Datasets:

Modalities:
Audio
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
albertvillanova HF staff commited on
Commit
20892cd
1 Parent(s): 7beff1e

Delete loading script

Browse files
Files changed (1) hide show
  1. pangloss.py +0 -202
pangloss.py DELETED
@@ -1,202 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """Pangloss datasets for Yongning Na (yong1288) and Japhug (japh1234)"""
15
-
16
- import csv
17
- import json
18
- import os
19
- import datasets
20
- from datasets.tasks import AutomaticSpeechRecognition
21
-
22
- _CITATION = {
23
- "yong1288": """
24
- @misc{michaud_alexis_2021_5336698,
25
- author = {Michaud, Alexis and
26
- Galliot, Benjamin and
27
- Guillaume, Séverine},
28
- title = {{Yongning Na for Natural Language Processing: a
29
- single-speaker audio corpus with transcriptions}},
30
- month = aug,
31
- year = 2021,
32
- publisher = {Zenodo},
33
- version = {1.0},
34
- doi = {10.5281/zenodo.5336698},
35
- url = {https://doi.org/10.5281/zenodo.5336698}
36
- }
37
- """,
38
- "japh1234": """\
39
- @misc{jacques_guillaume_2021_5521112,
40
- author = {Jacques, Guillaume and
41
- Galliot, Benjamin and
42
- Guillaume, Séverine},
43
- title = {{Japhug for Natural Language Processing: a single-
44
- speaker audio corpus with transcriptions}},
45
- month = sep,
46
- year = 2021,
47
- publisher = {Zenodo},
48
- version = {1.0},
49
- doi = {10.5281/zenodo.5521112},
50
- url = {https://doi.org/10.5281/zenodo.5521112}
51
- }
52
- """
53
- }
54
-
55
- _DESCRIPTION = """\
56
- These datasets are extracts from the Pangloss collection and have
57
- been preprocessed for ASR experiments in Na and Japhug.
58
- """
59
-
60
- _HOMEPAGE = "https://pangloss.cnrs.fr/"
61
-
62
- _LICENSE = "https://creativecommons.org/licenses/by-nc-sa/4.0/fr/legalcode"
63
-
64
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
65
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
66
-
67
- _VERSION = datasets.Version("1.0.0")
68
-
69
- _LANGUAGES = {
70
- "yong1288": {
71
- "url": "https://mycore.core-cloud.net/index.php/s/vaGMeRf4Iij8MWR/download",
72
- "homepage": "https://zenodo.org/record/5336698",
73
- "description": "Yongning Na dataset",
74
- "translations": ["fr", "en", "zh"]
75
- },
76
- "japh1234": {
77
- "url": "https://mycore.core-cloud.net/index.php/s/kuQCxmyVcUFWroV/download",
78
- "homepage": "https://zenodo.org/record/5521112",
79
- "description": "Japhug dataset",
80
- "translations": ["fr", "zh"]
81
- }
82
- }
83
-
84
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
85
- class PanglossDataset(datasets.GeneratorBasedBuilder):
86
- """The Pangloss datasets are extracts from Pangloss Collections that can be used for ASR experiments in these languages."""
87
- field_translations = {
88
- "chemin_audio": "path",
89
- "nature": "doctype",
90
- "forme": "sentence",
91
- "locuteur": "speaker",
92
- "traduction:fr": "translation:fr",
93
- "traduction:en": "translation:en",
94
- "traduction:zh": "translation:zh"
95
- }
96
-
97
- # This is an example of a dataset with multiple configurations.
98
- # If you don't want/need to define several sub-sets in your dataset,
99
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
100
-
101
- # If you need to make complex sub-parts in the datasets with configurable options
102
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
103
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
104
-
105
- # You will be able to load one or the other configurations in the following list with
106
- # data = datasets.load_dataset('my_dataset', 'first_domain')
107
- # data = datasets.load_dataset('my_dataset', 'second_domain')
108
- BUILDER_CONFIGS = [
109
- datasets.BuilderConfig(name=language_name, version=_VERSION, description=language_data["description"])
110
- for language_name, language_data in _LANGUAGES.items()
111
- ]
112
-
113
- #DEFAULT_CONFIG_NAME = "na" # It's not mandatory to have a default configuration. Just use one if it make sense.
114
-
115
- def _info(self):
116
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
117
- features = datasets.Features(
118
- {
119
- "path": datasets.Value("string"),
120
- "audio": datasets.features.Audio(sampling_rate=16_000),
121
- "sentence": datasets.Value("string"),
122
- "doctype": datasets.Value("string"),
123
- "speaker": datasets.Value("string"),
124
- **{f"translation:{language_code}": datasets.Value("string") for language_code in _LANGUAGES[self.config.name]["translations"]}
125
- }
126
- )
127
-
128
- return datasets.DatasetInfo(
129
- # This is the description that will appear on the datasets page.
130
- description=_DESCRIPTION,
131
- # This defines the different columns of the dataset and their types
132
- features=features, # Here we define them above because they are different between the two configurations
133
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
134
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
135
- # supervised_keys=("sentence", "label"),
136
- # Homepage of the dataset for documentation
137
- homepage=_HOMEPAGE,
138
- # License for the dataset if available
139
- license=_LICENSE,
140
- # Citation for the dataset
141
- citation=_CITATION,
142
- task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="forme")],
143
-
144
- )
145
-
146
- def _split_generators(self, dl_manager):
147
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
148
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
149
-
150
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
151
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
152
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
153
- urls = _LANGUAGES[self.config.name]["url"]
154
- data_dir = dl_manager.download_and_extract(urls)
155
- return [
156
- datasets.SplitGenerator(
157
- name=datasets.Split.TRAIN,
158
- # These kwargs will be passed to _generate_examples
159
- gen_kwargs={
160
- "filepath": os.path.join(data_dir, self.config.name, "train.csv"),
161
- "split": "train"
162
- },
163
- ),
164
- datasets.SplitGenerator(
165
- name=datasets.Split.TEST,
166
- # These kwargs will be passed to _generate_examples
167
- gen_kwargs={
168
- "filepath": os.path.join(data_dir, self.config.name, "test.csv"),
169
- "split": "test"
170
- },
171
- ),
172
- datasets.SplitGenerator(
173
- name=datasets.Split.VALIDATION,
174
- # These kwargs will be passed to _generate_examples
175
- gen_kwargs={
176
- "filepath": os.path.join(data_dir, self.config.name, "validation.csv"),
177
- "split": "validation"
178
- },
179
- ),
180
- ]
181
-
182
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
183
- def _generate_examples(self, filepath, split):
184
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
185
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
186
- with open(filepath, encoding="utf-8") as file_descriptor:
187
- reader = csv.DictReader(file_descriptor)
188
- for key, row in enumerate(reader):
189
- translated_fieldnames = [self.field_translations[fieldname] for fieldname in reader.fieldnames if fieldname in self.field_translations.keys()]
190
- data = dict(zip(translated_fieldnames, row.values()))
191
- data["audio"] = os.path.join(os.path.dirname(filepath), data["path"])
192
- # Yields examples as (key, example) tuples
193
- yield key, data
194
-
195
-
196
- if __name__ == "__main__":
197
- # for language in _LANGUAGES.keys():
198
- datasets.load_dataset("datasets/pangloss/pangloss.py", "japh1234")
199
-
200
- # datasets-cli test datasets/pangloss --save_infos --all_configs
201
- # datasets-cli dummy_data datasets/pangloss --auto_generate
202
-