Datasets:
File size: 8,609 Bytes
900248f 32e7b97 900248f 39ceefc 900248f 39ceefc 900248f 39ceefc 900248f 39ceefc 32e7b97 900248f c81ba2b 900248f 9590440 17653e0 823ad47 17653e0 9590440 823ad47 9590440 823ad47 9590440 900248f 17653e0 900248f 823ad47 900248f 8ba1508 900248f 9590440 900248f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
---
annotations_creators:
- machine-generated
language_creators:
- other
language:
- ar
- as
- br
- ca
- cnh
- cs
- cv
- cy
- de
- dv
- el
- en
- eo
- es
- et
- eu
- fa
- fr
- fy
- ga
- gn
- ha
- ia
- id
- it
- ka
- ky
- lt
- lv
- mn
- mt
- nl
- or
- pl
- pt
- rm
- ro
- ru
- rw
- sah
- sk
- sl
- sv
- ta
- tr
- tt
- uk
- vi
- zh
license:
- cc-by-4.0
multilinguality:
- multilingual
size_categories:
- 10M<n<100M
source_datasets:
- extended|common_voice
task_categories:
- speech-processing
task_ids: []
pretty_name: Multilingual Spoken Words
language_bcp47:
- fy-NL
- ga-IE
- rm-sursilv
- rm-vallader
- sv-SE
- zh-CN
tags:
- other-keyword-spotting
---
# Dataset Card for Multilingual Spoken Words
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://mlcommons.org/en/multilingual-spoken-words/
- **Repository:** https://github.com/harvard-edge/multilingual_kws
- **Paper:** https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/fe131d7f5a6b38b23cc967316c13dae2-Paper-round2.pdf
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Multilingual Spoken Words Corpus is a large and growing audio dataset of spoken
words in 50 languages collectively spoken by over 5 billion people, for academic
research and commercial applications in keyword spotting and spoken term search,
licensed under CC-BY 4.0. The dataset contains more than 340,000 keywords,
totaling 23.4 million 1-second spoken examples (over 6,000 hours). The dataset
has many use cases, ranging from voice-enabled consumer devices to call center
automation. This dataset is generated by applying forced alignment on crowd-sourced sentence-level
audio to produce per-word timing estimates for extraction.
All alignments are included in the dataset.
Data is provided in two formats: `wav` (16KHz) and `opus` (48KHz). Default configurations look like
`"{lang}_{format}"`, so to load, for example, Tatar in wav format do:
```python
ds = load_dataset("MLCommons/ml_spoken_words", "tt_wav")
```
To download multiple languages in a single dataset pass list of languages to `languages` argument:
```python
ds = load_dataset("MLCommons/ml_spoken_words", languages=["ar", "tt", "br"])
```
To download a specific format pass it to the `format` argument (default format is `wav`):
```python
ds = load_dataset("MLCommons/ml_spoken_words", languages=["ar", "tt", "br"], format="opus")
```
Note that each time you provide different sets of languages,
examples are generated from scratch even if you already provided one or several of them before
because custom configurations are created each time (the data is **not** redownloaded though).
### Supported Tasks and Leaderboards
Keyword spotting, Spoken term search
### Languages
The dataset is multilingual. To specify several languages to download pass a list of them to the
`languages` argument:
```python
ds = load_dataset("MLCommons/ml_spoken_words", languages=["ar", "tt", "br"])
```
The dataset contains data for the following languages:
Low-resourced (<10 hours):
* Arabic (0.1G, 7.6h)
* Assamese (0.9M, 0.1h)
* Breton (69M, 5.6h)
* Chuvash (28M, 2.1h)
* Chinese (zh-CN) (42M, 3.1h)
* Dhivehi (0.7M, 0.04h)
* Frisian (0.1G, 9.6h)
* Georgian (20M, 1.4h)
* Guarani (0.7M, 1.3h)
* Greek (84M, 6.7h)
* Hakha Chin (26M, 0.1h)
* Hausa (90M, 1.0h)
* Interlingua (58M, 4.0h)
* Irish (38M, 3.2h)
* Latvian (51M, 4.2h)
* Lithuanian (21M, 0.46h)
* Maltese (88M, 7.3h)
* Oriya (0.7M, 0.1h)
* Romanian (59M, 4.5h)
* Sakha (42M, 3.3h)
* Slovenian (43M, 3.0h)
* Slovak (31M, 1.9h)
* Sursilvan (61M, 4.8h)
* Tamil (8.8M, 0.6h)
* Vallader (14M, 1.2h)
* Vietnamese (1.2M, 0.1h)
Medium-resourced (>10 & <100 hours):
* Czech (0.3G, 24h)
* Dutch (0.8G, 70h)
* Estonian (0.2G, 19h)
* Esperanto (1.3G, 77h)
* Indonesian (0.1G, 11h)
* Kyrgyz (0.1G, 12h)
* Mongolian (0.1G, 12h)
* Portuguese (0.7G, 58h)
* Swedish (0.1G, 12h)
* Tatar (4G, 30h)
* Turkish (1.3G, 29h)
* Ukrainian (0.2G, 18h)
Hig-resourced (>100 hours):
* Basque (1.7G, 118h)
* Catalan (8.7G, 615h)
* English (26G, 1957h)
* French (9.3G, 754h)
* German (14G, 1083h)
* Italian (2.2G, 155h)
* Kinyarwanda (6.1G, 422h)
* Persian (4.5G, 327h)
* Polish (1.8G, 130h)
* Russian (2.1G, 137h)
* Spanish (4.9G, 349h)
* Welsh (4.5G, 108h)
## Dataset Structure
### Data Instances
```python
{'file': 'абзар_common_voice_tt_17737010.opus',
'is_valid': True,
'language': 0,
'speaker_id': '687025afd5ce033048472754c8d2cb1cf8a617e469866bbdb3746e2bb2194202094a715906f91feb1c546893a5d835347f4869e7def2e360ace6616fb4340e38',
'gender': 0,
'keyword': 'абзар',
'audio': {'path': 'абзар_common_voice_tt_17737010.opus',
'array': array([2.03458695e-34, 2.03458695e-34, 2.03458695e-34, ...,
2.03458695e-34, 2.03458695e-34, 2.03458695e-34]),
'sampling_rate': 48000}}
```
### Data Fields
* file: strinrelative audio path inside the archive
* is_valid: if a sample is valid
* language: language of an instance. Makes sense only when providing multiple languages to the
dataset loader (for example, `load_dataset("ml_spoken_words", languages=["ar", "tt"])`)
* speaker_id: unique id of a speaker. Can be "NA" if an instance is invalid
* gender: speaker gender. Can be one of `["MALE", "FEMALE", "OTHER", "NAN"]`
* keyword: word spoken in a current sample
* audio: a dictionary containing the relative path to the audio file,
the decoded audio array, and the sampling rate.
Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically
decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of
a large number of audio files might take a significant amount of time.
Thus, it is important to first query the sample index before the "audio" column,
i.e. `dataset[0]["audio"]` should always be preferred over `dataset["audio"][0]`
### Data Splits
The data for each language is splitted into train / validation / test parts.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The data comes form Common Voice dataset.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
he dataset consists of people who have donated their voice online.
You agree to not attempt to determine the identity of speakers.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is licensed under [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and can be used for academic
research and commercial applications in keyword spotting and spoken term search.
### Citation Information
```
@inproceedings{mazumder2021multilingual,
title={Multilingual Spoken Words Corpus},
author={Mazumder, Mark and Chitlangia, Sharad and Banbury, Colby and Kang, Yiping and Ciro, Juan Manuel and Achorn, Keith and Galvez, Daniel and Sabini, Mark and Mattson, Peter and Kanter, David and others},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
year={2021}
}
```
### Contributions
Thanks to [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.
|