Id
float64
1
12
Title
stringclasses
11 values
Content
stringclasses
11 values
View
float64
0
1.52k
PublishTime
float64
0
1,695B
Site
stringclasses
2 values
1
如何构建批流一体数据融合平台的一致性语义保证?-阿里云开发者社区
作者:陈肃 整理:周奇,Apache Flink 社区志愿者 本文根据陈肃老师在 Apache Kafka x Flink Meetup 深圳站的分享整理而成,文章首先将从数据融合角度,谈一下 DataPipeline 对批流一体架构的看法,以及如何设计和使用一个基础框架。其次,数据的一致性是进行数据融合时最基础的问题。如果数据无法实现一致,即使同步再快,支持的功能再丰富,都没有意义。 另外,DataPipeline 目前使用的基础框架为 Kafka Connect。为实现一致性的语义保证,我们做了一些额外工作,希望对大家有一定的参考意义。 最后,会提一些我们在应用 Kafka Connect 框架时,遇到的一些现实的工程问题,以及应对方法。尽管大家的场景、环境和数据量级不同,但也有可能会遇到这些问题。希望对大家的工作有所帮助。 下图来自 Flink 官网。传统的数据融合通常基于批模式。在批的模式下,我们会通过一些周期性运行的 ETL JOB,将数据从关系型数据库、文件存储向下游的目标数据库进行同步,中间可能有各种类型的转换。 另一种是 Data Pipeline 模式。与批模式相比相比, 其最核心的区别是将批量变为实时:输入的数据不再是周期性的去获取,而是源源不断的来自于数据库的日志、消息队列的消息。进而通过一个实时计算引擎,进行各种聚合运算,产生输出结果,并且写入下游。 现代的一些处理框架,包括 Flink、Kafka Streams、Spark,或多或少都能够支持批和流两种概念。只不过像 Kafka,其原生就是为流而生,所以如果基于 Kafka Connect 做批流一体,你可能需要对批量的数据处理做一些额外工作,这是我今天重点要介绍的。 如果问题简化到你只有一张表,可能是一张 MySQL 的表,里面只有几百万行数据,你可能想将其同步到一张 Hive 表中。基于这种情况,大部分问题都不会遇到。因为结构是确定的,数据量很小,且没有所谓的并行化问题。 但在一个实际的企业场景下,如果做一个数据融合系统,就不可避免要面临几方面的挑战: 第一,“动态性” 数据源会不断地发生变化,主要归因于:表结构的变化,表的增减。针对这些情况,你需要有一些相应的策略进行处理。 第二,“可伸缩性” 任何一个分布式系统,必须要提供可伸缩性。因为你不是只同步一张表,通常会有大量数据同步任务在进行着。如何在一个集群或多个集群中进行统一的调度,保证任务并行执行的效率,这是一个要解决的基本问题。 第三,“容错性” 在任何环境里你都不能假定服务器是永远在正常运行的,网络、磁盘、内存都有可能发生故障。这种情况下一个 Job 可能会失败,之后如何进行恢复?状态能否延续?是否会产生数据的丢失和重复?这都是要考虑的问题。 第四,“异构性” 当我们做一个数据融合项目时,由于源和目的地是不一样的,比如,源是 MySQL,目的地是 Oracle,可能它们对于一个字段类型定义的标准是有差别的。在同步时,如果忽略这些差异,就会造成一系列的问题。 第五,“一致性” 一致性是数据融合中最基本的问题,即使不考虑数据同步的速度,也要保证数据一致。数据一致性的底线为:数据先不丢,如果丢了一部分,通常会导致业务无法使用;在此基础上更好的情况是:源和目的地的数据要完全一致,即所谓的端到端一致性,如何做到呢? 目前在做这样的平台时,业界比较公认的有两种架构:一种是 Lambda 架构,Lambda 架构的核心是按需使用批量和流式的处理框架,分别针对批式和流式数据提供相应的处理逻辑。最终通过一个服务层进行对外服务的输出。 为什么我们认为 Lambda 架构是批流一体化的必然要求?这好像看起来是矛盾的(与之相对,还有一种架构叫 Kappa 架构,即用一个流式处理引擎解决所有问题)。 实际上,这在很大程度来自于现实中用户的需求。DataPipeline 在刚刚成立时只有一种模式,只支持实时流同步,在我们看来这是未来的一种趋势。 但后来发现,很多客户实际上有批量同步的需求。比如,银行在每天晚上可能会有一些月结、日结,证券公司也有类似的结算服务。基于一些历史原因,或出于对性能、数据库配置的考虑,可能有的数据库本身不能开 change log。所以实际上并不是所有情况下都能从源端获取实时的流数据。 考虑到上述问题,我们认为一个产品在支撑数据融合过程中,必须能同时支撑批量和流式两种处理模式,且在产品里面出于性能和稳定性考虑提供不同的处理策略,这才是一个相对来说比较合理的基础架构。 具体到做这件事,还可以有两种基础的应用模式。假如我需要将数据从 MySQL 同步到 Hive,可以直接建立一个 ETL 的 JOB(例如基于 Flink),其中封装所有的处理逻辑,包括从源端读取数据,然后进行变换写入目的地。在将代码编译好以后,就可以放到 Flink 集群上运行,得到想要的结果。这个集群环境可以提供所需要的基础能力,刚才提到的包括分布式,容错等。 另一种模式是 ETL JOB 本身输入输出实际上都是面对消息队列的,实际上这是现在最常使用的一种模式。在这种模式下,需要通过一些独立的数据源和目的地连接器,来完成数据到消息队列的输入和输出。ETL JOB 可以用多种框架实现,包括 Flink、Kafka Streams 等,ETL JOB 只和消息队列发生数据交换。 DataPipeline 选择 MQ 模式,主要有几点考虑: 第一 ,在我们产品应用中有一个非常常见的场景:要做数据的一对多分发。数据要进行一次读取,然后分发到各种不同的目的地,这是一个非常适合消息队列使用的分发模型。 第二 ,有时会对一次读取的数据加不同的处理逻辑,我们希望这种处理不要重新对源端产生一次读取。所以在多数情况下,都需将数据先读到消息队列,然后再配置相应的处理逻辑。 第三 ,Kafka Connect 就是基于 MQ 模式的,它有大量的开源连接器。基于 Kafka Connect 框架,我们可以重用这些连接器,节省研发的投入。 第四 ,当你把数据抽取跟写入目的地,从处理逻辑中独立出来之后,便可以提供更强大的集成能力。因为你可以在消息队列上集成更多的处理逻辑,而无需考虑重新写整个 Job。 相应而言,如果你选择将 MQ 作为所有 JOB 的传输通道,就必须要克服几个缺点: 第一 ,所有数据的吞吐都经过 MQ,所以 MQ 会成为一个吞吐瓶颈。 第二 ,因为是一个完全的流式架构,所以针对批量同步,你需要引入一些边界消息来实现一些批量控制。 第三 ,Kafka 是一个有持久化能力的消息队列,这意味着数据留存是有极限的。比如,你将源端的读到 Kafka Topic 里面,Topic 不会无限的大,有可能会造成数据容量超限,导致一些数据丢失。 第四 ,当批量同步在中间因为某种原因被打断,无法做续传时,你需要进行重传。在重传过程中,首先要将数据进行清理,如果基于消息队列模式,清理过程就会带来额外的工作。你会面临两个困境:要么清空原有的消息队列,要么你创造新的消息队列。这肯定不如像直接使用一些批量同步框架那样来的直接。 先简单介绍一下用户对于数据同步方面的一些基本要求: 第一种需求,批量同步需要以一种事务性的方式完成同步 无论是同步一整块的历史数据,还是同步某一天的增量,该部分数据到目的地,必须是以事务性的方式出现的。而不是在同步一半时,数据就已经在目的地出现了,这可能会影响下游的一些计算逻辑。 第二种需求,流式数据尽可能快的完成同步 大家都希望越快越好,但相应的,同步的越快,吞吐量有可能因为你的参数设置出现相应的下降,这可能需要有一个权衡。 第三种需求,批量和流式可能共存于一个 JOB 作为一个数据融合产品,当用户在使用DataPipeline时,通常需要将存量数据同步完,后面紧接着去接增量。然后存量与增量之间需要进行一个无缝切换,中间的数据不要丢、也不要多。 **第四种需求,按需灵活选择一致性语义保证 ** DataPipeline 作为一个产品,在客户的环境中,我们无法对客户数据本身的特性提出强制要求。我们不能要求客户数据一定要有主键或者有唯一性的索引。所以在不同场景下,对于一致性语义保证,用户的要求也不一样的: 比如在有主键的场景下,一般我们做到至少有一次就够了,因为在下游如果对方也是一个类似于关系型数据库这样的目的地,其本身就有去重能力,不需要在过程中间做一个强一致的保证。但是,如果其本身没有主键,或者其下游是一个文件系统,如果不在过程中间做额外的一致性保证,就有可能在目的地产生多余的数据,这部分数据对于下游可能会造成非常严重的影响。 如果要解决端到端的数据一致性,我们要处理好几个基本环节: **第一,在源端做一个一致性抽取 ** 一致性抽取是什么含义?即当数据从通过数据连接器写入到 MQ 时,和与其对应的 offset 必须是以事务方式进入 MQ 的。 第二,一致性处理 如果大家用过 Flink,Flink 提供了一个端到端一致性处理的能力,它是内部通过 checkpoint 机制,并结合 Sink 端的二阶段提交协议,实现从数据读取处理到写入的一个端到端事务一致性。其它框架,例如 Spark Streaming 和 Kafka Streams 也有各自的机制来实现一致性处理。 第三,一致性写入 在 MQ 模式下,一致性写入,即 consumer offset 跟实际的数据写入目的时,必须是同时持久化的,要么全都成功,要么全部失败。 第四,一致性衔接 在 DataPipeline 的产品应用中,历史数据与实时数据的传输有时需要在一个任务中共同完成。所以产品本身需要有这种一致性衔接的能力,即历史数据和流式数据,必须能够在一个任务中,由程序自动完成它们之间的切换。 Kafka Connect 如何保证数据同步的一致性?就目前版本,Kafka Connect 只能支持端到端的 at least once,核心原因在于,在 Kafka Connect 里面,其 offset 的持久化与数据发送本身是异步完成的。这在很大程度上是为了提高其吞吐量考虑,但相应产生的问题是,如果使用 Kafka Connect,框架本身只能为你提供 at least once 的语义保证。 在该模式下,如果没有通过主键或下游应用进行额外地去重,同步过程当中的数据会在极端情况下出现重复,比如源端发送出一批数据已经成功,但 offset 持久化失败了,这样在任务恢复之后,之前已经发送成功的数据会再次重新发送一批,而下游对这种现象完全是不知情的。目的端也是如此,因为 consumer 的 offset 也是异步持久化,就会到导致有可能数据已经持久化到 Sink,但实际上 consumer offset 还没有推进。这是我们在应用原生的 Kafka Connect 框架里遇到最大的两个问题。 DataPipeline 如何解决上述问题?首先,需要用协议的方式保证每一步都做成事务。一旦做成事务,由于每个环节都是解耦的,其最终数据就可以保证一致性。下图为二阶段提交协议的最基础版本,接下来为大家简单介绍一下。 首先 ,在二阶段提交协议中,对于分布式事务的参与方,在 DataPipeline 的场景下为数据写入与 offset 写入,这是两个独立组件。两者之间的写入操作由 Coordinator 进行协调。第一步是一个 prepare 阶段,每一个参与方会将数据写入到自己的目的地,具体持久化的位置取决于具体应用的实现。 第二步 ,当 prepare 阶段完成之后,Coordinator 会向所有参与者发出 commit 指令,所有参与者在完成 commit 之后,会发出一个 ack,Coordinator 收到 ack 之后,事务就完成了。如果出现失败,再进行相应的回滚操作。其实在分布式数据库的设计领域中,单纯应用一个二阶段提交协议会出现非常多的问题,例如 Coordinator 本身如果不是高可用的,在过程当中就有可能出现事务不一致的问题。 所以应用二阶段提交协议,最核心的问题是如何保证 Coordinator 高可用。所幸在大家耳熟能详的各种框架里,包括 Kafka 和 Flink,都能够通过分布式一致协议实现 Coordinator 高可用,这也是为什么我们能够使用二阶段提交来保证事务性。 关于 Kafka 事务消息原理,网上有很多资料,在此简单说一下能够达到的效果。Kafka 通过二阶段提交协议,最终实现了两个最核心的功能。 第一,一致性抽取 上文提到数据要被发送进 Kafka,同时 offset 要被持久化到 Kafka,这是对两个不同 Topic 的写入。通过利用 Kafka 事务性消息,我们能够保证 offset 的写入和数据的发送是一个事务。如果 offset 没有持久化成功,下游是看不到这批数据的,这批数据实际上最终会被丢弃掉。 所以对于源端的发送,我们对 Kafka Connect 的 Source Worker 做了一些改造,让其能够提供两种模式,如果用户的数据本身是具备主键去重能力的,就可以继续使用 Kafka Connect 原生的模式。 如果用户需要强一致时,首先要开启一个源端的事务发送功能,这就实现了源端的一致性抽取。其可以保证数据进 Kafka 一端不会出现数据重复。这里有一个限制,即一旦要开启一致性抽取,根据 Kafka 必须要将 ack 设置成 all,这意味着一批数据有多少个副本,其必须能够在所有的副本所在的 broker 都已经应答的情况下,才可以开始下一批数据的写入。尽管会造成一些性能上的损失,但为了实现强一致,你必须要接受这一事实。 **第二,一致性处理 ** 事务性消息最早就是为 Kafka Streams 设计和准备的。可以写一段 Kafka Streams 应用,从 Kafka 里读取数据,然后完成转化逻辑,进而将结果再输出回 Kafka。Sink 端再从 Kafka 中消费数据,写入目的地。 之前简要谈了一下二阶段提交协议的原理,DataPipeline 实现的方式不算很深奥,基本是业界的一种统一方式。其中最核心的点是,我们将 consumer offset 管理从 Kafka Connect 框架中独立出来,实现事务一致性提交。另外,在 Sink 端封装了一个类似于 Flink 的 TwoPhaseCommitSinkFunction 方式,其定义了 Sink 若要实现一个二阶段提交所必须要实现的一些功能。 DataPipeline 将 Sink Connector 分为两类,一类是 Connector 本身具备了事务能力,比如绝大部分的关系型数据库,只需将 offset 跟数据同时持久化到目的地即可。额外的可能需要有一张 offset 表来记录提交的 offset。还有一类 Sink 不具备事务性能力,类似像 FTP、OSS 这些对象存储,我们需要去实现一个二阶段提交协议,最终才能保证 Sink 端的数据能够达到一致性写入。 关于批量数据与实时数据如何衔接的问题,主要有两个关键点: 第一 ,当开始进行一个批量数据同步时,以关系型数据库为例,你应该拿到当时一个整体数据的 Snapshot,并在一个事务中同时记录当时对应的日志起始值。以 MySQL 为例,当要获取一个 Binlog 起始偏移量时,需要开启一个 START TRANSACTION WITH CONSISTENT SNAPSHOT,这样才能保证完成全量之后,后期的读取增量日志同步不会产生重复数据。 第二 ,如果采用增量同步模式,则必须根据实际的数据业务领域,采用一种比较灵活的增量表达式,才能避免读到写到一半的数据。比如在你的数据中,其 ID 是一个完全自增,没有任何重复的可能,此时只需每次单纯的大于上一次同步的最后一条记录即可。 但如果是一个时间戳,无论精度多高,都有可能在数据库产生相同的时间戳,所以安全的做法是每次迭代时,取比当前时间稍微少一点,保证留出一个安全时间,比如五秒甚至一分钟,这样你永远不会读到一些时间戳可能会产生冲突的这部分数据,避免遗漏数据。这是一个小技巧,但如果没有注意,在使用过程中就会产生各种各样的问题。 还有一点是上面提及的,如何能够在一个流式框架实现批量同步的一致性,对于所有的流式框架,需要引入一些边界条件来标志着一次批量同步的开始和结束。DataPipeline 在每次批量发送开始和结束后,会引入一些控制量信号,然后在 Sink端进行相应处理。同样为了保证事务一致性,在 Sink 端处理这种批量同步时,依然要做一些类似于二阶段提交这样的方式,避免在一些极端情况下出现数据不一致的问题。 上文介绍的是 DataPipeline 如何基于 Kafka Connect 做事务同步一致性的方案。 DataPipeline 在使用 Kafka Connect 过程中遇到过一些问题,目前大部分已经有一些解决方案,还有少量问题,可能需要未来采用新的方法/框架才能够更好的解决。 第一,反压的问题 Kafka Connect 设计的逻辑是希望实现源端和目的端完全解耦,这种解偶本身是一个很好的特性。但也带来一些问题,源和目的地的 task 完全不知道彼此的存在。刚才我提到 Kafka 有容量限制,不能假定在一个客户环境里面,会给你无限的磁盘来做缓冲。通常我们在客户那边默认 Topic 为 100G 的容量。如果源端读的过快,大量数据会在 Kafka 里堆积,目的端没有及时消费,就有可能出现数据丢失,这是一个非常容易出现的问题。 怎么解决?DataPipeline 作为一个产品,在 Kafka Connect 之上,做了控制层,控制层中有像 Manager 这样的逻辑组件,会监控每一个 Topic 消费的 lag,当达到一定阈值时,会对源端进行限速,保证源和目的地尽可能匹配。 第二,资源隔离 Connect Worker 集群无法对 task 进行资源预留,多个 task 并行运行会相互影响。Worker 的 rest 接口是队列式的,单个集群任务过多会导致启停缓慢。 我们正在考虑利用外部的资源调度框架,例如 K8s 进行 worker 节点管理;以及通过路由规则将不同优先级任务运行在不同的 worker 集群上,实现预分配和共享资源池的灵活配置。 第三,Rebalance 在 2.3 版本以前,Kafka Connect 的 task rebalance 采用 stop-the-world 模式,牵一发动全身。在 2.3 版本之后,已经做了非常大优化,改为了具有粘性的 rebalance。所以如果使用 Kafka Connect,强烈推荐一定要升级到 2.3 以上的版本,也就是目前的最新版本。 基于 MQ 模式的架构,针对大批量数据的同步,实际上还是容易出现性能瓶颈。主要瓶颈是在 MQ 的集群,我们并不能在客户环境里无限优化 Kafka 集群的性能,因为客户提供的硬件资源有限。所以一旦客户给定了硬件资源,Kafka 吞吐的上限就变为一个固定值。所以针对批量数据的同步,可能未来会考虑用内存队列替代 MQ。 同时,会采用更加灵活的 Runtime,主要是为了解决刚才提到的预分配资源池和共享资源池的统一管理问题。 另外,关于数据质量管理,实际上金融类客户对数据质量的一致性要求非常高。所以对于一些对数据质量要求非常高的客户,我们考虑提供一些后校验功能,尤其是针对批量同步。 ▼ Apache Flink 社区推荐 ▼ Apache Flink 及大数据领域顶级盛会 Flink Forward Asia 2019 重磅开启, 大会议程精彩上线 ,了解 Flink Forward Asia 2019 的更多信息,请查看: https://developer.aliyun.com/special/ffa2019 首届 Apache Flink 极客挑战赛重磅开启,聚焦机器学习与性能优化两大热门领域,40万奖金等你拿,加入挑战请点击: https://tianchi.aliyun.com/markets/tianchi/flink2019
0
0
Ali
2
Apache Flink 在同程艺龙实时计算平台的研发与应用实践-阿里云开发者社区
本文主要介绍 Apache Flink 在同程艺龙的应用实践,从当前同程艺龙实时计算平台现状、建设过程、易用性提升、稳定性优化四方面分享了同城艺龙实时计算平台的建设经验,供大家参考。 在 2015 年初,为了能够采集到用户在 PC,APP 等平台上的行为轨迹,我们开始开发实时应用。那时可选的技术架构还是比较少的,实时计算框架这块,当时比较主流的有 Storm 和 Spark-streaming。综合考虑实时性,接入难度,我们最终选择使用基于 Storm 构建了第一个版本的用户行为轨迹采集框架。后续随着实时业务的增多,我们发现 Storm 已经远远不能满足我们对数据端到端处理准确一次(Exactly-Once)语义的需求,并且对于流量高峰来临时也不能平滑的背压(BackPressure),在大规模集群的支持上 Storm 也存在问题。经过充分的调研后,我们在 2018 年初选择基于 Flink 开发同程艺龙新一代实时计算平台。 目前实时计算平台已支撑近千个实时任务运行,服务公司的市场、机票、火车票、酒店、金服、国旅、研发等各个业务条线。 下面主要结合实时计算平台来分享下我们在 Flink 落地过程中的一些实践经验及思考。 在开发实时计算平台前,我们有过大量实时应用业务的经验,我们发现 使用实时计算的业务方主要有两类: 另一部分业务方主要是数据开发&挖掘 ,他们的业务场景更复杂,业务需求变化及应用迭代很频繁,更关注实时应用的性能,他们喜欢用编程语言如:Java,scala 来开发实时应用。 为了更好的为两类用户提供支持,实时计算平台同时支持两种类型的任务:FlinkSQL 和 FlinkStream。平台整体架构如图所示: 上图的后端 RTC-FlinkSQL 模块即是用来执行提交 FlinkSQL 任务的服务,SQL 属于声明式语言,经过 30、40 年的发展,具有很高的易用性、灵活性和表达性。虽然 Flink 提供了 Table & SQL API,但是我们当时基于的 Flink 1.4 及 1.6 版本本身语法也不支持像 Create Table 这样的 DDL 语法,并且在需要关联到外部数据源的时候 Flink 也没有提供 SQL 相关的实现方式。 此外根据其提供的 API 接口编写 TableSource 和 TableSink 异常繁琐,不仅要了解 Flink 各种 Operator 的 API,还要对各个组件的相关接入和调用方式有一定了解(比如 Kafka、RocketMQ、Elasticsearch、HBase、HDFS 等),因此对于只熟悉 SQL 进行数据分析的人员直接编写 FlinkSQL 任务需要较大的学习成本。 鉴于以上原因,我们构建了实时计算平台的 RTC-FlinkSQL 开发模块并对 FlinkSQL 进行扩展,让这部分用户在使用 FlinkSQL 的时候只需要关心做什么,而不需要关心怎么做。不需要过多的关心程序的实现,而是专注于业务逻辑。 ※ validator :从 SqlNode 中提取执行的 SQL 和 Source、Sink、维表对应的配置信息 ※ executor :利用 validator 获取的信息借助 - Flink 的 API 得到对应的JobGraph 通过 Yarn Client 提交构建好的 Flink 任务,提交成功返回 ApplicationID 这里主要是根据上述 validator 阶段获取的 Source 配置信息,根据指定参数实例化出该对象,然后调用 registerTableSource 方法将 TableSource 注册到 environment,从而完成了源表的注册。 Flink Table 输出 Operator 基类是 TableSink,我们这里继承的是 AppendStreamTableSink,根据上述 validator 阶段获取的 Sink 配置信息,根据指定参数实例化出该对象,然后调用 registerTableSink 方法将 TableSink 注册到 environment。 继承 ScalarFunction 或者继承 TableFunction,需要从用户提交的 SQL 中获取要使用的自定义函数类名, 之后通过反射获取实例,判断自定义 Function 属于上述哪种类型,然后调用 TableEnvironment.registerFunction 即可完成了 UDF 的注册,最后用户就可以在 SQL中使用自定义的 UDF。 支持维表关联 使用 Calcite 对上述 validator 阶段获取的可执行 SQL 进行解析,将 SQL 解析出一个语法树,通过迭代的方式,搜索到对应的维表,并结合上述 validator 阶段获取的维表信息实例化对应的 SideOperator 对象,之后通过 RichAsyncFunction 算子生成新的 DataStream,最后重新注册表并执行其他 SQL,我们同时支持账号密码直连和公司研发提供的 DAL 方式。 如下图所示,可以方便地在实时计算平台上 FlinkSQL 编辑器内完成 FlinkSQL 任务的开发,目前线上运行有 500+ 的 FlinkSQL 任务在运行。 除了 FlinkSQL 外,平台上还有一半的实时任务是一些业务场景更复杂,通过代码来编写开发的任务。对此我们提供了 RTC-FlinkStream 模块来让用户上传自己本地打包后的 FAT-JAR,通过资源管理平台来让用户对 JAR 做版本管理控制,方便用户选择运行指定的任务版本,FlinkStream 任务开发界面如图所示。 这部分任务有些对资源使用需求比较大,我们提供了任务容器配置的参数来让用户灵活的配置其 Task 并发,并且提供了自定义时间周期触发保存点(savepoint)的功能。 平台开发难度相对低,难的是如何提升平台的易用性,因为开源组件如 Apache Flink 核心关注数据的处理流程,对于易用性这部分稍显不足,所以在实时平台功能开发过程中要修改 Flink 组件的源码来提升其易用性。 以 Flink 任务运行的指标(Metrics)监控来说,当 Flink 程序提交至集群之后,我们需要的是收集任务的实时运行 Metrics 数据 ,通过这些数据可以实时监控任务的运行状况,例如,算子的 CPU 耗时、JVM 内存、线程数等。这些实时 Metrics 指标对任务的运维、调优等有着至关重要的作用,方便及时发现报警,进行调整。 通过对比现有的指标采集系统,包括 InfluxDB、StatsD、Datadog 等系统再结合公司的指标收集系统,我们最终决定采用 Prometheus 作为指标系统。但是在开发过程中我们发现 Flink 只支持 Prometheus 的拉模式收集数据,此模式需要提前知道集群的运行主机以及端口等信息,适合于单集群模式。 而作为企业用户,更多的是将 Flink 任务部署在 YARN 等集群上,此时,Flink 的 JobManager、TaskManager 的运行是由 YARN 统一调度,主机以及是端口都是动态的,而 Flink 只支持的拉模式难以满足我们需求。所以我们通过增加 Prometheus 的 Pushgateway 来进行指标的收集,此模式属于推模式,架构如图所示。同时,我们也积极的向社区贡献了这个新特性[4] ,目前 PR 已经被合并,详情见 FLINK-9187。 在完成 Flink Pushgateway 的相关工作后,为了方便用户查看自己 Flink 任务的吞吐量,处理延迟等重要监控信息,我们为用户配置了监控页面 ,方便用户在实时计算平台上快速定位出任务性能问题,如通过我们实时平台监控页面提供的图表,具体指标为 flink_taskmanager_job_task_buffers_outPoolUsage 来快速判断实时任务的 Operator 是否存在反压情况[2]。 在使用过程中我们也发现了 Flink Metrics 中衡量端到端的 Opertor Latency 的指标存在漂移,导致监控不准确问题。我们也修复了该问题[5]并反馈给了社区,详情见FLINK-11887。 提升平台易用性还有一个重要的地方就是日志 ,日志分为操作日志,启动日志,业务日志,运行历史等日志信息。其中比较难处理的就是用户代码中打印的业务日志。因为 Flink 任务是分布式执行的,不同的 TaskManager 的处理节点都会有一份日志,业务看日志要分别打开多个 TaskManager 的日志页面。 并且Flink任务是属于长运行的任务,用户代码中打印的日志是打印在 Flink WebUI 上。此时会面临一个问题,当任务运行的时间越长,日志量会越来越多,原生自带的日志页面将无法打开。为了方便用户查看日志,解决用户无法获取到实时任务的日志信息,同时也为了方便用户根据关键词进行历史日志的检索,我们在实时计算平台为用户提供了一套实时日志系统功能,开发人员可以实时地搜索任务的日志。 并且系统采用无侵入式架构,架构图见下图,在用户程序无感知的情况下,实时采集日志,并同步到 Elasticsearch 中,当业务需要检索日志时,可通过 Elasticsearch 语法进行检索。 计算组件往往处于大数据的中间位置,上游承接 MQ 等实时数据源,下游对接 HDFS、HBase 等大数据存储,通过 Flink 这些实时组件将数据源和数据目标串联在一起。为了避免混乱,这个过程往往需要通过数据血缘来做管理。然而常见的数据血缘管理的开源项目如 Apache Atlas 等并未提供对 Flink 的支持,而 Flink 自身也没有提供相应的 Hook 来抽取用户代码的中的数据源等信息。 为了解决这个问题,我们修改了 Flink Client 提交过程,在 CliFrontend 中增加一个 notify 环节,通过 ContextClassLoader 和反射在 Flink 任务提交阶段将 Flink 生成的 StreamGraph 内的各个 StreamNode 抽取出来,这样就可以在提交时候获取出用户编写的 Flink 任务代码中关键数据源等配置信息,从而为后续的 Flink 数据血缘管理提供支持。其关键代码如下: Flink 采用了 Chandy-Lamport 的快照算法来保证一致性和容错性,在实时任务的运行期间是通过 Checkpoint [1]机制来保障的。如果升级程序,重启程序,任务的运行周期结束,window 内的状态或使用 mapstate 的带状态算子(Operator)所保存的数据就会丢失了,为了解决这个问题,给用户提供平滑升级程序方案从而保障数据准确处理,我们实时计算平台提供了从外部触发 Savepoint 功能,在用户手动重启任务的时候,可以选择最近一段时间内执行成功的保存点来恢复自己的程序。平台从保存点恢复任务操作如图所示。 虽然我们提供了通用的实时计算平台,但是有些用户想使用 Flink,除此之外还需要在平台上增加些更符合其业务特点的功能,对此我们也开放了我们实时计算平台的 API 接口给到业务方,让业务根据其自身场景特点来加速实时应用的变现和落地。 前面介绍了我们在实时计算平台易用性方面如:SQL,监控,日志,血缘,保存点等功能点上做的开发工作,其实除了平台功能开发之外还有更多的工作内容是用户没有感知到的。如保障实时应用运行稳定性,在这方面我们积累了很多实践经验,与此同时我们也在 Github 上建立了 Tongcheng-Elong 组织,并将修复后的源代码贡献到 Apache 社区。其中有十几个 patch 已经被社区接收合并。接下来分享一些我们遇到的稳定性问题和提供的解决方案。 我们在集群运维过程中发现,在偶发的情况下,Flink 任务会在 YARN 集群上空跑。此时,在 YARN 层面的现象是任务处于 RUNNING 状态,但是进入到 Flink WebUI,会发现此时所有的 TaskManager 全部退出,并没有任务在运行。这个情况下,会造成的 YARN 资源的浪费,同时也给运维人员带来困扰,为什么 TaskManager 都退出了,JobManager 不退出呢?甚至给平台监控任务运行状态带来误判,认为任务还在运行,但实际任务早挂了。 这个问题比较难定位,首先发生这种情况不多,但是一旦出现影响很大。其次,没有异常堆栈信息,无法定位到具体的根本原因。我们的解决方法是通过修改源码,在多个可能的地方增加日志埋点,以观察并了解任务退出时 JobManager 所执行的处理逻辑。最终我们定位到当任务失败时,在默认的重试策略之后,会将信息归档到 HDFS 上。由于是串行执行,所以如果在归档过程中发生异常,则会中断正常处理逻辑从而导致通知 JobManager 的过程不能成功执行。具体的执行逻辑见下图。 梳理清楚逻辑之后,我们发现社区也没有修复这个问题。同样,我们也积极向社区进行提交PR修复6[8]。修复这个问题,需要通过 3 个 PR,逐步进行完善,详情见 FLINK-12246、FLINK-12219、FLINK-12247。 我们的存储组件比较多,在使用 Flink-Connector 来读写相关存储组件的如:RocketMQ、HDFS、Kudu、Elasticsearch 也发现过这些 Connector 的 Source/Sink 存在问题,我们在修复之后也提交了 PR 反馈到社区: 对于该问题的临时解决方案是在使用 Elasticsearch 6.x 的 RestHighLevelClient 的时候暂时停止使用 setBulkFlushInterval 配置, 而是通过 Flink 自身的 checkpoint 机制来触发数据定时 Flush 到 ElasticSearch Server 端。真正彻底解决办法是构建单独的线程池提供给 ReryHandler 来使用。随后我们也向 Elasticsearch 社区提交了 issue 及 PR 来修复这个问题 [10]。在这个过程中发现也顺便修复了 Flink 在任务重试时候 transport client 线程泄露[11]等问题详情见 FLINK-11235。 我们也遇到了 Flink 与 ZK 网络问题,当 Jobmanager 与 ZK 的连接中断之后,会将正在运行的任务立即停止。当集群中任务很多时,可能由于网络抖动等原因瞬断时,会导致任务的重启。而在我们集群上有上千的 Flink 应用,一旦出现网络抖动,会使得大量 Flink 任务重启,这个问题对集群和任务的稳定性影响比较大。 根本原因是 Flink 底层采用 Curator 的 LeaderLatch 做分布式锁服务,在 Curator-2.x 的版本中对于网络瞬断没有容忍性,当因为网络抖动、机器繁忙、zk集群短暂无响应都会导致 curator 将状态置为 suspended,正是这个 suspended 状态导致了所有任务的重启。 我们的解决办法是先升级 Curator 版本到 4.x[12],然后在提升版本后再用 CuratorFrameworkFactory 来构造 CuratorFramework 时,通过使用 ConnectionStateErrorPolicy 将 StandardConnectionStateErrorPolicy 替换为 SessionConnectionStateErrorPolicy,前者将 suspended 和 lost 都作为 error,后者只是将 lost 作为 error,而只有发生 error 的时候才会取消 leadership,所以在经过修改之后,在进入 suspended 状态时,不再发生 leadership 的取消和重新选举。我们把这个问题和我们的解决办法也反馈给了社区,详情见 FLINK-10052。 本文大致介绍了 Flink 在同程艺龙实时计算平台实践过程中的一些工作和踩过的坑。对于大数据基础设施来说平台是基础,除此之外还需要投入很多精力来提高 Flink 集群的易用性和稳定性,这个过程中要紧跟开源社区,因为随着同程艺龙在大数据这块应用场景越来越多,会遇到很多其它公司没有遇到甚至没有发现的问题,这个时候基础设施团队要有能力主动解决这些影响稳定性的风险点,而不是被动的等待社区来提供 patch。 由于在 Flink 在 1.8 版本之前社区方向主要集中在 Flink Stream 处理这块,我们也主要应用 Flink 的流计算来替换 storm 及 spark streaming。但是随着近期 Flink 1.9 的发布,Blink 分支合并进入 Flink 主分支,我们也打算在 Flink Batch 这块尝试一些应用来落地。 作者:同城艺龙数据中心 Flink 小分队(谢磊、周生乾、李苏兴) Reference: [1] https://www.ververica.com/blog/differences-between-savepoints-and-checkpoints-in-flink [2] https://www.cnblogs.com/AloneAli/p/10840803.html [3] https://www.cnblogs.com/AloneAli/p/10840956.html [4] https://issues.apache.org/jira/browse/FLINK-9187 [5] https://issues.apache.org/jira/browse/FLINK-11887 [6] https://issues.apache.org/jira/browse/FLINK-12246 [7] https://issues.apache.org/jira/browse/FLINK-12219 [8] https://issues.apache.org/jira/browse/FLINK-12247 [9] https://issues.apache.org/jira/browse/BAHIR-202 [10] https://github.com/elastic/elasticsearch/issues/44556 [11] https://issues.apache.org/jira/browse/FLINK-11235 [12] https://issues.apache.org/jira/browse/FLINK-10052 ▼ Apache Flink 社区推荐 ▼ Apache Flink 及大数据领域顶级盛会 Flink Forward Asia 2019 重磅开启,目前正在征集议题,限量早鸟票优惠ing。了解 Flink Forward Asia 2019 的更多信息,请查看: https://developer.aliyun.com/special/ffa2019 首届 Apache Flink 极客挑战赛重磅开启,聚焦机器学习与性能优化两大热门领域,40万奖金等你拿,加入挑战请点击: https://tianchi.aliyun.com/markets/tianchi/flink2019
0
0
Ali
3
OPPO数据中台之基石:基于Flink SQL构建实数据仓库-阿里云开发者社区
作者 | 张俊 本文整理自 2019 年 4 月 13 日在深圳举行的 Flink Meetup 会议,分享嘉宾张俊,目前担任 OPPO 大数据平台研发负责人,也是 Apache Flink contributor。本文主要内容如下: 一.OPPO 实时数仓的演进思路 1.1.OPPO 业务与数据规模 大家都知道 OPPO 是做智能手机的,但并不知道 OPPO 与互联网以及大数据有什么关系,下图概要介绍了 OPPO 的业务与数据情况: OPPO 作为手机厂商,基于 Android 定制了自己的 ColorOS 系统,当前日活跃用户超过 2 亿。围绕 ColorOS,OPPO 构建了很多互联网应用,比如应用商店、浏览器、信息流等。在运营这些互联网应用的过程中,OPPO 积累了大量的数据,上图右边是整体数据规模的演进:从 2012 年开始每年都是 2~3 倍的增长速度,截至目前总数据量已经超过 100PB,日增数据量超过 200TB。 要支撑这么大的一个数据量,OPPO 研发出一整套的数据系统与服务,并逐渐形成了自己的数据中台体系。 1.2.OPPO 数据中台 今年大家都在谈数据中台,OPPO 是如何理解数据中台的呢?我们把它分成了 4 个层次: 以上就是 OPPO 数据中台的整个体系,而数据仓库在其中处于非常基础与核心的位置。 1.3. 构建 OPPO 离线数仓 过往 2、3 年,我们的重点聚焦在离线数仓的构建。上图大致描述了整个构建过程:首先,数据来源基本是手机、日志文件以及 DB 数据库,我们基于 Apache NiFi 打造了高可用、高吞吐的接入系统,将数据统一落入 HDFS,形成原始层;紧接着,基于 Hive 的小时级 ETL 与天级汇总 Hive 任务,分别负责计算生成明细层与汇总层;最后,应用层是基于 OPPO 内部研发的数据产品,主要是报表分析、用户画像以及接口服务。此外,中间的明细层还支持基于 Presto 的即席查询与自助提数。 伴随着离线数仓的逐步完善,业务对实时数仓的诉求也愈发强烈。 1.4. 数仓实时化的诉求 对于数仓实时化的诉求,大家通常都是从业务视角来看,但其实站在平台的角度,实时化也能带来切实的好处。首先,从业务侧来看,报表、标签、接口等都会有实时的应用场景,分别参见上图左边的几个案例;其次,对平台侧来说,我们可以从三个案例来看: 第一 ,OPPO 大量的批量任务都是从 0 点开始启动,都是通过 T+1 的方式去做数据处理,这会导致计算负载集中爆发,对集群的压力很大; 第二 ,标签导入也属于一种 T+1 批量任务,每次全量导入都会耗费很长的时间; 第三 ,数据质量的监控也必须是 T+1 的,导致没办法及时发现数据的一些问题。 既然业务侧和平台侧都有实时化的这个诉求,那 OPPO 是如何来构建自己的实时数仓呢? 1.5. 离线到实时的平滑迁移 无论是一个平台还是一个系统,都离不开上下两个层次的构成:上层是 API,是面向用户的编程抽象与接口;下层是 Runtime,是面向内核的执行引擎。我们希望从离线到实时的迁移是平滑的,是什么意思呢?从 API 这层来看,数仓的抽象是 Table、编程接口是 SQL+UDF,离线数仓时代用户已经习惯了这样的 API,迁移到实时数仓后最好也能保持一致。而从 Runtime 这层来看,计算引擎从 Hive 演进到了 Flink,存储引擎从 HDFS 演进到了 Kafka。 基于以上的思路,只需要把之前提到的离线数仓 pipeline 改造下,就得到了实时数仓 pipeline。 1.6. 构建 OPPO 实时数仓 从上图可以看到,整个 pipeline 与离线数仓基本相似,只是把 Hive 替换为 Flink,把 HDFS 替换为 Kafka。从总体流程来看,基本模型是不变的,还是由原始层、明细层、汇总层、应用层的级联计算来构成。 因此,这里的核心问题是如何基于 Flink 构建出这个 pipeline,下面就介绍下我们基于 Flink SQL 所做的一些工作。 二. 基于 Flink SQL 的扩展工作 2.1.Why Flink SQL 首先,为什么要用 Flink SQL? 下图展示了 Flink 框架的基本结构,最下面是 Runtime,这个执行引擎我们认为最核心的优势是四个:第一,低延迟,高吞吐;第二,端到端的 Exactly-once;第三,可容错的状态管理;第四,Window & Event time 的支持。基于 Runtime 抽象出 3 个层次的 API,SQL 处于最上层。 Flink SQL API 有哪些优势呢?我们也从四个方面去看: 第一 ,支持 ANSI SQL 的标准; 第二 ,支持丰富的数据类型与内置函数,包括常见的算术运算与统计聚合; 第三 ,可自定义 Source/Sink,基于此可以灵活地扩展上下游; 第四 ,批流统一,同样的 SQL,既可以跑离线也可以跑实时。 那么,基于 Flink SQL API 如何编程呢?下面是一个简单的演示: 首先是定义与注册输入 / 输出表,这里创建了 2 张 Kakfa 的表,指定 kafka 版本是什么、对应哪个 topic;接下来是注册 UDF,篇幅原因这里没有列出 UDF 的定义;最后是才是执行真正的 SQL。可以看到,为了执行 SQL,需要做这么多的编码工作,这并不是我们希望暴露给用户的接口。 2.2. 基于 WEB 的开发 IDE 前面提到过,数仓的抽象是 Table,编程接口是 SQL+UDF。对于用户来说,平台提供的编程界面应该是类似上图的那种,有用过 HUE 做交互查询的应该很熟悉。左边的菜单是 Table 列表,右边是 SQL 编辑器,可以在上面直接写 SQL,然后提交执行。要实现这样一种交互方式,Flink SQL 默认是无法实现的,中间存在 gap,总结下来就 2 点: 第一 ,元数据的管理,怎么去创建库表,怎么去上传 UDF,使得之后在 SQL 中可直接引用; 第二 ,SQL 作业的管理,怎么去编译 SQL,怎么去提交作业。 在技术调研过程中,我们发现了 Uber 在 2017 年开源的 AthenaX 框架。 2.3.AthenaX:基于 REST 的 SQL 管理器 AthenaX 可以看作是一个基于 REST 的 SQL 管理器,它是怎么实现 SQL 作业与元数据管理的呢? 对于 SQL 作业提交,AthenaX 中有一个 Job 的抽象,封装了要执行的 SQL 以及作业资源等信息。所有的 Job 由一个 JobStore 来托管,它定期跟 YARN 当中处于 Running 状态的 App 做一个匹配。如果不一致,就会向 YARN 提交对应的 Job。 对于元数据管理,核心的问题是如何将外部创建的库表注入 Flink,使得 SQL 中可以识别到。实际上,Flink 本身就预留了与外部元数据对接的能力,分别提供了 ExternalCatalog 和 ExternalCatalogTable 这两个抽象。AthenaX 在此基础上再封装出一个 TableCatalog,在接口层面做了一定的扩展。在提交 SQL 作业的阶段,AthenaX 会自动将 TableCatalog 注册到 Flink,再调用 Flink SQL 的接口将 SQL 编译为 Flink 的可执行单元 JobGraph,并最终提交到 YARN 生成新的 App。 AthenaX 虽然定义好了 TableCatalog 接口,但并没有提供可直接使用的实现。那么,我们怎么来实现,以便对接到我们已有的元数据系统呢? 2.4.Flink SQL 注册库表的过程 首先,我们得搞清楚 Flink SQL 内部是如何注册库表的。整个过程涉及到三个基本的抽象:TableDescriptor、TableFactory 以及 TableEnvironment。 TableDescriptor 顾名思义,是对表的描述,它由三个子描述符构成:第一是 Connector,描述数据的来源,比如 Kafka、ES 等;第二是 Format,描述数据的格式,比如 csv、json、avro 等;第三是 Schema,描述每个字段的名称与类型。TableDescriptor 有两个基本的实现——ConnectTableDescriptor 用于描述内部表,也就是编程方式创建的表;ExternalCatalogTable 用于描述外部表。 有了 TableDescriptor,接下来需要 TableFactory 根据描述信息来实例化 Table。不同的描述信息需要不同的 TableFactory 来处理,Flink 如何找到匹配的 TableFactory 实现呢?实际上,为了保证框架的可扩展性,Flink 采用了 Java SPI 机制来加载所有声明过的 TableFactory,通过遍历的方式去寻找哪个 TableFactory 是匹配该 TableDescriptor 的。TableDescriptor 在传递给 TableFactory 前,被转换成一个 map,所有的描述信息都用 key-value 形式来表达。TableFactory 定义了两个用于过滤匹配的方法——一个是 requiredContext(),用于检测某些特定 key 的 value 是否匹配,比如 connector.type 是否为 kakfa;另一个是 supportedProperties(),用于检测 key 是否能识别,如果出现不识别的 key,说明无法匹配。 匹配到了正确的 TableFactory,接下来就是创建真正的 Table,然后将其通过 TableEnvironment 注册。最终注册成功的 Table,才能在 SQL 中引用。 2.5.Flink SQL 对接外部数据源 搞清楚了 Flink SQL 注册库表的过程,给我们带来这样一个思路:如果外部元数据创建的表也能被转换成 TableFactory 可识别的 map,那么就能被无缝地注册到 TableEnvironment。基于这个思路,我们实现了 Flink SQL 与已有元数据中心的对接,大致过程参见下图: 通过元数据中心创建的表,都会将元数据信息存储到 MySQL,我们用一张表来记录 Table 的基本信息,然后另外三张表分别记录 Connector、Format、Schema 转换成 key-value 后的描述信息。之所以拆开成三张表,是为了能够能独立的更新这三种描述信息。接下来是定制实现的 ExternalCatalog,能够读取 MySQL 这四张表,并转换成 map 结构。 2.6. 实时表 - 维表关联 到目前为止,我们的平台已经具备了元数据管理与 SQL 作业管理的能力,但是要真正开放给用户使用,还有一点基本特性存在缺失。通过我们去构建数仓,星型模型是无法避免的。这里有一个比较简单的案例:中间的事实表记录了广告点击流,周边是关于用户、广告、产品、渠道的维度表。 假定我们有一个 SQL 分析,需要将点击流表与用户维表进行关联,这个目前在 Flink SQL 中应该怎么来实现?我们有两种实现方式,一个基于 UDF,一个基于 SQL 转换,下面分别展开来讲一下。 2.7. 基于 UDF 的维表关联 首先是基于 UDF 的实现,需要用户将原始 SQL 改写为带 UDF 调用的 SQL,这里是 userDimFunc,上图右边是它的代码实现。UserDimFunc 继承了 Flink SQL 抽象的 TableFunction,它是其中一种 UDF 类型,可以将任意一行数据转换成一行或多行数据。为了实现维表关联,在 UDF 初始化时需要从 MySQL 全量加载维表的数据,缓存在内存 cache 中。后续对每行数据的处理,TableFunction 会调用 eval() 方法,在 eval() 中根据 user_id 去查找 cache,从而实现关联。当然,这里是假定维表数据比较小,如果数据量很大,不适合全量的加载与缓存,这里不做展开了。 基于 UDF 的实现,对用户和平台来说都不太友好:用户需要写奇怪的 SQL 语句,比如图中的 LATERAL TABLE;平台需要为每个关联场景定制特定的 UDF,维护成本太高。有没有更好的方式呢?下面我们来看看基于 SQL 转换的实现。 2.8. 基于 SQL 转换的维表关联 我们希望解决基于 UDF 实现所带来的问题,用户不需要改写原始 SQL,平台不需要开发很多 UDF。有一种思路是,是否可以在 SQL 交给 Flink 编译之前,加一层 SQL 的解析与改写,自动实现维表的关联?经过一定的技术调研与 POC,我们发现是行得通的,所以称之为基于 SQL 转换的实现。下面将该思路展开解释下。 首先,增加的 SQL 解析是为了识别 SQL 中是否存在预先定义的维度表,比如上图中的 user_dim。一旦识别到维表,将触发 SQL 改写的流程,将红框标注的 join 语句改写成新的 Table,这个 Table 怎么得到呢?我们知道,流计算领域近年来发展出“流表二象性”的理念,Flink 也是该理念的践行者。这意味着,在 Flink 中 Stream 与 Table 之间是可以相互转换的。我们把 ad_clicks 对应的 Table 转换成 Stream,再调用 flatmap 形成另一个 Stream,最后再转换回 Table,就得到了 ad_clicks_user。最后的问题是,flatmap 是如何实现维表关联的? Flink 中对于 Stream 的 flatmap 操作,实际上是执行一个 RichFlatmapFunciton,每来一行数据就调用其 flatmap() 方法做转换。那么,我们可以定制一个 RichFlatmapFunction,来实现维表数据的加载、缓存、查找以及关联,功能与基于 UDF 的 TableFunction 实现类似。 既然 RichFlatmapFunciton 的实现逻辑与 TableFunction 相似,那为什么相比基于 UDF 的方式,这种实现能更加通用呢?核心的点在于多了一层 SQL 解析,可以将维表的信息获取出来(比如维表名、关联字段、select 字段等),再封装成 JoinContext 传递给 RichFlatmapFunciton,使得的表达能力就具备通用性了。 二.构建实时数仓的应用案例 下面分享几个典型的应用案例,都是在我们的平台上用 Flink SQL 来实现的。 3.1. 实时 ETL 拆分 这里是一个典型的实时 ETL 链路,从大表中拆分出各业务对应的小表: OPPO 的最大数据来源是手机端埋点,从手机 APP 过来的数据有一个特点,所有的数据是通过统一的几个通道上报过来。因为不可能每一次业务有新的埋点,都要去升级客户端,去增加新的通道。比如我们有个 sdk_log 通道,所有 APP 应用的埋点都往这个通道上报数据,导致这个通道对应的原始层表巨大,一天几十个 TB。但实际上,每个业务只关心它自身的那部分数据,这就要求我们在原始层进行 ETL 拆分。 这个 SQL 逻辑比较简单,无非是根据某些业务字段做筛选,插入到不同的业务表中去。它的特点是,多行 SQL 最终合并成一个 SQL 提交给 Flink 执行。大家担心的是,包含了 4 个 SQL,会不会对同一份数据重复读取 4 次?其实,在 Flink 编译 SQL 的阶段是会做一些优化的,因为最终指向的是同一个 kafka topic,所以只会读取 1 次数据。 另外,同样的 Flink SQL,我们同时用于离线与实时数仓的 ETL 拆分,分别落入 HDFS 与 Kafka。Flink 中本身支持写入 HDFS 的 Sink,比如 RollingFileSink。 3.2. 实时指标统计 这里是一个典型的计算信息流 CTR 的这个案例,分别计算一定时间段内的曝光与点击次数,相除得到点击率导入 Mysql,然后通过我们内部的报表系统来可视化。这个 SQL 的特点是它用到了窗口 (Tumbling Window) 以及子查询。 3.3. 实时标签导入 这里是一个实时标签导入的案例,手机端实时感知到当前用户的经纬度,转换成具体 POI 后导入 ES,最终在标签系统上做用户定向。 这个 SQL 的特点是用了 AggregateFunction,在 5 分钟的窗口内,我们只关心用户最新一次上报的经纬度。AggregateFunction 是一种 UDF 类型,通常是用于聚合指标的统计,比如计算 sum 或者 average。在这个示例中,由于我们只关心最新的经纬度,所以每次都替换老的数据即可。 四. 未来工作的思考和展望 最后,给大家分享一下关于未来工作,我们的一些思考与规划,还不是太成熟,抛出来和大家探讨一下。 4.1. 端到端的实时流处理 什么是端到端?一端是采集到的原始数据,另一端是报表 / 标签 / 接口这些对数据的呈现与应用,连接两端的是中间实时流。当前我们基于 SQL 的实时流处理,源表是 Kafka,目标表也是 Kafka,统一经过 Kafka 后再导入到 Druid/ES/HBase。这样设计的目的是提高整体流程的稳定性与可用性:首先,kafka 作为下游系统的缓冲,可以避免下游系统的异常影响实时流的计算(一个系统保持稳定,比起多个系统同时稳定,概率上更高点);其次,kafka 到 kafka 的实时流,exactly-once 语义是比较成熟的,一致性上有保证。 然后,上述的端到端其实是由割裂的三个步骤来完成的,每一步可能需要由不同角色人去负责处理:数据处理需要数据开发人员,数据导入需要引擎开发人员,数据资产化需要产品开发人员。 我们的平台能否把端到端给自动化起来,只需要一次 SQL 提交就能打通处理、导入、资产化这三步?在这个思路下,数据开发中看到的不再是 Kafka Table,而应该是面向场景的展示表 / 标签表 / 接口表。比如对于展示表,创建表的时候只要指定维度、指标等字段,平台会将实时流结果数据从 Kafka 自动导入 Druid,再在报表系统自动导入 Druid 数据源,甚至自动生成报表模板。 4.2. 实时流的血缘分析 关于血缘分析,做过离线数仓的朋友都很清楚它的重要性,它在数据治理中都起着不可或缺的关键作用。对于实时数仓来说也莫不如此。我们希望构建端到端的血缘关系,从采集系统的接入通道开始,到中间流经的实时表与实时作业,再到消费数据的产品,都能很清晰地展现出来。基于血缘关系的分析,我们才能评估数据的应用价值,核算数据的计算成本。 4.3. 离线 - 实时数仓一体化 最后提一个方向是离线实时数仓的一体化。我们认为短期内,实时数仓无法替代离线数仓,两者并存是新常态。在离线数仓时代,我们积累的工具体系,如何去适配实时数仓,如何实现离线与实时数仓的一体化管理?理论上来讲,它们的数据来源是一致的,上层抽象也都是 Table 与 SQL,但本质上也有不同的点,比如时间粒度以及计算模式。对于数据工具与产品来说,需要做哪些改造来实现完全的一体化,这也是我们在探索和思考的。
0
0
Ali
4
日均处理万亿数据!Flink在快手的应用实践与技术演进之路-阿里云开发者社区
作者:董亭亭 整理:蒋晓峰 作者介绍:董亭亭,快手大数据架构实时计算引擎团队负责人。目前负责 Flink 引擎在快手内的研发、应用以及周边子系统建设。2013 年毕业于大连理工大学,曾就职于奇虎 360、58 集团。主要研究领域包括:分布式计算、调度系统、分布式存储等系统。 本次的分享包括以下三个部分: 快手计算链路是从 DB/Binlog 以及 WebService Log 实时入到 Kafka 中,然后接入 Flink 做实时计算,其中包括实时 ETL、实时分析、Interval Join 以及实时训练,最后的结果存到 Druid、ES 或者 HBase 里面,后面接入一些数据应用产品;同时这一份 Kafka 数据实时 Dump 一份到 Hadoop 集群,然后接入离线计算。 Flink 在快手应用的类别主要分为三大类: Flink 在快手应用的典型场景包括: 快手目前集群规模有 1500 台左右,作业数量大约是 500 左右,日处理条目数总共有 1.7 万亿,峰值处理条目数大约是 3.7 千万。集群部署都是 On Yarn 模式,分为离线集群和实时集群两类集群,其中离线集群混合部署,机器通过标签进行物理隔离,实时集群是 Flink 专用集群,针对隔离性、稳定性要求极高的业务部署。 快手 Flink 技术演进主要分为三部分: Interval Join 在快手的一个应用场景是广告展现点击流实时 Join 场景:打开快手 App 可能会收到广告服务推荐的广告视频,用户有时会点击展现的广告视频。这样在后端形成两份数据流,一份是广告展现日志,一份是客户端点击日志。这两份数据需进行实时 Join,将 Join 结果作为样本数据用于模型训练,训练出的模型会被推送到线上的广告服务。该场景下展现以后 20 分钟的点击被认为是有效点击,实时 Join 逻辑则是点击数据 Join 过去 20 分钟展现。其中,展现流的数据量相对比较大,20 分钟数据在 1 TB 以上。最初实时 Join 过程是业务自己实现,通过 Redis 缓存广告展现日志,Kafka 延迟消费客户端点击日志实现 Join 逻辑,该方式缺点是实时性不高,并且随着业务增长需要堆积更多机器,运维成本非常高。基于 Flink 使用 Interval Join 完美契合此场景,并且实时性高,能够实时输出 Join 后的结果数据,对业务来说维护成本非常低,只需要维护一个 Flink 作业即可。 Flink 实现 Interval join 的原理:两条流数据缓存在内部 State 中,任意一数据到达,获取对面流相应时间范围数据,执行 joinFunction 进行 Join。随着时间的推进,State 中两条流相应时间范围的数据会被清理。 在前面提到的广告应用场景 Join 过去 20 分钟数据,假设两个流的数据完全有序到达,Stream A 作为展现流缓存过去 20 分钟数据,Stream B 作为点击流每来一条数据到对面 Join 过去 20 分钟数据即可。 Flink 实现 Interval Join: 关于状态存储策略选择,生产环境状态存储 Backend 有两种方式: 在 Interval join 场景下,RocksDB 状态存储方式是将两个流的数据存在两个 Column Family 里,RowKey 根据 keyGroupId+joinKey+ts 方式组织。 Flink 作业上线遇到的第一个问题是 RocksDB 访问性能问题,表现为: 进一步对问题分析,发现:该场景下,Flink 内部基于 RocksDB State 状态存储时,获取某个 Join key 值某段范围的数据,是通过前缀扫描的方式获取某个 Join key 前缀的 entries 集合,然后再判断哪些数据在相应的时间范围内。前缀扫描的方式会导致扫描大量的无效数据,扫描的数据大多缓存在 PageCache 中,在 Decode 数据判断数据是否为 Delete 时,消耗大量 CPU。 以上图场景为例,蓝色部分为目标数据,红色部分为上下边界之外的数据,前缀扫描时会过多扫描红色部分无用数据,在对该大量无效数据做处理时,将单线程 CPU 消耗尽。 快手在 Interval join 该场景下对 RocksDB 的访问方式做了以下优化: 优化后的效果:P99 查询时延性能提升 10 倍,即 nextKey 获取 RocksDB 一条数据, P99 时延由 1000 毫秒到 100 毫秒以内。 作业吞吐反压问题进而得到解决。 Flink 作业上线遇到的第二个问题是随着业务的增长, RocksDB 所在磁盘压力即将达到上限,高峰时磁盘 util 达到 90%,写吞吐在 150 MB/s。详细分析发现,该问题是由以下几个原因叠加导致: 针对 RocksDB 磁盘压力,快手内部做了以下优化: 首先介绍下视频质量监控调度应用背景,有多个 Kafka Topic 存储短视频、直播相关质量日志,包括短视频上传/下载、直播观众端日志,主播端上报日志等。Flink Job 读取相应 Topic 数据实时统计各类指标,包括播放量、卡顿率、黑屏率以及开播失败率等。指标数据会存到 Druid 提供后续相应的报警监控以及多维度的指标分析。同时还有一条流是进行直播 CDN 调度,也是通过 Flink Job 实时训练、调整各 CDN 厂商的流量配比。以上 Kafka Topic 数据会同时落一份到 Hadoop 集群,用于离线补偿数据。实时计算跟离线补数据的过程共用同一份 Flink 代码,针对不同的数据源,分别读取 Kafka 数据或 HDFS 数据。 视频应用场景下遇到的问题是:作业 DAG 比较复杂,同时从多个 Topic 读取数据。一旦作业异常,作业失败从较早状态恢复,需要读取部分历史数据。此时,不同 Source 并发读取数据速度不可控,会导致 Window 类算子 State 堆积、作业性能变差,最终导致作业恢复失败。 另外,离线补数据,从不同 HDFS 文件读数据同样会遇到读取数据不可控问题。在此之前,实时场景下临时解决办法是重置 GroupID 丢弃历史数据,使得从最新位置开始消费。 针对该问题我们希望从源头控制多个 Source 并发读取速度,所以设计了从 Source 源控速的策略。 Source 控速策略 Source 控速策略是 : Source 控速策略详细细节 SourceTask 共享状态 协调中心 SourceCoordinator 以上图为例,A 时刻,4 个并发分别到达如图所示位置,为 A+interval 的时刻做预测,图中蓝色虚线为预测各并发能够到达的位置,选择最慢的并发的 Watermark 位置,浮动范围值为 Watermark + ∆t/2 的时间,图中鲜红色虚线部分为限速的目标 Watermark,以此作为全局决策发给下游 Task。 SourceTask 限速控制 该方案中,还有一些其他考虑,例如: Source 控速结果 拿线上作业,使用 Kafka 从最早位置(2 days ago)开始消费。如上图,不限速情况下State 持续增大,最终作业挂掉。使用限速策略后,最开始 State 有缓慢上升,但是 State 大小可控,最终能平稳追上最新数据,并 State 持续在 40 G 左右。 关于 JobManager 稳定性,遇到了两类 Case,表现均为:JobManager 在大并发作业场景 WebUI 卡顿明显,作业调度会超时。进一步分析了两种场景下的问题原因。 场景一,JobManager 内存压力大问题。JobManager 需要控制删除已完成的 Checkpoint 在 HDFS 上的路径。在 NameNode 压力大时,Completed CheckPoint 路径删除慢,导致CheckPoint Path 在内存中堆积。 原来删除某一次 Checkpoint 路径策略为:每删除目录下一个文件,需 List 该目录判断是否为空,如为空将目录删除。在大的 Checkpoint 路径下, List 目录操作为代价较大的操作。针对该逻辑进行优化,删除文件时直接调用 HDFS delete(path,false) 操作,语义保持一致,并且开销小。 场景二,该 Case 发生在 Yarn Cgroup 功能上线之后,JobManager G1 GC 过程变慢导致阻塞应用线程。AppMaster 申请 CPU 个数硬编码为1,在上线 Cgroup 之后可用的 CPU 资源受到限制。解决该问题的方法为,支持 AppMaster 申请 CPU 个数参数化配置。 机器故障造成作业频繁失败,具体的场景也有两种: 场景一:磁盘问题导致作业持续调度失败。磁盘出问题导致一些 Buffer 文件找不到。又因为 TaskManager 不感知磁盘健康状况,会频繁调度作业到该 TaskManager,作业频繁失败。 场景二:某台机器有问题导致 TaskManager 在某台机器上频繁出 Core,陆续分配新的 TaskManager 到这台机器上,导致作业频繁失败。 针对机器故障问题解决方法: 快手的平台化建设主要体现在青藤作业托管平台。通过该平台可进行作业操作、作业管理以及作业详情查看等。作业操作包括提交、停止作业。作业管理包括管理作业存活、性能报警,自动拉起配置等;详情查看,包括查看作业的各类 Metric 等。 上图为青藤作业托管平台的一些操作界面。 我们也经常需要给业务分析作业性能问题,帮助业务 debug 一些问题,过程相对繁琐。所以该部分我们也做了很多工作,尽量提供更多的信息给业务,方便业务自主分析定位问题。首先,我们将所有 Metric 入 Druid,通过 Superset 可从各个维度分析作业各项指标。第二,针对 Flink 的 WebUI 做了一些完善,支持 Web 实时打印 jstack,Web DAG 为各 Vertex 增加序号,Subtask 信息中增加各并发 SubtaskId。第三,丰富异常信息提示,针对机器宕机等特定场景信息进行明确提示。第四,新增各种 Metric。 快手的未来规划主要分为两个部分: 第一,目前在建设的 Flink SQL 相关工作。因为 SQL 能够减少用户开发的成本,包括我们现在也在对接实时数仓的需求,所以 Flink SQL 是我们未来计划的重要部分之一。 第二,我们希望进行一些资源上的优化。目前业务在提作业时存在需求资源及并发预估不准确的情况,可能会过多申请资源导致资源浪费。另外如何提升整体集群资源的利用率问题,也是接下来需要探索的问题。
0
0
Ali
5
小红书如何实现高效推荐?解密背后的大数据计算平台架构-阿里云开发者社区
作者:郭一 整理:董黎明 本文整理自2019阿里云峰会·上海开发者大会开源大数据专场中小红书实时推荐团队负责人郭一先生现场分享。小红书作为生活分享类社区,目前有8500万用户,年同比增长为300%,大约每天有30亿条笔记在发现首页进行展示。推荐是小红书非常核心且重要的场景之一,本文主要分享在推荐业务场景中小红书的实时计算应用。 小红书线上推荐的流程主要可以分为三步。第一步,从小红书用户每天上传的的笔记池中选出候选集,即通过各种策略从近千万条的笔记中选出上千个侯选集进行初排。第二步,在模型排序阶段给每个笔记打分,根据小红书用户的点赞和收藏行为给平台带来的价值设计了一套权重的评估体系,通过预估用户的点击率,评估点击之后的点赞、收藏和评论等的概率进行打分。第三步,在将笔记展示给用户之前,选择分数高的笔记,通过各种策略进行多样性调整。 在此模型中最核心的点击率、点赞数、收藏、评论等都是通过机器学习模型训练对用户各项行为的预估并给出相应分数。 在小红书线上推荐过程的背后是一套完整的从线上到线下的推荐系统,下图展示了小红书推荐系统架构,红色表示实时操作,灰色则是离线操作。通过算法推荐之后,用户和笔记进行交互,产生用户的曝光、点赞和点击的信息,这些信息被收集形成用户笔记画像,也会成为模型训练的训练样本,产生分析报表。训练样本最终生成预测模型,投入线上进行算法推荐,如此就形成了一个闭环,其中分析报表则由算法工程师或策略工程师进行分析,调整推荐策略,最后再投入到线上推荐中。 离线批处理流程如下图所示,之前的处理流程是在客户端产生用户交互和打点,打点好的数据放入数仓中,以T+1模式更新用户笔记画像,生成报表并生成训练样本,最后进行模型训练和分析。小红书初级版本的离线批处理情况,整个流程都基于Hive进行处理,处理流程较慢,无法满足业务需求。 2018年开始小红书将离线的pipeline升级为实时的pipeline,用户一旦产生交互点击,系统会实时维护数据,更新用户笔记画像,实时产生训练样本,更新模型及生成报表。实时的流处理大大提高了开发效率,同时实时流处理依赖于Flink。在实时流中,首先用户的实时交互进入Kafka,借助Flink任务维护用户笔记画像,将其传给线上用户画像系统。相对来说,用户的笔记画像比较简单,不会存在过多的状态,而实时流处理中非常重要的场景是实时归因,这也是小红书最核心的业务。实时归因是一个有状态的场景,根据打点信息产生用户的行为标签,所有实时指标和训练样本都依赖行为标签,其中,实时指标放在Click House,数据分析师和策略工程师基于ClickHouse数据进行分析,训练样本仍然落到Hive中进行模型训练,同时在线学习系统中会将训练样本落到Kafka,进行实时模型训练。 实时归因将笔记推荐给用户后会产生曝光,随即产生打点信息,用户笔记的每一次曝光、点击、查看和回退都会被记录下来。如下图所示,四次曝光的用户行为会产生四个笔记曝光。如果用户点击第二篇笔记,则产生第二篇笔记的点击信息,点赞会产生点赞的打点信息;如果用户回退就会显示用户在第二篇笔记停留了20秒。实时归因会生成两份数据,第一份是点击模型的数据标签,在下图中,第一篇笔记和第三篇笔记没有点击,第二篇笔记和第四篇笔记有点击,这类数据对于训练点击模型至关重要。同样,点赞模型需要点击笔记数据,比如用户点击了第二篇笔记并发生点赞,反之点击了第四篇笔记但没有点赞,时长模型需要点击之后停留的时间数据。以上提到的数据需要与上下文关联,产生一组数据,作为模型分析和模型训练的原始数据。 小红书在处理实时归因原始数据时应用了Flink任务。从Kafka Source中读数据再写到另外一个Kafka Sink。Key(user_id和note_id)根据用户笔记和是否发生曝光和点击分为两个Session,Session使用Process Function API处理记录,每条记录都会记录曝光的Session和点击的Session。Session有20分钟的定长窗口,即在收到用户行为曝光或者点击之后,开20分钟的窗口查看是否这期间会发生曝光、点击、点赞或者停留了多少时间。Session中有状态信息,比如发生点击并点赞,系统维护用户在状态中停留的时间,检查点击是否有效等。Flink窗口结束时,需要将Session State中的内容输出到下游,进行分析和模型训练,同时清除ValueState。 在实际生产中落地Flink任务需要解决较多的问题。首先是如何对Flink进行集群管理,上了生产环境之后需要做Checkpoint,将任务持久化,尤其需要注意的一点是Backfill,持久化一旦出错,需要回到过去的某个时间,重新清除错误数据并恢复数据。 Flink集群管理:小红书选择将Flink部署在 K8s集群上,在小红书看来,K8S或许是未来的趋势之一。 Checkpoint & State持久化:Flink 的State 分为两种,FsStateBackend和RocksDBStateBackend。FsStateBackend支持较小的状态,但不支持增量的状态。在实时归因的场景中有20分钟的窗口,20分钟之内发生的所有的状态会放在内存中,定期做持久化。如果要避免这20分钟的数据丢失,RocksDBStateBackend是更好的选择,因为RocksDBStateBackend支持增量Checkpoint。 RocksDB调优:具体使用RocksDBStateBackend时依然会遇到调优问题。小红书在开始测试时,Checkpoint频率设置较短,一分钟做一次Checkpoint,而RocksDB每次做Checkpoint时都需要将数据从内存flash到磁盘中,Checkpoint频率较高时会产生非常多的小std文件,RocksDB需要花大量时间和资源去做整合,将小文件合并为大文件。State本身已经比较大,假如flash持续Compaction,磁盘I/O将会成为瓶颈,最后导致产生反压上游。 另一个问题是使用RocksDBStateBackend会有生成较多的MemTable,如果内存没有配置好,会导致out of memory,需要重新计算内存,调配MemTable,Parallelism和K8s point的内存。调优之后任务运行较为稳定,这时需要把本地磁盘换成高性能的SSD,保证内存有足够的空间。 此外,每次做Checkpoint都会产生性能损失。小红书选择将Checkpoint频率改成十分钟,同样可以满足生产需求,而且回填10分钟的数据只需要一到两分钟,需要注意的是调大RocksDB Compaction Threshold,避免频繁进行小文件的合并。 Backfill:回填是生产中常见的场景,实际生产中如果开发者写错代码导致数据错误,则需要删除错误数据,重新跑正确代码回填正确的数据;另外,如果原本只有点赞功能,会产生新的回填场景,分析用户点赞是否为有效点赞或者对其做简单的逻辑恢复都需要Backfill。Backfill非常依赖Flink对Hive的支持,小红书一直以来的数据都存放在Hive上,所以非常期待Flink 1.9版本性能的提高,尤其对Hive的支持的提升和对批的支持的加强。 小红书推荐系统是一个流计算的平台,同时涉及周边的生态。如下图所示,最右边是数据接入的模块,支持从客户端接入数据,同时后端的服务提供LogSDK的模块帮助业务直接接入实时计算的平台。红色模块是流计算平台中正在开发的模块,比如,Canal通过事务的数据库日志直接将订单流对接到数据平台,系统自动分析数据Schema,一旦Schema发生变化,自动重启相应Flink任务。左下角是基于Flink 1.8做的开发,在此基础上根据业务需要增加了Latency监控,便于分析Flink堵塞的Operator,同时将Latency监控直接接入到系统中。小红书基于Flink的SQL也进行了开发,实现了不同的connector,比如ClickHouse、Hbase、Kafka等,目前这套平台支持的业务除了实时归因的场景外,还有数据ETL、实时Spam、实时DAU,包括我们正在开发的实时RGMV大促看板都是基于此平台搭建的。 下图为系统的部分截图,左边为业务方使用小红书Flink实时流计算平台时,可以选择数据目的地,比如aws-hive和rex-clickhouse表明数据需要放到Hive和ClickHouse中。然后在Schema中输入JSON或PB格式数据,平台可以自动识别Schema,同时将数据Schema转成Flink SQL ETL的命令,自动更新Flink ETL Job的任务。此外,系统会对任务进行监控,监控任务的延迟时间、有无数据丢失,如果延迟过高或有数据丢失则产生报警及报警的级别。 上面简单介绍了小红书的实时计算平台,另外一部分就是TensorFlow和Machine Learning。2018年12月,小红书的推荐预测模型只是非常简单的Spark上的GBDT模型。后期在GBDT模型上加了LR层,后来还引入了Deep和Wide。到2019年7月,小红书推荐预测模型已经演化到了GBDT + Sparse D&W的模型。小红书主要有9个预测任务,包括click、hide、like、fav、comment、share以及follow等。其中,Click是小红书最大的模型,一天大概产生5亿的样本进行模型训练,数据量达到1T/天。 目前小红书的Red ML模型基于KubeFlow,在小红书开始做ML模型时,KubeFlow在开源社区中比较受欢迎,而且TFJob可以支持TensorFlow的分布式训练。 小红书从去年年底开始做推荐系统,系统的搭建既依赖开源社区,也拥抱开源社区。整个实时计算平台的搭建都是基于Flink,也十分期待Flink 1.9 的新功能对于Hive 和批的支持;AI是目前小红书比较强的需求,包括模型训练算力、效率等非常敏感,也会持续关注社区相关技术;后期希望能够融合Flink与AI,将流计算与机器学习无缝整合实现更智能高效的推荐。
0
0
Ali
6
用Flink取代Spark Streaming!知乎实时数仓架构演进-阿里云开发者社区
作者 | 知乎数据工程团队 “数据智能” (Data Intelligence) 有一个必须且基础的环节,就是数据仓库的建设,同时,数据仓库也是公司数据发展到一定规模后必然会提供的一种基础服务。从智能商业的角度来讲,数据的结果代表了用户的反馈,获取结果的及时性就显得尤为重要,快速的获取数据反馈能够帮助公司更快的做出决策,更好的进行产品迭代,实时数仓在这一过程中起到了不可替代的作用。 本文主要讲述知乎的实时数仓实践以及架构的演进,这包括以下几个方面: 1.0 版本的实时数仓主要是对流量数据做实时 ETL,并不计算实时指标,也未建立起实时数仓体系,实时场景比较单一,对实时数据流的处理主要是为了提升数据平台的服务能力。实时数据的处理向上依赖数据的收集,向下关系到数据的查询和可视化,下图是实时数仓 1.0 版本的整体数据架构图。 第一部分是数据采集,由三端 SDK 采集数据并通过 Log Collector Server 发送到 Kafka。第二部分是数据 ETL,主要完成对原始数据的清洗和加工并分实时和离线导入 Druid。第三部分是数据可视化,由 Druid 负责计算指标并通过 Web Server 配合前端完成数据可视化。 其中第一、三部分的相关内容请分别参考:知乎客户端埋点流程、模型和平台技术,Druid 与知乎数据分析平台,此处我们详细介绍第二部分。由于实时数据流的稳定性不如离线数据流,当实时流出现问题后需要离线数据重刷历史数据,因此实时处理部分我们采用了 lambda 架构。 Lambda 架构有高容错、低延时和可扩展的特点,为了实现这一设计,我们将 ETL 工作分为两部分:Streaming ETL 和 Batch ETL。 这一部分我会介绍实时计算框架的选择、数据正确性的保证、以及 Streaming 中一些通用的 ETL 逻辑,最后还会介绍 Spark Streaming 在实时 ETL 中的稳定性实践。 在 2016 年年初,业界用的比较多的实时计算框架有 Storm 和 Spark Streaming。Storm 是纯流式框架,Spark Streaming 用 Micro Batch 模拟流式计算,前者比后者更实时,后者比前者吞吐量大且生态系统更完善,考虑到知乎的日志量以及初期对实时性的要求,我们选择了 Spark Streaming 作为实时数据的处理框架。 Spark Streaming 的端到端 Exactly-once 需要下游支持幂等、上游支持流量重放,这里我们在 Spark Streaming 这一层做到了 At-least-once,正常情况下数据不重不少,但在程序重启时可能会重发部分数据,为了实现全局的 Exactly-once,我们在下游做了去重逻辑,关于如何去重后面我会讲到。 ETL 逻辑和埋点的数据结构息息相关,我们所有的埋点共用同一套 Proto Buffer Schema,大致如下所示。 BaseInfo:日志中最基本的信息,包括用户信息、客户端信息、时间信息、网络信息等日志发送时的必要信息。DetailInfo:日志中的视图信息,包括当前视图、上一个视图等用于定位用户所在位置的信息。ExtraInfo:日志中与特定业务相关的额外信息。 针对上述三种信息我们将 ETL 逻辑分为通用和非通用两类,通用逻辑和各个业务相关,主要应用于 Base 和 Detail 信息,非通用逻辑则是由需求方针对某次需求提出,主要应用于 Extra 信息。这里我们列举 3 个通用逻辑进行介绍,这包括:动态配置 Streaming、UTM 参数解析、新老用户识别。 由于 Streaming 任务需要 7 * 24 小时运行,但有些业务逻辑,比如:存在一个元数据信息中心,当这个元数据发生变化时,需要将这种变化映射到数据流上方便下游使用数据,这种变化可能需要停止 Streaming 任务以更新业务逻辑,但元数据变化的频率非常高,且在元数据变化后如何及时通知程序的维护者也很难。动态配置 Streaming 为我们提供了一个解决方案,该方案如下图所示。 我们可以把经常变化的元数据作为 Streaming Broadcast 变量,该变量扮演的角色类似于只读缓存,同时针对该变量可设置 TTL,缓存过期后 Executor 节点会重新向 Driver 请求最新的变量。通过这种机制可以非常自然的将元数据的变化映射到数据流上,无需重启任务也无需通知程序的维护者。 UTM 的全称是 Urchin Tracking Module,是用于追踪网站流量来源的利器,关于 UTM 背景知识介绍可以参考网上其他内容,这里不再赘述。下图是我们解析 UTM 信息的完整逻辑。 流量数据通过 UTM 参数解析后,我们可以很容易满足以下需求: 对于互联网公司而言,增长是一个永恒的话题,实时拿到新增用户量,对于增长运营十分重要。例如:一次投放 n 个渠道,如果能拿到每个渠道的实时新增用户数,就可以快速判断出那些渠道更有价值。我们用下图来表达 Streaming ETL 中是如何识别新老用户的。 判断一个用户是不是新用户,最简单的办法就是维护一个历史用户池,对每条日志判断该用户是否存在于用户池中。由于日志量巨大,为了不影响 Streaming 任务的处理速度,我们设计了两层缓存:Thread Local Cache 和 Redis Cache,同时用 HBase 做持久化存储以保存历史用户。访问速度:本地内存 > 远端内存 > 远端磁盘,对于我们这个任务来说,只有 1% 左右的请求会打到 HBase,日志高峰期 26w/s,完全不会影响任务的实时性。当然本地缓存 LruCache 的容量大小和 Redis 的性能也是影响实时性的两个因素。 Streaming ETL 除了上述几个通用场景外,还有一些其他逻辑,这些逻辑的存在有的是为了满足下游更方便的使用数据的需求,有的是对某些错误埋点的修复,总之 Streaming ETL 在整个实时数仓中处于指标计算的上游,有着不可替代的作用。 接下来要介绍的是 Lambda 架构的第二个部分:Batch ETL,此部分我们需要解决数据落地、离线 ETL、数据批量导入 Druid 等问题。针对数据落地我们自研了 map reduce 任务 Batch Loader,针对数据修复我们自研了离线任务 Repair ETL,离线修复逻辑和实时逻辑共用一套 ETL Lib,针对批量导入 ProtoParquet 数据到 Druid,我们扩展了 Druid 的导入插件。 数据架构图中有两个 Kafka,第一个 Kafka 存放的是原始日志,第二个 Kafka 存放的是实时 ETL 后的日志,我们将两个 Kafka 的数据全部落地,这样做的目的是为了保证数据链路的稳定性。因为实时 ETL 中有大量的业务逻辑,未知需求的逻辑也许会给整个流量数据带来安全隐患,而上游的 Log Collect Server 不存在任何业务逻辑只负责收发日志,相比之下第一个 Kafka 的数据要安全和稳定的多。Repair ETL 并不是经常启用,只有当实时 ETL 丢失数据或者出现逻辑错误时,才会启用该程序用于修复日志。 前面已经介绍过,我们所有的埋点共用同一套 Proto Buffer Schema,数据传输格式全部为二进制。我们自研了落地 Kafka PB 数据到 Hdfs 的 Map Reduce 任务 BatchLoader,该任务除了落地数据外,还负责对数据去重。在 Streaming ETL 阶段我们做到了 At-least-once,通过此处的 BatchLoader 去重我们实现了全局 Exactly-once。BatchLoader 除了支持落地数据、对数据去重外,还支持多目录分区(p_date/p_hour/p_plaform/p_logtype)、数据回放、自依赖管理(早期没有统一的调度器)等。截止到目前,BatchLoader 落地了 40+ 的 Kakfa Topic 数据。 采用 Tranquility 实时导入 Druid,这种方式强制需要一个时间窗口,当上游数据延迟超过窗值后会丢弃窗口之外的数据,这种情况会导致实时报表出现指标错误。为了修复这种错误,我们通过 Druid 发起一个离线 Map Reduce 任务定期重导上一个时间段的数据。通过这里的 Batch 导入和前面的实时导入,实现了实时数仓的 Lambda 架构。 到目前为止我们已经介绍完 Lambda 架构实时数仓的几个模块,1.0 版本的实时数仓有以下几个不足: 所有的流量数据存放在同一个 Kafka Topic 中,如果下游每个业务线都要消费,这会导致全量数据被消费多次,Kafka 出流量太高无法满足该需求。 所有的指标计算全部由 Druid 承担,Druid 同时兼顾实时数据源和离线数据源的查询,随着数据量的暴涨 Druid 稳定性急剧下降,这导致各个业务的核心报表不能稳定产出。 由于每个业务使用同一个流量数据源配置报表,导致查询效率低下,同时无法对业务做数据隔离和成本计算。 随着数据量的暴涨,Druid 中的流量数据源经常查询超时同时各业务消费实时数据的需求也开始增多,如果继续沿用实时数仓 1.0 架构,需要付出大量的额外成本。于是,在实时数仓 1.0 的基础上,我们建立起了实时数仓 2.0,梳理出了新的架构设计并开始着手建立实时数仓体系,新的架构如下图所示。 实时数仓 1.0 我们只对流量数据做 ETL 处理,在 2.0 版本中我们加入了对业务库的变更日志 Binlog 的处理,Binlog 日志在原始层为库级别或者 Mysql 实例级别,即:一个库或者实例的变更日志存放在同一个 Kafka Topic 中。同时随着公司业务的发展不断有新 App 产生,在原始层不仅采集「知乎」日志,像知乎极速版以及内部孵化项目的埋点数据也需要采集,不同 App 的埋点数据仍然使用同一套 PB Schema。 明细层是我们的 ETL 层,这一层数据是由原始层经过 Streaming ETL 后得到。其中对 Binlog 日志的处理主要是完成库或者实例日志到表日志的拆分,对流量日志主要是做一些通用 ETL 处理,由于我们使用的是同一套 PB 结构,对不同 App 数据处理的逻辑代码可以完全复用,这大大降低了我们的开发成本。 明细汇总层是由明细层通过 ETL 得到,主要以宽表形式存在。业务明细汇总是由业务事实明细表和维度表 Join 得到,流量明细汇总是由流量日志按业务线拆分和流量维度 Join 得到。流量按业务拆分后可以满足各业务实时消费的需求,我们在流量拆分这一块做到了自动化,下图演示了流量数据自动切分的过程。 Streaming Proxy 是流量分发模块,它消费上游 ETL 后的全量数据并定期读取埋点元信息,通过将流量数据与元信息数据进行「Join」完成按业务进行流量拆分的逻辑,同时也会对切分后的流量按业务做 ETL 处理。只要埋点元信息中新增一个埋点,那么这个埋点对应的数据就会自动切分到该业务的 Kafka 中,最终业务 Kafka 中的数据是独属于当前业务的且已经被通用 ETL 和业务 ETL 处理过,这大大降低了各个业务使用数据的成本。 指标汇总层是由明细层或者明细汇总层通过聚合计算得到,这一层产出了绝大部分的实时数仓指标,这也是与实时数仓 1.0 最大的区别。知乎是一个生产内容的平台,对业务指标的汇总我们可以从内容角度和用户角度进行汇总,从内容角度我们可以实时统计内容(内容可以是答案、问题、文章、视频、想法)的被点赞数、被关注数、被收藏数等指标,从用户角度我可以实时统计用户的粉丝数、回答数、提问数等指标。对流量指标的汇总我们分为各业务指标汇总和全局指标汇总。对各业务指标汇总,我们可以实时统计首页、搜索、视频、想法等业务的卡片曝光数、卡片点击数、CTR 等,对全局指标汇总我们主要以实时会话为主,实时统计一个会话内的 PV 数、卡片曝光数、点击数、浏览深度、会话时长等指标。 不同于明细层和明细汇总层,指标汇总层需要将实时计算好的指标存储起来以供应用层使用。我们根据不同的场景选用了 HBase 和 Redis 作为实时指标的存储引擎。Redis 的场景主要是满足带 Update 操作且 OPS 较高的需求,例如:实时统计全站所有内容(问题、答案、文章等)的累计 PV 数,由于浏览内容产生大量的 PV 日志,可能高达几万或者几十万每秒,需要对每一条内容的 PV 进行实时累加,这种场景下选用 Redis 更为合适。HBase 的场景主要是满足高频 Append 操作、低频随机读取且指标列较多的需求,例如:每分钟统计一次所有内容的被点赞数、被关注数、被收藏数等指标,将每分钟聚合后的结果行 Append 到 HBase 并不会带来性能和存储量的问题,但这种情况下 Redis 在存储量上可能会出现瓶颈。 指标口径管理依赖指标系统,指标可视化依赖可视化系统,我们通过下图的需求开发过程来讲解如何将三者联系起来。 应用层主要是使用汇总层数据以满足业务需求。应用层主要分三块:1. 通过直接读取指标汇总数据做实时可视化,满足固化的实时报表需求,这部分由实时大盘服务承担;2. 推荐算法等业务直接消费明细汇总数据做实时推荐;3. 通过 Tranquility 程序实时摄入明细汇总数据到 Druid,满足实时多维即席分析需求。 相比实时数仓 1.0 以 Spark Streaming 作为主要实现技术,在实时数仓 2.0 中,我们将 Flink 作为指标汇总层的主要计算框架。Flink 相比 Spark Streaming 有更明显的优势,主要体现在:低延迟、Exactly-once 语义支持、Streaming SQL 支持、状态管理、丰富的时间类型和窗口计算、CEP 支持等。 我们在实时数仓 2.0 中主要以 Flink 的 Streaming SQL 作为实现方案。使用 Streaming SQL 有以下优点:易于平台化、开发效率高、维度成本低等。目前 Streaming SQL 使用起来也有一些缺陷:1. 语法和 Hive SQL 有一定区别,初使用时需要适应;2.UDF 不如 Hive 丰富,写 UDF 的频率高于 Hive。 从实时数仓 1.0 到 2.0,不管是数据架构还是技术方案,我们在深度和广度上都有了更多的积累。随着公司业务的快速发展以及新技术的诞生,实时数仓也会不断的迭代优化。短期可预见的我们会从以下方面进一步提升实时数仓的服务能力: 数据工程团队是知乎技术中台的核心团队之一,该团队主要由数据平台、基础平台、数据仓库、AB Testing 四个子团队的 31 位优秀工程师组成。
0
0
Ali
7
58 集团大规模 Storm 任务平滑迁移至 Flink 的秘密-阿里云开发者社区
Flink-Storm 是 Flink 官方提供的用于 Flink 兼容 Storm 程序 beta 工具,并且在 Release 1.8 之后去掉相关代码。本文主要讲述 58 实时计算平台如何优化 Flink-Storm 以及基于 Flink-Storm 实现真实场景下大规模 Storm 任务平滑迁移 Flink。 58 实时计算平台旨在为集团业务部门提供稳定高效实时计算服务,主要基于 Storm 和 Spark Streaming 构建,但在使用过程中也面临一些问题,主要包括 Storm 在吞吐量不足以及多集群带来运维问题,Spark Streaming 又无法满足低延迟的要求。Apache Flink 开源之后,其在架构设计、计算性能和稳定性上体现出的优势,使我们决定采用 Flink 作为新一代实时计算平台的计算引擎。同时基于 Flink 开发了一站式高性能实时计算平台 Wstream,支持 Flink jar,Stream Sql,Flink-Storm 等多样化任务构建方式。 在完善 Flink 平台建设的同时,我们也启动 Storm 任务迁移 Flink 计划,旨在提升实时计算平台整体效率,减少机器成本和运维成本。 尽管 Flink 作为高性能计算引擎可以很好兼容 Storm,但在业务迁移过程中,我们仍然遇到了一些问题: 1 .用户对 Flink 的学习成本; 因此我们决定采用 Flink 官方提供的 Flink-Storm 进行迁移,在保障迁移稳定性同时无需用户修改 Storm 代码逻辑。 通过 Storm 原生 TopologyBuilder 构建好 Storm topology。 FlinkTopology.createTopology(builder) 将 StormTopology 转换为 Flink 对应的 Streaming Dataflow。 SpoutWrapper 用于将 spout 转换为 RichParallelSourceFunction,spout 的OutputFields转换成 source 的T ypeInformation。 BoltWrapper 用于将 bolt 转换成对应的 operator,其中 grouping 转换为对 spout 的 DataStream 的对应操作。 构建完 FlinkTopology 之后,就可以通过 StreamExecutionEnvironment 生成 StreamGraph 获取 JobGraph,之后将 JobGraph 提交到 Flink 运行时环境。 Flink-Storm 作为官方提供 Flink 兼容 Storm 程序为我们实现无缝迁移提供了可行性,但是作为 beta 版本,在实际使用过程中存在很多无法满足现实场景的情况,主要包括版本,功能 bug,复杂逻辑兼容,无法支持 yarn 等,下面将主要分为平台层面和用户层面讲述我们的使用和改进。 当前线上使用 Apache Flink 1.6 版本,Flink-Storm 模块基于 Storm 1.0 开发,我们平台运行 Storm 版本为 0.9.5 和 1.2 。 1.1 对于 Storm 1.2 运行任务,Storm 1.0 API 完全兼容 1.2 版本,因此只需切换 Flink-Storm 模块依赖的 storm-core 到 1.2. 1.2 对于 Storm 0.9.5 任务,由于 Storm 1.0 API 无法兼容 0.9.5,需要修改依赖 storm-core 为 0.9.5,同时修改 Flink-Storm 模块中所有与 Storm 相关的 API,主要是切换 package 路径。 1.3 重新构建 flink-storm 包 mvn clean package -Dmaven.test.skip=true -Dcheckstyle.skip=true Storm 使用 ACK 机制来实现传递语义保证,我们没有将 Storm 的 ACK 机制移植到Flink-Storm。因此,某些依赖 ACK 机制的功能会受到限制。比如,Kafka spout 将消费状态存储在 ZK,状态的更新需要依赖 ACK 机制,tuple 树结束后,spout 才会触发状态更新,表示这条消息已经被完全处理,从而实现 at least once 的传递保证。Storm 也提供了at most once 的支持,spout 发送消息后,无需等待 tuple 树结束直接触发状态更新。我们使用了 Storm 的实现 at most once 的方式,在 Kafka spout 实现 at most once 的基础上,通过实现 Flink Checkpoint 的状态机制,实现了 Flink-storm 任务的 at least once。Storm 任务迁移到 Flink,传递保证不变。 Storm 使用 tick tuple 机制实现定时功能,消息超时重发、Bolt 定时触发等功能都要依赖 tick tuple 机制。Storm 0.9.5 版本没有实现窗口功能,用户可以使用 tick tuple 机制简单实现窗口功能。我们同样为 Flink-Storm 增加了 tick tuple 机制的支持,使用方式也和 Storm 中使用方式一样,配置 topology.tick.tuple. freq.secs 参数,即开启了 tick tuple 功能。 AllGrouping 分组方式对应于 Flink 是 Broadcast。如图,bolt-1 有两个输入,这种情况下,原 flink-storm 的实现,spout-2 到 bolt-1 的数据分区的表现形式和Rebalance(Flink 术语)一样,而不是 Broadcast。我们优化了这种场景,使其数据分组表现和 Storm 中是一样的。 Flink-Storm 默认支持 local 和 standalong 模式任务提交,无法将任务提交到 yarn 集群,我们在建设 Flink 集群一开始就选择了 yarn 模式,便于集群资源管理和统一实时计算平台,因此需要自行实现支持 yarn 的 runtime 功能,这里主要涉及 yarn client 端设计。 YARN Client 实现机制 整个模块主要分为四个部分,其中 client 用于调用 Flink-Storm 程序转化接口,得到 Flink jobGraph。配置参数用于初始化 Flink 及 yarn 相关配置,构建运行时环境,命令行工具主要用于更加灵活的管理。yarnClient 主要实现 ApplicationClientProtocol 接口,完成与 ResourceManager 与 ApplicationMaster 的交互,实现 Flink job 提交和监控。 为便于任务提交和集成到 Wstream 平台,提供类似 Flink 命令行提交方式: 平台将编译好的包上传到公司 maven 私服供用户下载对应版本 Flink-Storm 依赖包: 用户需要将 Storm 提交任务的方式改成 Flink 提交,其他无需变动。 通过对 Fink-Storm 的优化和使用,我们已经顺利完成多个 Storm 集群任务迁移和下线,在保障实时性及吞吐量的基础上可以节约计算资源 40% 以上,同时借助 yarn 统一管理实时计算平台无需维护多套 Storm 集群,整体提升了平台资源利用率,减轻平台运维工作量。 作者介绍: 万石康,来自 58 集团 TEG,后端高级工程师,专注于大数据实时计算架构设计。
0
0
Ali
8
监控系统哪家强?eBay 在监控系统上的实践应用!-阿里云开发者社区
来源 | eBay Unified Monitoring Platform 翻译 | 顾欣怡 Sherlock.IO 是 eBay 现有的监控平台,每天要处理上百亿条日志、事件和指标。Flink Streaming job 实时处理系统用于处理其中的日志和事件。本文将结合监控系统 Flink 的现状,具体讲述 Flink 在监控系统上的实践和应用,希望给同业人员一些借鉴和启发。 eBay 的监控平台 Sherlock.IO 每天处理着上百亿条日志(log),事件(event)和指标(metric)。通过构建 Flink Streaming job 实时处理系统,监控团队能够及时将日志和事件的处理结果反馈给用户。当前,监控团队维护着 8 个 Flink 集群,最大的集群规模达到上千个 TaskManager,总共运行着上百个作业(job),一些作业已经稳定运行了半年以上。 为了让用户和管理员能够更加快捷地创建Flink作业并调整参数,监控团队在 Flink 上搭建了一套元数据微服务(metadata service),该服务能够用Json来描述一个作业的 DAG,且相同的 DAG 共用同一个作业,能够更加方便地创建作业,无需调用 Flink API。Sherlock.IO 流处理整体的架构如图1所示。 图1 Sherlock.IO 流处理整体架构 目前,用这套元数据微服务创建的作业仅支持以 Kafka 作为数据源,只要数据接入到 Kafka,用户就可以定义 Capability 来处理逻辑从而通过 Flink Streaming 处理数据。 元数据微服务框架如图 2 所示,最上层是元数据微服务提供的 Restful API, 用户通过调用 API 来描述和提交作业。描述作业的元数据包含三个部分:Resource,Capability 和 Policy。Flink 适配器(Adaptor)连接了 Flink Streaming API 和元数据微服务 API,且会根据元数据微服务描述的作业调用 Flink Streaming API 来创建作业,从而屏蔽 Flink StreamAPI。 因此,用户不用了解 Flink Streaming API 就可以创建 Flink 作业。未来如果需要迁移到其他的流处理框架,只要增加一个适配器,就可以将现有的作业迁移到新的流处理框架上。 图2 元数据微服务框架 Capability 定义了作业的 DAG 以及每个算子(Operator)所用的 Class,图 3 是事件处理(eventProcess) Capability,它最终会生成如图 4 的 DAG。事件处理 Capability 先从 Kafka 读出数据,再写到 Elasticsearch 中。该 Capability 将该作业命名为“eventProcess”,并定义其并行度为“5”,其算子为“EventEsIndexSinkCapability”, 其数据流为“Source –> sink”。 图3 eventESSink Capability 图4 生成的Flink作业 每个命名空间(Namespace)需要定义一个或多个 Policy,每个 Policy 指定了相应的 Capability,即指定了用哪一套 DAG 来运行这个 Policy。Policy 还定义了这个作业的相关配置,例如从哪个 Kafka topic 中读取数据,写到 ElasticSearch 的哪个索引(Index)中,中间是否要跳过某些算子等等。 其次,Policy 还能作为一个简易的过滤器(Filter),可以通过配置 Jexl 表达式过滤掉一些不需要的数据,提高作业的吞吐量。 另外,我们还实现了 Zookeeper 定时更新的机制,使得 Policy 修改后不再需要重启作业,只要是在更新时间间隔内,该命名空间的 Policy 修改就会被自动应用到作业上。图 5 是命名空间为 paas 的 Policy 示例。 图5 paas alertESSink Policy Resource 定义了某个命名空间所需要的资源,比如 Flink 集群, Kafka broker,ES 集群等等。我们有多个 Flink 集群和 ES 集群,通过 Resource 配置,作业可以知道某个命名空间的日志应该写到哪个 ES 集群,并可以判断该命名空间的数据应该从哪个 Kafka 集群读取。 为了减少作业数量,我们可以让相同的 DAG 复用同一个作业。我们先给不同的 Policy 指定相同的 Capability,在该 Capability 资源足够的情况下,这些 Policy 就会被调度到同一个作业上。 以 SQL 的 Capability 为例,每个 Policy 的 SQL 语句不尽相同,如果为每个 Policy 都创建一个作业, Job Manager 的开销就会很大,且不好管理。因此,我们可以为 SQL Capability 配置 20 个 Slot,每个 Policy 占用一个 Slot。那么该 Capability 生成的作业就可以运行 20 个 Policy。 作业运行时,从 Source 读进来的数据会被打上相应 Policy 的标签,并执行该 Policy 定义的 SQL 语句,从而实现不同 Policy 共享同一个作业,大大减少了作业的数量。 用共享作业还有一个好处:如果多个命名空间的数据在一个 Kafka topic 里,那么只要读一遍数据即可,不用每个命名空间都读一次 topic 再过滤,这样就大大提高了处理的效率。 了解元数据驱动后,让我们来看看可以通过哪些方法实现 Flink 作业的而优化和监控。 在 Flink 集群的运维过程中,我们很难监控作业的运行情况。即使开启了检查点(checkpoint),我们也无法确定是否丢失数据或丢失了多少数据。因此,我们为每个作业注入了 Heartbeat 以监控其运行情况。 Heartbeat 就像 Flink 中用来监控延迟的“LatencyMarker”一样,它会流过每个作业的管道。但与 LatencyMarker 不同的是,当 Heartbeat 遇到 DAG 的分支时,它会分裂并流向每个分支,而不像 LatencyMarker 那样随机流向某一个分支。另一个不同点在于 Heartbeat 不是由 Flink 自身产生,而是由元数据微服务定时产生,而后由每个作业消费。 如图 4 所示,每个作业在启动的时候会默认加一个 Heartbeat 的数据源。Heartbeat 流入每个作业后,会随数据流一起经过每个节点,在每个节点上打上当前节点的标签,然后跳过该节点的处理逻辑流向下个节点。直到 Heartbeat 流到最后一个节点时,它会以指标(Metric)的形式发送到 Sherlock.IO(eBay 监控平台)。 该指标包含了 Heartbeat 产生的时间,流入作业的时间以及到达每个节点的时间。通过这个指标,我们可以判断该作业在读取 kafka 时是否延时,以及一条数据被整个管道处理所用的时间和每个节点处理数据所用的时间,进而判断该作业的性能瓶颈。 由于 Heartbeat 是定时发送的,因此每个作业收到的 Heartbeat 个数应该一致。若最后发出的指标个数与期望不一致,则可以进一步判断是否有数据丢失。 图 6 描述了某 Flink 作业中的数据流以及 Heartbeat 的运行状态: 图6 Heartbeat在作业中的运行过程 有了 Heartbeat,我们就可以用来定义集群的可用性。首先,我们需要先定义在什么情况下属于不可用的: 当内存不足(OutofMemory)或代码运行错误时,作业就可能会意外重启。我们认为重启过程中造成的数据丢失是不可用的情况之一。因此我们的目标之一是让 Flink 作业能够长时间稳定运行。 有时因为基础设施的问题导致物理机或者容器没启动起来,或是在 Flink 作业发生重启时由于 Slot 不够而无法启动,或者是因为 Flink 作业的重启次数已经超过了最大重启次数(rest.retry.max-attempts), Flink 作业就会中止。此时需要人工干预才能将作业重新启动起来。 我们认为 Flink 作业中止时,也是不可用的情况之一。 发生这种情况,一般是因为遇到了反压(BackPressure)。造成反压的原因有很多种,比如上游的流量过大,或者是中间某个算子的处理能力不够,或者是下游存储节点遇到性能瓶颈等等。虽然短时间内的反压不会造成数据丢失,但它会影响数据的实时性,最明显的变化是延迟这个指标会变大。 我们认为反压发生时是不可用的情况之一。 针对以上三种情况,我们都可以用 Heartbeat 来监控,并计算可用性。比如第一种情况,如果作业重启时发生了数据丢失,那么相应的那段管道的 Heartbeat 也会丢失,从而我们可以监测出是否有数据丢失以及粗粒度地估算数据丢了多少。对于第二种情况,当作业中止时,HeartBeat 也不会被处理,因此可以很快发现作业停止运行并让 on-call 及时干预。第三种情况当反压发生时,HeartBeat 也会被阻塞在发生反压的上游,因此 on-call 也可以很快地发现反压发生并进行人工干预。 综上,Heartbeat 可以很快监测出 Flink 作业的运行情况。那么,如何评估可用性呢?由于 Heartbeat 是定时发生的,默认情况下我们设置每 10 秒发一次。1 分钟内我们期望每个作业的每条管道能够发出 6 个带有作业信息的 heartbeat,那么每天就可以收到 8640 个 Heartbeat。 因此,一个作业的可用性可以定义为: Slot 是 Flink 运行作业的最小单位[1],每个 TaskManager 可以分配一个至多个 Slot(一般分配的个数为该 TaskManager 的 CPU 数)。根据 Flink 作业的并行度,一个作业可以分配到多个 TaskManager 上,而一个 TaskManager 也可能运行着多个作业。然而,一个 TaskManager 就是一个 JVM,当多个作业分配到一个 TaskManager 上时,就会有抢夺资源的情况发生。 例如,我一个 TaskManager 分配了 3 个 Slot(3 个 CPU)和 8G 堆内存。当 JobManager 调度作业的时候,有可能将 3 个不同作业的线程调度到该 TaskManager 上,那么这 3 个作业就会同时抢夺 CPU 和内存的资源。当其中一个作业特别耗 CPU 或内存的时候,就会影响其他两个作业。 在这种情况下,我们通过配置 Flink 可以实现作业的隔离,如图 7 所示: 图7 Flink 作业隔离前后的调度图 通过配置: “taskmanager.numberOfTaskSlots: 1”:可以设置每个TaskManager只有一个Slot; “cpu_period”和“cpu_quota”:可以限定每个TaskManager的CPU个数 “taskmanager.heap.mb”可以配置每个TaskManager的JVM的内存大小。 通过以上配置,可以限定每个 TaskManager 独占 CPU 和内存的资源,且不会多个作业抢占,实现作业之间的隔离。 我们运维 Flink 集群的时候发现,出现最多的问题就是反压。在 3.2 中提到过,发生反压的原因有很多种,但无论什么原因,数据最终都会被积压在发生反压上游的算子的本地缓冲区(localBuffer)中。 我们知道,每一个 TaskManager 有一个本地缓冲池, 每一个算子数据进来后会把数据填充到本地缓冲池中,数据从这个算子出去后会回收这块内存。当被反压后,数据发不出去,本地缓冲池内存就无法释放,导致一直请求缓冲区(requestBuffer)。 由于 Heartbeat 只能监控出是否发生了反压,但无法定位到是哪个算子出了问题,因此我们定时地将每个算子的 StackTrace 打印出来,当发生反压时,通过 StackTrace 就可以知道是哪个算子的瓶颈。 如图8所示,我们可以清晰地看到发生反压的 Flink 作业及其所在的 Taskmanager。再通过 Thread Dump,我们就可以定位到代码的问题。 图8 发生反压的StackTrace (点击观看大图) Flink 本身提供了很多有用的指标[2]来监控 Flink 作业的运行情况,在此基础上我们还加了一些业务上的指标。除此之外,我们还使用了以下工具监控 Flink 作业。 Flink 的 History server[3]可以查询已完成作业的状态和指标。比如一个作业的重启次数、它运行的时间。我们常常用它找出运行不正常的作业。比如,我们可以通过 History server 的 attempt 指标知道每个作业重启的次数,从而快速去现场找到重启的原因,避免下次再发生。 虽然 Flink 有 HA 的模式,但在极端情况下,例如整个集群出现问题时,需要 on-call 即时发觉并人工干预。我们在元数据微服务中保存了最后一次提交作业成功的元数据,它记录了在每个 Flink 集群上应该运行哪些作业。守护线程(Daemon thread)会每分钟去比较这个元数据和 Flink 上运行的作业,若发现 JobManager 连不通或者有作业运行不一致则立刻发出告警(Alert)通知 on-call。 下面介绍几个已经运行在监控系统上的 Flink 流处理系统的应用: 当前监控团队是基于 Flink Streaming 做事件告警(Event alerting),我们定义了一个告警算子 EventAlertingCapability,该 Capability 可以处理每个 Policy 自定义的规则。如图 9 定义的一条性能监控规则: 该规则的含义是当性能检测器的应用为“r1rover”, 主机以“r1rover”开头,且数值大于 90 时,就触发告警。且生成的告警会发送到指定的 Kafka topic 中供下游继续处理。 图9 Single-Threshold1 Policy (点击查看大图) Eventzon 就像 eBay 的事件中心,它收集了从各个应用,框架,基础架构发过来的事件,最后通过监控团队的 Flink Streaming 实时生成告警。由于各个事件的数据源不同,它们的元数据也不同,因此无法用一条统一的规则来描述它。 我们专门定义了一套作业来处理 Eventzon 的事件,它包含了多个 Capability,比如 Filter Capability,用来过滤非法的或者不符合条件的事件; 又比如 Deduplicate Capability,可以用来去除重复的事件。Eventzon 的所有事件经过一整套作业后,会生成有效的告警,并根据通知机制通过 E-mail、Slack 或 Pagerduty 发给相关团队。 Netmon 的全称为 Network Monitoring, 即网络监控,它可以用来监控整个 eBay 网络设备的健康状态。它的数据源来自 eBay 的交换机,路由器等网络设备的日志。Netmon 的作用是根据这些日志找出一些特定的信息,往往是一些错误的日志,以此来生成告警。 eBay 的每一台设备都要“登记造册”,每台设备将日志发过来后,我们通过 EnrichCapability 从“册子”中查询这台设备的信息,并把相关信息比如 IP 地址,所在的数据中心,所在的机架等填充到日志信息中作为事件保存。当设备产生一些特定的错误日志时, 它会被相应的规则匹配然后生成告警,该告警会被 EventProcess Capability 保存到 Elasticsearch 中实时显示到 Netmon 的监控平台(dashboard)上。有时因为网络抖动导致一些短暂的错误发生,但系统过一会儿就会自动恢复。 当上述情况发生时,Netmon 会有相应的规则将发生在网络抖动时生成的告警标记为“已解决”(Resolved)。对于一些必须人工干预的告警,运维人员可以通过网络监控平台(Netmon dashboard)手动点击“已解决”,完成该告警的生命周期。 eBay 的监控团队希望能根据用户提供的指标、事件和日志以及相应的告警规则实时告警用户。Flink Streaming 能够提供低延时的处理从而能够达到我们低延时的要求,并且它适合比较复杂的处理逻辑。 然而在运维 Flink 的过程中,我们也发现了由于作业重启等原因导致误报少报告警的情况发生,从而误导客户。因此今后我们会在 Flink 的稳定性和高可用性上投入更多。我们也希望在监控指标、日志上能够集成一些复杂的 AI 算法,从而能够生成更加有效精确的告警,成为运维人员的一把利器。 参考文献: [1] https://ci.apache.org/projects/flink/flink-docs-release-1.7/concepts/runtime.html#task-slots-and-resources [2] https://ci.apache.org/projects/flink/flink-docs-release-1.7/monitoring/metrics.html [3] https://ci.apache.org/projects/flink/flink-docs-release-1.4/monitoring/historyserver.html ▼ Flink 社区推荐 ▼ 史上超强阵容,Flink Forward Asia 2019 你报名了吗?
0
0
Ali
9
AnayticDB MySQL降本30%的数据湖最佳实践-阿里云开发者社区
【先打一波小广告】阿里云AnalyticDB MySQL升级为湖仓一体架构,支持高吞吐离线处理和高性能在线分析,可无缝替换CDH/TDH/Databricks/Presto/Spark/Hive等。 1.目前湖仓版开放了线上训练营,参加实验免费赢耳机/充电宝/卫衣等好礼,报名链接: https://developer.aliyun.com/trainingcamp/e30b5d96a3e740f5ae69f2a45a5ba7ed?spm=a2cwt.28237621.J_9603273760.7.17db5a91J7f0qF ​ 2.免费试用活动(5000ACU时+100GB存储)正在火热进行中,欢迎体验!免费试用链接: https://free.aliyun.com/?searchKey=AnalyticDB%20MySQL ,群号:33600023146 1. 客户介绍 上海兰姆达数据科技有限公司(简称“兰姆达数据”)是一家提供卓越的数据科学软件产品和解决方案的初创高科技公司。兰姆达核心团队专注于大数据,机器学习算法和精准营销SaaS平台。公司提供的数据科学平台主要包括:自动化机器学习平台SuperML和自助式BI工具SuperBI。 在行业解决方案上,公司已上线一套针对汽车4S 店的售后精准营销SaaS平台“超级站长Super4S” ,服务了一汽大众,上汽通用等数十家经销商。目前公司主要客户集中在汽车,电商,互联网等行业。 2. 业务背景 本业务主要目的是对用户在社交媒体和新媒体上发布的内容进行文本挖掘。数据主要包括各媒体平台的文章/视频的主贴内容以用户的评论内容,本业务有以下几个特点和挑战: 1)数据量大,每日新增文本数据数百万条 2)文本数据内容需要更新,例如文章发布后每天的阅读数,点赞数等指标都会变化,分析时需要用文章最新的指标 3)不需要进行实时分析,只需要T+1离线分析 4)文本分析耗时长,需要集群资源能灵活的弹升保证较快完成计算任务 5)文本分析算法复杂,传统的数据仓库SQL语言不能实现所有需求 业务整体技术架构如下 通过平台自研数据采集模块从门户网站采集信息至RDS,日增百万条记录 5)RDS数据通过数据增量抽取以parquet格式写入OSS 6)通过 Spark 对 parquet表进行清洗并写入Hudi表,清洗逻辑涉及分词、分句、实体关键词的抽取(车型)、统计等。 7)通过 Spark 对Hudi表进行清洗聚合后再写入Hudi表 8)根据业务诉求生成Parquet离线文件供数据分析师下载使用或将数据导入ClickHouse进行在线分析 3. 解决方案 针对本业务的上述特点,我们在技术选型的时候重点关注以下几个技术点: 1)方便支持海量非结构化数据存储和备份 2)减少数据的移动,存储和计算分离 3)以离线计算为主 4)计算资源能弹性升级,并且实现按量计费模式,不能有高昂的包年包月基础费 5)能高效支持数据更新 经过调研发现阿里云 ADB湖仓版是最能满足以上需求的产品。ADB Spark按量付费,完全弹性的特性很好的满足了我们的业务诉求。构建本业务使用到的阿里云组件主要包括: OSS对象存储:用于存储海量文本数据,具有存储便宜,无限容量,安全可靠等优势,省去了很多担心容量不够和数据丢失的后顾之忧。 ADB湖仓版:使用ADB Spark作为计算引擎对文本数据进行分析,相比传统数据库技术能更快更灵活的处理数据和开发分析算法。 ADB Hudi:基于Hudi技术实现对海量数据的及时更新。 DMS:阿里云的另外一套数据开发调度平台,可以作为dataworks的一个补充,最关键的是它是免费的。 ClickHouse:数据湖分析输出的结果数据可以推送到Clickhouse中进行后续的BI可视化分析和查询,满足对数据实时查询的需求 ADB湖仓版整体架构如下(来自官方资料),我们的业务流程与该图比较契合。 ADB Spark:按需弹性的大规模离线处理引擎 ADB Spark用作大规模离线数据清洗聚合,完全弹性,无需运维,借助DMS + ADB Spark可以很好的编排作业,典型业务工作流编排如下: 典型的Spark SQL写入Hudi表作业配置如下 set spark.driver.resourceSpec=medium; set spark.executor.instances=30; set spark.executor.resourceSpec=medium; set spark.app.name=dwm_origin_cleansing_daily; set spark.sql.storeAssignmentPolicy=LEGACY; set spark.driver.maxResultSize=10G; set spark.driver.memoryOverheadFactor=0.4; set hoodie.metadata.enable = true; set hoodie.cleaner.commits.retained=3; -- 每日新增数据去重清洗插入dwm_origin_hudi 表 insert into table dia_dwm.dwm_origin_hudi partition (pt,sid) select site_id, channel_id, category_1st, category_2nd, url, date(issue_time) as pt, site_id as sid from ( select *,row_number() OVER (PARTITION BY pid ORDER BY crawl_time DESC) AS rn from dia_ods.ods_channel_collect_origin where dt='${bizdate}' ) t where t.rn = 1 ADB Hudi:支持增删改的高吞吐数据层 考虑典型业务场景:计算某个微博7天内的点赞量以及微博对于汽车的评价。 采集模块每天采集微博数据并写入RDS,每天采集的微博都是一个事件写入RDS,因此RDS中对于同一条微博会有多条数据,需要计算微博7天点赞量并对微博进行情感分析。 引入Hudi之前处理流程 在引入Hudi之前整体处理流程如下图所示,RDS数据按照采集时间每天增量抽取至OSS中,如考虑20230501-20230507七天分区数据,20230507分区中可能会包含20230506以及20230501分区的数据。 通过Spark读取七天的数据并开窗取同一条微博最新数据以及过滤掉七天外的数据(20230501分区可能包含20230401的数据,对于这部分超过7天的数据直接过滤掉),处理完后按照发布时间(事件时间)分区写入parquet表,此时的写入是分区覆盖写(保证写入最新数据),也就意味着Spark每天读取7天的数据,然后全量覆盖多个分区,有较多的重复计算和写入,处理效率相对低效。 引入Hudi之后 处理流程 在引入Hudi后,前面增量抽取与前面方案相同,但是在第二步Spark计算时只处理一天的数据,而非处理七天的数据,然后按照发布时间(事件时间)更新Hudi表的对应分区,不需要进行分区级全量覆盖,同时Spark对于延迟数据(20230401)可以直接借助Hudi Upsert能力支持对超过7天的数据进行更新,而非在Spark开窗函数中过滤掉。 对比两种架构,引入Hudi后的架构有如下优势。 Spark处理数据由七天变成一天,数据量每天减少 约7倍 Spark处理逻辑更简单,无需丢弃七天外的延迟数据,Hudi支持任意延迟时间数据更新写入 写入处理后的数据时无需全量覆盖,直接按照分区更新即可,效率更高 4. 方案收益 从计算耗时和计算费用两个方面来看项目的收益: 计算耗时: 下降3倍 使用传统自建Hadoop集群的方式,对于小公司,由于成本原因,集群的固定资源一般是不够大的,这会导致计算任务耗时很长,尤其是任务多了之后只能串行处理不能并行化,导致时间会更长。使用可灵活弹性升级的ADB数据湖分析平台后,我们可以并行化启动多个任务流,每个任务流根据我们预计的完成时间分配合理的计算资源ACU数量, 可以做到不增加总成本的基础上,让计算时间显著缩短 。目前我们每天的计算任务可以控制在30分钟内完成,一周的计算任务可以控制在3小时内完成。最快的一次,我们需要重算历史一年的数据,通过指定使用更多的ACU数量,在1天之内就全部计算完成。同时引入Hudi后作业耗时从10min下降到3min。 计算费用:下降30%~50% ADB数据湖分析的整体费用由两部分构成:OSS存储和接口费+ADB Spark按量计算费用。OSS存储和接口费,按照数据量10TB左右估算,每个月费用应该在2000元以内; ADB Spark按量计算费用是按ACU数量*计算时长收费,100核400G的集群算1个小时大概35元,性价比非常高 。ADB Spark + OSS组合方案中 Spark 计算 + OSS存储成本每个月5000左右,一年约6万,搭建传统集群50个CU 估计1年成本9万多,整体成本下降30%,如果业务数据量大,计算复杂,计算频率不是很高,整体成本下降更高,使用ADB Spark数据湖分析绝对是最佳性价比的产品。   使用阿里云数据湖分析架构后,数据处理时长显著下降,同时计算成本非常优化, ADB数据湖分析可谓是一款性价比极高的大数据产品。
0
0
Ali
10
亚马逊云科技推出基于生成式AI的临床文档工具HealthScribe预览版
最近,亚马逊云科技新推出了一项符合HIPAA标准的服务,名为AWS HealthScribe。该服务尚处于预览状态,它可以利用语音识别和生成式人工智能(基于Amazon Bedrock)来生成临床文档。 按照该公司的说法,AWS HealthScribe是会话式和生成式人工智能(AI)的结合体,可以减轻编写临床文档的负担并改善咨询体验。借助这项服务,用户可以利用一整套的人工智能功能来加快临床应用中临床文档的编制。 AWS HealthScribe为医疗卫生软件提供商提供了一个API,可以自动生成完整的记录及提取关键的详细信息(如医疗术语和药物),并根据医患之间的讨论创建可输入电子健康记录(EHR)系统的摘要。 例如,在HealthScribe中创建的笔记可以通过人工智能进行补充,包括诸如就诊原因、当前病史、评估和随访等细节。示例:医疗卫生软件开发人员可以使用AWS HealthScribe为用户提供的应用程序体验(图片来源:AWS for Industries博文) AWS for Industries博文的作者是这样描述AWS HealthScribe的好处的:通过功能整合,AWS HealthScribe减少了训练、优化、集成单个的人工智能服务和构建自定义模型的需求,加快了实施速度。客户可以专注于为最终用户提供价值,而不必费力优化单个的AI组件。 另一方面,虽然该服务符合HIPAA,但公司必须签署一份称为商业伙伴附录的合同。对此,AWS的文档做了详细说明,只有这样才能完全符合HIPAA。 除了AWS,微软和谷歌也有像AWS HealthScribe这样的医疗卫生服务。例如,云服务Microsoft Healthcare Bot就使得医疗卫生组织能够构建和部署可用于各种目的的会话代理,例如分诊和症状检查。还有Google Cloud Healthcare API,该服务提供了一套基于Google Cloud Platform构建的专门用于医疗卫生领域的产品和服务。 Bertalan Meskó是医学未来学家协会(Medical Futurist Institute)的主任、哲学和医学博士,他在LinkedIn的一篇帖子中评论道:看到科技巨头进军医疗卫生领域非常令人兴奋,我们都应该为此感到高兴,因为他们比医疗卫生/制药公司更擅长创造人们想要的技术。 此外,Batch首席执行官Simon Dawlat在推特上写到:随着亚马逊加入微软/谷歌的竞争行列推出HealthScribe,基于人工智能的临床文档API淘金热正如火如荼地进行着——然而,与那些高度专注的公司(如@NablaTech)所提供的产品相比,所有FAANG的产品都显得有些尴尬。 比赛开始了! Nuance和Cerner Corporation(Oracle)等公司也提供了其他一些类似的解决方案,前者为医疗卫生和客户互动提供了对话式人工智能,后者则是医疗卫生信息技术解决方案、服务、设备和硬件供应商。 最后,AWS HealthScribe目前仅在美国东部(弗吉尼亚州北部)地区可用,客户可以填写表单完成注册后访问该服务。了解定价细节可以查看定价页面,了解其他细节可以查阅文档。  原文链接:https://www.infoq.com/news/2023/08/aws-healthscribe-ai-preview/相关阅读:亚马逊云科技re:Inforce 2023中国站:企业如何提高数据、模型和应用安全?降本增效:Grab如何在亚马逊云科技上将Kafka消费者流量成本降到零
1,518
1,695,081,600,680
InfoQ
11
云原生数据仓库AnalyticDB MySQL版/PostgreSQL版(二)-阿里云开发者社区
开发者学习笔记【 阿里云云数据库助理工程师(ACA)认证 : 云原生数据仓库AnalyticDB MySQL版/PostgreSQL版(二) 】 课程地址 : https://edu.aliyun.com/course/3112080/lesson/19084   云原生数据仓库AnalyticDB MySQL版/PostgreSQL版(二) 三、 AnalyticDB  场景案例     AnalyticDB的应用场景主要分为几大类,首先是人群的画像由于AB , 可以支持任意维度任意条件的筛选过滤的聚合统计,在人群画像这个场景可以做到毫无毫妙计的圈人和响应。 其次,在实施营销领域 , 可以进行实时的效果计算,实现营销效果的分钟级的闭环反馈。在运营场景里面,可以对用户行为日志进行实时的分析 。 在自定义的交互式查询报表场景下,可做到查询无卡顿,方便进行探索式的多维分析 , 进行上卷和断取分析。 同时,在超大规模的复杂计算方面 , AnalyticDB可以支持万亿级别、千亿级别 的 大量数据的多表之间进行关联 、 计算,并进行过滤 、 聚合 、统计 等等分析。另外,AnalyticDB还支持非结构化数据和结构化数据的融合的分析 , 通过销量检索功能实现带有条件的以图 搜 图。 接下来讲一些具体的案例 ,如图: 在电商领域,大量客户采用AnalyticDB构建数据仓库或者分析引擎。在这个案例中,用户将原来使用的H i ve 、H Base 、k ylin 等 大数据平台迁移到AnalyticDB构建统一的数据仓库和分析平台 , 可准 时 实时的输出分析报表。可让商户的运营报表每五分钟就能更新一次 , 还可以基于AnalyticDB构建了用户的标签系统进行用户画像分析业务。 在游戏领域 ,如下图:  用户通常使用AnalyticDB构建 , 用户行为分析系统。首先可以基 于 AnalyticDB构建T+1的计算计算报表。 还 可将海量的用户登录 的 用户行为数据和业务数据结合实时的写入到AnalyticDB , 然后每天凌晨 E TL 清洗 加工计算,生成中间数据和 报表 数据。同时也可以基于AnalyticDB构建实时的业务分析报表 。 将清洗后的数据与实时的业务数据进行实时关联 、 交互式分析。同时,实时的运营效果数据可以实时回 写, 并 支持 实时效果回流分析。各方 面 的主要特点是在线分析和离线分析离站式,数据集中存储 统一 存储 ,不再需要 几个组件之间进行数据导入导出。 其次,具有数据库的应用性,通过数据库的使用方式来使用数据。 再一个  AnalyticDB  支持冷热数据分层在游戏行业里海量 的 游戏日志数据 , 可以进行廉价的存储,同时也可以对热数据进行高效的访问。 第三  AnalyticDB  支持 动态的 在线扩容 , 可用于支撑游戏业务的迅猛发展。 在互联网金融领域 ,如下图:  此前的技术方案通常是T + 1 型 报表。现基于AnalyticDB与RDS业务库以及DTS进行组合 , 构建实施出仓的方案。 将RDS里面的业务数据 , 通过DTS等工具实时的同步到AnalyticDB , 对海量离线数据,也可以通过 D ata works等工具批量等迁移至AnalyticDB构建统一的数据仓库 , 可实现实时数据分析 , 从T + 1的效果缩减到秒级。从原来的hive等等大数据分析平台的数十分钟可缩短到秒级。 AnalyticDB也通常用 于 分析领域 ,如下图: 过去采用Oracle RAC 和h adoop等等平台 , 构建的数据平台可以统一到AnalyticDB里 。 AnalyticDB 还 可支持百万级的DTS的数据的实时的写入 和 离线数据的批量导入。 基于AnalyticDB构建企业级的统一的数仓平台 , 以某种云上的客户为例 : 构建一个AnalyticDB200多个节点的统一数据仓库平台,数据存储量达到5PB , 支持十多个APP。 该解决方案的核心的优势就是平台统一,不需要维护复杂的大数据组件和复杂的数据链路性能得到大幅的提升。同时 , 它的兼容性非常好,可采用数据库的方式来访问和使用数据仓库。
0
0
Ali
12
AnayticDB MySQL降本30%的数据湖最佳实践-阿里云开发者社区
【先打一波小广告】阿里云AnalyticDB MySQL升级为湖仓一体架构,支持高吞吐离线处理和高性能在线分析,可无缝替换CDH/TDH/Databricks/Presto/Spark/Hive等。 1.目前湖仓版开放了线上训练营,参加实验免费赢耳机/充电宝/卫衣等好礼,报名链接: https://developer.aliyun.com/trainingcamp/e30b5d96a3e740f5ae69f2a45a5ba7ed?spm=a2cwt.28237621.J_9603273760.7.17db5a91J7f0qF ​ 2.免费试用活动(5000ACU时+100GB存储)正在火热进行中,欢迎体验!免费试用链接: https://free.aliyun.com/?searchKey=AnalyticDB%20MySQL ,群号:33600023146 1. 客户介绍 上海兰姆达数据科技有限公司(简称“兰姆达数据”)是一家提供卓越的数据科学软件产品和解决方案的初创高科技公司。兰姆达核心团队专注于大数据,机器学习算法和精准营销SaaS平台。公司提供的数据科学平台主要包括:自动化机器学习平台SuperML和自助式BI工具SuperBI。 在行业解决方案上,公司已上线一套针对汽车4S 店的售后精准营销SaaS平台“超级站长Super4S” ,服务了一汽大众,上汽通用等数十家经销商。目前公司主要客户集中在汽车,电商,互联网等行业。 2. 业务背景 本业务主要目的是对用户在社交媒体和新媒体上发布的内容进行文本挖掘。数据主要包括各媒体平台的文章/视频的主贴内容以用户的评论内容,本业务有以下几个特点和挑战: 1)数据量大,每日新增文本数据数百万条 2)文本数据内容需要更新,例如文章发布后每天的阅读数,点赞数等指标都会变化,分析时需要用文章最新的指标 3)不需要进行实时分析,只需要T+1离线分析 4)文本分析耗时长,需要集群资源能灵活的弹升保证较快完成计算任务 5)文本分析算法复杂,传统的数据仓库SQL语言不能实现所有需求 业务整体技术架构如下 通过平台自研数据采集模块从门户网站采集信息至RDS,日增百万条记录 5)RDS数据通过数据增量抽取以parquet格式写入OSS 6)通过 Spark 对 parquet表进行清洗并写入Hudi表,清洗逻辑涉及分词、分句、实体关键词的抽取(车型)、统计等。 7)通过 Spark 对Hudi表进行清洗聚合后再写入Hudi表 8)根据业务诉求生成Parquet离线文件供数据分析师下载使用或将数据导入ClickHouse进行在线分析 3. 解决方案 针对本业务的上述特点,我们在技术选型的时候重点关注以下几个技术点: 1)方便支持海量非结构化数据存储和备份 2)减少数据的移动,存储和计算分离 3)以离线计算为主 4)计算资源能弹性升级,并且实现按量计费模式,不能有高昂的包年包月基础费 5)能高效支持数据更新 经过调研发现阿里云 ADB湖仓版是最能满足以上需求的产品。ADB Spark按量付费,完全弹性的特性很好的满足了我们的业务诉求。构建本业务使用到的阿里云组件主要包括: OSS对象存储:用于存储海量文本数据,具有存储便宜,无限容量,安全可靠等优势,省去了很多担心容量不够和数据丢失的后顾之忧。 ADB湖仓版:使用ADB Spark作为计算引擎对文本数据进行分析,相比传统数据库技术能更快更灵活的处理数据和开发分析算法。 ADB Hudi:基于Hudi技术实现对海量数据的及时更新。 DMS:阿里云的另外一套数据开发调度平台,可以作为dataworks的一个补充,最关键的是它是免费的。 ClickHouse:数据湖分析输出的结果数据可以推送到Clickhouse中进行后续的BI可视化分析和查询,满足对数据实时查询的需求 ADB湖仓版整体架构如下(来自官方资料),我们的业务流程与该图比较契合。 ADB Spark:按需弹性的大规模离线处理引擎 ADB Spark用作大规模离线数据清洗聚合,完全弹性,无需运维,借助DMS + ADB Spark可以很好的编排作业,典型业务工作流编排如下: 典型的Spark SQL写入Hudi表作业配置如下 set spark.driver.resourceSpec=medium; set spark.executor.instances=30; set spark.executor.resourceSpec=medium; set spark.app.name=dwm_origin_cleansing_daily; set spark.sql.storeAssignmentPolicy=LEGACY; set spark.driver.maxResultSize=10G; set spark.driver.memoryOverheadFactor=0.4; set hoodie.metadata.enable = true; set hoodie.cleaner.commits.retained=3; -- 每日新增数据去重清洗插入dwm_origin_hudi 表 insert into table dia_dwm.dwm_origin_hudi partition (pt,sid) select site_id, channel_id, category_1st, category_2nd, url, date(issue_time) as pt, site_id as sid from ( select *,row_number() OVER (PARTITION BY pid ORDER BY crawl_time DESC) AS rn from dia_ods.ods_channel_collect_origin where dt='${bizdate}' ) t where t.rn = 1 ADB Hudi:支持增删改的高吞吐数据层 考虑典型业务场景:计算某个微博7天内的点赞量以及微博对于汽车的评价。 采集模块每天采集微博数据并写入RDS,每天采集的微博都是一个事件写入RDS,因此RDS中对于同一条微博会有多条数据,需要计算微博7天点赞量并对微博进行情感分析。 引入Hudi之前处理流程 在引入Hudi之前整体处理流程如下图所示,RDS数据按照采集时间每天增量抽取至OSS中,如考虑20230501-20230507七天分区数据,20230507分区中可能会包含20230506以及20230501分区的数据。 通过Spark读取七天的数据并开窗取同一条微博最新数据以及过滤掉七天外的数据(20230501分区可能包含20230401的数据,对于这部分超过7天的数据直接过滤掉),处理完后按照发布时间(事件时间)分区写入parquet表,此时的写入是分区覆盖写(保证写入最新数据),也就意味着Spark每天读取7天的数据,然后全量覆盖多个分区,有较多的重复计算和写入,处理效率相对低效。 引入Hudi之后 处理流程 在引入Hudi后,前面增量抽取与前面方案相同,但是在第二步Spark计算时只处理一天的数据,而非处理七天的数据,然后按照发布时间(事件时间)更新Hudi表的对应分区,不需要进行分区级全量覆盖,同时Spark对于延迟数据(20230401)可以直接借助Hudi Upsert能力支持对超过7天的数据进行更新,而非在Spark开窗函数中过滤掉。 对比两种架构,引入Hudi后的架构有如下优势。 Spark处理数据由七天变成一天,数据量每天减少 约7倍 Spark处理逻辑更简单,无需丢弃七天外的延迟数据,Hudi支持任意延迟时间数据更新写入 写入处理后的数据时无需全量覆盖,直接按照分区更新即可,效率更高 4. 方案收益 从计算耗时和计算费用两个方面来看项目的收益: 计算耗时: 下降3倍 使用传统自建Hadoop集群的方式,对于小公司,由于成本原因,集群的固定资源一般是不够大的,这会导致计算任务耗时很长,尤其是任务多了之后只能串行处理不能并行化,导致时间会更长。使用可灵活弹性升级的ADB数据湖分析平台后,我们可以并行化启动多个任务流,每个任务流根据我们预计的完成时间分配合理的计算资源ACU数量, 可以做到不增加总成本的基础上,让计算时间显著缩短 。目前我们每天的计算任务可以控制在30分钟内完成,一周的计算任务可以控制在3小时内完成。最快的一次,我们需要重算历史一年的数据,通过指定使用更多的ACU数量,在1天之内就全部计算完成。同时引入Hudi后作业耗时从10min下降到3min。 计算费用:下降30%~50% ADB数据湖分析的整体费用由两部分构成:OSS存储和接口费+ADB Spark按量计算费用。OSS存储和接口费,按照数据量10TB左右估算,每个月费用应该在2000元以内; ADB Spark按量计算费用是按ACU数量*计算时长收费,100核400G的集群算1个小时大概35元,性价比非常高 。ADB Spark + OSS组合方案中 Spark 计算 + OSS存储成本每个月5000左右,一年约6万,搭建传统集群50个CU 估计1年成本9万多,整体成本下降30%,如果业务数据量大,计算复杂,计算频率不是很高,整体成本下降更高,使用ADB Spark数据湖分析绝对是最佳性价比的产品。   使用阿里云数据湖分析架构后,数据处理时长显著下降,同时计算成本非常优化, ADB数据湖分析可谓是一款性价比极高的大数据产品。
0
0
Ali
null
null
null
null
null
null
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
0
Edit dataset card