Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,362 Bytes
6ffd2f6
f074041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ffd2f6
6a0d665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: valid
    path: data/valid-*
dataset_info:
  features:
  - name: input
    dtype: string
  - name: output
    sequence: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 73547.0744680851
    num_examples: 75
  - name: test
    num_bytes: 9806.27659574468
    num_examples: 10
  - name: valid
    num_bytes: 8825.648936170213
    num_examples: 9
  download_size: 34675
  dataset_size: 92179.0
---
---
                    license:
                    - apache-2.0
                    task_categories:
                    - natural-language
                    pretty_name: task859_prost_question_generation
                    dataset_info:
                    config_name: plain_text
                    features:
                    - name: input
                        dtype: string
                    - name: output
                        dtype: string
                    - name: id
                        dtype: string
                    splits:
                    - name: train
                        num_examples: 75
                    - name: valid
                        num_examples: 9
                    - name: test
                        num_examples: 10
                    ---
                    # Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task859_prost_question_generation

                    ## Dataset Description

                    - **Homepage:** https://github.com/allenai/natural-instructions
                    - **Paper:** https://arxiv.org/abs/2204.07705
                    - **Paper:** https://arxiv.org/abs/2407.00066
                    - **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:brg@mit.edu)

                    ## Additional Information

                    ### Citation Information

                    The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it: 
                    ```bibtex
                    @misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
                        title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks}, 
                        author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
                        year={2022},
                        eprint={2204.07705},
                        archivePrefix={arXiv},
                        primaryClass={cs.CL},
                        url={https://arxiv.org/abs/2204.07705}, 
                    }
                    ```

                    More details can also be found in the following paper:
                    ```bibtex
                    @misc{brüelgabrielsson2024compressserveservingthousands,
                        title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, 
                        author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
                        year={2024},
                        eprint={2407.00066},
                        archivePrefix={arXiv},
                        primaryClass={cs.DC},
                        url={https://arxiv.org/abs/2407.00066}, 
                    }
                    ```

                    ### Contact Information

                    For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:brg@mit.edu)