You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Test

Log in or Sign Up to review the conditions and access this dataset content.


Dataset Card for Dataset CrashCar

This is the dataset proposed in 'CrashCar101: Procedural Generation for Damage Assessment' [WACV24]

Example dataset class in pytorch

import os
import torch
from glob import glob
from PIL import Image
import numpy as np
from pathlib import Path
import pandas as pd

class CarDataset(torch.utils.data.Dataset):
    def __init__(self, root_dir, transform=None, tgt_transform=None):
        img_root = os.path.join(root_dir, 'img', '*', '*.png')
        part_root = os.path.join(root_dir, 'parts', '*', '*.png')
        damage_root = os.path.join(root_dir, 'damage', '*', '*.png')
        self.img_root = sorted(glob(img_root))
        self.part_root = sorted(glob(part_root))
        self.damage_root = sorted(glob(damage_root))
        self.transform = transform
        self.tgt_transform = tgt_transform

    def __len__(self):
        return len(self.img_root)

    def __getitem__(self, idx):
        img = Image.open(self.img_root[idx])
        part_img = Image.open(self.part_root[idx])
        damage_img = Image.open(self.damage_root[idx])
        
        if self.transform:
            img = self.transform(img)
            part_img = self.transform(part_img)
            damage_img = self.transform(damage_img)

        return {
            'image': img,
            'part': part_img,
            'damage': damage_img
        }

The following code will yield

import matplotlib.pyplot as plt
import numpy as np

dataset = CarDataset(root, transform=None)
out = dataset[20000]

fig, axs = plt.subplots(1, 3, figsize=(15, 5))

axs[0].imshow(out['image'])
axs[0].axis('off')

axs[1].imshow(out['image'])
alpha_map = (np.array(out['damage'])!= 0).astype(float)
axs[1].imshow(out['damage'], cmap="jet", alpha=alpha_map)
axs[1].axis('off')

axs[2].imshow(out['image'])
alpha_map = (np.array(out['part'])!= 0).astype(float)
axs[2].imshow(out['part'], cmap="jet", alpha=alpha_map)
axs[2].axis('off')

plt.tight_layout()
plt.show()

image

Downloads last month
31