File size: 3,965 Bytes
3652748
 
 
 
 
 
 
 
 
2757638
3652748
 
 
 
 
 
27d42da
3652748
 
 
 
 
 
 
 
 
 
 
 
 
573d9d4
 
 
 
 
 
3652748
 
aaff689
 
 
 
af08558
aaff689
af08558
c556070
a00e213
aaff689
 
 
c556070
573d9d4
3df7de7
aaff689
af08558
ab9029e
 
 
 
af08558
 
 
 
 
 
 
 
ec1d5ac
af08558
835024a
61fe2d1
c643bb9
835024a
c643bb9
e0d4ede
c643bb9
7f590f9
c643bb9
 
835024a
ec1d5ac
 
 
 
 
 
835024a
ec1d5ac
 
 
 
 
 
 
c643bb9
ec1d5ac
 
af08558
 
 
 
 
 
 
 
 
31f7dc0
 
 
 
 
 
 
 
af08558
 
95a8a1e
 
 
 
 
 
 
835024a
95a8a1e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
language:
- en
size_categories:
- 10K<n<100K
config_names:
- chat
configs:
- config_name: chat
  default: true
  data_files:
  - split: train
    path: data/train.csv
  - split: validation
    path: data/valid.csv
  - split: test
    path: data/test_iid.csv
  - split: test_geo
    path: data/test_geo.csv
  - split: test_vis
    path: data/test_vis.csv
  - split: test_cat
    path: data/test_cat.csv
  - split: test_web
    path: data/test_web.csv
tags:
- conversational
- image-to-text
- vision
- convAI
task_categories:
- image-to-text
- text-generation
- text2text-generation
- sentence-similarity
pretty_name: weblinx
---

<div align="center">
  <h1 style="margin-bottom: 0.5em;">WebLINX: Real-World Website Navigation with Multi-Turn Dialogue</h1>
  <em>Xing Han Lù*, Zdeněk Kasner*, Siva Reddy</em>
</div>

<div style="margin-bottom: 2em"></div>


<div style="display: flex; justify-content: space-around; align-items: center; font-size: 120%;">
  <div><a href="https://arxiv.org/abs/2402.05930">📄Paper</a></div>
  <div><a href="https://mcgill-nlp.github.io/weblinx">🌐Website</a></div>
  <div><a href="https://huggingface.co/spaces/McGill-NLP/weblinx-explorer">💻Explorer</a></div>
  <div><a href="https://github.com/McGill-NLP/WebLINX">💾Code</a></div>
  <div><a href="https://twitter.com/sivareddyg/status/1755799365031965140">🐦Tweets</a></div>
  <div><a href="https://huggingface.co/collections/McGill-NLP/weblinx-models-65c57d4afeeb282d1dcf8434">🤖Models</a></div>
</div>

<video width="100%" controls autoplay muted loop>
    <source src="https://huggingface.co/datasets/McGill-NLP/WebLINX/resolve/main/WeblinxWebsiteDemo.mp4?download=false" type="video/mp4">
    Your browser does not support the video tag.
</video>


## Quickstart

To get started, simply install `datasets` with `pip install datasets` and load the chat data splits:

```python
from datasets import load_dataset
from huggingface_hub import snapshot_download

# Load the validation split
valid = load_dataset("McGill-NLP/weblinx", split="validation")

# Download the input templates and use the LLaMA one
snapshot_download(
    "McGill-NLP/WebLINX", repo_type="dataset", allow_patterns="templates/*", local_dir="."
)
with open('templates/llama.txt') as f:
    template = f.read()

# To get the input text, simply pass a turn from the valid split to the template
turn = valid[0]
turn_text = template.format(**turn)
```

You can now use `turn_text` as an input to LLaMA-style models. For example, you can use Sheared-LLaMA:

```python
from transformers import pipeline

action_model = pipeline(
    model="McGill-NLP/Sheared-LLaMA-2.7B-weblinx", device=0, torch_dtype='auto'
)
out = action_model(turn_text, return_full_text=False, max_new_tokens=64, truncation=True)
pred = out[0]['generated_text']

print("Ref:", turn["action"])
print("Pred:", pred)
```

## Raw Data

To use the raw data, you will need to use the `huggingface_hub`:

```python
from huggingface_hub import snapshot_download

snapshot_download(repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./wl_data")

# You can download specific demos, for example
demo_names = ['saabwsg', 'ygprzve', 'iqaazif']  # 3 random demo from valid
patterns = [f"demonstrations/{name}/*" for name in demo_names]
snapshot_download(
    repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./wl_data", allow_patterns=patterns
)
```

For more information on how to use this data using our [official library](https://github.com/McGill-NLP/WebLINX), please refer to the [WebLINX documentation](https://mcgill-nlp.github.io/weblinx/docs).

## Citation

If you use our dataset, please cite our work as follows:

```bibtex
@misc{lu-2024-weblinx,
      title={WebLINX: Real-World Website Navigation with Multi-Turn Dialogue}, 
      author={Xing Han Lù and Zdeněk Kasner and Siva Reddy},
      year={2024},
      eprint={2402.05930},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```