Datasets:
file to create the train/val/test splits
Browse files- create_tar.py +91 -0
create_tar.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tarfile
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import multiprocessing as mp
|
5 |
+
from pathlib import Path
|
6 |
+
from tqdm import tqdm
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
df = pd.read_parquet("df_train_v2.parquet")
|
10 |
+
df["filename_full"] = "/home/fatrek/data_network/faton/riksdagen_anforanden/data/rixvox_v2/" + df["filename"]
|
11 |
+
df = df.rename(columns={"sex": "gender"})
|
12 |
+
|
13 |
+
# Group by intressent_id and count occurences of each id in the dataset, keep the columns speaker
|
14 |
+
# and intressent_id and sort by the count of occurences
|
15 |
+
|
16 |
+
df["speaker_total_hours"] = df.groupby(["speaker", "party"])["duration"].transform("sum") / 3600
|
17 |
+
df_hours = df.groupby(["speaker", "party"]).first().sort_values("speaker_total_hours", ascending=False).reset_index()
|
18 |
+
df_hours = df_hours.sample(frac=1, random_state=1337) # Shuffle the rows
|
19 |
+
|
20 |
+
# Set train equals to True until the cumulative sum of speaker_total_hours is 98% of the total
|
21 |
+
df_hours["train"] = df_hours["speaker_total_hours"].cumsum() / df_hours["speaker_total_hours"].sum() < 0.98
|
22 |
+
# Valid equals True until cumulative sum is 1% of the total
|
23 |
+
df_hours["valid"] = False
|
24 |
+
df_hours.loc[df_hours["train"] == False, "valid"] = (
|
25 |
+
df_hours[df_hours["train"] == 0]["speaker_total_hours"].cumsum() / df_hours["speaker_total_hours"].sum() < 0.01
|
26 |
+
)
|
27 |
+
df_hours["test"] = (df_hours["train"] == False) & (df_hours["valid"] == False) # The rest is test
|
28 |
+
|
29 |
+
# Create splits
|
30 |
+
df_train = pd.merge(df, df_hours.loc[df_hours["train"], ["speaker", "party"]], on=["speaker", "party"], how="inner")
|
31 |
+
df_valid = pd.merge(df, df_hours.loc[df_hours["valid"], ["speaker", "party"]], on=["speaker", "party"], how="inner")
|
32 |
+
df_test = pd.merge(df, df_hours.loc[df_hours["test"], ["speaker", "party"]], on=["speaker", "party"], how="inner")
|
33 |
+
|
34 |
+
|
35 |
+
def split_creator(df, observations_per_shard, shard_name):
|
36 |
+
df["shard"] = range(0, len(df))
|
37 |
+
df["shard"] = df["shard"] // observations_per_shard
|
38 |
+
df["shard"] = shard_name + "_" + df["shard"].astype(str)
|
39 |
+
return df["shard"]
|
40 |
+
|
41 |
+
|
42 |
+
df_train["shard"] = split_creator(df_train, 6500, "train")
|
43 |
+
df_valid["shard"] = split_creator(df_valid, 6500, "dev")
|
44 |
+
df_test["shard"] = split_creator(df_test, 6500, "test")
|
45 |
+
|
46 |
+
df_train["nr_words"] = df_train["text"].str.split().str.len()
|
47 |
+
df_train = df_train[df_train["nr_words"] <= 160].reset_index(drop=True)
|
48 |
+
df_train = df_train.drop(columns="nr_words")
|
49 |
+
|
50 |
+
|
51 |
+
def create_tar(df, data_folder="/home/fatrek/data_network/faton/rixvox/data"):
|
52 |
+
shard_filename = df["shard"].reset_index(drop=True).values[0]
|
53 |
+
shard_filename = shard_filename + ".tar.gz"
|
54 |
+
split = df["shard"].reset_index(drop=True).str.extract(r"(.*)_")[0][0] # train_0 -> train
|
55 |
+
os.makedirs(os.path.join(data_folder, split), exist_ok=True)
|
56 |
+
|
57 |
+
print(f"Creating tarfile: {os.path.join(data_folder, split, shard_filename)}")
|
58 |
+
with tarfile.open(os.path.join(data_folder, split, shard_filename), "w:gz") as tar:
|
59 |
+
for filename in df["filename_full"].values:
|
60 |
+
tar.add(Path(filename), arcname=Path(filename).relative_to(Path(filename).parent.parent), recursive=False)
|
61 |
+
|
62 |
+
|
63 |
+
# Group by shard and split dataframes in to several dataframes in list
|
64 |
+
groups = df_train.groupby("shard")
|
65 |
+
df_train_list = [groups.get_group(x) for x in groups.groups]
|
66 |
+
groups = df_valid.groupby("shard")
|
67 |
+
df_valid_list = [groups.get_group(x) for x in groups.groups]
|
68 |
+
groups = df_test.groupby("shard")
|
69 |
+
df_test_list = [groups.get_group(x) for x in groups.groups]
|
70 |
+
|
71 |
+
|
72 |
+
data_folder = "/home/fatrek/data_network/faton/RixVox/data"
|
73 |
+
|
74 |
+
# for shard in df_train_list:
|
75 |
+
# create_tar(shard, data_folder)
|
76 |
+
|
77 |
+
with mp.Pool(16) as pool:
|
78 |
+
pool.map(create_tar, df_train_list)
|
79 |
+
|
80 |
+
with mp.Pool(1) as pool:
|
81 |
+
pool.map(create_tar, df_valid_list)
|
82 |
+
pool.map(create_tar, df_test_list)
|
83 |
+
|
84 |
+
|
85 |
+
df_train = df_train.drop(columns=["shard", "filename_full", "file_size"])
|
86 |
+
df_valid = df_valid.drop(columns=["shard", "filename_full", "file_size"])
|
87 |
+
df_test = df_test.drop(columns=["shard", "filename_full", "file_size"])
|
88 |
+
|
89 |
+
df_train.to_parquet(os.path.join("data", "train_metadata.parquet"), index=False)
|
90 |
+
df_valid.to_parquet(os.path.join("data", "dev_metadata.parquet"), index=False)
|
91 |
+
df_test.to_parquet(os.path.join("data", "test_metadata.parquet"), index=False)
|