ytid
stringlengths
11
13
start
int64
0
11.5M
end
int64
5k
11.5M
--FenyW2i_4
5,000
10,000
--KCIeTv6PM
14,000
24,000
--ZHUMfueO0
5,000
10,000
--bvmgIdDC8
0
5,000
--i-y1v8Hy8
3,000
8,000
--kpfdHrlxI
56,000
66,000
--yJcmmwiMc
0
5,000
-03Hd0MBgQY
1,000
6,000
-0TTFAArJ9k
3,000
8,000
-10VmSN3WzE
0
5,000
-1HyqEM_VwM
100,000
110,000
-1HyqEM_VwM
210,000
220,000
-1HyqEM_VwM
314,000
324,000
-1HyqEM_VwM
6,000
16,000
-1IQfWwrPbc
243,000
253,000
-1XBP-nZ1bQ
0
5,000
-1q0XHPxqe8
0
5,000
-26aVYRtEAc
4,000
9,000
-2McrNUTKQQ
1,000
6,000
-39sHTky_6o
5,000
10,000
-3ABOVeVmpU
136,000
146,000
-3L1rzGAD_o
0
5,000
-3Ptg4uALKc
0
5,000
-3cuiWZz8FY
5,000
10,000
-458eoazpK8
0
10,000
-458eoazpK8
18,000
28,000
-46xqouqMxA
0
5,000
-4LKin0t85s
0
10,000
-4LKin0t85s
25,000
35,000
-4LKin0t85s
264,000
274,000
-4LKin0t85s
327,000
337,000
-4cdRRPG3Wg
3,000
8,000
-5-tOp4t_kU
0
10,000
-5-tOp4t_kU
22,000
32,000
-51CA8BX7gU
0
5,000
-5ZIlKvRDXY
5,000
10,000
-5doTJ3fhpM
99,000
109,000
-5kRgp_lxpk
0
10,000
-5npm3LS8mY
35,000
45,000
-5npm3LS8mY
50,000
60,000
-5npm3LS8mY
68,000
78,000
-5npm3LS8mY
83,000
93,000
-5npm3LS8mY
97,000
107,000
-6AOy8GAMpM
0
5,000
-6AOy8GAMpM
60,000
70,000
-6GIX2msUSA
22,000
32,000
-6GIX2msUSA
5,000
15,000
-6HhoAY9Fbs
0
5,000
-6R3wpks5Jg
0
5,000
-6khcuB2d5U
5,000
10,000
-6pLGGF7dEI
52,000
62,000
-6pLGGF7dEI
63,000
73,000
-7OvXNt9sjE
49,000
59,000
-84CyEpynsY
0
5,000
-8E7mUH4fdE
0
10,000
-8RduCMIJG0
0
5,000
-8S9TKWIOSc
3,000
8,000
-8YTu7ZGA2w
0
5,000
-8ZG1rJYPXs
210,000
220,000
-8Zeh__mQWY
2,000
7,000
-8cgbhIR_pw
0
5,000
-8mcyL3kWNQ
120,000
130,000
-8mcyL3kWNQ
135,000
145,000
-8mcyL3kWNQ
150,000
160,000
-8mcyL3kWNQ
316,000
326,000
-8mcyL3kWNQ
329,000
339,000
-8mcyL3kWNQ
8,000
18,000
-9-Jylm9GiA
1,120,000
1,130,000
-9-Jylm9GiA
1,150,000
1,160,000
-9-Jylm9GiA
1,185,000
1,195,000
-9-Jylm9GiA
1,320,000
1,330,000
-9-Jylm9GiA
1,330,000
1,340,000
-9-Jylm9GiA
1,340,000
1,350,000
-9-Jylm9GiA
440,000
450,000
-9-Jylm9GiA
450,000
460,000
-9-Jylm9GiA
460,000
470,000
-9-Jylm9GiA
470,000
480,000
-9-Jylm9GiA
535,000
545,000
-9-Jylm9GiA
730,000
740,000
-9-Jylm9GiA
775,000
785,000
-9-Jylm9GiA
790,000
800,000
-9-Jylm9GiA
880,000
890,000
-91lUg0_Gl8
0
5,000
-9YohOxYZ0Q
3,000
8,000
-A30OtsXlyQ
137,000
147,000
-AEwV5b8gEo
1,000
6,000
-AWooU1PDiM
1,000
6,000
-AcwZ-xmAKY
125,000
135,000
-AcwZ-xmAKY
244,000
254,000
-AcwZ-xmAKY
32,000
42,000
-AcwZ-xmAKY
58,000
68,000
-BFcExBQfAk
0
5,000
-Be9nUG_Vzk
25,000
35,000
-Be9nUG_Vzk
48,000
58,000
-Be9nUG_Vzk
60,000
70,000
-Be9nUG_Vzk
7,000
17,000
-Be9nUG_Vzk
85,000
95,000
-BfXVjsdZV4
0
5,000
-BpMHfa2Saw
0
5,000
-BrnUAUA37o
0
5,000

FAVDBench: Fine-grained Audible Video Description

🤗 Hugging Face • 🏠 GitHub • 🤖 OpenDataLab • 💬 Apply Dataset

[CVPR2023] [Project Page] [arXiv] [Demo][BibTex] [中文简介]

Introduction 简介

在CVPR2023中我们提出了精细化音视频描述任务(Fine-grained Audible Video Description, FAVD)该任务旨在提供有关可听视频的详细文本描述,包括每个对象的外观和空间位置、移动对象的动作以及视频中的声音。我们同是也为社区贡献了第一个精细化音视频描述数据集FAVDBench。对于每个视频片段,我们不仅提供一句话的视频概要,还提供4-6句描述视频的视觉细节和1-2个音频相关描述,且所有的标注都有中英文双语。

At CVPR2023, we introduced the task of Fine-grained Audible Video Description (FAVD). This task aims to provide detailed textual descriptions of audible videos, including the appearance and spatial positions of each object, the actions of moving objects, and the sounds within the video. Additionally, we contributed the first fine-grained audible video description dataset, FAVDBench, to the community. For each video segment, we offer not only a single-sentence video summary but also 4-6 sentences describing the visual details of the video and 1-2 audio-related descriptions, all annotated in both Chinese and English.

Files 文件

  • meta: metadata for raw videos

    • train, val, test: train, val, test split
    • ytid: youtube id
    • start: vid segments starting time in seconds
    • end: vid segments ending time in seconds
  • videos , audios : raw video and audio segments

    • train : train split
    • val: validation split
    • test: test split
    • 📢📢📢 Please refer to Apply Dataset to get raw video/audio data
  • annotations_en.json : annotated descirptions in English

    • id: unique data (video segment) id
    • description: audio-visual descriptioins
  • annotations_en.json : annotated descirptions in Chinese

    • id: unique data (video segment) id

    • cap, des: audio-visual descriptioins

    • dcount: count of descriptions

  • experiments: expiermental files to replicate the results outlined in the paper.

    • 📢📢📢 Please refer to GitHub Repo to get related data

MD5 checksum

file md5sum
videos/train.zip 41ddad46ffac339cb0b65dffc02eda65
videos/val.zip 35291ad23944d67212c6e47b4cc6d619
videos/test.zip 07046d205837d2e3b1f65549fc1bc4d7
audios/train.zip 50cc83eebd84f85e9b86bbd2a7517f3f
audios/val.zip 73995c5d1fcef269cc90be8a8ef6d917
audios/test.zip f72085feab6ca36060a0a073b31e8acc

Updates

Latest Version: Jan 9, 2023. Public V0.1

  1. v0.1 <Jan 9, 2023>: initial publication

License

The community usage of FAVDBench model & code requires adherence to Apache 2.0. The FAVDBench model & code supports commercial use.

Citation

If you use FAVD or FAVDBench in your research, please use the following BibTeX entry.

@InProceedings{Shen_2023_CVPR,
    author    = {Shen, Xuyang and Li, Dong and Zhou, Jinxing and Qin, Zhen and He, Bowen and Han, Xiaodong and Li, Aixuan and Dai, Yuchao and Kong, Lingpeng and Wang, Meng and Qiao, Yu and Zhong, Yiran},
    title     = {Fine-Grained Audible Video Description},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2023},
    pages     = {10585-10596}
}
Downloads last month
69