File size: 3,402 Bytes
4477da2
 
df81834
 
001532b
232d8d3
9964826
8bd2e0e
165dad6
3ddb755
 
4477da2
3ddb755
 
 
 
605f08a
3ddb755
 
8bd2e0e
3ddb755
4477da2
 
f2a7261
8bd2e0e
4477da2
 
 
 
 
 
 
 
 
 
 
 
232d8d3
4477da2
8bd2e0e
4477da2
 
 
 
 
3ddb755
4477da2
 
3ddb755
 
 
 
 
 
ed7f4e7
3ddb755
 
 
ed7f4e7
8bd2e0e
28552e1
4477da2
 
 
 
 
 
7169684
 
 
 
 
28552e1
4477da2
28552e1
4477da2
28552e1
4477da2
 
 
 
 
 
 
 
 
 
 
 
28552e1
4477da2
 
 
 
 
f2a7261
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import datasets

logger = datasets.logging.get_logger(__name__)

_URL = "https://github.com/Kriyansparsana/demorepo/blob/main/"
_TRAINING_FILE = "indinan_namestrain.conll"


class indian_namesConfig(datasets.BuilderConfig):
    """The WNUT 17 Emerging Entities Dataset."""

    def __init__(self, **kwargs):
        """BuilderConfig for WNUT 17.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(indian_namesConfig, self).__init__(**kwargs)


class WNUT_17(datasets.GeneratorBasedBuilder):
    """The WNUT 17 Emerging Entities Dataset."""

    BUILDER_CONFIGS = [
        indian_namesConfig(
            name="wnut_17", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset"
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "B-ORG"
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            current_tokens = []
            current_labels = []
            sentence_counter = 0
            for row in f:
                row = row.rstrip()
                if row:
                    token, label = row.split("\t")
                    current_tokens.append(token)
                    current_labels.append(label)
                else:
                    # New sentence
                    if not current_tokens:
                        # Consecutive empty lines will cause empty sentences
                        continue
                    assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
                    sentence = (
                        sentence_counter,
                        {
                            "id": str(sentence_counter),
                            "tokens": current_tokens,
                            "ner_tags": current_labels,
                        },
                    )
                    sentence_counter += 1
                    current_tokens = []
                    current_labels = []
                    yield sentence
            # Don't forget last sentence in dataset 🧐
            if current_tokens:
                yield sentence_counter, {
                    "id": str(sentence_counter),
                    "tokens": current_tokens,
                    "ner_tags": current_labels,
                }