Datasets:

Modalities:
Image
Video
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 4,420 Bytes
a50a70d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import trimesh
import numpy as np
import imageio
import copy
import cv2
import os
from glob import glob
import open3d
from multiprocessing import Pool
import json
from utils import *

if __name__ == '__main__' :

    H = 480
    W = 720
    intrinsics = np.array([[1000.,0.],
                           [0., 1000.]])
    
    cam_path = "traj_vis/Hemi12_transforms.json"
    location_path = "traj_vis/location_data_desert.json"
    video_name = "D_loc1_61_t3n13_003d_Hemi12_1.json"

    with open(location_path, 'r') as f: locations = json.load(f)
    locations_info = {locations[idx]['name']:locations[idx] for idx in range(len(locations))}
    location_name = video_name.split('_')[1]
    location_info = locations_info[location_name]
    translation = location_info['coordinates']['CameraTarget']['position']
    vis_all = []
    
    # vis cam
    with open(cam_path, 'r') as file:
        data = json.load(file)
    cam_poses = []
    for i, key in enumerate(data.keys()):
        if "C_" in key:
            cam_poses.append(parse_matrix(data[key]))
    cam_poses = np.stack(cam_poses)
    cam_poses = np.transpose(cam_poses, (0,2,1))
    cam_poses[:,:3,3] /= 100.
    relative_pose = np.linalg.inv(cam_poses[0])
    cam_num = len(cam_poses)
    for idx in range(cam_num):
        cam_pose = cam_poses[idx]
        cam_pose = cam_pose[:, [1,2,0,3]]
        cam_pose = relative_pose @ cam_pose
        cam_points_vis = get_cam_points_vis(W, H, intrinsics, cam_pose, [0.4, 0.4, 0.4], frustum_length=1.)
        vis_all.append(cam_points_vis)

    # vis gt obj poses
    start_frame_ind = 10
    sample_n_frames = 77
    frame_indices = np.linspace(start_frame_ind, start_frame_ind + sample_n_frames - 1, sample_n_frames, dtype=int)
    
    with open('traj_vis/'+video_name, 'r') as file:
        data = json.load(file)
    obj_poses = []
    for i, key in enumerate(data.keys()):
        obj_poses.append(parse_matrix(data[key][0]['matrix']))
    obj_poses = np.stack(obj_poses)
    obj_poses = np.transpose(obj_poses, (0,2,1))

    obj_poses[:,:3,3] -= translation
    obj_poses[:,:3,3] /= 100.
    obj_poses = obj_poses[:, :, [1,2,0,3]]
    obj_poses = relative_pose @ obj_poses
    obj_poses = obj_poses[frame_indices]

    obj_num = len(obj_poses)
    for idx in range(obj_num):
        obj_pose = obj_poses[idx]
        if idx % 5 == 0:
            cam_points_vis = get_cam_points_vis(W, H, intrinsics, obj_pose, [0.8, 0., 0.], frustum_length=0.5)
            vis_all.append(cam_points_vis)

    if len(data[key])>=2:
        with open('traj_vis/'+video_name, 'r') as file:
            data = json.load(file)
        obj_poses = []
        for i, key in enumerate(data.keys()):
            obj_poses.append(parse_matrix(data[key][1]['matrix']))
        obj_poses = np.stack(obj_poses)
        obj_poses = np.transpose(obj_poses, (0,2,1))
        obj_poses[:,:3,3] -= translation
        obj_poses[:,:3,3] /= 100.
        obj_poses = obj_poses[:, :, [1,2,0,3]]
        obj_poses = relative_pose @ obj_poses
        obj_poses = obj_poses[frame_indices]
        obj_num = len(obj_poses)
        for idx in range(obj_num):
            obj_pose = obj_poses[idx]
            if (idx % 5 == 0) :
                cam_points_vis = get_cam_points_vis(W, H, intrinsics, obj_pose, [0., 0.8,0.], frustum_length=0.5)
                vis_all.append(cam_points_vis)
        
    if len(data[key])>=3:
        with open('traj_vis/'+video_name, 'r') as file:
            data = json.load(file)
        obj_poses = []
        for i, key in enumerate(data.keys()):
            obj_poses.append(parse_matrix(data[key][2]['matrix']))
        obj_poses = np.stack(obj_poses)
        obj_poses = np.transpose(obj_poses, (0,2,1))
        obj_poses[:,:3,3] -= translation
        obj_poses[:,:3,3] /= 100.
        obj_poses = obj_poses[:, :, [1,2,0,3]]
        obj_poses = relative_pose @ obj_poses
        obj_poses = obj_poses[frame_indices]
        obj_num = len(obj_poses)
        for idx in range(obj_num):
            obj_pose = obj_poses[idx]
            if (idx % 5 == 0):
                cam_points_vis = get_cam_points_vis(W, H, intrinsics, obj_pose, [0., 0., 0.8], frustum_length=0.5)
                vis_all.append(cam_points_vis)

    # vis coordinates
    axis = open3d.geometry.TriangleMesh.create_coordinate_frame(size=2, origin=[0,0,0])
    # vis_all.append(axis)
    
    open3d.visualization.draw_geometries(vis_all)