Datasets:

rixvox / create_tar.py
Lauler's picture
file to create the train/val/test splits
51e0d66
raw
history blame
4.12 kB
import tarfile
import os
import shutil
import multiprocessing as mp
from pathlib import Path
from tqdm import tqdm
import pandas as pd
df = pd.read_parquet("df_train_v2.parquet")
df["filename_full"] = "/home/fatrek/data_network/faton/riksdagen_anforanden/data/rixvox_v2/" + df["filename"]
df = df.rename(columns={"sex": "gender"})
# Group by intressent_id and count occurences of each id in the dataset, keep the columns speaker
# and intressent_id and sort by the count of occurences
df["speaker_total_hours"] = df.groupby(["speaker", "party"])["duration"].transform("sum") / 3600
df_hours = df.groupby(["speaker", "party"]).first().sort_values("speaker_total_hours", ascending=False).reset_index()
df_hours = df_hours.sample(frac=1, random_state=1337) # Shuffle the rows
# Set train equals to True until the cumulative sum of speaker_total_hours is 98% of the total
df_hours["train"] = df_hours["speaker_total_hours"].cumsum() / df_hours["speaker_total_hours"].sum() < 0.98
# Valid equals True until cumulative sum is 1% of the total
df_hours["valid"] = False
df_hours.loc[df_hours["train"] == False, "valid"] = (
df_hours[df_hours["train"] == 0]["speaker_total_hours"].cumsum() / df_hours["speaker_total_hours"].sum() < 0.01
)
df_hours["test"] = (df_hours["train"] == False) & (df_hours["valid"] == False) # The rest is test
# Create splits
df_train = pd.merge(df, df_hours.loc[df_hours["train"], ["speaker", "party"]], on=["speaker", "party"], how="inner")
df_valid = pd.merge(df, df_hours.loc[df_hours["valid"], ["speaker", "party"]], on=["speaker", "party"], how="inner")
df_test = pd.merge(df, df_hours.loc[df_hours["test"], ["speaker", "party"]], on=["speaker", "party"], how="inner")
def split_creator(df, observations_per_shard, shard_name):
df["shard"] = range(0, len(df))
df["shard"] = df["shard"] // observations_per_shard
df["shard"] = shard_name + "_" + df["shard"].astype(str)
return df["shard"]
df_train["shard"] = split_creator(df_train, 6500, "train")
df_valid["shard"] = split_creator(df_valid, 6500, "dev")
df_test["shard"] = split_creator(df_test, 6500, "test")
df_train["nr_words"] = df_train["text"].str.split().str.len()
df_train = df_train[df_train["nr_words"] <= 160].reset_index(drop=True)
df_train = df_train.drop(columns="nr_words")
def create_tar(df, data_folder="/home/fatrek/data_network/faton/rixvox/data"):
shard_filename = df["shard"].reset_index(drop=True).values[0]
shard_filename = shard_filename + ".tar.gz"
split = df["shard"].reset_index(drop=True).str.extract(r"(.*)_")[0][0] # train_0 -> train
os.makedirs(os.path.join(data_folder, split), exist_ok=True)
print(f"Creating tarfile: {os.path.join(data_folder, split, shard_filename)}")
with tarfile.open(os.path.join(data_folder, split, shard_filename), "w:gz") as tar:
for filename in df["filename_full"].values:
tar.add(Path(filename), arcname=Path(filename).relative_to(Path(filename).parent.parent), recursive=False)
# Group by shard and split dataframes in to several dataframes in list
groups = df_train.groupby("shard")
df_train_list = [groups.get_group(x) for x in groups.groups]
groups = df_valid.groupby("shard")
df_valid_list = [groups.get_group(x) for x in groups.groups]
groups = df_test.groupby("shard")
df_test_list = [groups.get_group(x) for x in groups.groups]
data_folder = "/home/fatrek/data_network/faton/RixVox/data"
# for shard in df_train_list:
# create_tar(shard, data_folder)
with mp.Pool(16) as pool:
pool.map(create_tar, df_train_list)
with mp.Pool(1) as pool:
pool.map(create_tar, df_valid_list)
pool.map(create_tar, df_test_list)
df_train = df_train.drop(columns=["shard", "filename_full", "file_size"])
df_valid = df_valid.drop(columns=["shard", "filename_full", "file_size"])
df_test = df_test.drop(columns=["shard", "filename_full", "file_size"])
df_train.to_parquet(os.path.join("data", "train_metadata.parquet"), index=False)
df_valid.to_parquet(os.path.join("data", "dev_metadata.parquet"), index=False)
df_test.to_parquet(os.path.join("data", "test_metadata.parquet"), index=False)