Datasets:
ytid
stringlengths 11
13
| start
int64 0
11.5M
| end
int64 5k
11.5M
|
---|---|---|
--FenyW2i_4 | 5,000 | 10,000 |
--KCIeTv6PM | 14,000 | 24,000 |
--ZHUMfueO0 | 5,000 | 10,000 |
--bvmgIdDC8 | 0 | 5,000 |
--i-y1v8Hy8 | 3,000 | 8,000 |
--kpfdHrlxI | 56,000 | 66,000 |
--yJcmmwiMc | 0 | 5,000 |
-03Hd0MBgQY | 1,000 | 6,000 |
-0TTFAArJ9k | 3,000 | 8,000 |
-10VmSN3WzE | 0 | 5,000 |
-1HyqEM_VwM | 100,000 | 110,000 |
-1HyqEM_VwM | 210,000 | 220,000 |
-1HyqEM_VwM | 314,000 | 324,000 |
-1HyqEM_VwM | 6,000 | 16,000 |
-1IQfWwrPbc | 243,000 | 253,000 |
-1XBP-nZ1bQ | 0 | 5,000 |
-1q0XHPxqe8 | 0 | 5,000 |
-26aVYRtEAc | 4,000 | 9,000 |
-2McrNUTKQQ | 1,000 | 6,000 |
-39sHTky_6o | 5,000 | 10,000 |
-3ABOVeVmpU | 136,000 | 146,000 |
-3L1rzGAD_o | 0 | 5,000 |
-3Ptg4uALKc | 0 | 5,000 |
-3cuiWZz8FY | 5,000 | 10,000 |
-458eoazpK8 | 0 | 10,000 |
-458eoazpK8 | 18,000 | 28,000 |
-46xqouqMxA | 0 | 5,000 |
-4LKin0t85s | 0 | 10,000 |
-4LKin0t85s | 25,000 | 35,000 |
-4LKin0t85s | 264,000 | 274,000 |
-4LKin0t85s | 327,000 | 337,000 |
-4cdRRPG3Wg | 3,000 | 8,000 |
-5-tOp4t_kU | 0 | 10,000 |
-5-tOp4t_kU | 22,000 | 32,000 |
-51CA8BX7gU | 0 | 5,000 |
-5ZIlKvRDXY | 5,000 | 10,000 |
-5doTJ3fhpM | 99,000 | 109,000 |
-5kRgp_lxpk | 0 | 10,000 |
-5npm3LS8mY | 35,000 | 45,000 |
-5npm3LS8mY | 50,000 | 60,000 |
-5npm3LS8mY | 68,000 | 78,000 |
-5npm3LS8mY | 83,000 | 93,000 |
-5npm3LS8mY | 97,000 | 107,000 |
-6AOy8GAMpM | 0 | 5,000 |
-6AOy8GAMpM | 60,000 | 70,000 |
-6GIX2msUSA | 22,000 | 32,000 |
-6GIX2msUSA | 5,000 | 15,000 |
-6HhoAY9Fbs | 0 | 5,000 |
-6R3wpks5Jg | 0 | 5,000 |
-6khcuB2d5U | 5,000 | 10,000 |
-6pLGGF7dEI | 52,000 | 62,000 |
-6pLGGF7dEI | 63,000 | 73,000 |
-7OvXNt9sjE | 49,000 | 59,000 |
-84CyEpynsY | 0 | 5,000 |
-8E7mUH4fdE | 0 | 10,000 |
-8RduCMIJG0 | 0 | 5,000 |
-8S9TKWIOSc | 3,000 | 8,000 |
-8YTu7ZGA2w | 0 | 5,000 |
-8ZG1rJYPXs | 210,000 | 220,000 |
-8Zeh__mQWY | 2,000 | 7,000 |
-8cgbhIR_pw | 0 | 5,000 |
-8mcyL3kWNQ | 120,000 | 130,000 |
-8mcyL3kWNQ | 135,000 | 145,000 |
-8mcyL3kWNQ | 150,000 | 160,000 |
-8mcyL3kWNQ | 316,000 | 326,000 |
-8mcyL3kWNQ | 329,000 | 339,000 |
-8mcyL3kWNQ | 8,000 | 18,000 |
-9-Jylm9GiA | 1,120,000 | 1,130,000 |
-9-Jylm9GiA | 1,150,000 | 1,160,000 |
-9-Jylm9GiA | 1,185,000 | 1,195,000 |
-9-Jylm9GiA | 1,320,000 | 1,330,000 |
-9-Jylm9GiA | 1,330,000 | 1,340,000 |
-9-Jylm9GiA | 1,340,000 | 1,350,000 |
-9-Jylm9GiA | 440,000 | 450,000 |
-9-Jylm9GiA | 450,000 | 460,000 |
-9-Jylm9GiA | 460,000 | 470,000 |
-9-Jylm9GiA | 470,000 | 480,000 |
-9-Jylm9GiA | 535,000 | 545,000 |
-9-Jylm9GiA | 730,000 | 740,000 |
-9-Jylm9GiA | 775,000 | 785,000 |
-9-Jylm9GiA | 790,000 | 800,000 |
-9-Jylm9GiA | 880,000 | 890,000 |
-91lUg0_Gl8 | 0 | 5,000 |
-9YohOxYZ0Q | 3,000 | 8,000 |
-A30OtsXlyQ | 137,000 | 147,000 |
-AEwV5b8gEo | 1,000 | 6,000 |
-AWooU1PDiM | 1,000 | 6,000 |
-AcwZ-xmAKY | 125,000 | 135,000 |
-AcwZ-xmAKY | 244,000 | 254,000 |
-AcwZ-xmAKY | 32,000 | 42,000 |
-AcwZ-xmAKY | 58,000 | 68,000 |
-BFcExBQfAk | 0 | 5,000 |
-Be9nUG_Vzk | 25,000 | 35,000 |
-Be9nUG_Vzk | 48,000 | 58,000 |
-Be9nUG_Vzk | 60,000 | 70,000 |
-Be9nUG_Vzk | 7,000 | 17,000 |
-Be9nUG_Vzk | 85,000 | 95,000 |
-BfXVjsdZV4 | 0 | 5,000 |
-BpMHfa2Saw | 0 | 5,000 |
-BrnUAUA37o | 0 | 5,000 |
FAVDBench: Fine-grained Audible Video Description
🤗 Hugging Face • 🏠 GitHub • 🤖 OpenDataLab • 💬 Apply Dataset
[CVPR2023
] [Project Page
] [arXiv
] [Demo
][BibTex
] [中文简介
]
Introduction 简介
在CVPR2023中我们提出了精细化音视频描述任务(Fine-grained Audible Video Description, FAVD)该任务旨在提供有关可听视频的详细文本描述,包括每个对象的外观和空间位置、移动对象的动作以及视频中的声音。我们同是也为社区贡献了第一个精细化音视频描述数据集FAVDBench。对于每个视频片段,我们不仅提供一句话的视频概要,还提供4-6句描述视频的视觉细节和1-2个音频相关描述,且所有的标注都有中英文双语。
At CVPR2023, we introduced the task of Fine-grained Audible Video Description (FAVD). This task aims to provide detailed textual descriptions of audible videos, including the appearance and spatial positions of each object, the actions of moving objects, and the sounds within the video. Additionally, we contributed the first fine-grained audible video description dataset, FAVDBench, to the community. For each video segment, we offer not only a single-sentence video summary but also 4-6 sentences describing the visual details of the video and 1-2 audio-related descriptions, all annotated in both Chinese and English.
Files 文件
meta
: metadata for raw videostrain
,val
,test
: train, val, test splitytid
: youtube idstart
: vid segments starting time in secondsend
: vid segments ending time in seconds
videos
,audios
: raw video and audio segmentstrain
: train splitval
: validation splittest
: test split- 📢📢📢 Please refer to Apply Dataset to get raw video/audio data
annotations_en.json
: annotated descirptions in Englishid
: unique data (video segment) iddescription
: audio-visual descriptioins
annotations_en.json
: annotated descirptions in Chineseid
: unique data (video segment) idcap
,des
: audio-visual descriptioinsdcount
: count of descriptions
experiments
: expiermental files to replicate the results outlined in the paper.- 📢📢📢 Please refer to GitHub Repo to get related data
MD5 checksum
file | md5sum |
---|---|
videos/train.zip |
41ddad46ffac339cb0b65dffc02eda65 |
videos/val.zip |
35291ad23944d67212c6e47b4cc6d619 |
videos/test.zip |
07046d205837d2e3b1f65549fc1bc4d7 |
audios/train.zip |
50cc83eebd84f85e9b86bbd2a7517f3f |
audios/val.zip |
73995c5d1fcef269cc90be8a8ef6d917 |
audios/test.zip |
f72085feab6ca36060a0a073b31e8acc |
Updates
Latest Version: Jan 9, 2023. Public V0.1
- v0.1 <Jan 9, 2023>: initial publication
License
The community usage of FAVDBench model & code requires adherence to Apache 2.0. The FAVDBench model & code supports commercial use.
Citation
If you use FAVD or FAVDBench in your research, please use the following BibTeX entry.
@InProceedings{Shen_2023_CVPR,
author = {Shen, Xuyang and Li, Dong and Zhou, Jinxing and Qin, Zhen and He, Bowen and Han, Xiaodong and Li, Aixuan and Dai, Yuchao and Kong, Lingpeng and Wang, Meng and Qiao, Yu and Zhong, Yiran},
title = {Fine-Grained Audible Video Description},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {10585-10596}
}
- Downloads last month
- 69