Datasets:

Modalities:
Image
Video
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 9,504 Bytes
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a50a70d
ce33d81
 
a50a70d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a50a70d
 
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright 2024 Xiao Fu, CUHK, Kuaishou Tech. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# More information about the method can be found at http://fuxiao0719.github.io/projects/3dtrajmaster
# --------------------------------------------------------------------------
import os
import numpy as np
from io import BytesIO
import imageio.v2 as imageio
import open3d as o3d
import math
import trimesh
import json


def get_camera_frustum(img_size, K, W2C, frustum_length=0.5, color=[0., 1., 0.]):
    W, H = img_size
    hfov = np.rad2deg(np.arctan(W / 2. / K[0, 0]) * 2.)
    vfov = np.rad2deg(np.arctan(H / 2. / K[1, 1]) * 2.)
    half_w = frustum_length * np.tan(np.deg2rad(hfov / 2.))
    half_h = frustum_length * np.tan(np.deg2rad(vfov / 2.))

    # build view frustum for camera (I, 0)
    frustum_points = np.array([[0., 0., 0.],                          # frustum origin
                               [-half_w, -half_h, frustum_length],    # top-left image corner
                               [half_w, -half_h, frustum_length],     # top-right image corner
                               [half_w, half_h, frustum_length],      # bottom-right image corner
                               [-half_w, half_h, frustum_length]])    # bottom-left image corner
    frustum_lines = np.array([[0, i] for i in range(1, 5)] + [[i, (i+1)] for i in range(1, 4)] + [[4, 1]])
    frustum_colors = np.tile(np.array(color).reshape((1, 3)), (frustum_lines.shape[0], 1))

    # frustum_colors = np.vstack((np.tile(np.array([[1., 0., 0.]]), (4, 1)),
    #                            np.tile(np.array([[0., 1., 0.]]), (4, 1))))

    # transform view frustum from (I, 0) to (R, t)
    C2W = np.linalg.inv(W2C)
    frustum_points = np.dot(np.hstack((frustum_points, np.ones_like(frustum_points[:, 0:1]))), C2W.T)
    frustum_points = frustum_points[:, :3] / frustum_points[:, 3:4]

    return frustum_points, frustum_lines, frustum_colors


def frustums2lineset(frustums):
    N = len(frustums)
    merged_points = np.zeros((N*5, 3))      # 5 vertices per frustum
    merged_lines = np.zeros((N*8, 2))       # 8 lines per frustum
    merged_colors = np.zeros((N*8, 3))      # each line gets a color

    for i, (frustum_points, frustum_lines, frustum_colors) in enumerate(frustums):
        merged_points[i*5:(i+1)*5, :] = frustum_points
        merged_lines[i*8:(i+1)*8, :] = frustum_lines + i*5
        merged_colors[i*8:(i+1)*8, :] = frustum_colors

    lineset = o3d.geometry.LineSet()
    lineset.points = o3d.utility.Vector3dVector(merged_points)
    lineset.lines = o3d.utility.Vector2iVector(merged_lines)
    lineset.colors = o3d.utility.Vector3dVector(merged_colors)

    return lineset

def visualize_cameras(colored_camera_dicts, sphere_radius, camera_size=0.1, geometry_file=None, geometry_type='mesh'):
    sphere = o3d.geometry.TriangleMesh.create_sphere(radius=sphere_radius, resolution=10)
    sphere = o3d.geometry.LineSet.create_from_triangle_mesh(sphere)
    sphere.paint_uniform_color((1, 0, 0))

    coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0., 0., 0.])
    things_to_draw = [sphere, coord_frame]

    idx = 0
    for color, camera_dict in colored_camera_dicts:
        idx += 1

        cnt = 0
        frustums = []
        for img_name in sorted(camera_dict.keys()):
            K = np.array(camera_dict[img_name]['K']).reshape((4, 4))
            W2C = np.array(camera_dict[img_name]['W2C']).reshape((4, 4))
            C2W = np.linalg.inv(W2C)
            img_size = camera_dict[img_name]['img_size']
            frustums.append(get_camera_frustum(img_size, K, W2C, frustum_length=camera_size, color=color))
            cnt += 1
        cameras = frustums2lineset(frustums)
        things_to_draw.append(cameras)

    if geometry_file is not None:
        if geometry_type == 'mesh':
            geometry = o3d.io.read_triangle_mesh(geometry_file)
            geometry.compute_vertex_normals()
        elif geometry_type == 'pointcloud':
            geometry = o3d.io.read_point_cloud(geometry_file)
        else:
            raise Exception('Unknown geometry_type: ', geometry_type)

        things_to_draw.append(geometry)

    o3d.visualization.draw_geometries(things_to_draw)

def parse_matrix(matrix_str):
    rows = matrix_str.strip().split('] [')
    matrix = []
    for row in rows:
        row = row.replace('[', '').replace(']', '')
        matrix.append(list(map(float, row.split())))
    return np.array(matrix)

def load_sceneposes(objs_file, obj_idx, obj_transl):
    ext_poses = []
    for i, key in enumerate(objs_file.keys()):
        ext_poses.append(parse_matrix(objs_file[key][obj_idx]['matrix']))
    ext_poses = np.stack(ext_poses)
    ext_poses = np.transpose(ext_poses, (0,2,1))
    ext_poses[:,:3,3] -= obj_transl
    ext_poses[:,:3,3] /= 100.
    ext_poses = ext_poses[:, :, [1,2,0,3]]
    return ext_poses

def save_images2video(images, video_name, fps):
    fps = fps
    format = "mp4"  
    codec = "libx264"  
    ffmpeg_params = ["-crf", str(12)]
    pixelformat = "yuv420p" 
    video_stream = BytesIO()

    with imageio.get_writer(
        video_stream,
        fps=fps,
        format=format,
        codec=codec,
        ffmpeg_params=ffmpeg_params,
        pixelformat=pixelformat,
    ) as writer:
        for idx in range(len(images)):
            writer.append_data(images[idx])

    video_data = video_stream.getvalue()

    output_path = os.path.join(video_name + ".mp4")
    with open(output_path, "wb") as f:
        f.write(video_data)

def normalize(x):
    return x / np.linalg.norm(x)

def viewmatrix(z, up, pos):
    vec2 = normalize(z)
    vec1_avg = up
    vec0 = normalize(np.cross(vec1_avg, vec2))
    vec1 = normalize(np.cross(vec2, vec0))
    m = np.stack([vec0, vec1, vec2, pos], 1)
    return m

def matrix_to_euler_angles(matrix):
    sy = math.sqrt(matrix[0][0] * matrix[0][0] + matrix[1][0] * matrix[1][0])
    singular = sy < 1e-6

    if not singular:
        x = math.atan2(matrix[2][1], matrix[2][2])
        y = math.atan2(-matrix[2][0], sy)
        z = math.atan2(matrix[1][0], matrix[0][0])
    else:
        x = math.atan2(-matrix[1][2], matrix[1][1])
        y = math.atan2(-matrix[2][0], sy)
        z = 0

    return math.degrees(x), math.degrees(y), math.degrees(z)

def eul2rot(theta) :

    R = np.array([[np.cos(theta[1])*np.cos(theta[2]),       np.sin(theta[0])*np.sin(theta[1])*np.cos(theta[2]) - np.sin(theta[2])*np.cos(theta[0]),      np.sin(theta[1])*np.cos(theta[0])*np.cos(theta[2]) + np.sin(theta[0])*np.sin(theta[2])],
                  [np.sin(theta[2])*np.cos(theta[1]),       np.sin(theta[0])*np.sin(theta[1])*np.sin(theta[2]) + np.cos(theta[0])*np.cos(theta[2]),      np.sin(theta[1])*np.sin(theta[2])*np.cos(theta[0]) - np.sin(theta[0])*np.cos(theta[2])],
                  [-np.sin(theta[1]),                        np.sin(theta[0])*np.cos(theta[1]),                                                           np.cos(theta[0])*np.cos(theta[1])]])

    return R.T

def extract_location_rotation(data):
    results = {}
    for key, value in data.items():
        matrix = parse_matrix(value)
        location = np.array([matrix[3][0], matrix[3][1], matrix[3][2]])
        rotation = eul2rot(matrix_to_euler_angles(matrix))
        transofmed_matrix = np.identity(4)
        transofmed_matrix[:3,3] = location
        transofmed_matrix[:3,:3] = rotation
        results[key] = transofmed_matrix
    return results

def get_cam_points_vis(W, H, intrinsics, ext_pose, color,frustum_length):
    cam = get_camera_frustum((W, H), intrinsics, np.linalg.inv(ext_pose), frustum_length=frustum_length,  color=[0., 0., 1.])
    cam_points = cam[0]
    for item in cam[1]:
        cam_points = np.concatenate((cam_points, np.linspace(cam[0][item[0]], cam[0][item[1]], num=1000, endpoint=True, retstep=False, dtype=None)))
    cam_points[:,0]*=-1
    cam_points = trimesh.points.PointCloud(vertices = cam_points, colors=[0, 255, 0, 255])
    cam_points_vis = o3d.geometry.PointCloud()
    cam_points_vis.points = o3d.utility.Vector3dVector(cam_points)
    cam_points_vis.paint_uniform_color(color)
    return cam_points_vis

def batch_axis_angle_to_rotation_matrix(r_batch):
    batch_size = r_batch.shape[0]
    rotation_matrices = []
    
    for i in range(batch_size):
        r = r_batch[i]
        theta = np.linalg.norm(r)
        if theta == 0:
            rotation_matrices.append(np.eye(3))
        else:
            k = r / theta 
            kx, ky, kz = k
            
            K = np.array([
                [0, -kz, ky],
                [kz, 0, -kx],
                [-ky, kx, 0]
            ])
            
            R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * np.dot(K, K)
            rotation_matrices.append(R)
    
    return np.array(rotation_matrices)