Convert dataset to Parquet

#1
by albertvillanova HF staff - opened
1.flac DELETED
Binary file (183 kB)
 
2.flac DELETED
Binary file (58.4 kB)
 
3.flac DELETED
Binary file (116 kB)
 
4.flac DELETED
Binary file (566 kB)
 
README.md ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ config_name: asr
4
+ features:
5
+ - name: id
6
+ dtype: string
7
+ - name: file
8
+ dtype: string
9
+ splits:
10
+ - name: test
11
+ num_bytes: 752
12
+ num_examples: 4
13
+ download_size: 2567
14
+ dataset_size: 752
15
+ configs:
16
+ - config_name: asr
17
+ data_files:
18
+ - split: test
19
+ path: asr/test-*
20
+ default: true
21
+ ---
asr/test-00000-of-00001.parquet ADDED
Binary file (2.57 kB). View file
 
asr_dummy.py DELETED
@@ -1,182 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """SUPERB: Speech processing Universal PERformance Benchmark."""
18
-
19
-
20
- import glob
21
- import os
22
- import textwrap
23
-
24
- import datasets
25
- from datasets.tasks import AutomaticSpeechRecognition
26
-
27
-
28
- _CITATION = """\
29
- @article{DBLP:journals/corr/abs-2105-01051,
30
- author = {Shu{-}Wen Yang and
31
- Po{-}Han Chi and
32
- Yung{-}Sung Chuang and
33
- Cheng{-}I Jeff Lai and
34
- Kushal Lakhotia and
35
- Yist Y. Lin and
36
- Andy T. Liu and
37
- Jiatong Shi and
38
- Xuankai Chang and
39
- Guan{-}Ting Lin and
40
- Tzu{-}Hsien Huang and
41
- Wei{-}Cheng Tseng and
42
- Ko{-}tik Lee and
43
- Da{-}Rong Liu and
44
- Zili Huang and
45
- Shuyan Dong and
46
- Shang{-}Wen Li and
47
- Shinji Watanabe and
48
- Abdelrahman Mohamed and
49
- Hung{-}yi Lee},
50
- title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
51
- journal = {CoRR},
52
- volume = {abs/2105.01051},
53
- year = {2021},
54
- url = {https://arxiv.org/abs/2105.01051},
55
- archivePrefix = {arXiv},
56
- eprint = {2105.01051},
57
- timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
58
- biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
59
- bibsource = {dblp computer science bibliography, https://dblp.org}
60
- }
61
- """
62
-
63
- _DESCRIPTION = """\
64
- Self-supervised learning (SSL) has proven vital for advancing research in
65
- natural language processing (NLP) and computer vision (CV). The paradigm
66
- pretrains a shared model on large volumes of unlabeled data and achieves
67
- state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
68
- speech processing community lacks a similar setup to systematically explore the
69
- paradigm. To bridge this gap, we introduce Speech processing Universal
70
- PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
71
- performance of a shared model across a wide range of speech processing tasks
72
- with minimal architecture changes and labeled data. Among multiple usages of the
73
- shared model, we especially focus on extracting the representation learned from
74
- SSL due to its preferable re-usability. We present a simple framework to solve
75
- SUPERB tasks by learning task-specialized lightweight prediction heads on top of
76
- the frozen shared model. Our results demonstrate that the framework is promising
77
- as SSL representations show competitive generalizability and accessibility
78
- across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
79
- benchmark toolkit to fuel the research in representation learning and general
80
- speech processing.
81
-
82
- Note that in order to limit the required storage for preparing this dataset, the
83
- audio is stored in the .flac format and is not converted to a float32 array. To
84
- convert, the audio file to a float32 array, please make use of the `.map()`
85
- function as follows:
86
-
87
-
88
- ```python
89
- import soundfile as sf
90
-
91
- def map_to_array(batch):
92
- speech_array, _ = sf.read(batch["file"])
93
- batch["speech"] = speech_array
94
- return batch
95
-
96
- dataset = dataset.map(map_to_array, remove_columns=["file"])
97
- ```
98
- """
99
-
100
-
101
- class AsrDummybConfig(datasets.BuilderConfig):
102
- """BuilderConfig for Superb."""
103
-
104
- def __init__(
105
- self,
106
- data_url,
107
- url,
108
- task_templates=None,
109
- **kwargs,
110
- ):
111
- super(AsrDummybConfig, self).__init__(
112
- version=datasets.Version("1.9.0", ""), **kwargs
113
- )
114
- self.data_url = data_url
115
- self.url = url
116
- self.task_templates = task_templates
117
-
118
-
119
- class AsrDummy(datasets.GeneratorBasedBuilder):
120
- """Superb dataset."""
121
-
122
- BUILDER_CONFIGS = [
123
- AsrDummybConfig(
124
- name="asr",
125
- description=textwrap.dedent(
126
- """\
127
- ASR transcribes utterances into words. While PR analyzes the
128
- improvement in modeling phonetics, ASR reflects the significance of
129
- the improvement in a real-world scenario. LibriSpeech
130
- train-clean-100/dev-clean/test-clean subsets are used for
131
- training/validation/testing. The evaluation metric is word error
132
- rate (WER)."""
133
- ),
134
- url="http://www.openslr.org/12",
135
- data_url="http://www.openslr.org/resources/12/",
136
- # task_templates=[
137
- # AutomaticSpeechRecognition(
138
- # audio_column="file", transcription_column="text"
139
- # )
140
- # ],
141
- )
142
- ]
143
-
144
- DEFAULT_CONFIG_NAME = "asr"
145
-
146
- def _info(self):
147
- return datasets.DatasetInfo(
148
- description=_DESCRIPTION,
149
- features=datasets.Features(
150
- {
151
- "id": datasets.Value("string"),
152
- "file": datasets.Value("string"),
153
- }
154
- ),
155
- supervised_keys=("file",),
156
- homepage=self.config.url,
157
- citation=_CITATION,
158
- task_templates=self.config.task_templates,
159
- )
160
-
161
- def _split_generators(self, dl_manager):
162
- DL_URLS = [
163
- f"https://huggingface.co/datasets/Narsil/asr_dummy/raw/main/{i}.flac"
164
- for i in range(1, 5)
165
- ]
166
- archive_path = dl_manager.download_and_extract(DL_URLS)
167
- return [
168
- datasets.SplitGenerator(
169
- name=datasets.Split.TEST,
170
- gen_kwargs={"archive_path": archive_path},
171
- ),
172
- ]
173
-
174
- def _generate_examples(self, archive_path):
175
- """Generate examples."""
176
- for i, filename in enumerate(archive_path):
177
- key = str(i)
178
- example = {
179
- "id": key,
180
- "file": filename,
181
- }
182
- yield key, example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
asr_dummy.py.lock DELETED
File without changes
automatic_speech_recognition_dummy.py DELETED
@@ -1,167 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # Lint as: python3
16
- """SUPERB: Speech processing Universal PERformance Benchmark."""
17
- import glob
18
- import os
19
- import textwrap
20
- import datasets
21
- from datasets.tasks import AutomaticSpeechRecognition
22
-
23
- _CITATION = """\
24
- @article{DBLP:journals/corr/abs-2105-01051,
25
- author = {Shu{-}Wen Yang and
26
- Po{-}Han Chi and
27
- Yung{-}Sung Chuang and
28
- Cheng{-}I Jeff Lai and
29
- Kushal Lakhotia and
30
- Yist Y. Lin and
31
- Andy T. Liu and
32
- Jiatong Shi and
33
- Xuankai Chang and
34
- Guan{-}Ting Lin and
35
- Tzu{-}Hsien Huang and
36
- Wei{-}Cheng Tseng and
37
- Ko{-}tik Lee and
38
- Da{-}Rong Liu and
39
- Zili Huang and
40
- Shuyan Dong and
41
- Shang{-}Wen Li and
42
- Shinji Watanabe and
43
- Abdelrahman Mohamed and
44
- Hung{-}yi Lee},
45
- title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
46
- journal = {CoRR},
47
- volume = {abs/2105.01051},
48
- year = {2021},
49
- url = {https://arxiv.org/abs/2105.01051},
50
- archivePrefix = {arXiv},
51
- eprint = {2105.01051},
52
- timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
53
- biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
54
- bibsource = {dblp computer science bibliography, https://dblp.org}
55
- }
56
- """
57
-
58
- _DESCRIPTION = """\
59
- Self-supervised learning (SSL) has proven vital for advancing research in
60
- natural language processing (NLP) and computer vision (CV). The paradigm
61
- pretrains a shared model on large volumes of unlabeled data and achieves
62
- state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
63
- speech processing community lacks a similar setup to systematically explore the
64
- paradigm. To bridge this gap, we introduce Speech processing Universal
65
- PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
66
- performance of a shared model across a wide range of speech processing tasks
67
- with minimal architecture changes and labeled data. Among multiple usages of the
68
- shared model, we especially focus on extracting the representation learned from
69
- SSL due to its preferable re-usability. We present a simple framework to solve
70
- SUPERB tasks by learning task-specialized lightweight prediction heads on top of
71
- the frozen shared model. Our results demonstrate that the framework is promising
72
- as SSL representations show competitive generalizability and accessibility
73
- across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
74
- benchmark toolkit to fuel the research in representation learning and general
75
- speech processing.
76
- Note that in order to limit the required storage for preparing this dataset, the
77
- audio is stored in the .flac format and is not converted to a float32 array. To
78
- convert, the audio file to a float32 array, please make use of the `.map()`
79
- function as follows:
80
- ```python
81
- import soundfile as sf
82
- def map_to_array(batch):
83
- speech_array, _ = sf.read(batch["file"])
84
- batch["speech"] = speech_array
85
- return batch
86
- dataset = dataset.map(map_to_array, remove_columns=["file"])
87
- ```
88
- """
89
-
90
- class AsrDummybConfig(datasets.BuilderConfig):
91
- """BuilderConfig for Superb."""
92
- def __init__(
93
- self,
94
- data_url,
95
- url,
96
- task_templates=None,
97
- **kwargs,
98
- ):
99
- super(AsrDummybConfig, self).__init__(
100
- version=datasets.Version("1.9.0", ""), **kwargs
101
- )
102
- self.data_url = data_url
103
- self.url = url
104
- self.task_templates = task_templates
105
-
106
- class AsrDummy(datasets.GeneratorBasedBuilder):
107
- """Superb dataset."""
108
- BUILDER_CONFIGS = [
109
- AsrDummybConfig(
110
- name="asr",
111
- description=textwrap.dedent(
112
- """\
113
- ASR transcribes utterances into words. While PR analyzes the
114
- improvement in modeling phonetics, ASR reflects the significance of
115
- the improvement in a real-world scenario. LibriSpeech
116
- train-clean-100/dev-clean/test-clean subsets are used for
117
- training/validation/testing. The evaluation metric is word error
118
- rate (WER)."""
119
- ),
120
- url="http://www.openslr.org/12",
121
- data_url="http://www.openslr.org/resources/12/",
122
- task_templates=[
123
- AutomaticSpeechRecognition(
124
- audio_file_path_column="file", transcription_column="text"
125
- )
126
- ],
127
- )
128
- ]
129
-
130
- DEFAULT_CONFIG_NAME = "asr"
131
- def _info(self):
132
- return datasets.DatasetInfo(
133
- description=_DESCRIPTION,
134
- features=datasets.Features(
135
- {
136
- "id": datasets.Value("string"),
137
- "file": datasets.Value("string"),
138
- }
139
- ),
140
- supervised_keys=("file",),
141
- homepage=self.config.url,
142
- citation=_CITATION,
143
- task_templates=self.config.task_templates,
144
- )
145
-
146
- def _split_generators(self, dl_manager):
147
- DL_URLS = [
148
- f"https://huggingface.co/datasets/Narsil/automatic_speech_recognition_dummy/raw/main/{i}.flac"
149
- for i in range(1, 4)
150
- ]
151
- archive_path = dl_manager.download_and_extract(DL_URLS)
152
- return [
153
- datasets.SplitGenerator(
154
- name=datasets.Split.TEST,
155
- gen_kwargs={"archive_path": archive_path},
156
- ),
157
- ]
158
-
159
- def _generate_examples(self, archive_path):
160
- """Generate examples."""
161
- for i, filename in enumerate(archive_path):
162
- key = str(i)
163
- example = {
164
- "id": key,
165
- "file": filename,
166
- }
167
- yield key, example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
canterville.ogg DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3a7c94d683543dd4fef0bebe12bcddbd302ffba5367a3280ecd602ffcf481e85
3
- size 31419105
 
 
 
 
hindi.ogg DELETED
Binary file (9.7 kB)
 
i-know-kung-fu.mp3 DELETED
Binary file (80.5 kB)
 
mlk.flac DELETED
Binary file (383 kB)