File size: 2,019 Bytes
ae6e2e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8cecca
8b1fd3c
fbc08bc
a8cecca
 
1f543d4
 
 
 
 
 
 
 
5dfbcbd
 
1f543d4
 
5dfbcbd
 
 
 
 
1f543d4
 
 
 
 
5dfbcbd
1f543d4
 
 
5dfbcbd
7120838
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
dataset_info:
  features:
  - name: videoid
    dtype: int64
  - name: contentUrl
    dtype: string
  - name: duration
    dtype: string
  - name: page_dir
    dtype: string
  - name: name
    dtype: string
  splits:
  - name: train
    num_bytes: 2993227031
    num_examples: 10727607
  - name: validation
    num_bytes: 1394310
    num_examples: 5000
  download_size: 1564635003
  dataset_size: 2994621341
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
task_categories:
- text-to-video
- video-classification
size_categories:
- 10M<n<100M
---

# Dataset Name: Video-10M

## Description:
Video-10M is a dataset consisting of 10 million videos, each accompanied by metadata including video ID, content URL, duration, page directory, and name. The dataset covers a wide range of video content, from nature scenes and outdoor activities to culinary arts and urban landscapes. It provides a diverse collection of videos suitable for various video classification tasks.

## Split Information:
  - Train Split: Contains 10,727,607 samples.
  - Validation Split: Contains 5,000 samples.

## Features:
- videoid: Unique identifier for the video.
- contentUrl: URL or path to access the video content.
- duration: Duration of the video in hours, minutes, and seconds.
- page_dir: Directory or category associated with the video.
- name: Descriptive name or title for the video.

## Usage: 
The dataset can be used for a wide range of video classification tasks, including but not limited to content categorization, scene recognition, activity recognition, and object detection. Researchers, developers, and practitioners can leverage this dataset to train and evaluate video classification models across different domains and applications.

## Download
```python
from datasets import load_dataset, Dataset

 #Load the dataset
dataset = load_dataset("Mouwiya/Video-10M")
```

## Contact
**Mouwiya S. A. Al-Qaisieh** 
mo3awiya@gmail.com