hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
e701ebe70cc571aff89f753f2e757469bc7f99f7
120
py
Python
vkquick/ext/chatbot/wrappers/__init__.py
NikitolProject/vkquick
a68e982974b5e96841d60de47519c1bbbaeedd29
[ "MIT" ]
null
null
null
vkquick/ext/chatbot/wrappers/__init__.py
NikitolProject/vkquick
a68e982974b5e96841d60de47519c1bbbaeedd29
[ "MIT" ]
null
null
null
vkquick/ext/chatbot/wrappers/__init__.py
NikitolProject/vkquick
a68e982974b5e96841d60de47519c1bbbaeedd29
[ "MIT" ]
null
null
null
from .attachment import Document, Photo from .message import Message from .page_entities import Group, PageEntity, User
30
50
0.825
012d9b46627d2916815773337d7a89f6ff88fe40
3,806
py
Python
section-03.py
richardolopes/pierian-python3
afe44b066c68f6cc7c0c8fea197990b9a3c4b79f
[ "MIT" ]
null
null
null
section-03.py
richardolopes/pierian-python3
afe44b066c68f6cc7c0c8fea197990b9a3c4b79f
[ "MIT" ]
null
null
null
section-03.py
richardolopes/pierian-python3
afe44b066c68f6cc7c0c8fea197990b9a3c4b79f
[ "MIT" ]
null
null
null
''' Aula 11 ''' a = "Python 3" print(len(a)) # 8 # Retorna toda a string # VAR:VAR - Retorna uma parte da string # ::VAR - Retorna uma parte da string, sendo ":" o começo da string # ::-1 - Retorna a string ao contrário print(a[:]) # Python 3 print(a[1:4]) # yth print(a[::2]) # Pto print(a[::-1]) # 3 nohtyP a = "Python " print(a * 10) # Python Python Python Python Python Python Python Python Python Python # Strings são imutáveis print(a.lower()) # python a = "A computação quântica é a ciência que estuda as aplicações das teorias e propriedades da mecânica quântica na Ciência da Computação." print(a.split()) # ['A', 'computação', 'quântica', 'é', 'a', 'ciência', 'que', 'estuda', 'as', 'aplicações', 'das', 'teorias', 'e', 'propriedades', 'da', 'mecânica', 'quântica', 'na', 'Ciência', 'da', 'Computação.'] print(a.split("o")) # ['A c', 'mputaçã', ' quântica é a ciência que estuda as aplicações das te', 'rias e pr', 'priedades da mecânica quântica na Ciência da C', 'mputaçã', '.'] ''' Aula 13 - Formatações de impressões ''' var = 'R' # %s = str() # %r = repr() print("Olá %s, tudo bem? %s?" %(var, var)) # Olá R, tudo bem? R? print("Olá " + var + ", tudo bem?") # Olá R, tudo bem? print("Pontos flutuantes: %11.5f" %(23.344)) # Pontos flutuantes: 23.34400 print("O preço de um iPhone X é %d" %(5559.99)) # O preço de um iPhone X é 5559 print("Olá {}, tudo bem?" .format("Richard")) # Olá Richard, tudo bem? print("O preço de um celular com suporte a 4 chips e um som mais alto que de uma JBL é {}" .format(123.5)) # O preço de um celular com suporte a 4 chips e um som mais alto que de uma JBL é 123.5 print("Um: {a}, dois: {b}, três: {c}".format(a = 1, b = "dois", c = 3.5)) # Um: 1, dois: dois, três: 3.5 ''' Aula 15 - Manipulação de listas ''' lista = ["ZERO", "UM", "DOIS"] lista += ["TRÊS"] print(lista) # ['ZERO', 'UM', 'DOIS', 'TRÊS'] print(type(lista)) # list print(len(lista)) # 4 lista.append("QUATRO") # ['ZERO', 'UM', 'DOIS', 'TRÊS', 'QUATRO'] print(lista.pop()) # 'QUATRO' tres = lista.pop(3) print(tres) # TRÊS lista.reverse() print(lista) # ['DOIS', 'UM', 'ZERO'] lista = [5, 7, 9, 1, 6, 0, 23, 51] lista.sort() print(lista) # [0, 1, 5, 6, 7, 9, 23, 51] lista = ["b", "d", "z", "x", "a", "r"] lista.sort() print(lista) # ['a', 'b', 'd', 'r', 'x', 'z'] lista1 = [1, 2, 3] lista2 = [4, 5, 6] lista3 = [7, 8, 9] matrix = [lista1, lista2, lista3] print(matrix) # [[1, 2, 3], [4, 5, 6], [7, 8, 9]] primeira_coluna = [row[0] for row in matrix] print(primeira_coluna) # [1, 4, 7] ''' Aula 17 - Dicionários ''' dic = { "Nome": "Richard", "Idade": 18, "Cachorros": [ { "Nome": "Mel", "Idade": 5 }, { "Nome": "Lessie", "Idade": 12 } ] } print(dic["Cachorros"][0]["Nome"]) # Mel print( list(dic.keys()) ) # ['Nome', 'Idade', 'Cachorros'] print( list(dic.items()) ) # [('Nome', 'Richard'), ('Idade', 18), ('Cachorros', [{'Nome': 'Mel', 'Idade': 5}, {'Nome': 'Lessie', 'Idade': 12}])] ''' Aula 19 - Tuplas ''' t = ("zero", 1, 2, "três") print(type(t)) # tuple # Tuplas são imutáveis. # t[0] = 0 # Erro ''' Aula 20 - Arquivos ''' arq = open("section-03.txt") print(arq) # <_io.TextIOWrapper name='section-03.txt' mode='r' encoding='cp1252'> print(arq.read()) # Arquivo de texto. # Arquivo de texto2. # Arquivo de texto3. print(arq.seek(0)) # 0 print(arq.readline()) # Arquivo de texto. print("----") arq.seek(0) for line in arq: print(line) # Arquivo de texto. # # Arquivo de texto2. # # Arquivo de texto3. ''' Aula 21 - Sets e Booleanos ''' a = set() a.add(1) print(a) # {1} a.add(2) a.add(3) a.add(1) print(a) # {1, 2, 3} a = set([1,1,2,3]) print(a) # {1, 2, 3} a = True b = False
23.7875
215
0.566474
05fe00355b195d0c7f06f60f73603d52175d7d4b
4,408
py
Python
sites/paymentsalt/settings_base.py
eviljeff/zamboni
c446a9fc75513c9eef3ff7b1f0e23bbab29f0e68
[ "BSD-3-Clause" ]
null
null
null
sites/paymentsalt/settings_base.py
eviljeff/zamboni
c446a9fc75513c9eef3ff7b1f0e23bbab29f0e68
[ "BSD-3-Clause" ]
null
null
null
sites/paymentsalt/settings_base.py
eviljeff/zamboni
c446a9fc75513c9eef3ff7b1f0e23bbab29f0e68
[ "BSD-3-Clause" ]
null
null
null
"""private_base will be populated from puppet and placed in this directory""" import logging import os import dj_database_url from mkt.settings import (CACHE_PREFIX, ES_INDEXES, KNOWN_PROXIES, LOGGING) from .. import splitstrip import private_base as private ALLOWED_HOSTS = ['.allizom.org', '.mozflare.net'] ENGAGE_ROBOTS = False EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = private.EMAIL_HOST DEBUG = False TEMPLATE_DEBUG = DEBUG DEBUG_PROPAGATE_EXCEPTIONS = False SESSION_COOKIE_SECURE = True ADMINS = () DATABASES = {} DATABASES['default'] = dj_database_url.parse(private.DATABASES_DEFAULT_URL) DATABASES['default']['ENGINE'] = 'django.db.backends.mysql' DATABASES['default']['OPTIONS'] = {'init_command': 'SET storage_engine=InnoDB'} DATABASES['default']['ATOMIC_REQUESTS'] = True DATABASES['default']['CONN_MAX_AGE'] = 5 * 60 # 5m for persistent connections. DATABASES['slave'] = dj_database_url.parse(private.DATABASES_SLAVE_URL) DATABASES['slave']['ENGINE'] = 'django.db.backends.mysql' DATABASES['slave']['OPTIONS'] = {'init_command': 'SET storage_engine=InnoDB'} DATABASES['slave']['ATOMIC_REQUESTS'] = True DATABASES['slave']['CONN_MAX_AGE'] = 5 * 60 # 5m for persistent connections. SERVICES_DATABASE = dj_database_url.parse(private.SERVICES_DATABASE_URL) SLAVE_DATABASES = ['slave'] CACHES = { 'default': { 'BACKEND': 'caching.backends.memcached.MemcachedCache', 'LOCATION': splitstrip(private.CACHES_DEFAULT_LOCATION), 'TIMEOUT': 500, 'KEY_PREFIX': CACHE_PREFIX, }, } SECRET_KEY = private.SECRET_KEY LOG_LEVEL = logging.DEBUG # Celery BROKER_URL = private.BROKER_URL CELERY_IGNORE_RESULT = True CELERY_DISABLE_RATE_LIMITS = True CELERYD_PREFETCH_MULTIPLIER = 1 NETAPP_STORAGE = private.NETAPP_STORAGE_ROOT + '/shared_storage' GUARDED_ADDONS_PATH = private.NETAPP_STORAGE_ROOT + '/guarded-addons' UPLOADS_PATH = NETAPP_STORAGE + '/uploads' ADDON_ICONS_PATH = UPLOADS_PATH + '/addon_icons' IMAGEASSETS_PATH = UPLOADS_PATH + '/imageassets' REVIEWER_ATTACHMENTS_PATH = UPLOADS_PATH + '/reviewer_attachment' PREVIEWS_PATH = UPLOADS_PATH + '/previews' SIGNED_APPS_PATH = NETAPP_STORAGE + '/signed_apps' SIGNED_APPS_REVIEWER_PATH = NETAPP_STORAGE + '/signed_apps_reviewer' PREVIEW_THUMBNAIL_PATH = PREVIEWS_PATH + '/thumbs/%s/%d.png' PREVIEW_FULL_PATH = PREVIEWS_PATH + '/full/%s/%d.%s' LOGGING['loggers'].update({ 'z.task': {'level': logging.DEBUG}, 'z.redis': {'level': logging.DEBUG}, 'z.pool': {'level': logging.ERROR}, }) REDIS_BACKEND = private.REDIS_BACKENDS_CACHE CACHE_MACHINE_USE_REDIS = True TMP_PATH = os.path.join(NETAPP_STORAGE, 'tmp') ADDONS_PATH = private.NETAPP_STORAGE_ROOT + '/files' SPIDERMONKEY = '/usr/bin/tracemonkey' csp = 'csp.middleware.CSPMiddleware' RESPONSYS_ID = private.RESPONSYS_ID CRONJOB_LOCK_PREFIX = 'marketplace-paymentsalt' GOOGLE_ANALYTICS_CREDENTIALS = private.GOOGLE_ANALYTICS_CREDENTIALS GOOGLE_API_CREDENTIALS = private.GOOGLE_API_CREDENTIALS ES_HOSTS = splitstrip(private.ES_HOSTS) ES_URLS = ['http://%s' % h for h in ES_HOSTS] ES_INDEXES = dict((k, '%s_paymentsalt' % v) for k, v in ES_INDEXES.items()) STATSD_HOST = private.STATSD_HOST STATSD_PORT = private.STATSD_PORT STATSD_PREFIX = private.STATSD_PREFIX CEF_PRODUCT = STATSD_PREFIX ES_TIMEOUT = 60 EXPOSE_VALIDATOR_TRACEBACKS = False KNOWN_PROXIES += ['10.2.83.105', '10.2.83.106', '10.2.83.107', '10.8.83.200', '10.8.83.201', '10.8.83.202', '10.8.83.203', '10.8.83.204', '10.8.83.210', '10.8.83.211', '10.8.83.212', '10.8.83.213', '10.8.83.214', '10.8.83.215', '10.8.83.251', '10.8.83.252', '10.8.83.253', ] NEW_FEATURES = True CLEANCSS_BIN = 'cleancss' LESS_BIN = 'lessc' STYLUS_BIN = 'stylus' UGLIFY_BIN = 'uglifyjs' CELERYD_TASK_SOFT_TIME_LIMIT = 240 LESS_PREPROCESS = True XSENDFILE = True ALLOW_SELF_REVIEWS = True MONOLITH_SERVER = 'https://monolith.allizom.org' GEOIP_URL = 'http://geo.marketplace.allizom.org' API_THROTTLE = False NEWRELIC_ENABLE = False AES_KEYS = private.AES_KEYS TASK_USER_ID = 4757633 SERVE_TMP_PATH = False
27.209877
79
0.694419
a2addcae182c91d7a14ee865162a506dbf3a01b1
854
py
Python
api/system/service/api_views.py
klebed/esdc-ce
2c9e4591f344247d345a83880ba86777bb794460
[ "Apache-2.0" ]
97
2016-11-15T14:44:23.000Z
2022-03-13T18:09:15.000Z
api/system/service/api_views.py
klebed/esdc-ce
2c9e4591f344247d345a83880ba86777bb794460
[ "Apache-2.0" ]
334
2016-11-17T19:56:57.000Z
2022-03-18T10:45:53.000Z
api/system/service/api_views.py
klebed/esdc-ce
2c9e4591f344247d345a83880ba86777bb794460
[ "Apache-2.0" ]
33
2017-01-02T16:04:13.000Z
2022-02-07T19:20:24.000Z
from api.api_views import APIView from api.exceptions import ObjectNotFound from api.task.response import SuccessTaskResponse from api.system.service.control import ServiceControl class ServiceStatusView(APIView): dc_bound = False # noinspection PyUnusedLocal def __init__(self, request, service, data=None): super(ServiceStatusView, self).__init__(request) self.service = service self.ctrl = ServiceControl() if service and service not in self.ctrl.services: raise ObjectNotFound(object_name='Service') def get(self): """Return service status or a list of all service statuses""" if self.service: res = self.ctrl.status(self.service) else: res = self.ctrl.status_all() return SuccessTaskResponse(self.request, res, dc_bound=False)
31.62963
69
0.694379
16352208631de2c25b72c99539e448c5b919683b
2,002
py
Python
lib/coloraide/spaces/a98_rgb.py
adaminfinitum/ColorHelper
d6ab02ccff01dd1e3a01dbc186b5ba3ff1fcca47
[ "MIT" ]
253
2015-03-04T06:48:43.000Z
2022-03-25T14:22:17.000Z
lib/coloraide/spaces/a98_rgb.py
adaminfinitum/ColorHelper
d6ab02ccff01dd1e3a01dbc186b5ba3ff1fcca47
[ "MIT" ]
197
2015-03-04T21:40:47.000Z
2022-03-25T17:04:36.000Z
lib/coloraide/spaces/a98_rgb.py
adaminfinitum/ColorHelper
d6ab02ccff01dd1e3a01dbc186b5ba3ff1fcca47
[ "MIT" ]
32
2015-03-21T03:28:01.000Z
2021-09-06T07:20:51.000Z
"""A98 RGB color class.""" from ..spaces import RE_DEFAULT_MATCH from .srgb.base import SRGB from .xyz import XYZ from .. import util import re RGB_TO_XYZ = [ [0.5766690429101304, 0.18555823790654635, 0.18822864623499475], [0.297344975250536, 0.6273635662554663, 0.0752914584939979], [0.027031361386412336, 0.07068885253582725, 0.9913375368376391] ] XYZ_TO_RGB = [ [2.041587903810747, -0.5650069742788599, -0.34473135077832967], [-0.9692436362808794, 1.8759675015077197, 0.04155505740717558], [0.013444280632031149, -0.11836239223101835, 1.0151749943912052] ] def lin_a98rgb_to_xyz(rgb): """ Convert an array of linear-light a98-rgb values to CIE XYZ using D50.D65. (so no chromatic adaptation needed afterwards) http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html which has greater numerical precision than section 4.3.5.3 of https://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf """ return util.dot(RGB_TO_XYZ, rgb) def xyz_to_lin_a98rgb(xyz): """Convert XYZ to linear-light a98-rgb.""" return util.dot(XYZ_TO_RGB, xyz) def lin_a98rgb(rgb): """Convert an array of a98-rgb values in the range 0.0 - 1.0 to linear light (un-corrected) form.""" return [util.npow(val, 563 / 256) for val in rgb] def gam_a98rgb(rgb): """Convert an array of linear-light a98-rgb in the range 0.0-1.0 to gamma corrected form.""" return [util.npow(val, 256 / 563) for val in rgb] class A98RGB(SRGB): """A98 RGB class.""" SPACE = "a98-rgb" DEFAULT_MATCH = re.compile(RE_DEFAULT_MATCH.format(color_space=SPACE, channels=3)) WHITE = "D65" @classmethod def _to_xyz(cls, parent, rgb): """To XYZ.""" return parent.chromatic_adaptation(cls.WHITE, XYZ.WHITE, lin_a98rgb_to_xyz(lin_a98rgb(rgb))) @classmethod def _from_xyz(cls, parent, xyz): """From XYZ.""" return gam_a98rgb(xyz_to_lin_a98rgb(parent.chromatic_adaptation(XYZ.WHITE, cls.WHITE, xyz)))
28.6
104
0.701299
fc94b38ce8c72a02e3fda944369aaa79e990fc5c
46,706
py
Python
tensorflow/python/ops/math_ops.py
izeye/tensorflow
d4422ff4b2f142de1d0c626f73c734655d340e0d
[ "Apache-2.0" ]
1
2016-07-03T20:16:31.000Z
2016-07-03T20:16:31.000Z
tensorflow/python/ops/math_ops.py
izeye/tensorflow
d4422ff4b2f142de1d0c626f73c734655d340e0d
[ "Apache-2.0" ]
null
null
null
tensorflow/python/ops/math_ops.py
izeye/tensorflow
d4422ff4b2f142de1d0c626f73c734655d340e0d
[ "Apache-2.0" ]
1
2021-03-16T21:45:10.000Z
2021-03-16T21:45:10.000Z
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """## Arithmetic Operators TensorFlow provides several operations that you can use to add basic arithmetic operators to your graph. @@add @@sub @@mul @@div @@truediv @@floordiv @@mod ## Basic Math Functions TensorFlow provides several operations that you can use to add basic mathematical functions to your graph. @@add_n @@abs @@neg @@sign @@inv @@square @@round @@sqrt @@rsqrt @@pow @@exp @@log @@ceil @@floor @@maximum @@minimum @@cos @@sin @@lgamma @@erf @@erfc ## Matrix Math Functions TensorFlow provides several operations that you can use to add basic mathematical functions for matrices to your graph. @@diag @@transpose @@matmul @@batch_matmul @@matrix_determinant @@batch_matrix_determinant @@matrix_inverse @@batch_matrix_inverse @@cholesky @@batch_cholesky @@self_adjoint_eig @@batch_self_adjoint_eig @@matrix_solve @@batch_matrix_solve @@matrix_triangular_solve @@batch_matrix_triangular_solve @@matrix_solve_ls @@batch_matrix_solve_ls ## Complex Number Functions TensorFlow provides several operations that you can use to add complex number functions to your graph. @@complex @@complex_abs @@conj @@imag @@real @@fft2d @@ifft2d ## Reduction TensorFlow provides several operations that you can use to perform common math computations that reduce various dimensions of a tensor. @@reduce_sum @@reduce_prod @@reduce_min @@reduce_max @@reduce_mean @@reduce_all @@reduce_any @@accumulate_n ## Segmentation TensorFlow provides several operations that you can use to perform common math computations on tensor segments. Here a segmentation is a partitioning of a tensor along the first dimension, i.e. it defines a mapping from the first dimension onto `segment_ids`. The `segment_ids` tensor should be the size of the first dimension, `d0`, with consecutive IDs in the range `0` to `k`, where `k<d0`. In particular, a segmentation of a matrix tensor is a mapping of rows to segments. For example: ```python c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]]) tf.segment_sum(c, tf.constant([0, 0, 1])) ==> [[0 0 0 0] [5 6 7 8]] ``` @@segment_sum @@segment_prod @@segment_min @@segment_max @@segment_mean @@unsorted_segment_sum @@sparse_segment_sum @@sparse_segment_mean @@sparse_segment_sqrt_n ## Sequence Comparison and Indexing TensorFlow provides several operations that you can use to add sequence comparison and index extraction to your graph. You can use these operations to determine sequence differences and determine the indexes of specific values in a tensor. @@argmin @@argmax @@listdiff @@where @@unique @@edit_distance @@invert_permutation """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.python.platform import numpy as np import six.moves from tensorflow.python.client import graph_util from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import common_shapes from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import gen_state_ops # pylint: disable=wildcard-import,undefined-variable from tensorflow.python.ops.gen_math_ops import * # Aliases for some automatically-generated names. argmax = gen_math_ops.arg_max argmin = gen_math_ops.arg_min linspace = gen_math_ops.lin_space # pylint: disable=anomalous-backslash-in-string,protected-access def abs(x, name=None): """Computes the absolute value of a tensor. Given a tensor of real numbers `x`, this operation returns a tensor containing the absolute value of each element in `x`. For example, if x is an input element and y is an output element, this operation computes \\\\(y = |x|\\\\). See [`tf.complex_abs()`](#tf_complex_abs) to compute the absolute value of a complex number. Args: x: A `Tensor` of type `float`, `double`, `int32`, or `int64`. name: A name for the operation (optional). Returns: A `Tensor` the same size and type as `x` with absolute values. """ with ops.op_scope([x], name, "Abs") as name: x = ops.convert_to_tensor(x, name="x") if x.dtype == dtypes.complex64: return gen_math_ops.complex_abs(x, name=name) return gen_math_ops._abs(x, name=name) def pow(x, y, name=None): """Computes the power of one value to another. Given a tensor `x` and a tensor `y`, this operation computes \\\\(x^y\\\\) for corresponding elements in `x` and `y`. For example: ``` # tensor 'x' is [[2, 2]], [3, 3]] # tensor 'y' is [[8, 16], [2, 3]] tf.pow(x, y) ==> [[256, 65536], [9, 27]] ``` Args: x: A `Tensor` of type `float`, `double`, `int32`, `complex64`, or `int64`. y: A `Tensor` of type `float`, `double`, `int32`, `complex64`, or `int64`. name: A name for the operation (optional). Returns: A `Tensor`. """ with ops.op_scope([x], name, "Pow") as name: return gen_math_ops._pow(x, y, name=name) def complex(real, imag, name=None): """Converts two real numbers to a complex number. Given a tensor `real` representing the real part of a complex number, and a tensor `imag` representing the imaginary part of a complex number, this operation computes complex numbers elementwise of the form \\\\(a + bj\\\\), where *a* represents the `real` part and *b* represents the `imag` part. The input tensors `real` and `imag` must be the same shape. For example: ``` # tensor 'real' is [2.25, 3.25] # tensor `imag` is [4.75, 5.75] tf.complex(real, imag) ==> [[2.25 + 4.74j], [3.25 + 5.75j]] ``` Args: real: A `Tensor` of type `float`. imag: A `Tensor` of type `float`. name: A name for the operation (optional). Returns: A `Tensor` of type `complex64`. """ with ops.op_scope([real, imag], name, "Complex") as name: return gen_math_ops._complex(real, imag, name=name) def round(x, name=None): """Rounds the values of a tensor to the nearest integer, element-wise. For example: ```python # 'a' is [0.9, 2.5, 2.3, -4.4] tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ] ``` Args: x: A `Tensor` of type `float` or `double`. name: A name for the operation (optional). Returns: A `Tensor` of same shape and type as `x`. """ x = ops.convert_to_tensor(x, name="x") if x.dtype.is_integer: return x else: return floor(x + 0.5, name=name) def cast(x, dtype, name=None): """Casts a tensor to a new type. The operation casts `x` (in case of `Tensor`) or `x.values` (in case of `SparseTensor`) to `dtype`. For example: ```python # tensor `a` is [1.8, 2.2], dtype=tf.float tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32 ``` Args: x: A `Tensor` or `SparseTensor`. dtype: The destination type. name: A name for the operation (optional). Returns: A `Tensor` or `SparseTensor` with same shape as `x`. Raises: TypeError: If `x` cannot be cast to the `dtype`. """ with ops.op_scope([x], name, "Cast") as name: if isinstance(x, ops.SparseTensor): values_cast = cast(x.values, dtype, name=name) return ops.SparseTensor(x.indices, values_cast, x.shape) else: # TODO(touts): Handle what Josh said. # # Could return ops.convert_to_tensor(x, dtype=dtype, ...) here, but that # allows some conversions that cast() can't do, e.g. casting numbers to # strings. x = ops.convert_to_tensor(x, name="x") if x.dtype.base_dtype == dtype: return x return gen_math_ops.cast(x, dtype, name=name) def to_float(x, name="ToFloat"): """Casts a tensor to type `float32`. Args: x: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). Returns: A `Tensor` or `SparseTensor` with same shape as `x` with type `float32`. Raises: TypeError: If `x` cannot be cast to the `float32`. """ return cast(x, dtypes.float32, name=name) def to_double(x, name="ToDouble"): """Casts a tensor to type `float64`. Args: x: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). Returns: A `Tensor` or `SparseTensor` with same shape as `x` with type `float64`. Raises: TypeError: If `x` cannot be cast to the `float64`. """ return cast(x, dtypes.float64, name=name) def to_int32(x, name="ToInt32"): """Casts a tensor to type `int32`. Args: x: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). Returns: A `Tensor` or `SparseTensor` with same shape as `x` with type `int32`. Raises: TypeError: If `x` cannot be cast to the `int32`. """ return cast(x, dtypes.int32, name=name) def to_int64(x, name="ToInt64"): """Casts a tensor to type `int64`. Args: x: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). Returns: A `Tensor` or `SparseTensor` with same shape as `x` with type `int64`. Raises: TypeError: If `x` cannot be cast to the `int64`. """ return cast(x, dtypes.int64, name=name) def to_bfloat16(x, name="ToBFloat16"): """Casts a tensor to type `bfloat16`. Args: x: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). Returns: A `Tensor` or `SparseTensor` with same shape as `x` with type `bfloat16`. Raises: TypeError: If `x` cannot be cast to the `bfloat16`. """ return cast(x, dtypes.bfloat16, name=name) ops.Tensor._override_operator("__neg__", neg) ops.Tensor._override_operator("__abs__", abs) # __invert__ corresponds to the ~ operator. Here we follow the numpy convention # ~ marks an elementwise bit-wise inverse. This is only implemented for boolean # tensors and will throw a TypeError if used on nonboolean arrays ops.Tensor._override_operator("__invert__", logical_not) def _OverrideBinaryOperatorHelper(func, op_name): """Register operators with different tensor and scalar versions. Args: func: the operator op_name: name of the operator being overridden """ def binary_op_wrapper(x, y): with ops.op_scope([x, y], None, op_name) as name: assert isinstance(x, ops.Tensor) y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") return func(x, y, name=name) ops.Tensor._override_operator("__%s__" % op_name, binary_op_wrapper) del binary_op_wrapper def r_binary_op_wrapper(y, x): with ops.op_scope([x, y], None, op_name) as name: assert isinstance(y, ops.Tensor) x = ops.convert_to_tensor(x, dtype=y.dtype.base_dtype, name="x") return func(x, y, name=name) ops.Tensor._override_operator("__r%s__" % op_name, r_binary_op_wrapper) del r_binary_op_wrapper # Conversion table for __truediv__. None entries mean no conversion required. _TRUEDIV_TABLE = { dtypes.uint8: dtypes.float32, dtypes.int8: dtypes.float32, dtypes.int16: dtypes.float32, dtypes.int32: dtypes.float64, dtypes.int64: dtypes.float64, dtypes.float32: None, dtypes.float64: None, dtypes.complex64: None, } def truediv(x, y, name=None): """Divides x / y elementwise, always producing floating point results. The same as `tf.div` for floating point arguments, but casts integer arguments to floating point before dividing so that the result is always floating point. This op is generated by normal `x / y` division in Python 3 and in Python 2.7 with `from __future__ import division`. If you want integer division that rounds down, use `x // y` or `tf.floordiv`. `x` and `y` must have the same numeric type. If the inputs are floating point, the output will have the same type. If the inputs are integral, the inputs are cast to `float32` for `int8` and `int16` and `float64` for `int32` and `int64` (matching the behavior of Numpy). Args: x: `Tensor` numerator of numeric type. y: `Tensor` denominator of numeric type. name: A name for the operation (optional). Returns: `x / y` evaluated in floating point. Raises: TypeError: If `x` and `y` have different dtypes. """ with ops.op_scope([x, y], name, "truediv") as name: x = ops.convert_to_tensor(x, name="x") y = ops.convert_to_tensor(y, name="y") x_dtype = x.dtype.base_dtype y_dtype = y.dtype.base_dtype if x_dtype != y_dtype: raise TypeError("x and y must have the same dtype, got %r != %r" % (x_dtype, y_dtype)) try: dtype = _TRUEDIV_TABLE[x_dtype] except KeyError: raise TypeError("Invalid dtype %r in __truediv__" % x_dtype) if dtype is not None: x = cast(x, dtype) y = cast(y, dtype) return div(x, y, name=name) def floordiv(x, y, name=None): """Divides `x / y` elementwise, rounding down for floating point. The same as `tf.div(x,y)` for integers, but uses `tf.floor(tf.div(x,y))` for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by `x // y` floor division in Python 3 and in Python 2.7 with `from __future__ import division`. Note that for efficiency, `floordiv` uses C semantics for negative numbers (unlike Python and Numpy). `x` and `y` must have the same type, and the result will have the same type as well. Args: x: `Tensor` numerator of real numeric type. y: `Tensor` denominator of real numeric type. name: A name for the operation (optional). Returns: `x / y` rounded down (except possibly towards zero for negative integers). Raises: TypeError: If the inputs are complex. """ with ops.op_scope([x, y], name, "floordiv") as name: x = ops.convert_to_tensor(x, name="x") dtype = x.dtype if dtype.is_floating: return floor(div(x, y), name=name) else: if not dtype.is_integer: raise TypeError("Expected floating point or integer, got %r" % dtype) return div(x, y, name=name) _OverrideBinaryOperatorHelper(add, "add") _OverrideBinaryOperatorHelper(sub, "sub") _OverrideBinaryOperatorHelper(mul, "mul") _OverrideBinaryOperatorHelper(div, "div") _OverrideBinaryOperatorHelper(truediv, "truediv") _OverrideBinaryOperatorHelper(floordiv, "floordiv") _OverrideBinaryOperatorHelper(mod, "mod") _OverrideBinaryOperatorHelper(pow, "pow") def logical_xor(x, y, name="LogicalXor"): """x ^ y = (x | y) & ~(x & y).""" # TODO(alemi) Make this a cwise op if people end up relying on it. return logical_and(logical_or(x, y), logical_not(logical_and(x, y)), name=name) _OverrideBinaryOperatorHelper(logical_and, "and") _OverrideBinaryOperatorHelper(logical_or, "or") _OverrideBinaryOperatorHelper(logical_xor, "xor") ops.Tensor._override_operator("__lt__", less) ops.Tensor._override_operator("__le__", less_equal) ops.Tensor._override_operator("__gt__", greater) ops.Tensor._override_operator("__ge__", greater_equal) def range(start, limit=None, delta=1, name="range"): """Creates a sequence of integers. Creates a sequence of integers that begins at `start` and extends by increments of `delta` up to but not including `limit`. Like the Python builtin `range`, `start` defaults to 0, so that `range(n) = range(0, n)`. For example: ``` # 'start' is 3 # 'limit' is 18 # 'delta' is 3 tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15] # 'limit' is 5 tf.range(limit) ==> [0, 1, 2, 3, 4] ``` Args: start: A 0-D (scalar) of type `int32`. First entry in sequence. Defaults to 0. limit: A 0-D (scalar) of type `int32`. Upper limit of sequence, exclusive. delta: A 0-D `Tensor` (scalar) of type `int32`. Optional. Default is 1. Number that increments `start`. name: A name for the operation (optional). Returns: An 1-D `int32` `Tensor`. """ if limit is None: start, limit = 0, start return gen_math_ops._range(start, limit, delta, name=name) @ops.RegisterShape("Range") def _RangeShape(op): start_value = tensor_util.constant_value(op.inputs[0]) limit_value = tensor_util.constant_value(op.inputs[1]) delta_value = tensor_util.constant_value(op.inputs[2]) if start_value is None or limit_value is None or delta_value is None: return [tensor_shape.vector(None)] else: return [tensor_shape.vector((limit_value - start_value + delta_value - 1) // delta_value)] # Reduction operations def _ReductionDims(x, reduction_indices): """Returns range(0, rank(x)) if reduction_indices is None.""" if reduction_indices is not None: return reduction_indices else: return range(0, array_ops.rank(x)) def reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None): """Computes the sum of elements across dimensions of a tensor. Reduces `input_tensor` along the dimensions given in `reduction_indices`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `reduction_indices` has no entries, all dimensions are reduced, and a tensor with a single element is returned. For example: ```python # 'x' is [[1, 1, 1] # [1, 1, 1]] tf.reduce_sum(x) ==> 6 tf.reduce_sum(x, 0) ==> [2, 2, 2] tf.reduce_sum(x, 1) ==> [3, 3] tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]] tf.reduce_sum(x, [0, 1]) ==> 6 ``` Args: input_tensor: The tensor to reduce. Should have numeric type. reduction_indices: The dimensions to reduce. If `None` (the default), reduces all dimensions. keep_dims: If true, retains reduced dimensions with length 1. name: A name for the operation (optional). Returns: The reduced tensor. """ return gen_math_ops._sum(input_tensor, _ReductionDims(input_tensor, reduction_indices), keep_dims, name=name) def reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None): """Computes the mean of elements across dimensions of a tensor. Reduces `input_tensor` along the dimensions given in `reduction_indices`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `reduction_indices` has no entries, all dimensions are reduced, and a tensor with a single element is returned. For example: ```python # 'x' is [[1., 1.] # [2., 2.]] tf.reduce_mean(x) ==> 1.5 tf.reduce_mean(x, 0) ==> [1.5, 1.5] tf.reduce_mean(x, 1) ==> [1., 2.] ``` Args: input_tensor: The tensor to reduce. Should have numeric type. reduction_indices: The dimensions to reduce. If `None` (the default), reduces all dimensions. keep_dims: If true, retains reduced dimensions with length 1. name: A name for the operation (optional). Returns: The reduced tensor. """ return gen_math_ops._mean(input_tensor, _ReductionDims(input_tensor, reduction_indices), keep_dims, name=name) def reduce_prod(input_tensor, reduction_indices=None, keep_dims=False, name=None): """Computes the product of elements across dimensions of a tensor. Reduces `input_tensor` along the dimensions given in `reduction_indices`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `reduction_indices` has no entries, all dimensions are reduced, and a tensor with a single element is returned. Args: input_tensor: The tensor to reduce. Should have numeric type. reduction_indices: The dimensions to reduce. If `None` (the default), reduces all dimensions. keep_dims: If true, retains reduced dimensions with length 1. name: A name for the operation (optional). Returns: The reduced tensor. """ return gen_math_ops._prod(input_tensor, _ReductionDims(input_tensor, reduction_indices), keep_dims, name=name) def reduce_min(input_tensor, reduction_indices=None, keep_dims=False, name=None): """Computes the minimum of elements across dimensions of a tensor. Reduces `input_tensor` along the dimensions given in `reduction_indices`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `reduction_indices` has no entries, all dimensions are reduced, and a tensor with a single element is returned. Args: input_tensor: The tensor to reduce. Should have numeric type. reduction_indices: The dimensions to reduce. If `None` (the default), reduces all dimensions. keep_dims: If true, retains reduced dimensions with length 1. name: A name for the operation (optional). Returns: The reduced tensor. """ return gen_math_ops._min(input_tensor, _ReductionDims(input_tensor, reduction_indices), keep_dims, name=name) def reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None): """Computes the maximum of elements across dimensions of a tensor. Reduces `input_tensor` along the dimensions given in `reduction_indices`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `reduction_indices` has no entries, all dimensions are reduced, and a tensor with a single element is returned. Args: input_tensor: The tensor to reduce. Should have numeric type. reduction_indices: The dimensions to reduce. If `None` (the default), reduces all dimensions. keep_dims: If true, retains reduced dimensions with length 1. name: A name for the operation (optional). Returns: The reduced tensor. """ return gen_math_ops._max(input_tensor, _ReductionDims(input_tensor, reduction_indices), keep_dims, name=name) def reduce_all(input_tensor, reduction_indices=None, keep_dims=False, name=None): """Computes the "logical and" of elements across dimensions of a tensor. Reduces `input_tensor` along the dimensions given in `reduction_indices`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `reduction_indices` has no entries, all dimensions are reduced, and a tensor with a single element is returned. For example: ```python # 'x' is [[True, True] # [False, False]] tf.reduce_all(x) ==> False tf.reduce_all(x, 0) ==> [False, False] tf.reduce_all(x, 1) ==> [True, False] ``` Args: input_tensor: The boolean tensor to reduce. reduction_indices: The dimensions to reduce. If `None` (the default), reduces all dimensions. keep_dims: If true, retains reduced dimensions with length 1. name: A name for the operation (optional). Returns: The reduced tensor. """ return gen_math_ops._all(input_tensor, _ReductionDims(input_tensor, reduction_indices), keep_dims, name=name) def reduce_any(input_tensor, reduction_indices=None, keep_dims=False, name=None): """Computes the "logical or" of elements across dimensions of a tensor. Reduces `input_tensor` along the dimensions given in `reduction_indices`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `reduction_indices` has no entries, all dimensions are reduced, and a tensor with a single element is returned. For example: ```python # 'x' is [[True, True] # [False, False]] tf.reduce_any(x) ==> True tf.reduce_any(x, 0) ==> [True, True] tf.reduce_any(x, 1) ==> [True, False] ``` Args: input_tensor: The boolean tensor to reduce. reduction_indices: The dimensions to reduce. If `None` (the default), reduces all dimensions. keep_dims: If true, retains reduced dimensions with length 1. name: A name for the operation (optional). Returns: The reduced tensor. """ return gen_math_ops._any(input_tensor, _ReductionDims(input_tensor, reduction_indices), keep_dims, name=name) def matmul(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None): """Multiplies matrix `a` by matrix `b`, producing `a` * `b`. The inputs must be two-dimensional matrices, with matching inner dimensions, possibly after transposition. Both matrices must be of the same type. The supported types are: `float`, `double`, `int32`, `complex64`. Either matrix can be transposed on the fly by setting the corresponding flag to `True`. This is `False` by default. If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding `a_is_sparse` or `b_is_sparse` flag to `True`. These are `False` by default. For example: ```python # 2-D tensor `a` a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.] [4. 5. 6.]] # 2-D tensor `b` b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.] [9. 10.] [11. 12.]] c = tf.matmul(a, b) => [[58 64] [139 154]] ``` Args: a: `Tensor` of type `float`, `double`, `int32` or `complex64`. b: `Tensor` with same type as `a`. transpose_a: If `True`, `a` is transposed before multiplication. transpose_b: If `True`, `b` is transposed before multiplication. a_is_sparse: If `True`, `a` is treated as a sparse matrix. b_is_sparse: If `True`, `b` is treated as a sparse matrix. name: Name for the operation (optional). Returns: A `Tensor` of the same type as `a`. """ with ops.op_scope([a, b], name, "MatMul") as name: a = ops.convert_to_tensor(a, name="a") b = ops.convert_to_tensor(b, name="b") if a.dtype == dtypes.float32 and (a_is_sparse or b_is_sparse): return sparse_matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b, a_is_sparse=a_is_sparse, b_is_sparse=b_is_sparse, name=name) else: return gen_math_ops._mat_mul(a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name) sparse_matmul = gen_math_ops._sparse_mat_mul batch_matmul = gen_math_ops._batch_mat_mul ops.RegisterShape("MatMul")(common_shapes.matmul_shape) ops.RegisterShape("SparseMatMul")(common_shapes.matmul_shape) @ops.RegisterStatistics("MatMul", "flops") def _calc_mat_mul_flops(graph, node): """Calculates the compute resources needed for MatMul.""" transpose_a = node.attr["transpose_a"].b a_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0]) a_shape.assert_is_fully_defined() if transpose_a: k = int(a_shape[1]) else: k = int(a_shape[0]) output_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name) output_shape.assert_is_fully_defined() output_count = np.prod(output_shape.as_list()) return ops.OpStats("flops", (k * output_count * 2)) @ops.RegisterStatistics("MatMul", "weight_parameters") def _calc_mat_mul_weight_parameters(graph, node): """Calculates the on-disk size of the weights for MatMul.""" # We assume here that the weights are always in the second input to the op, # which is generally true by convention for fully-connected layers, but not # enforced or checked. weights_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1]) weights_shape.assert_is_fully_defined() return ops.OpStats("weight_parameters", (int(weights_shape[1]) * int(weights_shape[0]))) def _as_indexed_slices(x): """Convert 'x' to IndexedSlices. Convert a dense Tensor to a block-sparse IndexedSlices. Args: x: Either a Tensor object, or an IndexedSlices object. Returns: An IndexedSlices object. Raises: TypeError: If 'x' is not a Tensor or an IndexedSlices object. """ # TODO(touts): op_scope if not isinstance(x, (ops.Tensor, ops.IndexedSlices)): raise TypeError("Not a Tensor or IndexedSlices: %s" % type(x)) if isinstance(x, ops.IndexedSlices): return x x_shape = array_ops.shape(x) return ops.IndexedSlices(x, range(0, x_shape[0]), x_shape) def _as_indexed_slices_list(inputs): """Convert all elements of 'inputs' to IndexedSlices. Additionally, homogenize the types of all the indices to either int32 or int64. Args: inputs: List containing either Tensor or IndexedSlices objects. Returns: A list of IndexedSlices objects. Raises: TypeError: If 'inputs' is not a list or a tuple. """ if not isinstance(inputs, (list, tuple)): raise TypeError("Expected a list or tuple, not a %s" % type(inputs)) outputs = [_as_indexed_slices(i) for i in inputs] with_int32_index = [o.indices for o in outputs if o.indices.dtype == dtypes.int32] if not with_int32_index or len(with_int32_index) == len(outputs): return outputs casted_outputs = [] for o in outputs: if o.indices.dtype == dtypes.int32: casted_outputs.append( ops.IndexedSlices(o.values, cast(o.indices, dtypes.int64), o.dense_shape)) else: casted_outputs.append(o) return casted_outputs def accumulate_n(inputs, shape=None, tensor_dtype=None, name=None): """Returns the element-wise sum of a list of tensors. Optionally, pass `shape` and `tensor_dtype` for shape and type checking, otherwise, these are inferred. For example: ```python # tensor 'a' is [[1, 2], [3, 4] # tensor `b` is [[5, 0], [0, 6]] tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]] # Explicitly pass shape and type tf.accumulate_n([a, b, a], shape=[2, 2], tensor_dtype=tf.int32) ==> [[7, 4], [6, 14]] ``` Args: inputs: A list of `Tensor` objects, each with same shape and type. shape: Shape of elements of `inputs`. tensor_dtype: The type of `inputs`. name: A name for the operation (optional). Returns: A `Tensor` of same shape and type as the elements of `inputs`. Raises: ValueError: If `inputs` don't all have same shape and dtype or the shape cannot be inferred. """ if tensor_dtype is None: if not inputs or not isinstance(inputs, (list, tuple)): raise ValueError("inputs must be a list of at least one Tensor with the " "same dtype and shape") inputs = ops.convert_n_to_tensor_or_indexed_slices(inputs) if not all(isinstance(x, ops.Tensor) for x in inputs): raise ValueError("inputs must be a list of at least one Tensor with the " "same dtype and shape") if not all(x.dtype == inputs[0].dtype for x in inputs): raise ValueError("inputs must be a list of at least one Tensor with the " "same dtype and shape") tensor_dtype = inputs[0].dtype if shape is not None: shape = tensor_shape.as_shape(shape) else: shape = tensor_shape.unknown_shape() for input_tensor in inputs: if isinstance(input_tensor, ops.Tensor): shape = shape.merge_with(input_tensor.get_shape()) if not shape.is_fully_defined(): # TODO(pbar): Make a version of assign_add that accepts an uninitialized # lvalue, and takes its shape from that? This would allow accumulate_n to # work in all situations that add_n currently works. raise ValueError("Cannot infer the shape of the accumulator for " "accumulate_n. Pass the shape argument, or set the shape " "of at least one of the inputs.") with ops.op_scope(inputs, name, "AccumulateN") as name: var = gen_state_ops._temporary_variable(shape=shape, dtype=tensor_dtype) var_name = var.op.name var = state_ops.assign(var, array_ops.zeros_like(inputs[0])) update_ops = [] for input_tensor in inputs: op = state_ops.assign_add(var, input_tensor, use_locking=True) update_ops.append(op) with ops.control_dependencies(update_ops): return gen_state_ops._destroy_temporary_variable(var, var_name=var_name, name=name) @ops.RegisterShape("BatchMatMul") def _BatchMatMulShape(op): """Shape function for BatchMatMul op.""" a_shape = op.inputs[0].get_shape() adj_a = op.get_attr("adj_x") b_shape = op.inputs[1].get_shape() adj_b = op.get_attr("adj_y") if a_shape.dims is None and b_shape.dims is None: return [tensor_shape.unknown_shape()] batch_dims = a_shape[:-2].merge_with(b_shape[:-2]) output_rows = a_shape[-1] if adj_a else a_shape[-2] output_cols = b_shape[-2] if adj_b else b_shape[-1] inner_a = a_shape[-2] if adj_a else a_shape[-1] inner_b = b_shape[-1] if adj_b else b_shape[-2] inner_a.assert_is_compatible_with(inner_b) return [batch_dims.concatenate([output_rows, output_cols])] def sigmoid(x, name=None): """Computes sigmoid of `x` element-wise. Specifically, `y = 1 / (1 + exp(-x))`. Args: x: A Tensor with type `float`, `double`, `int32`, `complex64`, `int64`, or `qint32`. name: A name for the operation (optional). Returns: A Tensor with the same type as `x` if `x.dtype != qint32` otherwise the return type is `quint8`. """ with ops.op_scope([x], name, "Sigmoid") as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops._sigmoid(x, name=name) def tanh(x, name=None): """Computes hyperbolic tangent of `x` element-wise. Args: x: A Tensor with type `float`, `double`, `int32`, `complex64`, `int64`, or `qint32`. name: A name for the operation (optional). Returns: A Tensor with the same type as `x` if `x.dtype != qint32` otherwise the return type is `quint8`. """ with ops.op_scope([x], name, "Tanh") as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops._tanh(x, name=name) def lgamma(x, name=None): """Computes `ln(|gamma(x)|)` element-wise. Args: x: A Tensor with type `float`, `double`, `int32`, `int64`, or `qint32`. name: A name for the operation (optional). Returns: A Tensor with the same type as `x` if `x.dtype != qint32` otherwise the return type is `quint8`. """ with ops.op_scope([x], name, "Lgamma") as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops._lgamma(x, name=name) def erf(x, name=None): """Computes Gauss error function of `x` element-wise. Args: x: A Tensor with type `float`, `double`, `int32`, `int64`, or `qint32`. name: A name for the operation (optional). Returns: A Tensor with the same type as `x` if `x.dtype != qint32` otherwise the return type is `quint8`. """ with ops.op_scope([x], name, "Erf") as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops._erf(x, name=name) def erfc(x, name=None): """Computes complementary error function of `x` element-wise. Args: x: A Tensor with type `float`, `double`, `int32`, `int64`, or `qint32`. name: A name for the operation (optional). Returns: A Tensor with the same type as `x` if `x.dtype != qint32` otherwise the return type is `quint8`. """ with ops.op_scope([x], name, "Erfc") as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops._erfc(x, name=name) ops.RegisterShape("Abs")(common_shapes.unchanged_shape) ops.RegisterShape("Ceil")(common_shapes.unchanged_shape) ops.RegisterShape("Conj")(common_shapes.unchanged_shape) ops.RegisterShape("Cos")(common_shapes.unchanged_shape) ops.RegisterShape("Exp")(common_shapes.unchanged_shape) ops.RegisterShape("Floor")(common_shapes.unchanged_shape) ops.RegisterShape("Imag")(common_shapes.unchanged_shape) ops.RegisterShape("Inv")(common_shapes.unchanged_shape) ops.RegisterShape("IsFinite")(common_shapes.unchanged_shape) ops.RegisterShape("IsInf")(common_shapes.unchanged_shape) ops.RegisterShape("IsNan")(common_shapes.unchanged_shape) ops.RegisterShape("Log")(common_shapes.unchanged_shape) ops.RegisterShape("LogicalNot")(common_shapes.unchanged_shape) ops.RegisterShape("Neg")(common_shapes.unchanged_shape) ops.RegisterShape("Real")(common_shapes.unchanged_shape) ops.RegisterShape("Rsqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Sign")(common_shapes.unchanged_shape) ops.RegisterShape("Sin")(common_shapes.unchanged_shape) ops.RegisterShape("Sqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Square")(common_shapes.unchanged_shape) ops.RegisterShape("Sigmoid")(common_shapes.unchanged_shape) ops.RegisterShape("Tanh")(common_shapes.unchanged_shape) ops.RegisterShape("Lgamma")(common_shapes.unchanged_shape) ops.RegisterShape("Erf")(common_shapes.unchanged_shape) ops.RegisterShape("Erfc")(common_shapes.unchanged_shape) ops.RegisterShape("Cast")(common_shapes.unchanged_shape) ops.RegisterShape("ComplexAbs")(common_shapes.unchanged_shape) ops.RegisterShape("FFT2D")(common_shapes.unchanged_shape) ops.RegisterShape("IFFT2D")(common_shapes.unchanged_shape) @ops.RegisterShape("Add") @ops.RegisterShape("Complex") @ops.RegisterShape("Div") @ops.RegisterShape("Equal") @ops.RegisterShape("Greater") @ops.RegisterShape("GreaterEqual") @ops.RegisterShape("Less") @ops.RegisterShape("LessEqual") @ops.RegisterShape("LogicalAnd") @ops.RegisterShape("LogicalOr") @ops.RegisterShape("Maximum") @ops.RegisterShape("Minimum") @ops.RegisterShape("Mod") @ops.RegisterShape("Mul") @ops.RegisterShape("NotEqual") @ops.RegisterShape("Pow") @ops.RegisterShape("Sub") def _BroadcastShape(op): """Common shape function for binary operators that broadcast their inputs.""" shape_x = op.inputs[0].get_shape() shape_y = op.inputs[1].get_shape() if shape_x.ndims is None or shape_y.ndims is None: return [tensor_shape.unknown_shape()] # To compute the broadcasted dimensions, we zip together shape_x and shape_y, # and pad with 1 to make them the same length. broadcasted_dims = reversed(list(six.moves.zip_longest( reversed(shape_x.dims), reversed(shape_y.dims), fillvalue=tensor_shape.Dimension(1)))) # Next we combine the dimensions according to the numpy broadcasting rules. # http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html return_dims = [] for (dim_x, dim_y) in broadcasted_dims: if dim_x.value is None or dim_y.value is None: # One or both dimensions is unknown. If either dimension is greater than # 1, we assume that the program is correct, and the other dimension will # be broadcast to match it. # TODO(mrry): If we eliminate the shape checks in C++, we must still # assert that the unknown dim is either 1 or the same as the known dim. if dim_x.value is not None and dim_x.value > 1: return_dims.append(dim_x) elif dim_y.value is not None and dim_y.value > 1: return_dims.append(dim_y) else: return_dims.append(None) elif dim_x.value == 1: # We will broadcast dim_x to dim_y. return_dims.append(dim_y) elif dim_y.value == 1: # We will broadcast dim_y to dim_x. return_dims.append(dim_x) elif dim_x.value == dim_y.value: # The dimensions are compatible, so output is the same size in that # dimension. return_dims.append(dim_x.merge_with(dim_y)) else: raise ValueError("Incompatible shapes for broadcasting: %s and %s" % (shape_x, shape_y)) return [tensor_shape.TensorShape(return_dims)] @ops.RegisterShape("AddN") def _AddNShape(op): merged_shape = tensor_shape.unknown_shape() for input_ in op.inputs: merged_shape = merged_shape.merge_with(input_.get_shape()) return [merged_shape] @ops.RegisterShape("Select") def _SelectShape(op): # All three inputs must have the same shape. return [op.inputs[0].get_shape() .merge_with(op.inputs[1].get_shape()) .merge_with(op.inputs[2].get_shape())] @ops.RegisterShape("ArgMax") @ops.RegisterShape("ArgMin") def _ArgOpShape(op): """Common shape function for arg-reduction ops.""" dimension_shape = op.inputs[1].get_shape() dimension_shape.assert_is_compatible_with(tensor_shape.scalar()) input_shape = op.inputs[0].get_shape() if input_shape.ndims is None: return [tensor_shape.unknown_shape()] elif input_shape.ndims <= 1: return [tensor_shape.scalar()] dimension = tensor_util.constant_value(op.inputs[1]) if dimension is None: return [tensor_shape.unknown_shape(ndims=input_shape.ndims - 1)] elif 0 <= dimension and dimension < input_shape.ndims: returned_shape = [] for i, dim in enumerate(input_shape.dims): if i != dimension: returned_shape.append(dim) return [tensor_shape.TensorShape(returned_shape)] else: raise ValueError( "dimension (%d) must be in the range [0, %d), where %d is the number " "of dimensions in the input" % (dimension, input_shape.ndims, input_shape.ndims)) @ops.RegisterShape("All") @ops.RegisterShape("Any") @ops.RegisterShape("Max") @ops.RegisterShape("Mean") @ops.RegisterShape("Min") @ops.RegisterShape("Prod") @ops.RegisterShape("Sum") def _ReductionShape(op): """Common shape function for reduction ops.""" input_shape = op.inputs[0].get_shape() reduction_indices = tensor_util.constant_value(op.inputs[1]) keep_dims = op.get_attr("keep_dims") if reduction_indices is None or input_shape.ndims is None: if keep_dims: return [tensor_shape.unknown_shape(ndims=input_shape.ndims)] else: return [tensor_shape.unknown_shape()] # Turn reduction_indices from scalar to vector if necessary reduction_indices = np.ravel(reduction_indices) for reduction_index in reduction_indices: if reduction_index < 0 or reduction_index >= input_shape.ndims: raise ValueError("Invalid reduction dimension %d for input with %d " "dimensions" % (reduction_index, input_shape.ndims)) returned_dims = [] if keep_dims: for i, dim in enumerate(input_shape.dims): if i in reduction_indices: returned_dims.append(1) else: returned_dims.append(dim) else: for i, dim in enumerate(input_shape.dims): if i not in reduction_indices: returned_dims.append(dim) return [tensor_shape.TensorShape(returned_dims)] @ops.RegisterShape("SegmentMax") @ops.RegisterShape("SegmentMean") @ops.RegisterShape("SegmentMin") @ops.RegisterShape("SegmentProd") @ops.RegisterShape("SegmentSum") def _SegmentReductionShape(op): """Common shape function for segment reduction ops.""" data_shape = op.inputs[0].get_shape() segment_ids_shape = op.inputs[1].get_shape() segment_ids_shape.assert_has_rank(1) return [tensor_shape.TensorShape([None]).concatenate(data_shape[1:])] @ops.RegisterShape("SparseSegmentMean") @ops.RegisterShape("SparseSegmentSqrtN") @ops.RegisterShape("SparseSegmentSum") def _SparseSegmentReductionShape(op): """Common shape function for sparse segment reduction ops.""" data_shape = op.inputs[0].get_shape() indices_shape = op.inputs[1].get_shape() indices_shape.assert_has_rank(1) segment_ids_shape = op.inputs[2].get_shape() segment_ids_shape.assert_has_rank(1) indices_shape.assert_is_compatible_with(segment_ids_shape) return [tensor_shape.TensorShape([None]).concatenate(data_shape[1:])] @ops.RegisterShape("SparseSegmentMeanGrad") @ops.RegisterShape("SparseSegmentSqrtNGrad") # pylint: disable=invalid-name def _SparseSegmentReductionGradShape(op): """Shape function for the SparseSegment[Mean|SqrtN]Grad ops.""" input_shape = op.inputs[0].get_shape() indices_shape = op.inputs[1].get_shape().with_rank(1) unused_segment_ids_shape = op.inputs[2].get_shape().merge_with(indices_shape) unused_output_dim0_shape = op.inputs[3].get_shape().merge_with( tensor_shape.scalar()) output_dim0 = tensor_util.constant_value(op.inputs[3]) if output_dim0 is not None: dim0 = output_dim0[0] else: dim0 = None return [tensor_shape.TensorShape([dim0]).concatenate(input_shape[1:])] # pylint: enable=invalid-name @ops.RegisterShape("UnsortedSegmentSum") def _UnsortedSegmentSumShape(op): """Shape function for UnsortedSegmentSum.""" data_shape = op.inputs[0].get_shape() segment_ids_shape = op.inputs[1].get_shape() mid = segment_ids_shape.ndims if mid is None: return [tensor_shape.unknown_shape()] else: num_segments = tensor_util.constant_value(op.inputs[2]) return [tensor_shape.TensorShape([num_segments]).concatenate( data_shape[mid:])] @ops.RegisterShape("LinSpace") def _LinspaceShape(op): num = tensor_util.constant_value(op.inputs[2]) return [tensor_shape.vector(num)]
32.479833
86
0.683531
96d8cac3afba89bc0168387e9ef60953bbfb2888
2,310
py
Python
python/cudf/cudf/io/json.py
sperlingxx/cudf
c681211df6253e1ceee9203658108980e7e93e3c
[ "Apache-2.0" ]
1
2021-12-17T19:28:00.000Z
2021-12-17T19:28:00.000Z
python/cudf/cudf/io/json.py
sperlingxx/cudf
c681211df6253e1ceee9203658108980e7e93e3c
[ "Apache-2.0" ]
1
2021-03-10T20:28:23.000Z
2021-03-25T15:58:47.000Z
python/cudf/cudf/io/json.py
sperlingxx/cudf
c681211df6253e1ceee9203658108980e7e93e3c
[ "Apache-2.0" ]
1
2020-11-10T03:19:16.000Z
2020-11-10T03:19:16.000Z
# Copyright (c) 2019-2020, NVIDIA CORPORATION. import warnings from io import BytesIO, StringIO import pandas as pd import cudf from cudf._lib import json as libjson from cudf.utils import ioutils @ioutils.doc_read_json() def read_json( path_or_buf, engine="auto", dtype=True, lines=False, compression="infer", byte_range=None, *args, **kwargs, ): """{docstring}""" if engine == "cudf" and not lines: raise ValueError("cudf engine only supports JSON Lines format") if engine == "auto": engine = "cudf" if lines else "pandas" is_single_filepath_or_buffer = ioutils.ensure_single_filepath_or_buffer( path_or_data=path_or_buf, **kwargs, ) if not is_single_filepath_or_buffer: raise NotImplementedError( "`read_json` does not yet support reading multiple files" ) path_or_buf, compression = ioutils.get_filepath_or_buffer( path_or_data=path_or_buf, compression=compression, iotypes=(BytesIO, StringIO), **kwargs, ) if engine == "cudf": return cudf.DataFrame._from_table( libjson.read_json( path_or_buf, dtype, lines, compression, byte_range ) ) else: warnings.warn( "Using CPU via Pandas to read JSON dataset, this may " "be GPU accelerated in the future" ) if kwargs.get("orient") == "table": pd_value = pd.read_json( path_or_buf, lines=lines, compression=compression, *args, **kwargs, ) else: pd_value = pd.read_json( path_or_buf, lines=lines, dtype=dtype, compression=compression, *args, **kwargs, ) df = cudf.from_pandas(pd_value) return df @ioutils.doc_to_json() def to_json(cudf_val, path_or_buf=None, *args, **kwargs): """{docstring}""" warnings.warn( "Using CPU via Pandas to write JSON dataset, this may " "be GPU accelerated in the future" ) pd_value = cudf_val.to_pandas(nullable=True) return pd.io.json.to_json(path_or_buf, pd_value, *args, **kwargs)
26.551724
76
0.585281
d5ab1d9caf25136da8b0bd00111e4a849015802a
15,469
py
Python
tex-camera-ready.py
pkorus/tex-camera-ready
b15ac9c8582d85804bb8be8609f44bff3c5fda69
[ "MIT" ]
null
null
null
tex-camera-ready.py
pkorus/tex-camera-ready
b15ac9c8582d85804bb8be8609f44bff3c5fda69
[ "MIT" ]
null
null
null
tex-camera-ready.py
pkorus/tex-camera-ready
b15ac9c8582d85804bb8be8609f44bff3c5fda69
[ "MIT" ]
null
null
null
#!/usr/local/bin/python3 import argparse import collections import os import re import shutil import sys import subprocess from PIL import Image class NonStandaloneError(RuntimeError): pass def build_dependency(old_file, new_file): previous_dir = os.path.abspath(os.path.curdir) os.chdir(os.path.split(old_file)[0]) # Open the file and check if the first line starts with standalone with open(old_file) as file: line = file.readline() while line.startswith('%'): line = file.readline() if 'standalone' not in line: raise NonStandaloneError() # print('Compiling a standalone dependency {} -> {}'.format(old_file, new_file)) # print('> latexmk -pdf {}'.format(old_file)) (exitcode, output) = subprocess.getstatusoutput('latexmk -pdf {} < /dev/null'.format(old_file)) if exitcode != 0: print('Error: could not build figure (see latexmk log below)!') # print(output) # print('Copying {} -> {}'.format(old_file.replace('.tex', '.pdf'), new_file.replace('.tex', '.pdf'))) shutil.copyfile(old_file.replace('.tex', '.pdf'), new_file.replace('.tex', '.pdf')) os.chdir(previous_dir) def refactor_dependencies(old_file, new_file, root_dir): regexps = [" (table|graphics) {0,1}(\[[^\]]*\]){0,1} {0,}\{([^\}]*)\}", "(includegraphics|input|include)(\[[^\]]*\]){0,}\{([^\}]*)\}"] missing_files = [] included = [] new_commands = {} standalone_mode = False root_dir = os.path.join(root_dir, 'resources') print(' Refactoring file {} -> {}'.format(old_file, new_file)) with open(new_file, 'w') as of: with open(old_file) as f: lines = f.readlines() for line in lines: if line.strip().startswith('%'): continue # Check if this is a standalone class - requires different file handling if re.search("documentclass(\[[^\]]*\]){0,1}\{standalone\}", line): standalone_mode = True # Check for simple new commands - used for referencing external resources new_command = re.search("newcommand\*{0,1}\{([^\}]*)\}\{([^\}]*)\}", line) # Build dictionary of new commands if new_command: key, value = new_command.groups() if key in ['\\DataPath', '\\FigPath']: new_commands[key] = value line = '\\newcommand*{{{}}}{{{}}}\n'.format(key, '../resources/') # Handle inclusion of graphics / data files # Check for known inclusion commands for pattern in regexps: match = re.search(pattern, line) if match: command, params, filename = match.groups() if standalone_mode: for k, v in new_commands.items(): filename = re.sub(re.escape(k) + '( |\{\})', v, filename) # Make sure the file exists & rewrite the line full_path = '{}/{}'.format(os.path.split(old_file)[0], filename) if old_file.find( '/') >= 0 else filename if os.path.isfile(full_path): if filename not in included: print(' {:15} {}'.format(' ', filename)) else: if filename not in included: print(' {:15}! {}'.format(' ', filename)) missing_files.append(filename) if len(new_commands.keys()) > 0: new_filename = '{} {}/{}'.format(list(new_commands.keys())[0], os.path.split(new_file)[-1].split('.')[0], os.path.split(filename)[-1]) else: new_filename = '{}/{}/{}'.format('./resources', os.path.split(new_file)[-1].split('.')[0], os.path.split(filename)[-1]) tgt_filaname = '{}/{}/{}'.format(root_dir, os.path.split(new_file)[-1].split('.')[0], os.path.split(filename)[-1]) if not os.path.isdir(os.path.split(tgt_filaname)[0]): os.makedirs(os.path.split(tgt_filaname)[0]) if os.path.isfile(full_path): shutil.copyfile(full_path, tgt_filaname) # Update the command with a new filename in the current line # (re module parses backslashes, so make sure to prevent that) line = re.sub(pattern, '{}{}{{{}}}'.format(command, params, new_filename).replace('\\', '\\\\'), line) included.append(filename) of.write(line) return missing_files parser = argparse.ArgumentParser( description='LaTeX source cleanup: take a working LaTeX sources and export a copy for dissemination (with ' 'resource refactoring, bibtex items selection, etc.)') parser.add_argument('filename', type=str, help='input file (*.tex)') parser.add_argument('-o', '--output', type=str, help='Output directory, default: ./final') parser.add_argument('-c', '--crop', help='Crop bitmaps based on LaTeX trim parameters', action='store_true') parser.add_argument('-v', '--verbose', help='Print analysis summary to stdout', action='store_true') parser.add_argument('-f', '--force', help='Force output to an existing directory', action='store_true') parser.add_argument('-b', '--bib', help='Cleanup Bibtex entries (leave only cited)', action='store_true') parser.add_argument('-t', '--tikz', help='Compile standalone TikZ figures and include resulting PDFs', action='store_true') args = parser.parse_args() supported_formats = ['.tex'] # Verify params if not os.path.splitext(args.filename)[-1].lower() in supported_formats: print('Error: Unsupported document format ({})'.format(os.path.split(args.filename)[-1])) sys.exit(1) if not args.output: args.output = './final_new' if os.path.isdir(args.output) and not args.force: print('Error: directory {} exists!'.format(os.path.abspath(args.output))) sys.exit(2) current_environment = collections.deque() resources = [] counters = {'figure': 0, 'table': 0, 'algorithm': 0} input_root = os.path.dirname(args.filename) input_root = input_root if len(input_root) > 0 else '.' output_root = os.path.abspath(args.output) # Read lines from the input file with open(args.filename) as f: lines = f.readlines() missing_deps = {} print('\nInput file : {}'.format(os.path.split(args.filename)[-1])) print('Input dir : {}'.format(input_root)) print('Output dir : {}'.format(output_root)) print('Working dir : {}'.format(os.path.abspath(os.curdir))) print('\nLoaded {} lines from {}'.format(len(lines), args.filename)) print('Writing to {}'.format(args.output)) for dirname in [args.output, '{}/bib'.format(args.output), '{}/resources'.format(args.output), '{}/includes'.format(args.output)]: if not os.path.exists(dirname): os.mkdir(dirname) # Open target file of = open(os.path.join(args.output, os.path.split(args.filename)[-1]), 'w') subfig_count = 0 current_subfig = 0 alphabet = 'abcdefghijklmnopqrstuwvxyz' citations = [] bibtex_files = [] # Process successive lines for line in lines: if line.strip().startswith('%'): continue line_written = False env_command = re.search('(begin|end){([a-z]*)\*{0,1}\}', line) if env_command: flag, env_type = env_command.groups() if flag == 'begin': current_environment.append(env_type) if current_environment[-1] in counters: counters[current_environment[-1]] += 1 current_subfig = 0 elif flag == 'end': current_environment.pop() else: print('Parsing error in line: {}'.format(line)) sys.exit(3) new_command = re.search("newcommand\*{0,1}\{([^\}]*)\}\{([^\}]*)\}", line) # Replace simple new commands that control external resources if new_command: key, value = new_command.groups() if key in ['\\DataPath', '\\FigPath']: line = '\\newcommand*{{{}}}{{{}}}\n'.format(key, './resources/') include_command = re.search("(includegraphics|input|include|includestandalone)(\[[^\]]*\]){0,1}\{([^\}]*)\}", line) if include_command: command, params, filename = include_command.groups() if command in ['input', 'include', 'includestandalone']: # If filename not explicit, fallback to *.tex if not os.path.isfile(os.path.join(input_root, filename)) and not filename.endswith('.tex'): filename = '{}.tex'.format(filename) if not os.path.isfile(os.path.join(input_root, filename)): print('Error: {} not found in the filesystem'.format(filename)) sys.exit(5) # The sub-extension handles multiple includes in a single figure ( subext = '' if current_subfig <= 0 else alphabet[current_subfig] extension = "" if len(filename.split('.')) == 1 else ".%s" % filename.split('.')[-1] filename_split = os.path.split(filename) context = '{} {:02}{}'.format(current_environment[-1], counters[current_environment[-1]], subext) if current_environment[-1] in counters else 'document' context_file = '{}_{:02}{}{}'.format(current_environment[-1], counters[current_environment[-1]], subext, extension) if current_environment[-1] in counters else filename_split[-1] new_filename = 'includes/{}'.format(context_file) current_subfig += 1 print('\n + {:15}: {}'.format(context, filename)) if filename.endswith('.tex'): # If the resource is a TiKz/PFG figure if args.tikz: # If requested, compile the standalone figure and incude the resulting PDF try: build_dependency(os.path.join(input_root, filename), os.path.join(output_root, new_filename)) new_filename = new_filename.replace('.tex', '.pdf') command = 'includegraphics' except NonStandaloneError: missing_deps[filename] = refactor_dependencies(os.path.join(input_root, filename), os.path.join(output_root, new_filename), output_root) else: # Otherwise, refactor its dependencies missing_deps[filename] = refactor_dependencies(os.path.join(input_root, filename), os.path.join(output_root, new_filename), output_root) else: # Look for cropping in parameters cropopt = re.search('trim=([0-9]+) ([0-9]+) ([0-9]+) ([0-9]+)', params) if args.crop else None # If the file is a graphics file, and cropping was requested, trim the bitmap and save... if args.crop and command == "includegraphics" and cropopt: l, b, r, t = cropopt.groups() # Crop the image im = Image.open("%s/%s" % (input_root, filename)) w, h = im.size dpi = im.info["dpi"] if 'dpi' in im.info else 72 if not isinstance(dpi, tuple): dpi = (dpi, dpi) im.crop((int(l) * dpi[0] / 72, int(t) * dpi[1] / 72, w - int(r) * dpi[0] / 72, h - int(b) * dpi[1] / 72)).save('{}/{}'.format(args.output, new_filename)) # Remove trimming commands from the parameters params = re.sub('trim=([0-9]+) ([0-9]+) ([0-9]+) ([0-9]+)', '', params) params = re.sub('clip', '', params) params = re.sub(',,', ',', params) params = params.replace("[,", "[") params = params.replace(",]", "]") print(' {:15}T {}'.format(' ', 'clipped bitmap')) else: shutil.copyfile(os.path.join(input_root, filename), '{}/{}'.format(args.output, new_filename)) print(' {:15}> {}'.format(' ', new_filename)) if not params: params = '' if len(params) > 0: params = params.replace('\\', '\\\\') if command == 'includestandalone': new_filename = new_filename.replace('.tex', '') line = re.sub("(includegraphics|input|include|includestandalone)(\[[^\]]*\]){0,1}\{([^\}]*)\}", "%s%s{%s}" % (command, params, new_filename), line) if args.bib: # Find citations for r in re.findall('\\\\cite\{([\w0-9:\-\_\,\.]+)\}', line): for i in r.split(','): citations.append(i) # Find included BibTeX databases bib_result = re.findall('bibliography\{([^\]]+)\}', line) if bib_result: of.write(re.sub('(bibliography)\{([^\]]+)\}', '\\1{bib/references.bib}', line)) line_written = True for r in bib_result: for i in r.split(','): bibtex_files.append(i) if not line_written: of.write(line) of.close() if sum([len(v) for v in missing_deps.values()]) > 0: print('\nMissing dependencies (you may need to handle them manually):') for k, v in missing_deps.items(): if len(v) > 0: print(' + {}'.format(k)) for name in v: print(' {}'.format(name)) # Process collected bibliography information if args.bib: found_citations = sorted(set(citations)) print('\nFound {} citations:'.format(len(found_citations))) index = 1 for ref in found_citations: print(' [{}] {}'.format(index, ref)) index += 1 print('Found {} Bibtex databases: {}'.format(len(bibtex_files), bibtex_files)) matched_citations = {} for bib_file in bibtex_files: print('Parsing {}'.format(bib_file)) if not bib_file.endswith(".bib") and not os.path.exists("%s/%s" % (input_root, bib_file)): bib_file = "%s.bib" % bib_file with open("%s/%s" % (input_root, bib_file)) as bf: content = bf.read() # TODO Could use a better regexp for pinpointing BibTeX entries - the current one needs the closing bracket in a separate line. matches = re.findall('(@[\w0-9:\-\_\,\.]+\{(.(?!\n\}))+..\})', content, re.DOTALL) # [^\}]*(?=\n\}) # iterate over found entries for entry in matches: entry_text = entry[0] # Add to dictionary name = re.findall('^@[\w]+\{([^,]+),', entry_text) if len(name) > 0 and name[0] in found_citations: matched_citations[name[0]] = entry_text # Sanity check - make sure only one entry has been matched (due to the limitation stated above) count_tags = re.findall('\s(t|T)itle', entry_text) if len(count_tags) != 1 and len(name) > 0: print('Warning Suspicious bibtext entry for {} : {} title entries!'.format(name[0], len(count_tags))) print('Matched {} entries'.format(len(matched_citations))) if len([v for v in found_citations if v not in matched_citations.keys()]) > 0: print('Missing ones: {}'.format([v for v in found_citations if v not in matched_citations.keys()])) with open("%s/bib/references.bib" % (output_root), 'w') as of: for name in sorted(matched_citations.keys()): of.write("%s\n\n" % matched_citations[name])
42.265027
186
0.569785
a4f38b0ae40595ac95453fea337b14bdeb71fbf8
22,792
py
Python
telescope/telescope.py
m-lab/telescope
4b8bd775a36d533805749d40e80f2d7b71076479
[ "Apache-2.0" ]
9
2016-02-18T18:12:38.000Z
2019-10-17T21:57:39.000Z
telescope/telescope.py
m-lab/telescope
4b8bd775a36d533805749d40e80f2d7b71076479
[ "Apache-2.0" ]
46
2015-07-20T23:53:57.000Z
2020-09-28T18:23:16.000Z
telescope/telescope.py
m-lab/telescope
4b8bd775a36d533805749d40e80f2d7b71076479
[ "Apache-2.0" ]
7
2015-08-19T18:32:18.000Z
2018-06-19T21:09:55.000Z
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright 2014 Measurement Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import copy import datetime import logging import os import Queue import random import threading import time import external import iptranslation import mlab import query import result_csv import selector import utils MAX_THREADS = 100 class TelescopeError(Exception): pass class NoClientNetworkBlocksFound(TelescopeError): def __init__(self, provider_name): Exception.__init__( self, 'Could not find IP blocks associated with client provider %s.' % (provider_name)) class MLabServerResolutionFailed(TelescopeError): def __init__(self, inner_exception): Exception.__init__(self, 'Failed to resolve M-Lab server IPs: %s' % (inner_exception.message)) class ExternalQueryHandler(object): """Monitors jobs in BigQuery and retrieves their results. Monitors external jobs in BigQuery and retrieves and processed the resulting data when the job completes. """ def __init__(self, filepath, metadata): """Inits ExternalQueryHandler ouput and metadata information. Args: filepath: (str) Where the processed results will be stored. metadata: (dict) Metadata on the query for output labels and further processing of received values. """ self._metadata = metadata self._filepath = filepath self._has_succeeded = False # Whether the query has returned a result. self._has_failed = False # Whether the query has received a fatal error. @property def has_succeeded(self): """Indicates whether the test has successfully completed.""" return self._has_succeeded @property def has_failed(self): """Indicates whether the test has encountered a fatal error.""" return self._has_failed def retrieve_data_upon_job_completion(self, job_id, query_object=None): """Waits for a BigQuery job to complete, then processes its output. Waits for a BigQuery job to complete, then retrieves the data, and writes the result to an output data file. Args: job_id: (str) ID of job for which to retrieve data. query_object: (external.BigQueryCall) Query object responsible for retrieving data from BigQuery. Returns: (bool) True if data was successfully retrieved, processed, and written to file, False otherwise. """ logger = logging.getLogger('telescope') if query_object: try: bq_query_returned_data = query_object.retrieve_job_data(job_id) logger.debug( 'Received data, processing according to %s metric.', self._metadata['metric']) write_metric_calculations_to_file(self._filepath, bq_query_returned_data) self._has_succeeded = True except (ValueError, external.BigQueryJobFailure, external.BigQueryCommunicationError) as caught_error: logger.error(( 'Caught {caught_error} for ({site}, {client_provider}, {metric}, ' '{date}).').format(caught_error=caught_error, **self._metadata)) except external.TableDoesNotExist: logger.error(( 'Requested tables for ({site}, {client_provider}, {metric}, {date}' ') do not exist, moving on.').format(**self._metadata)) self._has_failed = True return self._has_succeeded def setup_logger(verbosity_level=0): """Create and configure application logging mechanism. Args: verbosity_level: (int) Specifies how much information to log. 0 logs informational messages and below. Values > 0 log all messages. Returns: (logging.Logger) Logger object for the application. """ logger = logging.getLogger('telescope') console_handler = logging.StreamHandler() logger.addHandler(console_handler) if verbosity_level > 0: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) return logger def write_metric_calculations_to_file(data_filepath, metric_calculations, should_write_header=False): """Writes metric data to a file in CSV format. Args: data_filepath: (str) File path to which to write data. metric_calculations: (list) A list of dictionaries containing the values of retrieved metrics. Returns: (bool) True if the file was written successfully. """ logger = logging.getLogger('telescope') try: with open(data_filepath, 'w') as data_file_raw: data_file_raw.write(result_csv.metrics_to_csv(metric_calculations)) return True except IOError as caught_error: if caught_error.errno == 24: logger.error( 'When writing raw output, caught %s, trying again shortly.', caught_error) write_metric_calculations_to_file(data_filepath, metric_calculations) time.sleep(20) else: logger.error('When writing raw output, caught %s, cannot move on.', caught_error) except Exception as caught_error: logger.error('When writing raw output, caught %s, cannot move on.', caught_error) return False def write_bigquery_to_file(bigquery_filepath, query_string): """Writes BigQuery query string to a file. Args: bigquery_filepath: (str) Output file path. query_string: (str) BigQuery query string to write to file. Returns: (bool) True if query was written to file successfully, False otherwise. """ logger = logging.getLogger('telescope') try: with open(bigquery_filepath, 'w') as bigquery_file_raw: bigquery_file_raw.write(query_string) return True except Exception as caught_error: logger.error('When writing bigquery, caught %s.', caught_error) return False def selectors_from_files(selector_files): """Parses Selector objects from a list of selector files. N.B.: Parsing errors are logged, but do not cause the function to fail. Args: selector_files: (list) A list of filenames of selector files. Returns: (list) A list of Selector objects that were successfully parsed. """ logger = logging.getLogger('telescope') parser = selector.SelectorFileParser() selectors = [] for selector_file in selector_files: logger.debug('Attempting to parse selector file at: %s', selector_file) try: selectors.extend(parser.parse(selector_file)) except Exception as caught_error: logger.error('Failed to parse selector file: %s', caught_error) continue return selectors def shuffle_selectors(selectors): """Shuffles a list of selectors into random order.""" selectors_copy = copy.copy(selectors) random.shuffle(selectors_copy) return selectors_copy def create_ip_translator(ip_translator_spec): factory = iptranslation.IPTranslationStrategyFactory() return factory.create(ip_translator_spec) def generate_query(selector, ip_translator, mlab_site_resolver): """Generates BigQuery SQL corresponding to the given Selector object. Args: selector: (selector.Selector) Selector object that specifies what data to retrieve. ip_translator: (iptranslation.IPTranslationStrategy) Translator from ASN name to associated IP address blocks. mlab_site_resolver: (mlab.MLabSiteResolver) Resolver to translate M-Lab site IDs to a set of IP addresses. Returns: (str, int) A 2-tuple containing the query string and the number of tables referenced in the query. """ logger = logging.getLogger('telescope') start_time_datetime = selector.start_time end_time_datetime = start_time_datetime + datetime.timedelta( seconds=selector.duration) client_ip_blocks = [] if selector.client_provider: client_ip_blocks = ip_translator.find_ip_blocks( selector.client_provider) if not client_ip_blocks: raise NoClientNetworkBlocksFound(selector.client_provider) server_ips = [] if selector.site: try: retrieved_site_ips = mlab_site_resolver.get_site_ndt_ips( selector.site) for retrieved_site_ip in retrieved_site_ips: server_ips.append(retrieved_site_ip) logger.debug('Found IP for %s of %s.', selector.site, retrieved_site_ip) except Exception as caught_error: raise MLabServerResolutionFailed(caught_error) query_generator = query.BigQueryQueryGenerator( start_time_datetime, end_time_datetime, selector.metric, server_ips=server_ips, client_ip_blocks=client_ip_blocks, client_country=selector.client_country) return query_generator.query() def duration_to_string(duration_seconds): """Converts a number of seconds into a duration string. Serializes an amount of time in seconds to a human-readable string representing the time in days, hours, minutes, and seconds. Args: duration_seconds: (int) Total number of seconds. Returns: (str) The amount of time represented in a human-readable shorthand string. """ duration_string = '' remaining_seconds = int(duration_seconds) units_per_metric = int(remaining_seconds / (60 * 60 * 24)) if units_per_metric > 0: duration_string += '{0}d'.format(units_per_metric) remaining_seconds %= 60 * 60 * 24 units_per_metric = int(remaining_seconds / (60 * 60)) if units_per_metric > 0: duration_string += '{0}h'.format(units_per_metric) remaining_seconds %= 60 * 60 units_per_metric = int(remaining_seconds / (60)) if units_per_metric > 0: duration_string += '{0}m'.format(units_per_metric) remaining_seconds %= 60 if remaining_seconds != 0: duration_string += '{0}s'.format(remaining_seconds) return duration_string def wait_to_respect_thread_limit(concurrent_thread_limit, queue_size): """Waits until the number of active threads is lower than the thread limit. Waits until the number of active threads (including both background worker threads and the main thread) have dropped below the maximum number of permitted concurrent threads. Args: concurrent_thread_limit: (int) Maximum number of permitted concurrent threads. queue_size: (int) Total number of jobs waiting in work queue. """ logger = logging.getLogger('telescope') active_thread_count = threading.activeCount() while active_thread_count >= concurrent_thread_limit: logger.debug(('Reached thread limit (%d), cooling off. Currently %d ' 'active threads and %d in queue.'), concurrent_thread_limit, active_thread_count, queue_size) time.sleep(20) active_thread_count = threading.activeCount() def process_selector_queue(selector_queue, google_auth_config): """Processes the queue of Selector objects waiting for processing. Processes the queue of Selector objects by launching BigQuery jobs for each Selector and spawning threads to gather the results. Enforces query rate limits so that queue processing obeys limits on maximum simultaneous threads. Args: selector_queue: (Queue.Queue) A queue of Selector objects to process. google_auth_config: (external.GoogleAPIAuth) Object containing GoogleAPI auth data. Returns: (list) A list of 2-tuples where the first element is the spawned worker thread that waits on query results and the second element is the object that stores the results of the query. """ logger = logging.getLogger('telescope') thread_monitor = [] while not selector_queue.empty(): (bq_query_string, thread_metadata, data_filepath, _) = selector_queue.get(False) try: authenticated_service = external.get_authenticated_service( google_auth_config) bq_query_call = external.BigQueryCall(authenticated_service, google_auth_config.project_id) bq_job_id = bq_query_call.run_asynchronous_query(bq_query_string) except (external.BigQueryJobFailure, external.BigQueryCommunicationError) as caught_error: logger.warn('Caught request error %s on query, cooling down for a ' 'minute.', caught_error) selector_queue.put((bq_query_string, thread_metadata, data_filepath, True)) time.sleep(60) bq_job_id = None if bq_job_id is None: logger.warn(( 'No job id returned for {site} of {metric} (concurrent ' 'threads: {thread_count}).').format( thread_count=threading.activeCount(), **thread_metadata)) selector_queue.put((bq_query_string, thread_metadata, data_filepath, True)) continue external_query_handler = ExternalQueryHandler(data_filepath, thread_metadata) external_query_handler.queue_set = (bq_query_string, thread_metadata, data_filepath, True) new_thread = threading.Thread( target=bq_query_call.monitor_query_queue, args=(bq_job_id, thread_metadata, None, external_query_handler.retrieve_data_upon_job_completion)) new_thread.daemon = True new_thread.start() thread_monitor.append((new_thread, external_query_handler)) concurrent_thread_limit = MAX_THREADS wait_to_respect_thread_limit(concurrent_thread_limit, selector_queue.qsize()) return thread_monitor def main(args): selector_queue = Queue.Queue() logger = setup_logger(args.verbosity) selectors = selectors_from_files(args.selector_in) # The selectors were likely provided in order. Shuffle them to get better # concurrent distribution on BigQuery tables. selectors = shuffle_selectors(selectors) ip_translator_factory = iptranslation.IPTranslationStrategyFactory() mlab_site_resolver = mlab.MLabSiteResolver() for data_selector in selectors: thread_metadata = { 'date': data_selector.start_time.strftime('%Y-%m-%d-%H%M%S'), 'duration': duration_to_string(data_selector.duration), 'site': data_selector.site, 'client_provider': data_selector.client_provider, 'client_country': data_selector.client_country, 'metric': data_selector.metric } data_filepath = utils.build_filename( args.output, thread_metadata['date'], thread_metadata['duration'], thread_metadata['site'], thread_metadata['client_provider'], thread_metadata['client_country'], thread_metadata['metric'], '-raw.csv') if not args.ignorecache and utils.check_for_valid_cache(data_filepath): logger.info(('Raw data file found (%s), assuming this is ' 'cached copy of same data and moving off. Use ' '--ignorecache to suppress this behavior.'), data_filepath) continue logger.debug('Did not find existing data file: %s', data_filepath) logger.debug(( 'Generating Query for subset of {site}, {client_provider}, ' '{date}, {duration}.').format(**thread_metadata)) data_selector.ip_translation_spec.params['maxmind_dir'] = ( args.maxminddir) ip_translator = ip_translator_factory.create( data_selector.ip_translation_spec) bq_query_string = generate_query(data_selector, ip_translator, mlab_site_resolver) if args.savequery: bigquery_filepath = utils.build_filename( args.output, thread_metadata['date'], thread_metadata['duration'], thread_metadata['site'], thread_metadata['client_provider'], thread_metadata['client_country'], thread_metadata['metric'], '-bigquery.sql') write_bigquery_to_file(bigquery_filepath, bq_query_string) if not args.dryrun: # Offer Queue a tuple of the BQ statement, metadata, and a boolean # that indicates that the loop has not attempted to run the query # thus far (failed queries are pushed back to the end of the loop). selector_queue.put((bq_query_string, thread_metadata, data_filepath, False)) else: logger.warn( 'Dry run flag caught, built query and reached the point that ' 'it would be posted, moving on.') try: if not args.dryrun: logger.info('Finished processing selector files, approximately %d ' 'queries to be performed.', selector_queue.qsize()) if os.path.exists(args.credentials_filepath) is False: logger.warn( 'No credentials for Google appear to exist, next step ' 'will be an authentication mechanism for its API.') try: google_auth_config = external.GoogleAPIAuth( args.credentials_filepath, is_headless=args.noauth_local_webserver) except external.APIConfigError: logger.error( 'Could not find developer project, please create one in ' 'Developer Console to continue. (See README.md)') return None while not selector_queue.empty(): thread_monitor = process_selector_queue(selector_queue, google_auth_config) for (existing_thread, external_query_handler) in thread_monitor: existing_thread.join() # Join together all defined attributes of thread_metadata for a user # friendly notiication string. identifier_string = ', '.join(filter( None, thread_metadata.values())) if (not external_query_handler.has_succeeded and not external_query_handler.has_failed): selector_queue.put(external_query_handler.queue_set) elif external_query_handler.has_failed: logger.debug('Fatal error on %s, moving along.', identifier_string) else: logger.debug('Successfully retrieved %s.', identifier_string) except KeyboardInterrupt: logger.error('Caught interruption, shutting down now.') return False if __name__ == '__main__': parser = argparse.ArgumentParser( prog='M-Lab Telescope', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('selector_in', nargs='+', default=None, help='Selector JSON datafile(s) to parse.') parser.add_argument('-v', '--verbosity', action='count', help=( 'variable output verbosity (e.g., -vv is more than ' '-v)')) parser.add_argument('-o', '--output', default='processed/', help=( 'Output file path. If the folder does not exist, it' ' will be created.'), type=utils.create_directory_if_not_exists) parser.add_argument('--maxminddir', default='resources/', help='MaxMind GeoLite ASN snapshot directory.') parser.add_argument('--savequery', default=False, action='store_true', help=('Save the BigQuery statement to the [output] ' 'directory as a .sql file.')) parser.add_argument('--dryrun', default=False, action='store_true', help=('Run up until the query process (best used with ' '--savequery).')) parser.add_argument('--ignorecache', default=False, action='store_true', help='Overwrite cached query results if they exist.') parser.add_argument('--noauth_local_webserver', default=False, action='store_true', help=( 'Authenticate to Google using another method than a' ' local webserver.')) parser.add_argument('--credentialspath', dest='credentials_filepath', default='bigquery_credentials.dat', help=( 'Google API Credentials. If it does not exist, will' ' trigger Google auth.')) args = parser.parse_args() main(args)
38.894198
88
0.617015
518929a8f31bad6684c252fb80bc50a1e2166544
6,926
py
Python
markyp_bootstrap4/carousels.py
volfpeter/markyp-bootstrap4
1af5a1f9dc861a14323706ace28882ef6555739a
[ "MIT" ]
21
2019-07-16T15:03:43.000Z
2021-11-16T10:51:58.000Z
markyp_bootstrap4/carousels.py
volfpeter/markyp-bootstrap4
1af5a1f9dc861a14323706ace28882ef6555739a
[ "MIT" ]
null
null
null
markyp_bootstrap4/carousels.py
volfpeter/markyp-bootstrap4
1af5a1f9dc861a14323706ace28882ef6555739a
[ "MIT" ]
null
null
null
""" Bootstrap carousel elements. See https://getbootstrap.com/docs/4.0/components/carousel/. """ from typing import Optional, Tuple from markyp import ElementType, PropertyValue from markyp_html import join from markyp_html.block import div from markyp_html.inline import a, span from markyp_html.lists import ol, li __all__ = ("carousel", "controls", "indicators", "inner", "item", "item_caption", "slide") def carousel(*args: ElementType, identifier: str, add_controls: bool = True, add_indicators: bool = True, interval: Optional[int] = None, keyboard: Optional[bool] = None, wrap: Optional[bool] = None, class_: Optional[str] = None, **kwargs: PropertyValue) -> div: """ Creates a carousel. Keyword arguments not listed in the arguments section are turned into element attributes on the created `slide` element. If you need to put multiple HTML elements into the same carousel item and you would like to save a wrapper `div`, you should have a look at the `markyp.elements.ElementSequence` element. Positional arguments are wrapped in `item` elements one-by-one and they will form the main content of the carousel. Arguments: identifier: The identifier of the carousel. It must be unique in the entire webpage. add_controls: Whether to add control elements to the carousel. add_indicators: Whether to add indicator elements to the carousel. interval: The amount of time (in milliseconds) to wait between cycling carousel items. keyboard: Whether the carousel should react to keyboard events. wrap: Whether the carousel should cycle continuously or have hard stops. class_: CSS classes to add to the created `slide` element. """ if "data-interval" not in kwargs and interval is not None: kwargs["data-interval"] = interval if "data-keyboard" not in kwargs and keyboard is not None: kwargs["data-keyboard"] = keyboard if "data-wrap" not in kwargs and wrap is not None: kwargs["data-wrap"] = wrap return slide( indicators(identifier, len(args)) if add_indicators else "", inner(*[item(arg, active=i==0) for i, arg in enumerate(args)]), *controls(identifier) if add_controls else ("", ""), identifier=identifier, class_=class_, **kwargs ) def controls(carousel_id: str, *, class_: Optional[str] = None, **kwargs: PropertyValue) -> Tuple[a, a]: """ Creates a pair of anchor elements that serve as the previous and next item controls for the carousel with the given identifier. Keyword arguments not listed in the arguments section are turned into element attributes on the created anchor elements. Arguments: carousel_id: The identifier of the carousel to control. class_: CSS classes to add to the created anchor elements besides `carousel-control-{prev|next}`. """ return ( a( span(class_="carousel-control-prev-icon", **{"aria-hdden": True}), span("Previous", class_="sr-only"), class_=join("carousel-control-prev", class_), href=f"#{carousel_id}", role="button", **{**kwargs, "data-slide": "prev"} ), a( span(class_="carousel-control-next-icon", **{"aria-hdden": True}), span("Next", class_="sr-only"), class_=join("carousel-control-next", class_), href=f"#{carousel_id}", role="button", **{**kwargs, "data-slide": "next"} ) ) def indicators(carousel_id: str, n: int, *, active_index: int = 0, class_: Optional[str] = None, **kwargs: PropertyValue) -> ol: """ Creates an indicator list for the carousel with the given identifier. Keyword arguments not listed in the arguments section are turned into element attributes on the created indicator elements. Arguments: carousel_id: The identifier of the carousel to control. n: The number of items in the carousel (and the number of required indicators). active_index: The index of the indicator that should be active by default. class_: CSS classes to add to the created indicator elements. """ return ol( *(li(class_=join("active" if active_index == i else None, class_) or None, **{**kwargs, "data-target": f"#{carousel_id}", "data-slide-to": i}) for i in range(n)), class_="carousel-indicators" ) def inner(*args: ElementType, class_: Optional[str] = None, **kwargs: PropertyValue) -> div: """ Creates a `div` element with `carousel-inner` style. Positional arguments will become the children elements of the created `div`. Keyword arguments are turned into element attributes on the created `div`. Arguments: class_: Additional CSS class names to set on the created `div`. """ return div(*args, class_=join("carousel-inner", class_), **kwargs) def item(*args: ElementType, active: bool = False, class_: Optional[str] = None, **kwargs: PropertyValue) -> div: """ Creates a `div` element with `carousel-item` style. Positional arguments will become the children elements of the created `div`. Keyword arguments not listed in the arguments section are turned into element attributes on the created `div`. Arguments: active: Whether this item should be the active one in the carousel. class_: Additional CSS class names to set on the created `div`. """ return div(*args, class_=join("carousel-item", "active" if active else None, class_), **kwargs) def item_caption(*args: ElementType, class_: Optional[str] = None, **kwargs: PropertyValue) -> div: """ Creates a caption element for a carousel item. Positional arguments will become the children elements of the created `div`. Keyword arguments are turned into element attributes on the created `div`. Arguments: class_: Additional CSS class names to set on the created `div`. """ return div(*args, class_=join("carousel-caption d-none d-md-block", class_), **kwargs) def slide(*args: ElementType, identifier: str, class_: Optional[str] = None, **kwargs: PropertyValue) -> div: """ Creates a `carousel slide` `div`, the outer, main element of carousels. Positional arguments will become the children elements of the created `div`. Keyword arguments not listed in the arguments section are turned into element attributes on the created `div`. Arguments: identifier: The identifier of the carousel. It must be unique in the entire webpage. class_: Additional CSS class names to set on the created `div`. """ return div(*args, class_=join("carousel slide", class_), **{**kwargs, "data-ride": "carousel", "id": identifier})
40.034682
170
0.66633
13657b57844264cf82d010f49361b7f711d9cb7a
3,327
py
Python
script/model.py
mts-uw/ICAT_WGS
d0aeb66f46b78d47b91d14cdcde48a1d331f3fcd
[ "MIT" ]
null
null
null
script/model.py
mts-uw/ICAT_WGS
d0aeb66f46b78d47b91d14cdcde48a1d331f3fcd
[ "MIT" ]
null
null
null
script/model.py
mts-uw/ICAT_WGS
d0aeb66f46b78d47b91d14cdcde48a1d331f3fcd
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from sklearn.ensemble import ExtraTreesRegressor from xgboost import XGBRegressor from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import GridSearchCV, KFold import script.views as views from skopt.learning import ExtraTreesRegressor as opt_ETR import pickle import os def model_cal(data, cols, model='ETR', data_types=['conv', 'prop1', 'prop2'], shap=True): for type_ in data_types: os.makedirs('{type_}', exit_ok=True) print(type_) feat, target = data.loc[:, cols[type_]], data.loc[:, cols['target']] model = grid_search(feat, target, model) views.one_shot_plot(feat, target, model, xylim=[0, 35], random_state=1126, save=f'{type_}/{model}') views.plot_importance(model, feat.columns, 20, save=f'{type_}/{model}') if shap: shap.initjs() shap_importance(model, feat, target, save=f'{type_}/{model}') pickle.dump(model, save=f'{type_}/{model}.binaryfile') def grid_search(feat, target, model='ETR'): cvf = KFold(n_splits=10, shuffle=True, random_state=1126) if 'ETR' == model: cvmodel = GridSearchCV(ExtraTreesRegressor(n_jobs=1, random_state=1126), param_grid={"n_estimators": [250, 500, 1000]}, n_jobs=5) crossvalid(feat, target, cvmodel, cvf) model = opt_ETR(n_estimators=cvmodel.best_params_['n_estimators'], n_jobs=-1, random_state=1126) if 'XGB' == model: cvmodel = GridSearchCV(ExtraTreesRegressor(n_jobs=1, random_state=1126), param_grid={"n_estimators": [250, 500, 1000]}, n_jobs=5) crossvalid(feat, target, cvmodel, cvf) model = XGBRegressor(n_estimators=cvmodel.best_params_['n_estimtors'], n_jobs=-1, random_state=1126) return model def crossvalid(xx, yy, model, cvf): err_trn = [] err_tes = [] r_2_tes = [] r_2_trn = [] for train_index, test_index in cvf.split(xx): x_trn = np.array(xx)[train_index] x_tes = np.array(xx)[test_index] y_trn = np.array(yy)[train_index] y_tes = np.array(yy)[test_index] model.fit(x_trn, y_trn) x_trn_pred = model.predict(x_trn) x_tes_pred = model.predict(x_tes) err_tes.append(mean_squared_error(x_tes_pred, y_tes)) err_trn.append(mean_squared_error(x_trn_pred, y_trn)) r_2_tes.append(r2_score(y_tes, x_tes_pred)) r_2_trn.append(r2_score(y_trn, x_trn_pred)) v_tes = np.sqrt(np.array(err_tes)) v_trn = np.sqrt(np.array(err_trn)) print("RMSE %1.3f (sd: %1.3f, min:%1.3f, max:%1.3f, det:%1.3f) ... train" % ( v_trn.mean(), v_trn.std(), v_trn.min(), v_trn.max(), np.array(r_2_trn).mean())) print("RMSE %1.3f (sd: %1.3f, min:%1.3f, max:%1.3f, det:%1.3f) ... test" % ( v_tes.mean(), v_tes.std(), v_tes.min(), v_tes.max(), np.array(r_2_tes).mean())) ret = {} ret['trn_mean'] = v_trn.mean() ret['trn_std'] = v_trn.std() ret['trn_r2'] = np.array(r_2_trn).mean() ret['tes_mean'] = v_tes.mean() ret['tes_std'] = v_tes.std() ret['tes_r2'] = np.array(r_2_tes).mean() return ret
40.573171
89
0.612564
b97515cb9865f1fdcecb8373c55ce1997b680f4f
1,488
py
Python
tests/core/fixtures/core_serialization.py
lokijuhy/renku-python
0bfceafa4e6b4750439ab0ed20c61b0a6ba03a1f
[ "Apache-2.0" ]
26
2018-06-04T15:21:50.000Z
2022-02-11T17:31:24.000Z
tests/core/fixtures/core_serialization.py
lokijuhy/renku-python
0bfceafa4e6b4750439ab0ed20c61b0a6ba03a1f
[ "Apache-2.0" ]
1,655
2018-05-17T22:07:50.000Z
2022-03-31T21:22:01.000Z
tests/core/fixtures/core_serialization.py
lokijuhy/renku-python
0bfceafa4e6b4750439ab0ed20c61b0a6ba03a1f
[ "Apache-2.0" ]
19
2018-05-18T14:12:25.000Z
2022-03-30T19:51:35.000Z
# -*- coding: utf-8 -*- # # Copyright 2021 Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Renku core fixtures for serialization testing.""" from pathlib import Path import pytest import yaml @pytest.fixture def dataset_metadata(): """Return dataset metadata fixture.""" from renku.core.models.jsonld import NoDatesSafeLoader file_path = Path(__file__).parent / ".." / ".." / "data" / "doi-dataset.yml" data = yaml.load(file_path.read_text(), Loader=NoDatesSafeLoader) yield data @pytest.fixture def dataset_metadata_before_calamus(): """Return dataset metadata fixture.""" from renku.core.models.jsonld import NoDatesSafeLoader path = Path(__file__).parent / ".." / ".." / "data" / "dataset-v0.10.4-before-calamus.yml" yield yaml.load(path.read_text(), Loader=NoDatesSafeLoader)
34.604651
94
0.735215
e2b21ffc56d64dc3550291129f6585567ec54044
8,555
py
Python
homeassistant/components/cloud/google_config.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
3
2021-11-22T22:37:43.000Z
2022-03-17T00:55:28.000Z
homeassistant/components/cloud/google_config.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
25
2021-10-02T10:01:14.000Z
2022-03-31T06:11:49.000Z
homeassistant/components/cloud/google_config.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
3
2022-01-02T18:49:54.000Z
2022-01-25T02:03:54.000Z
"""Google config for Cloud.""" import asyncio from http import HTTPStatus import logging from hass_nabucasa import Cloud, cloud_api from hass_nabucasa.google_report_state import ErrorResponse from homeassistant.components.google_assistant.const import DOMAIN as GOOGLE_DOMAIN from homeassistant.components.google_assistant.helpers import AbstractConfig from homeassistant.const import CLOUD_NEVER_EXPOSED_ENTITIES from homeassistant.core import CoreState, split_entity_id from homeassistant.helpers import entity_registry as er, start from homeassistant.setup import async_setup_component from .const import ( CONF_ENTITY_CONFIG, DEFAULT_DISABLE_2FA, PREF_DISABLE_2FA, PREF_SHOULD_EXPOSE, ) from .prefs import CloudPreferences _LOGGER = logging.getLogger(__name__) class CloudGoogleConfig(AbstractConfig): """HA Cloud Configuration for Google Assistant.""" def __init__( self, hass, config, cloud_user: str, prefs: CloudPreferences, cloud: Cloud ): """Initialize the Google config.""" super().__init__(hass) self._config = config self._user = cloud_user self._prefs = prefs self._cloud = cloud self._cur_entity_prefs = self._prefs.google_entity_configs self._cur_default_expose = self._prefs.google_default_expose self._sync_entities_lock = asyncio.Lock() self._sync_on_started = False @property def enabled(self): """Return if Google is enabled.""" return ( self._cloud.is_logged_in and not self._cloud.subscription_expired and self._prefs.google_enabled ) @property def entity_config(self): """Return entity config.""" return self._config.get(CONF_ENTITY_CONFIG) or {} @property def secure_devices_pin(self): """Return entity config.""" return self._prefs.google_secure_devices_pin @property def should_report_state(self): """Return if states should be proactively reported.""" return self.enabled and self._prefs.google_report_state def get_local_webhook_id(self, agent_user_id): """Return the webhook ID to be used for actions for a given agent user id via the local SDK.""" return self._prefs.google_local_webhook_id def get_local_agent_user_id(self, webhook_id): """Return the user ID to be used for actions received via the local SDK.""" return self._user @property def cloud_user(self): """Return Cloud User account.""" return self._user async def async_initialize(self): """Perform async initialization of config.""" await super().async_initialize() async def hass_started(hass): if self.enabled and GOOGLE_DOMAIN not in self.hass.config.components: await async_setup_component(self.hass, GOOGLE_DOMAIN, {}) start.async_at_start(self.hass, hass_started) # Remove any stored user agent id that is not ours remove_agent_user_ids = [] for agent_user_id in self._store.agent_user_ids: if agent_user_id != self.agent_user_id: remove_agent_user_ids.append(agent_user_id) for agent_user_id in remove_agent_user_ids: await self.async_disconnect_agent_user(agent_user_id) self._prefs.async_listen_updates(self._async_prefs_updated) self.hass.bus.async_listen( er.EVENT_ENTITY_REGISTRY_UPDATED, self._handle_entity_registry_updated, ) def should_expose(self, state): """If a state object should be exposed.""" return self._should_expose_entity_id(state.entity_id) def _should_expose_entity_id(self, entity_id): """If an entity ID should be exposed.""" if entity_id in CLOUD_NEVER_EXPOSED_ENTITIES: return False if not self._config["filter"].empty_filter: return self._config["filter"](entity_id) entity_configs = self._prefs.google_entity_configs entity_config = entity_configs.get(entity_id, {}) entity_expose = entity_config.get(PREF_SHOULD_EXPOSE) if entity_expose is not None: return entity_expose entity_registry = er.async_get(self.hass) if registry_entry := entity_registry.async_get(entity_id): auxiliary_entity = ( registry_entry.entity_category is not None or registry_entry.hidden_by is not None ) else: auxiliary_entity = False default_expose = self._prefs.google_default_expose # Backwards compat if default_expose is None: return not auxiliary_entity return not auxiliary_entity and split_entity_id(entity_id)[0] in default_expose @property def agent_user_id(self): """Return Agent User Id to use for query responses.""" return self._cloud.username @property def has_registered_user_agent(self): """Return if we have a Agent User Id registered.""" return len(self._store.agent_user_ids) > 0 def get_agent_user_id(self, context): """Get agent user ID making request.""" return self.agent_user_id def should_2fa(self, state): """If an entity should be checked for 2FA.""" entity_configs = self._prefs.google_entity_configs entity_config = entity_configs.get(state.entity_id, {}) return not entity_config.get(PREF_DISABLE_2FA, DEFAULT_DISABLE_2FA) async def async_report_state(self, message, agent_user_id: str): """Send a state report to Google.""" try: await self._cloud.google_report_state.async_send_message(message) except ErrorResponse as err: _LOGGER.warning("Error reporting state - %s: %s", err.code, err.message) async def _async_request_sync_devices(self, agent_user_id: str): """Trigger a sync with Google.""" if self._sync_entities_lock.locked(): return HTTPStatus.OK async with self._sync_entities_lock: resp = await cloud_api.async_google_actions_request_sync(self._cloud) return resp.status async def _async_prefs_updated(self, prefs): """Handle updated preferences.""" if not self._cloud.is_logged_in: if self.is_reporting_state: self.async_disable_report_state() if self.is_local_sdk_active: self.async_disable_local_sdk() return if ( self.enabled and GOOGLE_DOMAIN not in self.hass.config.components and self.hass.is_running ): await async_setup_component(self.hass, GOOGLE_DOMAIN, {}) if self.should_report_state != self.is_reporting_state: if self.should_report_state: self.async_enable_report_state() else: self.async_disable_report_state() # State reporting is reported as a property on entities. # So when we change it, we need to sync all entities. await self.async_sync_entities_all() # If entity prefs are the same or we have filter in config.yaml, # don't sync. elif ( self._cur_entity_prefs is not prefs.google_entity_configs or self._cur_default_expose is not prefs.google_default_expose ) and self._config["filter"].empty_filter: self.async_schedule_google_sync_all() if self.enabled and not self.is_local_sdk_active: self.async_enable_local_sdk() elif not self.enabled and self.is_local_sdk_active: self.async_disable_local_sdk() self._cur_entity_prefs = prefs.google_entity_configs self._cur_default_expose = prefs.google_default_expose async def _handle_entity_registry_updated(self, event): """Handle when entity registry updated.""" if not self.enabled or not self._cloud.is_logged_in: return # Only consider entity registry updates if info relevant for Google has changed if event.data["action"] == "update" and not bool( set(event.data["changes"]) & er.ENTITY_DESCRIBING_ATTRIBUTES ): return entity_id = event.data["entity_id"] if not self._should_expose_entity_id(entity_id): return if self.hass.state != CoreState.running: return self.async_schedule_google_sync_all()
35.645833
103
0.671303
9fe3e3e718698243df5a8efcb2965b1359ef2f0d
2,963
py
Python
real-time.py
Imogen1004/drone-detection
1fc744353c8f43992bc672bfbecaed5e2795560c
[ "MIT" ]
null
null
null
real-time.py
Imogen1004/drone-detection
1fc744353c8f43992bc672bfbecaed5e2795560c
[ "MIT" ]
null
null
null
real-time.py
Imogen1004/drone-detection
1fc744353c8f43992bc672bfbecaed5e2795560c
[ "MIT" ]
2
2021-03-24T13:20:07.000Z
2021-08-06T20:48:27.000Z
import cv2, queue, threading, time from timeit import default_timer as timer import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import cv2 import numpy as np import tensorflow as tf from yolov3.utils import * from yolov3.configs import * from tools.Detection_to_XML import * # bufferless VideoCapture class VideoCapture: def __init__(self, name): self.cap = cv2.VideoCapture(name) self.q = queue.Queue() t = threading.Thread(target=self._reader) t.daemon = True t.start() # read frames as soon as they are available, keeping only most recent one def _reader(self): while True: ret, frame = self.cap.read() if not ret: break if not self.q.empty(): try: self.q.get_nowait() # discard previous (unprocessed) frame except queue.Empty: pass self.q.put(frame) def read(self): return self.q.get() Yolo = Load_Yolo_model() times, times_2 = [], [] cap = VideoCapture("rtsp://192.168.123.91/axis-media/media.amp?codec=h264") #cap = VideoCapture("http://192.168.123.91/axis-cgi/mjpg/video.cgi") while True: img = cap.read() try: original_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) except: break image_data = image_preprocess(np.copy(original_image), [416, 416]) image_data = image_data[np.newaxis, ...].astype(np.float32) t1 = time.time() if YOLO_FRAMEWORK == "tf": pred_bbox = Yolo.predict(image_data) elif YOLO_FRAMEWORK == "trt": batched_input = tf.constant(image_data) result = Yolo(batched_input) pred_bbox = [] for key, value in result.items(): value = value.numpy() pred_bbox.append(value) t2 = time.time() pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox] pred_bbox = tf.concat(pred_bbox, axis=0) bboxes = postprocess_boxes(pred_bbox, original_image, 416, 0.6) bboxes = nms(bboxes, 0.45, method='nms') image = draw_bbox(original_image, bboxes, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) t3 = time.time() times.append(t2-t1) times_2.append(t3-t1) times = times[-20:] times_2 = times_2[-20:] ms = sum(times)/len(times)*1000 fps = 1000 / ms fps2 = 1000 / (sum(times_2)/len(times_2)*1000) image = cv2.putText(image, "Time: {:.1f}FPS".format(fps), (0, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) Createjsonfile("json_Detections", str(int(time.time())), original_image, bboxes, read_class_names(TRAIN_CLASSES)) print("Time: {:.2f}ms, Detection FPS: {:.1f}, total FPS: {:.1f}".format(ms, fps, fps2)) show=True if show: cv2.imshow('output', image) if cv2.waitKey(1) & 0xFF == ord("q"): cv2.destroyAllWindows() break cv2.destroyAllWindows()
29.04902
121
0.628755
84e30fa9107e5d8f43d63785c54acd187b3277cc
5,759
py
Python
ogr/services/gitlab/issue.py
KPostOffice/ogr
2742a5716229f1b51b9c325c6ea0b790f318bdfd
[ "MIT" ]
null
null
null
ogr/services/gitlab/issue.py
KPostOffice/ogr
2742a5716229f1b51b9c325c6ea0b790f318bdfd
[ "MIT" ]
4
2021-05-27T21:44:37.000Z
2021-07-21T21:13:41.000Z
ogr/services/gitlab/issue.py
KPostOffice/ogr
2742a5716229f1b51b9c325c6ea0b790f318bdfd
[ "MIT" ]
null
null
null
# MIT License # # Copyright (c) 2018-2019 Red Hat, Inc. # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import datetime from typing import List, Optional, Dict, Union import gitlab from gitlab.v4.objects import Issue as _GitlabIssue from ogr.abstract import IssueComment, IssueStatus, Issue from ogr.exceptions import GitlabAPIException from ogr.services import gitlab as ogr_gitlab from ogr.services.base import BaseIssue from ogr.services.gitlab.comments import GitlabIssueComment class GitlabIssue(BaseIssue): _raw_issue: _GitlabIssue @property def title(self) -> str: return self._raw_issue.title @title.setter def title(self, new_title: str) -> None: self._raw_issue.title = new_title self._raw_issue.save() @property def id(self) -> int: return self._raw_issue.iid @property def private(self) -> bool: return self._raw_issue.confidential @property def status(self) -> IssueStatus: return ( IssueStatus.open if self._raw_issue.state == "opened" else IssueStatus[self._raw_issue.state] ) @property def url(self) -> str: return self._raw_issue.web_url @property def assignees(self) -> list: return self._raw_issue.assignees @property def description(self) -> str: return self._raw_issue.description @description.setter def description(self, new_description: str) -> None: self._raw_issue.description = new_description self._raw_issue.save() @property def author(self) -> str: return self._raw_issue.author["username"] @property def created(self) -> datetime.datetime: return self._raw_issue.created_at @property def labels(self) -> List: return self._raw_issue.labels def __str__(self) -> str: return "Gitlab" + super().__str__() @staticmethod def create( project: "ogr_gitlab.GitlabProject", title: str, body: str, private: Optional[bool] = None, labels: Optional[List[str]] = None, assignees: Optional[List[str]] = None, ) -> "Issue": assignee_ids = [] for user in assignees or []: users_list = project.service.gitlab_instance.users.list(username=user) if not users_list: raise GitlabAPIException(f"Unable to find '{user}' username") assignee_ids.append(str(users_list[0].id)) data = {"title": title, "description": body} if labels: data["labels"] = ",".join(labels) if assignees: data["assignee_ids"] = ",".join(assignee_ids) issue = project.gitlab_repo.issues.create(data, confidential=private) return GitlabIssue(issue, project) @staticmethod def get(project: "ogr_gitlab.GitlabProject", issue_id: int) -> "Issue": try: return GitlabIssue(project.gitlab_repo.issues.get(issue_id), project) except gitlab.exceptions.GitlabGetError as ex: raise GitlabAPIException(f"Issue {issue_id} was not found. ", ex) @staticmethod def get_list( project: "ogr_gitlab.GitlabProject", status: IssueStatus = IssueStatus.open, author: Optional[str] = None, assignee: Optional[str] = None, labels: Optional[List[str]] = None, ) -> List["Issue"]: # Gitlab API has status 'opened', not 'open' parameters: Dict[str, Union[str, List[str], bool]] = { "state": status.name if status != IssueStatus.open else "opened", "order_by": "updated_at", "sort": "desc", "all": True, } if author: parameters["author_username"] = author if assignee: parameters["assignee_username"] = assignee if labels: parameters["labels"] = labels issues = project.gitlab_repo.issues.list(**parameters) return [GitlabIssue(issue, project) for issue in issues] def _get_all_comments(self) -> List[IssueComment]: return [ GitlabIssueComment(parent=self, raw_comment=raw_comment) for raw_comment in self._raw_issue.notes.list(sort="asc", all=True) ] def comment(self, body: str) -> IssueComment: comment = self._raw_issue.notes.create({"body": body}) return GitlabIssueComment(parent=self, raw_comment=comment) def close(self) -> "Issue": self._raw_issue.state_event = "close" self._raw_issue.save() return self def add_label(self, *labels: str) -> None: for label in labels: self._raw_issue.labels.append(label) self._raw_issue.save()
33.097701
82
0.655496
a030a4fd90e19f3f9ad1260d672ceea3fc671d9f
1,655
py
Python
setup.py
neocxf/fastone_ucloud
e931181c632c3c8dc25e94811fd09f8946352004
[ "MIT" ]
1
2020-09-20T06:11:01.000Z
2020-09-20T06:11:01.000Z
setup.py
neocxf/fastone_ucloud
e931181c632c3c8dc25e94811fd09f8946352004
[ "MIT" ]
null
null
null
setup.py
neocxf/fastone_ucloud
e931181c632c3c8dc25e94811fd09f8946352004
[ "MIT" ]
null
null
null
#!/usr/bin/env python """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = ['Click>=7.0', 'six>=1.15.0'] setup_requirements = ['pytest-runner', 'wheel', 'six'] test_requirements = ['pytest>=3', ] setup( author="Xiaofei Chen", author_email='neocxf@qq.com', python_requires='>=2', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], description="ucloud deployment services that work on FastOne stack for computing service", entry_points={ 'console_scripts': [ 'fastone-ucloud=fastone_ucloud.cli:cli', ], }, install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='fastone_ucloud', name='fastone_ucloud', packages=find_packages(include=['fastone_ucloud', 'fastone_ucloud.*']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/neocxf/fastone_ucloud', version='0.1.2', zip_safe=False, )
30.090909
94
0.6429
e887a4b94f8653bb3eb80f9f713a758656bf00d3
490
py
Python
examples/test2.py
nvalerkos/cronio
f7361b334a16747ab2b807d4acc88775d9971bf4
[ "MIT" ]
1
2019-03-17T09:22:31.000Z
2019-03-17T09:22:31.000Z
examples/test2.py
nvalerkos/cronio
f7361b334a16747ab2b807d4acc88775d9971bf4
[ "MIT" ]
14
2018-08-07T13:40:37.000Z
2019-09-19T06:53:37.000Z
examples/test2.py
nvalerkos/cronio
f7361b334a16747ab2b807d4acc88775d9971bf4
[ "MIT" ]
null
null
null
import sys,os,json original = { 'comment': 'complex data structure we would ideally want in there', 'ie.1' : { 'key': 'is value bla bla', 'value' : [1,2,3,4,5,6,7,10011] }, 'ie.2' : { 'key': 'is value bla bla', 'value' : [1,2,3,4,5,6,7,10011] }, 'ie.3' : { 'key': 'is value bla bla', 'value' : [1,2,3,4,5,6,7,10011] } } if len(sys.argv) > 1: data = sys.argv[1] content = json.loads(data.decode('hex')) else: print "exit - no arguements" exit() print content == original
20.416667
68
0.583673
3bbfe0b7a85787680baec8cdfd9112520df5a2df
1,189
py
Python
lib/python3.8/site-packages/ansible_collections/ansible/posix/tests/unit/modules/conftest.py
cjsteel/python3-venv-ansible-2.10.5
c95395c4cae844dc66fddde9b4343966f4b2ecd5
[ "Apache-1.1" ]
22
2021-07-16T08:11:22.000Z
2022-03-31T07:15:34.000Z
kubernetes-the-hard-way/system/collections/ansible_collections/ansible/posix/tests/unit/modules/conftest.py
jkroepke/kubernetes-the-hard-way
70fd096a04addec0777744c9731a4e3fbdc40c8f
[ "Apache-2.0" ]
null
null
null
kubernetes-the-hard-way/system/collections/ansible_collections/ansible/posix/tests/unit/modules/conftest.py
jkroepke/kubernetes-the-hard-way
70fd096a04addec0777744c9731a4e3fbdc40c8f
[ "Apache-2.0" ]
39
2021-07-05T02:31:42.000Z
2022-03-31T02:46:03.000Z
# Copyright (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) import json import pytest from ansible.module_utils.six import string_types from ansible.module_utils._text import to_bytes from ansible.module_utils.common._collections_compat import MutableMapping @pytest.fixture def patch_ansible_module(request, mocker): if isinstance(request.param, string_types): args = request.param elif isinstance(request.param, MutableMapping): if 'ANSIBLE_MODULE_ARGS' not in request.param: request.param = {'ANSIBLE_MODULE_ARGS': request.param} if '_ansible_remote_tmp' not in request.param['ANSIBLE_MODULE_ARGS']: request.param['ANSIBLE_MODULE_ARGS']['_ansible_remote_tmp'] = '/tmp' if '_ansible_keep_remote_files' not in request.param['ANSIBLE_MODULE_ARGS']: request.param['ANSIBLE_MODULE_ARGS']['_ansible_keep_remote_files'] = False args = json.dumps(request.param) else: raise Exception('Malformed data to the patch_ansible_module pytest fixture') mocker.patch('ansible.module_utils.basic._ANSIBLE_ARGS', to_bytes(args))
41
92
0.743482
55cc048d09b5a4003fc84388797da58934f24d33
601
py
Python
scrapybot/scrapybot/items.py
luzhuomi/collamine-client-python
63bc174da28e0c42b7eb25ac81a5f68ec3e01a03
[ "Apache-2.0" ]
null
null
null
scrapybot/scrapybot/items.py
luzhuomi/collamine-client-python
63bc174da28e0c42b7eb25ac81a5f68ec3e01a03
[ "Apache-2.0" ]
null
null
null
scrapybot/scrapybot/items.py
luzhuomi/collamine-client-python
63bc174da28e0c42b7eb25ac81a5f68ec3e01a03
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy if scrapy.version_info[0:2] < (1,1): from scrapy.contrib.djangoitem import DjangoItem else: from scrapy_djangoitem import DjangoItem # sudo easy_install scrapy_djangoitem from scrapy.item import Field from crawler.models import HTML ''' class ScrapybotItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass ''' class ScrapybotItem(DjangoItem): django_model = HTML
23.115385
86
0.723794
d65730a8a5911a9ed03c420a6e696fcecf8a1a92
302
py
Python
tests/test_skeleton.py
ludwigflo/ml_utils
e58ac5842c00b167ee87c20c7c1ffc44322b2634
[ "MIT" ]
null
null
null
tests/test_skeleton.py
ludwigflo/ml_utils
e58ac5842c00b167ee87c20c7c1ffc44322b2634
[ "MIT" ]
null
null
null
tests/test_skeleton.py
ludwigflo/ml_utils
e58ac5842c00b167ee87c20c7c1ffc44322b2634
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import pytest from ml_utils.skeleton import fib __author__ = "Florian Ludwig" __copyright__ = "Florian Ludwig" __license__ = "mit" def test_fib(): assert fib(1) == 1 assert fib(2) == 1 assert fib(7) == 13 with pytest.raises(AssertionError): fib(-10)
17.764706
39
0.642384
14cb7009912c72e5ac4589bafcc7ae40455ba23a
88
py
Python
lambda/tasks/admin.py
Rory-Sullivan/lambda
44e7ea6273958b2e666b1d59bc6eac54915b8b8c
[ "MIT" ]
6
2021-11-15T18:56:44.000Z
2022-02-15T10:02:24.000Z
lambda/tasks/admin.py
Rory-Sullivan/lambda
44e7ea6273958b2e666b1d59bc6eac54915b8b8c
[ "MIT" ]
5
2020-10-24T20:08:13.000Z
2021-06-10T19:05:24.000Z
lambda/tasks/admin.py
Rory-Sullivan/lambda
44e7ea6273958b2e666b1d59bc6eac54915b8b8c
[ "MIT" ]
1
2020-10-19T14:35:24.000Z
2020-10-19T14:35:24.000Z
from django.contrib import admin from . import models admin.site.register(models.Task)
17.6
32
0.806818
69fb0d0e00e96243e7c76ccdf2278c56bdc4ccba
16,383
py
Python
tests/models/levit/test_modeling_levit.py
DN6/transformers
5c17918fe4cda80dae5b7ec8f0b2d23a813c4a05
[ "Apache-2.0" ]
5
2020-09-01T09:15:48.000Z
2020-09-15T03:25:05.000Z
tests/models/levit/test_modeling_levit.py
DN6/transformers
5c17918fe4cda80dae5b7ec8f0b2d23a813c4a05
[ "Apache-2.0" ]
null
null
null
tests/models/levit/test_modeling_levit.py
DN6/transformers
5c17918fe4cda80dae5b7ec8f0b2d23a813c4a05
[ "Apache-2.0" ]
3
2020-08-20T04:46:25.000Z
2020-10-14T08:39:13.000Z
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch LeViT model. """ import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitFeatureExtractor class LevitConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) class LevitModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, kernel_size=3, stride=2, padding=1, patch_size=16, hidden_sizes=[128, 256, 384], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, mlp_ratio=[2, 2, 2], attention_ratio=[2, 2, 2], initializer_range=0.02, is_training=True, use_labels=True, num_labels=2, # Check ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.hidden_sizes = hidden_sizes self.num_attention_heads = num_attention_heads self.depths = depths self.key_dim = key_dim self.drop_path_rate = drop_path_rate self.patch_size = patch_size self.attention_ratio = attention_ratio self.mlp_ratio = mlp_ratio self.initializer_range = initializer_range self.down_ops = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] self.is_training = is_training self.use_labels = use_labels self.num_labels = num_labels self.initializer_range = initializer_range def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def create_and_check_model(self, config, pixel_values, labels): model = LevitModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) image_size = (self.image_size, self.image_size) height, width = image_size[0], image_size[1] for _ in range(4): height = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) width = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = LevitForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class LevitModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Levit does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = LevitModelTester(self) self.config_tester = ConfigTester(self, config_class=LevitConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="Levit does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Levit does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = len(self.model_tester.depths) + 1 self.assertEqual(len(hidden_states), expected_num_layers) image_size = (self.model_tester.image_size, self.model_tester.image_size) height, width = image_size[0], image_size[1] for _ in range(4): height = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) width = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]), [ height * width, self.model_tester.hidden_sizes[0], ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) # special case for LevitForImageClassificationWithTeacher model def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(MODEL_MAPPING) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return config.use_cache = False config.return_dict = True for model_class in self.all_model_classes: if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue model = model_class(config) model.gradient_checkpointing_enable() model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_problem_types(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def test_model_from_pretrained(self): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = LevitModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class LevitModelIntegrationTest(unittest.TestCase): @cached_property def default_feature_extractor(self): return LevitFeatureExtractor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def test_inference_image_classification_head(self): model = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( torch_device ) feature_extractor = self.default_feature_extractor image = prepare_img() inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.0096, -1.0084, -1.4318]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
38.639151
120
0.651163
32f7915982e138a13b110cbc56778890327be64d
8,058
py
Python
triple_agent/tests/test_report_utilities.py
andrewzwicky/TripleAgent
8d056df5c53a3d264dc778bad6771a0a2f62e7e7
[ "MIT" ]
3
2020-04-25T11:42:03.000Z
2020-07-08T16:38:26.000Z
triple_agent/tests/test_report_utilities.py
andrewzwicky/TripleAgent
8d056df5c53a3d264dc778bad6771a0a2f62e7e7
[ "MIT" ]
17
2019-08-11T19:09:55.000Z
2021-03-30T17:12:28.000Z
triple_agent/tests/test_report_utilities.py
andrewzwicky/TripleAgent
8d056df5c53a3d264dc778bad6771a0a2f62e7e7
[ "MIT" ]
null
null
null
import pytest from triple_agent.reports.generation.report_utilities import ( create_plot_colors, create_plot_hatching, create_data_labels, create_category_legend_labels, ) from triple_agent.classes.action_tests import ActionTest from triple_agent.classes.venues import Venue from triple_agent.classes.characters import Characters from triple_agent.reports.generation.plot_specs import PlotLabelStyle from triple_agent.constants.colors import PlotColorsBase import pandas COLOR_TEST_CASES = [ ( PlotColorsBase(), None, pandas.DataFrame( data=[[3, 4]], columns=[ActionTest.White, ActionTest.Green], index=[None] ), True, False, [["#0077BB", "#0077BB"]], ), ( PlotColorsBase(), None, pandas.DataFrame( data=[[3, 4]], columns=[ActionTest.White, ActionTest.Green], index=[None] ), True, True, [None], ), # this test doesn't make sense because of this disconnect between stacks_are_categories and the index == [None]a ( PlotColorsBase(), None, pandas.DataFrame( data=[[3, 4]], columns=[ActionTest.White, ActionTest.Green], index=[None] ), False, False, [None], ), ( PlotColorsBase(), {"x": "blue", "y": "red"}, pandas.DataFrame( data=[[3, 4, 1], [0, 0, 0]], columns=["test", "a", "b"], index=["x", "y"] ), False, False, [["blue", "blue", "blue"], ["red", "red", "red"]], ), ( PlotColorsBase(), None, pandas.DataFrame( data=[[3, 4, 1], [0, 0, 0]], columns=["test", "a", "b"], index=["x", "y"] ), False, False, [None, None], ), ( PlotColorsBase(), {"x": "blue", "y": "red", "test": "green"}, pandas.DataFrame(data=[[3, 4, 1]], columns=["test", "x", "y"], index=[None]), True, False, [["green", "blue", "red"]], ), ] @pytest.mark.plotting @pytest.mark.quick @pytest.mark.parametrize( "plot_colors, primary_color_dict, frame, stacks_are_categories, is_pie_chart, expected_colors", COLOR_TEST_CASES, ) def test_create_plot_colors( plot_colors, primary_color_dict, frame, stacks_are_categories, is_pie_chart, expected_colors, ): colors = create_plot_colors( plot_colors, primary_color_dict, frame, stacks_are_categories, is_pie_chart ) assert colors == expected_colors HATCH_TEST_CASES = [ (None, [ActionTest.White, ActionTest.Green], [None], True, [[None, None]]), # this test doesn't make sense because of this disconnect between stacks_are_categories and the index == [None]a (None, [ActionTest.White, ActionTest.Green], [None], False, [[None, None]]), ( {"x": "//", "y": "-"}, ["test", "a", "b"], ["x", "y"], False, [["//", "//", "//"], ["-", "-", "-"]], ), ({"x": "//", "y": "-"}, ["x", "y"], [None], True, [["//", "-"]]), ( None, ["test", "a", "b"], ["x", "y"], False, [[None, None, None], [None, None, None]], ), ] @pytest.mark.plotting @pytest.mark.quick @pytest.mark.parametrize( "hatch_dict, columns, index, stacks_are_categories, expected_hatch", HATCH_TEST_CASES, ) def test_create_plot_hatching( hatch_dict, columns, index, stacks_are_categories, expected_hatch ): hatch = create_plot_hatching(hatch_dict, columns, index, stacks_are_categories) assert hatch == expected_hatch DATA_LABEL_CASES = [ ( pandas.DataFrame( data=[ [6, 2, 5, 1], [7, 7, 17, 3], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], ], columns=[Venue.Balcony, Venue.Terrace, Venue.Gallery, Venue.Ballroom], index=[ ActionTest.Green, ActionTest.White, ActionTest.Ignored, ActionTest.Red, ActionTest.Canceled, ], ), PlotLabelStyle.NoLabels, [ ["", "", "", ""], ["", "", "", ""], ["", "", "", ""], ["", "", "", ""], ["", "", "", ""], ], ), ( pandas.DataFrame( data=[ [6, 2, 5, 1], [7, 7, 17, 3], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], ], columns=[Venue.Balcony, Venue.Terrace, Venue.Gallery, Venue.Ballroom], index=[ ActionTest.Green, ActionTest.White, ActionTest.Ignored, ActionTest.Red, ActionTest.Canceled, ], ), PlotLabelStyle.Plain, [ ["6", "2", "5", "1"], ["7", "7", "17", "3"], ["1", "0", "1", "0"], ["0", "1", "1", "0"], ["0", "0", "1", "0"], ], ), ] @pytest.mark.plotting @pytest.mark.quick @pytest.mark.parametrize("input_frame, label_style, expected_labels", DATA_LABEL_CASES) def test_create_data_labels(input_frame, label_style, expected_labels): labels = create_data_labels(input_frame, label_style) assert labels == expected_labels CREATE_CATEGORY_LEGEND_LABELS_CASES = [ (None, None, [], [], False, [], []), ( None, None, ["aah", "bah", "ceh"], ["dah", "eeh", "fah"], False, ["aah", "bah", "ceh"], ["dah", "eeh", "fah"], ), ( None, None, [Characters.Boots, Characters.Carlos], ["dah", "eeh", "fah"], False, ["Ms. B", "Mr. P"], ["dah", "eeh", "fah"], ), (None, None, [], [], True, [], []), ( None, None, ["aah", "bah", "ceh"], ["dah", "eeh", "fah"], True, ["aah", "bah", "ceh"], [None, None, None], ), ( None, None, [Characters.Boots, Characters.Carlos], ["dah", "eeh", "fah"], True, ["Ms. B", "Mr. P"], [None, None, None], ), ( {"a": "d", "b": "e", "c": "f"}, None, ["a", "c", "b"], [], True, ["d", "f", "e"], [], ), ( {"a": "d", "b": "e", "c": "f"}, None, [], ["a", "c", "b"], False, [], ["d", "f", "e"], ), ( None, None, ["a", "c", "b"], ["d", "f", "e"], False, ["a", "c", "b"], ["d", "f", "e"], ), ( None, {"a": "d", "b": "e", "c": "f"}, [], ["a", "c", "b"], False, [], ["a", "c", "b"], ), ( None, {"a": "d", "b": "e", "c": "f"}, ["a", "c", "b"], ["a", "c", "b"], False, ["d", "f", "e"], ["a", "c", "b"], ), ( {"a": "d", "b": "e", "c": "f"}, {"aa": "dd", "bb": "ee", "cc": "ff"}, ["aa", "cc", "bb"], ["a", "c", "b"], False, ["dd", "ff", "ee"], ["d", "f", "e"], ), ] @pytest.mark.plotting @pytest.mark.quick @pytest.mark.parametrize( "primary_label_dict,secondary_label_dict,columns,index,stacks_are_categories,expected_category_labels,expected_stack_labels", CREATE_CATEGORY_LEGEND_LABELS_CASES, ) def test_create_category_legend_labels( primary_label_dict, secondary_label_dict, columns, index, stacks_are_categories, expected_category_labels, expected_stack_labels, ): category_labels, stack_labels = create_category_legend_labels( primary_label_dict, secondary_label_dict, columns, index, stacks_are_categories, ) assert category_labels == expected_category_labels assert stack_labels == expected_stack_labels
24.947368
129
0.466865
a50f11a7f7150f8284147022fdfac52ff2d8d702
553
py
Python
script/timelapse.py
MarkHershey/opencv-motion-detection
dbaa1a18e7f5b14cc9192dd3a23ea251c3bf4059
[ "MIT" ]
null
null
null
script/timelapse.py
MarkHershey/opencv-motion-detection
dbaa1a18e7f5b14cc9192dd3a23ea251c3bf4059
[ "MIT" ]
null
null
null
script/timelapse.py
MarkHershey/opencv-motion-detection
dbaa1a18e7f5b14cc9192dd3a23ea251c3bf4059
[ "MIT" ]
null
null
null
from time import sleep from picamera import PiCamera from datetime import datetime def timestamp(): now = str(datetime.now()) ts = "" for i in now[:-7]: if i in (" ", "-", ":"): pass else: ts += i return ts def main(): camera = PiCamera() camera.resolution = (1024, 768) camera.rotation = -90 # camera.start_preview() # Camera warm-up time while True: ts = timestamp() camera.capture(f'{ts}.jpg') sleep(2) if __name__ == "__main__": main()
18.433333
35
0.538879
7c3863af3cc54ef5387425cc4125c76ef1235b09
3,840
py
Python
helm/dagster/schema/schema/utils/helm_template.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
4,606
2018-06-21T17:45:20.000Z
2022-03-31T23:39:42.000Z
helm/dagster/schema/schema/utils/helm_template.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
6,221
2018-06-12T04:36:01.000Z
2022-03-31T21:43:05.000Z
helm/dagster/schema/schema/utils/helm_template.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
619
2018-08-22T22:43:09.000Z
2022-03-31T22:48:06.000Z
import json import os import shutil import subprocess from contextlib import contextmanager from dataclasses import dataclass from pprint import pprint from tempfile import NamedTemporaryFile, mkstemp from typing import Any, List, Optional, Union import yaml from kubernetes.client.api_client import ApiClient from schema.charts.dagster.values import DagsterHelmValues from schema.charts.dagster_user_deployments.values import DagsterUserDeploymentsHelmValues def git_repo_root(): return subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).decode("utf-8").strip() @dataclass class HelmTemplate: helm_dir_path: str subchart_paths: List[str] output: Optional[str] = None model: Optional[Any] = None name: str = "RELEASE-NAME" api_client: ApiClient = ApiClient() def render( self, values: Union[DagsterHelmValues, DagsterUserDeploymentsHelmValues], chart_version: Optional[str] = None, ) -> List[Any]: with NamedTemporaryFile() as tmp_file: helm_dir_path = os.path.join(git_repo_root(), self.helm_dir_path) values_json = json.loads(values.json(exclude_none=True, by_alias=True)) pprint(values_json) content = yaml.dump(values_json) tmp_file.write(content.encode()) tmp_file.flush() command = [ "helm", "template", self.name, helm_dir_path, "--debug", *["--values", tmp_file.name], ] if self.output: ## Uncomment to render all templates before filtering to surface Helm templating ## errors with better error messages # subprocess.check_output(command) command += ["--show-only", self.output] with self._with_chart_yaml(helm_dir_path, chart_version): templates = subprocess.check_output(command) print("\n--- Helm Templates ---") # pylint: disable=print-call print(templates.decode()) # pylint: disable=print-call k8s_objects = [k8s_object for k8s_object in yaml.full_load_all(templates) if k8s_object] if self.model: k8s_objects = [ self.api_client._ApiClient__deserialize_model( # pylint: disable=W0212 k8s_object, self.model ) for k8s_object in k8s_objects ] return k8s_objects @contextmanager def _with_chart_yaml(self, helm_dir_path: str, chart_version: Optional[str]): if not chart_version: yield else: umbrella_chart_path = os.path.join(helm_dir_path, "Chart.yaml") subchart_chart_paths = [ os.path.join(helm_dir_path, subchart_path, "Chart.yaml") for subchart_path in self.subchart_paths ] chart_paths = subchart_chart_paths + [umbrella_chart_path] chart_copy_paths = [] for chart_path in chart_paths: _, chart_copy_path = mkstemp() shutil.copy2(chart_path, chart_copy_path) chart_copy_paths.append(chart_copy_path) with open(chart_path) as chart_file: old_chart_yaml = yaml.safe_load(chart_file) with open(chart_path, "w") as chart_file: new_chart_yaml = old_chart_yaml.copy() new_chart_yaml["version"] = chart_version yaml.dump(new_chart_yaml, chart_file) yield for chart_path, chart_copy_path in zip(chart_paths, chart_copy_paths): shutil.copy2(chart_copy_path, chart_path) os.remove(chart_copy_path)
35.555556
100
0.610938
b5176fb2944f9a3587720798544fdd5b64863675
26,539
py
Python
translate_sdk/model/monitor/alert_event_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
translate_sdk/model/monitor/alert_event_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
translate_sdk/model/monitor/alert_event_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: alert_event.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from translate_sdk.model.monitor import alert_conditions_pb2 as translate__sdk_dot_model_dot_monitor_dot_alert__conditions__pb2 from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='alert_event.proto', package='monitor', syntax='proto3', serialized_options=_b('ZAgo.easyops.local/contracts/protorepo-models/easyops/model/monitor'), serialized_pb=_b('\n\x11\x61lert_event.proto\x12\x07monitor\x1a\x32translate_sdk/model/monitor/alert_conditions.proto\x1a\x1cgoogle/protobuf/struct.proto\"\xa7\t\n\nAlertEvent\x12\n\n\x02id\x18\x01 \x01(\t\x12\x10\n\x08\x61lert_id\x18\x02 \x01(\t\x12\x0f\n\x07rule_id\x18\x03 \x01(\t\x12\x12\n\nis_recover\x18\x04 \x01(\x08\x12\x11\n\tsend_succ\x18\x05 \x01(\x08\x12\x0f\n\x07subject\x18\x06 \x01(\t\x12\x0f\n\x07\x63ontent\x18\x07 \x01(\t\x12\x0e\n\x06source\x18\x08 \x01(\t\x12\x0e\n\x06status\x18\t \x01(\x05\x12\x13\n\x0bsend_detail\x18\n \x01(\x05\x12\x14\n\x0crecover_type\x18\x0b \x01(\t\x12\x0b\n\x03org\x18\x0c \x01(\x05\x12\x0e\n\x06target\x18\r \x01(\t\x12\r\n\x05level\x18\x0e \x01(\x05\x12%\n\x05value\x18\x0f \x01(\x0b\x32\x16.google.protobuf.Value\x12\x16\n\x0e\x61lert_duration\x18\x10 \x01(\x02\x12\x18\n\x10\x61lert_begin_time\x18\x11 \x01(\x05\x12\x16\n\x0e\x61lert_end_time\x18\x12 \x01(\x05\x12\x0c\n\x04time\x18\x13 \x01(\x05\x12\x12\n\nstart_time\x18\x14 \x01(\x05\x12\x13\n\x0binsert_time\x18\x15 \x01(\x05\x12;\n\x0f\x61lert_receivers\x18\x16 \x03(\x0b\x32\".monitor.AlertEvent.AlertReceivers\x12\x31\n\nalert_dims\x18\x17 \x03(\x0b\x32\x1d.monitor.AlertEvent.AlertDims\x12,\n\x07\x61\x63tions\x18\x18 \x03(\x0b\x32\x1b.monitor.AlertEvent.Actions\x12\x32\n\x10\x61lert_conditions\x18\x19 \x01(\x0b\x32\x18.monitor.AlertConditions\x12\x10\n\x08objectId\x18\x1a \x01(\t\x12\x12\n\ninstanceId\x18\x1b \x01(\t\x12\x0e\n\x06system\x18\x1c \x01(\t\x1a.\n\x0e\x41lertReceivers\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06method\x18\x02 \x01(\t\x1a@\n\tAlertDims\x12\x0c\n\x04name\x18\x01 \x01(\t\x12%\n\x05value\x18\x02 \x01(\x0b\x32\x16.google.protobuf.Value\x1a\x87\x03\n\x07\x41\x63tions\x12\x38\n\tcondition\x18\x01 \x01(\x0b\x32%.monitor.AlertEvent.Actions.Condition\x12\x0c\n\x04type\x18\x02 \x01(\t\x12\x0e\n\x06status\x18\x03 \x01(\x05\x12\x0f\n\x07upgrade\x18\x04 \x01(\x08\x12\x0b\n\x03run\x18\x05 \x01(\x08\x12\x0f\n\x07methods\x18\x06 \x03(\t\x12\x11\n\treceivers\x18\x07 \x03(\t\x12\x1c\n\x14receiver_user_groups\x18\x08 \x03(\t\x12\x43\n\x0freceiver_owners\x18\t \x03(\x0b\x32*.monitor.AlertEvent.Actions.ReceiverOwners\x1a/\n\tCondition\x12\x13\n\x0blasting_for\x18\x01 \x01(\x05\x12\r\n\x05level\x18\x02 \x01(\x05\x1aN\n\x0eReceiverOwners\x12\x11\n\ttranslate\x18\x01 \x01(\t\x12\x11\n\tobject_id\x18\x02 \x01(\t\x12\x16\n\x0eobject_attr_id\x18\x03 \x01(\tBCZAgo.easyops.local/contracts/protorepo-models/easyops/model/monitorb\x06proto3') , dependencies=[translate__sdk_dot_model_dot_monitor_dot_alert__conditions__pb2.DESCRIPTOR,google_dot_protobuf_dot_struct__pb2.DESCRIPTOR,]) _ALERTEVENT_ALERTRECEIVERS = _descriptor.Descriptor( name='AlertReceivers', full_name='monitor.AlertEvent.AlertReceivers', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='monitor.AlertEvent.AlertReceivers.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='method', full_name='monitor.AlertEvent.AlertReceivers.method', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=798, serialized_end=844, ) _ALERTEVENT_ALERTDIMS = _descriptor.Descriptor( name='AlertDims', full_name='monitor.AlertEvent.AlertDims', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='monitor.AlertEvent.AlertDims.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='monitor.AlertEvent.AlertDims.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=846, serialized_end=910, ) _ALERTEVENT_ACTIONS_CONDITION = _descriptor.Descriptor( name='Condition', full_name='monitor.AlertEvent.Actions.Condition', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='lasting_for', full_name='monitor.AlertEvent.Actions.Condition.lasting_for', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='level', full_name='monitor.AlertEvent.Actions.Condition.level', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1177, serialized_end=1224, ) _ALERTEVENT_ACTIONS_RECEIVEROWNERS = _descriptor.Descriptor( name='ReceiverOwners', full_name='monitor.AlertEvent.Actions.ReceiverOwners', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='translate', full_name='monitor.AlertEvent.Actions.ReceiverOwners.translate', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='object_id', full_name='monitor.AlertEvent.Actions.ReceiverOwners.object_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='object_attr_id', full_name='monitor.AlertEvent.Actions.ReceiverOwners.object_attr_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1226, serialized_end=1304, ) _ALERTEVENT_ACTIONS = _descriptor.Descriptor( name='Actions', full_name='monitor.AlertEvent.Actions', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='condition', full_name='monitor.AlertEvent.Actions.condition', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='monitor.AlertEvent.Actions.type', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='monitor.AlertEvent.Actions.status', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='upgrade', full_name='monitor.AlertEvent.Actions.upgrade', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='run', full_name='monitor.AlertEvent.Actions.run', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='methods', full_name='monitor.AlertEvent.Actions.methods', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='receivers', full_name='monitor.AlertEvent.Actions.receivers', index=6, number=7, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='receiver_user_groups', full_name='monitor.AlertEvent.Actions.receiver_user_groups', index=7, number=8, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='receiver_owners', full_name='monitor.AlertEvent.Actions.receiver_owners', index=8, number=9, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_ALERTEVENT_ACTIONS_CONDITION, _ALERTEVENT_ACTIONS_RECEIVEROWNERS, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=913, serialized_end=1304, ) _ALERTEVENT = _descriptor.Descriptor( name='AlertEvent', full_name='monitor.AlertEvent', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='monitor.AlertEvent.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alert_id', full_name='monitor.AlertEvent.alert_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rule_id', full_name='monitor.AlertEvent.rule_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='is_recover', full_name='monitor.AlertEvent.is_recover', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='send_succ', full_name='monitor.AlertEvent.send_succ', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='subject', full_name='monitor.AlertEvent.subject', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='content', full_name='monitor.AlertEvent.content', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source', full_name='monitor.AlertEvent.source', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='monitor.AlertEvent.status', index=8, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='send_detail', full_name='monitor.AlertEvent.send_detail', index=9, number=10, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='recover_type', full_name='monitor.AlertEvent.recover_type', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='org', full_name='monitor.AlertEvent.org', index=11, number=12, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target', full_name='monitor.AlertEvent.target', index=12, number=13, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='level', full_name='monitor.AlertEvent.level', index=13, number=14, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='monitor.AlertEvent.value', index=14, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alert_duration', full_name='monitor.AlertEvent.alert_duration', index=15, number=16, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alert_begin_time', full_name='monitor.AlertEvent.alert_begin_time', index=16, number=17, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alert_end_time', full_name='monitor.AlertEvent.alert_end_time', index=17, number=18, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='time', full_name='monitor.AlertEvent.time', index=18, number=19, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='start_time', full_name='monitor.AlertEvent.start_time', index=19, number=20, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='insert_time', full_name='monitor.AlertEvent.insert_time', index=20, number=21, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alert_receivers', full_name='monitor.AlertEvent.alert_receivers', index=21, number=22, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alert_dims', full_name='monitor.AlertEvent.alert_dims', index=22, number=23, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='actions', full_name='monitor.AlertEvent.actions', index=23, number=24, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alert_conditions', full_name='monitor.AlertEvent.alert_conditions', index=24, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='objectId', full_name='monitor.AlertEvent.objectId', index=25, number=26, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='instanceId', full_name='monitor.AlertEvent.instanceId', index=26, number=27, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='system', full_name='monitor.AlertEvent.system', index=27, number=28, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_ALERTEVENT_ALERTRECEIVERS, _ALERTEVENT_ALERTDIMS, _ALERTEVENT_ACTIONS, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=113, serialized_end=1304, ) _ALERTEVENT_ALERTRECEIVERS.containing_type = _ALERTEVENT _ALERTEVENT_ALERTDIMS.fields_by_name['value'].message_type = google_dot_protobuf_dot_struct__pb2._VALUE _ALERTEVENT_ALERTDIMS.containing_type = _ALERTEVENT _ALERTEVENT_ACTIONS_CONDITION.containing_type = _ALERTEVENT_ACTIONS _ALERTEVENT_ACTIONS_RECEIVEROWNERS.containing_type = _ALERTEVENT_ACTIONS _ALERTEVENT_ACTIONS.fields_by_name['condition'].message_type = _ALERTEVENT_ACTIONS_CONDITION _ALERTEVENT_ACTIONS.fields_by_name['receiver_owners'].message_type = _ALERTEVENT_ACTIONS_RECEIVEROWNERS _ALERTEVENT_ACTIONS.containing_type = _ALERTEVENT _ALERTEVENT.fields_by_name['value'].message_type = google_dot_protobuf_dot_struct__pb2._VALUE _ALERTEVENT.fields_by_name['alert_receivers'].message_type = _ALERTEVENT_ALERTRECEIVERS _ALERTEVENT.fields_by_name['alert_dims'].message_type = _ALERTEVENT_ALERTDIMS _ALERTEVENT.fields_by_name['actions'].message_type = _ALERTEVENT_ACTIONS _ALERTEVENT.fields_by_name['alert_conditions'].message_type = translate__sdk_dot_model_dot_monitor_dot_alert__conditions__pb2._ALERTCONDITIONS DESCRIPTOR.message_types_by_name['AlertEvent'] = _ALERTEVENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) AlertEvent = _reflection.GeneratedProtocolMessageType('AlertEvent', (_message.Message,), { 'AlertReceivers' : _reflection.GeneratedProtocolMessageType('AlertReceivers', (_message.Message,), { 'DESCRIPTOR' : _ALERTEVENT_ALERTRECEIVERS, '__module__' : 'alert_event_pb2' # @@protoc_insertion_point(class_scope:monitor.AlertEvent.AlertReceivers) }) , 'AlertDims' : _reflection.GeneratedProtocolMessageType('AlertDims', (_message.Message,), { 'DESCRIPTOR' : _ALERTEVENT_ALERTDIMS, '__module__' : 'alert_event_pb2' # @@protoc_insertion_point(class_scope:monitor.AlertEvent.AlertDims) }) , 'Actions' : _reflection.GeneratedProtocolMessageType('Actions', (_message.Message,), { 'Condition' : _reflection.GeneratedProtocolMessageType('Condition', (_message.Message,), { 'DESCRIPTOR' : _ALERTEVENT_ACTIONS_CONDITION, '__module__' : 'alert_event_pb2' # @@protoc_insertion_point(class_scope:monitor.AlertEvent.Actions.Condition) }) , 'ReceiverOwners' : _reflection.GeneratedProtocolMessageType('ReceiverOwners', (_message.Message,), { 'DESCRIPTOR' : _ALERTEVENT_ACTIONS_RECEIVEROWNERS, '__module__' : 'alert_event_pb2' # @@protoc_insertion_point(class_scope:monitor.AlertEvent.Actions.ReceiverOwners) }) , 'DESCRIPTOR' : _ALERTEVENT_ACTIONS, '__module__' : 'alert_event_pb2' # @@protoc_insertion_point(class_scope:monitor.AlertEvent.Actions) }) , 'DESCRIPTOR' : _ALERTEVENT, '__module__' : 'alert_event_pb2' # @@protoc_insertion_point(class_scope:monitor.AlertEvent) }) _sym_db.RegisterMessage(AlertEvent) _sym_db.RegisterMessage(AlertEvent.AlertReceivers) _sym_db.RegisterMessage(AlertEvent.AlertDims) _sym_db.RegisterMessage(AlertEvent.Actions) _sym_db.RegisterMessage(AlertEvent.Actions.Condition) _sym_db.RegisterMessage(AlertEvent.Actions.ReceiverOwners) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
47.560932
2,477
0.743057
daec5e946f5986c6bdbd7e5b913c666f3d34fc57
2,718
py
Python
looker_deployer/commands/deploy_connections.py
hselbie/looker_deployer
fc97ba1f6f5288e4e3413fb89f7ea16db6543ac8
[ "MIT" ]
null
null
null
looker_deployer/commands/deploy_connections.py
hselbie/looker_deployer
fc97ba1f6f5288e4e3413fb89f7ea16db6543ac8
[ "MIT" ]
1
2021-08-05T16:19:09.000Z
2021-08-05T16:19:09.000Z
looker_deployer/commands/deploy_connections.py
hselbie/looker_deployer
fc97ba1f6f5288e4e3413fb89f7ea16db6543ac8
[ "MIT" ]
null
null
null
import logging import re from looker_sdk import models, error from looker_deployer.utils import deploy_logging from looker_deployer.utils import parse_ini from looker_deployer.utils.get_client import get_client logger = deploy_logging.get_logger(__name__) def get_filtered_connections(source_sdk, pattern=None): connections = source_sdk.all_connections() logger.debug( "Connections pulled", extra={ "connection_names": [i.name for i in connections] } ) if pattern: compiled_pattern = re.compile(pattern) connections = [i for i in connections if compiled_pattern.search(i.name)] logger.debug( "Connections filtered", extra={ "filtered_connections": [i.name for i in connections], "pattern": pattern } ) return connections def write_connections(connections, target_sdk, db_config=None): for conn in connections: # Create a DB Write Object from each connection new_conn = models.WriteDBConnection() new_conn.__dict__.update(conn.__dict__) conn_exists = True try: target_sdk.connection(new_conn.name) except error.SDKError: conn_exists = False if db_config: logger.debug("Attempting password update", extra={"connection": new_conn.name}) db_pass = db_config[conn.name] new_conn.password = db_pass if not conn_exists: logger.debug("No existing connection found. Creating...") logger.info("Deploying connection", extra={"connection": new_conn.name}) target_sdk.create_connection(new_conn) logger.info("Deployment complete", extra={"connection": new_conn.name}) else: logger.debug("Existing connection found. Updating...") logger.info("Deploying connection", extra={"connection": new_conn.name}) target_sdk.update_connection(new_conn.name, new_conn) logger.info("Deployment complete", extra={"connection": new_conn.name}) def send_connections(source_sdk, target_sdk, pattern=None, db_config=None): connections = get_filtered_connections(source_sdk, pattern) write_connections(connections, target_sdk, db_config) def main(args): if args.debug: logger.setLevel(logging.DEBUG) if args.include_password: db_config = parse_ini.read_ini(args.ini)["Databases"] else: db_config = None source_sdk = get_client(args.ini, args.source) for t in args.target: target_sdk = get_client(args.ini, t) send_connections(source_sdk, target_sdk, args.pattern, db_config)
31.976471
91
0.664091
35bce7c69e4aaf474249afa6ead814c8a80a78ea
5,790
py
Python
test/functional/p2p_eviction.py
crptec/sinovate
345a81f99ec7e624e0ec244a7dbe1ebb3698c347
[ "MIT" ]
159
2016-07-09T13:02:19.000Z
2022-03-11T08:15:56.000Z
test/functional/p2p_eviction.py
crptec/sinovate
345a81f99ec7e624e0ec244a7dbe1ebb3698c347
[ "MIT" ]
40
2016-07-22T17:26:37.000Z
2022-03-22T19:37:32.000Z
test/functional/p2p_eviction.py
crptec/sinovate
345a81f99ec7e624e0ec244a7dbe1ebb3698c347
[ "MIT" ]
57
2016-10-21T23:57:47.000Z
2022-03-26T20:51:23.000Z
#!/usr/bin/env python3 # Copyright (c) 2019-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Test node eviction logic When the number of peers has reached the limit of maximum connections, the next connecting inbound peer will trigger the eviction mechanism. We cannot currently test the parts of the eviction logic that are based on address/netgroup since in the current framework, all peers are connecting from the same local address. See Issue #14210 for more info. Therefore, this test is limited to the remaining protection criteria. """ import time from test_framework.blocktools import ( COINBASE_MATURITY, create_block, create_coinbase, ) from test_framework.messages import ( msg_pong, msg_tx, tx_from_hex, ) from test_framework.p2p import P2PDataStore, P2PInterface from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal class SlowP2PDataStore(P2PDataStore): def on_ping(self, message): time.sleep(0.1) self.send_message(msg_pong(message.nonce)) class SlowP2PInterface(P2PInterface): def on_ping(self, message): time.sleep(0.1) self.send_message(msg_pong(message.nonce)) class P2PEvict(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 # The choice of maxconnections=32 results in a maximum of 21 inbound connections # (32 - 10 outbound - 1 feeler). 20 inbound peers are protected from eviction: # 4 by netgroup, 4 that sent us blocks, 4 that sent us transactions and 8 via lowest ping time self.extra_args = [['-maxconnections=32']] def run_test(self): protected_peers = set() # peers that we expect to be protected from eviction current_peer = -1 node = self.nodes[0] node.generatetoaddress(COINBASE_MATURITY + 1, node.get_deterministic_priv_key().address) self.log.info("Create 4 peers and protect them from eviction by sending us a block") for _ in range(4): block_peer = node.add_p2p_connection(SlowP2PDataStore()) current_peer += 1 block_peer.sync_with_ping() best_block = node.getbestblockhash() tip = int(best_block, 16) best_block_time = node.getblock(best_block)['time'] block = create_block(tip, create_coinbase(node.getblockcount() + 1), best_block_time + 1) block.solve() block_peer.send_blocks_and_test([block], node, success=True) protected_peers.add(current_peer) self.log.info("Create 5 slow-pinging peers, making them eviction candidates") for _ in range(5): node.add_p2p_connection(SlowP2PInterface()) current_peer += 1 self.log.info("Create 4 peers and protect them from eviction by sending us a tx") for i in range(4): txpeer = node.add_p2p_connection(SlowP2PInterface()) current_peer += 1 txpeer.sync_with_ping() prevtx = node.getblock(node.getblockhash(i + 1), 2)['tx'][0] rawtx = node.createrawtransaction( inputs=[{'txid': prevtx['txid'], 'vout': 0}], outputs=[{node.get_deterministic_priv_key().address: 50 - 0.00125}], ) sigtx = node.signrawtransactionwithkey( hexstring=rawtx, privkeys=[node.get_deterministic_priv_key().key], prevtxs=[{ 'txid': prevtx['txid'], 'vout': 0, 'scriptPubKey': prevtx['vout'][0]['scriptPubKey']['hex'], }], )['hex'] txpeer.send_message(msg_tx(tx_from_hex(sigtx))) protected_peers.add(current_peer) self.log.info("Create 8 peers and protect them from eviction by having faster pings") for _ in range(8): fastpeer = node.add_p2p_connection(P2PInterface()) current_peer += 1 self.wait_until(lambda: "ping" in fastpeer.last_message, timeout=10) # Make sure by asking the node what the actual min pings are peerinfo = node.getpeerinfo() pings = {} for i in range(len(peerinfo)): pings[i] = peerinfo[i]['minping'] if 'minping' in peerinfo[i] else 1000000 sorted_pings = sorted(pings.items(), key=lambda x: x[1]) # Usually the 8 fast peers are protected. In rare case of unreliable pings, # one of the slower peers might have a faster min ping though. for i in range(8): protected_peers.add(sorted_pings[i][0]) self.log.info("Create peer that triggers the eviction mechanism") node.add_p2p_connection(SlowP2PInterface()) # One of the non-protected peers must be evicted. We can't be sure which one because # 4 peers are protected via netgroup, which is identical for all peers, # and the eviction mechanism doesn't preserve the order of identical elements. evicted_peers = [] for i in range(len(node.p2ps)): if not node.p2ps[i].is_connected: evicted_peers.append(i) self.log.info("Test that one peer was evicted") self.log.debug("{} evicted peer: {}".format(len(evicted_peers), set(evicted_peers))) assert_equal(len(evicted_peers), 1) self.log.info("Test that no peer expected to be protected was evicted") self.log.debug("{} protected peers: {}".format(len(protected_peers), protected_peers)) assert evicted_peers[0] not in protected_peers if __name__ == '__main__': P2PEvict().main()
41.956522
102
0.65475
0f8cfecb42d4607bb54136b727653b7ea3f4b98a
1,244
py
Python
osh/word_eval_test.py
msingle/oil
5623c58d4558d37cd43e6274574d94a0e547f192
[ "Apache-2.0" ]
null
null
null
osh/word_eval_test.py
msingle/oil
5623c58d4558d37cd43e6274574d94a0e547f192
[ "Apache-2.0" ]
null
null
null
osh/word_eval_test.py
msingle/oil
5623c58d4558d37cd43e6274574d94a0e547f192
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 # Copyright 2016 Andy Chu. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 """ word_eval_test.py: Tests for word_eval.py """ from __future__ import print_function import unittest from core import test_lib from osh.cmd_parse_test import assertParseSimpleCommand from osh import state def InitEvaluator(): word_ev = test_lib.MakeTestEvaluator() state.SetLocalString(word_ev.mem, 'x', '- -- ---') state.SetLocalString(word_ev.mem, 'y', 'y yy') state.SetLocalString(word_ev.mem, 'empty', '') return word_ev class WordEvalTest(unittest.TestCase): def testEvalWordSequence(self): node = assertParseSimpleCommand(self, 'ls foo') self.assertEqual(2, len(node.words), node.words) ev = InitEvaluator() argv = ev.EvalWordSequence2(node.words) print() print(argv) node = assertParseSimpleCommand(self, 'ls [$x] $y core/a*.py') print(node) ev = InitEvaluator() argv = ev.EvalWordSequence2(node.words) print() print(argv) if __name__ == '__main__': unittest.main()
25.387755
66
0.713023
c23fdbaaa0f2abf8ca79e0d388ac4c2c2354c71a
395
py
Python
howtosapi/asgi.py
tiveritz/how-tos-api
5dd73fd72ea1f07123ce8d15d2935d9d9e473c8e
[ "MIT" ]
null
null
null
howtosapi/asgi.py
tiveritz/how-tos-api
5dd73fd72ea1f07123ce8d15d2935d9d9e473c8e
[ "MIT" ]
3
2021-05-23T07:57:15.000Z
2021-05-28T05:38:17.000Z
howtosapi/asgi.py
tiveritz/how-tos-api
5dd73fd72ea1f07123ce8d15d2935d9d9e473c8e
[ "MIT" ]
null
null
null
""" ASGI config for howtosapi project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'howtosapi.settings') application = get_asgi_application()
23.235294
78
0.787342
ef8b168f71875a3a26750fbbc0a3a324d71c90b9
4,721
py
Python
examples/momentum.py
jiajiaxu123/Orca
e86189e70c1d0387816bb98b8047a6232fbda9df
[ "Apache-2.0" ]
20
2019-12-02T11:49:12.000Z
2021-12-24T19:34:32.000Z
examples/momentum.py
jiajiaxu123/Orca
e86189e70c1d0387816bb98b8047a6232fbda9df
[ "Apache-2.0" ]
null
null
null
examples/momentum.py
jiajiaxu123/Orca
e86189e70c1d0387816bb98b8047a6232fbda9df
[ "Apache-2.0" ]
5
2019-12-02T12:16:22.000Z
2021-10-22T02:27:47.000Z
import dolphindb.orca as orca import matplotlib.pyplot as plt US = 'C:/DolphinDB/Orca/databases/USstocks.csv' orca.connect('localhost', 8848, 'admin', '123456') def load_price_data(df): USstocks = df[df.date.dt.weekday.between(0, 4), df.PRC.notnull(), df.VOL.notnull()][ ['PERMNO', 'date', 'PRC', 'VOL', 'RET', 'SHROUT'] ].sort_values(by=['PERMNO', 'date']) USstocks['PRC'] = USstocks.PRC.abs() USstocks['MV'] = USstocks.SHROUT * USstocks.PRC USstocks['cumretIndex'] = (USstocks + 1)['RET'].groupby('PERMNO', lazy=True).cumprod() USstocks['signal'] = (USstocks.shift(21) / USstocks.shift(252) - 1).groupby( 'PERMNO', lazy=True)['cumretIndex'].transform() return USstocks def gen_trade_tables(df): USstocks = df[(df.PRC > 5), (df.MV > 100000), (df.VOL > 0), (df.signal.notnull())] USstocks = USstocks[['date', 'PERMNO', 'MV', 'signal']].sort_values(by='date') return USstocks def form_portfolio(start_date, end_date, tradables, holding_days, groups, wt_scheme): ports = tradables[tradables.date.between(start_date, end_date)].groupby('date').filter('count(PERMNO) >= 100') ports['rank'] = ports.groupby('date')['signal'].transform('rank{{,true,{groups}}}'.format(groups=groups)) ports['wt'] = 0.0 ports_rank_eq_0 = (ports['rank'] == 0) ports_rank_eq_groups_sub_1 = (ports['rank'] == groups-1) if wt_scheme == 1: ports.loc[ports_rank_eq_0, 'wt'] = \ ports[ports_rank_eq_0].groupby(['date'])['PERMNO'].transform( r'(PERMNO->-1\count(PERMNO)\{holding_days})'.format(holding_days=holding_days) ) ports.loc[ports_rank_eq_groups_sub_1, 'wt'] = \ ports[ports_rank_eq_groups_sub_1].groupby(['date'])['PERMNO'].transform( r'(PERMNO->1\count(PERMNO)\\{holding_days})'.format(holding_days=holding_days) ) elif wt_scheme == 2: ports.loc[ports_rank_eq_0, 'wt'] = \ ports[ports_rank_eq_0].groupby(['date'])['MV'].transform( r'(MV->-MV\sum(MV)\{holding_days})'.format(holding_days=holding_days) ) ports.loc[ports_rank_eq_groups_sub_1, 'wt'] = \ ports[ports_rank_eq_groups_sub_1].groupby(['date'])['MV'].transform( r'(MV->MV\sum(MV)\{holding_days})'.format(holding_days=holding_days) ) ports = ports.loc[ports.wt != 0, ['PERMNO', 'date', 'wt']].sort_values(by=['PERMNO', 'date']) ports.rename(columns={'date': 'tranche'}, inplace=True) return ports def calc_stock_pnl(ports, daily_rtn, holding_days, end_date, last_days): dates = ports[['tranche']].drop_duplicates().sort_values(by='tranche') dates_after_ages = orca.DataFrame() for age in range(1, holding_days+1): dates_after_age_i = dates.copy() dates_after_age_i['age'] = age dates_after_age_i['date_after_age'] = dates_after_age_i['tranche'].shift(-age) dates_after_ages.append(dates_after_age_i, inplace=True) pos = ports.merge(dates_after_ages, on='tranche') pos = pos.join(last_days, on='PERMNO') pos = pos.loc[(pos.date_after_age.notnull() & (pos.date_after_age <= pos.last_day.clip(upper=end_date))), ['date_after_age', 'PERMNO', 'tranche', 'age', 'wt']] pos = pos.compute() pos.rename(columns={'date_after_age': 'date', 'wt': 'expr'}, inplace=True) pos['ret'] = 0.0 pos['pnl'] = 0.0 # use set_index to make it easy to equal join two Frames daily_rtn.set_index(['date', 'PERMNO'], inplace=True) pos.set_index(['date', 'PERMNO'], inplace=True) pos['ret'] = daily_rtn['RET'] pos.reset_index(inplace=True) pos['expr'] = (pos.expr * (1 + pos.ret).cumprod()).groupby( ['PERMNO', 'tranche'], lazy=True).transform() pos['pnl'] = pos.expr * pos.ret / (1 + pos.ret) return pos def main(): df = orca.read_csv(US) price_data = load_price_data(df) tradables = gen_trade_tables(price_data) start_date, end_date = orca.Timestamp("1996.01.01"), orca.Timestamp("2017.01.01") holding_days = 5 groups = 10 ports = form_portfolio(start_date, end_date, tradables, holding_days, groups, 2) daily_rtn = price_data.loc[price_data.date.between(start_date, end_date), ['date', 'PERMNO', 'RET']] last_days = price_data.groupby('PERMNO')['date'].max() last_days.rename("last_day", inplace=True) stock_pnl = calc_stock_pnl(ports, daily_rtn, holding_days, end_date, last_days) port_pnl = stock_pnl.groupby('date')['pnl'].sum() cumulative_return = port_pnl.cumsum() cumulative_return.plot() plt.show() if __name__ == '__main__': main()
41.778761
114
0.632493
dc847dccb7940bde987b2c90d74ede2c3bab38ef
3,157
py
Python
autotest/gdrivers/isis2.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
3,100
2015-01-02T10:33:40.000Z
2022-03-31T02:06:51.000Z
autotest/gdrivers/isis2.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
3,496
2015-01-06T16:53:30.000Z
2022-03-31T20:18:51.000Z
autotest/gdrivers/isis2.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
2,036
2015-01-08T20:22:12.000Z
2022-03-31T10:24:08.000Z
#!/usr/bin/env pytest ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test read functionality for ISIS2 driver. # Author: Even Rouault <even dot rouault @ spatialys.com> # ############################################################################### # Copyright (c) 2008, Even Rouault <even dot rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import gdaltest ############################################################################### # Read a truncated and modified version of arvidson_original.cub from # ftp://ftpflag.wr.usgs.gov/dist/pigpen/venus/venustopo_download/ovda_dtm.zip def test_isis2_1(): tst = gdaltest.GDALTest('ISIS2', 'isis2/arvidson_original_truncated.cub', 1, 382) expected_prj = """PROJCS["SIMPLE_CYLINDRICAL VENUS", GEOGCS["GCS_VENUS", DATUM["D_VENUS", SPHEROID["VENUS",6051000,0]], PRIMEM["Reference_Meridian",0], UNIT["degree",0.0174532925199433]], PROJECTION["Equirectangular"], PARAMETER["latitude_of_origin",0], PARAMETER["central_meridian",0], PARAMETER["standard_parallel_1",-6.5], PARAMETER["false_easting",0], PARAMETER["false_northing",0], UNIT["meter",1]]""" expected_gt = (10157400.403618813, 1200.0000476837158, 0.0, -585000.02324581146, 0.0, -1200.0000476837158) return tst.testOpen(check_prj=expected_prj, check_gt=expected_gt) ############################################################################### # Test simple creation on disk. def test_isis2_2(): tst = gdaltest.GDALTest('ISIS2', 'byte.tif', 1, 4672) return tst.testCreate() ############################################################################### # Test a different data type with some options. def test_isis2_3(): tst = gdaltest.GDALTest('ISIS2', 'float32.tif', 1, 4672, options=['LABELING_METHOD=DETACHED', 'IMAGE_EXTENSION=qub']) return tst.testCreateCopy(vsimem=1)
38.036145
110
0.61039
84caadfa74733c76863a44278b4fd61a2edff4e7
933
py
Python
manage.py
davidpmills/project-1
52788bc5ab3e4359e31ce153e49d7e097dc99127
[ "BSD-2-Clause" ]
null
null
null
manage.py
davidpmills/project-1
52788bc5ab3e4359e31ce153e49d7e097dc99127
[ "BSD-2-Clause" ]
null
null
null
manage.py
davidpmills/project-1
52788bc5ab3e4359e31ce153e49d7e097dc99127
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python import os from flask.ext.script import Manager, Server from flask.ext.script.commands import ShowUrls, Clean from appname import create_app from appname.models import db, User # default to dev config because no one should use this in # production anyway env = os.environ.get('APPNAME_ENV', 'dev') app = create_app('appname.settings.%sConfig' % env.capitalize(), env=env) manager = Manager(app) manager.add_command("server", Server()) manager.add_command("show-urls", ShowUrls()) manager.add_command("clean", Clean()) @manager.shell def make_shell_context(): """ Creates a python REPL with several default imports in the context of the app """ return dict(app=app, db=db, User=User) @manager.command def createdb(): """ Creates a database with all of the tables defined in your SQLAlchemy models """ db.create_all() if __name__ == "__main__": manager.run()
23.325
73
0.713826
8cb5462d834e9c57a56366ddde58944a3528edff
24,217
py
Python
docker/dockerTrader/gateway/okcoinGateway/okcoinGateway.py
OceanMT/vnpy_py3
0901e9381c54e615247eb753bac476a911c9ae5d
[ "MIT" ]
null
null
null
docker/dockerTrader/gateway/okcoinGateway/okcoinGateway.py
OceanMT/vnpy_py3
0901e9381c54e615247eb753bac476a911c9ae5d
[ "MIT" ]
null
null
null
docker/dockerTrader/gateway/okcoinGateway/okcoinGateway.py
OceanMT/vnpy_py3
0901e9381c54e615247eb753bac476a911c9ae5d
[ "MIT" ]
null
null
null
# encoding: UTF-8 ''' vn.okcoin的gateway接入 注意: 1. 前仅支持USD和CNY的现货交易,USD的期货合约交易暂不支持 ''' import os import json from datetime import datetime from copy import copy from threading import Condition from queue import Queue from threading import Thread from . import vnokcoin from vtGateway import * # 价格类型映射 priceTypeMap = {} priceTypeMap['buy'] = (DIRECTION_LONG, PRICETYPE_LIMITPRICE) priceTypeMap['buy_market'] = (DIRECTION_LONG, PRICETYPE_MARKETPRICE) priceTypeMap['sell'] = (DIRECTION_SHORT, PRICETYPE_LIMITPRICE) priceTypeMap['sell_market'] = (DIRECTION_SHORT, PRICETYPE_MARKETPRICE) priceTypeMapReverse = {v: k for k, v in list(priceTypeMap.items())} # 方向类型映射 directionMap = {} directionMapReverse = {v: k for k, v in list(directionMap.items())} # 委托状态印射 statusMap = {} statusMap[-1] = STATUS_CANCELLED statusMap[0] = STATUS_NOTTRADED statusMap[1] = STATUS_PARTTRADED statusMap[2] = STATUS_ALLTRADED statusMap[4] = STATUS_UNKNOWN ############################################ ## 交易合约代码 ############################################ # USD BTC_USD_SPOT = 'BTC_USD_SPOT' BTC_USD_THISWEEK = 'BTC_USD_THISWEEK' BTC_USD_NEXTWEEK = 'BTC_USD_NEXTWEEK' BTC_USD_QUARTER = 'BTC_USD_QUARTER' LTC_USD_SPOT = 'LTC_USD_SPOT' LTC_USD_THISWEEK = 'LTC_USD_THISWEEK' LTC_USD_NEXTWEEK = 'LTC_USD_NEXTWEEK' LTC_USD_QUARTER = 'LTC_USD_QUARTER' # CNY BTC_CNY_SPOT = 'BTC_CNY_SPOT' LTC_CNY_SPOT = 'LTC_CNY_SPOT' # 印射字典 spotSymbolMap = {} spotSymbolMap['ltc_usd'] = LTC_USD_SPOT spotSymbolMap['btc_usd'] = BTC_USD_SPOT spotSymbolMap['ltc_cny'] = LTC_CNY_SPOT spotSymbolMap['btc_cny'] = BTC_CNY_SPOT spotSymbolMapReverse = {v: k for k, v in list(spotSymbolMap.items())} ############################################ ## Channel和Symbol的印射 ############################################ channelSymbolMap = {} # USD channelSymbolMap['ok_sub_spotusd_btc_ticker'] = BTC_USD_SPOT channelSymbolMap['ok_sub_spotusd_ltc_ticker'] = LTC_USD_SPOT channelSymbolMap['ok_sub_spotusd_btc_depth_20'] = BTC_USD_SPOT channelSymbolMap['ok_sub_spotusd_ltc_depth_20'] = LTC_USD_SPOT # CNY channelSymbolMap['ok_sub_spotcny_btc_ticker'] = BTC_CNY_SPOT channelSymbolMap['ok_sub_spotcny_ltc_ticker'] = LTC_CNY_SPOT channelSymbolMap['ok_sub_spotcny_btc_depth_20'] = BTC_CNY_SPOT channelSymbolMap['ok_sub_spotcny_ltc_depth_20'] = LTC_CNY_SPOT ######################################################################## class OkcoinGateway(VtGateway): """OkCoin接口""" #---------------------------------------------------------------------- def __init__(self, eventEngine, gatewayName='OKCOIN'): """Constructor""" super(OkcoinGateway, self).__init__(eventEngine, gatewayName) self.api = Api(self) self.leverage = 0 self.connected = False #---------------------------------------------------------------------- def connect(self): """连接""" # 载入json文件 fileName = self.gatewayName + '_connect.json' path = os.path.abspath(os.path.dirname(__file__)) fileName = os.path.join(path, fileName) try: f = file(fileName) except IOError: log = VtLogData() log.gatewayName = self.gatewayName log.logContent = '读取连接配置出错,请检查' self.onLog(log) return # 解析json文件 setting = json.load(f) try: host = str(setting['host']) apiKey = str(setting['apiKey']) secretKey = str(setting['secretKey']) trace = setting['trace'] leverage = setting['leverage'] except KeyError: log = VtLogData() log.gatewayName = self.gatewayName log.logContent = '连接配置缺少字段,请检查' self.onLog(log) return # 初始化接口 self.leverage = leverage if host == 'CNY': host = vnokcoin.OKCOIN_CNY else: host = vnokcoin.OKCOIN_USD self.api.active = True self.api.connect(host, apiKey, secretKey, trace) log = VtLogData() log.gatewayName = self.gatewayName log.logContent = '接口初始化成功' self.onLog(log) # 启动查询 self.initQuery() self.startQuery() #---------------------------------------------------------------------- def subscribe(self, subscribeReq): """订阅行情""" pass #---------------------------------------------------------------------- def sendOrder(self, orderReq): """发单""" return self.api.spotSendOrder(orderReq) #---------------------------------------------------------------------- def cancelOrder(self, cancelOrderReq): """撤单""" self.api.spotCancel(cancelOrderReq) #---------------------------------------------------------------------- def qryAccount(self): """查询账户资金""" self.api.spotUserInfo() #---------------------------------------------------------------------- def qryPosition(self): """查询持仓""" pass #---------------------------------------------------------------------- def close(self): """关闭""" self.api.active = False self.api.close() #---------------------------------------------------------------------- def initQuery(self): """初始化连续查询""" if self.qryEnabled: # 需要循环的查询函数列表 self.qryFunctionList = [self.qryAccount] self.qryCount = 0 # 查询触发倒计时 self.qryTrigger = 2 # 查询触发点 self.qryNextFunction = 0 # 上次运行的查询函数索引 self.startQuery() #---------------------------------------------------------------------- def query(self, event): """注册到事件处理引擎上的查询函数""" self.qryCount += 1 if self.qryCount > self.qryTrigger: # 清空倒计时 self.qryCount = 0 # 执行查询函数 function = self.qryFunctionList[self.qryNextFunction] function() # 计算下次查询函数的索引,如果超过了列表长度,则重新设为0 self.qryNextFunction += 1 if self.qryNextFunction == len(self.qryFunctionList): self.qryNextFunction = 0 #---------------------------------------------------------------------- def startQuery(self): """启动连续查询""" self.eventEngine.register(EVENT_TIMER, self.query) #---------------------------------------------------------------------- def setQryEnabled(self, qryEnabled): """设置是否要启动循环查询""" self.qryEnabled = qryEnabled ######################################################################## class Api(vnokcoin.OkCoinApi): """OkCoin的API实现""" #---------------------------------------------------------------------- def __init__(self, gateway): """Constructor""" super(Api, self).__init__() self.gateway = gateway # gateway对象 self.gatewayName = gateway.gatewayName # gateway对象名称 self.active = False # 若为True则会在断线后自动重连 self.cbDict = {} self.tickDict = {} self.orderDict = {} self.localNo = 0 # 本地委托号 self.localNoQueue = Queue() # 未收到系统委托号的本地委托号队列 self.localNoDict = {} # key为本地委托号,value为系统委托号 self.orderIdDict = {} # key为系统委托号,value为本地委托号 self.cancelDict = {} # key为本地委托号,value为撤单请求 self.initCallback() #---------------------------------------------------------------------- def onMessage(self, ws, evt): """信息推送""" data = self.readData(evt)[0] channel = data['channel'] callback = self.cbDict[channel] callback(data) #---------------------------------------------------------------------- def onError(self, ws, evt): """错误推送""" error = VtErrorData() error.gatewayName = self.gatewayName error.errorMsg = str(evt) self.gateway.onError(error) #---------------------------------------------------------------------- def onClose(self, ws): """接口断开""" # 如果尚未连上,则忽略该次断开提示 if not self.gateway.connected: return self.gateway.connected = False self.writeLog('服务器连接断开') # 重新连接 if self.active: def reconnect(): while not self.gateway.connected: self.writeLog('等待10秒后重新连接') sleep(10) if not self.gateway.connected: self.reconnect() t = Thread(target=reconnect) t.start() #---------------------------------------------------------------------- def onOpen(self, ws): """连接成功""" self.gateway.connected = True self.writeLog('服务器连接成功') # 连接后查询账户和委托数据 self.spotUserInfo() self.spotOrderInfo(vnokcoin.TRADING_SYMBOL_LTC, '-1') self.spotOrderInfo(vnokcoin.TRADING_SYMBOL_BTC, '-1') # 连接后订阅现货的成交和账户数据 self.subscribeSpotTrades() self.subscribeSpotUserInfo() self.subscribeSpotTicker(vnokcoin.SYMBOL_BTC) self.subscribeSpotTicker(vnokcoin.SYMBOL_LTC) self.subscribeSpotDepth(vnokcoin.SYMBOL_BTC, vnokcoin.DEPTH_20) self.subscribeSpotDepth(vnokcoin.SYMBOL_LTC, vnokcoin.DEPTH_20) # 如果连接的是USD网站则订阅期货相关回报数据 if self.currency == vnokcoin.CURRENCY_USD: self.subscribeFutureTrades() self.subscribeFutureUserInfo() self.subscribeFuturePositions() # 返回合约信息 if self.currency == vnokcoin.CURRENCY_CNY: l = self.generateCnyContract() else: l = self.generateUsdContract() for contract in l: contract.gatewayName = self.gatewayName self.gateway.onContract(contract) #---------------------------------------------------------------------- def writeLog(self, content): """快速记录日志""" log = VtLogData() log.gatewayName = self.gatewayName log.logContent = content self.gateway.onLog(log) #---------------------------------------------------------------------- def initCallback(self): """初始化回调函数""" # USD_SPOT self.cbDict['ok_sub_spotusd_btc_ticker'] = self.onTicker self.cbDict['ok_sub_spotusd_ltc_ticker'] = self.onTicker self.cbDict['ok_sub_spotusd_btc_depth_20'] = self.onDepth self.cbDict['ok_sub_spotusd_ltc_depth_20'] = self.onDepth self.cbDict['ok_spotusd_userinfo'] = self.onSpotUserInfo self.cbDict['ok_spotusd_orderinfo'] = self.onSpotOrderInfo self.cbDict['ok_sub_spotusd_userinfo'] = self.onSpotSubUserInfo self.cbDict['ok_sub_spotusd_trades'] = self.onSpotSubTrades self.cbDict['ok_spotusd_trade'] = self.onSpotTrade self.cbDict['ok_spotusd_cancel_order'] = self.onSpotCancelOrder # CNY_SPOT self.cbDict['ok_sub_spotcny_btc_ticker'] = self.onTicker self.cbDict['ok_sub_spotcny_ltc_ticker'] = self.onTicker self.cbDict['ok_sub_spotcny_btc_depth_20'] = self.onDepth self.cbDict['ok_sub_spotcny_ltc_depth_20'] = self.onDepth self.cbDict['ok_spotcny_userinfo'] = self.onSpotUserInfo self.cbDict['ok_spotcny_orderinfo'] = self.onSpotOrderInfo self.cbDict['ok_sub_spotcny_userinfo'] = self.onSpotSubUserInfo self.cbDict['ok_sub_spotcny_trades'] = self.onSpotSubTrades self.cbDict['ok_spotcny_trade'] = self.onSpotTrade self.cbDict['ok_spotcny_cancel_order'] = self.onSpotCancelOrder # USD_FUTURES #---------------------------------------------------------------------- def onTicker(self, data): """""" if 'data' not in data: return channel = data['channel'] symbol = channelSymbolMap[channel] if symbol not in self.tickDict: tick = VtTickData() tick.symbol = symbol tick.vtSymbol = symbol tick.gatewayName = self.gatewayName self.tickDict[symbol] = tick else: tick = self.tickDict[symbol] rawData = data['data'] tick.highPrice = float(rawData['high']) tick.lowPrice = float(rawData['low']) tick.lastPrice = float(rawData['last']) tick.volume = float(rawData['vol'].replace(',', '')) #tick.date, tick.time = generateDateTime(rawData['timestamp']) newtick = copy(tick) self.gateway.onTick(newtick) #---------------------------------------------------------------------- def onDepth(self, data): """""" if 'data' not in data: return channel = data['channel'] symbol = channelSymbolMap[channel] if symbol not in self.tickDict: tick = VtTickData() tick.symbol = symbol tick.vtSymbol = symbol tick.gatewayName = self.gatewayName self.tickDict[symbol] = tick else: tick = self.tickDict[symbol] if 'data' not in data: return rawData = data['data'] tick.bidPrice1, tick.bidVolume1 = rawData['bids'][0] tick.bidPrice2, tick.bidVolume2 = rawData['bids'][1] tick.bidPrice3, tick.bidVolume3 = rawData['bids'][2] tick.bidPrice4, tick.bidVolume4 = rawData['bids'][3] tick.bidPrice5, tick.bidVolume5 = rawData['bids'][4] tick.askPrice1, tick.askVolume1 = rawData['asks'][-1] tick.askPrice2, tick.askVolume2 = rawData['asks'][-2] tick.askPrice3, tick.askVolume3 = rawData['asks'][-3] tick.askPrice4, tick.askVolume4 = rawData['asks'][-4] tick.askPrice5, tick.askVolume5 = rawData['asks'][-5] tick.date, tick.time = generateDateTime(rawData['timestamp']) newtick = copy(tick) self.gateway.onTick(newtick) #---------------------------------------------------------------------- def onSpotUserInfo(self, data): """现货账户资金推送""" rawData = data['data'] info = rawData['info'] funds = rawData['info']['funds'] # 持仓信息 for symbol in ['btc', 'ltc', self.currency]: if symbol in funds['free']: pos = VtPositionData() pos.gatewayName = self.gatewayName pos.symbol = symbol pos.vtSymbol = symbol pos.vtPositionName = symbol pos.direction = DIRECTION_NET pos.frozen = float(funds['freezed'][symbol]) pos.position = pos.frozen + float(funds['free'][symbol]) self.gateway.onPosition(pos) # 账户资金 account = VtAccountData() account.gatewayName = self.gatewayName account.accountID = self.gatewayName account.vtAccountID = account.accountID account.balance = float(funds['asset']['net']) self.gateway.onAccount(account) #---------------------------------------------------------------------- def onSpotSubUserInfo(self, data): """现货账户资金推送""" if 'data' not in data: return rawData = data['data'] info = rawData['info'] # 持仓信息 for symbol in ['btc', 'ltc', self.currency]: if symbol in info['free']: pos = VtPositionData() pos.gatewayName = self.gatewayName pos.symbol = symbol pos.vtSymbol = symbol pos.vtPositionName = symbol pos.direction = DIRECTION_NET pos.frozen = float(info['freezed'][symbol]) pos.position = pos.frozen + float(info['free'][symbol]) self.gateway.onPosition(pos) #---------------------------------------------------------------------- def onSpotSubTrades(self, data): """成交和委托推送""" if 'data' not in data: return rawData = data['data'] # 本地和系统委托号 orderId = str(rawData['orderId']) localNo = self.orderIdDict[orderId] # 委托信息 if orderId not in self.orderDict: order = VtOrderData() order.gatewayName = self.gatewayName order.symbol = spotSymbolMap[rawData['symbol']] order.vtSymbol = order.symbol order.orderID = localNo order.vtOrderID = '.'.join([self.gatewayName, order.orderID]) order.price = float(rawData['tradeUnitPrice']) order.totalVolume = float(rawData['tradeAmount']) order.direction, priceType = priceTypeMap[rawData['tradeType']] self.orderDict[orderId] = order else: order = self.orderDict[orderId] order.tradedVolume = float(rawData['completedTradeAmount']) order.status = statusMap[rawData['status']] self.gateway.onOrder(copy(order)) # 成交信息 if 'sigTradeAmount' in rawData and float(rawData['sigTradeAmount'])>0: trade = VtTradeData() trade.gatewayName = self.gatewayName trade.symbol = spotSymbolMap[rawData['symbol']] trade.vtSymbol = order.symbol trade.tradeID = str(rawData['id']) trade.vtTradeID = '.'.join([self.gatewayName, trade.tradeID]) trade.orderID = localNo trade.vtOrderID = '.'.join([self.gatewayName, trade.orderID]) trade.price = float(rawData['sigTradePrice']) trade.volume = float(rawData['sigTradeAmount']) trade.direction, priceType = priceTypeMap[rawData['tradeType']] trade.tradeTime = datetime.now().strftime('%H:%M:%S') self.gateway.onTrade(trade) #---------------------------------------------------------------------- def onSpotOrderInfo(self, data): """委托信息查询回调""" rawData = data['data'] for d in rawData['orders']: self.localNo += 1 localNo = str(self.localNo) orderId = str(d['order_id']) self.localNoDict[localNo] = orderId self.orderIdDict[orderId] = localNo if orderId not in self.orderDict: order = VtOrderData() order.gatewayName = self.gatewayName order.symbol = spotSymbolMap[d['symbol']] order.vtSymbol = order.symbol order.orderID = localNo order.vtOrderID = '.'.join([self.gatewayName, order.orderID]) order.price = d['price'] order.totalVolume = d['amount'] order.direction, priceType = priceTypeMap[d['type']] self.orderDict[orderId] = order else: order = self.orderDict[orderId] order.tradedVolume = d['deal_amount'] order.status = statusMap[d['status']] self.gateway.onOrder(copy(order)) #---------------------------------------------------------------------- def generateSpecificContract(self, contract, symbol): """生成合约""" new = copy(contract) new.symbol = symbol new.vtSymbol = symbol new.name = symbol return new #---------------------------------------------------------------------- def generateCnyContract(self): """生成CNY合约信息""" contractList = [] contract = VtContractData() contract.exchange = EXCHANGE_OKCOIN contract.productClass = PRODUCT_SPOT contract.size = 1 contract.priceTick = 0.01 contractList.append(self.generateSpecificContract(contract, BTC_CNY_SPOT)) contractList.append(self.generateSpecificContract(contract, LTC_CNY_SPOT)) return contractList #---------------------------------------------------------------------- def generateUsdContract(self): """生成USD合约信息""" contractList = [] # 现货 contract = VtContractData() contract.exchange = EXCHANGE_OKCOIN contract.productClass = PRODUCT_SPOT contract.size = 1 contract.priceTick = 0.01 contractList.append(self.generateSpecificContract(contract, BTC_USD_SPOT)) contractList.append(self.generateSpecificContract(contract, LTC_USD_SPOT)) # 期货 contract.productClass = PRODUCT_FUTURES contractList.append(self.generateSpecificContract(contract, BTC_USD_THISWEEK)) contractList.append(self.generateSpecificContract(contract, BTC_USD_NEXTWEEK)) contractList.append(self.generateSpecificContract(contract, BTC_USD_QUARTER)) contractList.append(self.generateSpecificContract(contract, LTC_USD_THISWEEK)) contractList.append(self.generateSpecificContract(contract, LTC_USD_NEXTWEEK)) contractList.append(self.generateSpecificContract(contract, LTC_USD_QUARTER)) return contractList #---------------------------------------------------------------------- def onSpotTrade(self, data): """委托回报""" rawData = data['data'] orderId = rawData['order_id'] # 尽管websocket接口的委托号返回是异步的,但经过测试是 # 符合先发现回的规律,因此这里通过queue获取之前发送的 # 本地委托号,并把它和推送的系统委托号进行映射 localNo = self.localNoQueue.get_nowait() self.localNoDict[localNo] = orderId self.orderIdDict[orderId] = localNo # 检查是否有系统委托号返回前就发出的撤单请求,若有则进 # 行撤单操作 if localNo in self.cancelDict: req = self.cancelDict[localNo] self.spotCancel(req) del self.cancelDict[localNo] #---------------------------------------------------------------------- def onSpotCancelOrder(self, data): """撤单回报""" pass #---------------------------------------------------------------------- def spotSendOrder(self, req): """发单""" symbol = spotSymbolMapReverse[req.symbol][:4] type_ = priceTypeMapReverse[(req.direction, req.priceType)] self.spotTrade(symbol, type_, str(req.price), str(req.volume)) # 本地委托号加1,并将对应字符串保存到队列中,返回基于本地委托号的vtOrderID self.localNo += 1 self.localNoQueue.put(str(self.localNo)) vtOrderID = '.'.join([self.gatewayName, str(self.localNo)]) return vtOrderID #---------------------------------------------------------------------- def spotCancel(self, req): """撤单""" symbol = spotSymbolMapReverse[req.symbol][:4] localNo = req.orderID if localNo in self.localNoDict: orderID = self.localNoDict[localNo] self.spotCancelOrder(symbol, orderID) else: # 如果在系统委托号返回前客户就发送了撤单请求,则保存 # 在cancelDict字典中,等待返回后执行撤单任务 self.cancelDict[localNo] = req #---------------------------------------------------------------------- def generateDateTime(s): """生成时间""" dt = datetime.fromtimestamp(float(s)/1e3) time = dt.strftime("%H:%M:%S.%f") date = dt.strftime("%Y%m%d") return date, time
34.204802
86
0.503531
2a37f1cfc1e1bdb2b99c811e51ef09f279492252
9,931
py
Python
fairseq/modules/lightconv_layer/cuda_function_gen.py
aiboxlab/TSPNet
359402151afd262857cde6fae3fc13445d73c9a7
[ "MIT" ]
83
2020-10-11T04:44:52.000Z
2022-01-11T13:59:50.000Z
fairseq/modules/lightconv_layer/cuda_function_gen.py
aiboxlab/TSPNet
359402151afd262857cde6fae3fc13445d73c9a7
[ "MIT" ]
9
2020-12-12T10:12:00.000Z
2021-03-28T16:05:08.000Z
fairseq/modules/lightconv_layer/cuda_function_gen.py
aiboxlab/TSPNet
359402151afd262857cde6fae3fc13445d73c9a7
[ "MIT" ]
11
2020-12-17T13:38:56.000Z
2022-03-12T23:39:41.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def gen_forward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "lightconv_cuda.cuh" std::vector<at::Tensor> lightconv_cuda_forward(at::Tensor input, at::Tensor filters, int padding_l) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = filters.size(0); const auto filterSize = filters.size(1); const auto numFiltersInBlock = numFeatures / numHeads; const dim3 blocks(minibatch, numFeatures); auto output = at::zeros_like(input); auto stream = at::cuda::getCurrentCUDAStream(); """ sequence_if = """ if (sequenceLength <= {seq}) {{ switch(filterSize) {{ """ case_k = """ case {k}: """ main_block = """ if (padding_l == {pad}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_forward", ([&] {{ lightconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), filters.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, output.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl; } break; """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl; } """ con_else = """ } else """ final_else = """ { switch(filterSize) { """ final_return = """ } return {output}; } """ with open("lightconv_cuda_forward.cu", 'w') as forward: forward.write(head) for seq in seqs: forward.write(sequence_if.format(seq=seq)) for k in kernels: forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=seq, pad=pad)) forward.write(bad_padding) forward.write(bad_filter) forward.write(con_else) forward.write(final_else) for k in kernels: forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=seq, pad=pad)) forward.write(bad_padding) forward.write(bad_filter) forward.write(final_return) def gen_backward(): head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "lightconv_cuda.cuh" std::vector<at::Tensor> lightconv_cuda_backward( at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor filters) { // gradWrtInput const int minibatch = input.size(0); const int numFeatures = input.size(1); const int sequenceLength = input.size(2); const int numHeads = filters.size(0); const int filterSize = filters.size(1); const dim3 gradBlocks(minibatch, numFeatures); const dim3 weightGradFirstpassShortBlocks(minibatch, numHeads); const dim3 weightGradSecondpassBlocks(numHeads, filterSize); const int numFiltersInBlock = numFeatures / numHeads; auto gradInput = at::zeros_like(input); auto gradFilters = at::zeros_like(filters); at::DeviceGuard g(input.device()); auto stream = at::cuda::getCurrentCUDAStream(); switch(filterSize) { """ sequence_if = """ if (sequenceLength <= {seq}) {{ """ case_k = """ case {k}: """ main_block = """ if (padding_l == {p}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_backward", ([&] {{ lightconv_grad_wrt_input_kernel<{k}, {b_size}, {p}, scalar_t> <<<gradBlocks, {b_size}, 0, stream>>>( gradOutput.data<scalar_t>(), filters.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, gradInput.data<scalar_t>()); """ weight_grad_short = """ at::Tensor tempSumGradFilters = at::zeros({{minibatch, numHeads, filterSize}}, input.options().dtype(at::kFloat)); lightconv_grad_wrt_weights_firstpass_short_kernel<{k}, {b_size}, {p}, scalar_t> <<<weightGradFirstpassShortBlocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), gradOutput.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, tempSumGradFilters.data<float>() ); lightconv_grad_wrt_weights_secondpass_short_kernel<{k}, {b_size}, scalar_t> <<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>( tempSumGradFilters.data<float>(), minibatch, numFiltersInBlock, gradFilters.data<scalar_t>() ); }})); }} else """ weight_grad = """ at::Tensor tempSumGradFilters = at::zeros({{minibatch, numFeatures, filterSize}}, input.options().dtype(at::kFloat)); lightconv_grad_wrt_weights_firstpass_kernel<{k}, {b_size}, {p}, scalar_t> <<<gradBlocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), gradOutput.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, tempSumGradFilters.data<float>() ); lightconv_grad_wrt_weights_secondpass_kernel<{k}, {b_size}, scalar_t> <<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>( tempSumGradFilters.data<float>(), minibatch, numFiltersInBlock, gradFilters.data<scalar_t>() ); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl; } """ breakout = """ break; """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl; """ con_else = """ } else """ final_else = """ { switch(filterSize) { """ last_return = """ } return {gradInput, gradFilters}; } """ kernels = [3, 5, 7, 15, 31, 63, 127, 255] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] thresh = [32, 32, 64, 128, 256, -1, -1, -1] max_mem = [-1, -1, -1, -1, -1, 192, 96, 64] with open("lightconv_cuda_backward.cu", 'w') as backward: backward.write(head) for (k, t, mem) in zip(kernels, thresh, max_mem): backward.write(case_k.format(k=k)) for seq in seqs: if (t == -1 or seq <= t) and (mem == -1 or seq < mem): backward.write(sequence_if.format(seq=seq)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=seq, p=p)) backward.write(weight_grad_short.format(k=k, b_size=seq, p=p)) backward.write(bad_padding) else: for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=32, p=p)) backward.write(weight_grad.format(k=k, b_size=32, p=p)) backward.write(bad_padding) backward.write(breakout) break backward.write(con_else) backward.write(bad_filter) backward.write(last_return) if __name__ == "__main__": gen_forward() gen_backward()
34.244828
142
0.479509
73a687e272f29983d0fac056745954d9c353740d
461
py
Python
src/mspelling/cli.py
mario-bermonti/computerized-spelling-measure
7140c2407d3324a7b9f867d45c2bf4dd0978c8dd
[ "BSD-3-Clause" ]
1
2021-06-25T16:46:44.000Z
2021-06-25T16:46:44.000Z
src/mspelling/cli.py
mario-bermonti/computerized-spelling-measure
7140c2407d3324a7b9f867d45c2bf4dd0978c8dd
[ "BSD-3-Clause" ]
8
2021-12-27T04:11:34.000Z
2022-03-12T01:06:12.000Z
src/mspelling/cli.py
mario-bermonti/computerized-spelling-measure
7140c2407d3324a7b9f867d45c2bf4dd0978c8dd
[ "BSD-3-Clause" ]
null
null
null
"""Console script for mspelling.""" import click from mspelling import __version__ @click.command() @click.version_option(version=__version__) def main() -> int: """Console script for mspelling.""" click.echo("This is the cli for the mspelling project") click_url = "https://click.palletsprojects.com/" click.echo(f"See the click docs at {click_url} for more details") return 0 if __name__ == "__main__": main() # pragma: no cover
24.263158
69
0.698482
524e3f6e0d6627460c58586e64beb5257570ada8
10,170
py
Python
examples/cnn/model/xceptionnet.py
chrishkchris/incubator-singa
ced9e9d44c200d709db5a2354076390788986b77
[ "Apache-2.0" ]
2
2021-04-22T02:56:43.000Z
2021-04-22T02:56:46.000Z
examples/cnn/model/xceptionnet.py
guoshnBJTU/singa
f04d197ee15777504bf80a8cb77666b8cacb4b94
[ "Apache-2.0" ]
3
2020-09-09T11:51:47.000Z
2021-01-15T12:55:06.000Z
examples/cnn/model/xceptionnet.py
zlheui/singa
ced9e9d44c200d709db5a2354076390788986b77
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= # the code is modified from # https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/xception.py from singa import layer from singa import model class Block(layer.Layer): def __init__(self, in_filters, out_filters, reps, strides=1, padding=0, start_with_relu=True, grow_first=True): super(Block, self).__init__() if out_filters != in_filters or strides != 1: self.skip = layer.Conv2d(in_filters, out_filters, 1, stride=strides, padding=padding, bias=False) self.skipbn = layer.BatchNorm2d(out_filters) else: self.skip = None self.layers = [] filters = in_filters if grow_first: self.layers.append(layer.ReLU()) self.layers.append( layer.SeparableConv2d(in_filters, out_filters, 3, stride=1, padding=1, bias=False)) self.layers.append(layer.BatchNorm2d(out_filters)) filters = out_filters for i in range(reps - 1): self.layers.append(layer.ReLU()) self.layers.append( layer.SeparableConv2d(filters, filters, 3, stride=1, padding=1, bias=False)) self.layers.append(layer.BatchNorm2d(filters)) if not grow_first: self.layers.append(layer.ReLU()) self.layers.append( layer.SeparableConv2d(in_filters, out_filters, 3, stride=1, padding=1, bias=False)) self.layers.append(layer.BatchNorm2d(out_filters)) if not start_with_relu: self.layers = self.layers[1:] else: self.layers[0] = layer.ReLU() if strides != 1: self.layers.append(layer.MaxPool2d(3, strides, padding + 1)) self.register_layers(*self.layers) self.add = layer.Add() def forward(self, x): y = self.layers[0](x) for layer in self.layers[1:]: if isinstance(y, tuple): y = y[0] y = layer(y) if self.skip is not None: skip = self.skip(x) skip = self.skipbn(skip) else: skip = x y = self.add(y, skip) return y class Xception(model.Model): """ Xception optimized for the ImageNet dataset, as specified in https://arxiv.org/pdf/1610.02357.pdf """ def __init__(self, num_classes=10, num_channels=3): """ Constructor Args: num_classes: number of classes """ super(Xception, self).__init__() self.num_classes = num_classes self.input_size = 299 self.dimension = 4 self.conv1 = layer.Conv2d(num_channels, 32, 3, 2, 0, bias=False) self.bn1 = layer.BatchNorm2d(32) self.relu1 = layer.ReLU() self.conv2 = layer.Conv2d(32, 64, 3, 1, 1, bias=False) self.bn2 = layer.BatchNorm2d(64) self.relu2 = layer.ReLU() # do relu here self.block1 = Block(64, 128, 2, 2, padding=0, start_with_relu=False, grow_first=True) self.block2 = Block(128, 256, 2, 2, padding=0, start_with_relu=True, grow_first=True) self.block3 = Block(256, 728, 2, 2, padding=0, start_with_relu=True, grow_first=True) self.block4 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) self.block5 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) self.block6 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) self.block7 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) self.block8 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) self.block9 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) self.block10 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) self.block11 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) self.block12 = Block(728, 1024, 2, 2, start_with_relu=True, grow_first=False) self.conv3 = layer.SeparableConv2d(1024, 1536, 3, 1, 1) self.bn3 = layer.BatchNorm2d(1536) self.relu3 = layer.ReLU() # do relu here self.conv4 = layer.SeparableConv2d(1536, 2048, 3, 1, 1) self.bn4 = layer.BatchNorm2d(2048) self.relu4 = layer.ReLU() self.globalpooling = layer.MaxPool2d(10, 1) self.flatten = layer.Flatten() self.fc = layer.Linear(num_classes) self.softmax_cross_entropy = layer.SoftMaxCrossEntropy() def features(self, input): x = self.conv1(input) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) x = self.block6(x) x = self.block7(x) x = self.block8(x) x = self.block9(x) x = self.block10(x) x = self.block11(x) x = self.block12(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = self.conv4(x) x = self.bn4(x) return x def logits(self, features): x = self.relu4(features) x = self.globalpooling(x) x = self.flatten(x) x = self.fc(x) return x def forward(self, x): x = self.features(x) x = self.logits(x) return x def train_one_batch(self, x, y, dist_option, spars): out = self.forward(x) loss = self.softmax_cross_entropy(out, y) if dist_option == 'fp32': self.optimizer(loss) elif dist_option == 'fp16': self.optimizer.backward_and_update_half(loss) elif dist_option == 'partialUpdate': self.optimizer.backward_and_partial_update(loss) elif dist_option == 'sparseTopK': self.optimizer.backward_and_sparse_update(loss, topK=True, spars=spars) elif dist_option == 'sparseThreshold': self.optimizer.backward_and_sparse_update(loss, topK=False, spars=spars) return out, loss def set_optimizer(self, optimizer): self.optimizer = optimizer def create_model(pretrained=False, **kwargs): """Constructs a Xceptionnet model. Args: pretrained (bool): If True, returns a model pre-trained """ model = Xception(**kwargs) return model __all__ = ['Xception', 'create_model']
32.912621
101
0.436775
b1d6a0e609e66b4ab1b9cb38a728c7ae6bef72ab
5,041
py
Python
docs/conf.py
dem4ply/chibi_gob_mx_elasticsearch
7b4a5b35ad79817db0f5d5cc6705f085b4708a1d
[ "WTFPL" ]
null
null
null
docs/conf.py
dem4ply/chibi_gob_mx_elasticsearch
7b4a5b35ad79817db0f5d5cc6705f085b4708a1d
[ "WTFPL" ]
null
null
null
docs/conf.py
dem4ply/chibi_gob_mx_elasticsearch
7b4a5b35ad79817db0f5d5cc6705f085b4708a1d
[ "WTFPL" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # chibi_gob_mx_elasticsearch documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) import chibi_gob_mx_elasticsearch # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'chibi_gob_mx_elasticsearch' copyright = u"2020, dem4ply" author = u"dem4ply" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = chibi_gob_mx_elasticsearch.__version__ # The full version, including alpha/beta/rc tags. release = chibi_gob_mx_elasticsearch.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'chibi_gob_mx_elasticsearchdoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ (master_doc, 'chibi_gob_mx_elasticsearch.tex', u'chibi_gob_mx_elasticsearch Documentation', u'dem4ply', 'manual'), ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'chibi_gob_mx_elasticsearch', u'chibi_gob_mx_elasticsearch Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'chibi_gob_mx_elasticsearch', u'chibi_gob_mx_elasticsearch Documentation', author, 'chibi_gob_mx_elasticsearch', 'One line description of project.', 'Miscellaneous'), ]
30.737805
79
0.698274
ad76ff0c1ce3b783b372db913208704f35e83f63
17
py
Python
markovGames/examples/__init__.py
rohit-konda/markovGames
d6dd1b8a11f1c95658a468f9e471aecfcf0e6839
[ "MIT" ]
null
null
null
markovGames/examples/__init__.py
rohit-konda/markovGames
d6dd1b8a11f1c95658a468f9e471aecfcf0e6839
[ "MIT" ]
null
null
null
markovGames/examples/__init__.py
rohit-konda/markovGames
d6dd1b8a11f1c95658a468f9e471aecfcf0e6839
[ "MIT" ]
null
null
null
name = 'examples'
17
17
0.705882
011b6dd9c401f68d2291de294d516a7d663195b0
1,515
py
Python
competitive_programming/python_template_ext.py
hey24sheep/code_templates
39a766676fc8ad4f82e5c926c3b06fa3531bf028
[ "MIT" ]
null
null
null
competitive_programming/python_template_ext.py
hey24sheep/code_templates
39a766676fc8ad4f82e5c926c3b06fa3531bf028
[ "MIT" ]
null
null
null
competitive_programming/python_template_ext.py
hey24sheep/code_templates
39a766676fc8ad4f82e5c926c3b06fa3531bf028
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------- # Created By : hey24sheep.com # Created Date: 11th Feb 2022 # License : MIT # version = 1.0 # # Description : A small and quick template file for competitve programming # -------------------------------------------------------------------------------------- import sys, io, os, math, bisect from collections import Counter, defaultdict, OrderedDict, deque from itertools import permutations, combinations from sys import stdin, stdout # set max recurssion limit sys.setrecursionlimit(100000000) # 10**9+7 prime mod = 1000000007 mod1 = 998244353 # helpers ceil = lambda x: int(x) if (x == int(x)) else int(x) + 1 ceildiv = lambda x, d: x // d if (x % d == 0) else x // d + 1 def isprime(n): if (n == 1 or n == 0): return False for i in range(2, int(n**(1 / 2)) + 1): if (n % i == 0): return False return True # fast input input = stdin.readline get_input = lambda: stdin.readline().strip() get_int = lambda: int(get_input()) get_list = lambda: get_input().split() get_int_list = lambda: list(map(int, get_list())) get_float_list = lambda: list(map(float, get_list())) # fast output output_float = lambda val: (stdout.write(f"{val:.2f}\n") and stdout.flush()) output = lambda val: (stdout.write(str(val) + "\n") and stdout.flush()) # solve testcases = get_int() for t in range(1, testcases + 1): n = get_input() s = get_input() # print result # print(f'Case #{t}: {result}')
31.5625
88
0.584818
a780de2130486c3efdffb4c093720b046b77f11e
4,134
py
Python
torch_geometric/nn/conv/res_gated_graph_conv.py
NucciTheBoss/pytorch_geometric
e220a2c08fa1b2f1672d616c22eac2a67b5c8967
[ "MIT" ]
2,350
2021-09-12T08:32:50.000Z
2022-03-31T18:09:36.000Z
torch_geometric/nn/conv/res_gated_graph_conv.py
NucciTheBoss/pytorch_geometric
e220a2c08fa1b2f1672d616c22eac2a67b5c8967
[ "MIT" ]
588
2021-09-12T08:49:08.000Z
2022-03-31T21:02:13.000Z
torch_geometric/nn/conv/res_gated_graph_conv.py
NucciTheBoss/pytorch_geometric
e220a2c08fa1b2f1672d616c22eac2a67b5c8967
[ "MIT" ]
505
2021-09-13T13:13:32.000Z
2022-03-31T15:54:00.000Z
from typing import Callable, Optional, Tuple, Union from torch import Tensor from torch.nn import Parameter, Sigmoid from torch_geometric.nn.conv import MessagePassing from torch_geometric.nn.dense.linear import Linear from torch_geometric.typing import Adj, PairTensor from ..inits import zeros class ResGatedGraphConv(MessagePassing): r"""The residual gated graph convolutional operator from the `"Residual Gated Graph ConvNets" <https://arxiv.org/abs/1711.07553>`_ paper .. math:: \mathbf{x}^{\prime}_i = \mathbf{W}_1 \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \eta_{i,j} \odot \mathbf{W}_2 \mathbf{x}_j where the gate :math:`\eta_{i,j}` is defined as .. math:: \eta_{i,j} = \sigma(\mathbf{W}_3 \mathbf{x}_i + \mathbf{W}_4 \mathbf{x}_j) with :math:`\sigma` denoting the sigmoid function. Args: in_channels (int or tuple): Size of each input sample, or :obj:`-1` to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities. out_channels (int): Size of each output sample. act (callable, optional): Gating function :math:`\sigma`. (default: :meth:`torch.nn.Sigmoid()`) bias (bool, optional): If set to :obj:`False`, the layer will not learn an additive bias. (default: :obj:`True`) root_weight (bool, optional): If set to :obj:`False`, the layer will not add transformed root node features to the output. (default: :obj:`True`) **kwargs (optional): Additional arguments of :class:`torch_geometric.nn.conv.MessagePassing`. Shapes: - **inputs:** node features :math:`(|\mathcal{V}|, F_{in})` or :math:`((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))` if bipartite, edge indices :math:`(2, |\mathcal{E}|)` - **outputs:** node features :math:`(|\mathcal{V}|, F_{out})` or :math:`(|\mathcal{V_t}|, F_{out})` if bipartite """ def __init__( self, in_channels: Union[int, Tuple[int, int]], out_channels: int, act: Optional[Callable] = Sigmoid(), root_weight: bool = True, bias: bool = True, **kwargs, ): kwargs.setdefault('aggr', 'add') super().__init__(**kwargs) self.in_channels = in_channels self.out_channels = out_channels self.act = act self.root_weight = root_weight if isinstance(in_channels, int): in_channels = (in_channels, in_channels) self.lin_key = Linear(in_channels[1], out_channels) self.lin_query = Linear(in_channels[0], out_channels) self.lin_value = Linear(in_channels[0], out_channels) if root_weight: self.lin_skip = Linear(in_channels[1], out_channels, bias=False) else: self.register_parameter('lin_skip', None) if bias: self.bias = Parameter(Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): self.lin_key.reset_parameters() self.lin_query.reset_parameters() self.lin_value.reset_parameters() if self.lin_skip is not None: self.lin_skip.reset_parameters() if self.bias is not None: zeros(self.bias) def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj) -> Tensor: """""" if isinstance(x, Tensor): x: PairTensor = (x, x) k = self.lin_key(x[1]) q = self.lin_query(x[0]) v = self.lin_value(x[0]) # propagate_type: (k: Tensor, q: Tensor, v: Tensor) out = self.propagate(edge_index, k=k, q=q, v=v, size=None) if self.root_weight: out += self.lin_skip(x[1]) if self.bias is not None: out += self.bias return out def message(self, k_i: Tensor, q_j: Tensor, v_j: Tensor) -> Tensor: return self.act(k_i + q_j) * v_j
33.885246
79
0.599419
5bdcb24f597d7804d3fca6352b03e396a2d34e63
2,077
py
Python
refactor_json_format.py
flores-jacob/philippine-regions-provinces-cities-municipalities-baranggays
3c993f5669bc7ca62d2c5740eb1733923e61eac2
[ "MIT" ]
79
2018-11-22T05:10:27.000Z
2022-02-05T06:37:51.000Z
refactor_json_format.py
kentastudillo/philippine-regions-provinces-cities-municipalities-barangays
0ae4a49d3d5e5e1749575a1d028da6dac4020b35
[ "MIT" ]
1
2020-07-13T10:32:14.000Z
2022-01-11T12:06:14.000Z
refactor_json_format.py
kentastudillo/philippine-regions-provinces-cities-municipalities-barangays
0ae4a49d3d5e5e1749575a1d028da6dac4020b35
[ "MIT" ]
25
2019-04-06T07:41:46.000Z
2021-11-06T13:12:41.000Z
# This script is meant to refactor the original file into the new format. # The idea is to make the formatting more consistent by removing redundant # and unnecessary list organization for the municipalities. # In effect, only dictionaries are used all throughout the file, except # for the barangays which are still in list format from collections import OrderedDict import json JSON_FILE = "./philippine_provinces_cities_municipalities_and_barangays_2016.json" NEW_JSON_FILE = "./philippine_provinces_cities_municipalities_and_barangays_2016_v2.json" with open(JSON_FILE) as json_file: data = json.load(json_file) modified_dict = {} for region_key, region_contents in data.items(): modified_dict[region_key] = {} modified_dict[region_key]["region_name"] = region_contents["region_name"] modified_dict[region_key]["province_list"] = {} modified_province_list = modified_dict[region_key]["province_list"] province_dict = region_contents["province_list"] for province_key, province_contents in province_dict.items(): modified_province_list[province_key] = {} modified_province_list[province_key]["municipality_list"] = {} modified_municipality_list = modified_province_list[province_key]["municipality_list"] for municipality_item in province_contents["municipality_list"]: for municipality_key, municipality_contents in sorted(municipality_item.items(), key=lambda x: x[0]): modified_municipality_list[municipality_key] = municipality_contents # sort by municipality name modified_dict[region_key]["province_list"][province_key]["municipality_list"] = OrderedDict(sorted(modified_municipality_list.items(), key=lambda x: x[0])) # sort by province name modified_dict[region_key]["province_list"] = OrderedDict(sorted(modified_province_list.items(), key=lambda x: x[0])) # sort by region modified_dict = OrderedDict(sorted(modified_dict.items(), key=lambda x: x[0])) with open(NEW_JSON_FILE, "w") as outfile: json.dump(modified_dict, outfile, indent=2)
47.204545
163
0.76649
ce52bf45391c5df802a575b5e6792c3ab687b569
3,759
py
Python
Menu/HelloTF2.py
ylu4/Hands-on-ML-2nd-rearranged
87be431cc88b3806a7d726d623ad1688608aab8b
[ "Apache-2.0" ]
null
null
null
Menu/HelloTF2.py
ylu4/Hands-on-ML-2nd-rearranged
87be431cc88b3806a7d726d623ad1688608aab8b
[ "Apache-2.0" ]
null
null
null
Menu/HelloTF2.py
ylu4/Hands-on-ML-2nd-rearranged
87be431cc88b3806a7d726d623ad1688608aab8b
[ "Apache-2.0" ]
null
null
null
# From https://www.tensorflow.org/beta/ import tensorflow as tf import time from tensorflow.keras.layers import Dense, Flatten, Conv2D from tensorflow.keras import Model t0 = time.time() # Load and prepare the MNIST dataset. mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Build the tf.keras.Sequential model by stacking layers, choose # loss function and optimizers for training. model0 = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape = (28, 28)), tf.keras.layers.Dense(128, activation = 'relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation = 'softmax')]) model0.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) # Train and evaluate the model. model0.fit(x_train, y_train, epochs = 5) result0 = model0.evaluate(x_test, y_test) elapse0 = time.time() - t0 print(result0, elapse0) # Use tf.data to batch and shuffle the dataset. x_train = x_train[..., tf.newaxis] x_test = x_test[..., tf.newaxis] train_ds = tf.data.Dataset.from_tensor_slices( (x_train, y_train)).shuffle(10000).batch(32) test_ds = tf.data.Dataset.from_tensor_slices( (x_test, y_test)).batch(32) # Build the tf.keras model using the Keras model subclassing API. class MyModel(Model): def __init__(self): super(MyModel, self).__init__() self.conv1 = Conv2D(32, 3, activation = 'relu') self.flatten = Flatten() self.d1 = Dense(128, activation = 'relu') self.d2 = Dense(10, activation = 'softmax') def call(self, x): x = self.conv1(x) x = self.flatten(x) x = self.d1(x) return self.d2(x) model1 = MyModel() # Choose an optimizer and loss function for training. loss_object = tf.keras.losses.SparseCategoricalCrossentropy() optimizer = tf.keras.optimizers.Adam() # Selecte metrics to measure the loss and the accuracy of the model. # These metrics accumulate the values over epochs and then print the overall result. train_loss = tf.keras.metrics.Mean(name = 'train_loss') train_accuracy = tf.keras.metrics.SparseCategoricalCrossentropy(name = 'train_accuracy') test_loss = tf.keras.metrics.Mean(name = 'test_loss') test_accuracy = tf.keras.metrics.SparseCategoricalCrossentropy(name = 'test_accuracy') # Use GradientTape to train the model. @tf.function def train_step(images, labels): with tf.GradientTape() as tape: predictions = model1(images) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model1.trainable_variables) optimizer.apply_gradients(zip(gradients, model1.trainable_variables)) train_loss(loss) train_accuracy(labels, predictions) # Test the model. @tf.function def test_step(images, labels): predictions = model1(images) t_loss = loss_object(labels, predictions) test_loss(t_loss) test_accuracy(labels, predictions) EPOCHS = 5 for epoch in range(EPOCHS): for images, labels in train_ds: train_step(images, labels) for test_images, test_labels in test_ds: test_step(test_images, test_labels) template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}' print(template.format(epoch + 1, train_loss.result(), train_accuracy.result() * 100, test_loss.result(), test_accuracy.result() * 100)) # Reset the metrics for the next epoch train_loss.reset_states() train_accuracy.reset_states() test_loss.reset_states() test_accuracy.reset_states() elapes1 = time.time() - elapse0 - t0 print(elapes1)
32.686957
88
0.688747
631f63abe3a5570764fec23bd133aff121f168d6
217
py
Python
ch5/5-6.stage_of_life.py
AngangGuo/pycrash
de48aa4198022c301f5cd3ce388c195a177be1b5
[ "MIT" ]
null
null
null
ch5/5-6.stage_of_life.py
AngangGuo/pycrash
de48aa4198022c301f5cd3ce388c195a177be1b5
[ "MIT" ]
null
null
null
ch5/5-6.stage_of_life.py
AngangGuo/pycrash
de48aa4198022c301f5cd3ce388c195a177be1b5
[ "MIT" ]
null
null
null
age = 20 if age < 2: print("a baby") elif age < 4: print("a toddler") elif age < 13: print("a kid") elif age < 20: print("a teenager") elif age < 65: print("an adult") else: print("an elder")
14.466667
23
0.552995
e8d12a39f94d663e0c873ef62a8fd22f34ab43ba
3,359
py
Python
src/evidently/dashboard/widgets/prob_class_pred_distr_widget.py
caron14/evidently
5e0d4450614ad237c5321462ac7f725f54e7e8f4
[ "Apache-2.0" ]
1
2022-01-22T20:56:10.000Z
2022-01-22T20:56:10.000Z
src/evidently/dashboard/widgets/prob_class_pred_distr_widget.py
billyotieno/evidently
10e41bcdd1108c5c7516a92a198da48ff16a134f
[ "Apache-2.0" ]
null
null
null
src/evidently/dashboard/widgets/prob_class_pred_distr_widget.py
billyotieno/evidently
10e41bcdd1108c5c7516a92a198da48ff16a134f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 import json from typing import Optional import pandas as pd import numpy as np import plotly.figure_factory as ff from evidently import ColumnMapping from evidently.analyzers.prob_classification_performance_analyzer import ProbClassificationPerformanceAnalyzer from evidently.model.widget import BaseWidgetInfo from evidently.dashboard.widgets.widget import Widget, RED, GREY class ProbClassPredDistrWidget(Widget): def __init__(self, title: str, dataset: str = 'reference'): super().__init__(title) self.dataset = dataset # reference or current def analyzers(self): return [ProbClassificationPerformanceAnalyzer] def calculate(self, reference_data: pd.DataFrame, current_data: Optional[pd.DataFrame], column_mapping: ColumnMapping, analyzers_results) -> Optional[BaseWidgetInfo]: results = analyzers_results[ProbClassificationPerformanceAnalyzer] if results['utility_columns']['target'] is None or results['utility_columns']['prediction'] is None: if self.dataset == 'reference': raise ValueError(f"Widget [{self.title}] requires 'target' and 'prediction' columns") return None if self.dataset == 'current': dataset_to_plot = current_data.copy(deep=False) if current_data is not None else None else: dataset_to_plot = reference_data.copy(deep=False) if dataset_to_plot is None: if self.dataset == 'reference': raise ValueError(f"Widget [{self.title}] requires reference dataset but it is None") return None dataset_to_plot.replace([np.inf, -np.inf], np.nan, inplace=True) dataset_to_plot.dropna(axis=0, how='any', inplace=True) # plot distributions graphs = [] for label in results['utility_columns']['prediction']: pred_distr = ff.create_distplot( [ dataset_to_plot[dataset_to_plot[results['utility_columns']['target']] == label][label], dataset_to_plot[dataset_to_plot[results['utility_columns']['target']] != label][label] ], [str(label), "other"], colors=[RED, GREY], bin_size=0.05, show_curve=False, show_rug=True ) pred_distr.update_layout( xaxis_title="Probability", yaxis_title="Share", legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ) ) pred_distr_json = json.loads(pred_distr.to_json()) graphs.append({ "id": "tab_" + str(label), "title": str(label), "graph": { "data": pred_distr_json["data"], "layout": pred_distr_json["layout"], } }) return BaseWidgetInfo( title=self.title, type="tabbed_graph", size=1 if current_data is not None else 2, params={ "graphs": graphs }, )
34.27551
110
0.568026
9709481a4e7e9e07f5757e9c6c715174b88358a2
8,337
py
Python
linebot/models/messages.py
twbabyduck/line-bot-sdk-python
79a2c155b016a199916935e8133e0651e9477cff
[ "Apache-2.0" ]
2
2021-09-07T13:06:50.000Z
2021-09-14T08:14:45.000Z
linebot/models/messages.py
TaroHub/line-bot-sdk-python
ea6fe797fb42d59a8998eae6ff7497932fec5565
[ "Apache-2.0" ]
null
null
null
linebot/models/messages.py
TaroHub/line-bot-sdk-python
ea6fe797fb42d59a8998eae6ff7497932fec5565
[ "Apache-2.0" ]
1
2020-08-16T08:26:47.000Z
2020-08-16T08:26:47.000Z
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """linebot.models.messages module.""" from __future__ import unicode_literals from abc import ABCMeta from future.utils import with_metaclass from linebot.models.emojis import Emojis from .mention import Mention from .mentionee import Mentionee from .base import Base class Message(with_metaclass(ABCMeta, Base)): """Abstract Base Class of Message.""" def __init__(self, id=None, **kwargs): """__init__ method. :param str id: Message ID :param kwargs: """ super(Message, self).__init__(**kwargs) self.type = None self.id = id class TextMessage(Message): """TextMessage. https://developers.line.biz/en/reference/messaging-api/#wh-text Message object which contains the text sent from the source. """ def __init__(self, id=None, text=None, emojis=None, mention=None, **kwargs): """__init__ method. :param str id: Message ID :param str text: Message text :param List emojis: Array of LINE emoji objects :param object mention: LINE mention object :param kwargs: """ super(TextMessage, self).__init__(id=id, **kwargs) self.type = 'text' self.text = text if emojis: new_emojis = [] for emoji in emojis: emoji_object = self.get_or_new_from_json_dict( emoji, Emojis ) if emoji_object: new_emojis.append(emoji_object) self.emojis = new_emojis else: self.emojis = emojis if mention: mention_object = self.get_or_new_from_json_dict( mention, Mention ) mentionees = [] for mentionee in mention_object.mentionees: mentionee_object = self.get_or_new_from_json_dict( mentionee, Mentionee ) if mentionee_object: mentionees.append(mentionee_object) self.mention = Mention(mentionees) else: self.mention = mention class ImageMessage(Message): """ImageMessage. https://developers.line.biz/en/reference/messaging-api/#wh-image Message object which contains the image content sent from the source. The binary image data can be retrieved with the Content API. """ def __init__(self, id=None, content_provider=None, **kwargs): """__init__ method. :param str id: Message ID :param content_provider: ContentProvider object :type content_provider: :py:class:`linebot.models.messages.ContentProvider` :param kwargs: """ super(ImageMessage, self).__init__(id=id, **kwargs) self.type = 'image' self.content_provider = self.get_or_new_from_json_dict( content_provider, ContentProvider ) class VideoMessage(Message): """VideoMessage. https://developers.line.biz/en/reference/messaging-api/#wh-video Message object which contains the video content sent from the source. The binary video data can be retrieved with the Content API. """ def __init__(self, id=None, duration=None, content_provider=None, **kwargs): """__init__ method. :param str id: Message ID :param long duration: Length of video file (milliseconds) :param content_provider: ContentProvider object :type content_provider: :py:class:`linebot.models.messages.ContentProvider` :param kwargs: """ super(VideoMessage, self).__init__(id=id, **kwargs) self.type = 'video' self.duration = duration self.content_provider = self.get_or_new_from_json_dict( content_provider, ContentProvider ) class AudioMessage(Message): """AudioMessage. https://developers.line.biz/en/reference/messaging-api/#wh-audio Message object which contains the audio content sent from the source. The binary audio data can be retrieved with the Content API. """ def __init__(self, id=None, duration=None, content_provider=None, **kwargs): """__init__ method. :param str id: Message ID :param long duration: Length of audio file (milliseconds) :param content_provider: ContentProvider object :type content_provider: :py:class:`linebot.models.messages.ContentProvider` :param kwargs: """ super(AudioMessage, self).__init__(id=id, **kwargs) self.type = 'audio' self.duration = duration self.content_provider = self.get_or_new_from_json_dict( content_provider, ContentProvider ) class LocationMessage(Message): """LocationMessage. https://developers.line.biz/en/reference/messaging-api/#wh-location """ def __init__(self, id=None, title=None, address=None, latitude=None, longitude=None, **kwargs): """__init__ method. :param str id: Message ID :param str title: Title :param str address: Address :param float latitude: Latitude :param float longitude: Longitude :param kwargs: """ super(LocationMessage, self).__init__(id=id, **kwargs) self.type = 'location' self.title = title self.address = address self.latitude = latitude self.longitude = longitude class StickerMessage(Message): """StickerMessage. https://developers.line.biz/en/reference/messaging-api/#wh-sticker Message object which contains the sticker data sent from the source. For a list of basic LINE stickers and sticker IDs, see sticker list. """ def __init__(self, id=None, package_id=None, sticker_id=None, sticker_resource_type=None, keywords=None, **kwargs): """__init__ method. :param str id: Message ID :param str package_id: Package ID :param str sticker_id: Sticker ID :param str sticker_resource_type: Sticker resource type :param list[str] keywords: List of up to 15 keywords describing the sticker :param kwargs: """ super(StickerMessage, self).__init__(id=id, **kwargs) self.type = 'sticker' self.package_id = package_id self.sticker_id = sticker_id self.sticker_resource_type = sticker_resource_type self.keywords = keywords class FileMessage(Message): """FileMessage. https://developers.line.biz/en/reference/messaging-api/#wh-file Message object which contains the file content sent from the source. The binary file data can be retrieved with the Content API. """ def __init__(self, id=None, file_name=None, file_size=None, **kwargs): """__init__ method. :param str id: Message ID :param str file_name: File Name :param int file_size: File Size :param kwargs: """ super(FileMessage, self).__init__(id=id, **kwargs) self.type = 'file' self.file_size = file_size self.file_name = file_name class ContentProvider(Base): """Content provider.""" def __init__(self, type=None, original_content_url=None, preview_image_url=None, **kwargs): """__init__ method. :param str type: Provider of the content. `line` or `external`. :param str original_content_url: URL of the content. :param str preview_image_url: URL of the preview image. :param kwargs: """ super(ContentProvider, self).__init__(**kwargs) self.type = type self.original_content_url = original_content_url self.preview_image_url = preview_image_url
30.877778
95
0.640998
f79588c11b839d81da2bff6f57bbfb3aedf76539
9,995
py
Python
lib3/yaml/__init__.py
sikhberserker/yaml
4a7a400d218ad522bf5f50e021ea62a3ceb19566
[ "MIT" ]
2
2018-04-27T22:12:50.000Z
2020-11-27T23:32:06.000Z
lib3/yaml/__init__.py
sikhberserker/yaml
4a7a400d218ad522bf5f50e021ea62a3ceb19566
[ "MIT" ]
null
null
null
lib3/yaml/__init__.py
sikhberserker/yaml
4a7a400d218ad522bf5f50e021ea62a3ceb19566
[ "MIT" ]
2
2020-01-29T20:36:20.000Z
2021-03-08T02:05:35.000Z
from .error import * from .tokens import * from .events import * from .nodes import * from .loader import * from .dumper import * __version__ = '3.12' try: from .cyaml import * __with_libyaml__ = True except ImportError: __with_libyaml__ = False import io def scan(stream, Loader=Loader): """ Scan a YAML stream and produce scanning tokens. """ loader = Loader(stream) try: while loader.check_token(): yield loader.get_token() finally: loader.dispose() def parse(stream, Loader=Loader): """ Parse a YAML stream and produce parsing events. """ loader = Loader(stream) try: while loader.check_event(): yield loader.get_event() finally: loader.dispose() def compose(stream, Loader=Loader): """ Parse the first YAML document in a stream and produce the corresponding representation tree. """ loader = Loader(stream) try: return loader.get_single_node() finally: loader.dispose() def compose_all(stream, Loader=Loader): """ Parse all YAML documents in a stream and produce corresponding representation trees. """ loader = Loader(stream) try: while loader.check_node(): yield loader.get_node() finally: loader.dispose() def load(stream, Loader=Loader): """ Parse the first YAML document in a stream and produce the corresponding Python object. By default resolve only basic YAML tags, if an alternate Loader is provided, may be dangerous. """ loader = Loader(stream) try: return loader.get_single_data() finally: loader.dispose() safe_load = load def load_all(stream, Loader=Loader): """ Parse all YAML documents in a stream and produce corresponding Python objects. By default resolve only basic YAML tags, if an alternate Loader is provided, may be dangerous. """ loader = Loader(stream) try: while loader.check_data(): yield loader.get_data() finally: loader.dispose() safe_load_all = load_all def danger_load(stream): """ Parse the first YAML document in a stream and produce the corresponding Python object. When used on untrusted input, can result in arbitrary code execution. """ return load(stream, DangerLoader) def danger_load_all(stream): """ Parse all YAML documents in a stream and produce corresponding Python objects. When used on untrusted input, can result in arbitrary code execution. """ return load_all(stream, DangerLoader) def emit(events, stream=None, Dumper=Dumper, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None): """ Emit YAML parsing events into a stream. If stream is None, return the produced string instead. """ getvalue = None if stream is None: stream = io.StringIO() getvalue = stream.getvalue dumper = Dumper(stream, canonical=canonical, indent=indent, width=width, allow_unicode=allow_unicode, line_break=line_break) try: for event in events: dumper.emit(event) finally: dumper.dispose() if getvalue: return getvalue() def serialize_all(nodes, stream=None, Dumper=Dumper, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None, encoding=None, explicit_start=None, explicit_end=None, version=None, tags=None): """ Serialize a sequence of representation trees into a YAML stream. If stream is None, return the produced string instead. """ getvalue = None if stream is None: if encoding is None: stream = io.StringIO() else: stream = io.BytesIO() getvalue = stream.getvalue dumper = Dumper(stream, canonical=canonical, indent=indent, width=width, allow_unicode=allow_unicode, line_break=line_break, encoding=encoding, version=version, tags=tags, explicit_start=explicit_start, explicit_end=explicit_end) try: dumper.open() for node in nodes: dumper.serialize(node) dumper.close() finally: dumper.dispose() if getvalue: return getvalue() def serialize(node, stream=None, Dumper=Dumper, **kwds): """ Serialize a representation tree into a YAML stream. If stream is None, return the produced string instead. """ return serialize_all([node], stream, Dumper=Dumper, **kwds) def dump_all(documents, stream=None, Dumper=Dumper, default_style=None, default_flow_style=None, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None, encoding=None, explicit_start=None, explicit_end=None, version=None, tags=None): """ Serialize a sequence of Python objects into a YAML stream. If stream is None, return the produced string instead. """ getvalue = None if stream is None: if encoding is None: stream = io.StringIO() else: stream = io.BytesIO() getvalue = stream.getvalue dumper = Dumper(stream, default_style=default_style, default_flow_style=default_flow_style, canonical=canonical, indent=indent, width=width, allow_unicode=allow_unicode, line_break=line_break, encoding=encoding, version=version, tags=tags, explicit_start=explicit_start, explicit_end=explicit_end) try: dumper.open() for data in documents: dumper.represent(data) dumper.close() finally: dumper.dispose() if getvalue: return getvalue() safe_dump_all = dump_all def danger_dump_all(documents, stream=None, **kwds): """ Serialize a sequence of Python objects into a YAML stream. Produce only basic YAML tags. If stream is None, return the produced string instead. """ return dump_all(documents, stream, Dumper=DangerDumper, **kwds) def dump(data, stream=None, Dumper=Dumper, **kwds): """ Serialize a Python object into a YAML stream. If stream is None, return the produced string instead. """ return dump_all([data], stream, Dumper=Dumper, **kwds) safe_dump = dump def danger_dump(data, stream=None, **kwds): """ Serialize a Python object into a YAML stream. Produce only basic YAML tags. If stream is None, return the produced string instead. """ return dump_all([data], stream, Dumper=DangerDumper, **kwds) def add_implicit_resolver(tag, regexp, first=None, Loader=Loader, Dumper=Dumper): """ Add an implicit scalar detector. If an implicit scalar value matches the given regexp, the corresponding tag is assigned to the scalar. first is a sequence of possible initial characters or None. """ Loader.add_implicit_resolver(tag, regexp, first) Dumper.add_implicit_resolver(tag, regexp, first) def add_path_resolver(tag, path, kind=None, Loader=Loader, Dumper=Dumper): """ Add a path based resolver for the given tag. A path is a list of keys that forms a path to a node in the representation tree. Keys can be string values, integers, or None. """ Loader.add_path_resolver(tag, path, kind) Dumper.add_path_resolver(tag, path, kind) def add_constructor(tag, constructor, Loader=Loader): """ Add a constructor for the given tag. Constructor is a function that accepts a Loader instance and a node object and produces the corresponding Python object. """ Loader.add_constructor(tag, constructor) def add_multi_constructor(tag_prefix, multi_constructor, Loader=Loader): """ Add a multi-constructor for the given tag prefix. Multi-constructor is called for a node if its tag starts with tag_prefix. Multi-constructor accepts a Loader instance, a tag suffix, and a node object and produces the corresponding Python object. """ Loader.add_multi_constructor(tag_prefix, multi_constructor) def add_representer(data_type, representer, Dumper=Dumper): """ Add a representer for the given type. Representer is a function accepting a Dumper instance and an instance of the given data type and producing the corresponding representation node. """ Dumper.add_representer(data_type, representer) def add_multi_representer(data_type, multi_representer, Dumper=Dumper): """ Add a representer for the given type. Multi-representer is a function accepting a Dumper instance and an instance of the given data type or subtype and producing the corresponding representation node. """ Dumper.add_multi_representer(data_type, multi_representer) class YAMLObjectMetaclass(type): """ The metaclass for YAMLObject. """ def __init__(cls, name, bases, kwds): super(YAMLObjectMetaclass, cls).__init__(name, bases, kwds) if 'yaml_tag' in kwds and kwds['yaml_tag'] is not None: cls.yaml_loader.add_constructor(cls.yaml_tag, cls.from_yaml) cls.yaml_dumper.add_representer(cls, cls.to_yaml) class YAMLObject(metaclass=YAMLObjectMetaclass): """ An object that can dump itself to a YAML stream and load itself from a YAML stream. """ __slots__ = () # no direct instantiation, so allow immutable subclasses yaml_loader = Loader yaml_dumper = Dumper yaml_tag = None yaml_flow_style = None @classmethod def from_yaml(cls, loader, node): """ Convert a representation node to a Python object. """ return loader.construct_yaml_object(node, cls) @classmethod def to_yaml(cls, dumper, data): """ Convert a Python object to a representation node. """ return dumper.represent_yaml_object(cls.yaml_tag, data, cls, flow_style=cls.yaml_flow_style)
30.944272
77
0.671636
a7dff692a7654af5d76aaeba73d4f299b37585e2
2,088
py
Python
python/tests/unit/test_apienforcer.py
Vjrx/airship-drydock
315fb9864e6d55a66d5266f76c160be55d22c98b
[ "Apache-2.0" ]
14
2017-03-07T17:00:22.000Z
2021-04-02T14:15:04.000Z
python/tests/unit/test_apienforcer.py
Vjrx/airship-drydock
315fb9864e6d55a66d5266f76c160be55d22c98b
[ "Apache-2.0" ]
82
2017-02-16T16:54:18.000Z
2018-06-04T13:40:32.000Z
python/tests/unit/test_apienforcer.py
Vjrx/airship-drydock
315fb9864e6d55a66d5266f76c160be55d22c98b
[ "Apache-2.0" ]
16
2017-02-14T19:47:00.000Z
2018-04-26T10:13:05.000Z
# Copyright 2017 AT&T Intellectual Property. All other rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import uuid import logging from drydock_provisioner import policy from drydock_provisioner.control.base import DrydockRequestContext logging.basicConfig(level=logging.DEBUG) class TestEnforcerDecorator(): def test_apienforcer_decorator(self, mocker): ''' DrydockPolicy.authorized() should correctly use oslo_policy to enforce RBAC policy based on a DrydockRequestContext instance. authorized() is called via the policy.ApiEnforcer decorator. ''' mocker.patch('oslo_policy.policy.Enforcer') ctx = DrydockRequestContext() policy_engine = policy.DrydockPolicy() # Configure context project_id = str(uuid.uuid4()) ctx.project_id = project_id user_id = str(uuid.uuid4()) ctx.user_id = user_id ctx.roles = ['admin'] ctx.set_policy_engine(policy_engine) # Configure mocked request and response req = mocker.MagicMock() resp = mocker.MagicMock() req.context = ctx self.target_function(req, resp) expected_calls = [ mocker.call.authorize('physical_provisioner:read_task', { 'project_id': project_id, 'user_id': user_id }, ctx.to_policy_view()) ] policy_engine.enforcer.assert_has_calls(expected_calls) @policy.ApiEnforcer('physical_provisioner:read_task') def target_function(self, req, resp): return True
33.677419
82
0.691571
f97f53a0df41c49723275ef38c19cb19d0f6e80c
3,713
py
Python
knn classifier (1).py
msabi/KNN-Classification-using-Scikit-learn
ae70af66c5acd8f796e26ab4a12f08579e08d922
[ "MIT" ]
1
2019-08-30T07:22:16.000Z
2019-08-30T07:22:16.000Z
knn classifier (1).py
msabi/KNN-Classification-using-Scikit-learn
ae70af66c5acd8f796e26ab4a12f08579e08d922
[ "MIT" ]
null
null
null
knn classifier (1).py
msabi/KNN-Classification-using-Scikit-learn
ae70af66c5acd8f796e26ab4a12f08579e08d922
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: X = [[0], [1], [2], [3]] y = [0, 0, 1, 1] from sklearn.neighbors import KNeighborsClassifier # In[2]: neigh = KNeighborsClassifier(n_neighbors=3) # In[3]: neigh.fit(X, y) # In[7]: print(neigh.predict([[3]])) # In[8]: print(neigh.predict_proba([[0.9]])) # # Classifier Building in Scikit-learn # # In[10]: # Assigning features and label variables # First Feature weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy','Overcast','Sunny','Sunny', 'Rainy','Sunny','Overcast','Overcast','Rainy'] # Second Feature temp=['Hot','Hot','Hot','Mild','Cool','Cool','Cool','Mild','Cool','Mild','Mild','Mild','Hot','Mild'] # Label or target varible play=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','No'] # # Encoding data columns # In[11]: # Import LabelEncoder from sklearn import preprocessing #creating labelEncoder le = preprocessing.LabelEncoder() # Converting string labels into numbers. weather_encoded=le.fit_transform(weather) print(weather_encoded) # In[12]: # converting string labels into numbers temp_encoded=le.fit_transform(temp) label=le.fit_transform(play) # In[17]: print(temp_encoded) print(label) # # Combining Features # # In[15]: #combinig weather and temp into single listof tuples features=list(zip(weather_encoded,temp_encoded)) # # Generating Model # In[18]: from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3) # Train the model using the training sets model.fit(features,label) #Predict Output predicted= model.predict([[0,2]]) # 0:Overcast, 2:Mild print(predicted) # # KNN with Multiple Labels # In[31]: #Import scikit-learn dataset library from sklearn import datasets #Load dataset wine = datasets.load_wine() # In[32]: # print the names of the features print(wine.feature_names) # In[33]: # print the label species(class_0, class_1, class_2) print(wine.target_names) # In[34]: # print the wine data (top 5 records) print(wine.data[0:5]) # In[35]: # print the wine labels (0:Class_0, 1:Class_1, 2:Class_3) print(wine.target) # In[36]: print(wine.data.shape) # In[37]: # print target(or label)shape print(wine.target.shape) # # Splitting Data # In[38]: # Import train_test_split function from sklearn.model_selection import train_test_split # Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.3) # 70% training and 30% test # # Generating Model for K=5 # Let's build KNN classifier model for k=5. # In[54]: #Import knearest neighbors Classifier model from sklearn.neighbors import KNeighborsClassifier #Create KNN Classifier knn = KNeighborsClassifier(n_neighbors=9) #Train the model using the training sets knn.fit(X_train, y_train) #Predict the response for test dataset y_pred = knn.predict(X_test) # In[55]: #Import scikit-learn metrics module for accuracy calculation from sklearn import metrics # Model Accuracy, how often is the classifier correct? print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) # # Model Evaluation for k=7 # In[56]: #Import knearest neighbors Classifier model from sklearn.neighbors import KNeighborsClassifier #Create KNN Classifier knn = KNeighborsClassifier(n_neighbors=7) #Train the model using the training sets knn.fit(X_train, y_train) #Predict the response for test dataset y_pred = knn.predict(X_test) # In[57]: #Import scikit-learn metrics module for accuracy calculation from sklearn import metrics # Model Accuracy, how often is the classifier correct? print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) # In[ ]:
15.867521
118
0.722596
c3adc36dcd5c85a59900279982ca40759c163496
1,338
py
Python
web_dynamic/0-hbnb.py
Zevrov/AirBnB_clone_v3
92a1863e4395404da5b548d3cab10627610e64a9
[ "MIT" ]
1
2021-03-03T17:29:11.000Z
2021-03-03T17:29:11.000Z
web_dynamic/0-hbnb.py
Zevrov/AirBnB_clone_v4
92a1863e4395404da5b548d3cab10627610e64a9
[ "MIT" ]
null
null
null
web_dynamic/0-hbnb.py
Zevrov/AirBnB_clone_v4
92a1863e4395404da5b548d3cab10627610e64a9
[ "MIT" ]
null
null
null
#!/usr/bin/python3 """ Flask App that integrates with AirBnB static HTML Template """ from flask import Flask, render_template, url_for from models import storage # flask setup app = Flask(__name__) app.url_map.strict_slashes = False port = 5000 host = '0.0.0.0' # begin flask page rendering @app.teardown_appcontext def teardown_db(exception): """ after each request, this method calls .close() (i.e. .remove()) on the current SQLAlchemy Session """ storage.close() @app.route('/0-hbnb') def hbnb_filters(the_id=None): """ handles request to custom template with states, cities & amentities """ state_objs = storage.all('State').values() states = dict([state.name, state] for state in state_objs) amens = storage.all('Amenity').values() places = storage.all('Place').values() users = dict([user.id, "{} {}".format(user.first_name, user.last_name)] for user in storage.all('User').values()) cache_id = uuid.uuid4() return render_template('0-hbnb.html', states=states, amens=amens, places=places, users=users, cache_id=cache_id) if __name__ == "__main__": """ MAIN Flask App""" app.run(host=host, port=port)
27.306122
75
0.606876
5bdd83a48ab4a0b4e7c1338881d0f7dd4ae8d3a9
2,955
py
Python
src/migrations/versions/86cd34fa749f_meeting_schedule_schedulecell_tables_.py
akhundMurad/fastapi-bigbluebutton
bfe94d87d8cb9768c17cf5513a05d2b46edf5b5c
[ "MIT" ]
1
2021-07-13T16:28:48.000Z
2021-07-13T16:28:48.000Z
src/migrations/versions/86cd34fa749f_meeting_schedule_schedulecell_tables_.py
akhundMurad/fastapi-bigbluebutton
bfe94d87d8cb9768c17cf5513a05d2b46edf5b5c
[ "MIT" ]
1
2022-03-04T19:06:43.000Z
2022-03-05T06:15:47.000Z
src/migrations/versions/86cd34fa749f_meeting_schedule_schedulecell_tables_.py
akhundMurad/fastapi-bigbluebutton
bfe94d87d8cb9768c17cf5513a05d2b46edf5b5c
[ "MIT" ]
null
null
null
"""Meeting, Schedule, ScheduleCell tables added Revision ID: 86cd34fa749f Revises: d137934b754b Create Date: 2021-07-08 20:41:37.824101 """ import ormar import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = '86cd34fa749f' down_revision = 'd137934b754b' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('schedule', sa.Column('id', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_table('schedule_cell', sa.Column('id', sa.Integer(), nullable=False), sa.Column('datetime_start', sa.DateTime(), nullable=False), sa.Column('datetime_end', sa.DateTime(), nullable=False), sa.Column('schedule', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['schedule'], ['schedule.id'], name='fk_schedule_cell_schedule_id_schedule'), sa.PrimaryKeyConstraint('id') ) op.create_table('schedules_users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user', sa.Integer(), nullable=True), sa.Column('schedule', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['schedule'], ['schedule.id'], name='fk_schedules_users_schedule_schedule_id', onupdate='CASCADE', ondelete='CASCADE'), sa.ForeignKeyConstraint(['user'], ['user.id'], name='fk_schedules_users_user_user_id', onupdate='CASCADE', ondelete='CASCADE'), sa.PrimaryKeyConstraint('id') ) op.create_table('meeting', sa.Column('id', ormar.fields.sqlalchemy_uuid.CHAR(36), nullable=False), sa.Column('name', sa.String(length=512), nullable=False), sa.Column('welcome_message', sa.String(length=128), nullable=False), sa.Column('moderator_message', sa.String(length=128), nullable=False), sa.Column('record', sa.Boolean(), nullable=True), sa.Column('auto_start_recording', sa.Boolean(), nullable=True), sa.Column('allow_start_stop_recording', sa.Boolean(), nullable=True), sa.Column('webcams_only_for_moderator', sa.Boolean(), nullable=True), sa.Column('mute_on_start', sa.Boolean(), nullable=True), sa.Column('allow_mods_to_unmute_users', sa.Boolean(), nullable=True), sa.Column('max_participants', sa.Integer(), nullable=True), sa.Column('duration', sa.Integer(), nullable=True), sa.Column('schedule_cell', sa.Integer(), nullable=True), sa.Column('datetime_start', sa.DateTime(), nullable=False), sa.Column('datetime_end', sa.DateTime(), nullable=False), sa.ForeignKeyConstraint(['schedule_cell'], ['schedule_cell.id'], name='fk_meeting_schedule_cell_id_schedule_cell'), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('meeting') op.drop_table('schedules_users') op.drop_table('schedule_cell') op.drop_table('schedule') # ### end Alembic commands ###
42.214286
147
0.703892
d3bc65eab052c865210396ee6df26403ddd3886c
961
py
Python
WebMirror/management/rss_parser_funcs/feed_parse_extractDeltatranslationsOrg.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
193
2016-08-02T22:04:35.000Z
2022-03-09T20:45:41.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractDeltatranslationsOrg.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
533
2016-08-23T20:48:23.000Z
2022-03-28T15:55:13.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractDeltatranslationsOrg.py
rrosajp/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
19
2015-08-13T18:01:08.000Z
2021-07-12T17:13:09.000Z
def extractDeltatranslationsOrg(item): ''' Parser for 'deltatranslations.org' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('Summoning the Holy Sword', 'Summoning the Holy Sword', 'translated'), ('King of Mercenaries', 'King of Mercenaries', 'translated'), ('For a Prosperous World', 'For a Prosperous World', 'translated'), ('Battle of the Third Reich', 'Battle of the Third Reich', 'translated'), ('EDSG', 'Eight Desolate Sword God', 'translated'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
41.782609
104
0.570239
01eba9f21cb3e6f7fcb4e28d564581353106a527
6,018
py
Python
backend/production/views.py
DomTripodi93/production-django
133bc119ebcbe2cd63131517932d58f084a0bebd
[ "MIT" ]
null
null
null
backend/production/views.py
DomTripodi93/production-django
133bc119ebcbe2cd63131517932d58f084a0bebd
[ "MIT" ]
9
2020-06-05T22:29:46.000Z
2022-02-26T16:38:35.000Z
backend/production/views.py
DomTripodi93/ProductionManagement
133bc119ebcbe2cd63131517932d58f084a0bebd
[ "MIT" ]
null
null
null
from django.http import HttpResponse from django.conf import settings from django_filters import rest_framework as filter from .models import UserSettings, ProUser, Production, StartTime, Machine, Part, HourlyProduction, ChangeLog from .serializers import ProUserSerializer, UserSettingsSerializer, StartTimeSerializer, ProductionSerializer, MachineSerializer, HourlyProductionSerializer, PartSerializer, ChangeLogSerializer from .permissions import ViewOwnProduction, UpdateOwnProUser, CreateOwnProduction, UpdateOwnProduction from rest_framework import status, viewsets, filters, generics from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.authentication import TokenAuthentication from rest_framework.authtoken.serializers import AuthTokenSerializer from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.permissions import IsAuthenticated from rest_framework.authtoken.models import Token from rest_framework.filters import OrderingFilter from .forms import UserCreationForm class CustomObtainAuthToken(ObtainAuthToken): def post(self, request, *args, **kwargs): response = super(CustomObtainAuthToken, self).post(request, *args, **kwargs) token = Token.objects.get(key=response.data['token']) return Response({'token': token.key, 'id': token.user_id, "name": token.user.name}) class ProductionViewSet(viewsets.ModelViewSet): authentication_classes = (TokenAuthentication,) queryset = Production.objects.all().order_by('-date') serializer_class = ProductionSerializer permission_classes=(CreateOwnProduction, UpdateOwnProduction, ) filter_backends = (filter.DjangoFilterBackend,) filterset_fields = ("machine", "shift", "job", "date", "in_question") def perform_create(self, serializer): serializer.save(user = self.request.user) def get_queryset(self): if self.request.user.is_anonymous: return Production.objects.none() else: return Production.objects.filter(user=self.request.user).order_by('-date') class MachineViewSet(viewsets.ModelViewSet): authentication_classes = (TokenAuthentication,) queryset = Machine.objects.all() serializer_class = MachineSerializer permission_classes=(CreateOwnProduction, UpdateOwnProduction, ) filter_backends = (OrderingFilter,) def perform_create(self, serializer): serializer.save(user = self.request.user) def get_queryset(self): if self.request.user.is_anonymous: return Machine.objects.none() else: return Machine.objects.filter(user=self.request.user).order_by("machine") class PartViewSet(viewsets.ModelViewSet): authentication_classes = (TokenAuthentication,) queryset = Part.objects.all() serializer_class = PartSerializer permission_classes=(CreateOwnProduction, UpdateOwnProduction, ) filter_backends = (filter.DjangoFilterBackend,) filterset_fields = ("machine", "part", "job", ) def perform_create(self, serializer): serializer.save(user = self.request.user) def get_queryset(self): if self.request.user.is_anonymous: return Part.objects.none() else: return Part.objects.filter(user=self.request.user).order_by("-job") class HourlyProductionViewSet(viewsets.ModelViewSet): authentication_classes = (TokenAuthentication,) queryset = HourlyProduction.objects.all() serializer_class = HourlyProductionSerializer permission_classes=(CreateOwnProduction, UpdateOwnProduction, ) filter_backends = (filter.DjangoFilterBackend,) filterset_fields = ("machine", "date", "job", ) def perform_create(self, serializer): serializer.save(user = self.request.user) def get_queryset(self): if self.request.user.is_anonymous: return HourlyProduction.objects.none() else: return HourlyProduction.objects.filter(user=self.request.user).order_by("machine", "-date") class StartTimeViewSet(viewsets.ModelViewSet): authentication_classes = (TokenAuthentication,) queryset = StartTime.objects.all() serializer_class = StartTimeSerializer permission_classes=(CreateOwnProduction, UpdateOwnProduction, ) filter_backends = (filter.DjangoFilterBackend,) filterset_fields = ("machine", "date", "job", ) def perform_create(self, serializer): serializer.save(user = self.request.user) def get_queryset(self): if self.request.user.is_anonymous: return StartTime.objects.none() else: return StartTime.objects.filter(user=self.request.user).order_by("machine", "-date", "-time") class ChangeLogViewSet(viewsets.ModelViewSet): authentication_classes = (TokenAuthentication,) queryset = ChangeLog.objects.all() serializer_class = ChangeLogSerializer permission_classes=(CreateOwnProduction, UpdateOwnProduction, ) filter_backends = (filter.DjangoFilterBackend,) filterset_fields = ("changed_model", ) def perform_create(self, serializer): serializer.save(user = self.request.user) def get_queryset(self): if self.request.user.is_anonymous: return ChangeLog.objects.none() else: return ChangeLog.objects.filter(user=self.request.user).order_by("-timestamp") class RegisterViewSet(viewsets.ModelViewSet): serializer_class = ProUserSerializer queryset = ProUser.objects.all() authentication_classes = (TokenAuthentication,) permission_classes = (UpdateOwnProUser, ) class UserSettingsViewSet(viewsets.ModelViewSet): serializer_class = UserSettingsSerializer queryset = UserSettings.objects.all().order_by('-user') authentication_classes = (TokenAuthentication,) permission_classes = (UpdateOwnProduction, ) class LoginViewSet(viewsets.ViewSet): serializer_class= AuthTokenSerializer def create(self, request): return CustomObtainAuthToken().post(request)
44.577778
193
0.748255
af2f0af8ab93635aa9cfe5ddc11e71702e4756f2
169
py
Python
tests/model_control/detailed/transf_Fisher/model_control_one_enabled_Fisher_MovingMedian_Seasonal_MonthOfYear_LSTM.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
tests/model_control/detailed/transf_Fisher/model_control_one_enabled_Fisher_MovingMedian_Seasonal_MonthOfYear_LSTM.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
1
2019-11-30T23:39:38.000Z
2019-12-01T04:34:35.000Z
tests/model_control/detailed/transf_Fisher/model_control_one_enabled_Fisher_MovingMedian_Seasonal_MonthOfYear_LSTM.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Fisher'] , ['MovingMedian'] , ['Seasonal_MonthOfYear'] , ['LSTM'] );
42.25
91
0.763314
6ebb4e58b0e07e49f50ecba5c9dfbc9ad1fd8bc2
8,574
py
Python
bitswap/session/session.py
VladislavSufyanov/py-bitswap
875d15944e485c33b16af9965f24c1d85cb34c55
[ "MIT" ]
null
null
null
bitswap/session/session.py
VladislavSufyanov/py-bitswap
875d15944e485c33b16af9965f24c1d85cb34c55
[ "MIT" ]
null
null
null
bitswap/session/session.py
VladislavSufyanov/py-bitswap
875d15944e485c33b16af9965f24c1d85cb34c55
[ "MIT" ]
null
null
null
from typing import Union, Dict, Optional, List, TYPE_CHECKING import weakref import asyncio from logging import INFO from time import monotonic from cid import CIDv0, CIDv1 from .peer_score import PeerScore from ..connection_manager.sender import Sender from ..message.proto_buff import ProtoBuff from ..logger import get_stream_logger_colored, get_concurrent_logger if TYPE_CHECKING: from ..peer.peer import Peer from ..peer.base_peer_manager import BasePeerManager from ..wantlist.entry import Entry from ..network.base_network import BaseNetwork class Session: def __init__(self, network: 'BaseNetwork', peer_manager: 'BasePeerManager', log_level: int = INFO, log_path: Optional[str] = None) -> None: if log_path is None: self._logger = get_stream_logger_colored(__name__, log_level) else: self._logger = get_concurrent_logger(__name__, log_path, log_level) self._network = network self._peer_manager = peer_manager self._peers: Dict[str, PeerScore] = {} self._blocks_have: Dict[str, weakref.WeakSet] = {} self._blocks_pending: Dict[str, weakref.WeakSet] = {} def __contains__(self, peer: 'Peer') -> bool: return str(peer.cid) in self._peers def get_notify_peers(self, block_cid: Union[CIDv0, CIDv1], current_peer: Optional[Union[CIDv0, CIDv1]] = None) -> List['Peer']: str_block_cid = str(block_cid) l_p = [] for block_cont in self._blocks_have, self._blocks_pending: if str_block_cid in block_cont: l_p.extend(p.peer for p in block_cont[str_block_cid] if p.peer.cid != current_peer) return l_p def add_peer(self, peer: 'Peer', block_cid: Union[CIDv0, CIDv1], have: bool = True) -> None: str_peer_cid = str(peer.cid) str_block_cid = str(block_cid) if str_peer_cid not in self._peers: self._peers[str_peer_cid] = PeerScore(peer) self._logger.debug(f'Add new peer to session, session: {self}, peer_cid: {str_peer_cid}') if have: if str_block_cid not in self._blocks_have: self._blocks_have[str_block_cid] = weakref.WeakSet() self._blocks_have[str_block_cid].add(self._peers[str(peer.cid)]) def change_peer_score(self, cid: Union[CIDv0, CIDv1], new: float, alpha: float = 0.5) -> bool: str_cid = str(cid) if str_cid not in self._peers: return False self._peers[str_cid].change_score(new, alpha) return True def remove_peer(self, cid: Union[CIDv0, CIDv1]) -> bool: str_cid = str(cid) if str_cid not in self._peers: return False del self._peers[str_cid] self._logger.debug(f'Remove peer from session, session: {self}, peer_cid: {str_cid}') return True def remove_peer_from_have(self, block_cid: Union[CIDv0, CIDv1], peer: 'Peer') -> bool: str_cid = str(block_cid) if str_cid not in self._blocks_have or peer not in self._blocks_have[str_cid]: return False self._blocks_have[str_cid].remove(peer) return True async def get(self, entry: 'Entry', connect_timeout: int = 7, peer_act_timeout: int = 5, ban_peer_timeout: int = 10) -> None: str_entry_cid = str(entry.cid) entry.add_session(self) ban_peers: Dict[str, float] = {} sent_w_block_to_peers: List[PeerScore] = [] new_peers_cid: List[Union[CIDv0, CIDv1]] = [] if str_entry_cid not in self._blocks_have: self._blocks_have[str_entry_cid] = weakref.WeakSet() if str_entry_cid not in self._blocks_pending: self._blocks_pending[str_entry_cid] = weakref.WeakSet() if not self._peers: self._logger.debug(f'Session has not peers, session: {self}') all_peers = self._peer_manager.get_all_peers() if not all_peers: self._logger.debug(f'No active connections with peers, session: {self}') while True: new_peers_cid = await self._network.find_peers(entry.cid) if not new_peers_cid: self._logger.warning(f'Cant find peers, block_cid: {entry.cid}, session: {self}') await asyncio.sleep(peer_act_timeout) elif await self._connect(new_peers_cid, ban_peers, connect_timeout, ban_peer_timeout) is None: self._logger.warning(f'Cant connect to peers, session: {self}') await asyncio.sleep(peer_act_timeout) else: break all_peers = self._peer_manager.get_all_peers() await Sender.send_entries((entry,), all_peers, ProtoBuff.WantType.Have) else: await Sender.send_entries((entry,), (p.peer for p in self._peers.values()), ProtoBuff.WantType.Have) try: while entry.block is None: try: have_peer = await asyncio.wait_for(self._wait_for_have_peer(entry.cid), peer_act_timeout) except asyncio.exceptions.TimeoutError: self._logger.debug(f'Wait have timeout, session: {self}') new_peer = await self._connect(new_peers_cid, ban_peers, connect_timeout, ban_peer_timeout) if new_peer is None: new_peers_cid = await self._network.find_peers(entry.cid) new_peer = await self._connect(new_peers_cid, ban_peers, connect_timeout, ban_peer_timeout) if new_peer is not None: await Sender.send_entries((entry,), (new_peer,), ProtoBuff.WantType.Have) else: self._blocks_have[str_entry_cid].remove(have_peer) if have_peer not in self._blocks_pending[str_entry_cid] and have_peer.peer in self._peer_manager: self._blocks_pending[str_entry_cid].add(have_peer) sent_w_block_to_peers.append(have_peer) await Sender.send_entries((entry,), (have_peer.peer,), ProtoBuff.WantType.Block) try: await asyncio.wait_for(self._wait_for_block(entry), peer_act_timeout) except asyncio.exceptions.TimeoutError: self._logger.debug(f'Block wait timeout, block_cid: {entry.cid}') finally: for peer in sent_w_block_to_peers: if peer in self._blocks_pending[str_entry_cid]: self._blocks_pending[str_entry_cid].remove(peer) async def _connect(self, peers_cid: List[Union[CIDv0, CIDv1]], ban_peers: Dict[str, float], connect_timeout: int, ban_peer_timeout: int) -> Optional['Peer']: unban_cid = [] for s_cid, ban_time in ban_peers.items(): if monotonic() - ban_time > ban_peer_timeout: unban_cid.append(s_cid) for s_cid in unban_cid: del ban_peers[s_cid] while len(peers_cid) > 0: p_cid = peers_cid.pop() if str(p_cid) not in ban_peers: try: peer = await asyncio.wait_for(self._peer_manager.connect(p_cid), connect_timeout) if peer is not None: break except asyncio.exceptions.TimeoutError: self._logger.debug(f'Connect timeout, peer_cid: {p_cid}') ban_peers[str(p_cid)] = monotonic() except Exception as e: self._logger.debug(f'Connect exception, peer_cid: {p_cid}, e: {e}') ban_peers[str(p_cid)] = monotonic() else: return return peer def _get_peer_with_max_score(self, cid: Union[CIDv0, CIDv1]) -> PeerScore: return max(self._blocks_have[str(cid)], key=lambda p: (p.score, -p.peer.latency)) async def _wait_for_have_peer(self, cid: Union[CIDv0, CIDv1], period: float = 0.1) -> PeerScore: str_cid = str(cid) while str_cid not in self._blocks_have or len(self._blocks_have[str_cid]) == 0: await asyncio.sleep(period) return self._get_peer_with_max_score(cid) @staticmethod async def _wait_for_block(entry: 'Entry', period: float = 0.1) -> Optional[bytes]: while entry.block is None: await asyncio.sleep(period) return entry.block
48.715909
117
0.614532
cf69ff973d91be24d32d35804548f17263d7cceb
559
py
Python
utils/cal_bleu.py
laihuiyuan/Multilingual-TST
84fab28b30e347ad42ed7dff737dab86b15ece5f
[ "MIT" ]
3
2022-02-25T09:51:29.000Z
2022-02-25T22:09:08.000Z
utils/cal_bleu.py
laihuiyuan/multilingual-tst
84fab28b30e347ad42ed7dff737dab86b15ece5f
[ "MIT" ]
null
null
null
utils/cal_bleu.py
laihuiyuan/multilingual-tst
84fab28b30e347ad42ed7dff737dab86b15ece5f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys import nltk from nltk.translate.bleu_score import sentence_bleu from nltk.translate.bleu_score import SmoothingFunction hyp, ref = [], [] with open(sys.argv[1],'r') as f: for line in f.readlines(): hyp = nltk.word_tokenize(line.strip(), language=sys.argv[3]) with open(sys.argv[2],'r') as f: for line in f.readlines(): ref.append(nltk.word_tokenize(line.strip(), language=sys.argv[3])) smooth = SmoothingFunction() score = sentence_bleu(ref, hyp,smoothing_function=smooth.method1) print(score)
25.409091
74
0.703041
4711ea6e19200050f28a3c09cb51393281c8c0db
47,635
py
Python
django/db/models/sql/compiler.py
krallin/django
c94db53eaa9b344f9227fa4dff2b1a5e9c7dce9d
[ "BSD-3-Clause" ]
null
null
null
django/db/models/sql/compiler.py
krallin/django
c94db53eaa9b344f9227fa4dff2b1a5e9c7dce9d
[ "BSD-3-Clause" ]
null
null
null
django/db/models/sql/compiler.py
krallin/django
c94db53eaa9b344f9227fa4dff2b1a5e9c7dce9d
[ "BSD-3-Clause" ]
null
null
null
import datetime from django.conf import settings from django.core.exceptions import FieldError from django.db import transaction from django.db.backends.util import truncate_name from django.db.models.constants import LOOKUP_SEP from django.db.models.query_utils import select_related_descend from django.db.models.sql.constants import (SINGLE, MULTI, ORDER_DIR, GET_ITERATOR_CHUNK_SIZE, SelectInfo) from django.db.models.sql.datastructures import EmptyResultSet from django.db.models.sql.expressions import SQLEvaluator from django.db.models.sql.query import get_order_dir, Query from django.db.utils import DatabaseError from django.utils import six from django.utils.six.moves import zip from django.utils import timezone class SQLCompiler(object): def __init__(self, query, connection, using): self.query = query self.connection = connection self.using = using self.quote_cache = {} def pre_sql_setup(self): """ Does any necessary class setup immediately prior to producing SQL. This is for things that can't necessarily be done in __init__ because we might not have all the pieces in place at that time. # TODO: after the query has been executed, the altered state should be # cleaned. We are not using a clone() of the query here. """ if not self.query.tables: self.query.join((None, self.query.model._meta.db_table, None, None)) if (not self.query.select and self.query.default_cols and not self.query.included_inherited_models): self.query.setup_inherited_models() if self.query.select_related and not self.query.related_select_cols: self.fill_related_selections() def quote_name_unless_alias(self, name): """ A wrapper around connection.ops.quote_name that doesn't quote aliases for table names. This avoids problems with some SQL dialects that treat quoted strings specially (e.g. PostgreSQL). """ if name in self.quote_cache: return self.quote_cache[name] if ((name in self.query.alias_map and name not in self.query.table_map) or name in self.query.extra_select): self.quote_cache[name] = name return name r = self.connection.ops.quote_name(name) self.quote_cache[name] = r return r def as_sql(self, with_limits=True, with_col_aliases=False): """ Creates the SQL for this query. Returns the SQL string and list of parameters. If 'with_limits' is False, any limit/offset information is not included in the query. """ if with_limits and self.query.low_mark == self.query.high_mark: return '', () self.pre_sql_setup() # After executing the query, we must get rid of any joins the query # setup created. So, take note of alias counts before the query ran. # However we do not want to get rid of stuff done in pre_sql_setup(), # as the pre_sql_setup will modify query state in a way that forbids # another run of it. self.refcounts_before = self.query.alias_refcount.copy() out_cols, s_params = self.get_columns(with_col_aliases) ordering, ordering_group_by = self.get_ordering() distinct_fields = self.get_distinct() # This must come after 'select', 'ordering' and 'distinct' -- see # docstring of get_from_clause() for details. from_, f_params = self.get_from_clause() qn = self.quote_name_unless_alias where, w_params = self.query.where.as_sql(qn=qn, connection=self.connection) having, h_params = self.query.having.as_sql(qn=qn, connection=self.connection) having_group_by = self.query.having.get_cols() params = [] for val in six.itervalues(self.query.extra_select): params.extend(val[1]) result = ['SELECT'] if self.query.distinct: result.append(self.connection.ops.distinct_sql(distinct_fields)) result.append(', '.join(out_cols + self.query.ordering_aliases)) params.extend(s_params) result.append('FROM') result.extend(from_) params.extend(f_params) if where: result.append('WHERE %s' % where) params.extend(w_params) grouping, gb_params = self.get_grouping(having_group_by, ordering_group_by) if grouping: if distinct_fields: raise NotImplementedError( "annotate() + distinct(fields) not implemented.") if not ordering: ordering = self.connection.ops.force_no_ordering() result.append('GROUP BY %s' % ', '.join(grouping)) params.extend(gb_params) if having: result.append('HAVING %s' % having) params.extend(h_params) if ordering: result.append('ORDER BY %s' % ', '.join(ordering)) if with_limits: if self.query.high_mark is not None: result.append('LIMIT %d' % (self.query.high_mark - self.query.low_mark)) if self.query.low_mark: if self.query.high_mark is None: val = self.connection.ops.no_limit_value() if val: result.append('LIMIT %d' % val) result.append('OFFSET %d' % self.query.low_mark) if self.query.select_for_update and self.connection.features.has_select_for_update: # If we've been asked for a NOWAIT query but the backend does not support it, # raise a DatabaseError otherwise we could get an unexpected deadlock. nowait = self.query.select_for_update_nowait if nowait and not self.connection.features.has_select_for_update_nowait: raise DatabaseError('NOWAIT is not supported on this database backend.') result.append(self.connection.ops.for_update_sql(nowait=nowait)) # Finally do cleanup - get rid of the joins we created above. self.query.reset_refcounts(self.refcounts_before) return ' '.join(result), tuple(params) def as_nested_sql(self): """ Perform the same functionality as the as_sql() method, returning an SQL string and parameters. However, the alias prefixes are bumped beforehand (in a copy -- the current query isn't changed), and any ordering is removed if the query is unsliced. Used when nesting this query inside another. """ obj = self.query.clone() if obj.low_mark == 0 and obj.high_mark is None: # If there is no slicing in use, then we can safely drop all ordering obj.clear_ordering(True) obj.bump_prefix() return obj.get_compiler(connection=self.connection).as_sql() def get_columns(self, with_aliases=False): """ Returns the list of columns to use in the select statement, as well as a list any extra parameters that need to be included. If no columns have been specified, returns all columns relating to fields in the model. If 'with_aliases' is true, any column names that are duplicated (without the table names) are given unique aliases. This is needed in some cases to avoid ambiguity with nested queries. """ qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name result = ['(%s) AS %s' % (col[0], qn2(alias)) for alias, col in six.iteritems(self.query.extra_select)] params = [] aliases = set(self.query.extra_select.keys()) if with_aliases: col_aliases = aliases.copy() else: col_aliases = set() if self.query.select: only_load = self.deferred_to_columns() for col, _ in self.query.select: if isinstance(col, (list, tuple)): alias, column = col table = self.query.alias_map[alias].table_name if table in only_load and column not in only_load[table]: continue r = '%s.%s' % (qn(alias), qn(column)) if with_aliases: if col[1] in col_aliases: c_alias = 'Col%d' % len(col_aliases) result.append('%s AS %s' % (r, c_alias)) aliases.add(c_alias) col_aliases.add(c_alias) else: result.append('%s AS %s' % (r, qn2(col[1]))) aliases.add(r) col_aliases.add(col[1]) else: result.append(r) aliases.add(r) col_aliases.add(col[1]) else: col_sql, col_params = col.as_sql(qn, self.connection) result.append(col_sql) params.extend(col_params) if hasattr(col, 'alias'): aliases.add(col.alias) col_aliases.add(col.alias) elif self.query.default_cols: cols, new_aliases = self.get_default_columns(with_aliases, col_aliases) result.extend(cols) aliases.update(new_aliases) max_name_length = self.connection.ops.max_name_length() for alias, aggregate in self.query.aggregate_select.items(): agg_sql, agg_params = aggregate.as_sql(qn, self.connection) if alias is None: result.append(agg_sql) else: result.append('%s AS %s' % (agg_sql, qn(truncate_name(alias, max_name_length)))) params.extend(agg_params) for (table, col), _ in self.query.related_select_cols: r = '%s.%s' % (qn(table), qn(col)) if with_aliases and col in col_aliases: c_alias = 'Col%d' % len(col_aliases) result.append('%s AS %s' % (r, c_alias)) aliases.add(c_alias) col_aliases.add(c_alias) else: result.append(r) aliases.add(r) col_aliases.add(col) self._select_aliases = aliases return result, params def get_default_columns(self, with_aliases=False, col_aliases=None, start_alias=None, opts=None, as_pairs=False, from_parent=None): """ Computes the default columns for selecting every field in the base model. Will sometimes be called to pull in related models (e.g. via select_related), in which case "opts" and "start_alias" will be given to provide a starting point for the traversal. Returns a list of strings, quoted appropriately for use in SQL directly, as well as a set of aliases used in the select statement (if 'as_pairs' is True, returns a list of (alias, col_name) pairs instead of strings as the first component and None as the second component). """ result = [] if opts is None: opts = self.query.model._meta qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name aliases = set() only_load = self.deferred_to_columns() if not start_alias: start_alias = self.query.get_initial_alias() # The 'seen_models' is used to optimize checking the needed parent # alias for a given field. This also includes None -> start_alias to # be used by local fields. seen_models = {None: start_alias} for field, model in opts.get_fields_with_model(): if from_parent and model is not None and issubclass(from_parent, model): # Avoid loading data for already loaded parents. continue alias = self.query.join_parent_model(opts, model, start_alias, seen_models) table = self.query.alias_map[alias].table_name if table in only_load and field.column not in only_load[table]: continue if as_pairs: result.append((alias, field.column)) aliases.add(alias) continue if with_aliases and field.column in col_aliases: c_alias = 'Col%d' % len(col_aliases) result.append('%s.%s AS %s' % (qn(alias), qn2(field.column), c_alias)) col_aliases.add(c_alias) aliases.add(c_alias) else: r = '%s.%s' % (qn(alias), qn2(field.column)) result.append(r) aliases.add(r) if with_aliases: col_aliases.add(field.column) return result, aliases def get_distinct(self): """ Returns a quoted list of fields to use in DISTINCT ON part of the query. Note that this method can alter the tables in the query, and thus it must be called before get_from_clause(). """ qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name result = [] opts = self.query.model._meta for name in self.query.distinct_fields: parts = name.split(LOOKUP_SEP) field, col, alias, _, _ = self._setup_joins(parts, opts, None) col, alias = self._final_join_removal(col, alias) result.append("%s.%s" % (qn(alias), qn2(col))) return result def get_ordering(self): """ Returns a tuple containing a list representing the SQL elements in the "order by" clause, and the list of SQL elements that need to be added to the GROUP BY clause as a result of the ordering. Also sets the ordering_aliases attribute on this instance to a list of extra aliases needed in the select. Determining the ordering SQL can change the tables we need to include, so this should be run *before* get_from_clause(). """ if self.query.extra_order_by: ordering = self.query.extra_order_by elif not self.query.default_ordering: ordering = self.query.order_by else: ordering = (self.query.order_by or self.query.model._meta.ordering or []) qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name distinct = self.query.distinct select_aliases = self._select_aliases result = [] group_by = [] ordering_aliases = [] if self.query.standard_ordering: asc, desc = ORDER_DIR['ASC'] else: asc, desc = ORDER_DIR['DESC'] # It's possible, due to model inheritance, that normal usage might try # to include the same field more than once in the ordering. We track # the table/column pairs we use and discard any after the first use. processed_pairs = set() for field in ordering: if field == '?': result.append(self.connection.ops.random_function_sql()) continue if isinstance(field, int): if field < 0: order = desc field = -field else: order = asc result.append('%s %s' % (field, order)) group_by.append((str(field), [])) continue col, order = get_order_dir(field, asc) if col in self.query.aggregate_select: result.append('%s %s' % (qn(col), order)) continue if '.' in field: # This came in through an extra(order_by=...) addition. Pass it # on verbatim. table, col = col.split('.', 1) if (table, col) not in processed_pairs: elt = '%s.%s' % (qn(table), col) processed_pairs.add((table, col)) if not distinct or elt in select_aliases: result.append('%s %s' % (elt, order)) group_by.append((elt, [])) elif get_order_dir(field)[0] not in self.query.extra_select: # 'col' is of the form 'field' or 'field1__field2' or # '-field1__field2__field', etc. for table, col, order in self.find_ordering_name(field, self.query.model._meta, default_order=asc): if (table, col) not in processed_pairs: elt = '%s.%s' % (qn(table), qn2(col)) processed_pairs.add((table, col)) if distinct and elt not in select_aliases: ordering_aliases.append(elt) result.append('%s %s' % (elt, order)) group_by.append((elt, [])) else: elt = qn2(col) if distinct and col not in select_aliases: ordering_aliases.append(elt) result.append('%s %s' % (elt, order)) group_by.append(self.query.extra_select[col]) self.query.ordering_aliases = ordering_aliases return result, group_by def find_ordering_name(self, name, opts, alias=None, default_order='ASC', already_seen=None): """ Returns the table alias (the name might be ambiguous, the alias will not be) and column name for ordering by the given 'name' parameter. The 'name' is of the form 'field1__field2__...__fieldN'. """ name, order = get_order_dir(name, default_order) pieces = name.split(LOOKUP_SEP) field, col, alias, joins, opts = self._setup_joins(pieces, opts, alias) # If we get to this point and the field is a relation to another model, # append the default ordering for that model. if field.rel and len(joins) > 1 and opts.ordering: # Firstly, avoid infinite loops. if not already_seen: already_seen = set() join_tuple = tuple([self.query.alias_map[j].table_name for j in joins]) if join_tuple in already_seen: raise FieldError('Infinite loop caused by ordering.') already_seen.add(join_tuple) results = [] for item in opts.ordering: results.extend(self.find_ordering_name(item, opts, alias, order, already_seen)) return results col, alias = self._final_join_removal(col, alias) return [(alias, col, order)] def _setup_joins(self, pieces, opts, alias): """ A helper method for get_ordering and get_distinct. This method will call query.setup_joins, handle refcounts and then promote the joins. Note that get_ordering and get_distinct must produce same target columns on same input, as the prefixes of get_ordering and get_distinct must match. Executing SQL where this is not true is an error. """ if not alias: alias = self.query.get_initial_alias() field, target, opts, joins, _ = self.query.setup_joins( pieces, opts, alias) # We will later on need to promote those joins that were added to the # query afresh above. joins_to_promote = [j for j in joins if self.query.alias_refcount[j] < 2] alias = joins[-1] col = target.column if not field.rel: # To avoid inadvertent trimming of a necessary alias, use the # refcount to show that we are referencing a non-relation field on # the model. self.query.ref_alias(alias) # Must use left outer joins for nullable fields and their relations. # Ordering or distinct must not affect the returned set, and INNER # JOINS for nullable fields could do this. self.query.promote_joins(joins_to_promote) return field, col, alias, joins, opts def _final_join_removal(self, col, alias): """ A helper method for get_distinct and get_ordering. This method will trim extra not-needed joins from the tail of the join chain. This is very similar to what is done in trim_joins, but we will trim LEFT JOINS here. It would be a good idea to consolidate this method and query.trim_joins(). """ if alias: while 1: join = self.query.alias_map[alias] if col != join.rhs_join_col: break self.query.unref_alias(alias) alias = join.lhs_alias col = join.lhs_join_col return col, alias def get_from_clause(self): """ Returns a list of strings that are joined together to go after the "FROM" part of the query, as well as a list any extra parameters that need to be included. Sub-classes, can override this to create a from-clause via a "select". This should only be called after any SQL construction methods that might change the tables we need. This means the select columns, ordering and distinct must be done first. """ result = [] qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name first = True from_params = [] for alias in self.query.tables: if not self.query.alias_refcount[alias]: continue try: name, alias, join_type, lhs, lhs_col, col, _, join_field = self.query.alias_map[alias] except KeyError: # Extra tables can end up in self.tables, but not in the # alias_map if they aren't in a join. That's OK. We skip them. continue alias_str = (alias != name and ' %s' % alias or '') if join_type and not first: if join_field and hasattr(join_field, 'get_extra_join_sql'): extra_cond, extra_params = join_field.get_extra_join_sql( self.connection, qn, lhs, alias) from_params.extend(extra_params) else: extra_cond = "" result.append('%s %s%s ON (%s.%s = %s.%s%s)' % (join_type, qn(name), alias_str, qn(lhs), qn2(lhs_col), qn(alias), qn2(col), extra_cond)) else: connector = not first and ', ' or '' result.append('%s%s%s' % (connector, qn(name), alias_str)) first = False for t in self.query.extra_tables: alias, unused = self.query.table_alias(t) # Only add the alias if it's not already present (the table_alias() # calls increments the refcount, so an alias refcount of one means # this is the only reference. if alias not in self.query.alias_map or self.query.alias_refcount[alias] == 1: connector = not first and ', ' or '' result.append('%s%s' % (connector, qn(alias))) first = False return result, from_params def get_grouping(self, having_group_by, ordering_group_by): """ Returns a tuple representing the SQL elements in the "group by" clause. """ qn = self.quote_name_unless_alias result, params = [], [] if self.query.group_by is not None: select_cols = self.query.select + self.query.related_select_cols # Just the column, not the fields. select_cols = [s[0] for s in select_cols] if (len(self.query.model._meta.fields) == len(self.query.select) and self.connection.features.allows_group_by_pk): self.query.group_by = [ (self.query.model._meta.db_table, self.query.model._meta.pk.column) ] select_cols = [] seen = set() cols = self.query.group_by + having_group_by + select_cols for col in cols: col_params = () if isinstance(col, (list, tuple)): sql = '%s.%s' % (qn(col[0]), qn(col[1])) elif hasattr(col, 'as_sql'): sql, col_params = col.as_sql(qn, self.connection) else: sql = '(%s)' % str(col) if sql not in seen: result.append(sql) params.extend(col_params) seen.add(sql) # Still, we need to add all stuff in ordering (except if the backend can # group by just by PK). if ordering_group_by and not self.connection.features.allows_group_by_pk: for order, order_params in ordering_group_by: # Even if we have seen the same SQL string, it might have # different params, so, we add same SQL in "has params" case. if order not in seen or params: result.append(order) params.extend(order_params) seen.add(order) # Unconditionally add the extra_select items. for extra_select, extra_params in self.query.extra_select.values(): sql = '(%s)' % str(extra_select) result.append(sql) params.extend(extra_params) return result, params def fill_related_selections(self, opts=None, root_alias=None, cur_depth=1, requested=None, restricted=None, nullable=None): """ Fill in the information needed for a select_related query. The current depth is measured as the number of connections away from the root model (for example, cur_depth=1 means we are looking at models with direct connections to the root model). """ if not restricted and self.query.max_depth and cur_depth > self.query.max_depth: # We've recursed far enough; bail out. return if not opts: opts = self.query.get_meta() root_alias = self.query.get_initial_alias() self.query.related_select_cols = [] only_load = self.query.get_loaded_field_names() # Setup for the case when only particular related fields should be # included in the related selection. if requested is None: if isinstance(self.query.select_related, dict): requested = self.query.select_related restricted = True else: restricted = False for f, model in opts.get_fields_with_model(): # The get_fields_with_model() returns None for fields that live # in the field's local model. So, for those fields we want to use # the f.model - that is the field's local model. field_model = model or f.model if not select_related_descend(f, restricted, requested, only_load.get(field_model)): continue table = f.rel.to._meta.db_table promote = nullable or f.null alias = self.query.join_parent_model(opts, model, root_alias, {}) alias = self.query.join((alias, table, f.column, f.rel.get_related_field().column), outer_if_first=promote, join_field=f) columns, aliases = self.get_default_columns(start_alias=alias, opts=f.rel.to._meta, as_pairs=True) self.query.related_select_cols.extend( SelectInfo(col, field) for col, field in zip(columns, f.rel.to._meta.fields)) if restricted: next = requested.get(f.name, {}) else: next = False new_nullable = f.null or promote self.fill_related_selections(f.rel.to._meta, alias, cur_depth + 1, next, restricted, new_nullable) if restricted: related_fields = [ (o.field, o.model) for o in opts.get_all_related_objects() if o.field.unique ] for f, model in related_fields: if not select_related_descend(f, restricted, requested, only_load.get(model), reverse=True): continue alias = self.query.join_parent_model(opts, f.rel.to, root_alias, {}) table = model._meta.db_table alias = self.query.join( (alias, table, f.rel.get_related_field().column, f.column), outer_if_first=True, join_field=f ) from_parent = (opts.model if issubclass(model, opts.model) else None) columns, aliases = self.get_default_columns(start_alias=alias, opts=model._meta, as_pairs=True, from_parent=from_parent) self.query.related_select_cols.extend( SelectInfo(col, field) for col, field in zip(columns, model._meta.fields)) next = requested.get(f.related_query_name(), {}) # Use True here because we are looking at the _reverse_ side of # the relation, which is always nullable. new_nullable = True self.fill_related_selections(model._meta, table, cur_depth+1, next, restricted, new_nullable) def deferred_to_columns(self): """ Converts the self.deferred_loading data structure to mapping of table names to sets of column names which are to be loaded. Returns the dictionary. """ columns = {} self.query.deferred_to_data(columns, self.query.deferred_to_columns_cb) return columns def results_iter(self): """ Returns an iterator over the results from executing this query. """ resolve_columns = hasattr(self, 'resolve_columns') fields = None has_aggregate_select = bool(self.query.aggregate_select) for rows in self.execute_sql(MULTI): for row in rows: if resolve_columns: if fields is None: # We only set this up here because # related_select_cols isn't populated until # execute_sql() has been called. # We also include types of fields of related models that # will be included via select_related() for the benefit # of MySQL/MySQLdb when boolean fields are involved # (#15040). # This code duplicates the logic for the order of fields # found in get_columns(). It would be nice to clean this up. if self.query.select: fields = [f.field for f in self.query.select] else: fields = self.query.model._meta.fields fields = fields + [f.field for f in self.query.related_select_cols] # If the field was deferred, exclude it from being passed # into `resolve_columns` because it wasn't selected. only_load = self.deferred_to_columns() if only_load: db_table = self.query.model._meta.db_table fields = [f for f in fields if db_table in only_load and f.column in only_load[db_table]] row = self.resolve_columns(row, fields) if has_aggregate_select: aggregate_start = len(self.query.extra_select) + len(self.query.select) aggregate_end = aggregate_start + len(self.query.aggregate_select) row = tuple(row[:aggregate_start]) + tuple([ self.query.resolve_aggregate(value, aggregate, self.connection) for (alias, aggregate), value in zip(self.query.aggregate_select.items(), row[aggregate_start:aggregate_end]) ]) + tuple(row[aggregate_end:]) yield row def execute_sql(self, result_type=MULTI): """ Run the query against the database and returns the result(s). The return value is a single data item if result_type is SINGLE, or an iterator over the results if the result_type is MULTI. result_type is either MULTI (use fetchmany() to retrieve all rows), SINGLE (only retrieve a single row), or None. In this last case, the cursor is returned if any query is executed, since it's used by subclasses such as InsertQuery). It's possible, however, that no query is needed, as the filters describe an empty set. In that case, None is returned, to avoid any unnecessary database interaction. """ try: sql, params = self.as_sql() if not sql: raise EmptyResultSet except EmptyResultSet: if result_type == MULTI: return iter([]) else: return cursor = self.connection.cursor() cursor.execute(sql, params) if not result_type: return cursor if result_type == SINGLE: if self.query.ordering_aliases: return cursor.fetchone()[:-len(self.query.ordering_aliases)] return cursor.fetchone() # The MULTI case. if self.query.ordering_aliases: result = order_modified_iter(cursor, len(self.query.ordering_aliases), self.connection.features.empty_fetchmany_value) else: result = iter((lambda: cursor.fetchmany(GET_ITERATOR_CHUNK_SIZE)), self.connection.features.empty_fetchmany_value) if not self.connection.features.can_use_chunked_reads: # If we are using non-chunked reads, we return the same data # structure as normally, but ensure it is all read into memory # before going any further. return list(result) return result class SQLInsertCompiler(SQLCompiler): def placeholder(self, field, val): if field is None: # A field value of None means the value is raw. return val elif hasattr(field, 'get_placeholder'): # Some fields (e.g. geo fields) need special munging before # they can be inserted. return field.get_placeholder(val, self.connection) else: # Return the common case for the placeholder return '%s' def as_sql(self): # We don't need quote_name_unless_alias() here, since these are all # going to be column names (so we can avoid the extra overhead). qn = self.connection.ops.quote_name opts = self.query.model._meta result = ['INSERT INTO %s' % qn(opts.db_table)] has_fields = bool(self.query.fields) fields = self.query.fields if has_fields else [opts.pk] result.append('(%s)' % ', '.join([qn(f.column) for f in fields])) if has_fields: params = values = [ [ f.get_db_prep_save(getattr(obj, f.attname) if self.query.raw else f.pre_save(obj, True), connection=self.connection) for f in fields ] for obj in self.query.objs ] else: values = [[self.connection.ops.pk_default_value()] for obj in self.query.objs] params = [[]] fields = [None] can_bulk = (not any(hasattr(field, "get_placeholder") for field in fields) and not self.return_id and self.connection.features.has_bulk_insert) if can_bulk: placeholders = [["%s"] * len(fields)] else: placeholders = [ [self.placeholder(field, v) for field, v in zip(fields, val)] for val in values ] # Oracle Spatial needs to remove some values due to #10888 params = self.connection.ops.modify_insert_params(placeholders, params) if self.return_id and self.connection.features.can_return_id_from_insert: params = params[0] col = "%s.%s" % (qn(opts.db_table), qn(opts.pk.column)) result.append("VALUES (%s)" % ", ".join(placeholders[0])) r_fmt, r_params = self.connection.ops.return_insert_id() # Skip empty r_fmt to allow subclasses to customize behaviour for # 3rd party backends. Refs #19096. if r_fmt: result.append(r_fmt % col) params += r_params return [(" ".join(result), tuple(params))] if can_bulk: result.append(self.connection.ops.bulk_insert_sql(fields, len(values))) return [(" ".join(result), tuple([v for val in values for v in val]))] else: return [ (" ".join(result + ["VALUES (%s)" % ", ".join(p)]), vals) for p, vals in zip(placeholders, params) ] def execute_sql(self, return_id=False): assert not (return_id and len(self.query.objs) != 1) self.return_id = return_id cursor = self.connection.cursor() for sql, params in self.as_sql(): cursor.execute(sql, params) if not (return_id and cursor): return if self.connection.features.can_return_id_from_insert: return self.connection.ops.fetch_returned_insert_id(cursor) return self.connection.ops.last_insert_id(cursor, self.query.model._meta.db_table, self.query.model._meta.pk.column) class SQLDeleteCompiler(SQLCompiler): def as_sql(self): """ Creates the SQL for this query. Returns the SQL string and list of parameters. """ assert len(self.query.tables) == 1, \ "Can only delete from one table at a time." qn = self.quote_name_unless_alias result = ['DELETE FROM %s' % qn(self.query.tables[0])] where, params = self.query.where.as_sql(qn=qn, connection=self.connection) if where: result.append('WHERE %s' % where) return ' '.join(result), tuple(params) class SQLUpdateCompiler(SQLCompiler): def as_sql(self): """ Creates the SQL for this query. Returns the SQL string and list of parameters. """ self.pre_sql_setup() if not self.query.values: return '', () table = self.query.tables[0] qn = self.quote_name_unless_alias result = ['UPDATE %s' % qn(table)] result.append('SET') values, update_params = [], [] for field, model, val in self.query.values: if hasattr(val, 'prepare_database_save'): val = val.prepare_database_save(field) else: val = field.get_db_prep_save(val, connection=self.connection) # Getting the placeholder for the field. if hasattr(field, 'get_placeholder'): placeholder = field.get_placeholder(val, self.connection) else: placeholder = '%s' if hasattr(val, 'evaluate'): val = SQLEvaluator(val, self.query, allow_joins=False) name = field.column if hasattr(val, 'as_sql'): sql, params = val.as_sql(qn, self.connection) values.append('%s = %s' % (qn(name), sql)) update_params.extend(params) elif val is not None: values.append('%s = %s' % (qn(name), placeholder)) update_params.append(val) else: values.append('%s = NULL' % qn(name)) if not values: return '', () result.append(', '.join(values)) where, params = self.query.where.as_sql(qn=qn, connection=self.connection) if where: result.append('WHERE %s' % where) return ' '.join(result), tuple(update_params + params) def execute_sql(self, result_type): """ Execute the specified update. Returns the number of rows affected by the primary update query. The "primary update query" is the first non-empty query that is executed. Row counts for any subsequent, related queries are not available. """ cursor = super(SQLUpdateCompiler, self).execute_sql(result_type) rows = cursor and cursor.rowcount or 0 is_empty = cursor is None del cursor for query in self.query.get_related_updates(): aux_rows = query.get_compiler(self.using).execute_sql(result_type) if is_empty: rows = aux_rows is_empty = False return rows def pre_sql_setup(self): """ If the update depends on results from other tables, we need to do some munging of the "where" conditions to match the format required for (portable) SQL updates. That is done here. Further, if we are going to be running multiple updates, we pull out the id values to update at this point so that they don't change as a result of the progressive updates. """ self.query.select_related = False self.query.clear_ordering(True) super(SQLUpdateCompiler, self).pre_sql_setup() count = self.query.count_active_tables() if not self.query.related_updates and count == 1: return # We need to use a sub-select in the where clause to filter on things # from other tables. query = self.query.clone(klass=Query) query.bump_prefix() query.extra = {} query.select = [] query.add_fields([query.model._meta.pk.name]) # Recheck the count - it is possible that fiddling with the select # fields above removes tables from the query. Refs #18304. count = query.count_active_tables() if not self.query.related_updates and count == 1: return must_pre_select = count > 1 and not self.connection.features.update_can_self_select # Now we adjust the current query: reset the where clause and get rid # of all the tables we don't need (since they're in the sub-select). self.query.where = self.query.where_class() if self.query.related_updates or must_pre_select: # Either we're using the idents in multiple update queries (so # don't want them to change), or the db backend doesn't support # selecting from the updating table (e.g. MySQL). idents = [] for rows in query.get_compiler(self.using).execute_sql(MULTI): idents.extend([r[0] for r in rows]) self.query.add_filter(('pk__in', idents)) self.query.related_ids = idents else: # The fast path. Filters and updates in one query. self.query.add_filter(('pk__in', query)) for alias in self.query.tables[1:]: self.query.alias_refcount[alias] = 0 class SQLAggregateCompiler(SQLCompiler): def as_sql(self, qn=None): """ Creates the SQL for this query. Returns the SQL string and list of parameters. """ if qn is None: qn = self.quote_name_unless_alias sql, params = [], [] for aggregate in self.query.aggregate_select.values(): agg_sql, agg_params = aggregate.as_sql(qn, self.connection) sql.append(agg_sql) params.extend(agg_params) sql = ', '.join(sql) params = tuple(params) sql = 'SELECT %s FROM (%s) subquery' % (sql, self.query.subquery) params = params + self.query.sub_params return sql, params class SQLDateCompiler(SQLCompiler): def results_iter(self): """ Returns an iterator over the results from executing this query. """ resolve_columns = hasattr(self, 'resolve_columns') if resolve_columns: from django.db.models.fields import DateField fields = [DateField()] else: from django.db.backends.util import typecast_date needs_string_cast = self.connection.features.needs_datetime_string_cast offset = len(self.query.extra_select) for rows in self.execute_sql(MULTI): for row in rows: date = row[offset] if resolve_columns: date = self.resolve_columns(row, fields)[offset] elif needs_string_cast: date = typecast_date(str(date)) if isinstance(date, datetime.datetime): date = date.date() yield date class SQLDateTimeCompiler(SQLCompiler): def results_iter(self): """ Returns an iterator over the results from executing this query. """ resolve_columns = hasattr(self, 'resolve_columns') if resolve_columns: from django.db.models.fields import DateTimeField fields = [DateTimeField()] else: from django.db.backends.util import typecast_timestamp needs_string_cast = self.connection.features.needs_datetime_string_cast offset = len(self.query.extra_select) for rows in self.execute_sql(MULTI): for row in rows: datetime = row[offset] if resolve_columns: datetime = self.resolve_columns(row, fields)[offset] elif needs_string_cast: datetime = typecast_timestamp(str(datetime)) # Datetimes are artifically returned in UTC on databases that # don't support time zone. Restore the zone used in the query. if settings.USE_TZ: if datetime is None: raise ValueError("Database returned an invalid value " "in QuerySet.dates(). Are time zone " "definitions installed?") datetime = datetime.replace(tzinfo=None) datetime = timezone.make_aware(datetime, self.query.tzinfo) yield datetime def order_modified_iter(cursor, trim, sentinel): """ Yields blocks of rows from a cursor. We use this iterator in the special case when extra output columns have been added to support ordering requirements. We must trim those extra columns before anything else can use the results, since they're only needed to make the SQL valid. """ for rows in iter((lambda: cursor.fetchmany(GET_ITERATOR_CHUNK_SIZE)), sentinel): yield [r[:-trim] for r in rows]
44.147359
136
0.579826
aa95ed9ae10fb22124d05bb4e312fa02ae2f00bc
4,437
py
Python
create_dns_records.py
davefontaine/network_scripts
fe4f064c8e3df9433a51d5c41035c065f8dc1c47
[ "Apache-2.0" ]
null
null
null
create_dns_records.py
davefontaine/network_scripts
fe4f064c8e3df9433a51d5c41035c065f8dc1c47
[ "Apache-2.0" ]
null
null
null
create_dns_records.py
davefontaine/network_scripts
fe4f064c8e3df9433a51d5c41035c065f8dc1c47
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # # create_dns_record.py # input: list of filenames to parse; filename must contain hostname eg. lca1-crt01.nw-config.txt # output: a dns entry to stdout for # import sys import re from ciscoconfparse import CiscoConfParse # site code all_sites = ["lca1", "lva1"] # enviornment code all_environments = ["nw", "corp", "prod"] # mapping of cli interface name string to abbreviated DNS string interface_name_mapping = { 'Loopback':'lo', 'loopback':'lo', 'Ethernet':'eth', 'GigabitEthernet':'ge', 'TenGigabitEthernet':'te', 'Vlan':'vlan', 'xe':'xe' } # remove executable file name from list, leaves list of files sys.argv.remove(sys.argv[0]) hostname_re = re.compile(r'.*((' + "|".join(all_sites) + r')(.*)\.(' + "|".join(all_environments) + r')).*') ipv6_address_re = re.compile(r".*ipv6 address\W(.*)/[0-9]+") interface_re = re.compile(r"^interface ([a-zA-Z]+)([0-9]+)/?([0-9]+)?/?([0-9]+)?") junos_ipv6_interface_re = re.compile(r'^set interfaces (.*) unit \d+ family inet6 address (.*)/[0-9]+') # incomplete items # if match is Loopback interface, create DNS entry for device def write_dns_record_stdout(hostname_str, interface_string, ipv6_address_string): # if not the loopback interface if interface_string.find("lo") < 0: print hostname_str + '-' + interface_string + '.' + environment + '.' + 'linkedin.com' + ' AAAA ' + ipv6_address # if this is the loopback interface, create loopback & host records else: print hostname_str + '.' + environment + '.' + 'linkedin.com' + ' AAAA ' + ipv6_address # CNAME for "lo" interface print hostname_str + '-' + interface_string + '.' + environment + '.' + 'linkedin.com' + ' CNAME ' + hostname_str + '.' + environment + '.' + 'linkedin.com.' for file in sys.argv: m = hostname_re.match(file) # if the filename conforms to the hostname naming convention, make assignments if m: hostname = m.group(2)+m.group(3) environment = m.group(4) # otherwise, do not process / parse the file else: print 'WARNING: "' + file + '" does not contain device hostname.' continue # parse the file parsed_file = CiscoConfParse(file) # pull out all interfaces which have an ipv6 address interfaces = parsed_file.find_objects_w_child(parentspec=r"^interface", childspec=r"ipv6 address") # if the list is not empty this is likely a Cisco-like device if interfaces != []: # for every interface that matches the above conditions, for interface_name in interfaces: match_interface_name = interface_re.match(interface_name.text) short_interface_name = interface_name_mapping[match_interface_name.group(1)] # build interface port number with "/" substituded by "-" # eg. Ethernet1/2 becomes eth1-2 # do this for all except loopback interface which becomes host entry if match_interface_name.lastindex >= 2: short_interface_name += '-' + match_interface_name.group(2) if match_interface_name.lastindex >= 3: short_interface_name += '-' + match_interface_name.group(3) if match_interface_name.lastindex >= 4: short_interface_name += '-' + match_interface_name.group(4) # find "ipv6 address" under interface and grab address for subinterface_line in interface_name.children: match_ipv6_address = ipv6_address_re.match(subinterface_line.text) if match_ipv6_address: ipv6_address = match_ipv6_address.group(1) # create record by merging dns_name and ipv6 address and write entry to stdout write_dns_record_stdout(hostname, short_interface_name, ipv6_address) # here we assume it's JUNOS, since the cisco parser came back NULL else: with open(file) as f: entire_config = f.readlines() for line in entire_config: match_interface_name = junos_ipv6_interface_re.match(line) if match_interface_name: interface_name = match_interface_name.group(1) ipv6_address = match_interface_name.group(2) interface_name.replace("/", "-") write_dns_record_stdout(hostname, interface_name, ipv6_address) continue
31.246479
165
0.64503
370aefe138a667d99e7a54e8816434abc2d8cd95
2,878
py
Python
python/day11.py
davidlowryduda/AoC18
cb1a5abb6fae8a00e805b3c76125e2db8d452cff
[ "MIT" ]
null
null
null
python/day11.py
davidlowryduda/AoC18
cb1a5abb6fae8a00e805b3c76125e2db8d452cff
[ "MIT" ]
null
null
null
python/day11.py
davidlowryduda/AoC18
cb1a5abb6fae8a00e805b3c76125e2db8d452cff
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 """ Solve day 11 """ from utils import input_lines def power_level(x, y, serial=8): """ A nonsense sequence of steps described in the puzzle instructions. """ rackID = x + 10 level = rackID * y level += serial level *= rackID level = (level // 100) % 10 level -= 5 return level def compute_power_levels(serial): """ Create a grid where grid[(x,y)] has the power_level at position (x,y). """ grid = dict() for x in range(1, 301): for y in range(1, 301): grid[(x, y)] = power_level(x, y, serial=serial) return grid def compute_sized_powerlevel(grid, x, y, size=3): """ Compute combined powerlevel for sizexsize grid with topleft element (x,y). """ total_power_level = 0 for i in range(size): for j in range(size): total_power_level += grid[(x+i, y+j)] return total_power_level def find_largest_trio(grid): """ Find the largest 3x3 grid value. """ record = 0 record_tuple = (0,0) for x in range(1, 298): for y in range(1, 298): candidate_power = compute_sized_powerlevel(grid, x, y) if candidate_power > record: record = candidate_power record_tuple = (x, y) return record, record_tuple def find_largest_anysize(grid): """ Find the largest sizexsize grid value. """ record = 0 record_tuple = (0, 0, 0) for x in range(1, 298): print("On x =", x) for y in range(1, 298): maxsize = min(300-x, 300-y) cand_record, cand_tuple = find_largest_anysize_at_xy(grid, x, y) if cand_record > record: record = cand_record record_tuple = cand_tuple return record, record_tuple def find_largest_anysize_at_xy(grid, x, y): """ Finds the largest sizexsize grid with top-left location (x,y). """ maxsize = min(300 - x, 300 - y) record = grid[(x,y)] record_tuple = (x, y, 1) prevsize = record for size in range(2, maxsize + 1): cand = prevsize for i in range(size): cand += grid[(x+i, y+size-1)] cand += grid[(x+size-1, y+i)] cand -= grid[(x+size-1, y+size-1)] prevsize = cand if cand > record: record = cand record_tuple = (x, y, size) return record, record_tuple def do_part_1(day, test=False): #TESTSERIAL = 18 #TESTSERIAL = 42 MYSERIAL = 5719 grid = compute_power_levels(MYSERIAL) print(find_largest_trio(grid)[1]) return def do_part_2(day, test=False): #TESTSERIAL = 18 MYSERIAL = 5719 grid = compute_power_levels(MYSERIAL) print(find_largest_anysize(grid)) return if __name__ == "__main__": do_part_1(11, test=False) do_part_2(11, test=False)
24.389831
78
0.583739
b18be6cac1a00ed4cf0143ae74ccd170e4385657
2,490
py
Python
code/analysis/delayedfeedback/optimalcontrolutils.py
dmytrov/stochasticcontrol
a289d5c0953c4a328b2177f51168588248c00f2c
[ "MIT" ]
null
null
null
code/analysis/delayedfeedback/optimalcontrolutils.py
dmytrov/stochasticcontrol
a289d5c0953c4a328b2177f51168588248c00f2c
[ "MIT" ]
null
null
null
code/analysis/delayedfeedback/optimalcontrolutils.py
dmytrov/stochasticcontrol
a289d5c0953c4a328b2177f51168588248c00f2c
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import analysis.delayedfeedback.fittingutils as fu def InverseOptimalControl(object): def __init__(self): pass def infer_cost(trajectories): """ Infers the goal cost of the optimal controller. Assumptions: - cost is linear w.r.t. some terms: - integral over time (total time) - integral over energy used for the control (F*S). Force is proportional to acceleration, mass is constant: F = m*a - integral over jerk (path third derivative) - control u is force; - control is optimal. Optimal control minimizes the functional of cost. We assume the control is optimal. Find the weights of the cost terms which minimize the cost functional for all trajectories plus some noise. """ # Construct the cost terms pass def fit_trajectory_nonesense(trials, maxpoly=5, maxexp=2, ax=None): """ WARNING!!! NONESENSE!!! Fit polynomial and exponentials as a solution to an optimal reaching problem. Fit a function f: t -> x Assumptions: - time is approximately the same. Motion is from time 0 to 1. - total cost is a sum of quadratic costs of derivatives of different orders up to maxorder. - trajectories are optimal solutions + noise. Arguments: - start point - end point - trials Returns: - callable fitted function x(t) """ # Normalize time to [0, 1] traces = [trial.motiontrajectoryinterpolated[trial.a:trial.b] for trial in trials] times = np.hstack([np.linspace(0, 1, len(trace)) for trace in traces]) # For diagonal quadratic cost, coordinates are independent. xs = np.hstack([trace[:, 0] for trace in traces]) ys = np.hstack([trace[:, 1] for trace in traces]) a, b, c, ystar = fu.fit_polynomial_exponential(times, xs, maxpoly, maxexp) print("X:", a, b, c) fx = fu.PolynomialExponential(a, b, c) a, b, c, ystar = fu.fit_polynomial_exponential(times, ys, maxpoly, maxexp) print("Y:", a, b, c) fy = fu.PolynomialExponential(a, b, c) for trace in traces: ax.plot(trace[:, 0], trace[:, 1], "b.", alpha=0.3) t = np.linspace(0, 1, 100) ax.plot(fx(t), fy(t), "r")
31.125
86
0.593976
18a042ca97932e8ef946668912e6886a8c544f26
16,798
py
Python
pydantic/networks.py
fictorial/pydantic
9d631a3429a66f30742c1a52c94ac18ec6ba848d
[ "MIT" ]
1
2020-05-03T06:32:47.000Z
2020-05-03T06:32:47.000Z
pydantic/networks.py
fictorial/pydantic
9d631a3429a66f30742c1a52c94ac18ec6ba848d
[ "MIT" ]
152
2020-07-29T06:20:57.000Z
2021-10-04T08:01:55.000Z
pydantic/networks.py
amirkdv/pydantic
ef4678999f94625819ebad61b44ea264479aeb0a
[ "MIT" ]
1
2022-03-01T09:58:06.000Z
2022-03-01T09:58:06.000Z
import re from ipaddress import ( IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network, _BaseAddress, _BaseNetwork, ) from typing import ( TYPE_CHECKING, Any, Collection, Dict, Generator, Optional, Pattern, Set, Tuple, Type, Union, cast, no_type_check, ) from . import errors from .utils import Representation, update_not_none from .validators import constr_length_validator, str_validator if TYPE_CHECKING: import email_validator from typing_extensions import TypedDict from .config import BaseConfig from .fields import ModelField from .typing import AnyCallable CallableGenerator = Generator[AnyCallable, None, None] class Parts(TypedDict, total=False): scheme: str user: Optional[str] password: Optional[str] ipv4: Optional[str] ipv6: Optional[str] domain: Optional[str] port: Optional[str] path: Optional[str] query: Optional[str] fragment: Optional[str] else: email_validator = None NetworkType = Union[str, bytes, int, Tuple[Union[str, bytes, int], Union[str, int]]] __all__ = [ 'AnyUrl', 'AnyHttpUrl', 'FileUrl', 'HttpUrl', 'stricturl', 'EmailStr', 'NameEmail', 'IPvAnyAddress', 'IPvAnyInterface', 'IPvAnyNetwork', 'PostgresDsn', 'AmqpDsn', 'RedisDsn', 'KafkaDsn', 'validate_email', ] _url_regex_cache = None _ascii_domain_regex_cache = None _int_domain_regex_cache = None def url_regex() -> Pattern[str]: global _url_regex_cache if _url_regex_cache is None: _url_regex_cache = re.compile( r'(?:(?P<scheme>[a-z][a-z0-9+\-.]+)://)?' # scheme https://tools.ietf.org/html/rfc3986#appendix-A r'(?:(?P<user>[^\s:/]*)(?::(?P<password>[^\s/]*))?@)?' # user info r'(?:' r'(?P<ipv4>(?:\d{1,3}\.){3}\d{1,3})(?=$|[/:#?])|' # ipv4 r'(?P<ipv6>\[[A-F0-9]*:[A-F0-9:]+\])(?=$|[/:#?])|' # ipv6 r'(?P<domain>[^\s/:?#]+)' # domain, validation occurs later r')?' r'(?::(?P<port>\d+))?' # port r'(?P<path>/[^\s?#]*)?' # path r'(?:\?(?P<query>[^\s#]*))?' # query r'(?:#(?P<fragment>[^\s#]*))?', # fragment re.IGNORECASE, ) return _url_regex_cache def ascii_domain_regex() -> Pattern[str]: global _ascii_domain_regex_cache if _ascii_domain_regex_cache is None: ascii_chunk = r'[_0-9a-z](?:[-_0-9a-z]{0,61}[_0-9a-z])?' ascii_domain_ending = r'(?P<tld>\.[a-z]{2,63})?\.?' _ascii_domain_regex_cache = re.compile( fr'(?:{ascii_chunk}\.)*?{ascii_chunk}{ascii_domain_ending}', re.IGNORECASE ) return _ascii_domain_regex_cache def int_domain_regex() -> Pattern[str]: global _int_domain_regex_cache if _int_domain_regex_cache is None: int_chunk = r'[_0-9a-\U00040000](?:[-_0-9a-\U00040000]{0,61}[_0-9a-\U00040000])?' int_domain_ending = r'(?P<tld>(\.[^\W\d_]{2,63})|(\.(?:xn--)[_0-9a-z-]{2,63}))?\.?' _int_domain_regex_cache = re.compile(fr'(?:{int_chunk}\.)*?{int_chunk}{int_domain_ending}', re.IGNORECASE) return _int_domain_regex_cache class AnyUrl(str): strip_whitespace = True min_length = 1 max_length = 2 ** 16 allowed_schemes: Optional[Collection[str]] = None tld_required: bool = False user_required: bool = False host_required: bool = True hidden_parts: Set[str] = set() __slots__ = ('scheme', 'user', 'password', 'host', 'tld', 'host_type', 'port', 'path', 'query', 'fragment') @no_type_check def __new__(cls, url: Optional[str], **kwargs) -> object: return str.__new__(cls, cls.build(**kwargs) if url is None else url) def __init__( self, url: str, *, scheme: str, user: Optional[str] = None, password: Optional[str] = None, host: Optional[str] = None, tld: Optional[str] = None, host_type: str = 'domain', port: Optional[str] = None, path: Optional[str] = None, query: Optional[str] = None, fragment: Optional[str] = None, ) -> None: str.__init__(url) self.scheme = scheme self.user = user self.password = password self.host = host self.tld = tld self.host_type = host_type self.port = port self.path = path self.query = query self.fragment = fragment @classmethod def build( cls, *, scheme: str, user: Optional[str] = None, password: Optional[str] = None, host: str, port: Optional[str] = None, path: Optional[str] = None, query: Optional[str] = None, fragment: Optional[str] = None, **_kwargs: str, ) -> str: url = scheme + '://' if user: url += user if password: url += ':' + password if user or password: url += '@' url += host if port and 'port' not in cls.hidden_parts: url += ':' + port if path: url += path if query: url += '?' + query if fragment: url += '#' + fragment return url @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: update_not_none(field_schema, minLength=cls.min_length, maxLength=cls.max_length, format='uri') @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield cls.validate @classmethod def validate(cls, value: Any, field: 'ModelField', config: 'BaseConfig') -> 'AnyUrl': if value.__class__ == cls: return value value = str_validator(value) if cls.strip_whitespace: value = value.strip() url: str = cast(str, constr_length_validator(value, field, config)) m = url_regex().match(url) # the regex should always match, if it doesn't please report with details of the URL tried assert m, 'URL regex failed unexpectedly' original_parts = cast('Parts', m.groupdict()) parts = cls.apply_default_parts(original_parts) parts = cls.validate_parts(parts) host, tld, host_type, rebuild = cls.validate_host(parts) if m.end() != len(url): raise errors.UrlExtraError(extra=url[m.end() :]) return cls( None if rebuild else url, scheme=parts['scheme'], user=parts['user'], password=parts['password'], host=host, tld=tld, host_type=host_type, port=parts['port'], path=parts['path'], query=parts['query'], fragment=parts['fragment'], ) @classmethod def validate_parts(cls, parts: 'Parts') -> 'Parts': """ A method used to validate parts of an URL. Could be overridden to set default values for parts if missing """ scheme = parts['scheme'] if scheme is None: raise errors.UrlSchemeError() if cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) port = parts['port'] if port is not None and int(port) > 65_535: raise errors.UrlPortError() user = parts['user'] if cls.user_required and user is None: raise errors.UrlUserInfoError() return parts @classmethod def validate_host(cls, parts: 'Parts') -> Tuple[str, Optional[str], str, bool]: host, tld, host_type, rebuild = None, None, None, False for f in ('domain', 'ipv4', 'ipv6'): host = parts[f] # type: ignore[misc] if host: host_type = f break if host is None: if cls.host_required: raise errors.UrlHostError() elif host_type == 'domain': is_international = False d = ascii_domain_regex().fullmatch(host) if d is None: d = int_domain_regex().fullmatch(host) if d is None: raise errors.UrlHostError() is_international = True tld = d.group('tld') if tld is None and not is_international: d = int_domain_regex().fullmatch(host) assert d is not None tld = d.group('tld') is_international = True if tld is not None: tld = tld[1:] elif cls.tld_required: raise errors.UrlHostTldError() if is_international: host_type = 'int_domain' rebuild = True host = host.encode('idna').decode('ascii') if tld is not None: tld = tld.encode('idna').decode('ascii') return host, tld, host_type, rebuild # type: ignore @staticmethod def get_default_parts(parts: 'Parts') -> 'Parts': return {} @classmethod def apply_default_parts(cls, parts: 'Parts') -> 'Parts': for key, value in cls.get_default_parts(parts).items(): if not parts[key]: # type: ignore[misc] parts[key] = value # type: ignore[misc] return parts def __repr__(self) -> str: extra = ', '.join(f'{n}={getattr(self, n)!r}' for n in self.__slots__ if getattr(self, n) is not None) return f'{self.__class__.__name__}({super().__repr__()}, {extra})' class AnyHttpUrl(AnyUrl): allowed_schemes = {'http', 'https'} class HttpUrl(AnyHttpUrl): tld_required = True # https://stackoverflow.com/questions/417142/what-is-the-maximum-length-of-a-url-in-different-browsers max_length = 2083 hidden_parts = {'port'} @staticmethod def get_default_parts(parts: 'Parts') -> 'Parts': return {'port': '80' if parts['scheme'] == 'http' else '443'} class FileUrl(AnyUrl): allowed_schemes = {'file'} host_required = False class PostgresDsn(AnyUrl): allowed_schemes = { 'postgres', 'postgresql', 'postgresql+asyncpg', 'postgresql+pg8000', 'postgresql+psycopg2', 'postgresql+psycopg2cffi', 'postgresql+py-postgresql', 'postgresql+pygresql', } user_required = True class AmqpDsn(AnyUrl): allowed_schemes = {'amqp', 'amqps'} host_required = False class RedisDsn(AnyUrl): allowed_schemes = {'redis', 'rediss'} host_required = False @staticmethod def get_default_parts(parts: 'Parts') -> 'Parts': return { 'domain': 'localhost' if not (parts['ipv4'] or parts['ipv6']) else '', 'port': '6379', 'path': '/0', } class KafkaDsn(AnyUrl): allowed_schemes = {'kafka'} @staticmethod def get_default_parts(parts: 'Parts') -> 'Parts': return { 'domain': 'localhost', 'port': '9092', } def stricturl( *, strip_whitespace: bool = True, min_length: int = 1, max_length: int = 2 ** 16, tld_required: bool = True, host_required: bool = True, allowed_schemes: Optional[Collection[str]] = None, ) -> Type[AnyUrl]: # use kwargs then define conf in a dict to aid with IDE type hinting namespace = dict( strip_whitespace=strip_whitespace, min_length=min_length, max_length=max_length, tld_required=tld_required, host_required=host_required, allowed_schemes=allowed_schemes, ) return type('UrlValue', (AnyUrl,), namespace) def import_email_validator() -> None: global email_validator try: import email_validator except ImportError as e: raise ImportError('email-validator is not installed, run `pip install pydantic[email]`') from e class EmailStr(str): @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type='string', format='email') @classmethod def __get_validators__(cls) -> 'CallableGenerator': # included here and below so the error happens straight away import_email_validator() yield str_validator yield cls.validate @classmethod def validate(cls, value: Union[str]) -> str: return validate_email(value)[1] class NameEmail(Representation): __slots__ = 'name', 'email' def __init__(self, name: str, email: str): self.name = name self.email = email def __eq__(self, other: Any) -> bool: return isinstance(other, NameEmail) and (self.name, self.email) == (other.name, other.email) @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type='string', format='name-email') @classmethod def __get_validators__(cls) -> 'CallableGenerator': import_email_validator() yield cls.validate @classmethod def validate(cls, value: Any) -> 'NameEmail': if value.__class__ == cls: return value value = str_validator(value) return cls(*validate_email(value)) def __str__(self) -> str: return f'{self.name} <{self.email}>' class IPvAnyAddress(_BaseAddress): @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type='string', format='ipvanyaddress') @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield cls.validate @classmethod def validate(cls, value: Union[str, bytes, int]) -> Union[IPv4Address, IPv6Address]: try: return IPv4Address(value) except ValueError: pass try: return IPv6Address(value) except ValueError: raise errors.IPvAnyAddressError() class IPvAnyInterface(_BaseAddress): @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type='string', format='ipvanyinterface') @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield cls.validate @classmethod def validate(cls, value: NetworkType) -> Union[IPv4Interface, IPv6Interface]: try: return IPv4Interface(value) except ValueError: pass try: return IPv6Interface(value) except ValueError: raise errors.IPvAnyInterfaceError() class IPvAnyNetwork(_BaseNetwork): # type: ignore @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type='string', format='ipvanynetwork') @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield cls.validate @classmethod def validate(cls, value: NetworkType) -> Union[IPv4Network, IPv6Network]: # Assume IP Network is defined with a default value for ``strict`` argument. # Define your own class if you want to specify network address check strictness. try: return IPv4Network(value) except ValueError: pass try: return IPv6Network(value) except ValueError: raise errors.IPvAnyNetworkError() pretty_email_regex = re.compile(r'([\w ]*?) *<(.*)> *') def validate_email(value: Union[str]) -> Tuple[str, str]: """ Brutally simple email address validation. Note unlike most email address validation * raw ip address (literal) domain parts are not allowed. * "John Doe <local_part@domain.com>" style "pretty" email addresses are processed * the local part check is extremely basic. This raises the possibility of unicode spoofing, but no better solution is really possible. * spaces are striped from the beginning and end of addresses but no error is raised See RFC 5322 but treat it with suspicion, there seems to exist no universally acknowledged test for a valid email! """ if email_validator is None: import_email_validator() m = pretty_email_regex.fullmatch(value) name: Optional[str] = None if m: name, value = m.groups() email = value.strip() try: email_validator.validate_email(email, check_deliverability=False) except email_validator.EmailNotValidError as e: raise errors.EmailError() from e at_index = email.index('@') local_part = email[:at_index] # RFC 5321, local part must be case-sensitive. global_part = email[at_index:].lower() return name or local_part, local_part + global_part
29.730973
118
0.595666
055745599eaad55ed775b331593a5de7185c78f9
1,057
py
Python
reads/models.py
mguarascio/runnerreads-com
3bc877cf24370cf881a98a1c5915693464bc69e8
[ "MIT" ]
null
null
null
reads/models.py
mguarascio/runnerreads-com
3bc877cf24370cf881a98a1c5915693464bc69e8
[ "MIT" ]
null
null
null
reads/models.py
mguarascio/runnerreads-com
3bc877cf24370cf881a98a1c5915693464bc69e8
[ "MIT" ]
null
null
null
from django.db import models class Book(models.Model): title = models.CharField(max_length=255) link = models.CharField(max_length=2000) ASIN = models.CharField(max_length=20) large_image = models.CharField(max_length=255, null=True) medium_image = models.CharField(max_length=255, null=True) small_image = models.CharField(max_length=255, null=True) tiny_image = models.CharField(max_length=255, null=True) rank = models.IntegerField(null=True) product_group = models.CharField(max_length=50, null=True) def __str__(self): return self.title + ' : ' + self.ASIN class Comment(models.Model): book = models.ForeignKey(Book, related_name='comments', on_delete=models.CASCADE) text = models.TextField() link = models.CharField(max_length=255) score = models.IntegerField(null=True) date_time = models.DateTimeField(null=True) user = models.CharField(max_length=100, null=True) source = models.CharField(max_length=50, null=True) def __str__(self): return self.link
37.75
85
0.719016
0959210a0d1290d1d5504f7ce2a2b580078c3805
36,680
py
Python
__init__.py
rocketbot-cl/MercadoPago
2bf71bb28626afbfe10e83c630503be4f1150396
[ "MIT" ]
null
null
null
__init__.py
rocketbot-cl/MercadoPago
2bf71bb28626afbfe10e83c630503be4f1150396
[ "MIT" ]
null
null
null
__init__.py
rocketbot-cl/MercadoPago
2bf71bb28626afbfe10e83c630503be4f1150396
[ "MIT" ]
null
null
null
# coding: utf-8 """ Base para desarrollo de modulos externos. Para obtener el modulo/Funcion que se esta llamando: GetParams("module") Para obtener las variables enviadas desde formulario/comando Rocketbot: var = GetParams(variable) Las "variable" se define en forms del archivo package.json Para modificar la variable de Rocketbot: SetVar(Variable_Rocketbot, "dato") Para obtener una variable de Rocketbot: var = GetVar(Variable_Rocketbot) Para obtener la Opcion seleccionada: opcion = GetParams("option") Para instalar librerias se debe ingresar por terminal a la carpeta "libs" pip install <package> -t . """ import datetime import os import sys base_path = tmp_global_obj["basepath"] cur_path = base_path + 'modules' + os.sep + \ 'mercadopago' + os.sep + 'libs' + os.sep if cur_path not in sys.path: sys.path.append(cur_path) import mercadopago module = GetParams("module") global items, sdk, testkey, payments_id items = [] if module == "login": try: testkey = GetParams("testkey") sdk = mercadopago.SDK(testkey) except Exception as e: print("\x1B[" + "31;40mError\x1B[" + "0m") PrintException() raise e if module == "add_recipient": email = GetParams("email") name = GetParams("name") phone = GetParams("phone") try: customer_data = { "email": email, "phone": phone, "description": name } customer_response = sdk.customer().create(customer_data) customer = customer_response["response"] except Exception as e: print("\x1B[" + "31;40mError\x1B[" + "0m") PrintException() raise e if module == "add_item": amount = GetParams("amount") quantity = GetParams("quantity") item = GetParams("item") amount = int(amount) try: temp = {"title": item, "quantity": quantity, "unit_price": amount} items.append(temp) print(items) except Exception as e: print("\x1B[" + "31;40mError\x1B[" + "0m") PrintException() raise e if module == "create_invoice": total = GetParams("total") payment_name = GetParams("payment_name") payment_method = GetParams("payment_method") email = GetParams("email") total = int(total) try: preference_data = { "items": items } preference_response = sdk.preference().create(preference_data) preference = preference_response["response"] payment_data = { "transaction_amount": total, "description": payment_name, "payment_method_id": payment_method, "payer": { "email": email } } payment_response = sdk.payment().create(payment_data) payment = payment_response["response"] print(payment) except Exception as e: print("\x1B[" + "31;40mError\x1B[" + "0m") PrintException() raise e if module == "get_invoice": id = GetParams("id") var = GetParams("var") try: auth = 'Bearer ' + testkey headers = { 'Authorization': auth, } url = 'https://api.mercadopago.com/v1/payments/' + id response = requests.get(url, headers=headers) resp = response.json() SetVar(var, resp) except Exception as e: print("\x1B[" + "31;40mError\x1B[" + "0m") PrintException() raise e if module == "search_payments": id = GetParams("id") criteria = GetParams("criteria") sort = GetParams("sort") var = GetParams("var") try: if id is None: id = "" if not criteria: criteria = "desc" if not sort: sort = "date_created" auth = 'Bearer ' + testkey headers = { 'Authorization': auth, } url = "https://api.mercadopago.com/v1/payments/search?sort=" + sort + "&criteria=" + criteria + "&external_reference=" + id response = requests.get(url, headers=headers) res = response.json() payments_id = [result["id"] for result in res["results"]] SetVar(var, payments_id) except Exception as e: print("\x1B[" + "31;40mError\x1B[" + "0m") PrintException() raise e """{ "en": { "title": "Create Invoice", "description": "Create an invoice for the customer", "title_options": null, "options": null }, "es": { "title": "Crear factura", "description": "Crea una factura para el cliente", "title_options": null, "options": null }, "form": { "css": "modal-lg", "inputs": [ { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Total:", "en": "Total:" }, "help": { "es": " ", "en": " " }, "id": "total", "css": "col-lg-6" }, { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Nombre de pago", "en": "Payment Name:" }, "help": { "es": " ", "en": " " }, "id": "payment_name", "css": "col-lg-6" }, { "type": "select", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Método de pago", "en": "Payment Method:" }, "options": [ { "title": "credit card", "value": "credit_card" }, { "title": "debit card", "value": "debit_card" } ], "help": { "es": " ", "en": " " }, "id": "payment_method", "css": "col-lg-6" }, { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Correo electrónico:", "en": "Email:" }, "help": { "es": " ", "en": " " }, "id": "email", "css": "col-lg-6" } ] }, "video_youtube": "", "icon": "", "module": "create_invoice", "module_name": "MercadoPago", "visible": true, "options": false, "father": "module", "group": "scripts", "linux": true, "windows": true, "mac": true, "docker": true }, { "en": { "title": "Add Item", "description": "Add an item to the invoice", "title_options": null, "options": null }, "es": { "title": "Añadir artículo", "description": "Agregar un artículo a la factura\n", "title_options": null, "options": null }, "form": { "css": "modal-lg", "inputs": [ { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Nombre del árticulo", "en": "Item Name:" }, "help": { "es": " ", "en": " " }, "id": "item", "css": "col-lg-6" }, { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Precio:", "en": "Price:" }, "help": { "es": " ", "en": " " }, "id": "amount", "css": "col-lg-6" }, { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Cantidad:", "en": "Quantity:" }, "help": { "es": " ", "en": " " }, "id": "quantity", "css": "col-lg-6" } ] }, "video_youtube": "", "icon": "", "module": "add_item", "module_name": "MercadoPago", "visible": true, "options": false, "father": "module", "group": "scripts", "linux": true, "windows": true, "mac": true, "docker": true }, { "en": { "title": "Add Customer", "description": "Add a recipient to the invoice", "title_options": null, "options": null }, "es": { "title": " ", "description": " ", "title_options": null, "options": null }, "form": { "css": "modal-lg", "inputs": [ { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Nombre del cliente", "en": "Customer Name:" }, "help": { "es": " ", "en": " " }, "id": "name", "css": "col-lg-6" }, { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Correo electrónico:", "en": "Email:" }, "help": { "es": " ", "en": " " }, "id": "email", "css": "col-lg-6" }, { "type": "input", "placeholder": { "es": " ", "en": " " }, "title": { "es": "Teléfono:", "en": "Phone:" }, "help": { "es": " ", "en": " " }, "id": "phone", "css": "col-lg-6" } ] }, "video_youtube": "", "icon": "", "module": "add_recipient", "module_name": "MercadoPago", "visible": true, "options": false, "father": "module", "group": "scripts", "linux": true, "windows": true, "mac": true, "docker": true }"""
77.547569
8,651
0.803353
9536c43080761f0c324bcbd72551f92c5b4bf023
422
py
Python
venv/Scripts/pip3-script.py
Favorsiki/LearningLog
a71b2c006ea0888c884d0e3b534726dd66ab5720
[ "MIT" ]
null
null
null
venv/Scripts/pip3-script.py
Favorsiki/LearningLog
a71b2c006ea0888c884d0e3b534726dd66ab5720
[ "MIT" ]
null
null
null
venv/Scripts/pip3-script.py
Favorsiki/LearningLog
a71b2c006ea0888c884d0e3b534726dd66ab5720
[ "MIT" ]
null
null
null
#!C:\Users\Favorsiky\PycharmProjects\learning_log\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3')() )
32.461538
73
0.677725
fcb651ba1c81a06c95b7b9216ea460d4b7c10d38
3,974
py
Python
virtual/lib/python3.6/site-packages/unidecode/x021.py
OKC254/flask-blog
78dc43f6ba981822f17026b071db6aaf4680daad
[ "MIT" ]
8
2015-03-05T21:09:40.000Z
2020-02-03T09:15:09.000Z
vendor-local/lib/python/unidecode/x021.py
yvan-sraka/wprevents
03f95150fe7c09338c3a17e00a4b85febef87789
[ "BSD-3-Clause" ]
29
2015-02-24T11:11:26.000Z
2017-08-25T08:30:18.000Z
vendor-local/lib/python/unidecode/x021.py
Acidburn0zzz/airmozilla
7b03af6d6efe9af00a6070f5327e10fb755c3766
[ "BSD-3-Clause" ]
6
2015-04-23T16:47:34.000Z
2017-10-13T19:11:53.000Z
data = ( '', # 0x00 '', # 0x01 '', # 0x02 '', # 0x03 '', # 0x04 '', # 0x05 '', # 0x06 '', # 0x07 '', # 0x08 '', # 0x09 '', # 0x0a '', # 0x0b '', # 0x0c '', # 0x0d '', # 0x0e '', # 0x0f '', # 0x10 '', # 0x11 '', # 0x12 '', # 0x13 '', # 0x14 '', # 0x15 '', # 0x16 '', # 0x17 '', # 0x18 '', # 0x19 '', # 0x1a '', # 0x1b '', # 0x1c '', # 0x1d '', # 0x1e '', # 0x1f '(sm)', # 0x20 'TEL', # 0x21 '(tm)', # 0x22 '', # 0x23 '', # 0x24 '', # 0x25 '', # 0x26 '', # 0x27 '', # 0x28 '', # 0x29 'K', # 0x2a 'A', # 0x2b '', # 0x2c '', # 0x2d '', # 0x2e '', # 0x2f '', # 0x30 '', # 0x31 'F', # 0x32 '', # 0x33 '', # 0x34 '', # 0x35 '', # 0x36 '', # 0x37 '', # 0x38 '', # 0x39 '', # 0x3a 'FAX', # 0x3b '[?]', # 0x3c '[?]', # 0x3d '[?]', # 0x3e '[?]', # 0x3f '[?]', # 0x40 '[?]', # 0x41 '[?]', # 0x42 '[?]', # 0x43 '[?]', # 0x44 '[?]', # 0x45 '[?]', # 0x46 '[?]', # 0x47 '[?]', # 0x48 '[?]', # 0x49 '[?]', # 0x4a '[?]', # 0x4b '[?]', # 0x4c '[?]', # 0x4d 'F', # 0x4e '[?]', # 0x4f '[?]', # 0x50 '[?]', # 0x51 '[?]', # 0x52 ' 1/3 ', # 0x53 ' 2/3 ', # 0x54 ' 1/5 ', # 0x55 ' 2/5 ', # 0x56 ' 3/5 ', # 0x57 ' 4/5 ', # 0x58 ' 1/6 ', # 0x59 ' 5/6 ', # 0x5a ' 1/8 ', # 0x5b ' 3/8 ', # 0x5c ' 5/8 ', # 0x5d ' 7/8 ', # 0x5e ' 1/', # 0x5f 'I', # 0x60 'II', # 0x61 'III', # 0x62 'IV', # 0x63 'V', # 0x64 'VI', # 0x65 'VII', # 0x66 'VIII', # 0x67 'IX', # 0x68 'X', # 0x69 'XI', # 0x6a 'XII', # 0x6b 'L', # 0x6c 'C', # 0x6d 'D', # 0x6e 'M', # 0x6f 'i', # 0x70 'ii', # 0x71 'iii', # 0x72 'iv', # 0x73 'v', # 0x74 'vi', # 0x75 'vii', # 0x76 'viii', # 0x77 'ix', # 0x78 'x', # 0x79 'xi', # 0x7a 'xii', # 0x7b 'l', # 0x7c 'c', # 0x7d 'd', # 0x7e 'm', # 0x7f '(D', # 0x80 'D)', # 0x81 '((|))', # 0x82 ')', # 0x83 '[?]', # 0x84 '[?]', # 0x85 '[?]', # 0x86 '[?]', # 0x87 '[?]', # 0x88 '[?]', # 0x89 '[?]', # 0x8a '[?]', # 0x8b '[?]', # 0x8c '[?]', # 0x8d '[?]', # 0x8e '[?]', # 0x8f '-', # 0x90 '|', # 0x91 '-', # 0x92 '|', # 0x93 '-', # 0x94 '|', # 0x95 '\\', # 0x96 '/', # 0x97 '\\', # 0x98 '/', # 0x99 '-', # 0x9a '-', # 0x9b '~', # 0x9c '~', # 0x9d '-', # 0x9e '|', # 0x9f '-', # 0xa0 '|', # 0xa1 '-', # 0xa2 '-', # 0xa3 '-', # 0xa4 '|', # 0xa5 '-', # 0xa6 '|', # 0xa7 '|', # 0xa8 '-', # 0xa9 '-', # 0xaa '-', # 0xab '-', # 0xac '-', # 0xad '-', # 0xae '|', # 0xaf '|', # 0xb0 '|', # 0xb1 '|', # 0xb2 '|', # 0xb3 '|', # 0xb4 '|', # 0xb5 '^', # 0xb6 'V', # 0xb7 '\\', # 0xb8 '=', # 0xb9 'V', # 0xba '^', # 0xbb '-', # 0xbc '-', # 0xbd '|', # 0xbe '|', # 0xbf '-', # 0xc0 '-', # 0xc1 '|', # 0xc2 '|', # 0xc3 '=', # 0xc4 '|', # 0xc5 '=', # 0xc6 '=', # 0xc7 '|', # 0xc8 '=', # 0xc9 '|', # 0xca '=', # 0xcb '=', # 0xcc '=', # 0xcd '=', # 0xce '=', # 0xcf '=', # 0xd0 '|', # 0xd1 '=', # 0xd2 '|', # 0xd3 '=', # 0xd4 '|', # 0xd5 '\\', # 0xd6 '/', # 0xd7 '\\', # 0xd8 '/', # 0xd9 '=', # 0xda '=', # 0xdb '~', # 0xdc '~', # 0xdd '|', # 0xde '|', # 0xdf '-', # 0xe0 '|', # 0xe1 '-', # 0xe2 '|', # 0xe3 '-', # 0xe4 '-', # 0xe5 '-', # 0xe6 '|', # 0xe7 '-', # 0xe8 '|', # 0xe9 '|', # 0xea '|', # 0xeb '|', # 0xec '|', # 0xed '|', # 0xee '|', # 0xef '-', # 0xf0 '\\', # 0xf1 '\\', # 0xf2 '|', # 0xf3 '[?]', # 0xf4 '[?]', # 0xf5 '[?]', # 0xf6 '[?]', # 0xf7 '[?]', # 0xf8 '[?]', # 0xf9 '[?]', # 0xfa '[?]', # 0xfb '[?]', # 0xfc '[?]', # 0xfd '[?]', # 0xfe )
15.403101
18
0.283593
d9db3c809a7b351ec1f7eae5822d1d4f262f19e4
658
py
Python
python/lib/team.py
omardelarosa/godot-python-demo-game
c9c91b2a8e838c315dae6d6d597ce75a20318747
[ "CC-BY-3.0" ]
null
null
null
python/lib/team.py
omardelarosa/godot-python-demo-game
c9c91b2a8e838c315dae6d6d597ce75a20318747
[ "CC-BY-3.0" ]
null
null
null
python/lib/team.py
omardelarosa/godot-python-demo-game
c9c91b2a8e838c315dae6d6d597ce75a20318747
[ "CC-BY-3.0" ]
null
null
null
import uuid class Team: NULL_ID = "-1" DEFAULT_PROPERTIES = { "id": NULL_ID, "name": "Unnamed Team", } def __init__(self, properties={}): self.id = ( properties["id"] if "id" in properties else str(uuid.uuid4()) ) # generates a uuid self.name = ( properties["name"] if "name" in properties else Team.DEFAULT_PROPERTIES["name"] ) def __iter__(self): """ For supporting dict() casting... """ yield "id", self.id yield "name", self.name def __str__(self) -> str: return str(dict(self))
21.225806
73
0.50304
17e5df6bc9bba9bf273c39b2d24e834ce15df102
2,798
py
Python
protobuf/SubscribeResp_pb2.py
wonghoifung/learning-python
ad1691be1d185bfff828779a553b2c59d36d16ea
[ "MIT" ]
null
null
null
protobuf/SubscribeResp_pb2.py
wonghoifung/learning-python
ad1691be1d185bfff828779a553b2c59d36d16ea
[ "MIT" ]
null
null
null
protobuf/SubscribeResp_pb2.py
wonghoifung/learning-python
ad1691be1d185bfff828779a553b2c59d36d16ea
[ "MIT" ]
null
null
null
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: SubscribeResp.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='SubscribeResp.proto', package='', syntax='proto2', serialized_pb=_b('\n\x13SubscribeResp.proto\"A\n\rSubscribeResp\x12\x10\n\x08subReqID\x18\x01 \x02(\x05\x12\x10\n\x08respCode\x18\x02 \x02(\x05\x12\x0c\n\x04\x64\x65sc\x18\x03 \x02(\tB\x1e\n\x08\x63om.wongB\x12SubscribeRespProto') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _SUBSCRIBERESP = _descriptor.Descriptor( name='SubscribeResp', full_name='SubscribeResp', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='subReqID', full_name='SubscribeResp.subReqID', index=0, number=1, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='respCode', full_name='SubscribeResp.respCode', index=1, number=2, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='desc', full_name='SubscribeResp.desc', index=2, number=3, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=23, serialized_end=88, ) DESCRIPTOR.message_types_by_name['SubscribeResp'] = _SUBSCRIBERESP SubscribeResp = _reflection.GeneratedProtocolMessageType('SubscribeResp', (_message.Message,), dict( DESCRIPTOR = _SUBSCRIBERESP, __module__ = 'SubscribeResp_pb2' # @@protoc_insertion_point(class_scope:SubscribeResp) )) _sym_db.RegisterMessage(SubscribeResp) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\010com.wongB\022SubscribeRespProto')) # @@protoc_insertion_point(module_scope)
32.534884
232
0.751251
e014ebafc7e3efae5bcbd599f141475ea3221b4c
6,217
py
Python
gdk/commands/component/project_utils.py
timmattison/aws-greengrass-gdk-cli
60a002f0f2fee84b79022662ba0cae9e0246b6f8
[ "Apache-2.0" ]
10
2022-01-15T09:50:32.000Z
2022-03-26T16:39:49.000Z
gdk/commands/component/project_utils.py
timmattison/aws-greengrass-gdk-cli
60a002f0f2fee84b79022662ba0cae9e0246b6f8
[ "Apache-2.0" ]
46
2021-11-30T19:49:16.000Z
2022-03-31T07:14:23.000Z
gdk/commands/component/project_utils.py
timmattison/aws-greengrass-gdk-cli
60a002f0f2fee84b79022662ba0cae9e0246b6f8
[ "Apache-2.0" ]
7
2021-11-30T19:49:42.000Z
2022-03-17T16:25:34.000Z
import json import logging from pathlib import Path import boto3 import gdk.common.configuration as config_actions import gdk.common.consts as consts import gdk.common.exceptions.error_messages as error_messages import gdk.common.utils as utils import yaml def get_supported_component_builds(): """ Reads a json file from static location that contains information related to supported component build systems. Parameters ---------- None Returns ------- (dict): Returns a dict object with supported component builds information. """ supported_component_builds_file = utils.get_static_file_path(consts.project_build_system_file) if supported_component_builds_file: with open(supported_component_builds_file, "r") as supported_builds_file: logging.debug("Identifying build systems supported by the CLI tool with default configuration.") return json.loads(supported_builds_file.read()) return None def get_recipe_file(): """ Finds recipe file based on component name and its extension. Assuming that each component project has a single recipe file, this method looks up for json files first and then yaml files in the current project directory with component name in them. If none or more than one are found, correct recipe file is not identified. Raises an exception if no recipe file is found in the current project directory. Parameters ---------- None Returns ------- recipe_file(Path): Path of the identified recipe file. """ # Search for json files in current directory that contain component name and ends in .json. logging.debug("Looking for recipe file in the project directory.") json_file = list(Path(utils.current_directory).glob("recipe.json")) yaml_file = list(Path(utils.current_directory).glob("recipe.yaml")) if not json_file and not yaml_file: logging.error("Could not find 'recipe.json' or 'recipe.yaml' in the project directory.") raise Exception(error_messages.PROJECT_RECIPE_FILE_NOT_FOUND) if json_file and yaml_file: logging.error("Found both 'recipe.json' and 'recipe.yaml' in the given project directory.") raise Exception(error_messages.PROJECT_RECIPE_FILE_NOT_FOUND) recipe_file = (json_file + yaml_file)[0].resolve() logging.info("Found component recipe file '{}' in the project directory.".format(recipe_file.name)) return recipe_file def parse_recipe_file(component_recipe_file): """ Loads recipes file from current project as a json obect. Uses yaml or json module to load the recipe file based on its extension. Parameters ---------- component_recipe_file(pathlib.Path): Path of the component recipe file. Returns ------- (dict): Returns a dict object with the component recipe file. """ logging.debug("Parsing the component recipe file '{}'.".format(component_recipe_file.name)) with open(component_recipe_file, "r") as r_file: recipe = r_file.read() try: if component_recipe_file.name.endswith(".json"): recipe_json = json.loads(recipe) return recipe_json else: recipe_yaml = yaml.safe_load(recipe) return recipe_yaml except Exception as e: raise Exception("""Unable to parse the recipe file - {}.\n{}""".format(component_recipe_file.name, e)) def get_project_config_values(): # Get component configuration from the greengrass project config file. logging.info("Getting project configuration from {}".format(consts.cli_project_config_file)) project_config = config_actions.get_configuration()["component"] # Since there's only one key in the component configuration, use next() instead of looping in. component_name = next(iter(project_config)) component_config = project_config[component_name] component_version = component_config["version"] component_author = component_config["author"] component_build_config = component_config["build"] bucket = component_config["publish"]["bucket"] region = component_config["publish"]["region"] # Build directories gg_build_directory = Path(utils.current_directory).joinpath(consts.greengrass_build_dir).resolve() gg_build_artifacts_dir = Path(gg_build_directory).joinpath("artifacts").resolve() gg_build_recipes_dir = Path(gg_build_directory).joinpath("recipes").resolve() gg_build_component_artifacts_dir = Path(gg_build_artifacts_dir).joinpath(component_name, component_version).resolve() # Get recipe file component_recipe_file = get_recipe_file() # Get parsed recipe file parsed_component_recipe = parse_recipe_file(component_recipe_file) # Create dictionary with all the above values vars = {} vars["component_name"] = component_name vars["component_version"] = component_version vars["component_author"] = component_author vars["component_build_config"] = component_build_config vars["bucket"] = bucket vars["region"] = region vars["gg_build_directory"] = gg_build_directory vars["gg_build_artifacts_dir"] = gg_build_artifacts_dir vars["gg_build_recipes_dir"] = gg_build_recipes_dir vars["gg_build_component_artifacts_dir"] = gg_build_component_artifacts_dir vars["component_recipe_file"] = component_recipe_file vars["parsed_component_recipe"] = parsed_component_recipe return vars def get_service_clients(region): service_clients = {} service_clients["s3_client"] = create_s3_client(region) service_clients["sts_client"] = create_sts_client(region) service_clients["greengrass_client"] = create_greengrass_client(region) return service_clients def create_s3_client(region=None): logging.debug("Creating s3 client") return boto3.client("s3", region_name=region) def create_sts_client(region=None): logging.debug("Creating sts client") return boto3.client("sts", region_name=region) def create_greengrass_client(region=None): logging.debug("Creating GreengrassV2 client") return boto3.client("greengrassv2", region_name=region)
38.376543
121
0.72913
3d54bf99d09bc685117ff53dd168f2c457c9fce7
46,084
py
Python
scripts/pylint_extensions.py
serbarbosa/oppia
450e094392995794553b2ad64cd82c233d9b591d
[ "Apache-2.0" ]
null
null
null
scripts/pylint_extensions.py
serbarbosa/oppia
450e094392995794553b2ad64cd82c233d9b591d
[ "Apache-2.0" ]
null
null
null
scripts/pylint_extensions.py
serbarbosa/oppia
450e094392995794553b2ad64cd82c233d9b591d
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements additional custom Pylint checkers to be used as part of presubmit checks. """ from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import os import re import sys import python_utils from . import docstrings_checker _PARENT_DIR = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) _PYLINT_PATH = os.path.join(_PARENT_DIR, 'oppia_tools', 'pylint-1.9.4') sys.path.insert(0, _PYLINT_PATH) # pylint: disable=wrong-import-order # pylint: disable=wrong-import-position import astroid # isort:skip from pylint import checkers # isort:skip from pylint import interfaces # isort:skip from pylint.checkers import typecheck # isort:skip from pylint.checkers import utils as checker_utils # isort:skip # pylint: enable=wrong-import-position # pylint: enable=wrong-import-order def read_from_node(node): """Returns the data read from the ast node in unicode form. Args: node: astroid.scoped_nodes.Function. Node to access module content. Returns: list(str). The data read from the ast node. """ return list(node.stream().readlines()) class ExplicitKeywordArgsChecker(checkers.BaseChecker): """Custom pylint checker which checks for explicit keyword arguments in any function call. """ __implements__ = interfaces.IAstroidChecker name = 'explicit-keyword-args' priority = -1 msgs = { 'C0001': ( 'Keyword argument %s should be named explicitly in %s call of %s.', 'non-explicit-keyword-args', 'All keyword arguments should be explicitly named in function call.' ), } def visit_call(self, node): """Visits each function call in a lint check. Args: node: Call. The current function call node. """ called = checker_utils.safe_infer(node.func) try: # For the rationale behind the Pylint pragma below, # see https://stackoverflow.com/a/35701863/8115428 called, implicit_args, callable_name = ( typecheck._determine_callable(called)) # pylint: disable=protected-access except ValueError: return if called.args.args is None: # Built-in functions have no argument information. return if len(called.argnames()) != len(set(called.argnames())): return # Build the set of keyword arguments and count the positional arguments. call_site = astroid.arguments.CallSite.from_call(node) num_positional_args = len(call_site.positional_arguments) keyword_args = list(call_site.keyword_arguments.keys()) already_filled_positionals = getattr(called, 'filled_positionals', 0) already_filled_keywords = getattr(called, 'filled_keywords', {}) keyword_args += list(already_filled_keywords) num_positional_args += already_filled_positionals num_positional_args += implicit_args # Analyze the list of formal parameters. num_mandatory_parameters = len(called.args.args) - len( called.args.defaults) parameters = [] parameter_name_to_index = {} for i, arg in enumerate(called.args.args): if isinstance(arg, astroid.Tuple): name = None else: assert isinstance(arg, astroid.AssignName) name = arg.name parameter_name_to_index[name] = i if i >= num_mandatory_parameters: defval = called.args.defaults[i - num_mandatory_parameters] else: defval = None parameters.append([(name, defval), False]) num_positional_args_unused = num_positional_args # Check that all parameters with a default value have # been called explicitly. for [(name, defval), _] in parameters: if defval: display_name = repr(name) if name not in keyword_args and ( num_positional_args_unused > ( num_mandatory_parameters)) and ( callable_name != 'constructor'): # This try/except block tries to get the function # name. Since each node may differ, multiple # blocks have been used. try: func_name = node.func.attrname except AttributeError: func_name = node.func.name self.add_message( 'non-explicit-keyword-args', node=node, args=( display_name, callable_name, func_name)) num_positional_args_unused -= 1 class HangingIndentChecker(checkers.BaseChecker): """Custom pylint checker which checks for break after parenthesis in case of hanging indentation. """ __implements__ = interfaces.IRawChecker name = 'hanging-indent' priority = -1 msgs = { 'C0002': ( ( 'There should be a break after parenthesis when content within ' 'parenthesis spans multiple lines.'), 'no-break-after-hanging-indent', ( 'If something within parenthesis extends along multiple lines, ' 'break after opening parenthesis.') ), } def process_module(self, node): """Process a module. Args: node: astroid.scoped_nodes.Function. Node to access module content. """ file_content = read_from_node(node) file_length = len(file_content) exclude = False for line_num in python_utils.RANGE(file_length): line = file_content[line_num].lstrip().rstrip() # The source files are read as bytes, hence the b' prefix. if line.startswith(b'"""') and not line.endswith(b'"""'): exclude = True if line.endswith(b'"""'): exclude = False if line.startswith(b'#') or exclude: continue line_length = len(line) bracket_count = 0 for char_num in python_utils.RANGE(line_length): char = line[char_num] if char == b'(': if bracket_count == 0: position = char_num bracket_count += 1 elif char == b')' and bracket_count > 0: bracket_count -= 1 if bracket_count > 0 and position + 1 < line_length: content = line[position + 1:] if not len(content) or not b',' in content: continue split_list = content.split(b', ') if len(split_list) == 1 and not any( char.isalpha() for char in split_list[0]): continue separators = set('@^! #%$&)(+*-=') if not any(char in separators for item in split_list for char in item): self.add_message( 'no-break-after-hanging-indent', line=line_num + 1) # The following class was derived from # https://github.com/PyCQA/pylint/blob/377cc42f9e3116ff97cddd4567d53e9a3e24ebf9/pylint/extensions/docparams.py#L26 class DocstringParameterChecker(checkers.BaseChecker): """Checker for Sphinx, Google, or Numpy style docstrings * Check that all function, method and constructor parameters are mentioned in the params and types part of the docstring. Constructor parameters can be documented in either the class docstring or ``__init__`` docstring, but not both. * Check that there are no naming inconsistencies between the signature and the documentation, i.e. also report documented parameters that are missing in the signature. This is important to find cases where parameters are renamed only in the code, not in the documentation. * Check that all explicitly raised exceptions in a function are documented in the function docstring. Caught exceptions are ignored. Args: linter: Pylinter. The linter object. """ __implements__ = interfaces.IAstroidChecker name = 'parameter_documentation' msgs = { 'W9005': ('"%s" has constructor parameters ' 'documented in class and __init__', 'multiple-constructor-doc', 'Please remove parameter declarations ' 'in the class or constructor.'), 'W9006': ('"%s" not documented as being raised', 'missing-raises-doc', 'Please document exceptions for ' 'all raised exception types.'), 'W9008': ('Redundant returns documentation', 'redundant-returns-doc', 'Please remove the return/rtype ' 'documentation from this method.'), 'W9010': ('Redundant yields documentation', 'redundant-yields-doc', 'Please remove the yields documentation from this method.'), 'W9011': ('Missing return documentation', 'missing-return-doc', 'Please add documentation about what this method returns.', {'old_names': [('W9007', 'missing-returns-doc')]}), 'W9012': ('Missing return type documentation', 'missing-return-type-doc', 'Please document the type returned by this method.', # We can't use the same old_name for two different warnings # {'old_names': [('W9007', 'missing-returns-doc')]}. ), 'W9013': ('Missing yield documentation', 'missing-yield-doc', 'Please add documentation about what this generator yields.', {'old_names': [('W9009', 'missing-yields-doc')]}), 'W9014': ('Missing yield type documentation', 'missing-yield-type-doc', 'Please document the type yielded by this method.', # We can't use the same old_name for two different warnings # {'old_names': [('W9009', 'missing-yields-doc')]}. ), 'W9015': ('"%s" missing in parameter documentation', 'missing-param-doc', 'Please add parameter declarations for all parameters.', {'old_names': [('W9003', 'missing-param-doc')]}), 'W9016': ('"%s" missing in parameter type documentation', 'missing-type-doc', 'Please add parameter type declarations for all parameters.', {'old_names': [('W9004', 'missing-type-doc')]}), 'W9017': ('"%s" differing in parameter documentation', 'differing-param-doc', 'Please check parameter names in declarations.', ), 'W9018': ('"%s" differing in parameter type documentation', 'differing-type-doc', 'Please check parameter names in type declarations.', ), } options = (('accept-no-param-doc', {'default': True, 'type': 'yn', 'metavar': '<y or n>', 'help': 'Whether to accept totally missing parameter ' 'documentation in the docstring of a ' 'function that has parameters.' }), ('accept-no-raise-doc', {'default': True, 'type': 'yn', 'metavar': '<y or n>', 'help': 'Whether to accept totally missing raises ' 'documentation in the docstring of a function that ' 'raises an exception.' }), ('accept-no-return-doc', {'default': True, 'type': 'yn', 'metavar': '<y or n>', 'help': 'Whether to accept totally missing return ' 'documentation in the docstring of a function that ' 'returns a statement.' }), ('accept-no-yields-doc', {'default': True, 'type': 'yn', 'metavar': '<y or n>', 'help': 'Whether to accept totally missing yields ' 'documentation in the docstring of a generator.' }), ) priority = -2 constructor_names = {'__init__', '__new__'} not_needed_param_in_docstring = {'self', 'cls'} def visit_functiondef(self, node): """Called for function and method definitions (def). Args: node: astroid.scoped_nodes.Function. Node for a function or method definition in the AST. """ node_doc = docstrings_checker.docstringify(node.doc) self.check_functiondef_params(node, node_doc) self.check_functiondef_returns(node, node_doc) self.check_functiondef_yields(node, node_doc) def check_functiondef_params(self, node, node_doc): """Checks whether all parameters in a function definition are documented. Args: node: astroid.scoped_nodes.Function. Node for a function or method definition in the AST. node_doc: Docstring. Pylint Docstring class instance representing a node's docstring. """ node_allow_no_param = None if node.name in self.constructor_names: class_node = checker_utils.node_frame_class(node) if class_node is not None: class_doc = docstrings_checker.docstringify(class_node.doc) self.check_single_constructor_params( class_doc, node_doc, class_node) # __init__ or class docstrings can have no parameters documented # as long as the other documents them. node_allow_no_param = ( class_doc.has_params() or class_doc.params_documented_elsewhere() or None ) class_allow_no_param = ( node_doc.has_params() or node_doc.params_documented_elsewhere() or None ) self.check_arguments_in_docstring( class_doc, node.args, class_node, accept_no_param_doc=class_allow_no_param) self.check_arguments_in_docstring( node_doc, node.args, node, accept_no_param_doc=node_allow_no_param) def check_functiondef_returns(self, node, node_doc): """Checks whether a function documented with a return value actually has a return statement in its definition. Args: node: astroid.scoped_nodes.Function. Node for a function or method definition in the AST. node_doc: Docstring. Pylint Docstring class instance representing a node's docstring. """ if not node_doc.supports_yields and node.is_generator(): return return_nodes = node.nodes_of_class(astroid.Return) if (( node_doc.has_returns() or node_doc.has_rtype()) and not any( docstrings_checker.returns_something( ret_node) for ret_node in return_nodes)): self.add_message( 'redundant-returns-doc', node=node) def check_functiondef_yields(self, node, node_doc): """Checks whether a function documented with a yield value actually has a yield statement in its definition. Args: node: astroid.scoped_nodes.Function. Node for a function or method definition in the AST. node_doc: Docstring. Pylint Docstring class instance representing a node's docstring. """ if not node_doc.supports_yields: return if ((node_doc.has_yields() or node_doc.has_yields_type()) and not node.is_generator()): self.add_message( 'redundant-yields-doc', node=node) def visit_raise(self, node): """Visits a function node that raises an exception and verifies that all exceptions raised in the function definition are documented. Args: node: astroid.scoped_nodes.Function. Node for a function or method definition in the AST. """ func_node = node.frame() if not isinstance(func_node, astroid.FunctionDef): return expected_excs = docstrings_checker.possible_exc_types(node) if not expected_excs: return if not func_node.doc: # If this is a property setter, # the property should have the docstring instead. property_ = docstrings_checker.get_setters_property(func_node) if property_: func_node = property_ doc = docstrings_checker.docstringify(func_node.doc) if not doc.is_valid(): if doc.doc: self._handle_no_raise_doc(expected_excs, func_node) return found_excs = doc.exceptions() missing_excs = expected_excs - found_excs self._add_raise_message(missing_excs, func_node) def visit_return(self, node): """Visits a function node that contains a return statement and verifies that the return value and the return type are documented. Args: node: astroid.scoped_nodes.Function. Node for a function or method definition in the AST. """ if not docstrings_checker.returns_something(node): return func_node = node.frame() doc = docstrings_checker.docstringify(func_node.doc) if not doc.is_valid() and self.config.accept_no_return_doc: return is_property = checker_utils.decorated_with_property(func_node) if not (doc.has_returns() or (doc.has_property_returns() and is_property)): self.add_message( 'missing-return-doc', node=func_node ) if not (doc.has_rtype() or (doc.has_property_type() and is_property)): self.add_message( 'missing-return-type-doc', node=func_node ) def visit_yield(self, node): """Visits a function node that contains a yield statement and verifies that the yield value and the yield type are documented. Args: node: astroid.scoped_nodes.Function. Node for a function or method definition in the AST. """ func_node = node.frame() doc = docstrings_checker.docstringify(func_node.doc) if not doc.is_valid() and self.config.accept_no_yields_doc: return doc_has_yields = doc.has_yields() doc_has_yields_type = doc.has_yields_type() if not doc_has_yields: self.add_message( 'missing-yield-doc', node=func_node ) if not doc_has_yields_type: self.add_message( 'missing-yield-type-doc', node=func_node ) def visit_yieldfrom(self, node): """Visits a function node that contains a yield from statement and verifies that the yield from value and the yield from type are documented. Args: node: astroid.scoped_nodes.Function. Node to access module content. """ self.visit_yield(node) def check_arguments_in_docstring( self, doc, arguments_node, warning_node, accept_no_param_doc=None): """Check that all parameters in a function, method or class constructor on the one hand and the parameters mentioned in the parameter documentation (e.g. the Sphinx tags 'param' and 'type') on the other hand are consistent with each other. * Undocumented parameters except 'self' are noticed. * Undocumented parameter types except for 'self' and the ``*<args>`` and ``**<kwargs>`` parameters are noticed. * Parameters mentioned in the parameter documentation that don't or no longer exist in the function parameter list are noticed. * If the text "For the parameters, see" or "For the other parameters, see" (ignoring additional whitespace) is mentioned in the docstring, missing parameter documentation is tolerated. * If there's no Sphinx style, Google style or NumPy style parameter documentation at all, i.e. ``:param`` is never mentioned etc., the checker assumes that the parameters are documented in another format and the absence is tolerated. Args: doc: str. Docstring for the function, method or class. arguments_node: astroid.scoped_nodes.Arguments. Arguments node for the function, method or class constructor. warning_node: astroid.scoped_nodes.Node. The node to assign the warnings to. accept_no_param_doc: bool|None. Whether or not to allow no parameters to be documented. If None then this value is read from the configuration. """ # Tolerate missing param or type declarations if there is a link to # another method carrying the same name. if not doc.doc: return if accept_no_param_doc is None: accept_no_param_doc = self.config.accept_no_param_doc tolerate_missing_params = doc.params_documented_elsewhere() # Collect the function arguments. expected_argument_names = set( arg.name for arg in arguments_node.args) expected_argument_names.update( arg.name for arg in arguments_node.kwonlyargs) not_needed_type_in_docstring = ( self.not_needed_param_in_docstring.copy()) if arguments_node.vararg is not None: expected_argument_names.add(arguments_node.vararg) not_needed_type_in_docstring.add(arguments_node.vararg) if arguments_node.kwarg is not None: expected_argument_names.add(arguments_node.kwarg) not_needed_type_in_docstring.add(arguments_node.kwarg) params_with_doc, params_with_type = doc.match_param_docs() # Tolerate no parameter documentation at all. if (not params_with_doc and not params_with_type and accept_no_param_doc): tolerate_missing_params = True def _compare_missing_args( found_argument_names, message_id, not_needed_names): """Compare the found argument names with the expected ones and generate a message if there are arguments missing. Args: found_argument_names: set. Argument names found in the docstring. message_id: str. Pylint message id. not_needed_names: set(str). Names that may be omitted. """ if not tolerate_missing_params: missing_argument_names = ( (expected_argument_names - found_argument_names) - not_needed_names) if missing_argument_names: self.add_message( message_id, args=(', '.join( sorted(missing_argument_names)),), node=warning_node) def _compare_different_args( found_argument_names, message_id, not_needed_names): """Compare the found argument names with the expected ones and generate a message if there are extra arguments found. Args: found_argument_names: set. Argument names found in the docstring. message_id: str. Pylint message id. not_needed_names: set(str). Names that may be omitted. """ differing_argument_names = ( (expected_argument_names ^ found_argument_names) - not_needed_names - expected_argument_names) if differing_argument_names: self.add_message( message_id, args=(', '.join( sorted(differing_argument_names)),), node=warning_node) _compare_missing_args(params_with_doc, 'missing-param-doc', self.not_needed_param_in_docstring) _compare_missing_args(params_with_type, 'missing-type-doc', not_needed_type_in_docstring) _compare_different_args(params_with_doc, 'differing-param-doc', self.not_needed_param_in_docstring) _compare_different_args(params_with_type, 'differing-type-doc', not_needed_type_in_docstring) def check_single_constructor_params(self, class_doc, init_doc, class_node): """Checks whether a class and corresponding init() method are documented. If both of them are documented, it adds an error message. Args: class_doc: Docstring. Pylint docstring class instance representing a class's docstring. init_doc: Docstring. Pylint docstring class instance representing a method's docstring, the method here is the constructor method for the above class. class_node: astroid.scoped_nodes.Function. Node for class definition in AST. """ if class_doc.has_params() and init_doc.has_params(): self.add_message( 'multiple-constructor-doc', args=(class_node.name,), node=class_node) def _handle_no_raise_doc(self, excs, node): """Checks whether the raised exception in a function has been documented, add a message otherwise. Args: excs: list(str). A list of exception types. node: astroid.scoped_nodes.Function. Node to access module content. """ if self.config.accept_no_raise_doc: return self._add_raise_message(excs, node) def _add_raise_message(self, missing_excs, node): """Adds a message on :param:`node` for the missing exception type. Args: missing_excs: list. A list of missing exception types. node: astroid.node_classes.NodeNG. The node show the message on. """ if not missing_excs: return self.add_message( 'missing-raises-doc', args=(', '.join(sorted(missing_excs)),), node=node) class ImportOnlyModulesChecker(checkers.BaseChecker): """Checker for import-from statements. It checks that modules are only imported. """ __implements__ = interfaces.IAstroidChecker name = 'import-only-modules' priority = -1 msgs = { 'C0003': ( 'Import \"%s\" from \"%s\" is not a module.', 'import-only-modules', 'Modules should only be imported.', ), } @checker_utils.check_messages('import-only-modules') def visit_importfrom(self, node): """Visits all import-from statements in a python file and checks that modules are imported. It then adds a message accordingly. Args: node: astroid.node_classes.ImportFrom. Node for a import-from statement in the AST. """ try: imported_module = node.do_import_module(node.modname) except astroid.AstroidBuildingException: return if node.level is None: modname = node.modname else: modname = '.' * node.level + node.modname for (name, _) in node.names: if name == 'constants': continue try: imported_module.import_module(name, True) except astroid.AstroidImportError: self.add_message( 'import-only-modules', node=node, args=(name, modname), ) class BackslashContinuationChecker(checkers.BaseChecker): """Custom pylint checker which checks that backslash is not used for continuation. """ __implements__ = interfaces.IRawChecker name = 'backslash-continuation' priority = -1 msgs = { 'C0004': ( ( 'Backslash should not be used to break continuation lines. ' 'Use braces to break long lines.'), 'backslash-continuation', 'Use braces to break long lines instead of backslash.' ), } def process_module(self, node): """Process a module. Args: node: astroid.scoped_nodes.Function. Node to access module content. """ file_content = read_from_node(node) for (line_num, line) in enumerate(file_content): if line.rstrip(b'\r\n').endswith(b'\\'): self.add_message( 'backslash-continuation', line=line_num + 1) class FunctionArgsOrderChecker(checkers.BaseChecker): """Custom pylint checker which checks the order of arguments in function definition. """ __implements__ = interfaces.IAstroidChecker name = 'function-args-order' priority = -1 msgs = { 'C0005': ( 'Wrong order of arguments in function definition ' '\'self\' should come first.', 'function-args-order-self', '\'self\' should come first',), 'C0006': ( 'Wrong order of arguments in function definition ' '\'cls\' should come first.', 'function-args-order-cls', '\'cls\' should come first'), } def visit_functiondef(self, node): """Visits every function definition in the python file and check the function arguments order. It then adds a message accordingly. Args: node: astroid.scoped_nodes.Function. Node for a function or method definition in the AST. """ args_list = [args.name for args in node.args.args] if 'self' in args_list and args_list[0] != 'self': self.add_message('function-args-order-self', node=node) elif 'cls' in args_list and args_list[0] != 'cls': self.add_message('function-args-order-cls', node=node) class RestrictedImportChecker(checkers.BaseChecker): """Custom pylint checker which checks layers importing modules from their respective restricted layers. """ __implements__ = interfaces.IAstroidChecker name = 'invalid-import' priority = -1 msgs = { 'C0009': ( 'Importing %s layer in %s layer is prohibited.', 'invalid-import', 'Storage layer and domain layer must not import' 'domain layer and controller layer respectively.'), } def visit_import(self, node): """Visits every import statement in the file. Args: node: astroid.node_classes.Import. Node for a import statement in the AST. """ modnode = node.root() names = [name for name, _ in node.names] # Checks import of domain layer in storage layer. if 'oppia.core.storage' in modnode.name and not '_test' in modnode.name: if any('core.domain' in name for name in names): self.add_message( 'invalid-import', node=node, args=('domain', 'storage'), ) # Checks import of controller layer in domain layer. if 'oppia.core.domain' in modnode.name and not '_test' in modnode.name: if any('core.controllers' in name for name in names): self.add_message( 'invalid-import', node=node, args=('controller', 'domain'), ) def visit_importfrom(self, node): """Visits all import-from statements in a python file and checks that modules are imported. It then adds a message accordingly. Args: node: astroid.node_classes.ImportFrom. Node for a import-from statement in the AST. """ modnode = node.root() if 'oppia.core.storage' in modnode.name and not '_test' in modnode.name: if 'core.domain' in node.modname: self.add_message( 'invalid-import', node=node, args=('domain', 'storage'), ) if 'oppia.core.domain' in modnode.name and not '_test' in modnode.name: if 'core.controllers' in node.modname: self.add_message( 'invalid-import', node=node, args=('controller', 'domain'), ) class SingleCharAndNewlineAtEOFChecker(checkers.BaseChecker): """Checker for single character files and newline at EOF.""" __implements__ = interfaces.IRawChecker name = 'newline-at-eof' priority = -1 msgs = { 'C0007': ( 'Files should end in a single newline character.', 'newline-at-eof', 'Please enter a single newline at the end of the file.'), 'C0008': ( 'Only one character in file', 'only-one-character', 'Files with only one character are not allowed.'), } def process_module(self, node): """Process a module. Args: node: astroid.scoped_nodes.Function. Node to access module content. """ file_content = read_from_node(node) file_length = len(file_content) if file_length == 1 and len(file_content[0]) == 1: self.add_message('only-one-character', line=file_length) if file_length >= 2 and not re.search(r'[^\n]\n', file_content[-1]): self.add_message('newline-at-eof', line=file_length) class SingleSpaceAfterYieldChecker(checkers.BaseChecker): """Checks if only one space is used after a yield statement when applicable ('yield' is acceptable). """ __implements__ = interfaces.IRawChecker name = 'single-space-after-yield' priority = -1 msgs = { 'C0010': ( 'Not using \'yield\' or a single space after yield statement.', 'single-space-after-yield', 'Ensure a single space is used after yield statement.', ), } def process_module(self, node): """Process a module to ensure that yield keywords are followed by exactly one space, so matching 'yield *' where * is not a whitespace character. Note that 'yield' is also acceptable in cases where the user wants to yield nothing. Args: node: astroid.scoped_nodes.Function. Node to access module content. """ in_multi_line_comment = False multi_line_indicator = b'"""' file_content = read_from_node(node) for (line_num, line) in enumerate(file_content): bare_line = line.strip() # Single multi-line comment, ignore it. if bare_line.count(multi_line_indicator) == 2: continue # Flip multi-line boolean depending on whether or not we see # the multi-line indicator. Possible for multiline comment to # be somewhere other than the start of a line (e.g. func arg), # so we can't look at start of or end of a line, which is why # the case where two indicators in a single line is handled # separately (i.e. one line comment with multi-line strings). if multi_line_indicator in bare_line: in_multi_line_comment = not in_multi_line_comment # Ignore anything inside a multi-line comment. if in_multi_line_comment: continue # Whitespace to right of yield keyword is important for regex. # Allows alphabet characters and underscore for cases where 'yield' # is used at the start of a variable name. source_line = line.lstrip() if (source_line.startswith(b'yield') and not re.search(br'^(yield)( \S|$|\w)', source_line)): self.add_message('single-space-after-yield', line=line_num + 1) class ExcessiveEmptyLinesChecker(checkers.BaseChecker): """Checks if there are excessive newlines between method definitions.""" __implements__ = interfaces.IRawChecker name = 'excessive-new-lines' priority = -1 msgs = { 'C0011': ( 'Excessive new lines between function definations.', 'excessive-new-lines', 'Remove extra newlines.' ) } def process_module(self, node): """Process a module to ensure that method definitions are not seperated by more than two blank lines. Args: node: astroid.scoped_nodes.Function. Node to access module content. """ in_multi_line_comment = False multi_line_indicator = b'"""' file_content = read_from_node(node) file_length = len(file_content) blank_line_counter = 0 for line_num in python_utils.RANGE(file_length): line = file_content[line_num].strip() # Single multi-line comment, ignore it. if line.count(multi_line_indicator) == 2: continue # Flip multi-line boolean depending on whether or not we see # the multi-line indicator. Possible for multiline comment to # be somewhere other than the start of a line (e.g. func arg), # so we can't look at start of or end of a line, which is why # the case where two indicators in a single line is handled # separately (i.e. one line comment with multi-line strings). if multi_line_indicator in line: in_multi_line_comment = not in_multi_line_comment # Ignore anything inside a multi-line comment. if in_multi_line_comment: continue if file_content[line_num] == b'\n': blank_line_counter += 1 else: blank_line_counter = 0 if line_num + 1 < file_length and blank_line_counter > 2: line = file_content[line_num + 1].strip() if line.startswith(b'def') or line.startswith(b'@'): self.add_message('excessive-new-lines', line=line_num + 1) class SingleNewlineAboveArgsChecker(checkers.BaseChecker): """Checker for single space above args in python doc string.""" __implements__ = interfaces.IRawChecker name = 'single-space-above-args-raises-returns' priority = -1 msgs = { 'C0012': ( 'Files must have a single newline above args in doc string.', 'single-space-above-args', 'Please enter a single newline above args in doc string.' ), 'C0013': ( 'Files must have a single newline above returns in doc string.', 'single-space-above-returns', 'Please enter a single newline above returns in doc string.' ), 'C0014': ( 'Files must have a single newline above raises in doc string.', 'single-space-above-raises', 'Please enter a single newline above raises in doc string.' ) } def process_module(self, node): """Process a module to ensure that there is a single newline above args, raises, returns in python doc string. Args: node: astroid.scoped_nodes.Function. Node to access module content. """ in_multi_line_comment = False multi_line_indicator = b'"""' file_content = read_from_node(node) file_length = len(file_content) blank_line_counter = 0 for line_num in python_utils.RANGE(file_length): line = file_content[line_num].strip() # Single multi-line comment, ignore it. if line.count(multi_line_indicator) == 2: continue # Flip multi-line boolean depending on whether or not we see # the multi-line indicator. Possible for multiline comment to # be somewhere other than the start of a line (e.g. func arg), # so we can't look at start of or end of a line, which is why # the case where two indicators in a single line is handled # separately (i.e. one line comment with multi-line strings). if multi_line_indicator in line: in_multi_line_comment = not in_multi_line_comment # Ignore anything inside a multi-line comment. if in_multi_line_comment: continue if file_content[line_num] == b'\n': blank_line_counter += 1 else: blank_line_counter = 0 if (line_num + 1 < file_length and ( blank_line_counter == 0 or blank_line_counter > 1)): line = file_content[line_num + 1].strip() if line == b'Args:': self.add_message( 'single-space-above-args', line=line_num + 1) elif line == b'Returns:': self.add_message( 'single-space-above-returns', line=line_num + 1) elif line == b'Raises:': self.add_message( 'single-space-above-raises', line=line_num + 1) class DivisionOperatorChecker(checkers.BaseChecker): """Checks if division operator is used.""" __implements__ = interfaces.IRawChecker name = 'division-operator-used' priority = -1 msgs = { 'C0015': ( 'Division Operator is used.', 'division-operator-used', 'Please use python_utils.divide() instead of the "/" operator' ) } def process_module(self, node): """Process a module to ensure that the division operator('/') is not used and python_utils.divide() is used instead. Args: node: astroid.scoped_nodes.Function. Node to access module content. """ in_multi_line_comment = False multi_line_indicator = b'"""' string_indicator = b'\'' file_content = read_from_node(node) file_length = len(file_content) for line_num in python_utils.RANGE(file_length): line = file_content[line_num].strip() # Single line comment, ignore it. if line.startswith(b'#'): continue # Single multi-line comment, ignore it. if line.count(multi_line_indicator) == 2: continue # Flip multi-line boolean depending on whether or not we see # the multi-line indicator. Possible for multiline comment to # be somewhere other than the start of a line (e.g. func arg), # so we can't look at start of or end of a line, which is why # the case where two indicators in a single line is handled # separately (i.e. one line comment with multi-line strings). if multi_line_indicator in line: in_multi_line_comment = not in_multi_line_comment # Ignore anything inside a multi-line comment. if in_multi_line_comment: continue # Ignore anything inside a string. if line.count(string_indicator) >= 2: continue if re.search(br'[^/]/[^/]', line): self.add_message( 'division-operator-used', line=line_num + 1) def register(linter): """Registers the checker with pylint. Args: linter: Pylinter. The Pylinter object. """ linter.register_checker(ExplicitKeywordArgsChecker(linter)) linter.register_checker(HangingIndentChecker(linter)) linter.register_checker(DocstringParameterChecker(linter)) linter.register_checker(ImportOnlyModulesChecker(linter)) linter.register_checker(BackslashContinuationChecker(linter)) linter.register_checker(FunctionArgsOrderChecker(linter)) linter.register_checker(RestrictedImportChecker(linter)) linter.register_checker(SingleCharAndNewlineAtEOFChecker(linter)) linter.register_checker(SingleSpaceAfterYieldChecker(linter)) linter.register_checker(ExcessiveEmptyLinesChecker(linter)) linter.register_checker(SingleNewlineAboveArgsChecker(linter)) linter.register_checker(DivisionOperatorChecker(linter))
39.120543
114
0.59244
9b7ad98e41280dacbdff14e258b300919af0cdc2
3,748
py
Python
agrspy/envspy-histaqi/codes/postproc.py
soonyenju/agrspy
1c5d11d48933f7392d2246fda487256d5cd5b239
[ "MIT" ]
2
2019-01-10T07:00:25.000Z
2019-01-10T07:15:00.000Z
agrspy/envspy-histaqi/codes/postproc.py
soonyenju/arspy
1c5d11d48933f7392d2246fda487256d5cd5b239
[ "MIT" ]
null
null
null
agrspy/envspy-histaqi/codes/postproc.py
soonyenju/arspy
1c5d11d48933f7392d2246fda487256d5cd5b239
[ "MIT" ]
null
null
null
import os, json import config import numpy as np import pandas as pd from datetime import datetime from pathlib import Path class Postor(config.Config): """ Create a new postor """ def __init__(self, hub_path): super(Postor, self).__init__() self.hub_path = hub_path def merger(self, new_path, out_name = 'merged.json', replace = False): # 改用dict.update()方法!! with open(self.hub_path, "r", encoding='utf-8') as f: aqi_hub = json.load(f) with open(new_path, "r", encoding='utf-8') as f: aqi_new = json.load(f) for prov_name, prov_data in aqi_new.items(): print(prov_name) for city_name, city_data in prov_data.items(): print(city_name) if not city_name in aqi_hub[prov_name].keys(): aqi_hub[prov_name][city_name] = {} for mon_name, mon_data in city_data.items(): print(mon_name) if mon_name in aqi_hub[prov_name][city_name].keys(): if replace == True: aqi_hub[prov_name][city_name][mon_name] = aqi_new[prov_name][city_name][mon_name] else: aqi_hub[prov_name][city_name][mon_name] = aqi_new[prov_name][city_name][mon_name] with open(self.folder_json.joinpath(out_name), "w", encoding='utf-8') as f: json.dump(aqi_hub, f, ensure_ascii=False, indent=4) def batch_json2csv(self, prov_name = None, city_name = None): with open(self.hub_path, 'r', encoding='utf-8') as f: histaqi = json.load(f) aqi_dfs = self.retrieve_data(histaqi, prov_name = prov_name, city_name = city_name) for prov_name, prov_data in aqi_dfs.items(): prov_path = self.folder_csv.joinpath(prov_name) if not prov_path.exists(): os.makedirs(prov_path) for city_name, city_data in prov_data.items(): csv_name = prov_path.joinpath(city_name + '.csv') if not os.path.exists(csv_name.as_posix()): city_data.to_csv(csv_name) print(f'{prov_name}: {city_name} is successfully transferred to csv.') def retrieve_data(self, histaqi, prov_name = None, city_name = None): try: if city_name: print("fetching " + city_name) city_data = histaqi[prov_name][city_name] results = self.fetch_data(city_data) else: print("city name is not specified, fetching " + prov_name) results = {} for city_name, city_data in histaqi[prov_name].items(): print(city_name) result = self.fetch_data(city_data) results[city_name] = result except Exception as identifier: print(identifier) print("no name is specified, iterating...") results = {} for prov_name, prov_data in histaqi.items(): print(prov_name) results[prov_name] = {} for city_name, city_data in prov_data.items(): print(city_name) result = self.fetch_data(city_data) results[prov_name][city_name] = result print("iteration is done") else: print("retrieval is done.") finally: return results def fetch_data(self, city_data): result = [] for val in city_data.values(): result.extend(val) result = np.array(result).reshape(-1, 9) result = pd.DataFrame(result, columns = ['Date', 'aqi', 'aqi-rank', \ 'pm25', 'pm10', 'so2', 'no2', 'co', 'o3']) result['Date'] = pd.to_datetime(result['Date']).sort_index() result.set_index("Date", inplace=True) result = pd.DataFrame(result, dtype=np.float).sort_index() return result def eliminate_spaces(self): ''' 去除city_name中的空格 ''' with open(self.hub_path, 'r', encoding='utf-8') as f: histaqi = json.load(f) for prov_name, prov_data in histaqi.items(): print(prov_name) for city_name in prov_data.keys(): print(city_name) # print(histaqi[prov_name]) histaqi[prov_name][city_name.strip()] = histaqi[prov_name].pop(city_name) with open(self.hub_path, "w") as f: json.dump(histaqi, f, ensure_ascii = False, indent = 4)
32.034188
88
0.688367
308ffd4b8d5e47a7cfc10617f76181bbcb029edb
17,292
py
Python
venv/lib/python3.6/site-packages/ansible_collections/cisco/ucs/plugins/modules/ucs_ip_pool.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
10
2020-05-19T01:51:28.000Z
2021-11-16T11:36:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/cisco/ucs/plugins/modules/ucs_ip_pool.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
19
2020-03-04T15:35:26.000Z
2022-03-31T04:35:19.000Z
venv/lib/python3.6/site-packages/ansible_collections/cisco/ucs/plugins/modules/ucs_ip_pool.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
9
2019-12-03T15:20:02.000Z
2021-06-18T18:08:39.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: ucs_ip_pool short_description: Configures IP address pools on Cisco UCS Manager description: - Configures IP address pools and blocks of IP addresses on Cisco UCS Manager. extends_documentation_fragment: cisco.ucs.ucs options: state: description: - If C(present), will verify IP pool is present and will create if needed. - If C(absent), will verify IP pool is absent and will delete if needed. choices: [present, absent] default: present name: description: - The name of the IP address pool. - This name can be between 1 and 32 alphanumeric characters. - "You cannot use spaces or any special characters other than - (hyphen), \"_\" (underscore), : (colon), and . (period)." - You cannot change this name after the IP address pool is created. required: yes description: description: - The user-defined description of the IP address pool. - Enter up to 256 characters. - "You can use any characters or spaces except the following:" - "` (accent mark), \ (backslash), ^ (carat), \" (double quote), = (equal sign), > (greater than), < (less than), or ' (single quote)." aliases: [ descr ] order: description: - The Assignment Order field. - "This can be one of the following:" - "default - Cisco UCS Manager selects a random identity from the pool." - "sequential - Cisco UCS Manager selects the lowest available identity from the pool." choices: [default, sequential] default: default ip_blocks: description: - List of IPv4 blocks used by the IP Pool. suboptions: first_addr: description: - The first IPv4 address in the IPv4 addresses block. - This is the From field in the UCS Manager Add IPv4 Blocks menu. last_addr: description: - The last IPv4 address in the IPv4 addresses block. - This is the To field in the UCS Manager Add IPv4 Blocks menu. subnet_mask: description: - The subnet mask associated with the IPv4 addresses in the block. default: 255.255.255.0 default_gw: description: - The default gateway associated with the IPv4 addresses in the block. default: 0.0.0.0 primary_dns: description: - The primary DNS server that this block of IPv4 addresses should access. default: 0.0.0.0 secondary_dns: description: - The secondary DNS server that this block of IPv4 addresses should access. default: 0.0.0.0 ipv6_blocks: description: - List of IPv6 blocks used by the IP Pool. suboptions: ipv6_first_addr: description: - The first IPv6 address in the IPv6 addresses block. - This is the From field in the UCS Manager Add IPv6 Blocks menu. ipv6_last_addr: description: - The last IPv6 address in the IPv6 addresses block. - This is the To field in the UCS Manager Add IPv6 Blocks menu. ipv6_prefix: description: - The network address prefix associated with the IPv6 addresses in the block. default: '64' ipv6_default_gw: description: - The default gateway associated with the IPv6 addresses in the block. default: '::' ipv6_primary_dns: description: - The primary DNS server that this block of IPv6 addresses should access. default: '::' ipv6_secondary_dns: description: - The secondary DNS server that this block of IPv6 addresses should access. default: '::' org_dn: description: - Org dn (distinguished name) default: org-root requirements: - ucsmsdk author: - Brett Johnson (@sdbrett) - David Soper (@dsoper2) - John McDonough (@movinalot) - CiscoUcs (@CiscoUcs) version_added: '2.5' ''' EXAMPLES = r''' - name: Configure IPv4 and IPv6 address pool cisco.ucs.ucs_ip_pool: hostname: "{{ ucs_hostname }}" username: "{{ ucs_username }}" password: "{{ ucs_password }}" name: ip-pool-01 org_dn: org-root/org-level1 ipv4_blocks: - first_addr: 192.168.10.1 last_addr: 192.168.10.20 subnet_mask: 255.255.255.128 default_gw: 192.168.10.2 - first_addr: 192.168.11.1 last_addr: 192.168.11.20 subnet_mask: 255.255.255.128 default_gw: 192.168.11.2 ipv6_blocks: - ipv6_first_addr: fe80::1cae:7992:d7a1:ed07 ipv6_last_addr: fe80::1cae:7992:d7a1:edfe ipv6_default_gw: fe80::1cae:7992:d7a1:ecff - ipv6_first_addr: fe80::1cae:7992:d7a1:ec07 ipv6_last_addr: fe80::1cae:7992:d7a1:ecfe ipv6_default_gw: fe80::1cae:7992:d7a1:ecff - name: Delete IPv4 and IPv6 address pool blocks cisco.ucs.ucs_ip_pool: hostname: "{{ ucs_hostname }}" username: "{{ ucs_username }}" password: "{{ ucs_password }}" name: ip-pool-01 org_dn: org-root/org-level1 ipv4_blocks: - first_addr: 192.168.10.1 last_addr: 192.168.10.20 state: absent ipv6_blocks: - ipv6_first_addr: fe80::1cae:7992:d7a1:ec07 ipv6_last_addr: fe80::1cae:7992:d7a1:ecfe state: absent - name: Remove IPv4 and IPv6 address pool cisco.ucs.ucs_ip_pool: hostname: "{{ ucs_hostname }}" username: "{{ ucs_username }}" password: "{{ ucs_password }}" name: ip-pool-01 state: absent ''' RETURN = r''' # ''' def update_ip_pool(ucs, module): from ucsmsdk.mometa.ippool.IppoolPool import IppoolPool mo = IppoolPool( parent_mo_or_dn=module.params['org_dn'], name=module.params['name'], descr=module.params['descr'], assignment_order=module.params['order'], ) ucs.login_handle.add_mo(mo, True) ucs.login_handle.commit() return mo def match_existing_ipv4_block(ucs, dn, ipv4_block): # ipv4 block specified, check properties mo_1 = get_ip_block(ucs, dn, ipv4_block['first_addr'], ipv4_block['last_addr'], 'v4') if not mo_1: if ipv4_block['state'] == 'absent': return True return False else: if ipv4_block['state'] == 'absent': return False kwargs = dict(subnet=ipv4_block['subnet_mask']) kwargs['def_gw'] = ipv4_block['default_gw'] kwargs['prim_dns'] = ipv4_block['primary_dns'] kwargs['sec_dns'] = ipv4_block['secondary_dns'] return mo_1.check_prop_match(**kwargs) def match_existing_ipv6_block(ucs, dn, ipv6_block): # ipv6 block specified, check properties mo_1 = get_ip_block(ucs, dn, ipv6_block['ipv6_first_addr'], ipv6_block['ipv6_last_addr'], 'v6') if not mo_1: if ipv6_block['state'] == 'absent': return True return False else: if ipv6_block['state'] == 'absent': return False kwargs = dict(prefix=ipv6_block['ipv6_prefix']) kwargs['def_gw'] = ipv6_block['ipv6_default_gw'] kwargs['prim_dns'] = ipv6_block['ipv6_primary_dns'] kwargs['sec_dns'] = ipv6_block['ipv6_secondary_dns'] return mo_1.check_prop_match(**kwargs) def remove_ip_block(ucs, dn, ip_block, ip_version): if ip_version == 'v6': first_addr = ip_block['ipv6_first_addr'] last_addr = ip_block['ipv6_last_addr'] else: first_addr = ip_block['first_addr'] last_addr = ip_block['last_addr'] mo_1 = get_ip_block(ucs, dn, first_addr, last_addr, ip_version) if mo_1: ucs.login_handle.remove_mo(mo_1) ucs.login_handle.commit() def update_ip_block(ucs, mo, ip_block, ip_version): remove_ip_block(ucs, mo.dn, ip_block, ip_version) if not ip_block['state'] == 'absent': if ip_version == 'v6': from ucsmsdk.mometa.ippool.IppoolIpV6Block import IppoolIpV6Block IppoolIpV6Block( parent_mo_or_dn=mo, to=ip_block['ipv6_last_addr'], r_from=ip_block['ipv6_first_addr'], prefix=ip_block['ipv6_prefix'], def_gw=ip_block['ipv6_default_gw'], prim_dns=ip_block['ipv6_primary_dns'], sec_dns=ip_block['ipv6_secondary_dns'] ) ucs.login_handle.add_mo(mo, True) ucs.login_handle.commit() else: from ucsmsdk.mometa.ippool.IppoolBlock import IppoolBlock IppoolBlock( parent_mo_or_dn=mo, to=ip_block['last_addr'], r_from=ip_block['first_addr'], subnet=ip_block['subnet_mask'], def_gw=ip_block['default_gw'], prim_dns=ip_block['primary_dns'], sec_dns=ip_block['secondary_dns'] ) ucs.login_handle.add_mo(mo, True) ucs.login_handle.commit() def get_ip_block(ucs, pool_dn, first_addr, last_addr, ip_version): if ip_version == 'v6': dn_type = '/v6block-' else: dn_type = '/block-' block_dn = pool_dn + dn_type + first_addr + '-' + last_addr return ucs.login_handle.query_dn(block_dn) def main(): from ansible.module_utils.basic import AnsibleModule from ansible_collections.cisco.ucs.plugins.module_utils.ucs import UCSModule, ucs_argument_spec ipv4_configuration_spec = dict( first_addr=dict(type='str'), last_addr=dict(type='str'), subnet_mask=dict(type='str', default='255.255.255.0'), default_gw=dict(type='str', default='0.0.0.0'), primary_dns=dict(type='str', default='0.0.0.0'), secondary_dns=dict(type='str', default='0.0.0.0'), state=dict(type='str', default='present', choices=['present', 'absent']), ) ipv6_configuration_spec = dict( ipv6_first_addr=dict(type='str'), ipv6_last_addr=dict(type='str'), ipv6_prefix=dict(type='str', default='64'), ipv6_default_gw=dict(type='str', default='::'), ipv6_primary_dns=dict(type='str', default='::'), ipv6_secondary_dns=dict(type='str', default='::'), state=dict(type='str', default='present', choices=['present', 'absent']), ) argument_spec = ucs_argument_spec argument_spec.update( org_dn=dict(type='str', default='org-root'), name=dict(type='str', required=True), descr=dict(type='str', default='', aliases=['description']), order=dict(type='str', default='default', choices=['default', 'sequential']), first_addr=dict(type='str'), last_addr=dict(type='str'), subnet_mask=dict(type='str', default='255.255.255.0'), default_gw=dict(type='str', default='0.0.0.0'), primary_dns=dict(type='str', default='0.0.0.0'), secondary_dns=dict(type='str', default='0.0.0.0'), ipv6_first_addr=dict(type='str'), ipv6_last_addr=dict(type='str'), ipv6_prefix=dict(type='str', default='64'), ipv6_default_gw=dict(type='str', default='::'), ipv6_primary_dns=dict(type='str', default='::'), ipv6_secondary_dns=dict(type='str', default='::'), state=dict(type='str', default='present', choices=['present', 'absent']), ipv4_blocks=dict(type='list', default=None, elements='dict', options=ipv4_configuration_spec), ipv6_blocks=dict(type='list', default=None, elements='dict', options=ipv6_configuration_spec), ) module = AnsibleModule( argument_spec, supports_check_mode=True, ) # UCSModule verifies ucsmsdk is present and exits on failure. Imports are below ucs object creation. ucs = UCSModule(module) err = False from ucsmsdk.mometa.ippool.IppoolBlock import IppoolBlock from ucsmsdk.mometa.ippool.IppoolIpV6Block import IppoolIpV6Block changed = False try: mo_exists = False ipv4_props_match = True ipv6_props_match = True # dn is <org_dn>/ip-pool-<name> dn = module.params['org_dn'] + '/ip-pool-' + module.params['name'] mo = ucs.login_handle.query_dn(dn) if mo: mo_exists = True if module.params['state'] == 'absent': if mo_exists: if not module.check_mode: ucs.login_handle.remove_mo(mo) ucs.login_handle.commit() changed = True else: if not mo_exists: if not module.check_mode: mo = update_ip_pool(ucs, module) changed = True if mo_exists: # check top-level mo props kwargs = dict(assignment_order=module.params['order']) kwargs['descr'] = module.params['descr'] if not mo.check_prop_match(**kwargs): if not module.check_mode: mo = update_ip_pool(ucs, module) changed = True # top-level props match, check next level mo/props if module.params['ipv4_blocks']: for ipv4_block in module.params['ipv4_blocks']: if not match_existing_ipv4_block(ucs, dn, ipv4_block): if not module.check_mode: update_ip_block(ucs, mo, ipv4_block, 'v4') changed = True elif module.params['last_addr'] and module.params['first_addr']: # ipv4 block specified, check properties mo_1 = get_ip_block(ucs, dn, module.params['first_addr'], module.params['last_addr'], 'v4') if mo_1: kwargs = dict(subnet=module.params['subnet_mask']) kwargs['def_gw'] = module.params['default_gw'] kwargs['prim_dns'] = module.params['primary_dns'] kwargs['sec_dns'] = module.params['secondary_dns'] if not mo_1.check_prop_match(**kwargs): # ipv4 block exists and properties match ipv4_props_match = False else: ipv4_props_match = False # only check ipv6 props if the top-level and ipv4 props matched if module.params['ipv6_blocks']: for ipv6_block in module.params['ipv6_blocks']: if not match_existing_ipv6_block(ucs, dn, ipv6_block): if not module.check_mode: update_ip_block(ucs, mo, ipv6_block, 'v6') changed = True elif module.params['ipv6_last_addr'] and module.params['ipv6_first_addr']: # ipv6 block specified, check properties block_dn = dn + '/v6block-' + module.params['ipv6_first_addr'].lower() + '-' + module.params[ 'ipv6_last_addr'].lower() mo_1 = ucs.login_handle.query_dn(block_dn) if mo_1: kwargs = dict(prefix=module.params['ipv6_prefix']) kwargs['def_gw'] = module.params['ipv6_default_gw'] kwargs['prim_dns'] = module.params['ipv6_primary_dns'] kwargs['sec_dns'] = module.params['ipv6_secondary_dns'] if not mo_1.check_prop_match(**kwargs): # ipv6 block exists and properties match ipv6_props_match = False else: ipv6_props_match = False if not ipv4_props_match or not ipv6_props_match: if not module.check_mode: if module.params['last_addr'] and module.params['first_addr']: IppoolBlock( parent_mo_or_dn=mo, to=module.params['last_addr'], r_from=module.params['first_addr'], subnet=module.params['subnet_mask'], def_gw=module.params['default_gw'], prim_dns=module.params['primary_dns'], sec_dns=module.params['secondary_dns'], ) if module.params['ipv6_last_addr'] and module.params['ipv6_first_addr']: IppoolIpV6Block( parent_mo_or_dn=mo, to=module.params['ipv6_last_addr'], r_from=module.params['ipv6_first_addr'], prefix=module.params['ipv6_prefix'], def_gw=module.params['ipv6_default_gw'], prim_dns=module.params['ipv6_primary_dns'], sec_dns=module.params['ipv6_secondary_dns'], ) ucs.login_handle.add_mo(mo, True) ucs.login_handle.commit() changed = True except Exception as e: err = True ucs.result['msg'] = "setup error: %s " % str(e) ucs.result['changed'] = changed if err: module.fail_json(**ucs.result) module.exit_json(**ucs.result) if __name__ == '__main__': main()
38.172185
139
0.601319
d06092a45e6010a00b87ac6dfd277439886bd190
1,408
py
Python
scripts/Archive/oldmakecenters3d.py
wahabk/colloidoscope
508918703405e07c336c0ad97cf6b3e87db311bb
[ "MIT" ]
null
null
null
scripts/Archive/oldmakecenters3d.py
wahabk/colloidoscope
508918703405e07c336c0ad97cf6b3e87db311bb
[ "MIT" ]
null
null
null
scripts/Archive/oldmakecenters3d.py
wahabk/colloidoscope
508918703405e07c336c0ad97cf6b3e87db311bb
[ "MIT" ]
null
null
null
def make_random_centers_3d(canvas_size, n, zoom, min_dist): ''' Generate random centers of particles This is a place holder for bringing in simulated particle trajectories from dynamo ''' canvas_size = [int(c/zoom) for c in canvas_size] min_dist = min_dist/zoom z = random.randint(0, canvas_size[0]) y = random.randint(0, canvas_size[1]) x = random.randint(0, canvas_size[2]) centers = [(z,y,x)] # make first particle for i in range(n): too_close = True while too_close: z = random.randint(0, canvas_size[0]) y = random.randint(0, canvas_size[1]) x = random.randint(0, canvas_size[2]) centers.append((z,y,x)) distances = spatial.distance.pdist(centers) if all(i > min_dist for i in distances): too_close = False break else: centers.pop() # get rid of last element if too close return centers def draw_sphere(canvas, center, r): cz, cy, cx = center for i in range(canvas.shape[0]): for j in range(canvas.shape[1]): for k in range(canvas.shape[2]): if (i - cz)**2 + (j - cy)**2 + (k - cx)**2 <= r**2: canvas[i,j,k] = 255 return canvas def draw_multiple_spheres(canvas, centers, r): for center in centers: cz, cy, cx = center for i in range(canvas.shape[0]): for j in range(canvas.shape[1]): for k in range(canvas.shape[2]): if (i - cz)**2 + (j - cy)**2 + (k - cx)**2 <= r**2: canvas[i,j,k] = 255 return canvas
31.288889
83
0.650568
1a6b682192abb5e6c2fd29f18d7934ec83bbc162
21,490
py
Python
src/tests/api/test_permissions.py
prereg/prereg
5000c279a801fa2260009b15dd90e3bd4f447785
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/tests/api/test_permissions.py
prereg/prereg
5000c279a801fa2260009b15dd90e3bd4f447785
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/tests/api/test_permissions.py
prereg/prereg
5000c279a801fa2260009b15dd90e3bd4f447785
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import time import pytest from django.test import override_settings from django.utils.timezone import now from pretix.base.models import Organizer event_urls = [ (None, ''), (None, 'categories/'), ('can_view_orders', 'invoices/'), (None, 'items/'), ('can_view_orders', 'orders/'), ('can_view_orders', 'orderpositions/'), (None, 'questions/'), (None, 'quotas/'), ('can_view_vouchers', 'vouchers/'), (None, 'subevents/'), (None, 'taxrules/'), ('can_view_orders', 'waitinglistentries/'), ('can_view_orders', 'checkinlists/'), ] event_permission_sub_urls = [ ('get', 'can_change_event_settings', 'settings/', 200), ('patch', 'can_change_event_settings', 'settings/', 200), ('get', 'can_view_orders', 'revokedsecrets/', 200), ('get', 'can_view_orders', 'revokedsecrets/1/', 404), ('get', 'can_view_orders', 'orders/', 200), ('get', 'can_view_orders', 'orderpositions/', 200), ('delete', 'can_change_orders', 'orderpositions/1/', 404), ('post', 'can_change_orders', 'orderpositions/1/price_calc/', 404), ('get', 'can_view_vouchers', 'vouchers/', 200), ('get', 'can_view_orders', 'invoices/', 200), ('get', 'can_view_orders', 'invoices/1/', 404), ('post', 'can_change_orders', 'invoices/1/regenerate/', 404), ('post', 'can_change_orders', 'invoices/1/reissue/', 404), ('get', 'can_view_orders', 'waitinglistentries/', 200), ('get', 'can_view_orders', 'waitinglistentries/1/', 404), ('post', 'can_change_orders', 'waitinglistentries/', 400), ('delete', 'can_change_orders', 'waitinglistentries/1/', 404), ('patch', 'can_change_orders', 'waitinglistentries/1/', 404), ('put', 'can_change_orders', 'waitinglistentries/1/', 404), ('post', 'can_change_orders', 'waitinglistentries/1/send_voucher/', 404), ('get', None, 'categories/', 200), ('get', None, 'items/', 200), ('get', None, 'questions/', 200), ('get', None, 'quotas/', 200), ('post', 'can_change_items', 'items/', 400), ('get', None, 'items/1/', 404), ('put', 'can_change_items', 'items/1/', 404), ('patch', 'can_change_items', 'items/1/', 404), ('delete', 'can_change_items', 'items/1/', 404), ('post', 'can_change_items', 'categories/', 400), ('get', None, 'categories/1/', 404), ('put', 'can_change_items', 'categories/1/', 404), ('patch', 'can_change_items', 'categories/1/', 404), ('delete', 'can_change_items', 'categories/1/', 404), ('post', 'can_change_items', 'items/1/variations/', 404), ('get', None, 'items/1/variations/', 404), ('get', None, 'items/1/variations/1/', 404), ('put', 'can_change_items', 'items/1/variations/1/', 404), ('patch', 'can_change_items', 'items/1/variations/1/', 404), ('delete', 'can_change_items', 'items/1/variations/1/', 404), ('get', None, 'items/1/addons/', 404), ('get', None, 'items/1/addons/1/', 404), ('post', 'can_change_items', 'items/1/addons/', 404), ('put', 'can_change_items', 'items/1/addons/1/', 404), ('patch', 'can_change_items', 'items/1/addons/1/', 404), ('delete', 'can_change_items', 'items/1/addons/1/', 404), ('get', None, 'subevents/', 200), ('get', None, 'subevents/1/', 404), ('get', None, 'taxrules/', 200), ('get', None, 'taxrules/1/', 404), ('post', 'can_change_event_settings', 'taxrules/', 400), ('put', 'can_change_event_settings', 'taxrules/1/', 404), ('patch', 'can_change_event_settings', 'taxrules/1/', 404), ('delete', 'can_change_event_settings', 'taxrules/1/', 404), ('get', 'can_view_vouchers', 'vouchers/', 200), ('get', 'can_view_vouchers', 'vouchers/1/', 404), ('post', 'can_change_vouchers', 'vouchers/', 201), ('put', 'can_change_vouchers', 'vouchers/1/', 404), ('patch', 'can_change_vouchers', 'vouchers/1/', 404), ('delete', 'can_change_vouchers', 'vouchers/1/', 404), ('get', None, 'quotas/', 200), ('get', None, 'quotas/1/', 404), ('post', 'can_change_items', 'quotas/', 400), ('put', 'can_change_items', 'quotas/1/', 404), ('patch', 'can_change_items', 'quotas/1/', 404), ('delete', 'can_change_items', 'quotas/1/', 404), ('get', None, 'questions/', 200), ('get', None, 'questions/1/', 404), ('post', 'can_change_items', 'questions/', 400), ('put', 'can_change_items', 'questions/1/', 404), ('patch', 'can_change_items', 'questions/1/', 404), ('delete', 'can_change_items', 'questions/1/', 404), ('get', None, 'questions/1/options/', 404), ('get', None, 'questions/1/options/1/', 404), ('put', 'can_change_items', 'questions/1/options/1/', 404), ('patch', 'can_change_items', 'questions/1/options/1/', 404), ('delete', 'can_change_items', 'questions/1/options/1/', 404), ('post', 'can_change_orders', 'orders/', 400), ('patch', 'can_change_orders', 'orders/ABC12/', 404), ('post', 'can_change_orders', 'orders/ABC12/mark_paid/', 404), ('post', 'can_change_orders', 'orders/ABC12/mark_pending/', 404), ('post', 'can_change_orders', 'orders/ABC12/mark_expired/', 404), ('post', 'can_change_orders', 'orders/ABC12/mark_canceled/', 404), ('post', 'can_change_orders', 'orders/ABC12/approve/', 404), ('post', 'can_change_orders', 'orders/ABC12/deny/', 404), ('post', 'can_change_orders', 'orders/ABC12/extend/', 400), ('post', 'can_change_orders', 'orders/ABC12/create_invoice/', 404), ('post', 'can_change_orders', 'orders/ABC12/resend_link/', 404), ('post', 'can_change_orders', 'orders/ABC12/regenerate_secrets/', 404), ('get', 'can_view_orders', 'orders/ABC12/payments/', 404), ('get', 'can_view_orders', 'orders/ABC12/payments/1/', 404), ('get', 'can_view_orders', 'orders/ABC12/refunds/', 404), ('get', 'can_view_orders', 'orders/ABC12/refunds/1/', 404), ('post', 'can_change_orders', 'orders/ABC12/payments/1/confirm/', 404), ('post', 'can_change_orders', 'orders/ABC12/payments/1/refund/', 404), ('post', 'can_change_orders', 'orders/ABC12/payments/1/cancel/', 404), ('post', 'can_change_orders', 'orders/ABC12/refunds/1/cancel/', 404), ('post', 'can_change_orders', 'orders/ABC12/refunds/1/process/', 404), ('post', 'can_change_orders', 'orders/ABC12/refunds/1/done/', 404), ('get', 'can_view_orders', 'checkinlists/', 200), ('post', 'can_change_event_settings', 'checkinlists/', 400), ('put', 'can_change_event_settings', 'checkinlists/1/', 404), ('patch', 'can_change_event_settings', 'checkinlists/1/', 404), ('delete', 'can_change_event_settings', 'checkinlists/1/', 404), ('post', 'can_create_events', 'clone/', 400), ('get', 'can_view_orders', 'cartpositions/', 200), ('get', 'can_view_orders', 'cartpositions/1/', 404), ('post', 'can_change_orders', 'cartpositions/', 400), ('delete', 'can_change_orders', 'cartpositions/1/', 404), ('post', 'can_view_orders', 'exporters/invoicedata/run/', 400), ('get', 'can_view_orders', 'exporters/invoicedata/download/bc3f9884-26ee-425b-8636-80613f84b6fa/3cb49ae6-eda3-4605-814e-099e23777b36/', 404), ] org_permission_sub_urls = [ ('get', 'can_change_organizer_settings', 'settings/', 200), ('patch', 'can_change_organizer_settings', 'settings/', 200), ('get', 'can_change_organizer_settings', 'webhooks/', 200), ('post', 'can_change_organizer_settings', 'webhooks/', 400), ('get', 'can_change_organizer_settings', 'webhooks/1/', 404), ('put', 'can_change_organizer_settings', 'webhooks/1/', 404), ('patch', 'can_change_organizer_settings', 'webhooks/1/', 404), ('delete', 'can_change_organizer_settings', 'webhooks/1/', 404), ('get', 'can_manage_gift_cards', 'giftcards/', 200), ('post', 'can_manage_gift_cards', 'giftcards/', 400), ('get', 'can_manage_gift_cards', 'giftcards/1/', 404), ('put', 'can_manage_gift_cards', 'giftcards/1/', 404), ('patch', 'can_manage_gift_cards', 'giftcards/1/', 404), ('get', 'can_manage_gift_cards', 'giftcards/1/transactions/', 404), ('get', 'can_manage_gift_cards', 'giftcards/1/transactions/1/', 404), ('get', 'can_change_organizer_settings', 'devices/', 200), ('post', 'can_change_organizer_settings', 'devices/', 400), ('get', 'can_change_organizer_settings', 'devices/1/', 404), ('put', 'can_change_organizer_settings', 'devices/1/', 404), ('patch', 'can_change_organizer_settings', 'devices/1/', 404), ('get', 'can_change_teams', 'teams/', 200), ('post', 'can_change_teams', 'teams/', 400), ('get', 'can_change_teams', 'teams/{team_id}/', 200), ('put', 'can_change_teams', 'teams/{team_id}/', 400), ('patch', 'can_change_teams', 'teams/{team_id}/', 200), ('get', 'can_change_teams', 'teams/{team_id}/members/', 200), ('delete', 'can_change_teams', 'teams/{team_id}/members/2/', 404), ('get', 'can_change_teams', 'teams/{team_id}/invites/', 200), ('get', 'can_change_teams', 'teams/{team_id}/invites/2/', 404), ('delete', 'can_change_teams', 'teams/{team_id}/invites/2/', 404), ('post', 'can_change_teams', 'teams/{team_id}/invites/', 400), ('get', 'can_change_teams', 'teams/{team_id}/tokens/', 200), ('get', 'can_change_teams', 'teams/{team_id}/tokens/0/', 404), ('delete', 'can_change_teams', 'teams/{team_id}/tokens/0/', 404), ('post', 'can_change_teams', 'teams/{team_id}/tokens/', 400), ] event_permission_root_urls = [ ('post', 'can_create_events', 400), ('put', 'can_change_event_settings', 400), ('patch', 'can_change_event_settings', 200), ('delete', 'can_change_event_settings', 204), ] @pytest.fixture def token_client(client, team): team.can_view_orders = True team.can_view_vouchers = True team.can_change_items = True team.save() t = team.tokens.create(name='Foo') client.credentials(HTTP_AUTHORIZATION='Token ' + t.token) return client @pytest.mark.django_db def test_organizer_allowed(token_client, organizer): resp = token_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert resp.status_code == 200 @pytest.mark.django_db def test_organizer_not_allowed(token_client, organizer): o2 = Organizer.objects.create(slug='o2', name='Organizer 2') resp = token_client.get('/api/v1/organizers/{}/events/'.format(o2.slug)) assert resp.status_code == 403 @pytest.mark.django_db def test_organizer_not_allowed_device(device_client, organizer): o2 = Organizer.objects.create(slug='o2', name='Organizer 2') resp = device_client.get('/api/v1/organizers/{}/events/'.format(o2.slug)) assert resp.status_code == 403 @pytest.mark.django_db def test_organizer_not_existing(token_client, organizer): resp = token_client.get('/api/v1/organizers/{}/events/'.format('o2')) assert resp.status_code == 403 @pytest.mark.django_db @pytest.mark.parametrize("url", event_urls) def test_event_allowed_all_events(token_client, team, organizer, event, url): team.all_events = True team.save() resp = token_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) assert resp.status_code == 200 @pytest.mark.django_db @pytest.mark.parametrize("url", event_urls) def test_event_allowed_all_events_device(device_client, device, organizer, event, url): resp = device_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) if url[0] is None or url[0] in device.permission_set(): assert resp.status_code == 200 else: assert resp.status_code == 403 @pytest.mark.django_db @pytest.mark.parametrize("url", event_urls) def test_event_allowed_limit_events(token_client, organizer, team, event, url): team.all_events = False team.save() team.limit_events.add(event) resp = token_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) assert resp.status_code == 200 @pytest.mark.django_db @pytest.mark.parametrize("url", event_urls) def test_event_allowed_limit_events_device(device_client, organizer, device, event, url): device.all_events = False device.save() device.limit_events.add(event) resp = device_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) if url[0] is None or url[0] in device.permission_set(): assert resp.status_code == 200 else: assert resp.status_code == 403 @pytest.mark.django_db @pytest.mark.parametrize("url", event_urls) def test_event_not_allowed(token_client, organizer, team, event, url): team.all_events = False team.save() resp = token_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) assert resp.status_code == 403 @pytest.mark.django_db @pytest.mark.parametrize("url", event_urls) def test_event_not_allowed_device(device_client, organizer, device, event, url): device.all_events = False device.save() resp = device_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) assert resp.status_code == 403 @pytest.mark.django_db @pytest.mark.parametrize("url", event_urls) def test_event_not_existing(token_client, organizer, url, event): resp = token_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) assert resp.status_code == 403 @pytest.mark.django_db @pytest.mark.parametrize("urlset", event_permission_sub_urls) def test_token_event_subresources_permission_allowed(token_client, team, organizer, event, urlset): team.all_events = True if urlset[1]: setattr(team, urlset[1], True) team.save() resp = getattr(token_client, urlset[0])('/api/v1/organizers/{}/events/{}/{}'.format( organizer.slug, event.slug, urlset[2])) assert resp.status_code == urlset[3] @pytest.mark.django_db @pytest.mark.parametrize("urlset", event_permission_sub_urls) def test_token_event_subresources_permission_not_allowed(token_client, team, organizer, event, urlset): if urlset[1] is None: team.all_events = False else: team.all_events = True setattr(team, urlset[1], False) team.save() resp = getattr(token_client, urlset[0])('/api/v1/organizers/{}/events/{}/{}'.format( organizer.slug, event.slug, urlset[2])) if urlset[3] == 404: assert resp.status_code == 403 else: assert resp.status_code in (404, 403) @pytest.mark.django_db @pytest.mark.parametrize("urlset", event_permission_root_urls) def test_token_event_permission_allowed(token_client, team, organizer, event, urlset): team.all_events = True setattr(team, urlset[1], True) team.save() if urlset[0] == 'post': resp = getattr(token_client, urlset[0])('/api/v1/organizers/{}/events/'.format(organizer.slug)) else: resp = getattr(token_client, urlset[0])('/api/v1/organizers/{}/events/{}/'.format(organizer.slug, event.slug)) assert resp.status_code == urlset[2] @pytest.mark.django_db @pytest.mark.parametrize("urlset", event_permission_root_urls) def test_token_event_permission_not_allowed(token_client, team, organizer, event, urlset): team.all_events = True setattr(team, urlset[1], False) team.save() if urlset[0] == 'post': resp = getattr(token_client, urlset[0])('/api/v1/organizers/{}/events/'.format(organizer.slug)) else: resp = getattr(token_client, urlset[0])('/api/v1/organizers/{}/events/{}/'.format(organizer.slug, event.slug)) assert resp.status_code == 403 @pytest.mark.django_db def test_log_out_after_absolute_timeout(user_client, team, organizer, event): session = user_client.session session['pretix_auth_long_session'] = False session['pretix_auth_login_time'] = int(time.time()) - 3600 * 12 - 60 session.save() response = user_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert response.status_code == 403 @pytest.mark.django_db def test_dont_logout_before_absolute_timeout(user_client, team, organizer, event): session = user_client.session session['pretix_auth_long_session'] = True session['pretix_auth_login_time'] = int(time.time()) - 3600 * 12 + 60 session.save() response = user_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert response.status_code == 200 @pytest.mark.django_db @override_settings(PRETIX_LONG_SESSIONS=False) def test_ignore_long_session_if_disabled_in_config(user_client, team, organizer, event): session = user_client.session session['pretix_auth_long_session'] = True session['pretix_auth_login_time'] = int(time.time()) - 3600 * 12 - 60 session.save() response = user_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert response.status_code == 403 @pytest.mark.django_db def test_dont_logout_in_long_session(user_client, team, organizer, event): session = user_client.session session['pretix_auth_long_session'] = True session['pretix_auth_login_time'] = int(time.time()) - 3600 * 12 - 60 session.save() response = user_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert response.status_code == 200 @pytest.mark.django_db def test_log_out_after_relative_timeout(user_client, team, organizer, event): session = user_client.session session['pretix_auth_long_session'] = False session['pretix_auth_login_time'] = int(time.time()) - 3600 * 6 session['pretix_auth_last_used'] = int(time.time()) - 3600 * 3 - 60 session.save() response = user_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert response.status_code == 403 @pytest.mark.django_db def test_dont_logout_before_relative_timeout(user_client, team, organizer, event): session = user_client.session session['pretix_auth_long_session'] = True session['pretix_auth_login_time'] = int(time.time()) - 3600 * 6 session['pretix_auth_last_used'] = int(time.time()) - 3600 * 3 + 60 session.save() response = user_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert response.status_code == 200 @pytest.mark.django_db def test_dont_logout_by_relative_in_long_session(user_client, team, organizer, event): session = user_client.session session['pretix_auth_long_session'] = True session['pretix_auth_login_time'] = int(time.time()) - 3600 * 5 session['pretix_auth_last_used'] = int(time.time()) - 3600 * 3 - 60 session.save() response = user_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert response.status_code == 200 @pytest.mark.django_db def test_update_session_activity(user_client, team, organizer, event): t1 = int(time.time()) - 5 session = user_client.session session['pretix_auth_long_session'] = False session['pretix_auth_login_time'] = int(time.time()) - 3600 * 5 session['pretix_auth_last_used'] = t1 session.save() response = user_client.get('/api/v1/organizers/{}/events/'.format(organizer.slug)) assert response.status_code == 200 assert user_client.session['pretix_auth_last_used'] > t1 @pytest.mark.django_db @pytest.mark.parametrize("urlset", event_permission_sub_urls) def test_device_subresource_permission_check(device_client, device, organizer, event, urlset): if urlset == ('get', 'can_change_event_settings', 'settings/', 200): return resp = getattr(device_client, urlset[0])('/api/v1/organizers/{}/events/{}/{}'.format( organizer.slug, event.slug, urlset[2])) if urlset[1] is None or urlset[1] in device.permission_set(): assert resp.status_code == urlset[3] else: if urlset[3] == 404: assert resp.status_code == 403 else: assert resp.status_code in (404, 403) @pytest.mark.django_db @pytest.mark.parametrize("urlset", org_permission_sub_urls) def test_token_org_subresources_permission_allowed(token_client, team, organizer, event, urlset): team.all_events = True if urlset[1]: setattr(team, urlset[1], True) team.save() resp = getattr(token_client, urlset[0])('/api/v1/organizers/{}/{}'.format( organizer.slug, urlset[2].format(team_id=team.pk))) assert resp.status_code == urlset[3] @pytest.mark.django_db @pytest.mark.parametrize("urlset", org_permission_sub_urls) def test_token_org_subresources_permission_not_allowed(token_client, team, organizer, event, urlset): if urlset[1] is None: team.all_events = False else: team.all_events = True setattr(team, urlset[1], False) team.save() resp = getattr(token_client, urlset[0])('/api/v1/organizers/{}/{}'.format( organizer.slug, urlset[2].format(team_id=team.pk))) if urlset[3] == 404: assert resp.status_code == 403 else: assert resp.status_code in (404, 403) @pytest.mark.django_db @pytest.mark.parametrize("url", event_urls) def test_event_staff_requires_staff_session(user_client, organizer, team, event, url, user): team.delete() user.is_staff = True user.save() resp = user_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) assert resp.status_code == 403 user.staffsession_set.create(date_start=now(), session_key=user_client.session.session_key) resp = user_client.get('/api/v1/organizers/{}/events/{}/{}'.format(organizer.slug, event.slug, url[1])) assert resp.status_code == 200
43.15261
145
0.674872
460a463dc61cdd38ed028e551b41b6b6d7d04310
14,442
py
Python
utils.py
raechelwalker/mrtl
49118f48b798fb7b55c7b479f49c4ac9c966ed19
[ "MIT" ]
null
null
null
utils.py
raechelwalker/mrtl
49118f48b798fb7b55c7b479f49c4ac9c966ed19
[ "MIT" ]
null
null
null
utils.py
raechelwalker/mrtl
49118f48b798fb7b55c7b479f49c4ac9c966ed19
[ "MIT" ]
null
null
null
import logging import os from datetime import datetime import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import torch import torch.utils.data import xarray as xr from cp_als import unfold def set_logger(logger, log_path=None): # create logger logger.setLevel(logging.DEBUG) # create console handler ch = logging.StreamHandler() ch.setLevel(logging.INFO) # create formatter and add to handler formatter = logging.Formatter( '[%(asctime)s] %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) # Add handler to logger logger.addHandler(ch) # File handler if log_path is not None: fh = logging.FileHandler(log_path, 'w+') fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) def size_to_str(lst): lst_str = "x".join([str(i).zfill(2) for i in lst]) return lst_str def calc_F1(fp, fn, tp): if tp == 0 or (tp + fp) == 0 or (tp + fn) == 0: precision = 0.0 recall = 0.0 F1 = 0.0 else: precision = tp / (tp + fp) recall = tp / (tp + fn) F1 = 2 * (precision * recall) / (precision + recall) return F1, precision, recall def accum_grad(gradients, model): for i, (name, p) in enumerate(model.named_parameters()): if name != 'module.b' and name != 'b': gradients[i].add_(p.grad.data) def grad_stats(avg_grads): grads = torch.cat([g.contiguous().view(-1) for g in avg_grads]) grad_norm = (torch.norm(grads, p=2)**2).item() grad_entropy = (-(grads.clamp_min(1e-30) * torch.log(grads.clamp_min(1e-30))).sum()).item() grad_var = torch.var(grads).item() return grad_norm, grad_entropy, grad_var def l1_regularizer(model, device): reg = torch.tensor(0.).to(device) numel = 0 for name, p in model.named_parameters(): if name != 'module.b': reg.add_(torch.norm(p.view(-1), p=1)) numel += p.numel() return reg / numel def l2_regularizer(model, device): reg = torch.tensor(0.).to(device) numel = 0 for name, p in model.named_parameters(): if name != 'module.b': reg.add_(torch.norm(p.view(-1), p=2)**2) numel += p.numel() return reg / numel def create_kernel(dims, sigma, device): coords = torch.cartesian_prod(torch.arange(0, dims[0], dtype=torch.float), torch.arange(0, dims[1], dtype=torch.float)) dist = torch.cdist(coords, coords, p=2).to(device) # To normalize distances across different resolutions dist = dist / torch.max(dist) # K is matrix of degree of similarity between coordinates K = torch.exp(-dist**2 / sigma) return K # Implement cdist from https://github.com/pytorch/pytorch/issues/15253 def pdist(X): X_norm = X.pow(2).sum(dim=-1, keepdim=True) res = torch.addmm(X_norm.transpose(-2, -1), X, X.transpose(-2, -1), alpha=-2).add_(X_norm) res = res.clamp_min_(1e-30) return res def bball_spatial_regularizer(model, K_B, K_C, device): reg = torch.tensor(0.).to(device) if type(model.module).__name__.startswith('Full'): W_size = model.W.size() # Court dimension W_unfold = unfold(model.W.view(W_size[0], W_size[1] * W_size[2], W_size[3], W_size[4]), mode=1).contiguous() reg.add_((K_B * pdist(W_unfold)).sum() / (torch.numel(model.W) * np.prod(model.b_dims))) # Defender position W_unfold = unfold(model.W.view(W_size[0], W_size[1], W_size[2], W_size[3] * W_size[4]), mode=3).contiguous() reg.add_((K_C * pdist(W_unfold)).sum() / (torch.numel(model.W) * np.prod(model.c_dims))) else: # Court position reg.add_((K_B * pdist(model.B.view(-1, model.K))).sum() / (torch.numel(model.B) * np.prod(model.b_dims))) # Defender position reg.add_((K_C * pdist(model.C.view(-1, model.K))).sum() / (torch.numel(model.C) * np.prod(model.c_dims))) return reg def class_counts(dataset): _, counts = np.unique(dataset.y, return_counts=True) return counts def calc_weights(dataset): counts = class_counts(dataset) return np.where(dataset.y == 1, counts[0] / counts.sum(), counts[1] / counts.sum()) def expand_pos(T, shape, dim): T_size = list(T.size()) T_size.insert(dim + 1, shape[1]) T_size[dim] = shape[0] return T.view(*T_size) def contract_pos(T, dim): T_size = list(T.size()) val = T_size.pop(dim + 1) T_size[dim] = val * T_size[dim] return T.view(*T_size) def finegrain(T, new_shape, start_dim, mode='nearest'): old_shape = T.shape assert T.ndim in [3, 5], "T.ndim must be 3 or 5" assert start_dim in [0, 1, 3], "start_dim must be 0, 1, or 3" # Calculate scale scale = float(new_shape[0]) / old_shape[start_dim] assert scale == ( float(new_shape[1]) / old_shape[start_dim + 1]), "Scale is not the same across axes." new = None if T.ndim == 5: old = T.clone().detach().permute( 0, 4 - start_dim, 5 - start_dim, start_dim, start_dim + 1).view( old_shape[0], old_shape[4 - start_dim] * old_shape[5 - start_dim], old_shape[start_dim], old_shape[start_dim + 1]) interp = torch.nn.functional.interpolate(old, scale_factor=scale, mode=mode) new = interp.view(old_shape[0], old_shape[4 - start_dim], old_shape[5 - start_dim], *new_shape).permute(0, 4 - start_dim, 5 - start_dim, start_dim, start_dim + 1) elif T.ndim == 3: old = T.clone().detach().permute(2, 0, 1).unsqueeze(0) interp = torch.nn.functional.interpolate(old, scale_factor=scale, mode=mode) new = interp.squeeze().permute(1, 2, 0) return new # Source: https://github.com/ktcarr/salinity-corn-yields/tree/master/mrtl def plot_setup(plot_range=[-125.25, -66, 22.5, 50], figsize=(7, 5), central_lon=0): # Function sets up plotting environment for continental US # Returns fig, ax # Set up figure for plotting sns.set() fig = plt.figure(figsize=figsize) ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=central_lon)) states_provinces = cfeature.NaturalEarthFeature( category='cultural', name='admin_1_states_provinces_lines', scale='50m', facecolor='none') ax.add_feature(states_provinces, edgecolor='black') ax.coastlines() ax.set_extent(plot_range, crs=ccrs.PlateCarree()) ax.add_feature(cfeature.BORDERS) ax.title.set_fontsize(30) return fig, ax def multis_to_datetime(multis): # Function to convert multi-index of year/month to Pandas datetime index multi_to_datetime = lambda multi: datetime(multi[0], multi[1], 1) return (pd.Index([multi_to_datetime(multi) for multi in multis])) def minmax_scaler(x, old_min, old_max, new_min, new_max): # Scale elements in a 1-dimensional array to [0,1] x_scaled = (x - old_min) / (old_max - old_min) x_scaled = x_scaled * (new_max - new_min) + new_min return x_scaled def remove_season(data, standardize=True, mean=None, std=None): # Function to remove seasonality from data # Returns de-seasonalized data with same shape as input if mean is None: mean = data.mean(dim='year') std = data.std(dim='year') if standardize: data = (data - data.mean(dim='year')) / data.std(dim='year') else: data = data - data.mean(dim='year') return data, mean, std def normalize(data, old_min=None, old_max=None, new_min=0, new_max=1, dim='time'): # Function to remove seasonality from data # Returns de-seasonalized data with same shape as input if 'time' in data.dims: # get year and month as separate dimension data = unstack_month_and_year(data) if dim == 'time': data = data.stack(time=['year', 'month']) if old_min is None: old_min = data.min(dim=dim) old_max = data.max(dim=dim) data.values = np.float32( minmax_scaler(data, old_min=old_min, new_min=new_min, old_max=old_max, new_max=new_max)) return data.unstack(), old_min, old_max def weight_by_area(data_fp, data): # Function to weight dataarray by the area of each gridcell # Returns dataarray with same dimensions dim = [len(data.lat), len(data.lon)] fp = os.path.join(data_fp, 'gridarea_{0}x{1}.nc'.format(*dim)) grid_area = xr.open_dataarray(fp) grid_prop = grid_area / np.max(grid_area) grid_prop = grid_prop.assign_coords({ 'lon': data.lon, 'lat': data.lat }) # 'snap' coords to match data return data * grid_prop def preprocess(data_fp, data, do_remove_season=True, mean=None, std=None, do_normalize=True, old_min=None, old_max=None): # Function to pre-process data, with options to remove seasonality, detrend # and normalize # Returns pre-processed data with time, lat, and lon dimensions if 'time' in data.dims: # get year and month as separate dimension year = data.time.dt.year month = data.time.dt.month times = pd.MultiIndex.from_arrays([year, month], names=('year', 'month')) data = unstack_month_and_year(data) # REMOVE SEASONAL CYCLE if do_remove_season: data, mean, std = remove_season(data, standardize=True, mean=mean, std=std) # NORMALIZE if do_normalize: if remove_season: data, old_min, old_max = normalize(data, dim='time', old_min=old_min, old_max=old_max) else: data, old_min, old_max = normalize(data, dim='year', old_min=old_min, old_max=old_max) # WEIGHT BY GRIDCELL AREA if 'lat' in data.dims: data = weight_by_area(data_fp, data) data = data.stack(time=['year', 'month' ]) # Make time a coordinate (and a datetime index) data = data.sel(time=times) data = data.assign_coords({ 'time': multis_to_datetime(data.time.values) }).transpose('time', ...) return (data, mean, std, old_min, old_max) def unstack_month_and_year(data): # Function 'unstacks' month and year in a dataframe with 'time' dimension # The 'time' dimension is separated into a month and a year dimension # This increases the number of dimensions by 1 year = data.time.dt.year month = data.time.dt.month new_idx = pd.MultiIndex.from_arrays([year, month], names=('year', 'month')) return (data.assign_coords({'time': new_idx}).unstack('time')) def diff_detrend(x): # Function does 'difference' detrending # x is the vector to detrend # returns a vector of length len(x)-1 return (x[1:] - x[:-1]) def diff_detrend_xr(data): # Detrend xarray dataarray along particular axis if not ('time' in data.dims): data = data.stack(time=['year', 'month']) time_dim = data.dims.index('time') # Get dimension corresponding to time #time_dim = data.da.dims.index('time') # Get dimension corresponding to time # Update coordinates by reducing time dimension by 1 new_coords = { coord: data.coords[coord] for coord in data.coords if coord != 'time' } new_coords['time'] = data.time[1:] # Detrend vals = np.apply_along_axis(diff_detrend, axis=time_dim, arr=data) data_new = xr.DataArray(vals, coords=new_coords, dims=data.dims) return (data_new) def mse(x, y): # Custom function to compute MSE for sanity check # return(torch.sum((x-y)**2) / len(x)) x = x.float() y = y.float() return (torch.mean((x - y)**2)) def mae(x1, x2): # Mean absolute error return (torch.sum(torch.abs(x1 - x2))) def climate_spatial_regularizer(model, K, device): reg = torch.tensor(0.).to(device) if 'low' not in type(model).__name__: # Make spatial dimension the 0th dimension w_unfold = unfold(model.w.detach(), mode=2).contiguous() reg.add_((K * pdist(w_unfold)).sum() / (torch.numel(model.w))) else: reg.add_((K * pdist(model.C.detach())).sum()) return reg def compareStats(y_train, y_val, preds_val): # Function computes model MSE/MAE and compares to several naïve approaches normal_preds = torch.zeros(y_val.shape) for i in np.arange(len(y_val)): normal_preds[i] = torch.normal(y_train.mean(), y_train.std()) dumb_pred = torch.cat((y_val[0].unsqueeze(0), y_val[0:-1])) constant_pred = y_train.mean() * torch.ones(len(y_val)) print('MSE') print('Model : {:4f}'.format(mse(y_val, preds_val))) print('Constant: {:4f}'.format(mse(y_val, constant_pred))) print('Previous: {:4f}'.format(mse(y_val, dumb_pred))) print('Normal : {:4f}'.format(mse(y_val, normal_preds))) print('MAE') print('Model : {:4f}'.format(mae(y_val, preds_val))) print('Constant: {:4f}'.format(mae(y_val, constant_pred))) print('Previous: {:4f}'.format(mae(y_val, dumb_pred))) print('Normal : {:4f}'.format(mae(y_val, normal_preds)))
32.453933
81
0.580944
01799cb4e12a93c61f019a95f97b8bbe444dff20
543
py
Python
src/trigger.py
nurullah/jupyter-notebook-rest-api
36d08c04fb2c61d1892e6c499461fb0e08f63239
[ "MIT" ]
null
null
null
src/trigger.py
nurullah/jupyter-notebook-rest-api
36d08c04fb2c61d1892e6c499461fb0e08f63239
[ "MIT" ]
null
null
null
src/trigger.py
nurullah/jupyter-notebook-rest-api
36d08c04fb2c61d1892e6c499461fb0e08f63239
[ "MIT" ]
null
null
null
import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbparameterise import ( extract_parameters, replace_definitions, parameter_values ) def trigger(notebook_filename='hello.ipynb', params={}): with open(notebook_filename) as f: nb = nbformat.read(f, as_version=4) orig_parameters = extract_parameters(nb) new_nb = replace_definitions(nb, parameter_values(orig_parameters, **params)) ep = ExecutePreprocessor(timeout=600, kernel_name='python3') r = ep.preprocess(new_nb) return r
31.941176
81
0.760589
c231a269a3037ce156f5d889bee6db2f2f6c7a0e
1,082
py
Python
tests/state/temporary/modules/models/dosomething/__init__.py
da-h/miniflask
d5e594153cca4ce4d30db01b1d06d05afa9e7aaa
[ "MIT" ]
5
2020-02-17T12:14:36.000Z
2020-02-27T12:09:05.000Z
tests/state/temporary/modules/models/dosomething/__init__.py
da-h/miniflask
d5e594153cca4ce4d30db01b1d06d05afa9e7aaa
[ "MIT" ]
69
2020-04-03T08:16:35.000Z
2021-12-21T15:46:29.000Z
tests/state/temporary/modules/models/dosomething/__init__.py
da-h/miniflask
d5e594153cca4ce4d30db01b1d06d05afa9e7aaa
[ "MIT" ]
1
2020-04-02T15:46:39.000Z
2020-04-02T15:46:39.000Z
from miniflask.exceptions import StateKeyError def dosomething(state, event): del event # unused print("in event: variable =", state["variable"]) if "new_variable" in state: print("in event: new_variable =", state["new_variable"]) def main(state, event): state["new_variable"] = 42 del state["new_variable"] print("before event", state["variable"]) with state.temporary({ "variable": 42 }): event.dosomething() print("after event", state["variable"]) try: _ = state["new_variable"] print("variable 'new_variable' should not exist") except StateKeyError: pass with state.temporary({ "new_variable": 12345 }): event.dosomething() try: _ = state["new_variable"] print("variable 'new_variable' should not exist") except StateKeyError: pass def register(mf): mf.register_defaults({ "variable": 0 }) mf.register_event('dosomething', dosomething, unique=False) mf.register_event('main', main, unique=False)
24.044444
64
0.622921
f1c468439f11d19e3fc030dbdf5145965a4a8287
5,323
py
Python
anomaly-injector-agent/cassandra_stresser.py
citlab/distributed-anomaly-injection
8be390e0bace6aa87fe60fa744e97408c40e7375
[ "Apache-2.0" ]
null
null
null
anomaly-injector-agent/cassandra_stresser.py
citlab/distributed-anomaly-injection
8be390e0bace6aa87fe60fa744e97408c40e7375
[ "Apache-2.0" ]
null
null
null
anomaly-injector-agent/cassandra_stresser.py
citlab/distributed-anomaly-injection
8be390e0bace6aa87fe60fa744e97408c40e7375
[ "Apache-2.0" ]
1
2022-03-06T23:18:34.000Z
2022-03-06T23:18:34.000Z
# coding=utf-8 from cassandra.cluster import Cluster from cassandra.query import SimpleStatement import random import time import sys import signal import argparse parser = argparse.ArgumentParser() parser.add_argument("cluster_ip", help="The ip of one of the cluster nodes") parser.add_argument("-m", "--mode", help="set the mode the script will run in", choices=["READ", "INSERT", "RANDOM"], default="READ") parser.add_argument("-p", "--pause", help="set the pause in seconds between each request", type=float, default=0.001) parser.add_argument("-b", "--batch_size", help="set the amount of lines to insert on each request has no effect in READ mode", type=int, default=1) parser.add_argument("-t", "--table", help='set the table name for INSERT mode. Otherwise a random table is selected') parser.add_argument("-k", "--keyspace", help="set the keyspace name. Otherwise a random keyspace is selected") args = parser.parse_args() actions = 0 write_actions = 0 read_actions = 0 random_table = not args.table def setup_session(cip, ksp): # cip - cluster ip # ksp - keyspace print("starting session") sess = Cluster([cip]).connect(ksp) print("Connected to cluster: " + sess.cluster.metadata.cluster_name) return sess def select_random_table(sess, ksp): return random.choice(sess.cluster.metadata.keyspaces[ksp].tables.keys()) def select_random_keyspace(sess): keys = sess.cluster.metadata.keyspaces.keys() result = random.choice(keys) while result.startswith("system"): result = random.choice(keys) return result # inserts amount of random rows into the table named tableName pausing between each insert for pauseInSeconds def insert_random_rows(sess, table_name, current_rows, columns, batch_size): column_string = ",".join(columns) insert_line = " INSERT INTO " + table_name + " (" + column_string + ") VALUES (" + "%s," * (len(columns) - 1) + "%s);" if batch_size > 1: statement = "BEGIN BATCH " for i in range(batch_size): statement += insert_line statement += " APPLY BATCH" statement = SimpleStatement(statement) else: statement = SimpleStatement(insert_line) batch_values = create_random_values(batch_size, current_rows) sess.execute_async(statement, batch_values) def remove_rows(sess, amount, table_name, pause_in_seconds): fetchStatement = SimpleStatement("SELECT * FROM " + table_name) deleteStatement = SimpleStatement("DELETE FROM " + table_name + " WHERE id=%s IF EXISTS") rows = sess.execute(fetchStatement) i = 1 for row in rows: if i >= amount: return sess.execute_async(deleteStatement, [row.id]) i += 1 pause(pause_in_seconds) def read_from_table(sess, table_name): sess.execute_async(SimpleStatement("SELECT * FROM %s LIMIT %d" % (table_name, random.choice(range(1, 200))))) return def pause(time_in_seconds): if time_in_seconds > 0: time.sleep(time_in_seconds) def create_random_values(batch_size, rows): result = [] for i in range(batch_size): random_row = random.choice(rows) for col in random_row: result.append(col) return result def random_string(): legalChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0987654321" result = "" for i in range(15): result += random.choice(legalChars) return result def choose_new_table(): if random_table and actions % 10000 == 0: args.table = select_random_table(session, args.keyspace) print("new table " + args.table + " was chosen") def sigint_handler(signal, frame): print("\nperformed %d actions in %s mode\n write actions: %d\n read actions: %d" % (actions, args.mode, write_actions, read_actions)) sys.exit(0) signal.signal(signal.SIGINT, sigint_handler) session = setup_session(args.cluster_ip, args.keyspace) if not args.keyspace: args.keyspace = select_random_keyspace(session) if random_table: args.table = select_random_table(session, args.keyspace) session.set_keyspace(args.keyspace) print("Selected table %s from keyspace %s" % (args.table, args.keyspace)) print("stressing database by sending {} queries every {} seconds...".format(args.mode, args.pause)) fetchStatement = SimpleStatement("SELECT * FROM " + args.table) rows = session.execute(fetchStatement) column_names = session.cluster.metadata.keyspaces[args.keyspace].tables[args.table].columns.keys() if args.mode == "READ": while True: read_from_table(session, args.table) actions += 1 pause(args.pause) if args.mode == "INSERT": rows = session.execute(fetchStatement) while True: insert_random_rows(session, args.table, rows.current_rows, column_names, args.batch_size) actions += 1 write_actions += 1 pause(args.pause) if args.mode == "RANDOM": while True: read_mode = random.choice([True, False]) if read_mode: read_from_table(session, args.table) read_actions += 1 else: insert_random_rows(session, args.table, rows.current_rows, column_names, args.batch_size) write_actions += 1 actions += 1 pause(args.pause)
34.121795
137
0.68514
5e40dd4f1d01efed6ab94dde8d0cb50630ee640c
2,922
py
Python
posetta/writers/_writer.py
gahjelle/posetta
6e052c19a64b0bbdd0b9a7d3ac703000e615d53e
[ "MIT" ]
2
2018-05-15T00:50:34.000Z
2019-02-25T11:08:27.000Z
posetta/writers/_writer.py
gahjelle/posetta
6e052c19a64b0bbdd0b9a7d3ac703000e615d53e
[ "MIT" ]
13
2018-07-06T08:52:52.000Z
2018-12-07T13:49:34.000Z
posetta/writers/_writer.py
gahjelle/posetta
6e052c19a64b0bbdd0b9a7d3ac703000e615d53e
[ "MIT" ]
2
2018-04-28T14:31:40.000Z
2018-05-14T21:19:27.000Z
"""Basic functionality for writing datafiles, extended by individual writers Description: ------------ This module contains an abstract base class that can be extended for writing data files in Posetta. """ # Standard library imports import codecs from typing import IO # Third party imports # Posetta imports from posetta import data from posetta.lib import exceptions class Writer: """An abstract base class that has basic methods for writing a datafile This class provides functionality for writing a file. You should inherit from one of the specific writers like for instance ChainWriter, LineWriter, SinexWriter etc Attributes: output_stream: IO[str] - Stream that output is written to. data: data.CoordSet - The coordinate data to be written. writer_name: str - Name of the writer (module). file_path: str - Name of the datafile that will be written. encoding: str - Encoding of output file. """ def __init__( self, output_stream: IO[bytes], cset: data.CoordSet, encoding: str = "utf-8" ) -> None: """Set up the basic information needed by the writer Args: output_stream: Byte stream to write to. cset: Data that will be written. encoding: Encoding used when writing data. """ self.output_stream = codecs.getwriter(encoding)(output_stream) self.data = cset self.encoding = encoding self.writer_name = self.__module__.split(".")[-1] try: self.file_path = output_stream.name except AttributeError: self.file_path = "<unknown>" def setup_writer(self) -> None: """Set up a writer so that it can write data to a file. This method may be overwritten if a writer needs to do some preparatory work. """ pass def write(self) -> None: """Write data This is a basic implementation that carries out the whole pipeline of writing datafiles. Subclasses should typically implement (at least) the `write_data`-method. """ self.setup_writer() if self.data.num_obs: self.write_data() else: raise exceptions.WriterError("Input dataset is empty") def write_data(self) -> None: """Write data to the data file Data should be write to `self.file_path` and stored in the dictionary `self.data`. A description of the data may be placed in the dictionary `self.meta`. If the file is not found, a FileNotFoundError should be raised. """ raise NotImplementedError(f"{self.writer_name} must implement write_data()") def __repr__(self) -> str: """A simple string representation of the writer """ return f"{self.__class__.__name__}('{self.file_path}')"
32.831461
88
0.638261
b09d02b08bbbc81018fd0dc7c2e2d3db1532556b
1,376
py
Python
src/word_segmentation.py
vinnymaker18/funlp
59859585526dc88339f80c8c797672587474f0e2
[ "MIT" ]
null
null
null
src/word_segmentation.py
vinnymaker18/funlp
59859585526dc88339f80c8c797672587474f0e2
[ "MIT" ]
null
null
null
src/word_segmentation.py
vinnymaker18/funlp
59859585526dc88339f80c8c797672587474f0e2
[ "MIT" ]
null
null
null
"""Word segmentation algorithms.""" import re from min_edit_distance import min_edit_distance def max_match(sentence, dictionary): """ MaxMatch algorithm for segmenting a sentence into a list of words/tokens. """ # We first remove whitespace from sentence. sentence = re.sub('\W', '', sentence) # For now, we're not really concerned with efficiency. words, pos = [], 0 while pos < len(sentence): # Pick the longest prefix from position pos that's present in # the dictionary. If no prefix is in dictionary, pick single # letter as the next word. for j in range(len(sentence), pos + 1, -1): word = sentence[pos : j] if word in dictionary: pos = j words.append(word) break else: words.append(sentence[pos]) pos += 1 return words def word_error_rate(segmented, gold): """ Word error rate is a metric used to measure accuracy of a segmentation algorithm. It's the normalized edit distance b/w the list of words outputted by the algorithm and the hand segmented gold list of words. """ # Deletion, insertion and modification all cost 1. edit_dist = min_edit_distance(segmented, gold) normalized_edit_dist = edit_dist / len(gold) return normalized_edit_dist
29.276596
74
0.637355
b4db7f625b9560380ffd64658b655b09840a7a76
2,430
py
Python
SPADE/data/base_method/image_option.py
kaijieshi7/oneflow_imaginaire
51e90165eeb3e8b22be1bec0ed3f7deb7d87b482
[ "Apache-2.0" ]
null
null
null
SPADE/data/base_method/image_option.py
kaijieshi7/oneflow_imaginaire
51e90165eeb3e8b22be1bec0ed3f7deb7d87b482
[ "Apache-2.0" ]
null
null
null
SPADE/data/base_method/image_option.py
kaijieshi7/oneflow_imaginaire
51e90165eeb3e8b22be1bec0ed3f7deb7d87b482
[ "Apache-2.0" ]
null
null
null
from PIL import Image import numpy as np import cv2 def loaded_image2ndarray(image, opt, method=cv2.INTER_CUBIC): h, w, c = image.shape # w = opt.load_size # h = int(opt.load_size * h/w) h, w = opt.my_size_h, opt.my_size_w image = cv2.resize(image, (w, h), interpolation=method) if opt.flip: image = cv2.flip(image, 1) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = np.transpose(image, (2, 0, 1)) image = ((image.astype(np.float32) / 255.0) -0.5) /0.5 # [-1, 1] image = np.expand_dims(image, axis=0) return np.ascontiguousarray(image, 'float32') def loaded_label2ndarray(image, opt, method=cv2.INTER_NEAREST): h, w = image.shape # w = opt.load_size # h = int(opt.load_size * h / w) h, w = opt.my_size_h, opt.my_size_w image = cv2.resize(image, (w, h), interpolation=method) if opt.flip: image = cv2.flip(image, 1) image = np.expand_dims(image, axis=0) image = np.expand_dims(image, axis=0) return np.ascontiguousarray(image, 'float32') def np_transform(input_nd, opt, method=Image.BICUBIC, normalize=True): out_nd = input_nd if 'resize' in opt.resize_or_crop: out_nd = out_nd.resize((opt.my_size_w, opt.my_size_h), method) elif 'scale_width' in opt.resize_or_crop: out_nd = __scale_width(out_nd, opt.my_size, method) if opt.resize_or_crop == 'none': base = float(2 ** opt.n_downsample_global) if opt.netG == 'local': base *= (2 ** opt.n_local_enhancers) out_nd = __make_power_2(out_nd, base, method) if opt.flip: out_nd = __flip(out_nd, opt.flip) out_nd = np.array(out_nd) if normalize: out_nd = ((out_nd.astype(np.float) / 255.0) - 0.5) / 0.5 return np.ascontiguousarray(out_nd.astype(np.float), 'float32') def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if (h == oh) and (w == ow): return img return img.resize((w, h), method) def __scale_width(img, target_width, method=Image.BICUBIC): ow, oh = img.size if (ow == target_width): return img # w = target_width # h = int(target_width * oh / ow) h, w = target_width, target_width return img.resize((w, h), method) def __flip(img, flip): if flip: return img.transpose(Image.FLIP_LEFT_RIGHT) return img
32.837838
70
0.634568
0705705a3c49dcf7042c9703c0dce80eee2a7198
2,879
py
Python
peekingduck/pipeline/nodes/model/efficientdet_d04/efficientdet_files/utils/model_process.py
leeping-ng/PeekingDuck
16784b4c35f30c463fcc0c7caccdda6141797a6b
[ "Apache-2.0" ]
1
2021-08-19T09:39:14.000Z
2021-08-19T09:39:14.000Z
peekingduck/pipeline/nodes/model/efficientdet_d04/efficientdet_files/utils/model_process.py
sidney-tio/PeekingDuck
966734ab81c9e466ab51495644673c2d52daf17c
[ "Apache-2.0" ]
null
null
null
peekingduck/pipeline/nodes/model/efficientdet_d04/efficientdet_files/utils/model_process.py
sidney-tio/PeekingDuck
966734ab81c9e466ab51495644673c2d52daf17c
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 AI Singapore # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Code of this file is mostly forked from # [@xuannianz](https://github.com/xuannianz)) """ Processing helper functinos for EfficientDet """ from typing import List, Tuple import numpy as np import cv2 IMG_MEAN = [0.485, 0.456, 0.406] IMG_STD = [0.229, 0.224, 0.225] def preprocess_image(image: np.ndarray, image_size: int) -> Tuple[List[List[float]], float]: """Preprocessing helper function for efficientdet Args: image (np.array): the input image in numpy array image_size (int): the model input size as specified in config Returns: image (np.array): the preprocessed image scale (float): the scale in which the original image was resized to """ # image, RGB image_height, image_width = image.shape[:2] if image_height > image_width: scale = image_size / image_height resized_height = image_size resized_width = int(image_width * scale) else: scale = image_size / image_width resized_height = int(image_height * scale) resized_width = image_size image = cv2.resize(image, (resized_width, resized_height)) image = image.astype(np.float32) image /= 255. image -= IMG_MEAN image /= IMG_STD pad_h = image_size - resized_height pad_w = image_size - resized_width image = np.pad(image, [(0, pad_h), (0, pad_w), (0, 0)], mode='constant') return image, scale def postprocess_boxes(boxes: np.ndarray, scale: float, height: int, width: int) -> np.ndarray: """Postprocessing helper function for efficientdet Args: boxes (np.array): the original detected bboxes from model output scale (float): scale in which the original image was resized to height (int): the height of the original image width (int): the width of the original image Returns: boxes (np.array): the postprocessed bboxes """ boxes /= scale boxes[:, 0] = np.clip(boxes[:, 0], 0, width - 1) boxes[:, 1] = np.clip(boxes[:, 1], 0, height - 1) boxes[:, 2] = np.clip(boxes[:, 2], 0, width - 1) boxes[:, 3] = np.clip(boxes[:, 3], 0, height - 1) boxes[:, [0, 2]] /= width boxes[:, [1, 3]] /= height return boxes
32.348315
76
0.64571
256febabd21ed9fa9e957c084dce0a6db15b9c30
1,276
py
Python
dataschema/schema_example.py
vingkan/sql_tools
5d6ab6a0ae31dc51e51ac1629f83f7bbf91396c1
[ "Apache-2.0" ]
1
2022-03-30T19:47:16.000Z
2022-03-30T19:47:16.000Z
dataschema/schema_example.py
vingkan/sql_tools
5d6ab6a0ae31dc51e51ac1629f83f7bbf91396c1
[ "Apache-2.0" ]
null
null
null
dataschema/schema_example.py
vingkan/sql_tools
5d6ab6a0ae31dc51e51ac1629f83f7bbf91396c1
[ "Apache-2.0" ]
1
2022-03-30T04:07:12.000Z
2022-03-30T04:07:12.000Z
# # nuna_sql_tools: Copyright 2022 Nuna Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """An example of table dataclass equivalent to example.proto.""" import datetime import decimal from dataclasses import dataclass from dataschema.entity import Annotate from dataschema import annotations from typing import Optional @annotations.order_by(values='member_id') @annotations.clickhouse_engine(engine='MERGE_TREE') @annotations.index_granularity(value=8192) @dataclass class Example: """Simple example of dataclass definition.""" member_id: str num_claims: int rx_num_claims: Annotate(Optional[int], annotations.Compression('ZSTD')) start_date: Optional[datetime.date] total_paid: Annotate(Optional[decimal.Decimal], annotations.Decimal(12, 2))
34.486486
79
0.775078
fc052ef3d1aa691eca8a68fd9e76951cbacadc7a
531
py
Python
lab/refactoring/replace_temp_with_query_fowler.py
Tanner-York-Make-School/SPD-2.31-Testing-and-Architecture
623537a05cf5a9d50370a414a5056a78f95288eb
[ "MIT" ]
null
null
null
lab/refactoring/replace_temp_with_query_fowler.py
Tanner-York-Make-School/SPD-2.31-Testing-and-Architecture
623537a05cf5a9d50370a414a5056a78f95288eb
[ "MIT" ]
null
null
null
lab/refactoring/replace_temp_with_query_fowler.py
Tanner-York-Make-School/SPD-2.31-Testing-and-Architecture
623537a05cf5a9d50370a414a5056a78f95288eb
[ "MIT" ]
null
null
null
""" Adapted from a Java code in the "Refactoring" book by Martin Fowler. Replace temp with query Code snippet. Not runnable. """ def get_price(quantity, item_price): """Gets the total price of a purchace given the quantiy and the items price""" base_price = quantity * item_price discount_factor = get_discount_factor(base_price) return base_price * discount_factor def get_discount_factor(base_price): """Gets the discount facort for a given base price""" return 0.95 if base_price > 1000 else 0.98
31.235294
82
0.736347
5bf0f3f5253f45f1da440e156ebbad03805c1770
712
py
Python
sysinv/sysinv/sysinv/sysinv/objects/storage_file.py
albailey/config
40ebe63d7dfc6a0a03216ebe55ed3ec9cf5410b9
[ "Apache-2.0" ]
10
2020-02-07T18:57:44.000Z
2021-09-11T10:29:34.000Z
sysinv/sysinv/sysinv/sysinv/objects/storage_file.py
albailey/config
40ebe63d7dfc6a0a03216ebe55ed3ec9cf5410b9
[ "Apache-2.0" ]
1
2021-01-14T12:01:55.000Z
2021-01-14T12:01:55.000Z
sysinv/sysinv/sysinv/sysinv/objects/storage_file.py
albailey/config
40ebe63d7dfc6a0a03216ebe55ed3ec9cf5410b9
[ "Apache-2.0" ]
10
2020-10-13T08:37:46.000Z
2022-02-09T00:21:25.000Z
# # Copyright (c) 2017 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # # vim: tabstop=4 shiftwidth=4 softtabstop=4 # coding=utf-8 # from sysinv.db import api as db_api from sysinv.objects import base from sysinv.objects import storage_backend class StorageFile(storage_backend.StorageBackend): dbapi = db_api.get_instance() fields = dict({}, **storage_backend.StorageBackend.fields) @base.remotable_classmethod def get_by_uuid(cls, context, uuid): return cls.dbapi.storage_file_get(uuid) def save_changes(self, context, updates): self.dbapi.storage_file_update(self.uuid, # pylint: disable=no-member updates)
24.551724
78
0.698034
ecb35a1e724a5a772253ca21a243802eb8427441
10,508
py
Python
core_tools/data/ds/data_set_DataMgr.py
peendebak/core_tools
2e43edf0bbc1d7ceb7042559db499535e8f6a076
[ "BSD-2-Clause" ]
1
2022-02-11T09:24:35.000Z
2022-02-11T09:24:35.000Z
core_tools/data/ds/data_set_DataMgr.py
peendebak/core_tools
2e43edf0bbc1d7ceb7042559db499535e8f6a076
[ "BSD-2-Clause" ]
null
null
null
core_tools/data/ds/data_set_DataMgr.py
peendebak/core_tools
2e43edf0bbc1d7ceb7042559db499535e8f6a076
[ "BSD-2-Clause" ]
2
2020-07-06T14:31:27.000Z
2021-07-07T13:57:19.000Z
import numpy as np import copy import string class m_param_origanizer(): def __init__(self, m_param_raw): self.m_param_raw = m_param_raw def get(self, key, nth_set): items = self[key] for i in items: if i.nth_set == nth_set: return i raise ValueError('m_param with id {} and set {} not found in this data collection.'.format(key, nth_set)) def __getitem__(self, key): ''' gets a list with parameters containing this key Returns list<m_param_raw> : raw parameters originating from this id. ''' param_s = [] for m_param in self.m_param_raw: if m_param.param_id == key: param_s.append(m_param) if len(param_s) != 0: return param_s raise ValueError('m_param with id {} not found in this data collection.'.format(key)) def get_m_param_id(self): ''' get the measurement id's ''' id_s = set() for m_param in self.m_param_raw: id_s.add(m_param.param_id_m_param) return list(id_s) def __copy__(self): new_m_param = [] for i in self.m_param_raw: new_m_param.append(copy.copy(i)) return m_param_origanizer(new_m_param) class data_descriptor: #autogenerate parameter info def __set_name__(self, owner, name): # from python 3.6 (super handy :) ) self.name = name def __get__(self, obj, objtype): return getattr(obj.__dict__.get("_dataset_data_description__raw_data"), self.name) class dataset_data_description(): unit = data_descriptor() label = data_descriptor() # name = data_descriptor() ## overwritten by self.name in __init__ def __init__(self, name, m_param_raw, m_params_raw_collection): ''' Args: m_param_raw (m_param_raw) : pointer to the raw parameter to add m_params_raw_collection (m_param_origanizer) : object containing a representation of all the data in the dataset ''' self.name = name # @@@ will be overwritten by data_set_core.data_set.__init_properties self.param_name = m_param_raw.name self.__raw_data = m_param_raw self.__raw_data_org = m_params_raw_collection self.__repr_attr_overview = [] self.__populate_data() def __populate_data(self): for i in range(len(self.__raw_data.dependency)): repr_attr_overview = [] raw_data = self.__raw_data_org[self.__raw_data.dependency[i]] for j in range(len(raw_data)): #this is not pretty, but it works.. dataDescription = dataset_data_description('', raw_data[j], self.__raw_data_org) # @@@ Fix x, y, z if self.ndim <= 2: name = string.ascii_lowercase[23+i] + str(j+1) self.__setattr__(name, dataDescription) if j == 0: self.__setattr__(string.ascii_lowercase[23+i], dataDescription) if len(raw_data) == 1: name = string.ascii_lowercase[23+i] repr_attr_overview += [(name, dataDescription)] if self.ndim > 2: self.__setattr__(string.ascii_lowercase[8+i] + str(j+1), dataDescription) if len(raw_data) == 1: self.__setattr__(string.ascii_lowercase[8+i], dataDescription) repr_attr_overview += [(string.ascii_lowercase[8+i], dataDescription)] else: repr_attr_overview += [(string.ascii_lowercase[8+i] + str(j+1), dataDescription)] dataDescription.name = repr_attr_overview[-1][0] # @@@ overwrites name self.__repr_attr_overview += [repr_attr_overview] if self.ndim <= 2: name = string.ascii_lowercase[23+self.ndim-1] if len(self.__raw_data.dependency) != 0: name = string.ascii_lowercase[23+self.ndim] else: name = string.ascii_lowercase[8+self.ndim-1] if len(self.__raw_data.dependency) != 0: name = string.ascii_lowercase[8+self.ndim] self.__setattr__(name, self) def __call__(self): if self.__raw_data.setpoint is True or self.__raw_data.setpoint_local is True: if self.__raw_data.data_buffer.data.ndim > 1: #over dimensioned # NOTE: Assumes the setpoint does not depend on the other dimensions! # This will fail when the parameter is swept in alternating direction. idx = [0] * self.__raw_data.data_buffer.data.ndim idx[self.__raw_data.nth_dim] = slice(None) return self.__raw_data.data_buffer.data[tuple(idx)] return self.__raw_data.data_buffer.data @property def shape(self): return self().shape @property def ndim(self): return len(self.shape) def full(self): return self.__raw_data.data_buffer.data def get_raw_content(self): return self.__repr_attr_overview def average(self, dim): ''' average the array across 1 dimension arg: dim (str/int) : 0 ('x'), 1 ('y') , ... ''' dim = self.dim_to_int(dim) if dim > self.ndim: raise ValueError("you are trying to average over a dimension that does not exists") raw_data_org_copy = copy.copy(self.__raw_data_org) raw_data_cpy = raw_data_org_copy.get(self.__raw_data.param_id, self.__raw_data.nth_set) raw_data_cpy.dependency.pop(dim) raw_data_cpy.data_buffer.buffer_lambda = raw_data_cpy.data_buffer.averaging_lambda(dim) return dataset_data_description(self.name, raw_data_cpy, raw_data_org_copy) def slice(self, dim, i): ''' take the ith slice of dimension i ''' dim = self.dim_to_int(dim) if not isinstance(i, slice): i = slice(int(i),int(i)+1) if dim > self.ndim: raise ValueError("you are trying to average over a dimension that does not exists") idx = [slice(None)]*self.ndim idx[dim] = i raw_data_org_copy = copy.copy(self.__raw_data_org) raw_data_cpy = raw_data_org_copy.get(self.__raw_data.param_id, self.__raw_data.nth_set) if i.start is not None and i.stop-i.start == 1: idx[dim] = i.start raw_data_cpy.dependency.pop(dim) elif i.stop is not None: id_to_slice = raw_data_cpy.dependency[dim] items= raw_data_org_copy[id_to_slice] for item in items: # TODO this is not generic yet (I think, this has to be checked). item.data_buffer.buffer_lambda = item.data_buffer.slice_lambda([idx[dim]]) raw_data_cpy.data_buffer.buffer_lambda = raw_data_cpy.data_buffer.slice_lambda(idx) return dataset_data_description(self.name, raw_data_cpy, raw_data_org_copy) def __getitem__(self, args): if not isinstance(args, tuple): args = [args] args = list(args) to_slice = None for i in range(len(args)): if isinstance(args[i], int): to_slice = (i, slice(args[i], args[i]+1)) elif isinstance(args[i], slice) and args[i] != slice(None): to_slice = (i, args[i]) if to_slice is None: return self args.pop(to_slice[0]) return self.slice(to_slice[0], to_slice[1])[tuple(args)] def __repr__(self): output_print = "" output_print += "| " + "{:<15}".format(self.name) + " | " + "{:<15}".format(self.label) + " | " + "{:<8}".format(self.unit)+ " | " + "{:<25}".format(str(self.shape)) + "|\n" for i in self.__repr_attr_overview: for j in i: dataDescription = j[1] if dataDescription.ndim == 1: output_print += "| " + "{:<14}".format(j[0]) + " | " + "{:<15}".format(dataDescription.label) + " | " + "{:<8}".format(dataDescription.unit)+ " | " + "{:<25}".format(str(dataDescription.shape)) + "|\n" return output_print @staticmethod def dim_to_int(dim): ''' convert dim (if text) into a number on which axix of the array to performan a operation (e.g. x = 0, y=1) ''' if isinstance(dim, str): if dim in 'xyz': dim = list(string.ascii_lowercase).index(dim) - 23 else: dim = list(string.ascii_lowercase).index(dim) - 8 return dim class data_set_property_intializer(): ''' mockup of dataclass for development purposes-- dont use this class. ''' def __init__(self, m_params): self.__repr_attr_overview = [] # m_meas_id's m_id = m_params.get_m_param_id() for i in range(len(m_id)): #this is not pretty. n_sets = len(m_params[m_id[i]]) repr_attr_overview = [] for j in range(n_sets): ds_descript = dataset_data_description('', m_params.get(m_id[i], j), m_params) name = 'm' + str(i+1) + string.ascii_lowercase[j] setattr(self, name, ds_descript) if j == 0: setattr(self, 'm' + str(i+1), ds_descript) if j == 0 and n_sets==1: #consistent printing repr_attr_overview += [('m' + str(i+1), ds_descript)] ds_descript.name = 'm' + str(i+1) else: repr_attr_overview += [(name, ds_descript)] ds_descript.name = name self.__repr_attr_overview += [repr_attr_overview] def __repr__(self): output_print = "DataSet :: my_measurement_name\n\nid = 1256\nTrueID = 1225565471200\n\n" output_print += "| idn | label | unit | size |\n" output_print += "---------------------------------------------------------------------------\n" for i in self.__repr_attr_overview: for j in i: output_print += j[1].__repr__() output_print += "\n" output_print += "database : vanderyspen\n" output_print += "set_up : XLD\n" output_print += "project : 6dot\n" output_print += "sample_name : SQ19\n" return output_print
37.798561
228
0.574705
9c3cf7ee3df54990f99e6772b7382d4e8c3174b0
6,575
py
Python
pysrc/lib/math2d.py
Blimba/PyWC3
16d519bbb98e7593b8d14d14d9b81b6d6932ef0c
[ "MIT" ]
14
2020-02-16T14:25:02.000Z
2021-12-07T13:57:34.000Z
pysrc/lib/math2d.py
sylvainSUPINTERNET/PyWC3
16d519bbb98e7593b8d14d14d9b81b6d6932ef0c
[ "MIT" ]
3
2020-04-20T02:31:31.000Z
2022-02-25T17:06:12.000Z
pysrc/lib/math2d.py
sylvainSUPINTERNET/PyWC3
16d519bbb98e7593b8d14d14d9b81b6d6932ef0c
[ "MIT" ]
2
2021-03-17T13:15:32.000Z
2021-09-26T09:24:21.000Z
import math from ..df.commonj import * class Vector2: active = [] _fifo_buffer_size = 50 # this is the amount of temporary vectors used _loc = None _bin = {} def __new__(cls,x=0.0,y=0.0,temp=False): if cls in Vector2._bin and len(Vector2._bin[cls]) > cls._fifo_buffer_size: o = Vector2._bin[cls].pop(0) cls.active.append(o) return o else: o = object.__new__(cls) cls.active.append(o) return o def permanent(self): cls = type(self) if self not in cls.active: cls.active.append(self) Vector2._bin[cls].remove(self) return self def destroy(self): cls = type(self) if cls in Vector2._bin: if self in Vector2.active: cls.active.remove(self) Vector2._bin[cls].append(self) else: cls.active.remove(self) Vector2._bin[cls] = [self] def __init__(self,x=0.0,y=0.0,temp=False): self.x = x self.y = y if temp: self.destroy() @staticmethod def stats(): c = 0 for cls in Vector2._bin: c += len(Vector2._bin[cls]) return 'Vector2 In use: {}, Recycle bin: {}'.format(str(len(Vector2.active)), str(c)) def distance(p1,p2): dx = p1.x-p2.x dy = p1.y-p2.y return math.sqrt(dx*dx+dy*dy) def dot(self,v): return self.x*v.x+self.y*v.y def cross(self,v): ''' Treats the vectors as if they were 3D with z = 0, and returns the z of the cross product. :param v: :return float: ''' return self.x*v.y - v.x*self.y def __add__(self, p): return Vector2(self.x + p.x, self.y + p.y,True) def __sub__(self, p): return Vector2(self.x - p.x, self.y - p.y,True) def __mul__(self, other): if isinstance(other,float): return Vector2(self.x*other, self.y*other,True) elif isinstance(other, Vector2): return Vector2(self.x*other.x, self.y*other.y,True) def __truediv__(self, other): if isinstance(other,float): return Vector2(self.x/other, self.y/other,True) elif isinstance(other,Vector2): return Vector2(self.x/other.x, self.y/other.y,True) def __len__(self): return math.sqrt(self.x*self.x+self.y*self.y) def __str__(self): return "Vector2 x: "+str(self.x)+", y: "+str(self.y) def add(self,v): self.x += v.x self.y += v.y return self def subtract(self,v): self.x -= v.x self.y -= v.y return self def multiply(self,v): if isinstance(v, float): self.x *= v self.y *= v elif isinstance(v,Vector2): self.x *= v.x self.y *= v.y return self def divide(self,v): if isinstance(v, float): v = 1/v self.x *= v self.y *= v elif isinstance(v,Vector2): self.x /= v.x self.y /= v.y return self def normalize(self): return self.divide(len(self)) def get_angle(self,other): return self.dot(other)/(len(self) * len(other)) def project(self,other): return other * self.dot(other)/other.dot(other) def rotate(self,theta,direction='cw'): cos = None sin = None if direction == 'cw': cos = math.cos(theta) sin = math.sin(theta) else: cos = math.cos(-theta) sin = math.sin(-theta) self.x = self.x*cos - self.y*sin self.y = self.x*sin + self.y*cos def show(self): fx = AddSpecialEffect(r"Abilities\\Spells\\Orc\\Bloodlust\\BloodlustTarget.mdl",self.x,self.y) return self class Line2: def __init__(self,p1,p2): self.p1 = p1 self.p2 = p2 def closest_point(self,p,segment = True): dx = self.p2.x - self.p1.x dy = self.p2.y - self.p1.y d2 = dx * dx + dy * dy nx = ((p.x - self.p1.x) * dx + (p.y - self.p1.y) * dy) / d2 if segment: if nx < 0: nx = 0 elif nx > 1: nx = 1 return Vector2(dx * nx + self.p1.x, dy * nx + self.p1.y) def distance(self,p,segment = True): lp = self.closest_point(p,segment) return lp.distance(p) def normal(self,p): return self.closest_point(p).subtract(p).normalize() def show(self): z1 = GetLocationZ(Location(self.p1.x,self.p1.y)) z2 = GetLocationZ(Location(self.p2.x, self.p2.y)) AddLightningEx("DRAL",False,self.p1.x,self.p1.y,z1,self.p2.x,self.p2.y,z2) return self class Rectangle: def __init__(self,minx,miny,maxx,maxy): self.minx = minx self.maxx = maxx self.miny = miny self.maxy = maxy @staticmethod def from_points(p1,p2): minx = p1.x if p1.x < p2.x else p2.x miny = p1.y if p1.y < p2.y else p2.y maxx = p1.x if p1.x > p2.x else p2.x maxy = p1.y if p1.y > p2.y else p2.y return Rectangle(minx,miny,maxx,maxy) @staticmethod def from_rect(rect): return Rectangle(GetRectMinX(rect), GetRectMinY(rect), GetRectMaxX(rect), GetRectMaxY(rect)) def random_point(self,crop=0): x = math.random()*(self.maxx-(crop*2)-self.minx)+self.minx+crop y = math.random()*(self.maxy-(crop*2)-self.miny)+self.miny+crop return Vector2(x,y,True) def __contains__(self, p): if isinstance(p, Vector2): return p.x >= self.minx and p.x <= self.maxx and p.y >= self.miny and p.y <= self.maxy def closest_point(self,p): if p in self: return Vector2(p.x,p.y) if p.x < self.minx: if p.y < self.miny: return Vector2(self.minx, self.miny) if p.y > self.maxy: return Vector2(self.minx, self.maxy) return Vector2(self.minx, p.y) if p.x > self.maxx: if p.y < self.miny: return Vector2(self.maxx, self.miny) if p.y > self.maxy: return Vector2(self.maxx, self.maxy) return Vector2(self.maxx, p.y) if p.y > self.maxy: return Vector2(p.x,self.maxy) return Vector2(p.x,self.miny) def distance(self,p): rp = self.closest_point(p) return rp.distance(p) def normal(self,p): return self.closest_point(p).subtract(p).normalize()
31.014151
102
0.540228
7dc6f455566fec5a6d7d812e34893ee321fea8c1
431
py
Python
onadata/apps/fieldsight/token_gen_invites.py
awemulya/fieldsight-kobocat
f302d084e30fb637d43ec638c701e01a3dddc721
[ "BSD-2-Clause" ]
38
2017-02-28T05:39:40.000Z
2019-01-16T04:39:04.000Z
onadata/apps/fieldsight/token_gen_invites.py
awemulya/fieldsightt
f302d084e30fb637d43ec638c701e01a3dddc721
[ "BSD-2-Clause" ]
20
2017-04-27T09:14:27.000Z
2019-01-17T06:35:52.000Z
onadata/apps/fieldsight/token_gen_invites.py
awemulya/fieldsightt
f302d084e30fb637d43ec638c701e01a3dddc721
[ "BSD-2-Clause" ]
5
2017-02-22T12:25:19.000Z
2019-01-15T11:16:40.000Z
from django.contrib.auth.tokens import PasswordResetTokenGenerator from django.utils import six import datetime class InviteActivationTokenGenerator(PasswordResetTokenGenerator): def _make_hash_value(self, invite): return ( six.text_type(invite.pk) + six.text_type(datetime.datetime.now()) + six.text_type(invite.group.name) ) invite_activation_token = InviteActivationTokenGenerator()
35.916667
79
0.756381
88b740445ff902e3eb8e08dcae209e18b37da896
23,756
py
Python
pyqg/changed_f_beta_nk0_filter_tilde_newdomain/layered_model.py
wanyingkang/pyqg
ffcb48573a4a66d7c48f64c69734a567547e0962
[ "MIT" ]
null
null
null
pyqg/changed_f_beta_nk0_filter_tilde_newdomain/layered_model.py
wanyingkang/pyqg
ffcb48573a4a66d7c48f64c69734a567547e0962
[ "MIT" ]
null
null
null
pyqg/changed_f_beta_nk0_filter_tilde_newdomain/layered_model.py
wanyingkang/pyqg
ffcb48573a4a66d7c48f64c69734a567547e0962
[ "MIT" ]
null
null
null
from __future__ import print_function import numpy as np from numpy import pi from . import model try: import mkl np.use_fastnumpy = True except ImportError: pass try: import pyfftw pyfftw.interfaces.cache.enable() except ImportError: pass class LayeredModel(model.Model): r"""Layered quasigeostrophic model. This model is meant to represent flows driven by baroclinic instabilty of a base-state shear. The potential vorticity anomalies qi are related to the streamfunction psii through .. math:: {q_i} = \nabla^2\psi_i + \frac{f_0^2}{H_i} \left(\frac{\psi_{i-1}- \psi_i}{g'_{i-1}}- \frac{\psi_{i}-\psi_{i+1}}{g'_{i}}\right)\,, \qquad i = 2,\textsf{N}-1\,, {q_1} = \nabla^2\psi_1 + \frac{f_0^2}{H_1} \left(\frac{\psi_{2}- \psi_1}{g'_{1}}\right)\,, \qquad i =1\,, {q_\textsf{N}} = \nabla^2\psi_\textsf{N} + \frac{f_0^2}{H_\textsf{N}} \left(\frac{\psi_{\textsf{N}-1}- \psi_\textsf{N}}{g'_{\textsf{N}}}\right) + \frac{f_0}{H_\textsf{N}}h_b\,, \qquad i =\textsf{N}\,, where the reduced gravity, or buoyancy jump, is .. math:: g'_i \equiv g \frac{\pt_{i+1}-\pt_i}{\pt_i}\,. The evolution equations are .. math:: \,{q_{i}}_t + \mathsf{J}\left(\psi_i\,, q_i\right) + \textsf{Q}_y {\psi_i}_x - \textsf{Q}_x {\psi_i}_y = \text{ssd} - r_{ek} \delta_{i\textsf{N}} \nabla^2 \psi_i\,, \qquad i = 1,\textsf{N}\,, where the mean potential vorticy gradients are .. math:: \textsf{Q}_x = \textsf{S}\textsf{V}\,, and .. math:: \textsf{Q}_y = \beta\,\textsf{I} - \textsf{S}\textsf{U}\,\,, where S is the stretching matrix, I is the identity matrix, and the background velocity is :math:`\vec{\textsf{V}}(z) = \left(\textsf{U},\textsf{V}\right)`. """ def __init__( self, g = 9.81, beta=1.5e-11, #? gradient of coriolis parameter nz = 4, # number of layers rd=15000.0, # deformation radius H = None, # layer thickness. If a scalar number, then copy the same H for all layers U=None, # zonal base state flow. If None, use U=0 for all layers V=None, # meridional base state flow. If None, use V=0 for all layers pt = None, # potential temperature c2 = None, delta = None, # only used for nz=2, can leave blanck if use multi-layer model H0 = 7750, # standard atm height scale R = 287., kappa = 2./7., tau = 40, # time scale for restoring terms, units in day **kwargs ): """ Parameters ---------- nz : integer number Number of layers (> 1) beta : number Gradient of coriolis parameter. Units: meters :sup:`-1` seconds :sup:`-1` rd : number Deformation radius. Units: meters. Only necessary for the two-layer (nz=2) case. delta : number Layer thickness ratio (H1/H2). Only necessary for the two-layer (nz=2) case. Unitless. U : list of size nz Base state zonal velocity. Units: meters s :sup:`-1` V : array of size nz Base state meridional velocity. Units: meters s :sup:`-1` H : array of size nz Layer thickness. Units: meters pt: array of size nz. Layer Potential Temperature. Units: Kelvin """ # physical if U is None: U=np.zeros([nz]) if V is None: V=np.zeros([nz]) if len(np.array(H))==1 and nz!=1: H=np.tile(np.array(H),nz) self.nz = nz self.g = g self.beta = beta self.rd = rd self.delta = delta self.R = R self.kappa = kappa self.tau = tau self.Ubg = np.array(U) self.Vbg = np.array(V) self.Hi = np.array(H) self.pti = np.array(pt) self.c2 = np.array(c2) self.H0 = H0 super(LayeredModel, self).__init__(nz=nz, **kwargs) self.vertical_modes() print("nx:{}".format(self.nx)) print("ny:{}".format(self.ny)) print("nz:{}".format(self.nz)) ### PRIVATE METHODS - not meant to be called by user ### def _initialize_stretching_matrix(self): """ Set up the stretching matrix """ self.S = np.zeros((self.nz, self.nz)) if (self.nz==2) and (self.rd) and (self.delta): self.del1 = self.delta/(self.delta+1.) self.del2 = (self.delta+1.)**-1 self.Us = self.Ubg[0]-self.Ubg[1] self.F1 = self.rd**-2 / (1.+self.delta) self.F2 = self.delta*self.F1 self.S[0,0], self.S[0,1] = -self.F1, self.F1 self.S[1,0], self.S[1,1] = self.F2, -self.F2 else: for i in range(self.nz): # Adding other statification terms by Wanying Kang @ Feb 14 2017 # All following S element, the second half of expression terms # are added to represent stratification 1/H term. # Would still have terms represent boundary conditions at top and bottom. # q1 = q1 + (self.f*self.g/self.gpi[i]*(1-self.Hi[i]/self.H0/2))*(self.T1(x,y)/self.T0) ,i=0 # qN = qN + (self.f*self.g/self.gpi[i]*(-1-self.Hi[i]/self.H0/2))*(self.TN(x,y)/self.T0) ,i=nz-1 # delete the Hi terms at i=0 and i=nz-1 by assuming \psi_zz=0 at top and bottom # This assumption means vertical T gradient is zero. T = -f/R*\psi_{z^*} if i == 0: # 1. assume \Psi_zz|_{top/bot}=0 #self.S[i,i] = (-self.f2/self.H0/self.gpi[i]) #self.S[i,i+1] = (self.f2/self.H0/self.gpi[i]) # 2. assume \Psi_z|_{out_of_range}=0, need to substract constant term to represent the constant temperature when invert \Psi. # self.S[i,i] = (-self.f2/self.Hi[i]/self.gpi[i]- # self.f2/self.H0/self.gpi[i]/2.) # self.S[i,i+1] = (self.f2/self.Hi[i]/self.gpi[i]+ # self.f2/self.H0/self.gpi[i]/2.) # 3. transform \Psi -> \tilde \Psi, use BC \Psi_zz|_{top/bot}=0 self.S[i,i] = -self.f2*self.c2[i] # 4. transform \Psi -> \tilde \Psi, use BC \Psi_z|_{out_of_range}=0, need to substract constant term when invert \Psi. #self.S[i,i] = -self.f2/self.Hi[i]/self.gpi[i]-self.f2*self.c2[i] #self.S[i,i+1] = self.f2/self.Hi[i]/self.gpi[i] elif i == self.nz-1: # 1. #self.S[i,i] = (self.f2/self.H0/self.gpi[i-1]) #self.S[i,i-1] = (-self.f2/self.H0/self.gpi[i-1]) # 2. # self.S[i,i] = (-self.f2/self.Hi[i]/self.gpi[i-1]+ # self.f2/self.H0/self.gpi[i-1]/2.) # self.S[i,i-1] = (self.f2/self.Hi[i]/self.gpi[i-1]- # self.f2/self.H0/self.gpi[i-1]/2.) # 3. self.S[i,i] = -self.f2*self.c2[i] # 4. #self.S[i,i] = -self.f2/self.Hi[i]/self.gpi[i-1]-self.f2*self.c2[i] #self.S[i,i-1] = self.f2/self.Hi[i]/self.gpi[i-1] else: # 1. or 2. #self.S[i,i-1] = (self.f2/self.Hi[i]/self.gpi[i-1]- # self.f2/self.H0/self.gpi[i-1]/2.) #self.S[i,i] = (-(self.f2/self.Hi[i]/self.gpi[i] + # self.f2/self.Hi[i]/self.gpi[i-1])- # (self.f2/self.H0/self.gpi[i]/2.- # self.f2/self.H0/self.gpi[i-1]/2.)) #self.S[i,i+1] = (self.f2/self.Hi[i]/self.gpi[i]+ # self.f2/self.H0/self.gpi[i]/2.) # 3. or 4. self.S[i,i-1] = self.f2/self.Hi[i]/self.gpi[i-1] self.S[i,i] = (-(self.f2/self.Hi[i]/self.gpi[i] + self.f2/self.Hi[i]/self.gpi[i-1]) -self.f2*self.c2[i]) self.S[i,i+1] = self.f2/self.Hi[i]/self.gpi[i] def _initialize_background(self): """Set up background state (zonal flow and PV gradients).""" self.H = self.Hi.sum() if not (self.nz==2): #self.gpi = -self.g*(self.pti[1:]-self.pti[:-1])/self.pti[:-1] self.gpi = -(self.pti[1:]-self.pti[:-1])/self.H0*self.R*np.exp(-self.kappa/self.H0*np.asarray(self.z[:-1])) self.f2gpi = (self.f2/self.gpi)[:,np.newaxis,np.newaxis] assert self.gpi.size == self.nz-1, "Invalid size of gpi" assert np.all(self.gpi>0.), "Buoyancy jump has negative sign!" assert self.Hi.size == self.nz, self.logger.error('size of Hi does not' + 'match number of vertical levels nz') assert self.pti.size == self.nz, self.logger.error('size of pti does not' + 'match number of vertical levels nz') assert self.Ubg.size == self.nz, self.logger.error('size of Ubg does not' + 'match number of vertical levels nz') assert self.Vbg.size == self.nz, self.logger.error('size of Vbg does not' + 'match number of vertical levels nz') else: self.f2gpi = np.array(self.rd**-2 * (self.Hi[0]*self.Hi[1])/self.H)[np.newaxis,np.newaxis] ## Initialize stretching matrix self._initialize_stretching_matrix() ## the meridional PV gradients in each layer ## Original version #self.Qy = self.beta - np.dot(self.S,self.Ubg) #self.Qx = np.dot(self.S,self.Vbg) ## complex versions, multiplied by k, speeds up computations to precompute #self.ikQy = self.Qy[:,np.newaxis,np.newaxis]*1j*self.k #self.ilQx = self.Qx[:,np.newaxis,np.newaxis]*1j*self.l ## Set the meridional PV gradients in each layer # Wanying Kang add lat dependent on beta. # Qy is nz*nl*nl matrix, convolution matrix takes the nl*nl dimension # The kernel calculate _ikQy from Qy, instead of using ikQy here. # _ikQy is originally nz*nk matrix, different from original ikQy which is a nz*nl*nk matrix. After my modificatino, they are the same. # This ikQy is used in stability analysis in model.py #b_lat = np.asarray(self.coslat)**2.*(np.asarray(self.coslat)**2.-2.*np.asarray(self.sinlat)**2.) b_lat = np.asarray(self.coslat)**3. b_lat[int(self.nl/2):,:] = -b_lat[int(self.nl/2):,:] b_lat1 = np.squeeze(b_lat[:,0]) b_lat = np.tile(b_lat[np.newaxis,:,:], (self.nz,1,1)) bh_lat = self.fft(b_lat)/(self.nl**2)/(self.nl) bh_lat = np.squeeze(bh_lat[0,:,0]) # uniform in x direction, so pick k=0 #Cbh1 = (self.convmtx( bh_lat[:int(self.nl/2)] , self.nl ))[:int(self.nl/2),:] #Cbh2 = (self.convmtx( bh_lat[int(self.nl/2):] , self.nl ))[-int(self.nl/2):,:] #Cbh = np.concatenate( [Cbh1, Cbh2] , 0 ) order = np.concatenate([range(int(self.nl/2),self.nl),range(0,int(self.nl/2))]) Cbh_shift = self.convmtx( bh_lat[order] , self.nl ) Cbh_shift = Cbh_shift[int(self.nl/2):-int(self.nl/2)+1,:] Cbh = Cbh_shift[order,:] Cbh = Cbh[:,order] # Test Wanying Kang's convolution #b_test1 = np.arange(self.nl)/2. #b_test = np.tile(b_test1[np.newaxis,:,np.newaxis], (self.nz,1,self.nx)) #bh_test = self.fft(b_test) #bh_test1 = np.squeeze(bh_test[0,:,0]) #b_result = b_test1*b_lat1 #bh_result = np.dot(Cbh,bh_test1) #bh_result = self.ifft(np.tile(bh_result[np.newaxis,:,np.newaxis], (self.nz,1,self.nk))) #bh_result = np.squeeze(bh_result[0,:,0]) #print(b_result) #print(bh_result) # real space version of Qy Qx: #self.Qy = np.tile(self.beta*b_lat1[np.newaxis,:],[self.nz,1]) - np.tile((np.dot(self.S,self.Ubg))[:,np.newaxis],[1,self.nl]) #self.Qx = np.tile(np.dot(self.S,self.Vbg)[:,np.newaxis],[1,self.nl]) # spectra space version of Qy Qx: self.Qy = np.tile(self.beta*Cbh[np.newaxis,:,:],[self.nz,1,1]) - np.tile((np.dot(self.S,self.Ubg))[:,np.newaxis,np.newaxis],[1,self.nl,self.nl]) self.Qx = np.dot(self.S,self.Vbg) # complex versions, multiplied by k, speeds up computations to precompute # Wanying Kang: add lat dependent on beta. ikQy is nz*nl*nl*nk matrix self.ikQy = self.Qy[:,:,:,np.newaxis]*1j*self.kk[np.newaxis,np.newaxis,np.newaxis,:] self.ilQx = self.Qx[:,np.newaxis,np.newaxis]*1j*self.l #Original version ## lat-dependent restoring terms g_lat1 = 1.+50.*(1-np.tanh(7*self.sinlat1)) g_lat = np.tile(g_lat1[np.newaxis,:,np.newaxis], (self.nz,1,self.nx)) gh_lat = self.fft(g_lat)/(self.nl**2)/(self.nl) gh_lat = np.squeeze(gh_lat[0,:,0]) Cgh_shift = self.convmtx( gh_lat[order] , self.nl ) Cgh_shift = Cgh_shift[int(self.nl/2):-int(self.nl/2)+1,:] Cgh = Cgh_shift[order,:] Cgh = Cgh[:,order] self.gamma = np.tile(1./self.tau/86400.*Cgh[np.newaxis,:,:],[self.nz,1,1]) # def _initialize_inversion_matrix(self): # # Original Version # a = np.ma.zeros((self.nz, self.nz, self.nl, self.nk), np.dtype('float64')) # # if (self.nz==2): # det_inv = np.ma.masked_equal( # ( (self.S[0,0]-self.wv2)*(self.S[1,1]-self.wv2) -\ # self.S[0,1]*self.S[1,0] ), 0.)**-1 # a[0,0] = (self.S[1,1]-self.wv2)*det_inv # a[0,1] = -self.S[0,1]*det_inv # a[1,0] = -self.S[1,0]*det_inv # a[1,1] = (self.S[0,0]-self.wv2)*det_inv # else: # I = np.eye(self.nz)[:,:,np.newaxis,np.newaxis] # M = self.S[:,:,np.newaxis,np.newaxis]-I*self.wv2 # M[:,:,0,0] = np.nan # avoids singular matrix in inv() # a = np.linalg.inv(M.T).T # print(a[a!=0]) # self.a = np.ma.masked_invalid(a).filled(0.) def _initialize_inversion_matrix(self): # Wanying Kang: Do convolution if f has lat-stucture as # f=f0*cos(lat)*sin(lat), f2=f0^2*cos^2(lat)*sin^2(lat) a = np.ma.zeros((self.nz, self.nz, self.nl, self.nl, self.nk0), np.dtype(np.complex128)) if (self.nz==2): Ij = np.eye(self.nl)[np.newaxis,np.newaxis,:,:,np.newaxis] det_inv = np.ma.masked_equal( ( (self.S[0,0]-self.wv2)*(self.S[1,1]-self.wv2) -\ self.S[0,1]*self.S[1,0] ), 0.)**-1 for j in range(self.nl): a[0,0,j,j] = (self.S[1,1]-self.wv2)*det_inv a[0,1,j,j] = -self.S[0,1]*det_inv a[1,0,j,j] = -self.S[1,0]*det_inv a[1,1,j,j] = (self.S[0,0]-self.wv2)*det_inv else: Izl = np.multiply.outer(np.eye(self.nz),np.eye(self.nl)) Iz = np.eye(self.nz) # Wanying Kang: Do convolution if f has lat-stucture as # f=f0*cos(lat)*sin(lat), f2=f0^2*cos^2(lat)*sin^2(lat) f_lat = np.asarray(self.coslat)**2.*np.asarray(self.sinlat)**2. f_lat = np.tile(f_lat[np.newaxis,:,:], (self.nz,1,1)) fh_lat = self.fft(f_lat)/(self.nl**2)/(self.nl) fh_lat = np.squeeze(fh_lat[0,:,0]) # uniform in x direction, so pick k=0 #Cfh1 = (self.convmtx( fh_lat[:int(self.nl/2)] , self.nl ))[:int(self.nl/2),:] #Cfh2 = (self.convmtx( fh_lat[int(self.nl/2):] , self.nl ))[-int(self.nl/2):,:] #Cfh = np.concatenate( [Cfh1, Cfh2] , 0 ) #Cfh = np.eye(self.nl) # compare with non-lat dependent case order = np.concatenate([range(int(self.nl/2),self.nl),range(0,int(self.nl/2))]) Cfh_shift = self.convmtx( fh_lat[order] , self.nl ) Cfh_shift = Cfh_shift[int(self.nl/2):-int(self.nl/2)+1,:] Cfh = Cfh_shift[order,:] Cfh = Cfh[:,order] # Wanying Kang: Make up poisson operator, M M = (np.multiply.outer(self.S,Cfh))[:,:,:,:,np.newaxis]-Izl[:,:,:,:,np.newaxis]*self.wv2[np.newaxis,np.newaxis,np.newaxis,:,:] # Wanying Kang: Add BC by modifying the poisson operator M, # give up the equation for high k wavenumber, need totally nz*nk0+nz*(nk0-1) slots. # 1. NP: p|_{NP}=0 # For all k, wave#k component has no Amp at NP. #M[:,:,int(self.nl/2),:,0:self.nk0]=(Iz[:,:,np.newaxis,np.newaxis])*((np.exp(2*pi*1j*self.ll*(self.ny-1)/self.nl)/self.nl)[np.newaxis,np.newaxis,:,np.newaxis]) #M[:,:,int(self.nl/2),int(self.nl/2),0:self.nk0]=0. #M[:,:,int(self.nl/2),int(self.nl*3/4),0:self.nk0]=0. # 2. SP: p_x|_{SP}=0. 1j*k*ph|_{SP}=0 where ph is fourier transformed p in x dir. # For k=0, the equation is automatically satisfied; For k/=0, this means wave#k component has no Amp at SP. #M[:,:,int(self.nl*3/4),:,1:self.nk0]=(Iz[:,:,np.newaxis,np.newaxis])*(1/self.nl)*self.kk[1:self.nk0] #M[:,:,int(self.nl/2),int(self.nl/2),1:self.nk0]=0. #M[:,:,int(self.nl/2),int(self.nl*3/4),1:self.nk0]=0. # Wanying Kang: calculate matrix inversion Mt = np.ascontiguousarray(np.transpose(M,[4,0,2,1,3])) Mt.shape=(self.nk,self.nz*self.nl,self.nz*self.nl) #Mt[0,:,:]=np.nan # avoids singular matrix in inv(), however filterred out k=0 components. for ik in range(self.nk0): at = np.linalg.inv(Mt[ik,:,:]) at.shape = (self.nz,self.nl,self.nz,self.nl) a[:,:,:,:,ik] = np.transpose(at,[0,2,1,3]) a[:,:,0,0,0]=0. #self.a = np.ma.masked_invalid(a).filled(0.) self.a = a # Wanying Kang add b matrix to invert k=0 component, # now this is not necessary since I changed the way I calculate a above. #Mb = np.multiply.outer(self.S,Cfh)-Izl*(self.ll**2) #Mb[:,:,int(self.nl/2)-1,:]=(Iz[:,:,np.newaxis])*((np.exp(2*pi*1j*self.ll*(self.ny-1)/self.nl)/self.nl)[np.newaxis,np.newaxis,:]) #Mb = M[:,:,:,:,0] #Mb[:,:,0,0]=np.nan #Mbt = np.ascontiguousarray(np.transpose(Mb,[0,2,1,3])) #Mbt.shape=(self.nl*self.nz,self.nl*self.nz) #bt = np.linalg.inv(Mbt) #bt.shape = (self.nz,self.nl,self.nz,self.nl) #b = np.transpose(bt,[0,2,1,3]) #b [:,:,0,0]=0.+0j #self.a[:,:,:,:,0]=b def _initialize_forcing(self): pass #"""Set up frictional filter.""" # this defines the spectral filter (following Arbic and Flierl, 2003) # cphi=0.65*pi # wvx=np.sqrt((self.k*self.dx)**2.+(self.l*self.dy)**2.) # self.filtr = np.exp(-self.filterfac*(wvx-cphi)**4.) # self.filtr[wvx<=cphi] = 1. ### All the diagnostic stuff follows. ### def _calc_cfl(self): return np.abs( np.hstack([self.u + self.Ubg[:,np.newaxis,np.newaxis], self.v]) ).max()*self.dt/self.dx # calculate KE: this has units of m^2 s^{-2} # (should also multiply by H1 and H2...) def _calc_ke(self): ke = 0. for j in range(self.nz): ke += .5*self.Hi[j]*self.spec_var(self.wv*self.ph[j]) return ke.sum() / self.H # calculate eddy turn over time # (perhaps should change to fraction of year...) def _calc_eddy_time(self): """ estimate the eddy turn-over time in days """ ens = 0. for j in range(self.nz): ens = .5*self.Hi[j] * self.spec_var(self.wv2*self.ph[j]) return 2.*pi*np.sqrt( self.H / ens.sum() ) / 86400 def _calc_derived_fields(self): self.p = self.ifft(self.ph) self.xi =self.ifft(-self.wv2*self.ph) self.Jpxi = self._advect(self.xi, self.u, self.v) self.Jq = self._advect(self.q, self.u, self.v) self.Sph = np.einsum("ij,jkl->ikl",self.S,self.ph) self.Sp = self.ifft(self.Sph) self.JSp = self._advect(self.Sp,self.u,self.v) self.phn = self.modal_projection(self.ph) def _initialize_model_diagnostics(self): """ Extra diagnostics for layered model """ self.add_diagnostic('entspec', description='barotropic enstrophy spectrum', function= (lambda self: np.abs((self.Hi[:,np.newaxis,np.newaxis]*self.qh).sum(axis=0))**2/self.H) ) self.add_diagnostic('KEspec_modal', description='modal KE spectra', function= (lambda self: self.wv2*(np.abs(self.phn)**2)/self.M**2 )) self.add_diagnostic('PEspec_modal', description='modal PE spectra', function= (lambda self: self.kdi2[1:,np.newaxis,np.newaxis]*(np.abs(self.phn[1:,:,:])**2)/self.M**2 )) self.add_diagnostic('APEspec', description='available potential energy spectrum', function= (lambda self: (self.f2gpi* np.abs(self.ph[:-1]-self.ph[1:])**2).sum(axis=0)/self.H)) self.add_diagnostic('KEflux', description='spectral divergence of flux of kinetic energy', function =(lambda self: (self.Hi[:,np.newaxis,np.newaxis]* (self.ph.conj()*self.Jpxi).real).sum(axis=0)/self.H)) self.add_diagnostic('APEflux', description='spectral divergence of flux of available potential energy', function =(lambda self: (self.Hi[:,np.newaxis,np.newaxis]* (self.ph.conj()*self.JSp).real).sum(axis=0)/self.H)) self.add_diagnostic('APEgenspec', description='the spectrum of the rate of generation of available potential energy', function =(lambda self: (self.Hi[:,np.newaxis,np.newaxis]* (self.Ubg[:,np.newaxis,np.newaxis]*self.k + self.Vbg[:,np.newaxis,np.newaxis]*self.l)* (1j*self.ph.conj()*self.Sph).real).sum(axis=0)/self.H)) self.add_diagnostic('ENSflux', description='barotropic enstrophy flux', function = (lambda self: (-self.Hi[:,np.newaxis,np.newaxis]* (self.qh.conj()*self.Jq).real).sum(axis=0)/self.H)) # # Wanying Kang: this function cannot be used since I change the dimension of ikQy # self.add_diagnostic('ENSgenspec', # description='the spectrum of the rate of generation of barotropic enstrophy', # function = (lambda self: # -(self.Hi[:,np.newaxis,np.newaxis]*((self.ikQy - # self.ilQx)*(self.Sph.conj()*self.ph)).real).sum(axis=0)/self.H))
44.822642
171
0.519953
0cabaf02466e9cacc7105ed26fd9122ff7e01576
496
py
Python
01-DesenvolvimentoDeSistemas/02-LinguagensDeProgramacao/01-Python/01-ListaDeExercicios/02-Aluno/Roberto/exc0029.py
moacirsouza/nadas
ad98d73b4281d1581fd2b2a9d29001acb426ee56
[ "MIT" ]
1
2020-07-03T13:54:18.000Z
2020-07-03T13:54:18.000Z
01-DesenvolvimentoDeSistemas/02-LinguagensDeProgramacao/01-Python/01-ListaDeExercicios/02-Aluno/Roberto/exc0029.py
moacirsouza/nadas
ad98d73b4281d1581fd2b2a9d29001acb426ee56
[ "MIT" ]
null
null
null
01-DesenvolvimentoDeSistemas/02-LinguagensDeProgramacao/01-Python/01-ListaDeExercicios/02-Aluno/Roberto/exc0029.py
moacirsouza/nadas
ad98d73b4281d1581fd2b2a9d29001acb426ee56
[ "MIT" ]
null
null
null
print(""" 029) Escreva um programa que leia a velocidade de um carro. Se ele ultrapassar 80Km/h, mostre uma mensagem dizendo que ele foi multado. A multa vai custar R$7,00 por cada quilômetro acima do limite. """) velocidade = float(input('Velocidade de Veículo (Em Km/h): ')) if velocidade > 80: valordamulta = (velocidade - 80) * 7 print('Você foi multado') print('O valor da multa foi: {:.2f}'.format(valordamulta)) else: print('Você está dentro dos limites de velocidade')
33.066667
86
0.705645
088c80b96dca9f0208a93e9329132d33896a29dd
1,096
py
Python
SettlementBuilder.py
Niels-NTG/GDMC2022
515f4b7dd6f04af9714e7773f36cc9b3f1da1b95
[ "MIT" ]
null
null
null
SettlementBuilder.py
Niels-NTG/GDMC2022
515f4b7dd6f04af9714e7773f36cc9b3f1da1b95
[ "MIT" ]
null
null
null
SettlementBuilder.py
Niels-NTG/GDMC2022
515f4b7dd6f04af9714e7773f36cc9b3f1da1b95
[ "MIT" ]
null
null
null
import numpy as np import mapUtils from Node import Node class SettlementBuilder: def __init__(self): # DEBUG # central RNG generator rng = np.random.default_rng() buildArea = mapUtils.getBuildArea() startingPos = (10, 10) # DEBUG mapUtils.fill( buildArea[0], 69, buildArea[1], buildArea[0] + buildArea[2], 69 + 10, buildArea[1] + buildArea[3], "minecraft:air" ) # Height map of the build area. heightMap = mapUtils.calcGoodHeightmap(buildArea) # Map of structures built in the build area. mapOfStructures = np.full(shape=heightMap.shape, fill_value=0) startingNode = Node( x=buildArea[0] + startingPos[0], y=73, z=buildArea[1] + startingPos[1], buildArea=buildArea, heightMap=heightMap, mapOfStructures=mapOfStructures, nodeStructureType='lab_a/hub', rng=rng ) startingNode.place()
24.355556
70
0.546533
62fa0942c55556730d2c701b1a6ce0ca139be218
1,221
py
Python
gfootball/env/players/agent.py
seccoboy/football
c5c6a5c1d587a94673597ff6d61da43044a0c9ac
[ "Apache-2.0" ]
3,091
2019-06-03T13:00:48.000Z
2022-03-31T05:45:56.000Z
gfootball/env/players/agent.py
seccoboy/football
c5c6a5c1d587a94673597ff6d61da43044a0c9ac
[ "Apache-2.0" ]
287
2019-06-07T14:35:25.000Z
2022-03-19T12:36:42.000Z
gfootball/env/players/agent.py
seccoboy/football
c5c6a5c1d587a94673597ff6d61da43044a0c9ac
[ "Apache-2.0" ]
1,418
2019-06-03T13:11:19.000Z
2022-03-31T02:51:30.000Z
# coding=utf-8 # Copyright 2019 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Agent player controlled by the training policy and using step/reset API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from gfootball.env import player_base class Player(player_base.PlayerBase): def __init__(self, player_config, env_config): player_base.PlayerBase.__init__(self, player_config) assert player_config['player_agent'] == 0, 'Only one \'agent\' player allowed' self._action = None def set_action(self, action): self._action = action def take_action(self, observations): return copy.deepcopy(self._action)
32.131579
82
0.765766
d8037602be1571ee7156f417b79570f22a6e1897
15,723
py
Python
tests/data_context/test_data_context_datasource_runtime_data_connector.py
zachzIAM/great_expectations
6c949285825571954bf272543fbd8b0cd4396685
[ "Apache-2.0" ]
null
null
null
tests/data_context/test_data_context_datasource_runtime_data_connector.py
zachzIAM/great_expectations
6c949285825571954bf272543fbd8b0cd4396685
[ "Apache-2.0" ]
null
null
null
tests/data_context/test_data_context_datasource_runtime_data_connector.py
zachzIAM/great_expectations
6c949285825571954bf272543fbd8b0cd4396685
[ "Apache-2.0" ]
null
null
null
import pytest import great_expectations import great_expectations.exceptions as ge_exceptions from great_expectations.core.batch import Batch, RuntimeBatchRequest from great_expectations.validator.validator import Validator def test_get_batch_successful_specification_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine batch_list: list = context.get_batch_list( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers={"default_identifier_name": "identifier_name"}, ) ) assert len(batch_list) == 1 assert isinstance(batch_list[0], Batch) def test_get_batch_ambiguous_parameter_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): """ What does this test and why? get_batch_list() requires batch_request to be passed in a named parameter. This test passes in a batch_request as an unnamed parameter, which will raise a GreatExpectationsTypeError """ context = data_context_with_datasource_sqlalchemy_engine # raised by get_batch_list() with pytest.raises(ge_exceptions.GreatExpectationsTypeError): batch_list: list = context.get_batch_list( RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers={"default_identifier_name": "identifier_name"}, ) ) def test_get_batch_failed_specification_type_error_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() with pytest.raises(TypeError): batch: list = context.get_batch_list( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name=1, # wrong data_type runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers={"default_identifier_name": "identifier_name"}, ) ) def test_get_batch_failed_specification_no_batch_identifier_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() with pytest.raises(TypeError): # batch_identifiers missing (set to None) batch: list = context.get_batch_list( RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers=None, ) ) # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() with pytest.raises(TypeError): # batch_identifiers missing (omitted) batch: list = context.get_batch_list( RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, ) ) def test_get_batch_failed_specification_no_runtime_parameters_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() with pytest.raises(TypeError): # runtime_parameters missing (None) batch: list = context.get_batch_list( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters=None, batch_identifiers={"default_identifier_name": "identifier_name"}, ) ) # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() with pytest.raises(TypeError): # runtime_parameters missing (omitted) batch: list = context.get_batch_list( RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", batch_identifiers={"default_identifier_name": "identifier_name"}, ) ) def test_get_batch_failed_specification_incorrect_batch_spec_passthrough_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() with pytest.raises(TypeError): # incorrect batch_spec_passthrough, which should be a dict batch: list = context.get_batch_list( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers={"default_identifier_name": "identifier_name"}, batch_spec_passthrough=1, ) ) def test_get_batch_failed_specification_wrong_runtime_parameters_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine # raised by _validate_runtime_parameters() in RuntimeDataConnector with pytest.raises( great_expectations.exceptions.exceptions.InvalidBatchRequestError ): # runtime_parameters are not configured in the DataConnector batch: list = context.get_batch_list( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={"i_dont_exist": "i_dont_either"}, batch_identifiers={"default_identifier_name": "identifier_name"}, ) ) def test_get_validator_successful_specification_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine context.create_expectation_suite("my_expectations") # Successful specification using a RuntimeBatchRequest my_validator = context.get_validator( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers={"default_identifier_name": "identifier_name"}, ), expectation_suite_name="my_expectations", ) assert isinstance(my_validator, Validator) def test_get_validator_ambiguous_parameter_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): """ What does this test and why? get_batch_list() requires batch_request to be passed in a named parameter. This test passes in a batch_request as an unnamed parameter, which will raise a GreatExpectationsTypeError """ context = data_context_with_datasource_sqlalchemy_engine context.create_expectation_suite("my_expectations") # raised by get_batch_list() in DataContext with pytest.raises(ge_exceptions.GreatExpectationsTypeError): batch_list: list = context.get_validator( RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers={"default_identifier_name": "identifier_name"}, ), expectation_suite_name="my_expectations", ) def test_get_validator_wrong_type_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine context.create_expectation_suite("my_expectations") # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() # data_connector_name should be a dict not an int with pytest.raises(TypeError): context.get_validator( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name=1, data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers={"default_identifier_name": "identifier_name"}, ), expectation_suite_name="my_expectations", ) def test_get_validator_failed_specification_no_batch_identifier_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine context.create_expectation_suite("my_expectations") # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() # batch_identifiers should not be None with pytest.raises(TypeError): validator: Validator = context.get_validator( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers=None, ), expectation_suite_name="my_expectations", ) # batch_identifiers should not be omitted with pytest.raises(TypeError): validator: Validator = context.get_validator( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, ), expectation_suite_name="my_expectations", ) def test_get_validator_failed_specification_incorrect_batch_spec_passthrough_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine context.create_expectation_suite("my_expectations") # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() with pytest.raises(TypeError): # incorrect batch_spec_passthrough, which should be a dict validator: Validator = context.get_validator( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={ "query": "SELECT * from table_partitioned_by_date_column__A LIMIT 10" }, batch_identifiers={"default_identifier_name": "identifier_name"}, batch_spec_passthrough=1, ), expectation_suite_name="my_expectations", ) def test_get_validator_failed_specification_no_runtime_parameters_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine context.create_expectation_suite("my_expectations") with pytest.raises(TypeError): # runtime_parameters should not be None batch: list = context.get_validator( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters=None, batch_identifiers={"default_identifier_name": "identifier_name"}, ), expectation_suite_name="my_expectations", ) # raised by _validate_runtime_batch_request_specific_init_parameters() in RuntimeBatchRequest.__init__() with pytest.raises(TypeError): # runtime_parameters missing (omitted) batch: list = context.get_validator( RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", batch_identifiers={"default_identifier_name": "identifier_name"}, ) ) def test_get_validator_wrong_runtime_parameters_sqlalchemy_engine( data_context_with_datasource_sqlalchemy_engine, sa ): context = data_context_with_datasource_sqlalchemy_engine context.create_expectation_suite("my_expectations") # raised by _validate_runtime_parameters() in RuntimeDataConnector with pytest.raises( great_expectations.exceptions.exceptions.InvalidBatchRequestError ): # runtime_parameters are not configured in the DataConnector batch: list = context.get_validator( batch_request=RuntimeBatchRequest( datasource_name="my_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_data_asset_name", runtime_parameters={"i_dont_exist": "i_dont_either"}, batch_identifiers={"default_identifier_name": "identifier_name"}, ), expectation_suite_name="my_expectations", )
43.433702
114
0.696877
a2e1f301e04e81b3d704193a412137c9c218d91c
2,065
py
Python
tests/test_extract_genome_region.py
xguse/extract-genome-region
33ba2732edbe882ed8461f4abb6b4fa34239ffa8
[ "BSD-2-Clause" ]
2
2016-09-27T06:01:52.000Z
2021-06-28T07:54:06.000Z
tests/test_extract_genome_region.py
xguse/extract-genome-region
33ba2732edbe882ed8461f4abb6b4fa34239ffa8
[ "BSD-2-Clause" ]
null
null
null
tests/test_extract_genome_region.py
xguse/extract-genome-region
33ba2732edbe882ed8461f4abb6b4fa34239ffa8
[ "BSD-2-Clause" ]
null
null
null
"""Provide functions to test this library.""" from __future__ import absolute_import, print_function import types import pyfaidx import pytest import extract_genome_region.__main__ as egr def gfui049232_info(): """Provide true data that we can use to confirm correctness.""" real = pyfaidx.Fasta("tests/data/real.fa") no_flanks = real[0] yes_flanks = real[1] i = no_flanks.name.split('|') no_flanks_info = {"start": i[3], "stop": i[4], "scaffold": i[2], "sequence": no_flanks[:].seq, } i = yes_flanks.name.split('|') yes_flanks_info = {"start": i[3], "stop": i[4], "scaffold": i[2], "sequence": yes_flanks[:].seq, } return no_flanks_info, yes_flanks_info ## Test Data no_flanks_info, yes_flanks_info = gfui049232_info() infasta = pyfaidx.Fasta("tests/data/GfusI1.3contigs.fa", strict_bounds=False) bad_headers_csv = "tests/data/bad_headers.csv" extra_headers_csv = "tests/data/extra_headers.csv" missing_headers_csv = "tests/data/missing_headers.csv" pass_csv = "tests/data/pass.csv" start_stop_switched_csv = "tests/data/start_stop_switched.csv" # Begin tests def test_gen_rec_is_generator(path=pass_csv): """Should return a generator.""" records = egr.gen_records(path=path) assert isinstance(records, types.GeneratorType) def test_gen_rec_expected_headers_expected(path=pass_csv): """Freakout if the code has changed what headers we expect.""" expected_headers = set('record_name,scaffold,start,stop,left_bfr,right_bfr'.split(',')) records = egr.gen_records(path=path) assert expected_headers == set(next(records)._fields) @pytest.mark.parametrize("path", [bad_headers_csv, extra_headers_csv, missing_headers_csv]) def test_gen_rec_headers_csv(path): with pytest.raises(ValueError): next(egr.gen_records(path=path))
29.927536
91
0.645036
f32ae32c3e00b6df7234b8ebeeffe0b36495bb18
15,374
py
Python
backups/render_video___2_seeds__1d__backup_2-12-2020.py
bjdarrer/tf2-model-g
26cf7bba9f1cc13e226834b3565c7b8df5fcc40a
[ "MIT" ]
null
null
null
backups/render_video___2_seeds__1d__backup_2-12-2020.py
bjdarrer/tf2-model-g
26cf7bba9f1cc13e226834b3565c7b8df5fcc40a
[ "MIT" ]
null
null
null
backups/render_video___2_seeds__1d__backup_2-12-2020.py
bjdarrer/tf2-model-g
26cf7bba9f1cc13e226834b3565c7b8df5fcc40a
[ "MIT" ]
null
null
null
from __future__ import division import argparse import numpy as np import tensorflow as tf import progressbar import imageio import yaml import matplotlib.pyplot as pp # BJD added 18.11.2020 #import cv2 # BJD added 24.11.2020 - for make video #import glob # BJD added 24.11.2020 - for make video #import matplotlib.pyplot as plt #import ffmpeg import os # BJD added 24.11.2020 - for make video import io # BJD added 18.11.2020 try: from yaml import CLoader as Loader except ImportError: from yaml import Loader from model_g import ModelG from fluid_model_g import FluidModelG from util import bl_noise from numpy import * # BJD added 20.11.2020 from matplotlib import pyplot as plt # BJD added 20.11.2020 RESOLUTIONS = { "2160p": (3840, 2160), "1440p": (2560, 1440), "1080p": (1920, 1080), "720p": (1280, 720), "480p": (854, 480), "360p": (640, 360), "240p": (426, 240), "160p": (284, 160), "80p": (142, 80), "40p": (71, 40), } #c1 = 0 def make_video_frame(rgb, indexing='ij'): if indexing == 'ij': rgb = [tf.transpose(channel) for channel in rgb] frame = tf.stack(rgb, axis=-1) frame = tf.clip_by_value(frame, 0.0, 1.0) return tf.cast(frame * 255, 'uint8').numpy() #def nucleation_and_motion_in_G_gradient_fluid_2D(writer, args, R=16): def nucleation_and_motion_in_G_gradient_fluid_2D(writer, args, R=30): c1 = 0 # BJD added this on 20.11.2020 dx = 2*R / args.height x = (np.arange(args.width) - args.width // 2) * dx y = (np.arange(args.height) - args.height // 2) * dx x, y = np.meshgrid(x, y, indexing='ij') def source_G(t): center = np.exp(-0.5*(t-5)**2) * 10 gradient = (1+np.tanh(t-30)) * 0.0003 return -( np.exp(-0.5*((x-25)**2 + y*y)) + np.exp(-0.5*((x+25)**2 + y*y)) ) * center + (x+8) * gradient # BJD 2.2.2020 --- try gradient for half of plot!! """ def source_G(t): amount = np.exp(-0.5*(t-5)**2) return ( np.exp(-0.5*((x-D)**2+y*y)) * weights[0] + np.exp(-0.5*((x+D)**2+y*y)) * weights[1] ) * amount """ source_functions = { 'G': source_G, } flow = [0*x, 0*x] fluid_model_g = FluidModelG( x*0, x*0, x*0, flow, dx, dt=args.dt, params=args.model_params, source_functions=source_functions, ) print("Rendering 'Nucleation and Motion in G gradient in 2D'") print("Lattice constant dx = {}, time step dt = {}".format(fluid_model_g.dx, fluid_model_g.dt)) min_G = -4.672736908320116 max_G = 0.028719261862332906 min_X = -3.8935243721220334 max_X = 1.2854028081816122 min_Y = -0.7454193158963579 max_Y = 4.20524950766914 #c1 = 0 for n in progressbar.progressbar(range(args.num_frames)): fluid_model_g.step() if n % args.oversampling == 0: rgb = [ 6*(-fluid_model_g.G + max_G) / (max_G - min_G), 5*(fluid_model_g.Y - min_Y) / (max_Y - min_Y), 0.7*(fluid_model_g.X - min_X) / (max_X - min_X), ] zero_line = 1 - tf.exp(-600 * fluid_model_g.Y**2) frame = make_video_frame([c * zero_line for c in rgb]) writer.append_data(frame) #========================BJD added 18.11.2020=================================================== if n == 150: print("n = ", n) break #if n == 4: # X_array = [ # 0.7*(fluid_model_g.X - min_X) / (max_X - min_X), # ] # BJD put this in 18.11.2020 # print("Array of X: ", X_array) # ***** BJD inserted this line 18.11.2020 ***** c1 = c1 + 1 print("H E L L O") x1 = np.loadtxt("/home/brendan/software/tf2-model-g/arrays/array9/X.txt") #, delimiter=" :-) ", usecols=(120)) # (426, 240) x2 = np.loadtxt("/home/brendan/software/tf2-model-g/arrays/array9/Y.txt") #, delimiter=" :-) ", usecols=(120)) # (426, 240) x3 = np.loadtxt("/home/brendan/software/tf2-model-g/arrays/array9/G.txt") #, delimiter=" :-) ", usecols=(120)) # (426, 240) #ndArray[ : , column_index] # @ https://thispointer.com/python-numpy-select-rows-columns-by-index-from-a-2d-ndarray-multi-dimension/ column1 = x1[: , 120] # choose row 214 of 2D array = (426,240) column2 = x2[: , 120] # choose row 214 of 2D array = (426,240) column3 = x3[: , 120] # choose row 214 of 2D array = (426,240) #t = linspace(0, 2*math.pi, 400) #a = sin(t) #b = cos(t) #c = a + b print(column1) fig, pp = plt.subplots( nrows=1, ncols=1 ) # create figure & 1 axis #axes = pp.add_axes([0.1,0.1,0.8,0.8]) #------------------- #a= plt.figure() #axes= a.add_axes([0.1,0.1,0.8,0.8]) # adding axes #x= np.arange(0,11) #axes.plot(x,x**3, marker='*') #axes.set_xlim([0,250]) #axes.set_ylim([-3,2]) #plt.show() #------------------ #fig, ax = plt.subplots( nrows=1, ncols=1 ) # create figure & 1 axis #ax.plot([0,1,2], [10,20,3]) #pp.plot(t, a, 'r') # plotting t, a separately - BJD new plotting code 21.11.2020 #pp.plot(t, b, 'b') # plotting t, b separately - BJD new plotting code 21.11.2020 #pp.plot(t, c, 'g') # plotting t, c separately - BJD new plotting code 21.11.2020 # https://stackoverflow.com/questions/22276066/how-to-plot-multiple-functions-on-the-same-figure-in-matplotlib #row1 = range(-3, 2) #row2 = range(-3, 2) #row3 = range(-3, 2) #y = range(-3, 2) pp.plot(column1, 'r') # plotting t, a separately - BJD new plotting code 21.11.2020 pp.plot(column2, 'b') # plotting t, b separately - BJD new plotting code 21.11.2020 pp.plot(column3, 'g') # plotting t, c separately - BJD new plotting code 21.11.2020 #axes.set_xlim([0,250]) #axes.set_ylim([-3,2]) #pp.set_xlim([0,250]) pp.set_ylim([-4,4]) # ******* BJD this one works! 1.12.2020 *********** #pp.plot(row1) # BJD previous working plot code 21.11.2020 #pp.show() #plt.savefig('test2.png') #plt.savefig('test2.pdf') plt.title('X, Y, G potential vs 1D space - time = ' + str(c1)) plt.xlabel("1D spacial units") plt.ylabel("X, Y, G pot. - concentration per unit vol") #fig.savefig('test2.png') # save the figure to file plt.legend(["X", "Y", "G"]) # BJD legend added 21.11.2020 fig.savefig('/home/brendan/software/tf2-model-g/plots/1D_video16/1D_video_XYG_' + str(c1) + '.png') plt.close(fig) # close the figure window #plt.savefig('test2_' + str(c1) + '.png') #=========================================================================== # max_G = max(max_G, tf.reduce_max(fluid_model_g.G).numpy()) # min_G = min(min_G, tf.reduce_min(fluid_model_g.G).numpy()) # max_X = max(max_X, tf.reduce_max(fluid_model_g.X).numpy()) # min_X = min(min_X, tf.reduce_min(fluid_model_g.X).numpy()) # max_Y = max(max_Y, tf.reduce_max(fluid_model_g.Y).numpy()) # min_Y = min(min_Y, tf.reduce_min(fluid_model_g.Y).numpy()) # print(min_G, max_G, min_X, max_X, min_Y, max_Y) def charged_nucleation_in_2D(writer, args, R=30, D=25, weights=(0, -10, -8, 8)): dx = 2*R / args.height x = (np.arange(args.width) - args.width // 2) * dx y = (np.arange(args.height) - args.height // 2) * dx x, y = np.meshgrid(x, y, indexing='ij') def source_G(t): amount = np.exp(-0.5*(t-5)**2) return ( np.exp(-0.5*((x-D)**2+y*y)) * weights[0] + np.exp(-0.5*((x+D)**2+y*y)) * weights[1] ) * amount def source_X(t): amount = np.exp(-0.5*(t-5)**2) return ( np.exp(-0.5*((x-D)**2+y*y)) * weights[2] + np.exp(-0.5*((x+D)**2+y*y)) * weights[3] ) * amount source_functions = { 'G': source_G, 'X': source_X, } noise_scale = 1e-4 model_g = ModelG( bl_noise(x.shape) * noise_scale, bl_noise(x.shape) * noise_scale, bl_noise(x.shape) * noise_scale, dx, dt=args.dt, params=args.model_params, source_functions=source_functions, ) print("Rendering 'Charged nucleation in 2D'") print("Lattice constant dx = {}, time step dt = {}".format(model_g.dx, model_g.dt)) min_G = -4.672736908320116 max_G = 0.028719261862332906 min_X = -3.8935243721220334 max_X = 1.2854028081816122 min_Y = -0.7454193158963579 max_Y = 4.20524950766914 for n in progressbar.progressbar(range(args.num_frames)): model_g.step() if n % args.oversampling == 0: rgb = [ 6*(-model_g.G + max_G) / (max_G - min_G), 5*(model_g.Y - min_Y) / (max_Y - min_Y), 0.7*(model_g.X - min_X) / (max_X - min_X), ] zero_line = 1 - tf.exp(-600 * model_g.Y**2) frame = make_video_frame([c * zero_line for c in rgb]) writer.append_data(frame) # TODO: Requires some work. Unstable like this. def nucleation_3D(writer, args, R=20): """ raise NotImplementedError("Needs some work") params = { "A": 3.4, "B": 13.5, "k2": 1.0, "k-2": 0.1, "k5": 0.9, "D_G": 1.0, "D_X": 1.0, "D_Y": 1.95, "density_G": 1.0, "density_X": 0.0002, "density_Y": 0.043, "base-density": 9.0, "viscosity": 0.3, "speed-of-sound": 1.0, } """ dx = 2*R / args.height x = (np.arange(args.width) - args.width // 2) * dx y = (np.arange(args.height) - args.height // 2) * dx z = y x, y, z = np.meshgrid(x, y, z, indexing='ij') def source_G(t): center = np.exp(-0.3*(t-6)**2) * 10 return -np.exp(-0.5*(x*x+y*y+z*z)) * center source_functions = { 'G': source_G, } # We need some noise to break spherical symmetry noise_scale = 1e-4 G = bl_noise(x.shape) * noise_scale X = bl_noise(x.shape) * noise_scale Y = bl_noise(x.shape) * noise_scale flow = [ bl_noise(x.shape) * noise_scale, bl_noise(x.shape) * noise_scale, bl_noise(x.shape) * noise_scale ] fluid_model_g = FluidModelG( G, X, Y, flow, dx, dt=args.dt, params=params, source_functions=source_functions, ) flow_particle_origins = [] for _ in range(1000): flow_particle_origins.append([np.random.rand() * s for s in x.shape]) flow_particles = tf.constant(flow_particle_origins, dtype='float64') flow_streaks = 0*x[:,:,0] print("Rendering 'Nucleation and Motion in G gradient in 3D'") print("Lattice constant dx = {}, time step dt = {}".format(fluid_model_g.dx, fluid_model_g.dt)) for n in progressbar.progressbar(range(args.num_frames)): fluid_model_g.step() for _ in range(20): indices = tf.cast(flow_particles, 'int32') for index in indices.numpy(): flow_streaks[index[0], index[1]] += 0.15 / args.oversampling dx = tf.gather_nd(fluid_model_g.u, indices) dy = tf.gather_nd(fluid_model_g.v, indices) dz = tf.gather_nd(fluid_model_g.w, indices) flow_particles = (flow_particles + tf.stack([dx, dy, dz], axis=1) * 400) % x.shape if n % args.oversampling == 0: rgb = [ tf.reduce_mean((7*fluid_model_g.G)**2, axis=2) + flow_streaks, tf.reduce_mean((4*fluid_model_g.Y)**2, axis=2), tf.reduce_mean((2*fluid_model_g.X)**2, axis=2), ] frame = make_video_frame(rgb) writer.append_data(frame) flow_streaks *= 0 flow_particles = tf.constant(flow_particle_origins, dtype='float64') if __name__ == '__main__': episodes = { 'nucleation_and_motion_in_fluid_2D': nucleation_and_motion_in_G_gradient_fluid_2D, 'charged_nucleation_in_2D': charged_nucleation_in_2D, 'nucleation_3D': nucleation_3D, } parser = argparse.ArgumentParser(description='Render audio samples') parser.add_argument('outfile', type=str, help='Output file name') parser.add_argument('--params', type=str, help='Parameter YAML file name') parser.add_argument('--episode', choices=episodes.keys()) parser.add_argument('--resolution', choices=RESOLUTIONS.keys(), help='Video and simulation grid resolution') parser.add_argument('--width', type=int, help='Video and simulation grid width', metavar='W') parser.add_argument('--height', type=int, help='Video and simulation grid height', metavar='H') parser.add_argument('--framerate', type=int, help='Video frame rate') parser.add_argument('--oversampling', type=int, help='Add extra simulation time steps between video frames for stability') parser.add_argument('--video-quality', type=int, help='Video quality factor') parser.add_argument('--video-duration', type=float, help='Duration of video to render in seconds') parser.add_argument('--simulation-duration', type=float, help='Amount of simulation to run') args = parser.parse_args() args.model_params = {} if args.params: with open(args.params) as f: params = yaml.load(f, Loader=Loader) for key, value in params.items(): if not getattr(args, key): setattr(args, key, value) if not args.episode: raise ValueError("Missing episode argument. Must be present in either parameter YAML file or as a program argument.") if not args.framerate: args.framerate = 24 if not args.oversampling: args.oversampling = 1 if not args.video_quality: args.video_quality = 10 writer = imageio.get_writer(args.outfile, fps=args.framerate, quality=args.video_quality, macro_block_size=1) # Compute derived parameters if args.resolution: width, height = RESOLUTIONS[args.resolution] if not args.width: args.width = width if not args.height: args.height = height if (not args.width) or (not args.height): raise ValueError("Invalid or missing resolution") args.aspect = args.width / args.height args.num_frames = int(args.video_duration * args.oversampling * args.framerate) args.dt = args.simulation_duration / args.num_frames episodes[args.episode](writer, args) writer.close() #=======================BJD make video from .png files 24.11.2020=========================== def save1(): #os.system("ffmpeg -r 1 -i img%01d.png -vcodec mpeg4 -y movie.mp4") os.system("ffmpeg -r 1 -i /home/brendan/software/tf2-model-g/plots/1D_video16/1D_video_XYG_%01d.png -vcodec mpeg4 -y 1D_2_seeds_video_16.mp4") save1() #============================================================================================
38.148883
146
0.562313
3eab56315abc05cb508dcaa2e370eb1c59c55576
1,967
py
Python
plaso/formatters/safari_cookies.py
stephenkreusch/plaso
494d3140c09733d1d51c8dbb9162fc569be760b3
[ "Apache-2.0" ]
1
2020-10-29T18:23:25.000Z
2020-10-29T18:23:25.000Z
plaso/formatters/safari_cookies.py
stephenkreusch/plaso
494d3140c09733d1d51c8dbb9162fc569be760b3
[ "Apache-2.0" ]
null
null
null
plaso/formatters/safari_cookies.py
stephenkreusch/plaso
494d3140c09733d1d51c8dbb9162fc569be760b3
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """The Safari Binary cookie event formatter.""" from __future__ import unicode_literals from plaso.lib import errors from plaso.formatters import interface from plaso.formatters import manager class SafariCookieFormatter(interface.ConditionalEventFormatter): """Formatter for a Safari Binary Cookie file entry event.""" DATA_TYPE = 'safari:cookie:entry' FORMAT_STRING_PIECES = [ '{url}', '<{path}>', '({cookie_name})', 'Flags: {flags}'] FORMAT_STRING_SHORT_PIECES = [ '{url}', '({cookie_name})'] SOURCE_LONG = 'Safari Cookies' SOURCE_SHORT = 'WEBHIST' _COOKIE_FLAGS = { 1: 'Secure', 2: 'Unknown', 4: 'HttpOnly'} # pylint: disable=unused-argument def GetMessages(self, formatter_mediator, event_data): """Determines the formatted message strings for the event data. Args: formatter_mediator (FormatterMediator): mediates the interactions between formatters and other components, such as storage and Windows EventLog resources. event_data (EventData): event data. Returns: tuple(str, str): formatted message string and short message string. Raises: WrongFormatter: if the event data cannot be formatted by the formatter. """ if self.DATA_TYPE != event_data.data_type: raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format( event_data.data_type)) event_values = event_data.CopyToDict() cookie_flags = event_values.get('flags', None) if cookie_flags == 0: del event_values['flags'] elif cookie_flags: flags = [] for flag_value, flag_description in self._COOKIE_FLAGS.items(): if cookie_flags & flag_value: flags.append(flag_description) event_values['flags'] = '|'.join(flags) return self._ConditionalFormatMessages(event_values) manager.FormattersManager.RegisterFormatter(SafariCookieFormatter)
27.704225
78
0.688358
b018c8ee74c5b7842beb37673271a14bfd2d6e1f
3,921
py
Python
examples/spring_mass/model.py
omunroe-com/nasasrompy
35ae060b6a032d085a31574fbe3bf390b023631d
[ "Apache-2.0" ]
23
2018-05-13T05:13:03.000Z
2022-01-29T19:43:28.000Z
examples/spring_mass/model.py
omunroe-com/nasasrompy
35ae060b6a032d085a31574fbe3bf390b023631d
[ "Apache-2.0" ]
11
2018-03-28T13:13:44.000Z
2022-03-30T18:56:57.000Z
examples/spring_mass/model.py
omunroe-com/nasasrompy
35ae060b6a032d085a31574fbe3bf390b023631d
[ "Apache-2.0" ]
19
2018-06-01T14:49:30.000Z
2022-03-05T05:02:06.000Z
# Copyright 2018 United States Government as represented by the Administrator of # the National Aeronautics and Space Administration. No copyright is claimed in # the United States under Title 17, U.S. Code. All Other Rights Reserved. # The Stochastic Reduced Order Models with Python (SROMPy) platform is licensed # under the Apache License, Version 2.0 (the "License"); you may not use this # file except in compliance with the License. You may obtain a copy of the # License at http://www.apache.org/licenses/LICENSE-2.0. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint # ------------------------------------------------------ # Helper function to use scipy integrator in model class def mass_spring(state, t, k, m): """ Return velocity/acceleration given velocity/position and values for stiffness and mass """ # Unpack the state vector. x = state[0] xd = state[1] g = 9.8 # Meters per second. # Compute acceleration xdd. xdd = ((-k*x)/m) + g # return the two state derivatives return [xd, xdd] # ------------------------------------------------------ class SpringMass1D(object): """ Defines Spring Mass model with 1 free param (stiffness of spring, k) """ def __init__(self, m=1.5, state0=None, time_grid=None): self._m = m # Give default initial conditions & time grid if not specified. if state0 is None: state0 = [0.0, 0.0] if time_grid is None: time_grid = np.arange(0.0, 10.0, 0.1) self._state0 = state0 self._t = time_grid def simulate(self, k=2.5): """ Simulate spring mass system for given spring constant. Returns state (position, velocity) at all points in time grid """ return odeint(mass_spring, self._state0, self._t, args=(k, self._m)) def get_max_disp(self, k=2.5): """ Returns the max displacement over the course of the simulation """ state = self.simulate(k) return max(state[:, 0]) class SpringMass2D(object): """ Defines Spring Mass model with 2 free params (spring stiffness, k & mass, m) """ def __init__(self, state0=None, time_grid=None): # Give default initial conditions & time grid if not specified. if state0 is None: state0 = [0.0, 0.0] if time_grid is None: time_grid = np.arange(0.0, 10.0, 0.1) self._state0 = state0 self._t = time_grid def simulate(self, k=2.5, m=1.5): """ Simulate spring mass system for given spring constant. Returns state (position, velocity) at all points in time grid """ return odeint(mass_spring, self._state0, self._t, args=(k, m)) def get_max_disp(self, k=2.5, m=1.5): """ Returns the max displacement over the course of the simulation """ state = self.simulate(k, m) return max(state[:, 0]) if __name__ == '__main__': k = 2.5 # Newtons per metre. m = 1.5 # Kilograms. state0 = [0.0, 0.0] # Initial conditions. t = np.arange(0.0, 10.0, 0.1) # Time grid for simulation. # Initialize model & simulate. model = SpringMass2D(state0, t) state = model.simulate(k, m) print "shape = ", state.shape # Plot results. plt.figure() plt.plot(t, state) plt.xlabel('TIME (sec)') plt.ylabel('States') plt.title('Mass-Spring System') plt.legend(('$x$ (m)', '$\dot{x}$ (m/sec)')) plt.show()
29.704545
80
0.610814
448e8b7ceb2b8ecc272f5664499d66ddc220b061
2,273
py
Python
3rd_party/nek5000/short_tests/lib/nekBinBuild.py
neil-lindquist/nekRS
723cd46baee78f53f40eb67147dfcaad95d60aa9
[ "BSD-3-Clause" ]
1
2022-01-06T16:16:08.000Z
2022-01-06T16:16:08.000Z
3rd_party/nek5000/short_tests/lib/nekBinBuild.py
neil-lindquist/nekRS
723cd46baee78f53f40eb67147dfcaad95d60aa9
[ "BSD-3-Clause" ]
null
null
null
3rd_party/nek5000/short_tests/lib/nekBinBuild.py
neil-lindquist/nekRS
723cd46baee78f53f40eb67147dfcaad95d60aa9
[ "BSD-3-Clause" ]
null
null
null
import os from subprocess import Popen, PIPE, STDOUT from pathlib import Path def build_tools( tools_root, tools_bin, f77=None, cc=None, bigmem=None, targets=("clean", "all"), verbose=False, ): tools_root = Path(tools_root) print("Compiling tools... ") print(f' Using output directory "{tools_bin}"') print(f' Using FC "{f77}"') print(f' Using CC "{cc}"') maketools_in = tools_root / "maketools" my_env = os.environ.copy() if f77: my_env["FC"] = f77 if cc: my_env["CC"] = cc my_env["bin_nek_tools"] = tools_bin if targets[0] == "all": targets = [t for t in os.listdir(tools_root) if "maketools" not in t] print("Targets:", targets) for t in targets: proc = Popen([maketools_in, t], env=my_env, cwd=tools_root, stderr=STDOUT) proc.wait() logfile = tools_root / t / "build.log" if proc.returncode != 0: with open(logfile, "r") as file: text = file.read() print(text) exit(-1) def build_nek(source_root, usr_file, cwd=None, opts=None, verbose=False): if not opts: _opts = {} else: _opts = opts.copy() _opts.update(NEK_SOURCE_ROOT=source_root) print("Compiling nek5000...") print(f' Using working directory "{cwd}"') print(f' Using .usr file "{usr_file}"') for key, val in list(_opts.items()): print(f' Using {key}="{val}"') my_env = os.environ.copy() if source_root: my_env["NEK_SOURCE_ROOT"] = source_root if _opts.get("F77"): my_env["FC"] = _opts.get("F77") if _opts.get("CC"): my_env["CC"] = _opts.get("CC") if _opts.get("PPLIST"): my_env["PPLIST"] = _opts.get("PPLIST") makenek_in = Path(source_root) / "bin" / "makenek" logfile = Path(cwd) / "build.log" proc = Popen([makenek_in, "clean"], cwd=cwd, env=my_env, stdin=PIPE, text=True) proc.communicate(input="Y\n") proc.wait() proc = Popen([makenek_in, usr_file], cwd=cwd, env=my_env, stdin=PIPE, stderr=STDOUT) proc.wait() if proc.returncode != 0: with open(logfile, "r") as file: text = file.read() print(text) exit(-1)
26.126437
88
0.574571
96503e0768bf32a8b43371c0f33685b6dd02c45b
21,345
py
Python
mesh_tensorflow/layers_test.py
merrymercy/mesh
8931eb9025f833b09d8425404ebd5801acbb0cac
[ "Apache-2.0" ]
1
2020-11-27T19:16:44.000Z
2020-11-27T19:16:44.000Z
mesh_tensorflow/layers_test.py
merrymercy/mesh
8931eb9025f833b09d8425404ebd5801acbb0cac
[ "Apache-2.0" ]
7
2021-05-12T10:37:36.000Z
2021-05-28T14:53:58.000Z
mesh_tensorflow/layers_test.py
merrymercy/mesh
8931eb9025f833b09d8425404ebd5801acbb0cac
[ "Apache-2.0" ]
1
2020-11-25T14:26:45.000Z
2020-11-25T14:26:45.000Z
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Mesh TensorFlow layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import mesh_tensorflow as mtf from mesh_tensorflow import test_utils import mock import numpy as np import tensorflow.compat.v1 as tf from tensorflow.python.framework import test_util # pylint:disable=g-direct-tensorflow-import def initialize_by_shape(shape_to_value): """Create an initializer with values specified by tensor shape.""" def initialize(shape, dtype, **unused_kwargs): shape = tuple(shape) if shape not in shape_to_value: raise ValueError( "Shape {} not found in shape to value map.".format(shape)) return tf.reshape( tf.constant(shape_to_value[tuple(shape)], dtype=dtype), shape) return initialize class LayersTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (4, True, "not_channels"), (8, False, "channels"), ) def testDense(self, units, use_bias, new_dim_name): batch = 2 channels = 3 inputs = tf.random_normal([batch, channels]) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", batch) channels_dim = mtf.Dimension("channels", channels) new_dim = mtf.Dimension(new_dim_name, units) mtf_inputs = mtf.import_tf_tensor( mesh, inputs, shape=mtf.Shape([batch_dim, channels_dim])) mtf_outputs = mtf.layers.dense( mtf_inputs, new_dims=new_dim, reduced_dims=[channels_dim], activation=mtf.relu, use_bias=use_bias) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs = lowering.export_to_tf_tensor(mtf_outputs) expected_outputs = tf.keras.layers.Dense(units=units, activation=tf.nn.relu, use_bias=use_bias)(inputs) tf_group = lowering.copy_masters_to_slices() init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(tf_group) actual, expected = self.evaluate([actual_outputs, expected_outputs]) self.assertEqual(actual.shape, expected.shape) @test_util.run_in_graph_and_eager_modes() def testLayerNorm(self): batch = 2 channels = 3 inputs = tf.random_normal([batch, channels]) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", batch) channels_dim = mtf.Dimension("channels", channels) mtf_inputs = mtf.import_tf_tensor( mesh, inputs, shape=mtf.Shape([batch_dim, channels_dim])) mtf_outputs = mtf.layers.layer_norm(mtf_inputs, dim=channels_dim) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs = lowering.export_to_tf_tensor(mtf_outputs) expected_outputs = tf.keras.layers.LayerNormalization()(inputs) tf_group = lowering.copy_masters_to_slices() init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(tf_group) actual, expected = self.evaluate([actual_outputs, expected_outputs]) self.assertEqual(actual.shape, expected.shape) @test_util.run_in_graph_and_eager_modes() def testBatchNorm(self): batch = 2 channels = 3 inputs = tf.constant([[0, 1, 2], [4, 5, 6]], dtype=np.float32) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", batch) channels_dim = mtf.Dimension("channels", channels) mtf_inputs = mtf.import_tf_tensor( mesh, inputs, shape=mtf.Shape([batch_dim, channels_dim])) mtf_outputs_0, _ = mtf.layers.batch_norm( mtf_inputs, is_training=True, momentum=0.95, epsilon=1e-6, dims_idx_start=0, dims_idx_end=1, name="bn0") mtf_outputs_1, _ = mtf.layers.batch_norm( mtf_outputs_0 * 2 + 1, is_training=True, momentum=0.95, epsilon=1e-6, dims_idx_start=0, dims_idx_end=1, name="bn1") mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs_0 = lowering.export_to_tf_tensor(mtf_outputs_0) actual_outputs_1 = lowering.export_to_tf_tensor(mtf_outputs_1) tf_group = lowering.copy_masters_to_slices() init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(tf_group) [actual_0, actual_1] = self.evaluate([actual_outputs_0, actual_outputs_1]) expected = np.array([[-1, -1, -1], [1, 1, 1]]) self.assertAllClose(actual_0, expected) self.assertAllClose(actual_1, expected) @test_util.run_in_graph_and_eager_modes() def testWeightsNonzero(self): inputs = tf.constant([[3, 1, 0], [1, 0, 0]]) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", inputs.shape.as_list()[0]) channels_dim = mtf.Dimension("channels", inputs.shape.as_list()[1]) mtf_inputs = mtf.import_tf_tensor( mesh, inputs, shape=mtf.Shape([batch_dim, channels_dim])) mtf_outputs = mtf.layers.weights_nonzero(mtf_inputs) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs = lowering.export_to_tf_tensor(mtf_outputs) expected_outputs = tf.cast(tf.not_equal(inputs, 0), tf.float32) tf_group = lowering.copy_masters_to_slices() self.evaluate(tf_group) actual, expected = self.evaluate([actual_outputs, expected_outputs]) self.assertAllEqual(actual, expected) @test_util.run_in_graph_and_eager_modes() def testDenseReluDense(self): batch = 2 channels = 3 hidden = 5 inputs = tf.random_normal([batch, channels]) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", batch) channels_dim = mtf.Dimension("channels", channels) hidden_dim = mtf.Dimension("hidden", hidden) mtf_inputs = mtf.import_tf_tensor( mesh, inputs, shape=mtf.Shape([batch_dim, channels_dim])) mtf_outputs = mtf.layers.dense_relu_dense(mtf_inputs, hidden_channels=hidden_dim, is_training=False) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs = lowering.export_to_tf_tensor(mtf_outputs) tf_group = lowering.copy_masters_to_slices() init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(tf_group) actual = self.evaluate(actual_outputs) self.assertEqual(actual.shape, inputs.shape) @parameterized.parameters( (2, 16, 3, 4, 2, 2), (1, 8, 5, 3, 1, 4), ) def testMaskedLocalAttention1D(self, batch, length, io_channels, kv_channels, heads, window_size): length_q = length query = tf.random_normal([batch, length_q, io_channels]) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", batch) length_q_dim = mtf.Dimension("length_q", length_q) io_channels_dim = mtf.Dimension("io_channels", io_channels) kv_channels_dim = mtf.Dimension("kv_channels", kv_channels) heads_dim = mtf.Dimension("heads", heads) mtf_query = mtf.import_tf_tensor( mesh, query, shape=mtf.Shape([batch_dim, length_q_dim, io_channels_dim])) mtf_outputs = mtf.layers.masked_local_attention_1d( mtf_query, kv_channels=kv_channels_dim, heads=heads_dim, is_training=False, window_size=window_size) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs = lowering.export_to_tf_tensor(mtf_outputs) tf_group = lowering.copy_masters_to_slices() init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(tf_group) actual = self.evaluate(actual_outputs) self.assertEqual(actual.shape, (batch, length_q, io_channels)) @parameterized.parameters( (2, 4, 5, 7, 3, 1), ) def testDotProductAttention( self, batch, heads, length_q, length_kv, depth_k, depth_v): query = tf.random_normal([batch, heads, length_q, depth_k]) key = tf.random_normal([batch, heads, length_kv, depth_k]) value = tf.random_normal([batch, heads, length_kv, depth_v]) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", batch) heads_dim = mtf.Dimension("heads", heads) length_q_dim = mtf.Dimension("length_q", length_q) length_kv_dim = mtf.Dimension("length_kv", length_kv) depth_k_dim = mtf.Dimension("depth_k", depth_k) depth_v_dim = mtf.Dimension("depth_v", depth_v) mtf_query = mtf.import_tf_tensor( mesh, query, shape=mtf.Shape( [batch_dim, heads_dim, length_q_dim, depth_k_dim])) mtf_key = mtf.import_tf_tensor( mesh, key, shape=mtf.Shape( [batch_dim, heads_dim, length_kv_dim, depth_k_dim])) mtf_value = mtf.import_tf_tensor( mesh, value, shape=mtf.Shape( [batch_dim, heads_dim, length_kv_dim, depth_v_dim])) mtf_outputs = mtf.layers.dot_product_attention( mtf_query, mtf_key, mtf_value, mask=None, is_training=False) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs = lowering.export_to_tf_tensor(mtf_outputs) tf_group = lowering.copy_masters_to_slices() init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(tf_group) actual = self.evaluate(actual_outputs) self.assertEqual(actual.shape, (batch, heads, length_q, depth_v)) @parameterized.parameters( (16, 4), (32, 8), ) def testMultiheadAttention(self, kv_channels, heads): batch = 2 length = 8 channels = 3 query = tf.random_normal([batch, length, channels]) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", batch) length_dim = mtf.Dimension("length", length) channels_dim = mtf.Dimension("channels", channels) kv_channels_dim = mtf.Dimension("kv_channels", kv_channels) heads_dim = mtf.Dimension("heads", heads) mtf_query = mtf.import_tf_tensor( mesh, query, shape=mtf.Shape([batch_dim, length_dim, channels_dim])) mtf_outputs = mtf.layers.multihead_attention( mtf_query, memory_antecedent=None, mask=None, kv_channels=kv_channels_dim, heads=heads_dim, is_training=False) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs = lowering.export_to_tf_tensor(mtf_outputs) tf_group = lowering.copy_masters_to_slices() init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(tf_group) actual = self.evaluate(actual_outputs) self.assertEqual(actual.shape, query.shape) @parameterized.parameters( ("MAX_2D",), ("AVG_2D",), ("MAX_3D",), ("AVG_3D",), ) def testPool(self, pooling_method): batch = 2 depth = 3 height = 4 width = 6 channels = 3 tf.random.set_random_seed(1234) inputs = tf.random_normal([batch, depth, height, width, channels]) stride_d = 3 stride_h = 2 stride_w = 3 graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") batch_dim = mtf.Dimension("batch", batch) depth_dim = mtf.Dimension("depth", depth) height_dim = mtf.Dimension("height", height) width_dim = mtf.Dimension("width", width) channels_dim = mtf.Dimension("channels", channels) mtf_inputs = mtf.import_tf_tensor( mesh, inputs, shape=mtf.Shape( [batch_dim, depth_dim, height_dim, width_dim, channels_dim])) if pooling_method == "MAX_2D": mtf_outputs = mtf.layers.max_pool2d( mtf_inputs, ksize=(stride_h, stride_w)) inputs = tf.reshape(inputs, [batch * depth, height, width, channels]) expected_outputs = tf.keras.layers.MaxPooling2D( (stride_h, stride_w))(inputs) expected_outputs = tf.reshape( expected_outputs, [batch, depth, int(height / stride_h), int(width / stride_w), channels]) elif pooling_method == "AVG_2D": mtf_outputs = mtf.layers.avg_pool2d( mtf_inputs, ksize=(stride_h, stride_w)) inputs = tf.reshape(inputs, [batch * depth, height, width, channels]) expected_outputs = tf.keras.layers.AveragePooling2D( (stride_h, stride_w))(inputs) expected_outputs = tf.reshape( expected_outputs, [batch, depth, int(height / stride_h), int(width / stride_w), channels]) elif pooling_method == "MAX_3D": mtf_outputs = mtf.layers.max_pool3d( mtf_inputs, ksize=[stride_d, stride_h, stride_w]) expected_outputs = tf.keras.layers.MaxPooling3D( [stride_d, stride_h, stride_w])(inputs) elif pooling_method == "AVG_3D": mtf_outputs = mtf.layers.avg_pool3d( mtf_inputs, ksize=[stride_d, stride_h, stride_w]) expected_outputs = tf.keras.layers.AveragePooling3D( [stride_d, stride_h, stride_w])(inputs) mtf_gradient = mtf.gradients([mtf_outputs], [mtf_inputs])[0] mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_outputs = lowering.export_to_tf_tensor(mtf_outputs) actual_gradient = lowering.export_to_tf_tensor(mtf_gradient) tf_group = lowering.copy_masters_to_slices() init = tf.global_variables_initializer() self.evaluate(init) self.evaluate(tf_group) actual, expected = self.evaluate([actual_outputs, expected_outputs]) self.assertAllClose(actual, expected) actual = self.evaluate(actual_gradient) if pooling_method == "MAX_2D": expected_non_zeros = batch * depth * height * width * channels / ( stride_h * stride_w) self.assertEqual(np.count_nonzero(actual), expected_non_zeros) elif pooling_method == "AVG_2D": expected = np.ones((batch, depth, height, width, channels), dtype=np.float32) / stride_h / stride_w self.assertAllClose(actual, expected) elif pooling_method == "MAX_3D": expected_non_zeros = batch * depth * height * width * channels / ( stride_d * stride_h * stride_w) self.assertEqual(np.count_nonzero(actual), expected_non_zeros) elif pooling_method == "AVG_3D": expected = np.ones((batch, depth, height, width, channels), dtype=np.float32) / stride_d / stride_h / stride_w self.assertAllClose(actual, expected) @test_util.run_in_graph_and_eager_modes() def testConv1d(self): graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") filter_size = 3 depth_dim = mtf.Dimension("depth", 2) length_dim = mtf.Dimension("length", 4) output_dim = mtf.Dimension("output", 2) x = tf.constant([[1, 0], [0, 1], [1, 1], [2, 1]], dtype=tf.float32) mtf_x = mtf.import_tf_tensor( mesh, x, shape=mtf.Shape([length_dim, depth_dim])) initializer_mock = mock.MagicMock() initializer_mock.side_effect = initialize_by_shape({ (1, 3, 2, 2): [[[[1, -1], [0, 0]], [[2, -2], [-1, 1]], [[3, -3], [-2, 2]]]], }) mtf_output = mtf.layers.conv1d( mtf_x, output_dim=output_dim, filter_size=filter_size, filter_initializer=initializer_mock) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_output = lowering.export_to_tf_tensor(mtf_output) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual = self.evaluate(actual_output) self.assertAllClose(actual, [[0, 0], [1, -1], [5, -5], [4, -4]]) def testConv1dValidPadding(self): converter = test_utils.NumpyConverter() batch = 2 d_model = 6 d_out = 1 length = 4 filter_size = 3 x = np.random.randn(batch, length, d_model) x_mtf = converter.convert_np_array_to_mtf_tensor( x, dtype=tf.float32, dim_names=["batch", "length", "d_model"]) conv_filter = np.random.randn(1, filter_size, d_model, d_out) initializer = lambda shape, dtype, **kwargs: conv_filter output_mtf = mtf.layers.conv1d( x_mtf, output_dim=mtf.Dimension("output_dim", d_out), filter_size=filter_size, padding="VALID", filter_initializer=initializer) actual = converter.convert_mtf_tensor_to_np_array(output_mtf) # Expected length is 2. expected = np.empty(shape=(batch, 2, d_out), dtype=np.float32) # [filter_size, d_model] current_filter = conv_filter[0, :, :, 0] # b: batch, k: filter_size, d: d_model. expected[:, 0] = np.einsum("bkd,kd->b", x[:, :filter_size, :], current_filter).reshape(batch, 1) expected[:, 1] = np.einsum("bkd,kd->b", x[:, 1:, :], current_filter).reshape(batch, 1) self.assertAllClose(actual, expected) def testConv1dValidPaddingMultipleBatchDims(self): converter = test_utils.NumpyConverter() batch = 2 outer_batch = 3 d_model = 6 d_out = 1 length = 4 filter_size = 3 x = np.random.randn(outer_batch, batch, length, d_model) x_mtf = converter.convert_np_array_to_mtf_tensor( x, dtype=tf.float32, dim_names=["outer_batch", "batch", "length", "d_model"]) conv_filter = np.random.randn(1, filter_size, d_model, d_out) initializer = lambda shape, dtype, **kwargs: conv_filter output_mtf = mtf.layers.conv1d( x_mtf, output_dim=mtf.Dimension("output_dim", d_out), filter_size=filter_size, padding="VALID", filter_initializer=initializer) actual = converter.convert_mtf_tensor_to_np_array(output_mtf) # Expected length is 2. expected = np.empty(shape=(outer_batch, batch, 2, d_out), dtype=np.float32) # Effective filter: [filter_size, d_model] f = conv_filter[0, :, :, 0] # o: outer_batch, b: batch, k: filter_size, d: d_model. expected[:, :, 0] = np.einsum("obkd,kd->ob", x[:, :, :filter_size, :], f).reshape(outer_batch, batch, 1) expected[:, :, 1] = np.einsum("obkd,kd->ob", x[:, :, 1:, :], f).reshape(outer_batch, batch, 1) self.assertAllClose(actual, expected) @mock.patch.object(tf, "truncated_normal_initializer", autospec=True) @test_util.run_in_graph_and_eager_modes() def testSeparableConv1d(self, random_normal_initializer_mock): graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") depth_dim = mtf.Dimension("depth", 2) length_dim = mtf.Dimension("length", 4) output_dim = mtf.Dimension("output", 2) x = tf.constant([[1, 0], [0, 1], [1, 1], [2, 1]], dtype=tf.float32) mtf_x = mtf.import_tf_tensor( mesh, x, shape=mtf.Shape([length_dim, depth_dim])) initializer_mock = mock.MagicMock() random_normal_initializer_mock.return_value = initializer_mock initializer_mock.side_effect = initialize_by_shape({ (2,): [1, 2], (2, 2): [[1, 0], [1, -1]], }) mtf_output = mtf.layers.separable_conv1d( mtf_x, output_dim, min_relative_pos=-1, max_relative_pos=1, use_bias=True) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=[""]) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) actual_output = lowering.export_to_tf_tensor(mtf_output) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual = self.evaluate(actual_output) self.assertAllClose(actual, [[3, -2], [6, -4], [9, -6], [7, -4]]) if __name__ == "__main__": tf.disable_v2_behavior() tf.enable_eager_execution() tf.test.main()
36.116751
94
0.66423
e381fa3800184a029dc86b17d79472c67135941e
2,658
py
Python
discodo/extractor/youtube_dl.py
AkiaCode/discodo
0a76afb196a7945f525896f56f431e82aaf83f44
[ "MIT" ]
null
null
null
discodo/extractor/youtube_dl.py
AkiaCode/discodo
0a76afb196a7945f525896f56f431e82aaf83f44
[ "MIT" ]
null
null
null
discodo/extractor/youtube_dl.py
AkiaCode/discodo
0a76afb196a7945f525896f56f431e82aaf83f44
[ "MIT" ]
null
null
null
import asyncio import copy import ipaddress import re from typing import Coroutine, Union from youtube_dl import YoutubeDL as YoutubeDLClient from ..errors import NoSearchResults YTDLOption = { "format": "(bestaudio[ext=opus]/bestaudio/best)[protocol!=http_dash_segments]", "nocheckcertificate": True, "no_warnings": True, "default_search": "auto", "source_address": "0.0.0.0", "skip_download": True, "writesubtitles": True, } YOUTUBE_PLAYLIST_ID_REGEX = re.compile( r"(?:http|https|)(?::\/\/|)(?:www.|)(?:music.|)(?:youtu\.be\/|youtube\.com(?:\/embed\/|\/v\/|\/watch\?v=|\/ytscreeningroom\?v=|\/feeds\/api\/videos\/|\/user\S*[^\w\-\s]|\S*[^\w\-\s]))([\w\-]{12,})[a-z0-9;:@#?&%=+\/\$_.-]*(?:&index=|)([0-9]*)?" ) def _extract( query: str, address: Union[ipaddress.IPv4Address, ipaddress.IPv6Address] = None, video: bool = False, ) -> dict: option = copy.copy(YTDLOption) if video: option["format"] = "(best)[protocol!=http_dash_segments]" if address: option["source_address"] = str(address) YoutubePlaylistMatch = YOUTUBE_PLAYLIST_ID_REGEX.match(query) if YoutubePlaylistMatch and not YoutubePlaylistMatch.group(1).startswith( ("RD", "UL", "PU") ): option["playliststart"] = ( int(YoutubePlaylistMatch.group(2)) if YoutubePlaylistMatch.group(2).isdigit() else 1 ) option["dump_single_json"] = True option["extract_flat"] = True query = "https://www.youtube.com/playlist?list=" + YoutubePlaylistMatch.group(1) else: option["noplaylist"] = True YoutubeDL = YoutubeDLClient(option) Data = YoutubeDL.extract_info(query, download=False) if not Data: raise NoSearchResults if "entries" in Data: if len(Data["entries"]) == 1: return Data["entries"][0] return Data["entries"] if not Data: raise NoSearchResults return Data def _clear_cache() -> None: option = { "ignoreerrors": True, "no_warnings": True, } YoutubeDL = YoutubeDLClient(option) YoutubeDL.cache.remove() def extract( query: str, address: Union[ipaddress.IPv4Address, ipaddress.IPv6Address] = None, video: bool = False, loop: asyncio.AbstractEventLoop = None, ) -> Coroutine: if not loop: loop = asyncio.get_event_loop() return loop.run_in_executor(None, _extract, query, address, video) def clear_cache(loop: asyncio.AbstractEventLoop = None) -> Coroutine: if not loop: loop = asyncio.get_event_loop() return loop.run_in_executor(None, _clear_cache)
26.848485
247
0.632054
8b35d475b7dd6a1da962c5755b1da47f523a7576
70,135
py
Python
server/reportlab/pdfgen/canvas.py
fergalmoran/Chrome2Kindle
a85b823d23849711c0015e80e741d8458527d306
[ "MIT" ]
2
2016-03-10T08:48:51.000Z
2018-06-27T00:15:48.000Z
server/reportlab/pdfgen/canvas.py
fergalmoran/Chrome2Kindle
a85b823d23849711c0015e80e741d8458527d306
[ "MIT" ]
null
null
null
server/reportlab/pdfgen/canvas.py
fergalmoran/Chrome2Kindle
a85b823d23849711c0015e80e741d8458527d306
[ "MIT" ]
null
null
null
#Copyright ReportLab Europe Ltd. 2000-2008 #see license.txt for license details __version__=''' $Id: canvas.py 3606 2009-12-03 11:39:56Z rgbecker $ ''' __doc__=""" The Canvas object is the primary interface for creating PDF files. See doc/reportlab-userguide.pdf for copious examples. """ __all__ = ['Canvas'] ENABLE_TRACKING = 1 # turn this off to do profile testing w/o tracking import os import sys import re from string import join, split, strip, atoi, replace, upper, digits import tempfile from math import sin, cos, tan, pi, ceil try: from hashlib import md5 except ImportError: from md5 import md5 from reportlab import rl_config from reportlab.pdfbase import pdfutils from reportlab.pdfbase import pdfdoc from reportlab.pdfbase import pdfmetrics from reportlab.pdfgen import pdfgeom, pathobject, textobject from reportlab.lib.colors import black from reportlab.lib.utils import import_zlib, ImageReader, fp_str, _digester from reportlab.lib.boxstuff import aspectRatioFix digitPat = re.compile('\d') #used in decimal alignment zlib = import_zlib() # Robert Kern # Constants for closing paths. # May be useful if one changes 'arc' and 'rect' to take a # default argument that tells how to close the path. # That way we can draw filled shapes. FILL_EVEN_ODD = 0 FILL_NON_ZERO = 1 #this is used by path-closing routines. #map stroke, fill, fillmode -> operator # fillmode: 1 = non-Zero (obviously), 0 = evenOdd PATH_OPS = {(0, 0, FILL_EVEN_ODD) : 'n', #no op (0, 0, FILL_NON_ZERO) : 'n', #no op (1, 0, FILL_EVEN_ODD) : 'S', #stroke only (1, 0, FILL_NON_ZERO) : 'S', #stroke only (0, 1, FILL_EVEN_ODD) : 'f*', #Fill only (0, 1, FILL_NON_ZERO) : 'f', #Fill only (1, 1, FILL_EVEN_ODD) : 'B*', #Stroke and Fill (1, 1, FILL_NON_ZERO) : 'B', #Stroke and Fill } _escapePDF = pdfutils._escape _instanceEscapePDF = pdfutils._instanceEscapePDF def _annFormat(D,color,thickness,dashArray,hradius=0,vradius=0): from reportlab.pdfbase.pdfdoc import PDFArray, PDFDictionary if color and not D.has_key('C'): D["C"] = PDFArray([color.red, color.green, color.blue]) if not D.has_key('Border'): border = [hradius,vradius,thickness or 0] if dashArray: border.append(PDFArray(dashArray)) D["Border"] = PDFArray(border) # BS = PDFDictionary() # bss = 'S' # if dashArray: # BS['D'] = PDFArray(dashArray) # bss = 'D' # BS['W'] = thickness or 0 # BS['S'] = bss # D['BS'] = BS class ExtGState: defaults = dict( CA=1, ca=1, OP=False, op=False, ) def __init__(self): self._d = {} self._c = {} def set(self,canv,a,v): d = self.defaults[a] isbool = isinstance(d,bool) if isbool: v=bool(v) if v!=self._d.get(a,d) or (a=='op' and self.getValue('OP')!=d): self._d[a] = v if isbool: v=str(v).lower() t = a,v if t in self._c: name = self._c[t] else: name = 'GS'+str(len(self._c)) self._c[t] = name canv._code.append('/%s gs' % name) def getValue(self,a): return self._d.get(a,self.defaults[a]) def getState(self): S = {} for t,name in self._c.iteritems(): S[name] = pdfdoc.PDFDictionary(dict((t,))) return S and pdfdoc.PDFDictionary(S) or None def pushCopy(self): '''the states must be shared across push/pop, but the values not''' x = self.__class__() x._d = self._d.copy() x._c = self._c return x class Canvas(textobject._PDFColorSetter): """This class is the programmer's interface to the PDF file format. Methods are (or will be) provided here to do just about everything PDF can do. The underlying model to the canvas concept is that of a graphics state machine that at any given point in time has a current font, fill color (for figure interiors), stroke color (for figure borders), line width and geometric transform, among many other characteristics. Canvas methods generally either draw something (like canvas.line) using the current state of the canvas or change some component of the canvas state (like canvas.setFont). The current state can be saved and restored using the saveState/restoreState methods. Objects are "painted" in the order they are drawn so if, for example two rectangles overlap the last draw will appear "on top". PDF form objects (supported here) are used to draw complex drawings only once, for possible repeated use. There are other features of canvas which are not visible when printed, such as outlines and bookmarks which are used for navigating a document in a viewer. Here is a very silly example usage which generates a Hello World pdf document. from reportlab.pdfgen import canvas c = canvas.Canvas("hello.pdf") from reportlab.lib.units import inch # move the origin up and to the left c.translate(inch,inch) # define a large font c.setFont("Helvetica", 80) # choose some colors c.setStrokeColorRGB(0.2,0.5,0.3) c.setFillColorRGB(1,0,1) # draw a rectangle c.rect(inch,inch,6*inch,9*inch, fill=1) # make text go straight up c.rotate(90) # change color c.setFillColorRGB(0,0,0.77) # say hello (note after rotate the y coord needs to be negative!) c.drawString(3*inch, -3*inch, "Hello World") c.showPage() c.save() """ def __init__(self,filename, pagesize=None, bottomup = 1, pageCompression=None, invariant = None, verbosity=0, encrypt=None, cropMarks=None, pdfVersion=None, ): """Create a canvas of a given size. etc. You may pass a file-like object to filename as an alternative to a string. For more information about the encrypt parameter refer to the setEncrypt method. Most of the attributes are private - we will use set/get methods as the preferred interface. Default page size is A4. cropMarks may be True/False or an object with parameters borderWidth, markColor, markWidth and markLength """ if pagesize is None: pagesize = rl_config.defaultPageSize if invariant is None: invariant = rl_config.invariant self._filename = filename self._doc = pdfdoc.PDFDocument(compression=pageCompression, invariant=invariant, filename=filename, pdfVersion=pdfVersion or pdfdoc.PDF_VERSION_DEFAULT, ) #this only controls whether it prints 'saved ...' - 0 disables self._verbosity = verbosity #this is called each time a page is output if non-null self._onPage = None self._cropMarks = cropMarks self._pagesize = pagesize self._pageRotation = 0 #self._currentPageHasImages = 0 self._pageTransition = None self._pageDuration = None self._destinations = {} # dictionary of destinations for cross indexing. self.setPageCompression(pageCompression) self._pageNumber = 1 # keep a count # when we create a form we need to save operations not in the form self._codeStack = [] self._restartAccumulators() # restart all accumulation state (generalized, arw) self._annotationCount = 0 self._outlines = [] # list for a name tree self._psCommandsBeforePage = [] #for postscript tray/font commands self._psCommandsAfterPage = [] #for postscript tray/font commands #PostScript has the origin at bottom left. It is easy to achieve a top- #down coord system by translating to the top of the page and setting y #scale to -1, but then text is inverted. So self.bottomup is used #to also set the text matrix accordingly. You can now choose your #drawing coordinates. self.bottomup = bottomup self.imageCaching = rl_config.defaultImageCaching self.init_graphics_state() self._make_preamble() self.state_stack = [] self.setEncrypt(encrypt) def setEncrypt(self, encrypt): ''' Set the encryption used for the pdf generated by this canvas. If encrypt is a string object, it is used as the user password for the pdf. If encrypt is an instance of reportlab.lib.pdfencrypt.StandardEncryption, this object is used to encrypt the pdf. This allows more finegrained control over the encryption settings. ''' if encrypt: from reportlab.lib import pdfencrypt if isinstance(encrypt, basestring): #encrypt is the password itself if isinstance(encrypt, unicode): encrypt = encrypt.encode('utf-8') encrypt = pdfencrypt.StandardEncryption(encrypt) #now it's the encrypt object encrypt.setAllPermissions(1) elif not isinstance(encrypt, pdfencrypt.StandardEncryption): raise TypeError('Expected string or instance of reportlab.lib.pdfencrypt.StandardEncryption as encrypt parameter but got %r' % encrypt) self._doc.encrypt = encrypt else: try: del self._doc.encrypt except AttributeError: pass def init_graphics_state(self): #initial graphics state, never modify any of these in place self._x = 0 self._y = 0 self._fontname = rl_config.canvas_basefontname self._fontsize = 12 self._textMode = 0 #track if between BT/ET self._leading = 14.4 self._currentMatrix = (1., 0., 0., 1., 0., 0.) self._fillMode = 0 #even-odd #text state self._charSpace = 0 self._wordSpace = 0 self._horizScale = 100 self._textRenderMode = 0 self._rise = 0 self._textLineMatrix = (1., 0., 0., 1., 0., 0.) self._textMatrix = (1., 0., 0., 1., 0., 0.) # line drawing self._lineCap = 0 self._lineJoin = 0 self._lineDash = None #not done self._lineWidth = 0 self._mitreLimit = 0 self._fillColorObj = self._strokeColorObj = rl_config.canvas_baseColor or (0,0,0) self._extgstate = ExtGState() def push_state_stack(self): state = {} d = self.__dict__ for name in self.STATE_ATTRIBUTES: state[name] = d[name] #getattr(self, name) self.state_stack.append(state) self._extgstate = self._extgstate.pushCopy() def pop_state_stack(self): state = self.state_stack[-1] del self.state_stack[-1] d = self.__dict__ d.update(state) STATE_ATTRIBUTES = split(""" _x _y _fontname _fontsize _textMode _leading _currentMatrix _fillMode _fillMode _charSpace _wordSpace _horizScale _textRenderMode _rise _textLineMatrix _textMatrix _lineCap _lineJoin _lineDash _lineWidth _mitreLimit _fillColorObj _strokeColorObj _extgstate""") STATE_RANGE = range(len(STATE_ATTRIBUTES)) #self._addStandardFonts() def _make_preamble(self): P = [].append if self.bottomup: P('1 0 0 1 0 0 cm') else: P('1 0 0 -1 0 %s cm' % fp_str(self._pagesize[1])) C = self._code n = len(C) if self._fillColorObj != (0,0,0): self.setFillColor(self._fillColorObj) if self._strokeColorObj != (0,0,0): self.setStrokeColor(self._strokeColorObj) P(' '.join(C[n:])) del C[n:] font = pdfmetrics.getFont(self._fontname) if not font._dynamicFont: #set an initial font P('BT %s 12 Tf 14.4 TL ET' % self._doc.getInternalFontName(self._fontname)) self._preamble = ' '.join(P.__self__) if not _instanceEscapePDF: def _escape(self, s): return _escapePDF(s) #info functions - non-standard def setAuthor(self, author): """identify the author for invisible embedding inside the PDF document. the author annotation will appear in the the text of the file but will not automatically be seen when the document is viewed, but is visible in document properties etc etc.""" self._doc.setAuthor(author) def setDateFormatter(self, dateFormatter): """accepts a func(yyyy,mm,dd,hh,m,s) used to create embedded formatted date""" self._doc.setDateFormatter(dateFormatter) def addOutlineEntry(self, title, key, level=0, closed=None): """Adds a new entry to the outline at given level. If LEVEL not specified, entry goes at the top level. If level specified, it must be no more than 1 greater than the outline level in the last call. The key must be the (unique) name of a bookmark. the title is the (non-unique) name to be displayed for the entry. If closed is set then the entry should show no subsections by default when displayed. Example:: c.addOutlineEntry("first section", "section1") c.addOutlineEntry("introduction", "s1s1", 1, closed=1) c.addOutlineEntry("body", "s1s2", 1) c.addOutlineEntry("detail1", "s1s2s1", 2) c.addOutlineEntry("detail2", "s1s2s2", 2) c.addOutlineEntry("conclusion", "s1s3", 1) c.addOutlineEntry("further reading", "s1s3s1", 2) c.addOutlineEntry("second section", "section1") c.addOutlineEntry("introduction", "s2s1", 1) c.addOutlineEntry("body", "s2s2", 1, closed=1) c.addOutlineEntry("detail1", "s2s2s1", 2) c.addOutlineEntry("detail2", "s2s2s2", 2) c.addOutlineEntry("conclusion", "s2s3", 1) c.addOutlineEntry("further reading", "s2s3s1", 2) generated outline looks like:: - first section |- introduction |- body | |- detail1 | |- detail2 |- conclusion | |- further reading - second section |- introduction |+ body |- conclusion | |- further reading Note that the second "body" is closed. Note that you can jump from level 5 to level 3 but not from 3 to 5: instead you need to provide all intervening levels going down (4 in this case). Note that titles can collide but keys cannot. """ #to be completed #self._outlines.append(title) self._doc.outline.addOutlineEntry(key, level, title, closed=closed) def setOutlineNames0(self, *nametree): # keep this for now (?) """nametree should can be a recursive tree like so:: c.setOutlineNames( "chapter1dest", ("chapter2dest", ["chapter2section1dest", "chapter2section2dest", "chapter2conclusiondest"] ), # end of chapter2 description "chapter3dest", ("chapter4dest", ["c4s1", "c4s2"]) ) each of the string names inside must be bound to a bookmark before the document is generated. """ self._doc.outline.setNames(*((self,)+nametree)) def setTitle(self, title): """write a title into the PDF file that won't automatically display in the document itself.""" self._doc.setTitle(title) def setSubject(self, subject): """write a subject into the PDF file that won't automatically display in the document itself.""" self._doc.setSubject(subject) def setKeywords(self, keywords): """write a list of keywords into the PDF file which shows in document properties. Either submit a single string or a list/tuple""" if isinstance(keywords,(list,tuple)): keywords = ', '.join(keywords) self._doc.setKeywords(keywords) def pageHasData(self): "Info function - app can call it after showPage to see if it needs a save" return len(self._code) == 0 def showOutline(self): """Specify that Acrobat Reader should start with the outline tree visible. showFullScreen() and showOutline() conflict; the one called last wins.""" self._doc._catalog.showOutline() def showFullScreen0(self): """Specify that Acrobat Reader should start in full screen mode. showFullScreen() and showOutline() conflict; the one called last wins.""" self._doc._catalog.showFullScreen() def _setStrokeAlpha(self,v): """ Define the transparency/opacity of strokes. 0 is fully transparent, 1 is fully opaque. Note that calling this function will cause a version 1.4 PDF to be generated (rather than 1.3). """ self._doc.ensureMinPdfVersion('transparency') self._extgstate.set(self,'CA',v) def _setFillAlpha(self,v): """ Define the transparency/opacity of non-strokes. 0 is fully transparent, 1 is fully opaque. Note that calling this function will cause a version 1.4 PDF to be generated (rather than 1.3). """ self._doc.ensureMinPdfVersion('transparency') self._extgstate.set(self,'ca',v) def _setStrokeOverprint(self,v): self._extgstate.set(self,'OP',v) def _setFillOverprint(self,v): self._extgstate.set(self,'op',v) def _getCmShift(self): cM = self._cropMarks if cM: mv = max(1,min(self._pagesize[0],self._pagesize[1])) sf = min(1+1./mv,1.01) bw = max(0,getattr(cM,'borderWidth',36)/sf) return bw def showPage(self): """Close the current page and possibly start on a new page.""" # ensure a space at the end of the stream - Acrobat does # not mind, but Ghostscript dislikes 'Qendstream' even if # the length marker finishes after 'Q' pageWidth = self._pagesize[0] pageHeight = self._pagesize[1] cM = self._cropMarks code = self._code if cM: mv = max(1,min(pageWidth,pageHeight)) sf = min(1+1./mv,1.01) bw = max(0,getattr(cM,'borderWidth',36)/sf) if bw: bv = (sf-1)*mv*0.5 ml = min(bw,max(0,getattr(cM,'markLength',18)/sf)) mw = getattr(cM,'markWidth',0.5) mc = getattr(cM,'markColor',black) mg = bw-ml cx0 = len(code) self.saveState() self.scale(sf,sf) self.translate(bw,bw) opw = pageWidth*sf oph = pageHeight*sf pageWidth = 2*bw + pageWidth*sf pageHeight = 2*bw + pageHeight*sf if ml and mc: self.saveState() self.setStrokeColor(mc) self.setLineWidth(mw) self.lines([ (bv,0-bw,bv,ml-bw), (opw-2*bv,0-bw,opw-2*bv,ml-bw), (bv,oph+mg,bv,oph+bw), (opw-2*bv,oph+mg,opw-2*bv,oph+bw), (-bw,bv,ml-bw,bv), (opw+mg,bv,opw+bw,bv), (-bw,oph-2*bv,ml-bw,oph-2*bv), (opw+mg,oph-2*bv,opw+bw,oph-2*bv), ]) self.restoreState() C = code[cx0:] del code[cx0:] code[0:0] = C self.restoreState() code.append(' ') page = pdfdoc.PDFPage() page.pagewidth = pageWidth page.pageheight = pageHeight page.Rotate = self._pageRotation page.hasImages = self._currentPageHasImages page.setPageTransition(self._pageTransition) page.setCompression(self._pageCompression) if self._pageDuration is not None: page.Dur = self._pageDuration strm = self._psCommandsBeforePage + [self._preamble] + code + self._psCommandsAfterPage page.setStream(strm) self._setColorSpace(page) self._setExtGState(page) self._setXObjects(page) self._setAnnotations(page) self._doc.addPage(page) if self._onPage: self._onPage(self._pageNumber) self._startPage() def _startPage(self): #now get ready for the next one self._pageNumber += 1 self._restartAccumulators() self.init_graphics_state() self.state_stack = [] def setPageCallBack(self, func): """func(pageNum) will be called on each page end. This is mainly a hook for progress monitoring. Call setPageCallback(None) to clear a callback.""" self._onPage = func def _setAnnotations(self,page): page.Annots = self._annotationrefs def _setColorSpace(self,obj): obj._colorsUsed = self._colorsUsed def _setXObjects(self, thing): """for pages and forms, define the XObject dictionary for resources, if needed""" forms = self._formsinuse if forms: xobjectsdict = self._doc.xobjDict(forms) thing.XObjects = xobjectsdict else: thing.XObjects = None def _bookmarkReference(self, name): """get a reference to a (possibly undefined, possibly unbound) bookmark""" d = self._destinations try: return d[name] except: result = d[name] = pdfdoc.Destination(name) # newly defined, unbound return result def bookmarkPage(self, key, fit="Fit", left=None, top=None, bottom=None, right=None, zoom=None ): """ This creates a bookmark to the current page which can be referred to with the given key elsewhere. PDF offers very fine grained control over how Acrobat reader is zoomed when people link to this. The default is to keep the user's current zoom settings. the last arguments may or may not be needed depending on the choice of 'fitType'. Fit types and the other arguments they use are: - XYZ left top zoom - fine grained control. null or zero for any of the parameters means 'leave as is', so "0,0,0" will keep the reader's settings. NB. Adobe Reader appears to prefer "null" to 0's. - Fit - entire page fits in window - FitH top - top coord at top of window, width scaled to fit. - FitV left - left coord at left of window, height scaled to fit - FitR left bottom right top - scale window to fit the specified rectangle (question: do we support /FitB, FitBH and /FitBV which are hangovers from version 1.1 / Acrobat 3.0?)""" dest = self._bookmarkReference(key) self._doc.inPage() # try to enable page-only features pageref = self._doc.thisPageRef() #None = "null" for PDF if left is None: left = "null" if top is None: top = "null" if bottom is None: bottom = "null" if right is None: right = "null" if zoom is None: zoom = "null" if fit == "XYZ": dest.xyz(left,top,zoom) elif fit == "Fit": dest.fit() elif fit == "FitH": dest.fith(top) elif fit == "FitV": dest.fitv(left) elif fit == "FitR": dest.fitr(left,bottom,right,top) #Do we need these (version 1.1 / Acrobat 3 versions)? elif fit == "FitB": dest.fitb() elif fit == "FitBH": dest.fitbh(top) elif fit == "FitBV": dest.fitbv(left) else: raise "Unknown Fit type %s" % (fit,) dest.setPage(pageref) return dest def bookmarkHorizontalAbsolute(self, key, top, left=0, fit='XYZ', **kw): """Bind a bookmark (destination) to the current page at a horizontal position. Note that the yhorizontal of the book mark is with respect to the default user space (where the origin is at the lower left corner of the page) and completely ignores any transform (translation, scale, skew, rotation, etcetera) in effect for the current graphics state. The programmer is responsible for making sure the bookmark matches an appropriate item on the page.""" #This method should probably be deprecated since it is just a sub-set of bookmarkPage return self.bookmarkPage(key, fit=fit, top=top, left=left, zoom=0) def bookmarkHorizontal(self, key, relativeX, relativeY, **kw): """w.r.t. the current transformation, bookmark this horizontal.""" (left, top) = self.absolutePosition(relativeX,relativeY) self.bookmarkHorizontalAbsolute(key, top, left=left, **kw) #def _inPage0(self): disallowed! # """declare a page, enable page features""" # self._doc.inPage() #def _inForm0(self): # "deprecated in favore of beginForm...endForm" # self._doc.inForm() def doForm(self, name): """use a form XObj in current operation stream. The form should either have been defined previously using beginForm ... endForm, or may be defined later. If it is not defined at save time, an exception will be raised. The form will be drawn within the context of the current graphics state.""" self._code.append("/%s Do" % self._doc.getXObjectName(name)) self._formsinuse.append(name) def hasForm(self, name): """Query whether form XObj really exists yet.""" return self._doc.hasForm(name) ###################################################### # # Image routines # ###################################################### def drawInlineImage(self, image, x,y, width=None,height=None, preserveAspectRatio=False,anchor='c'): """See drawImage, which should normally be used instead... drawInlineImage behaves like drawImage, but stores the image content within the graphics stream for the page. This means that the mask parameter for transparency is not available. It also means that there is no saving in file size or time if the same image is reused. In theory it allows images to be displayed slightly faster; however, we doubt if the difference is noticeable to any human user these days. Only use this if you have studied the PDF specification and know the implications. """ self._currentPageHasImages = 1 from pdfimages import PDFImage img_obj = PDFImage(image, x,y, width, height) img_obj.drawInlineImage(self, preserveAspectRatio=preserveAspectRatio, anchor=anchor) return (img_obj.width, img_obj.height) def drawImage(self, image, x, y, width=None, height=None, mask=None, preserveAspectRatio=False, anchor='c'): """Draws the image (ImageReader object or filename) as specified. "image" may be an image filename or an ImageReader object. x and y define the lower left corner of the image you wish to draw (or of its bounding box, if using preserveAspectRation below). If width and height are not given, the width and height of the image in pixels is used at a scale of 1 point to 1 pixel. If width and height are given, the image will be stretched to fill the given rectangle bounded by (x, y, x+width, y-height). If you supply negative widths and/or heights, it inverts them and adjusts x and y accordingly. The method returns the width and height of the underlying image, since this is often useful for layout algorithms and saves you work if you have not specified them yourself. The mask parameter supports transparent backgrounds. It takes 6 numbers and defines the range of RGB values which will be masked out or treated as transparent. For example with [0,2,40,42,136,139], it will mask out any pixels with a Red value from 0-2, Green from 40-42 and Blue from 136-139 (on a scale of 0-255). New post version 2.0: drawImage can center an image in a box you provide, while preserving its aspect ratio. For example, you might have a fixed square box in your design, and a collection of photos which might be landscape or portrait that you want to appear within the box. If preserveAspectRatio is true, your image will appear within the box specified. If preserveAspectRatio is True, the anchor property can be used to specify how images should fit into the given box. It should be set to one of the following values, taken from the points of the compass (plus 'c' for 'centre'): nw n ne w c e sw s se The default value is 'c' for 'centre'. Thus, if you want your bitmaps to always be centred and appear at the top of the given box, set anchor='n'. There are good examples of this in the output of test_pdfgen_general.py Unlike drawInlineImage, this creates 'external images' which are only stored once in the PDF file but can be drawn many times. If you give it the same filename twice, even at different locations and sizes, it will reuse the first occurrence, resulting in a saving in file size and generation time. If you use ImageReader objects, it tests whether the image content has changed before deciding whether to reuse it. In general you should use drawImage in preference to drawInlineImage unless you have read the PDF Spec and understand the tradeoffs.""" self._currentPageHasImages = 1 # first, generate a unique name/signature for the image. If ANYTHING # is different, even the mask, this should be different. if isinstance(image,ImageReader): rawdata = image.getRGBData() smask = image._dataA if mask=='auto' and smask: mdata = smask.getRGBData() else: mdata = str(mask) name = _digester(rawdata+mdata) else: #filename, use it name = _digester('%s%s' % (image, mask)) # in the pdf document, this will be prefixed with something to # say it is an XObject. Does it exist yet? regName = self._doc.getXObjectName(name) imgObj = self._doc.idToObject.get(regName, None) if not imgObj: #first time seen, create and register the PDFImageXobject imgObj = pdfdoc.PDFImageXObject(name, image, mask=mask) imgObj.name = name self._setXObjects(imgObj) self._doc.Reference(imgObj, regName) self._doc.addForm(name, imgObj) smask = getattr(imgObj,'_smask',None) if smask: #set up the softmask obtained above mRegName = self._doc.getXObjectName(smask.name) mImgObj = self._doc.idToObject.get(mRegName, None) if not mImgObj: self._setXObjects(smask) imgObj.smask = self._doc.Reference(smask,mRegName) else: imgObj.smask = pdfdoc.PDFObjectReference(mRegName) del imgObj._smask # ensure we have a size, as PDF will make it 1x1 pixel otherwise! x,y,width,height,scaled = aspectRatioFix(preserveAspectRatio,anchor,x,y,width,height,imgObj.width,imgObj.height) # scale and draw self.saveState() self.translate(x, y) self.scale(width, height) self._code.append("/%s Do" % regName) self.restoreState() # track what's been used on this page self._formsinuse.append(name) return (imgObj.width, imgObj.height) def _restartAccumulators(self): if self._codeStack: # restore the saved code saved = self._codeStack[-1] del self._codeStack[-1] self._code, self._formsinuse, self._annotationrefs, self._formData,self._colorsUsed = saved else: self._code = [] # ready for more... self._psCommandsAfterPage = [] self._currentPageHasImages = 1 # for safety... self._formsinuse = [] self._annotationrefs = [] self._formData = None self._colorsUsed = {} def _pushAccumulators(self): "when you enter a form, save accumulator info not related to the form for page (if any)" saved = (self._code, self._formsinuse, self._annotationrefs, self._formData, self._colorsUsed) self._codeStack.append(saved) self._code = [] # ready for more... self._currentPageHasImages = 1 # for safety... self._formsinuse = [] self._annotationrefs = [] self._formData = None self._colorsUsed = {} def _setExtGState(self, obj): obj.ExtGState = self._extgstate.getState() def beginForm(self, name, lowerx=0, lowery=0, upperx=None, uppery=None): """declare the current graphics stream to be a named form. A graphics stream can either be a page or a form, not both. Some operations (like bookmarking) are permitted for pages but not forms. The form will not automatically be shown in the document but must be explicitly referenced using doForm in pages that require the form.""" self.push_state_stack() self.init_graphics_state() if self._code or self._formData: # save the code that is not in the formf self._pushAccumulators() #self._codeStack.append(self._code) #self._code = [] self._formData = (name, lowerx, lowery, upperx, uppery) self._doc.inForm() #self._inForm0() def endForm(self): """emit the current collection of graphics operations as a Form as declared previously in beginForm.""" (name, lowerx, lowery, upperx, uppery) = self._formData #self.makeForm0(name, lowerx, lowery, upperx, uppery) # fall through! makeForm0 disallowed #def makeForm0(self, name, lowerx=0, lowery=0, upperx=None, uppery=None): """Like showpage, but make a form using accumulated operations instead""" # deprecated in favor or beginForm(...)... endForm() (w,h) = self._pagesize if upperx is None: upperx=w if uppery is None: uppery=h form = pdfdoc.PDFFormXObject(lowerx=lowerx, lowery=lowery, upperx=upperx, uppery=uppery) form.compression = self._pageCompression form.setStreamList([self._preamble] + self._code) # ??? minus preamble (seems to be needed!) self._setColorSpace(form) self._setExtGState(form) self._setXObjects(form) self._setAnnotations(form) self._doc.addForm(name, form) self._restartAccumulators() self.pop_state_stack() def addPostScriptCommand(self, command, position=1): """Embed literal Postscript in the document. With position=0, it goes at very beginning of page stream; with position=1, at current point; and with position=2, at very end of page stream. What that does to the resulting Postscript depends on Adobe's header :-) Use with extreme caution, but sometimes needed for printer tray commands. Acrobat 4.0 will export Postscript to a printer or file containing the given commands. Adobe Reader 6.0 no longer does as this feature is deprecated. 5.0, I don't know about (please let us know!). This was funded by Bob Marshall of Vector.co.uk and tested on a Lexmark 750. See test_pdfbase_postscript.py for 2 test cases - one will work on any Postscript device, the other uses a 'setpapertray' command which will error in Distiller but work on printers supporting it. """ #check if we've done this one already... rawName = 'PS' + md5(command).hexdigest() regName = self._doc.getXObjectName(rawName) psObj = self._doc.idToObject.get(regName, None) if not psObj: #first use of this chunk of Postscript, make an object psObj = pdfdoc.PDFPostScriptXObject(command + '\r\n') self._setXObjects(psObj) self._doc.Reference(psObj, regName) self._doc.addForm(rawName, psObj) if position == 0: self._psCommandsBeforePage.append("/%s Do" % regName) elif position==1: self._code.append("/%s Do" % regName) else: self._psCommandsAfterPage.append("/%s Do" % regName) self._formsinuse.append(rawName) def _absRect(self,rect,relative=0): if not rect: w,h = self._pagesize rect = (0,0,w,h) elif relative: lx, ly, ux, uy = rect xll,yll = self.absolutePosition(lx,ly) xur,yur = self.absolutePosition(ux, uy) xul,yul = self.absolutePosition(lx, uy) xlr,ylr = self.absolutePosition(ux, ly) xs = xll, xur, xul, xlr ys = yll, yur, yul, ylr xmin, ymin = min(xs), min(ys) xmax, ymax = max(xs), max(ys) rect = xmin, ymin, xmax, ymax bw = self._getCmShift() if bw: rect = rect[0]+bw,rect[1]+bw,rect[2]+bw,rect[3]+bw return rect def freeTextAnnotation(self, contents, DA, Rect=None, addtopage=1, name=None, relative=0, **kw): """DA is the default appearance string???""" Rect = self._absRect(Rect,relative) self._addAnnotation(pdfdoc.FreeTextAnnotation(Rect, contents, DA, **kw), name, addtopage) def textAnnotation(self, contents, Rect=None, addtopage=1, name=None, relative=0, **kw): """Experimental, but works. """ Rect = self._absRect(Rect,relative) self._addAnnotation(pdfdoc.TextAnnotation(Rect, contents, **kw), name, addtopage) textAnnotation0 = textAnnotation #deprecated def inkAnnotation(self, contents, InkList=None, Rect=None, addtopage=1, name=None, relative=0, **kw): raise NotImplementedError "Experimental" Rect = self._absRect(Rect,relative) if not InkList: InkList = ((100,100,100,h-100,w-100,h-100,w-100,100),) self._addAnnotation(pdfdoc.InkAnnotation(Rect, contents, InkList, **kw), name, addtopage) inkAnnotation0 = inkAnnotation #deprecated def linkAbsolute(self, contents, destinationname, Rect=None, addtopage=1, name=None, thickness=0, color=None, dashArray=None, **kw): """rectangular link annotation positioned wrt the default user space. The identified rectangle on the page becomes a "hot link" which when clicked will send the viewer to the page and position identified by the destination. Rect identifies (lowerx, lowery, upperx, uppery) for lower left and upperright points of the rectangle. Translations and other transforms are IGNORED (the rectangular position is given with respect to the default user space. destinationname should be the name of a bookmark (which may be defined later but must be defined before the document is generated). You may want to use the keyword argument Border='[0 0 0]' to suppress the visible rectangle around the during viewing link.""" return self.linkRect(contents, destinationname, Rect, addtopage, name, relative=0, thickness=thickness, color=color, dashArray=dashArray, **kw) def linkRect(self, contents, destinationname, Rect=None, addtopage=1, name=None, relative=1, thickness=0, color=None, dashArray=None, **kw): """rectangular link annotation w.r.t the current user transform. if the transform is skewed/rotated the absolute rectangle will use the max/min x/y """ destination = self._bookmarkReference(destinationname) # permitted to be undefined... must bind later... Rect = self._absRect(Rect,relative) kw["Rect"] = Rect kw["Contents"] = contents kw["Destination"] = destination _annFormat(kw,color,thickness,dashArray) return self._addAnnotation(pdfdoc.LinkAnnotation(**kw), name, addtopage) def linkURL(self, url, rect, relative=0, thickness=0, color=None, dashArray=None, kind="URI", **kw): """Create a rectangular URL 'hotspot' in the given rectangle. if relative=1, this is in the current coord system, otherwise in absolute page space. The remaining options affect the border appearance; the border is drawn by Acrobat, not us. Set thickness to zero to hide it. Any border drawn this way is NOT part of the page stream and will not show when printed to a Postscript printer or distilled; it is safest to draw your own.""" from reportlab.pdfbase.pdfdoc import PDFDictionary, PDFName, PDFArray, PDFString #tried the documented BS element in the pdf spec but it #does not work, and Acrobat itself does not appear to use it! ann = PDFDictionary(dict=kw) ann["Type"] = PDFName("Annot") ann["Subtype"] = PDFName("Link") ann["Rect"] = PDFArray(self._absRect(rect,relative)) # the whole page for testing # the action is a separate dictionary A = PDFDictionary() A["Type"] = PDFName("Action") # not needed? uri = PDFString(url) A['S'] = PDFName(kind) if kind=="URI": A["URI"] = uri elif kind=='GoToR': A["F"] = uri A["D"] = "[ 0 /XYZ null null null ]" else: raise ValueError("Unknown linkURI kind '%s'" % kind) ann["A"] = A _annFormat(ann,color,thickness,dashArray) self._addAnnotation(ann) def _addAnnotation(self, annotation, name=None, addtopage=1): count = self._annotationCount = self._annotationCount+1 if not name: name="NUMBER"+repr(count) self._doc.addAnnotation(name, annotation) if addtopage: self._annotatePage(name) def _annotatePage(self, name): ref = self._doc.refAnnotation(name) self._annotationrefs.append(ref) def getPageNumber(self): "get the page number for the current page being generated." return self._pageNumber def save(self): """Saves and close the PDF document in the file. If there is current data a ShowPage is executed automatically. After this operation the canvas must not be used further.""" if len(self._code): self.showPage() self._doc.SaveToFile(self._filename, self) def getpdfdata(self): """Returns the PDF data that would normally be written to a file. If there is current data a ShowPage is executed automatically. After this operation the canvas must not be used further.""" if len(self._code): self.showPage() return self._doc.GetPDFData(self) def setPageSize(self, size): """accepts a 2-tuple in points for paper size for this and subsequent pages""" self._pagesize = size self._make_preamble() def setPageRotation(self, rot): """Instruct display device that this page is to be rotated""" assert rot % 90.0 == 0.0, "Rotation must be a multiple of 90 degrees" self._pageRotation = rot def addLiteral(self, s, escaped=1): """introduce the literal text of PDF operations s into the current stream. Only use this if you are an expert in the PDF file format.""" s = str(s) # make sure its a string if escaped==0: s = self._escape(s) # convert to string for safety self._code.append(s) ###################################################################### # # coordinate transformations # ###################################################################### def resetTransforms(self): """I want to draw something (eg, string underlines) w.r.t. the default user space. Reset the matrix! This should be used usually as follows:: canv.saveState() canv.resetTransforms() #...draw some stuff in default space coords... canv.restoreState() # go back! """ # we have to adjoin the inverse, since reset is not a basic operation (without save/restore) (selfa, selfb, selfc, selfd, selfe, selff) = self._currentMatrix det = selfa*selfd - selfc*selfb resulta = selfd/det resultc = -selfc/det resulte = (selfc*selff - selfd*selfe)/det resultd = selfa/det resultb = -selfb/det resultf = (selfe*selfb - selff*selfa)/det self.transform(resulta, resultb, resultc, resultd, resulte, resultf) def transform(self, a,b,c,d,e,f): """adjoin a mathematical transform to the current graphics state matrix. Not recommended for beginners.""" #How can Python track this? if ENABLE_TRACKING: a0,b0,c0,d0,e0,f0 = self._currentMatrix self._currentMatrix = (a0*a+c0*b, b0*a+d0*b, a0*c+c0*d, b0*c+d0*d, a0*e+c0*f+e0, b0*e+d0*f+f0) if self._code and self._code[-1][-3:]==' cm': L = split(self._code[-1]) a0, b0, c0, d0, e0, f0 = map(float,L[-7:-1]) s = len(L)>7 and join(L)+ ' %s cm' or '%s cm' self._code[-1] = s % fp_str(a0*a+c0*b,b0*a+d0*b,a0*c+c0*d,b0*c+d0*d,a0*e+c0*f+e0,b0*e+d0*f+f0) else: self._code.append('%s cm' % fp_str(a,b,c,d,e,f)) def absolutePosition(self, x, y): """return the absolute position of x,y in user space w.r.t. default user space""" if not ENABLE_TRACKING: raise ValueError, "tracking not enabled! (canvas.ENABLE_TRACKING=0)" (a,b,c,d,e,f) = self._currentMatrix xp = a*x + c*y + e yp = b*x + d*y + f return (xp, yp) def translate(self, dx, dy): """move the origin from the current (0,0) point to the (dx,dy) point (with respect to the current graphics state).""" self.transform(1,0,0,1,dx,dy) def scale(self, x, y): """Scale the horizontal dimension by x and the vertical by y (with respect to the current graphics state). For example canvas.scale(2.0, 0.5) will make everything short and fat.""" self.transform(x,0,0,y,0,0) def rotate(self, theta): """Canvas.rotate(theta) Rotate the canvas by the angle theta (in degrees).""" c = cos(theta * pi / 180) s = sin(theta * pi / 180) self.transform(c, s, -s, c, 0, 0) def skew(self, alpha, beta): tanAlpha = tan(alpha * pi / 180) tanBeta = tan(beta * pi / 180) self.transform(1, tanAlpha, tanBeta, 1, 0, 0) ###################################################################### # # graphics state management # ###################################################################### def saveState(self): """Save the current graphics state to be restored later by restoreState. For example: canvas.setFont("Helvetica", 20) canvas.saveState() ... canvas.setFont("Courier", 9) ... canvas.restoreState() # if the save/restore pairs match then font is Helvetica 20 again. """ self.push_state_stack() self._code.append('q') def restoreState(self): """restore the graphics state to the matching saved state (see saveState).""" self._code.append('Q') self.pop_state_stack() ############################################################### # # Drawing methods. These draw things directly without # fiddling around with Path objects. We can add any geometry # methods we wish as long as their meaning is precise and # they are of general use. # # In general there are two patterns. Closed shapes # have the pattern shape(self, args, stroke=1, fill=0); # by default they draw an outline only. Line segments come # in three flavours: line, bezier, arc (which is a segment # of an elliptical arc, approximated by up to four bezier # curves, one for each quadrant. # # In the case of lines, we provide a 'plural' to unroll # the inner loop; it is useful for drawing big grids ################################################################ #--------first the line drawing methods----------------------- def line(self, x1,y1, x2,y2): """draw a line segment from (x1,y1) to (x2,y2) (with color, thickness and other attributes determined by the current graphics state).""" self._code.append('n %s m %s l S' % (fp_str(x1, y1), fp_str(x2, y2))) def lines(self, linelist): """Like line(), permits many lines to be drawn in one call. for example for the figure:: | -- -- | crosshairs = [(20,0,20,10), (20,30,20,40), (0,20,10,20), (30,20,40,20)] canvas.lines(crosshairs) """ self._code.append('n') for (x1,y1,x2,y2) in linelist: self._code.append('%s m %s l' % (fp_str(x1, y1), fp_str(x2, y2))) self._code.append('S') def grid(self, xlist, ylist): """Lays out a grid in current line style. Supply list of x an y positions.""" assert len(xlist) > 1, "x coordinate list must have 2+ items" assert len(ylist) > 1, "y coordinate list must have 2+ items" lines = [] y0, y1 = ylist[0], ylist[-1] x0, x1 = xlist[0], xlist[-1] for x in xlist: lines.append((x,y0,x,y1)) for y in ylist: lines.append((x0,y,x1,y)) self.lines(lines) def bezier(self, x1, y1, x2, y2, x3, y3, x4, y4): "Bezier curve with the four given control points" self._code.append('n %s m %s c S' % (fp_str(x1, y1), fp_str(x2, y2, x3, y3, x4, y4)) ) def arc(self, x1,y1, x2,y2, startAng=0, extent=90): """Draw a partial ellipse inscribed within the rectangle x1,y1,x2,y2, starting at startAng degrees and covering extent degrees. Angles start with 0 to the right (+x) and increase counter-clockwise. These should have x1<x2 and y1<y2. Contributed to piddlePDF by Robert Kern, 28/7/99. Trimmed down by AR to remove color stuff for pdfgen.canvas and revert to positive coordinates. The algorithm is an elliptical generalization of the formulae in Jim Fitzsimmon's TeX tutorial <URL: http://www.tinaja.com/bezarc1.pdf>.""" pointList = pdfgeom.bezierArc(x1,y1, x2,y2, startAng, extent) #move to first point self._code.append('n %s m' % fp_str(pointList[0][:2])) for curve in pointList: self._code.append('%s c' % fp_str(curve[2:])) # stroke self._code.append('S') #--------now the shape drawing methods----------------------- def rect(self, x, y, width, height, stroke=1, fill=0): "draws a rectangle with lower left corner at (x,y) and width and height as given." self._code.append('n %s re ' % fp_str(x, y, width, height) + PATH_OPS[stroke, fill, self._fillMode]) def ellipse(self, x1, y1, x2, y2, stroke=1, fill=0): """Draw an ellipse defined by an enclosing rectangle. Note that (x1,y1) and (x2,y2) are the corner points of the enclosing rectangle. Uses bezierArc, which conveniently handles 360 degrees. Special thanks to Robert Kern.""" pointList = pdfgeom.bezierArc(x1,y1, x2,y2, 0, 360) #move to first point self._code.append('n %s m' % fp_str(pointList[0][:2])) for curve in pointList: self._code.append('%s c' % fp_str(curve[2:])) #finish self._code.append(PATH_OPS[stroke, fill, self._fillMode]) def wedge(self, x1,y1, x2,y2, startAng, extent, stroke=1, fill=0): """Like arc, but connects to the centre of the ellipse. Most useful for pie charts and PacMan!""" x_cen = (x1+x2)/2. y_cen = (y1+y2)/2. pointList = pdfgeom.bezierArc(x1,y1, x2,y2, startAng, extent) self._code.append('n %s m' % fp_str(x_cen, y_cen)) # Move the pen to the center of the rectangle self._code.append('%s l' % fp_str(pointList[0][:2])) for curve in pointList: self._code.append('%s c' % fp_str(curve[2:])) # finish the wedge self._code.append('%s l ' % fp_str(x_cen, y_cen)) # final operator self._code.append(PATH_OPS[stroke, fill, self._fillMode]) def circle(self, x_cen, y_cen, r, stroke=1, fill=0): """draw a cirle centered at (x_cen,y_cen) with radius r (special case of ellipse)""" x1 = x_cen - r x2 = x_cen + r y1 = y_cen - r y2 = y_cen + r self.ellipse(x1, y1, x2, y2, stroke, fill) def roundRect(self, x, y, width, height, radius, stroke=1, fill=0): """Draws a rectangle with rounded corners. The corners are approximately quadrants of a circle, with the given radius.""" #use a precomputed set of factors for the bezier approximation #to a circle. There are six relevant points on the x axis and y axis. #sketch them and it should all make sense! t = 0.4472 * radius x0 = x x1 = x0 + t x2 = x0 + radius x3 = x0 + width - radius x4 = x0 + width - t x5 = x0 + width y0 = y y1 = y0 + t y2 = y0 + radius y3 = y0 + height - radius y4 = y0 + height - t y5 = y0 + height self._code.append('n %s m' % fp_str(x2, y0)) self._code.append('%s l' % fp_str(x3, y0)) # bottom row self._code.append('%s c' % fp_str(x4, y0, x5, y1, x5, y2)) # bottom right self._code.append('%s l' % fp_str(x5, y3)) # right edge self._code.append('%s c' % fp_str(x5, y4, x4, y5, x3, y5)) # top right self._code.append('%s l' % fp_str(x2, y5)) # top row self._code.append('%s c' % fp_str(x1, y5, x0, y4, x0, y3)) # top left self._code.append('%s l' % fp_str(x0, y2)) # left edge self._code.append('%s c' % fp_str(x0, y1, x1, y0, x2, y0)) # bottom left self._code.append('h') #close off, although it should be where it started anyway self._code.append(PATH_OPS[stroke, fill, self._fillMode]) ################################################## # # Text methods # # As with graphics, a separate object ensures that # everything is bracketed between text operators. # The methods below are a high-level convenience. # use PDFTextObject for multi-line text. ################################################## def drawString(self, x, y, text): """Draws a string in the current text styles.""" #we could inline this for speed if needed t = self.beginText(x, y) t.textLine(text) self.drawText(t) def drawRightString(self, x, y, text): """Draws a string right-aligned with the x coordinate""" width = self.stringWidth(text, self._fontname, self._fontsize) t = self.beginText(x - width, y) t.textLine(text) self.drawText(t) def drawCentredString(self, x, y, text): """Draws a string centred on the x coordinate. We're British, dammit, and proud of our spelling!""" width = self.stringWidth(text, self._fontname, self._fontsize) t = self.beginText(x - 0.5*width, y) t.textLine(text) self.drawText(t) def drawAlignedString(self, x, y, text, pivotChar="."): """Draws a string aligned on the first '.' (or other pivot character). The centre position of the pivot character will be used as x. So, you could draw a straight line down through all the decimals in a column of numbers, and anything without a decimal should be optically aligned with those that have. There is one special rule to help with accounting formatting. Here's how normal numbers should be aligned on the 'dot'. Look at the LAST two:: 12,345,67 987.15 42 -1,234.56 (456.78) (456) 27 inches 13cm Since the last three do not contain a dot, a crude dot-finding rule would place them wrong. So we test for the special case where no pivot is found, digits are present, but the last character is not a digit. We then work back from the end of the string This case is a tad slower but hopefully rare. """ parts = text.split(pivotChar,1) pivW = self.stringWidth(pivotChar, self._fontname, self._fontsize) if len(parts) == 1 and digitPat.search(text) is not None and text[-1] not in digits: #we have no decimal but it ends in a bracket, or 'in' or something. #the cut should be after the last digit. leftText = parts[0][0:-1] rightText = parts[0][-1] #any more? while leftText[-1] not in digits: rightText = leftText[-1] + rightText leftText = leftText[0:-1] self.drawRightString(x-0.5*pivW, y, leftText) self.drawString(x-0.5*pivW, y, rightText) else: #normal case leftText = parts[0] self.drawRightString(x-0.5*pivW, y, leftText) if len(parts) > 1: rightText = pivotChar + parts[1] self.drawString(x-0.5*pivW, y, rightText) def getAvailableFonts(self): """Returns the list of PostScript font names available. Standard set now, but may grow in future with font embedding.""" fontnames = self._doc.getAvailableFonts() fontnames.sort() return fontnames def addFont(self, fontObj): "add a new font for subsequent use." self._doc.addFont(fontObj) def _addStandardFonts(self): """Ensures the standard 14 fonts are available in the system encoding. Called by canvas on initialization""" for fontName in pdfmetrics.standardFonts: self.addFont(pdfmetrics.fontsByName[fontName]) def listLoadedFonts0(self): "Convenience function to list all loaded fonts" names = pdfmetrics.widths.keys() names.sort() return names def setFont(self, psfontname, size, leading = None): """Sets the font. If leading not specified, defaults to 1.2 x font size. Raises a readable exception if an illegal font is supplied. Font names are case-sensitive! Keeps track of font name and size for metrics.""" self._fontname = psfontname self._fontsize = size if leading is None: leading = size * 1.2 self._leading = leading font = pdfmetrics.getFont(self._fontname) if not font._dynamicFont: pdffontname = self._doc.getInternalFontName(psfontname) self._code.append('BT %s %s Tf %s TL ET' % (pdffontname, fp_str(size), fp_str(leading))) def setFontSize(self, size=None, leading=None): '''Sets font size or leading without knowing the font face''' if size is None: size = self._fontsize if leading is None: leading = self._leading self.setFont(self._fontname, size, leading) def stringWidth(self, text, fontName=None, fontSize=None): "gets width of a string in the given font and size" return pdfmetrics.stringWidth(text, fontName or self._fontname, (fontSize,self._fontsize)[fontSize is None]) # basic graphics modes def setLineWidth(self, width): self._lineWidth = width self._code.append('%s w' % fp_str(width)) def setLineCap(self, mode): """0=butt,1=round,2=square""" assert mode in (0,1,2), "Line caps allowed: 0=butt,1=round,2=square" self._lineCap = mode self._code.append('%d J' % mode) def setLineJoin(self, mode): """0=mitre, 1=round, 2=bevel""" assert mode in (0,1,2), "Line Joins allowed: 0=mitre, 1=round, 2=bevel" self._lineJoin = mode self._code.append('%d j' % mode) def setMiterLimit(self, limit): self._miterLimit = limit self._code.append('%s M' % fp_str(limit)) def setDash(self, array=[], phase=0): """Two notations. pass two numbers, or an array and phase""" if isinstance(array,(int,float)): self._code.append('[%s %s] 0 d' % (array, phase)) elif isinstance(array,(tuple,list)): assert phase >= 0, "phase is a length in user space" textarray = ' '.join(map(str, array)) self._code.append('[%s] %s d' % (textarray, phase)) # path stuff - the separate path object builds it def beginPath(self): """Returns a fresh path object. Paths are used to draw complex figures. The object returned follows the protocol for a pathobject.PDFPathObject instance""" return pathobject.PDFPathObject() def drawPath(self, aPath, stroke=1, fill=0): "Draw the path object in the mode indicated" gc = aPath.getCode(); pathops = PATH_OPS[stroke, fill, self._fillMode] item = "%s %s" % (gc, pathops) # ENSURE STRING CONVERSION self._code.append(item) #self._code.append(aPath.getCode() + ' ' + PATH_OPS[stroke, fill, self._fillMode]) def clipPath(self, aPath, stroke=1, fill=0): "clip as well as drawing" gc = aPath.getCode(); pathops = PATH_OPS[stroke, fill, self._fillMode] clip = (self._fillMode == FILL_EVEN_ODD and ' W* ' or ' W ') item = "%s%s%s" % (gc, clip, pathops) # ensure string conversion self._code.append(item) #self._code.append( aPath.getCode() # + (self._fillMode == FILL_EVEN_ODD and ' W* ' or ' W ') # + PATH_OPS[stroke,fill,self._fillMode]) def beginText(self, x=0, y=0): """Returns a fresh text object. Text objects are used to add large amounts of text. See textobject.PDFTextObject""" return textobject.PDFTextObject(self, x, y) def drawText(self, aTextObject): """Draws a text object""" self._code.append(str(aTextObject.getCode())) def setPageCompression(self, pageCompression=1): """Possible values None, 1 or 0 If None the value from rl_config will be used. If on, the page data will be compressed, leading to much smaller files, but takes a little longer to create the files. This applies to all subsequent pages, or until setPageCompression() is next called.""" if pageCompression is None: pageCompression = rl_config.pageCompression if pageCompression and not zlib: self._pageCompression = 0 else: self._pageCompression = pageCompression self._doc.setCompression(self._pageCompression) def setPageDuration(self, duration=None): """Allows hands-off animation of presentations :-) If this is set to a number, in full screen mode, Acrobat Reader will advance to the next page after this many seconds. The duration of the transition itself (fade/flicker etc.) is controlled by the 'duration' argument to setPageTransition; this controls the time spent looking at the page. This is effective for all subsequent pages.""" self._pageDuration = duration def setPageTransition(self, effectname=None, duration=1, direction=0,dimension='H',motion='I'): """PDF allows page transition effects for use when giving presentations. There are six possible effects. You can just guive the effect name, or supply more advanced options to refine the way it works. There are three types of extra argument permitted, and here are the allowed values:: direction_arg = [0,90,180,270] dimension_arg = ['H', 'V'] motion_arg = ['I','O'] (start at inside or outside) This table says which ones take which arguments:: PageTransitionEffects = { 'Split': [direction_arg, motion_arg], 'Blinds': [dimension_arg], 'Box': [motion_arg], 'Wipe' : [direction_arg], 'Dissolve' : [], 'Glitter':[direction_arg] } Have fun! """ # This builds a Python dictionary with the right arguments # for the Trans dictionary in the PDFPage object, # and stores it in the variable _pageTransition. # showPage later passes this to the setPageTransition method # of the PDFPage object, which turns it to a PDFDictionary. self._pageTransition = {} if not effectname: return #first check each optional argument has an allowed value if direction in [0,90,180,270]: direction_arg = ('Di', '/%d' % direction) else: raise pdfdoc.PDFError(' directions allowed are 0,90,180,270') if dimension in ['H', 'V']: dimension_arg = ('Dm', '/' + dimension) else: raise pdfdoc.PDFError('dimension values allowed are H and V') if motion in ['I','O']: motion_arg = ('M', '/' + motion) else: raise pdfdoc.PDFError('motion values allowed are I and O') # this says which effects require which argument types from above PageTransitionEffects = { 'Split': [direction_arg, motion_arg], 'Blinds': [dimension_arg], 'Box': [motion_arg], 'Wipe' : [direction_arg], 'Dissolve' : [], 'Glitter':[direction_arg] } try: args = PageTransitionEffects[effectname] except KeyError: raise pdfdoc.PDFError('Unknown Effect Name "%s"' % effectname) # now build the dictionary transDict = {} transDict['Type'] = '/Trans' transDict['D'] = '%d' % duration transDict['S'] = '/' + effectname for (key, value) in args: transDict[key] = value self._pageTransition = transDict def getCurrentPageContent(self): """Return uncompressed contents of current page buffer. This is useful in creating test cases and assertions of what got drawn, without necessarily saving pages to disk""" return '\n'.join(self._code) def setViewerPreference(self,pref,value): '''set one of the allowed enbtries in the documents viewer preferences''' catalog = self._doc.Catalog VP = getattr(catalog,'ViewerPreferences',None) if VP is None: from reportlab.pdfbase.pdfdoc import ViewerPreferencesPDFDictionary VP = catalog.ViewerPreferences = ViewerPreferencesPDFDictionary() VP[pref] = value def getViewerPreference(self,pref): '''you'll get an error here if none have been set''' return self._doc.Catalog.ViewerPreferences[pref] def delViewerPreference(self,pref): '''you'll get an error here if none have been set''' del self._doc.Catalog.ViewerPreferences[pref] def addPageLabel(self, pageNum, style=None, start=None, prefix=None): '''add a PDFPageLabel for pageNum''' catalog = self._doc.Catalog PL = getattr(catalog,'PageLabels',None) if PL is None: from reportlab.pdfbase.pdfdoc import PDFPageLabels PL = catalog.PageLabels = PDFPageLabels() from reportlab.pdfbase.pdfdoc import PDFPageLabel PL.addPageLabel(pageNum,PDFPageLabel(style,start,prefix)) if _instanceEscapePDF: import new Canvas._escape = new.instancemethod(_instanceEscapePDF,None,Canvas) if __name__ == '__main__': print 'For test scripts, look in tests'
40.400346
151
0.59578