaultVal=SensorDataGenerator.LOW_NORMAL_ENV_PRESSURE) pressureCeiling = configUtil.getFloat( section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.PRESSURE_SIM_CEILING_KEY, defaultVal= SensorDataGenerator.HI_NORMAL_ENV_PRESSURE) pressureData = self.dataGenerator.generateDailyEnvironmentPressureDataSet( minValue=pressureFloor, maxValue=pressureCeiling, useSeconds=False) self.pressureAdapter = PressureSensorSimTask(dataSet=pressureData) # set humidity data humidityFloor = configUtil.getFloat( section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.HUMIDITY_SIM_FLOOR_KEY, defaultVal= SensorDataGenerator.LOW_NORMAL_ENV_HUMIDITY) humidityCeiling = configUtil.getFloat( section=ConfigConst.CONSTRAINED_DEVICE, key=ConfigConst.HUMIDITY_SIM_CEILING_KEY, defaultVal=SensorDataGenerator.HI_NORMAL_ENV_HUMIDITY) humidityData = self.dataGenerator.generateDailyEnvironmentHumidityDataSet(minValue=humidityFloor,maxValue=humidityCeiling,useSeconds=False) self.humidityAdapter = HumiditySensorSimTask(dataSet=humidityData) # handle telemetry data def handleTelemetry(self): humidityData = self.humidityAdapter.generateTelemetry() pressureData = self.pressureAdapter.generateTelemetry() tempData = self.tempAdapter.generateTelemetry() humidityData.setLocationID(self.locationID) pressureData.setLocationID(self.locationID) tempData.setLocationID(self.locationID) logging.info('Generated humidity data: ' + str(humidityData)) logging.info('Generated pressure data: ' + str(pressureData)) logging.info('Generated temp data: ' + str(tempData)) if self.dataMsgListener: self.dataMsgListener.handleSensorMessage(humidityData) self.dataMsgListener.handleSensorMessage(pressureData) self.dataMsgListener.handleSensorMessage(tempData) # set listener def setDataMessageListener(self, listener: IDataMessageListener) -> bool: if listener: self.dataMsgListener = listener # start manager def startManager(self): logging.info('Started SensorAdapterManager.') if not self.scheduler.running: self.scheduler.start() else: logging.warning( 'SensorAdapterManager scheduler already started.') # stop manager def stopManager(self): logging.info('Stopped SensorAdapterManager.') try: self.scheduler.shutdown() except: logging.warning( 'SensorAdapterManager scheduler already stopped.')
42.877907
176
0.687458