File size: 2,838 Bytes
4477da2
 
df81834
 
a5663b2
9964826
40ca26b
4477da2
f2a7261
4477da2
40ca26b
4477da2
f2a7261
 
4477da2
f2a7261
4477da2
 
 
 
 
f2a7261
4477da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7f4e7
2f0c4da
 
 
 
 
 
 
 
 
4477da2
ed7f4e7
4477da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a7261
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import datasets

logger = datasets.logging.get_logger(__name__)

csv_file_path = "/home/p21-0144/Downloads/indian-name-org.csv"

class indian_namesConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(indian_namesConfig, self).__init__(**kwargs)

class indian_names(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        indian_namesConfig(
            name="indian_names_dataset",
            version=datasets.Version("1.0.0"),
            description="Indian Names Dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description="Indian Names dataset",
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-PER",
                                "I-ORG",
                            ]
                        )
                    ),
                }
            ),
        )


       def _split_generators(self, dl_manager):
    urls_to_download = {
        "train": f"file://{csv_file_path}",
    }
    downloaded_files = dl_manager.download_and_extract(urls_to_download)

    return [
        datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
    ]


    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            current_tokens = []
            current_labels = []
            sentence_counter = 0
            for row in f:
                row = row.rstrip()
                if row:
                    token, label = row.split(",")
                    current_tokens.append(token)
                    current_labels.append(label)
                else:
                    if not current_tokens:
                        continue
                    assert len(current_tokens) == len(current_labels), "Mismatch between tokens and labels"
                    sentence = (
                        sentence_counter,
                        {
                            "id": str(sentence_counter),
                            "tokens": current_tokens,
                            "ner_tags": current_labels,
                        },
                    )
                    sentence_counter += 1
                    current_tokens = []
                    current_labels = []
                    yield sentence
            if current_tokens:
                yield sentence_counter, {
                    "id": str(sentence_counter),
                    "tokens": current_tokens,
                    "ner_tags": current_labels,
                }