File size: 2,572 Bytes
c6ac317 f3247f5 c6ac317 f3247f5 c6ac317 f3247f5 c6ac317 f3247f5 c6ac317 f3247f5 c6ac317 27a273c c6ac317 27a273c c6ac317 f3247f5 c6ac317 27a273c c6ac317 155e4ce 27a273c 155e4ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
pretty_name: HALvest-Geometric
license: cc-by-4.0
configs:
- config_name: en
data_files: "en/*.gz"
- config_name: fr
data_files: "fr/*.gz"
language:
- en
- fr
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
tags:
- academia
- research
- graph
annotations_creators:
- no-annotation
multilinguality:
- multilingual
source_datasets:
- HALvest
---
<div align="center">
<h1> HALvest-Geometric </h1>
<h3> Citation Network of Open Scientific Papers Harvested from HAL </h3>
</div>
---
## Dataset Description
- **Repository:** [GitHub](https://github.com/Madjakul/HALvesting-Geometric)
## Dataset Summary
### overview:
French and English fulltexts from open papers found on [Hyper Articles en Ligne (HAL)](https://hal.science/) and its citation network.
You can download the dataset using Hugging Face datasets:
```py
from datasets import load_dataset
ds = load_dataset("Madjakul/HALvest-Geometric", "en")
```
### Details
#### Nodes
* Papers: 18,662,037
* Authors: 238,397
* Affiliations: 96,105
* Domains: 16
#### Edges
- Paper <-> Domain: 136,700
- Paper <-> Paper: 22,363,817
- Author <-> Paper: 238,397
- Author <-> Affiliation: 426,030
### Languages
ISO-639|Language|# Documents|# mT5 Tokens
-------|--------|-----------|--------
en|English|442,892|7,606,895,258
fr|French|193,437|8,728,722,255
## Considerations for Using the Data
The corpus is extracted from the [HAL's open archive](https://hal.science/) which distributes scientific publications following open access principles. The corpus is made up of both creative commons licensed and copyrighted documents (distribution authorized on HAL by the publisher). This must be considered prior to using this dataset for any purpose, other than training deep learning models, data mining etc. We do not own any of the text from which these data has been extracted.
## Dataset Copyright
The licence terms for HALvest strictly follows the one from HAL. Please refer to the below license when using this dataset.
- [HAL license](https://doc.archives-ouvertes.fr/en/legal-aspects/)
## Citation
```
@misc{kulumba2024harvestingtextualstructureddata,
title={Harvesting Textual and Structured Data from the HAL Publication Repository},
author={Francis Kulumba and Wissam Antoun and Guillaume Vimont and Laurent Romary},
year={2024},
eprint={2407.20595},
archivePrefix={arXiv},
primaryClass={cs.DL},
url={https://arxiv.org/abs/2407.20595},
}
``` |