Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
input
stringlengths
3.68k
4.11k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose registered voters record of all rows is 3rd maximum . the city record of this row is encinitas . Output:
[ "eq { hop { nth_argmax { all_rows ; registered voters ; 3 } ; city } ; encinitas }" ]
task210-1a60617cf1134c289e5b96d3bc6d98fb
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose continent record fuzzily matches to asia . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; continent ; asia } } ; 2 }" ]
task210-0ebd48019c25490ab8a26d68b4ee8973
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the frequency record of all rows is 2200 mhz . Output:
[ "round_eq { avg { all_rows ; frequency } ; 2200 mhz }" ]
task210-07238989a7604315a7bf6dd52f1179d2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose year record is equal to 1987 . the sum of the notes record of these rows is 4:27:46 . Output:
[ "round_eq { sum { filter_eq { all_rows ; year ; 1987 } ; notes } ; 4:27:46 }" ]
task210-8a0d8cf9ac9249e0bc61025646ef6a4d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose location record fuzzily matches to st pete times forum . select the row whose game record of these rows is 1st minimum . the attendance record of this row is 16104 . Output:
[ "eq { hop { nth_argmin { filter_eq { all_rows ; location ; st pete times forum } ; game ; 1 } ; attendance } ; 16104 }" ]
task210-23aa07a5752b47f4be5a3397a5d4e988
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose club record fuzzily matches to sporting de gijón . take the points record of this row . select the rows whose club record fuzzily matches to cádiz cf . take the points record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; club ; sporting de gijón } ; points } ; hop { filter_eq { all_rows ; club ; cádiz cf } ; points } }" ]
task210-43c9e5396b4a4621983823b852c443b2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the 3rd minimum days held record of all rows is 196 . Output:
[ "eq { nth_min { all_rows ; days held ; 3 } ; 196 }" ]
task210-3c226bc4e5244f089756f2ac6338f2d6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose venue record fuzzily matches to beirut . among these rows , select the rows whose result record does not match to win . the number of such rows is 2 . Output:
[ "eq { count { filter_not_eq { filter_eq { all_rows ; venue ; beirut } ; result ; win } } ; 2 }" ]
task210-4519ff3b72e74506b6033f465a89fbd1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose language record fuzzily matches to yiddish . take the number record of this row . select the rows whose language record fuzzily matches to russian . take the number record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; language ; yiddish } ; number } ; hop { filter_eq { all_rows ; language ; russian } ; number } }" ]
task210-e8fa7f4b833f42d1b537109f4fd2bc5b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose crowd record of all rows is 1st maximum . the date record of this row is 12 august 2007 . Output:
[ "eq { hop { nth_argmax { all_rows ; crowd ; 1 } ; date } ; 12 august 2007 }" ]
task210-64ea62bb5ca6479ea48888e71bd2d198
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose sport record fuzzily matches to boxing . among these rows , select the rows whose event record fuzzily matches to men 's light flyweight . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; sport ; boxing } ; event ; men 's light flyweight } } ; 2 }" ]
task210-efd74718e8204428b271f468784de82b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose mccain % record fuzzily matches to 75.7 % . the number of such rows is 1 . Output:
[ "eq { count { filter_eq { all_rows ; mccain % ; 75.7 % } } ; 1 }" ]
task210-893a8bd0754a41b9842bcba2797f5a9e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose polyunsaturated fat record is less than 10 % . there is only one such row in the table . the record of this unqiue row is suet . Output:
[ "and { only { filter_less { all_rows ; polyunsaturated fat ; 10 % } } ; eq { hop { filter_less { all_rows ; polyunsaturated fat ; 10 % } ; } ; suet } }" ]
task210-a7478f535e7144298c4ce6a1502dd2d4
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the nationality records of all rows , all of them fuzzily match to canada . Output:
[ "all_eq { all_rows ; nationality ; canada }" ]
task210-bdae776be0d149d9993df0db0d5aac09
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose wins record is equal to 0 . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; wins ; 0 } } ; 2 }" ]
task210-97313fe0b6eb4cd19607a134b0d24a60
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose competition record fuzzily matches to world championships . the number of such rows is 3 . Output:
[ "eq { count { filter_eq { all_rows ; competition ; world championships } } ; 3 }" ]
task210-2369f4cd6cb7464581fddf9462c3402c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose original air date ( uk ) record of all rows is 1st maximum . the episode title record of this row is loyalties ii . Output:
[ "eq { hop { nth_argmax { all_rows ; original air date ( uk ) ; 1 } ; episode title } ; loyalties ii }" ]
task210-ba5e9369b6fd48a0b6791b226783fc9f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the disease area records of all rows , most of them fuzzily match to cancer . Output:
[ "most_eq { all_rows ; disease area ; cancer }" ]
task210-ae889857b940401592e0072fcd58c693
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose nation record fuzzily matches to sweden . take the gold record of this row . select the rows whose nation record fuzzily matches to germany . take the gold record of this row . the first record is greater than the second record . the gold record of the first row is 2 . the gold record of the second row is 1 . Output:
[ "and { greater { hop { filter_eq { all_rows ; nation ; sweden } ; gold } ; hop { filter_eq { all_rows ; nation ; germany } ; gold } } ; and { eq { hop { filter_eq { all_rows ; nation ; sweden } ; gold } ; 2 } ; eq { hop { filter_eq { all_rows ; nation ; germany } ; gold } ; 1 } } }" ]
task210-5a2c468192764083bcd1e6748d388034
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose surface record fuzzily matches to hard . among these rows , select the rows whose partner record fuzzily matches to magdalena maleeva . there is only one such row in the table . the date record of this unqiue row is july 16 , 1992 . Output:
[ "and { only { filter_eq { filter_eq { all_rows ; surface ; hard } ; partner ; magdalena maleeva } } ; eq { hop { filter_eq { filter_eq { all_rows ; surface ; hard } ; partner ; magdalena maleeva } ; date } ; july 16 , 1992 } }" ]
task210-99ff6e3e2f804446a558b9fdc05ccfe9
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose country record fuzzily matches to united kingdom . take the date record of this row . select the rows whose country record fuzzily matches to united states . take the date record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; country ; united kingdom } ; date } ; hop { filter_eq { all_rows ; country ; united states } ; date } }" ]
task210-c3159bcd1f5348dc8cd4bf7944b66605
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the attendance record of all rows is 45557.14 . Output:
[ "round_eq { avg { all_rows ; attendance } ; 45557.14 }" ]
task210-ea1a0344b83746058e3c7c26aa907624
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose player record fuzzily matches to tom watson . take the earnings record of this row . select the rows whose player record fuzzily matches to lee trevino . take the earnings record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; player ; tom watson } ; earnings } ; hop { filter_eq { all_rows ; player ; lee trevino } ; earnings } }" ]
task210-11be94c5c16f4865997b07e7753c5c40
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose winner record fuzzily matches to russell ingall . the number of such rows is 3 . Output:
[ "eq { count { filter_eq { all_rows ; winner ; russell ingall } } ; 3 }" ]
task210-78ce7140293944b18dfc5cc49b412f0f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose position record fuzzily matches to 4th . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; position ; 4th } } ; 2 }" ]
task210-afddcd0db2fb46c581bf2055cea658d6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose score record of all rows is minimum . the player record of this row is ben hogan . Output:
[ "eq { hop { argmin { all_rows ; score } ; player } ; ben hogan }" ]
task210-37570b03c5a84a25a1ea65f8bb626a96
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose shot pct record is greater than or equal to 80 % . the number of such rows is 3 . Output:
[ "eq { count { filter_greater_eq { all_rows ; shot pct ; 80 % } } ; 3 }" ]
task210-5a07a5c495534f0f878c716bdb582c62
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose runner - up record fuzzily matches to dynamo moscow . take the season record of this row . select the rows whose runner - up record fuzzily matches to lokomotiv moscow . take the season record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; runner - up ; dynamo moscow } ; season } ; hop { filter_eq { all_rows ; runner - up ; lokomotiv moscow } ; season } }" ]
task210-dd02f99e46ae41b2b9db6c4c159b9ce6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose length record of all rows is 2nd minimum . the line record of this row is sofia - dragoman . Output:
[ "eq { hop { nth_argmin { all_rows ; length ; 2 } ; line } ; sofia - dragoman }" ]
task210-e1eecd7746db4e4183cbcd65ea5da293
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose class record fuzzily matches to dx . take the number in service record of this row . select the rows whose class record fuzzily matches to dsc . take the number in service record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; class ; dx } ; number in service } ; hop { filter_eq { all_rows ; class ; dsc } ; number in service } }" ]
task210-c2de83f376b84f4eb08ee6dde5c23391
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date record fuzzily matches to dec . for the result records of these rows , most of them fuzzily match to win . Output:
[ "most_eq { filter_eq { all_rows ; date ; dec } ; result ; win }" ]
task210-28e950cc557b44858382778f7c8c3986
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose gender record fuzzily matches to f . among these rows , select the rows whose residence record fuzzily matches to halifax . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; gender ; f } ; residence ; halifax } } ; 2 }" ]
task210-68c853caa9ec4359a824ea97a903a30f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose opponent record fuzzily matches to toronto maple leafs . the sum of the score record of these rows is 12 . Output:
[ "round_eq { sum { filter_eq { all_rows ; opponent ; toronto maple leafs } ; score } ; 12 }" ]
task210-c888cc1881ef4106bc80e063eeae4c4e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date record fuzzily matches to november . for the attendance records of these rows , most of them are greater than or equal to 10000 . Output:
[ "most_greater_eq { filter_eq { all_rows ; date ; november } ; attendance ; 10000 }" ]
task210-088f4d5f14174331be058b93c20d5c8f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose administrative panel record of all rows is maximum . the party record of this row is fine gael . Output:
[ "eq { hop { argmax { all_rows ; administrative panel } ; party } ; fine gael }" ]
task210-d567fef1605e4338b79ca0d8f6aeab13
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose opponents record fuzzily matches to palamós . select the row whose kick off record of these rows is minimum . the referee record of this row is daudén ibáñez . Output:
[ "eq { hop { argmin { filter_eq { all_rows ; opponents ; palamós } ; kick off } ; referee } ; daudén ibáñez }" ]
task210-2090e9cdd5ed4b2ca259b16fbecf5db1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose method record fuzzily matches to rear naked choke . there is only one such row in the table . the opponent record of this unqiue row is helio dipp . Output:
[ "and { only { filter_eq { all_rows ; method ; rear naked choke } } ; eq { hop { filter_eq { all_rows ; method ; rear naked choke } ; opponent } ; helio dipp } }" ]
task210-40a40c9e355149e0b06eabad7439d8e4
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose venue record fuzzily matches to san francisco . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; venue ; san francisco } } ; 2 }" ]
task210-6542d17540ee4098a0c4c3802d515e33
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose pick record of all rows is minimum . the player record of this row is james lofton . Output:
[ "eq { hop { argmin { all_rows ; pick } ; player } ; james lofton }" ]
task210-65ac1d8247964cc2b2cdd5e603866438
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the screen size ( inch ) records of all rows , most of them are greater than or equal to 7 . Output:
[ "most_greater_eq { all_rows ; screen size ( inch ) ; 7 }" ]
task210-ead086daaec2415a984bf2345ff3a4da
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose 2nd component record fuzzily matches to acetone . the number of such rows is 3 . Output:
[ "eq { count { filter_eq { all_rows ; 2nd component ; acetone } } ; 3 }" ]
task210-f13d0067687b4eac9f0cf44c5c9db1c8
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose college record fuzzily matches to saskatchewan . among these rows , select the rows whose position record fuzzily matches to k . there is only one such row in the table . the player record of this unqiue row is matt kellett . Output:
[ "and { only { filter_eq { filter_eq { all_rows ; college ; saskatchewan } ; position ; k } } ; eq { hop { filter_eq { filter_eq { all_rows ; college ; saskatchewan } ; position ; k } ; player } ; matt kellett } }" ]
task210-14b519968c2d4b339c6471c2f0687b74
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose department record is arbitrary . the number of such rows is 7 . Output:
[ "eq { count { filter_all { all_rows ; department } } ; 7 }" ]
task210-8418488a8c124b0a91e54d587214993d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose venue record fuzzily matches to tsirion stadium , limassol . take the date record of this row . select the rows whose venue record fuzzily matches to king abdullah stadium , amman . take the date record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; venue ; tsirion stadium , limassol } ; date } ; hop { filter_eq { all_rows ; venue ; king abdullah stadium , amman } ; date } }" ]
task210-82f503f45a8c42c4a6ff855f04a292e8
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose sets lost record of all rows is 2nd maximum . the team record of this row is far eastern university . Output:
[ "eq { hop { nth_argmax { all_rows ; sets lost ; 2 } ; team } ; far eastern university }" ]
task210-a6ce87aad5df4e548285a07cc66f583a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose born record of all rows is minimum . the archbishop record of this row is jean baptiste lamy . Output:
[ "eq { hop { argmin { all_rows ; born } ; archbishop } ; jean baptiste lamy }" ]
task210-9b4eadeed84a44f5aec6557534bde28e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the seating records of all rows , most of them are less than 100000 . Output:
[ "most_less { all_rows ; seating ; 100000 }" ]
task210-16789c874e3943198ebd2affe08bf419
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the season premiere date records of all rows , all of them fuzzily match to 20 . Output:
[ "all_eq { all_rows ; season premiere date ; 20 }" ]
task210-2cb10d1f1eba4c5b8e318ac792d4d488
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the races record of all rows is 14.4 . Output:
[ "round_eq { avg { all_rows ; races } ; 14.4 }" ]
task210-3972d51d954a40f6b726b4dff67e909c

Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task210_logic2text_structured_text_generation

Additional Information

Citation Information

The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:

@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
    title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks}, 
    author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
    year={2022},
    eprint={2204.07705},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/2204.07705}, 
}

More details can also be found in the following paper:

@misc{brüelgabrielsson2024compressserveservingthousands,
    title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, 
    author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
    year={2024},
    eprint={2407.00066},
    archivePrefix={arXiv},
    primaryClass={cs.DC},
    url={https://arxiv.org/abs/2407.00066}, 
}

Contact Information

For any comments or questions, please email Rickard Brüel Gabrielsson

Downloads last month
83
Edit dataset card