Datasets:
File size: 10,859 Bytes
900248f 9ef3490 900248f d237cba 9ef3490 900248f 9ef3490 900248f 9ef3490 900248f 9ef3490 900248f 9ef3490 900248f 9ef3490 900248f ab94660 900248f ab94660 900248f ab94660 900248f ab94660 900248f ab94660 900248f 9ef3490 900248f ab94660 900248f 9ef3490 ab94660 900248f ab94660 900248f ab94660 9ef3490 900248f ab94660 900248f 9ef3490 900248f 9ef3490 900248f ab94660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Multilingual Spoken Words Corpus is a large and growing audio dataset of spoken
words in 50 languages collectively spoken by over 5 billion people, for academic
research and commercial applications in keyword spotting and spoken term search,
licensed under CC-BY 4.0. The dataset contains more than 340,000 keywords,
totaling 23.4 million 1-second spoken examples (over 6,000 hours).
"""
import csv
import os.path
from functools import partial
import datasets
_CITATION = """\
@inproceedings{mazumder2021multilingual,
title={Multilingual Spoken Words Corpus},
author={Mazumder, Mark and Chitlangia, Sharad and Banbury, Colby and Kang, Yiping and Ciro, Juan Manuel and Achorn, Keith and Galvez, Daniel and Sabini, Mark and Mattson, Peter and Kanter, David and others},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
year={2021}
}
"""
_DESCRIPTION = """\
Multilingual Spoken Words Corpus is a large and growing audio dataset of spoken
words in 50 languages collectively spoken by over 5 billion people, for academic
research and commercial applications in keyword spotting and spoken term search,
licensed under CC-BY 4.0. The dataset contains more than 340,000 keywords,
totaling 23.4 million 1-second spoken examples (over 6,000 hours). The dataset
has many use cases, ranging from voice-enabled consumer devices to call center
automation. This dataset is generated by applying forced alignment on crowd-sourced sentence-level
audio to produce per-word timing estimates for extraction.
All alignments are included in the dataset.
"""
_HOMEPAGE = "https://mlcommons.org/en/multilingual-spoken-words/"
_LICENSE = "CC-BY 4.0."
_VERSION = datasets.Version("1.0.0")
_BASE_URL = "data/"
_AUDIO_URL = _BASE_URL + "{format}/{lang}/{split}/audio/{n}.tar.gz"
_N_FILES_URL = _BASE_URL + "{format}/{lang}/{split}/n_files.txt"
_SPLITS_URL = _BASE_URL + "splits/{lang}/splits.tar.gz"
_GENDERS = ["MALE", "FEMALE", "OTHER", "NAN"]
_LANGUAGES = [
"ar",
"as",
"br",
"ca",
"cnh",
"cs",
"cv",
"cy",
"de",
"dv",
"el",
"en",
"eo",
"es",
"et",
"eu",
"fa",
"fr",
"fy-NL",
"ga-IE",
"gn",
"ha",
"ia",
"id",
"it",
"ka",
"ky",
"lt",
"lv",
"mn",
"mt",
"nl",
"or",
"pl",
"pt",
"rm-sursilv",
"rm-vallader",
"ro",
"ru",
"rw",
"sah",
"sk",
"sl",
"sv-SE",
"ta",
"tr",
"tt",
"uk",
"vi",
"zh-CN",
]
class MlSpokenWordsConfig(datasets.BuilderConfig):
"""BuilderConfig for MlSpokenWords."""
def __init__(self, *args, languages, format="wav", **kwargs):
"""BuilderConfig for MlSpokenWords.
Args:
languages (:obj:`Union[List[str], str]`): language or list of languages to load
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
name="+".join(languages) + "_" + format if isinstance(languages, list) else languages + "_" + format,
**kwargs,
)
self.languages = languages if isinstance(languages, list) else [languages]
self.format = format
class MlSpokenWords(datasets.GeneratorBasedBuilder):
"""
Multilingual Spoken Words Corpus is a large and growing audio dataset of spoken
words in 50 languages collectively spoken by over 5 billion people, for academic
research and commercial applications in keyword spotting and spoken term search,
licensed under CC-BY 4.0. The dataset contains more than 340,000 keywords,
totaling 23.4 million 1-second spoken examples (over 6,000 hours).
"""
VERSION = _VERSION
BUILDER_CONFIGS = [
MlSpokenWordsConfig(languages=[lang], format="wav", version=_VERSION) for lang in _LANGUAGES
] + [
MlSpokenWordsConfig(languages=[lang], format="opus", version=_VERSION) for lang in _LANGUAGES
]
BUILDER_CONFIG_CLASS = MlSpokenWordsConfig
def _info(self):
features = datasets.Features(
{
"file": datasets.Value("string"),
"is_valid": datasets.Value("bool"),
"language": datasets.ClassLabel(names=self.config.languages),
"speaker_id": datasets.Value("string"),
"gender": datasets.ClassLabel(names=_GENDERS),
"keyword": datasets.Value("string"), # 340k unique keywords
"audio": datasets.Audio(sampling_rate=48_000) if self.config.format == "opus" \
else datasets.Audio(sampling_rate=16_000),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
splits_archive_path = [dl_manager.download(_SPLITS_URL.format(lang=lang)) for lang in self.config.languages]
download_audio = partial(_download_audio_archives, dl_manager=dl_manager, format=self.config.format)
download_extract_audio = partial(_download_extract_audio_archives, dl_manager=dl_manager, format=self.config.format)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"audio_archives": [download_audio(split="train", lang=lang) for lang in self.config.languages],
"local_audio_archives_paths": [download_extract_audio(split="train", lang=lang) for lang in
self.config.languages] if not dl_manager.is_streaming else None,
"splits_archives": [dl_manager.iter_archive(path) for path in splits_archive_path],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"audio_archives": [download_audio(split="dev", lang=lang) for lang in self.config.languages],
"local_audio_archives_paths": [download_extract_audio(split="dev", lang=lang) for lang in
self.config.languages] if not dl_manager.is_streaming else None,
"splits_archives": [dl_manager.iter_archive(path) for path in splits_archive_path],
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"audio_archives": [download_audio(split="test", lang=lang) for lang in self.config.languages],
"local_audio_archives_paths": [download_extract_audio(split="test", lang=lang) for lang in
self.config.languages] if not dl_manager.is_streaming else None,
"splits_archives": [dl_manager.iter_archive(path) for path in splits_archive_path],
"split": "test",
},
),
]
def _generate_examples(self, audio_archives, local_audio_archives_paths, splits_archives, split):
metadata = dict()
for lang_idx, lang in enumerate(self.config.languages):
for split_filename, split_file in splits_archives[lang_idx]:
if split_filename.split(".csv")[0] == split:
csv_reader = csv.reader([line.decode("utf-8") for line in split_file.readlines()], delimiter=",")
for i, (link, word, is_valid, speaker, gender) in enumerate(csv_reader):
if i == 0:
continue
audio_id, audio_ext = os.path.splitext("_".join(link.split("/")))
metadata[audio_id] = {
"keyword": word,
"is_valid": is_valid,
"speaker_id": speaker,
"gender": gender if gender and gender != "NA" else "NAN", # some values are "NA"
}
for archive_idx, audio_archive in enumerate(audio_archives[lang_idx]):
for audio_filename, audio_file in audio_archive:
audio_id, audio_ext = os.path.splitext(audio_filename)
path = os.path.join(local_audio_archives_paths[lang_idx][archive_idx], audio_filename) if local_audio_archives_paths else audio_filename
yield audio_filename, {
"file": path if local_audio_archives_paths else None,
"language": lang,
"audio": {"path": path, "bytes": audio_file.read()},
**metadata[audio_id],
}
def _download_audio_archives_paths(dl_manager, lang, format, split):
"""
All audio files are stored in several .tar.gz archives with names like 0.tar.gz, 1.tar.gz, ...
Number of archives stored in a separate .txt file (n_files.txt)
Prepare all the audio archives for iterating over them and their audio files.
"""
n_files_url = _N_FILES_URL.format(lang=lang, format=format, split=split)
n_files_path = dl_manager.download(n_files_url)
with open(n_files_path, "r", encoding="utf-8") as file:
n_files = int(file.read().strip()) # the file contains a number of archives
archive_urls = [_AUDIO_URL.format(lang=lang, format=format, split=split, n=i) for i in range(n_files)]
return dl_manager.download(archive_urls)
# for default, non-streaming case
def _download_extract_audio_archives(dl_manager, lang, format, split):
archives_paths = _download_audio_archives_paths(dl_manager, lang, format, split)
return [dl_manager.extract(archive_path) for archive_path in archives_paths]
# for streaming case
def _download_audio_archives(dl_manager, lang, format, split):
archives_paths = _download_audio_archives_paths(dl_manager, lang, format, split)
return [dl_manager.iter_archive(archive_path) for archive_path in archives_paths]
|