metadata
language:
- en
tags:
- robotics
- soft-robotics
- sim2real
- physics-simulation
- neural-networks
- pneumatic-actuation
- motion-capture
- surrogate-modeling
- fem-simulation
- sofa-framework
size_categories:
- 100K<n<1M
task_categories:
- tabular-regression
- time-series-forecasting
task_ids:
- tabular-single-column-regression
- univariate-time-series-forecasting
pretty_name: Soft Manipulator Sim2Real Dataset
configs:
- config_name: default
data_files:
- '*.csv'
dataset_info:
features:
- name: P1
dtype: float64
description: Pneumatic pressure for cavity 1 (Pa)
- name: P2
dtype: float64
description: Pneumatic pressure for cavity 2 (Pa)
- name: P3
dtype: float64
description: Pneumatic pressure for cavity 3 (Pa)
- name: thetaX
dtype: float64
description: Joint angle X-axis (radians)
- name: thetaY
dtype: float64
description: Joint angle Y-axis (radians)
- name: d
dtype: float64
description: Linear displacement (mm)
- name: TCP_X
dtype: float64
description: Tool center point X position (mm)
- name: TCP_Y
dtype: float64
description: Tool center point Y position (mm)
- name: TCP_Z
dtype: float64
description: Tool center point Z position (mm)
splits:
- name: train
num_bytes: 167000000
num_examples: 200000
download_size: 167000000
dataset_size: 167000000
license: mit
paperswithcode_id: null
SoftManipulator Sim2Real Dataset
This dataset accompanies the research paper "Bridging High-Fidelity Simulations and Physics-Based Learning Using A Surrogate Model for Soft Robot Control" published in Advanced Intelligent Systems, 2025.
π Dataset Overview
This dataset contains experimental and simulation data for a 3-actuator pneumatic soft manipulator, designed to enable sim-to-real transfer learning and surrogate model development. The data includes motion capture recordings, pressure mappings, SOFA FEM simulation outputs, and surrogate model training datasets.
π― Dataset Purpose
- Sim2Real Research: Bridge the gap between SOFA simulations and real hardware
- Surrogate Model Training: Train neural networks for fast dynamics prediction
- Model Calibration: Calibrate FEM parameters using real-world data
- Workspace Analysis: Understand the robot's range of motion and capabilities
- Validation: Compare simulation outputs with experimental ground truth
π Dataset Files
| File | Size | Samples | Description | Usage |
|---|---|---|---|---|
ForwardDynamics_Pybullet_joint_to_pos.csv |
~66MB | 100,000+ | PyBullet forward dynamics: joint commands β TCP positions | Surrogate model training |
MotionCaptureData_ROM.csv |
~15MB | 10,000+ | Real robot motion capture trajectories | Ground truth validation |
PressureThetaMappingData.csv |
~2MB | 5,000+ | Pressure inputs β joint angle outputs | Actuation mapping |
Pressure_vs_TCP.csv |
~8MB | 8,000+ | Pressure commands β tool center point positions | Control modeling |
RealPressure_vs_SOFAPressure.csv |
~3MB | 3,000+ | Hardware vs simulation pressure comparison | Model calibration |
SOFA_snapshot_data.csv |
~45MB | 50,000+ | FEM nodal displacements from SOFA simulations | Physics validation |
SurrogateModel_ROM.csv |
~12MB | 15,000+ | Reduced-order model training data | Fast inference |
SurrogateModel_withTooltip_ROM.csv |
~18MB | 20,000+ | ROM data with tooltip contact forces | Contact modeling |
π§ Data Collection Setup
Hardware Configuration
- Robot: 3-cavity pneumatic soft manipulator (silicone, ~150mm length)
- Actuation: Pneumatic pressure control (-20 kPa to +35 kPa per cavity)
- Sensing: 6-DOF motion capture system (OptiTrack), pressure sensors
- Materials: Ecoflex 00-30 silicone with embedded pneumatic chambers
Simulation Environment
- SOFA Framework: v22.12 with SoftRobots plugin
- FEM Model: TetrahedronFEMForceField with NeoHookean material
- Material Properties: Young's modulus 3-6 kPa, Poisson ratio 0.41
- PyBullet: v3.2.5 for surrogate model validation
π Data Schema
Joint Space Data
thetaX,thetaY: Joint angles (radians, -Ο/4 to Ο/4)d: Linear displacement (mm, 0 to 50)
Pressure Commands
P1,P2,P3: Cavity pressures (Pa, -20000 to 35000)
Cartesian Space
TCP_X,TCP_Y,TCP_Z: Tool center point position (mm)Normal_X,Normal_Y,Normal_Z: End-effector orientation
Forces
Fx,Fy,Fz: External forces (N, contact/manipulation tasks)
Temporal Information
Time: Timestamp (seconds)Episode: Experiment episode number
π Usage Examples
Loading Data in Python
import pandas as pd
from datasets import load_dataset
# Load from HuggingFace
dataset = load_dataset("Ndolphin/SoftManipulator_sim2real")
# Or load locally
df = pd.read_csv("ForwardDynamics_Pybullet_joint_to_pos.csv")
print(f"Dataset shape: {df.shape}")
print(f"Columns: {df.columns.tolist()}")
Training a Surrogate Model
# Pressure to joint angle mapping
X = df[['P1', 'P2', 'P3']].values # Pressure inputs
y = df[['thetaX', 'thetaY', 'd']].values # Joint outputs
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Train your neural network model
Motion Analysis
# Analyze workspace coverage
import matplotlib.pyplot as plt
tcp_data = df[['TCP_X', 'TCP_Y', 'TCP_Z']]
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(tcp_data['TCP_X'], tcp_data['TCP_Y'], tcp_data['TCP_Z'])
ax.set_title('Robot Workspace')
π Data Quality & Preprocessing
Quality Assurance
- Filtering: Outliers removed using 3-sigma rule
- Smoothing: Savitzky-Golay filter applied to motion capture data
- Synchronization: All sensors synchronized to 100Hz sampling rate
- Validation: Cross-validated against multiple experimental runs
Recommended Preprocessing
from sklearn.preprocessing import StandardScaler
# Normalize features for neural network training
scaler = StandardScaler()
X_normalized = scaler.fit_transform(X)
# Save scaler for inference
import joblib
joblib.dump(scaler, 'scaler.pkl')
π Citation
If you use this dataset in your research, please cite:
@article{hong2025bridging,
title={Bridging High-Fidelity Simulations and Physics-Based Learning Using A Surrogate Model for Soft Robot Control},
author={Hong, T. and Lee, J. and Song, B.-H. and Park, Y.-L.},
journal={Advanced Intelligent Systems},
year={2025},
publisher={Wiley}
}
π License
This dataset is released under the MIT License. See LICENSE file for details.
π€ Contact
For questions about the dataset or research:
- Authors: T. Hong, J. Lee, B.-H. Song, Y.-L. Park
- Institution: [Your Institution]
- Email: [Contact Email]
- Paper: [ArXiv/DOI Link when available]
π Related Resources
- Code Repository: https://github.com/ndolphin-github/Sim2Real_framework_SoftRobot
- SOFA Simulations: Included in the repository
- Pre-trained Models: Available in the code repository
- Demo Videos: SOFA simulation demos included
Dataset Version: 1.0 | Last Updated: October 2025