Datasets:
File size: 16,946 Bytes
f524e77 f92e62d ddf28d6 d051dc9 88d4d9c 4e74f4a 43f98e7 77f46b1 43f98e7 67ffafe 16ea832 77f46b1 4dd259c 77f46b1 43f98e7 16ea832 f851b5d 77f46b1 4d8a7ca 48d3911 4d8a7ca 91e4a35 2dd1152 6c33ac0 2dd1152 77f46b1 5d303b4 77f46b1 2dd1152 4d8a7ca 2dd1152 4d8a7ca 77f46b1 5d303b4 77f46b1 2dd1152 16ea832 2dd1152 16ea832 2dd1152 f851b5d 2dd1152 16ea832 2dd1152 16ea832 2dd1152 f851b5d 2dd1152 16ea832 2dd1152 16ea832 2dd1152 f851b5d 2dd1152 16ea832 2dd1152 16ea832 2dd1152 77f46b1 2dd1152 16ea832 2dd1152 16ea832 2dd1152 77f46b1 2dd1152 16ea832 2dd1152 16ea832 2dd1152 77f46b1 2dd1152 16ea832 2dd1152 16ea832 2dd1152 77f46b1 2dd1152 16ea832 2dd1152 16ea832 2dd1152 f851b5d 2dd1152 16ea832 2dd1152 6c33ac0 2dd1152 16ea832 2dd1152 f851b5d 2dd1152 16ea832 2dd1152 77f46b1 5d303b4 f851b5d 43f98e7 67ffafe 16ea832 4dd259c da2eca5 43f98e7 3590fd4 d01abd8 3590fd4 77f46b1 4dd259c 77f46b1 43f98e7 16ea832 77f46b1 16ea832 43f98e7 d01abd8 3590fd4 936bc32 f6d1762 da2eca5 936bc32 16ea832 936bc32 16ea832 936bc32 16ea832 936bc32 3590fd4 a29bd77 16ea832 a29bd77 67ffafe 16ea832 a29bd77 43f98e7 16ea832 4dd259c 70a0882 16ea832 43f98e7 d01abd8 77f46b1 d01abd8 43f98e7 16ea832 43f98e7 16ea832 29ae5d6 16ea832 9978f9b 43f98e7 67ffafe 43f98e7 d01abd8 67ffafe a60bbc9 43f98e7 67ffafe 590ac68 13bbb82 88d4d9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
---
license: etalab-2.0
pretty_name: French Land Cover from Aerospace Imagery
size_categories:
- 10B<n<100B
task_categories:
- image-segmentation
tags:
- IGN
- Aerial
- Satellite
- Environement
- Multimodal
- Earth Observation
---
# Datset Card for FLAIR land-cover semantic segmentation
## Context & Data
<hr style='margin-top:-1em; margin-bottom:0' />
The hereby FLAIR (#1 and #2) dataset is sampled countrywide and is composed of over 20 billion annotated pixels of very high resolution aerial imagery at 0.2 m spatial resolution, acquired over three years and different months (spatio-temporal domains).
Aerial imagery patches consist of 5 channels (RVB-Near Infrared-Elevation) and have corresponding annotation (with 19 semantic classes or 13 for the baselines).
Furthermore, to integrate broader spatial context and temporal information, high resolution Sentinel-2 satellite 1-year time series with 10 spectral band are also provided.
More than 50,000 Sentinel-2 acquisitions with 10 m spatial resolution are available.
<br>
The dataset covers 55 distinct spatial domains, encompassing 974 areas spanning 980 km². This dataset provides a robust foundation for advancing land cover mapping techniques.
We sample two test sets based on different input data and focus on semantic classes. The first test set (flair#1-test) uses very high resolution aerial imagery only and samples primarily anthropized land cover classes.
In contrast, the second test set (flair#2-test) combines aerial and satellite imagery and has more natural classes with temporal variations represented.<br><br>
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:13px;
overflow:hidden;padding:2px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:13px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-km2t{border-color:#ffffff;font-weight:bold;text-align:left;vertical-align:top}
.tg .tg-rime{background-color:#E4DF7C;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-r3rw{background-color:#a97101;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-zv4m{border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-nto1{background-color:#000000;border-color:inherit;text-align:left;vertical-align:top}
.tg .tg-9efv{background-color:#938e7b;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-8jgo{border-color:#ffffff;text-align:center;vertical-align:top}
.tg .tg-b45e{background-color:#194A26;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-9xgv{background-color:#1553ae;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-3m6m{background-color:#f80c00;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-2e1p{background-color:#db0e9a;border-color:#ffffff;color:#db0e9a;text-align:left;vertical-align:top}
.tg .tg-l5fa{background-color:#FFF30D;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-2cns{background-color:#3DE6EB;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-jjsp{background-color:#FFF;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-2w6m{background-color:#8AB3A0;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-nla7{background-color:#6B714F;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-qg2z{background-color:#46E483;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-nv8o{background-color:#C5DC42;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-grz5{background-color:#F3A60D;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-bja1{background-color:#99F;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-69kt{background-color:#660082;border-color:#ffffff;text-align:left;vertical-align:top}
.tg .tg-r1r4{background-color:#5F0;border-color:#ffffff;text-align:left;vertical-align:top}
</style>
<table class="tg">
<thead>
<tr>
<th class="tg-zv4m"></th>
<th class="tg-zv4m">Class</th>
<th class="tg-8jgo">Train/val (%)</th>
<th class="tg-8jgo">Test flair#1 (%)</th>
<th class="tg-8jgo">Test flair#2 (%)</th>
<th class="tg-zv4m"></th>
<th class="tg-zv4m">Class</th>
<th class="tg-8jgo">Train/val (%)</th>
<th class="tg-8jgo">Test flair#1 (%)</th>
<th class="tg-8jgo">Test flair#2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-2e1p"></td>
<td class="tg-km2t">(1) Building</td>
<td class="tg-8jgo">8.14</td>
<td class="tg-8jgo">8.6</td>
<td class="tg-8jgo">3.26</td>
<td class="tg-l5fa"></td>
<td class="tg-km2t">(11) Agricultural Land</td>
<td class="tg-8jgo">10.98</td>
<td class="tg-8jgo">6.95</td>
<td class="tg-8jgo">18.19</td>
</tr>
<tr>
<td class="tg-9efv"></td>
<td class="tg-km2t">(2) Pervious surface</td>
<td class="tg-8jgo">8.25</td>
<td class="tg-8jgo">7.34</td>
<td class="tg-8jgo">3.82</td>
<td class="tg-rime"></td>
<td class="tg-km2t">(12) Plowed land</td>
<td class="tg-8jgo">3.88</td>
<td class="tg-8jgo">2.25</td>
<td class="tg-8jgo">1.81</td>
</tr>
<tr>
<td class="tg-3m6m"></td>
<td class="tg-km2t">(3) Impervious surface</td>
<td class="tg-8jgo">13.72</td>
<td class="tg-8jgo">14.98</td>
<td class="tg-8jgo">5.87</td>
<td class="tg-2cns"></td>
<td class="tg-km2t">(13) Swimming pool</td>
<td class="tg-8jgo">0.01</td>
<td class="tg-8jgo">0.04</td>
<td class="tg-8jgo">0.02</td>
</tr>
<tr>
<td class="tg-r3rw"></td>
<td class="tg-km2t">(4) Bare soil</td>
<td class="tg-8jgo">3.47</td>
<td class="tg-8jgo">4.36</td>
<td class="tg-8jgo">1.6</td>
<td class="tg-jjsp"></td>
<td class="tg-km2t">(14) Snow</td>
<td class="tg-8jgo">0.15</td>
<td class="tg-8jgo">-</td>
<td class="tg-8jgo">-</td>
</tr>
<tr>
<td class="tg-9xgv"></td>
<td class="tg-km2t">(5) Water</td>
<td class="tg-8jgo">4.88</td>
<td class="tg-8jgo">5.98</td>
<td class="tg-8jgo">3.17</td>
<td class="tg-2w6m"></td>
<td class="tg-km2t">(15) Clear cut</td>
<td class="tg-8jgo">0.15</td>
<td class="tg-8jgo">0.01</td>
<td class="tg-8jgo">0.82</td>
</tr>
<tr>
<td class="tg-b45e"></td>
<td class="tg-km2t">(6) Coniferous</td>
<td class="tg-8jgo">2.74</td>
<td class="tg-8jgo">2.39</td>
<td class="tg-8jgo">10.24</td>
<td class="tg-nla7"></td>
<td class="tg-km2t">(16) Mixed</td>
<td class="tg-8jgo">0.05</td>
<td class="tg-8jgo">-</td>
<td class="tg-8jgo">0.12</td>
</tr>
<tr>
<td class="tg-qg2z"></td>
<td class="tg-km2t">(7) Deciduous</td>
<td class="tg-8jgo">15.38</td>
<td class="tg-8jgo">13.91</td>
<td class="tg-8jgo">24.79</td>
<td class="tg-nv8o"></td>
<td class="tg-km2t">(17) Ligneous</td>
<td class="tg-8jgo">0.01</td>
<td class="tg-8jgo">0.03</td>
<td class="tg-8jgo">-</td>
</tr>
<tr>
<td class="tg-grz5"></td>
<td class="tg-km2t">(8) Brushwood</td>
<td class="tg-8jgo">6.95</td>
<td class="tg-8jgo">6.91</td>
<td class="tg-8jgo">3.81</td>
<td class="tg-bja1"></td>
<td class="tg-km2t">(18) Greenhouse</td>
<td class="tg-8jgo">0.12</td>
<td class="tg-8jgo">0.2</td>
<td class="tg-8jgo">0.15</td>
</tr>
<tr>
<td class="tg-69kt"></td>
<td class="tg-km2t">(9) Vineyard</td>
<td class="tg-8jgo">3.13</td>
<td class="tg-8jgo">3.87</td>
<td class="tg-8jgo">2.55</td>
<td class="tg-nto1"></td>
<td class="tg-km2t">(19) Other</td>
<td class="tg-8jgo">0.14</td>
<td class="tg-8jgo">0.-</td>
<td class="tg-8jgo">0.04</td>
</tr>
<tr>
<td class="tg-r1r4"></td>
<td class="tg-km2t">(10) Herbaceous vegetation</td>
<td class="tg-8jgo">17.84</td>
<td class="tg-8jgo">22.17</td>
<td class="tg-8jgo">19.76</td>
<td class="tg-zv4m"></td>
<td class="tg-zv4m"></td>
<td class="tg-zv4m"></td>
<td class="tg-zv4m"></td>
</tr>
</tbody>
</table>
<br><br>
## Dataset Structure
<hr style='margin-top:-1em; margin-bottom:0' />
The FLAIR dataset consists of a total of 93 462 patches: 61 712 patches for the train/val dataset, 15 700 patches for flair#1-test and 16 050 patches for flair#2-test.
Each patch includes a high-resolution aerial image (512x512) at 0.2 m, a yearly satellite image time series (40x40 by default by wider areas are provided) with a spatial resolution of 10 m
and associated cloud and snow masks (available in train/val and flair#2-test), and pixel-precise elevation and land cover annotations at 0.2 m resolution (512x512).
<p align="center"><img src="flair-patches.png" alt="" style="width:70%;max-width:600px;"/></p><br>
### Band order
<div style="display: flex;">
<div style="width: 15%;margin-right: 1;"">
Aerial
<ul>
<li>1. Red</li>
<li>2. Green</li>
<li>3. Blue</li>
<li>4. NIR</li>
<li>5. nDSM</li>
</ul>
</div>
<div style="width: 25%;">
Satellite
<ul>
<li>1. Blue (B2 490nm)</li>
<li>2. Green (B3 560nm)</li>
<li>3. Red (B4 665nm)</li>
<li>4. Red-Edge (B5 705nm)</li>
<li>5. Red-Edge2 (B6 470nm)</li>
<li>6. Red-Edge3 (B7 783nm)</li>
<li>7. NIR (B8 842nm)</li>
<li>8. NIR-Red-Edge (B8a 865nm)</li>
<li>9. SWIR (B11 1610nm)</li>
<li>10. SWIR2 (B12 2190nm)</li>
</ul>
</div>
</div>
### Annotations
Each pixel has been manually annotated by photo-interpretation of the 20 cm resolution aerial imagery, carried out by a team supervised by geography experts from the IGN.
Movable objects like cars or boats are annotated according to their underlying cover.
### Data Splits
The dataset is made up of 55 distinct spatial domains, aligned with the administrative boundaries of the French départements.
For our experiments, we designate 32 domains for training, 8 for validation, and reserve 10 official test sets for flair#1-test and flair#2-test.
It can also be noted that some domains are common in the flair#1-test and flair#2-test datasets but cover different areas within the domain.
This arrangement ensures a balanced distribution of semantic classes, radiometric attributes, bioclimatic conditions, and acquisition times across each set.
Consequently, every split accurately reflects the landscape diversity inherent to metropolitan France.
It is important to mention that the patches come with meta-data permitting alternative splitting schemes.
Official domain split: <br/>
<div style="display: flex; flex-wrap: nowrap; align-items: center">
<div style="flex: 40%;">
<img src="flair-splits.png" alt="flair-splits">
</div>
<div style="flex: 60%; margin: auto;"">
<table border="1">
<tr>
<th><font color="#c7254e">TRAIN:</font></th>
<td>D006, D007, D008, D009, D013, D016, D017, D021, D023, D030, D032, D033, D034, D035, D038, D041, D044, D046, D049, D051, D052, D055, D060, D063, D070, D072, D074, D078, D080, D081, D086, D091</td>
</tr>
<tr>
<th><font color="#c7254e">VALIDATION:</font></th>
<td>D004, D014, D029, D031, D058, D066, D067, D077</td>
</tr>
<tr>
<th><font color="#c7254e">TEST-flair#1:</font></th>
<td>D012, D022, D026, D064, D068, D071, D075, D076, D083, D085</td>
</tr>
<tr>
<th><font color="#c7254e">TEST-flair#2:</font></th>
<td>D015, D022, D026, D036, D061, D064, D068, D069, D071, D084</td>
</tr>
</table>
</div>
</div>
<br><br>
## Baseline code
<hr style='margin-top:-1em; margin-bottom:0' />
<br>
### Flair #1 (aerial only)
A U-Net architecture with a pre-trained ResNet34 encoder from the pytorch segmentation models library is used for the baselines.
The used architecture allows integration of patch-wise metadata information and employs commonly used image data augmentation techniques.
Flair#1 code repository 📁 : https://github.com/IGNF/FLAIR-1<br/>
Link to the paper : https://arxiv.org/pdf/2211.12979.pdf <br>
Please include a citation to the following article if you use the FLAIR#1 dataset:
```
@article{ign2022flair1,
doi = {10.13140/RG.2.2.30183.73128/1},
url = {https://arxiv.org/pdf/2211.12979.pdf},
author = {Garioud, Anatol and Peillet, Stéphane and Bookjans, Eva and Giordano, Sébastien and Wattrelos, Boris},
title = {FLAIR #1: semantic segmentation and domain adaptation dataset},
publisher = {arXiv},
year = {2022}
}
```
<br>
### Flair #2 (aerial and satellite)
We propose the U-T&T model, a two-branch architecture that combines spatial and temporal information from very high-resolution aerial images and high-resolution satellite images into a single output. The U-Net architecture is employed for the spatial/texture branch, using a ResNet34 backbone model pre-trained on ImageNet. For the spatio-temporal branch,
the U-TAE architecture incorporates a Temporal self-Attention Encoder (TAE) to explore the spatial and temporal characteristics of the Sentinel-2 time series data,
applying attention masks at different resolutions during decoding. This model allows for the fusion of learned information from both sources,
enhancing the representation of mono-date and time series data.
U-T&T code repository 📁 : https://github.com/IGNF/FLAIR-2<br/>
Link to the paper : https://arxiv.org/abs/2310.13336 <br>
<th><font color="#c7254e"><b>IMPORTANT!</b></font></th> <b>The structure of the current dataset differs from the one that comes with the GitHub repository.</b>
To work with the current dataset, you need to replace the <font color=‘#D7881C’><em>src/load_data.py</em></font> file with the one provided here.
You also need to add the following lines to the <font color=‘#D7881C’><em>flair-2-config.yml</em></font> file under the <em><b>data</b></em> tag: <br>
```
HF_data_path : " " # Path to unzipped FLAIR HF dataset
domains_train : ["D006_2020","D007_2020","D008_2019","D009_2019","D013_2020","D016_2020","D017_2018","D021_2020","D023_2020","D030_2021","D032_2019","D033_2021","D034_2021","D035_2020","D038_2021","D041_2021","D044_2020","D046_2019","D049_2020","D051_2019","D052_2019","D055_2018","D060_2021","D063_2019","D070_2020","D072_2019","D074_2020","D078_2021","D080_2021","D081_2020","D086_2020","D091_2021"]
domains_val : ["D004_2021","D014_2020","D029_2021","D031_2019","D058_2020","D066_2021","D067_2021","D077_2021"]
domains_test : ["D015_2020","D022_2021","D026_2020","D036_2020","D061_2020","D064_2021","D068_2021","D069_2020","D071_2020","D084_2021"]
```
<br>
Please include a citation to the following article if you use the FLAIR#2 dataset:
```
@inproceedings{garioud2023flair,
title={FLAIR: a Country-Scale Land Cover Semantic Segmentation Dataset From Multi-Source Optical Imagery},
author={Anatol Garioud and Nicolas Gonthier and Loic Landrieu and Apolline De Wit and Marion Valette and Marc Poupée and Sébastien Giordano and Boris Wattrelos},
year={2023},
booktitle={Advances in Neural Information Processing Systems (NeurIPS) 2023},
doi={https://doi.org/10.48550/arXiv.2310.13336},
}
```
<br>
## CodaLab challenges
<hr style='margin-top:-1em; margin-bottom:0' />
The FLAIR dataset was used for two challenges organized by IGN in 2023 on the CodaLab platform.<br>
Challenge FLAIR#1 : https://codalab.lisn.upsaclay.fr/competitions/8769 <br>
Challenge FLAIR#2 : https://codalab.lisn.upsaclay.fr/competitions/13447 <br>
flair#1-test | The podium:
🥇 businiao - 0.65920
🥈 Breizhchess - 0.65600
🥉 wangzhiyu918 - 0.64930
flair#2-test | The podium:
🥇 strakajk - 0.64130
🥈 Breizhchess - 0.63550
🥉 qwerty64 - 0.63510
## Acknowledgment
<hr style='margin-top:-1em; margin-bottom:0' />
This work was performed using HPC/AI resources from GENCI-IDRIS (Grant 2022-A0131013803). This work was supported by the project "Copernicus / FPCUP” of the European Union, by the French Space Agency (CNES) and by Connect by CNES.<br>
## Contact
<hr style='margin-top:-1em; margin-bottom:0' />
If you have any questions, issues or feedback, you can contact us at: ai-challenge@ign.fr
<br>
## Dataset license
<hr style='margin-top:-1em; margin-bottom:0' />
The "OPEN LICENCE 2.0/LICENCE OUVERTE" is a license created by the French government specifically for the purpose of facilitating the dissemination of open data by public administration.<br/>
This licence is governed by French law.<br/>
This licence has been designed to be compatible with any free licence that at least requires an acknowledgement of authorship, and specifically with the previous version of this licence as well as with the following licences: United Kingdom’s “Open Government Licence” (OGL), Creative Commons’ “Creative Commons Attribution” (CC-BY) and Open Knowledge Foundation’s “Open Data Commons Attribution” (ODC-BY). |