Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
File size: 48,278 Bytes
032e6f1
 
3f88b73
032e6f1
 
 
 
 
 
 
 
 
 
 
 
 
3a894c8
 
 
 
cb4e42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50c3c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac98ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
ff562ee
 
 
 
a49c0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc9653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6919758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d50c875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b597da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c669042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c258060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba1a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe04cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f452eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d443d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7e7a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0bed34
 
 
 
 
 
 
 
 
 
 
 
 
 
c47e1ef
 
 
 
3de93ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
957b449
3f88b73
 
 
 
 
 
 
 
 
 
 
 
 
f4cc532
 
 
 
8330a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c314f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4759dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786bcd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3534e57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5d1dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f38a636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c41e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870d98c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b3335d
 
 
 
 
 
 
 
 
 
 
 
 
 
ea275e5
 
 
 
ba2dd49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bc5a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6364fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7297f55
 
 
 
 
 
 
 
 
 
 
 
 
 
ffd9b88
 
 
 
716073e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba0b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
799af7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0abc48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33e08d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d293dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c066db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeda9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
957b449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64f1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997efea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
032e6f1
 
 
 
 
cb4e42c
 
 
 
50c3c81
 
 
 
ac98ea8
 
 
 
a49c0d8
 
 
 
fdc9653
 
 
 
6919758
 
 
 
d50c875
 
 
 
b597da6
 
 
 
c669042
 
 
 
c258060
 
 
 
7ba1a5f
 
 
 
fe04cdf
 
 
 
f452eca
 
 
 
d443d4a
 
 
 
d7e7a16
 
 
 
d0bed34
 
 
 
3de93ff
 
 
 
957b449
 
 
 
8330a9d
 
 
 
8c314f2
 
 
 
2232071
 
 
 
c4759dd
 
 
 
786bcd8
 
 
 
3534e57
 
 
 
de5d1dd
 
 
 
f38a636
 
 
 
5c41e52
 
 
 
870d98c
 
 
 
1265ca4
 
 
 
2b3335d
 
 
 
ba2dd49
 
 
 
82bc5a3
 
 
 
e6364fa
 
 
 
7297f55
 
 
 
716073e
 
 
 
4ba0b3c
 
 
 
799af7a
 
 
 
0abc48f
 
 
 
a33e08d
 
 
 
d293dad
 
 
 
c066db3
 
 
 
aeda9b7
 
 
 
957b449
3f88b73
 
957b449
e64f1cf
 
 
 
997efea
 
 
 
032e6f1
b617f72
032e6f1
8f79a8c
841157d
b617f72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
---
dataset_info:
- config_name: ai2d
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 435362437.84770346
    num_examples: 2434
  download_size: 438136609
  dataset_size: 435362437.84770346
- config_name: aokvqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 871997710.0
    num_examples: 16539
  download_size: 893265070
  dataset_size: 871997710.0
- config_name: chart2text
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 1060645471.4167501
    num_examples: 26963
  download_size: 1103295177
  dataset_size: 1060645471.4167501
- config_name: chartqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 784719364.9441738
    num_examples: 18265
  download_size: 803192402
  dataset_size: 784719364.9441738
- config_name: clevr
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 11522617868.0
    num_examples: 70000
  download_size: 13267429872
  dataset_size: 11522617868.0
- config_name: cocoqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 2213960474.0
    num_examples: 46287
  download_size: 2393991009
  dataset_size: 2213960474.0
- config_name: datikz
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 481233278.0
    num_examples: 47974
  download_size: 613100257
  dataset_size: 481233278.0
- config_name: diagram_image_to_text
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 18877197.0
    num_examples: 300
  download_size: 18706661
  dataset_size: 18877197.0
- config_name: docvqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 6885686042.0
    num_examples: 10189
  download_size: 6887803845
  dataset_size: 6885686042.0
- config_name: dvqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 3689940101.0
    num_examples: 200000
  download_size: 4295254110
  dataset_size: 3689940101.0
- config_name: figureqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 1901887152.0
    num_examples: 100000
  download_size: 2220036667
  dataset_size: 1901887152.0
- config_name: finqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 135268568.0
    num_examples: 5276
  download_size: 123698250
  dataset_size: 135268568.0
- config_name: geomverse
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 951640204.0
    num_examples: 9303
  download_size: 323746516
  dataset_size: 951640204.0
- config_name: hateful_memes
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 3035059823.0
    num_examples: 8500
  download_size: 3054208907
  dataset_size: 3035059823.0
- config_name: hitab
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 161130580.0
    num_examples: 2500
  download_size: 158295807
  dataset_size: 161130580.0
- config_name: iam
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 1129180352.0
    num_examples: 5663
  download_size: 1128935602
  dataset_size: 1129180352.0
- config_name: iconqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 264513634.7170419
    num_examples: 27307
  download_size: 326674337
  dataset_size: 264513634.7170419
- config_name: infographic_vqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 291677986.0
    num_examples: 2118
  download_size: 292351760
  dataset_size: 291677986.0
- config_name: intergps
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 24982328.291771192
    num_examples: 1280
  download_size: 24870320
  dataset_size: 24982328.291771192
- config_name: localized_narratives
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 21380844262.41927
    num_examples: 199998
  download_size: 22164342699
  dataset_size: 21380844262.41927
- config_name: mapqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 3238062926.0
    num_examples: 37417
  download_size: 3307676486
  dataset_size: 3238062926.0
- config_name: mimic_cgd
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 12592929433.0
    num_examples: 70939
  download_size: 13147641100
  dataset_size: 12592929433.0
- config_name: multihiertt
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 1356766489.046
    num_examples: 7619
  download_size: 1360814135
  dataset_size: 1356766489.046
- config_name: nlvr2
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 8375492591.0
    num_examples: 50426
  download_size: 10838882020
  dataset_size: 8375492591.0
- config_name: ocrvqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 5467134439.0
    num_examples: 165746
  download_size: 6078073015
  dataset_size: 5467134439.0
- config_name: plotqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 7837605221.0
    num_examples: 157070
  download_size: 5320249066
  dataset_size: 7837605221.0
- config_name: raven
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 1506550467.0
    num_examples: 42000
  download_size: 1720691636
  dataset_size: 1506550467.0
- config_name: robut_sqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 679135952.0
    num_examples: 8514
  download_size: 678722272
  dataset_size: 679135952.0
- config_name: robut_wikisql
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 5950915477.0
    num_examples: 74989
  download_size: 6160300141
  dataset_size: 5950915477.0
- config_name: robut_wtq
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 4023729236.0
    num_examples: 38246
  download_size: 4061523247
  dataset_size: 4023729236.0
- config_name: scienceqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 284601898.76188564
    num_examples: 4976
  download_size: 283265438
  dataset_size: 284601898.76188564
- config_name: screen2words
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 1670723783.0
    num_examples: 15730
  download_size: 1346254268
  dataset_size: 1670723783.0
- config_name: spot_the_diff
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 1643123792.0
    num_examples: 8566
  download_size: 1526740548
  dataset_size: 1643123792.0
- config_name: st_vqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 696265340.0
    num_examples: 17247
  download_size: 720462890
  dataset_size: 696265340.0
- config_name: tabmwp
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 265337140.19648907
    num_examples: 22722
  download_size: 306643610
  dataset_size: 265337140.19648907
- config_name: tallyqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 4267143189.0
    num_examples: 98680
  download_size: 4662245152
  dataset_size: 4267143189.0
- config_name: tat_qa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 73213942.0
    num_examples: 2199
  download_size: 70862028
  dataset_size: 73213942.0
- config_name: textcaps
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 5938676115.0
    num_examples: 21953
  download_size: 6175419911
  dataset_size: 5938676115.0
- config_name: textvqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 5939437331.0
    num_examples: 21953
  download_size: 6175442839
  dataset_size: 5939437331.0
- config_name: tqa
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 380346870.806369
    num_examples: 1493
  download_size: 378238311
  dataset_size: 380346870.806369
- config_name: vistext
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 541250281.0
    num_examples: 9969
  download_size: 386023352
  dataset_size: 541250281.0
- config_name: visual7w
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 4432168161.0
    num_examples: 14366
  download_size: 4443083495
  dataset_size: 4432168161.0
- config_name: visualmrc
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 2941051627.2639995
    num_examples: 3027
  download_size: 2912911810
  dataset_size: 2941051627.2639995
- config_name: vqarad
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 16561537.0
    num_examples: 313
  download_size: 16226241
  dataset_size: 16561537.0
- config_name: vqav2
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 10630091683.0
    num_examples: 82772
  download_size: 13479302437
  dataset_size: 10630091683.0
- config_name: vsr
  features:
  - name: images
    sequence: image
  - name: texts
    list:
    - name: user
      dtype: string
    - name: assistant
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 107489763.0
    num_examples: 2157
  download_size: 107576214
  dataset_size: 107489763.0
configs:
- config_name: ai2d
  data_files:
  - split: train
    path: ai2d/train-*
- config_name: aokvqa
  data_files:
  - split: train
    path: aokvqa/train-*
- config_name: chart2text
  data_files:
  - split: train
    path: chart2text/train-*
- config_name: chartqa
  data_files:
  - split: train
    path: chartqa/train-*
- config_name: clevr
  data_files:
  - split: train
    path: clevr/train-*
- config_name: cocoqa
  data_files:
  - split: train
    path: cocoqa/train-*
- config_name: datikz
  data_files:
  - split: train
    path: datikz/train-*
- config_name: diagram_image_to_text
  data_files:
  - split: train
    path: diagram_image_to_text/train-*
- config_name: docvqa
  data_files:
  - split: train
    path: docvqa/train-*
- config_name: dvqa
  data_files:
  - split: train
    path: dvqa/train-*
- config_name: figureqa
  data_files:
  - split: train
    path: figureqa/train-*
- config_name: finqa
  data_files:
  - split: train
    path: finqa/train-*
- config_name: geomverse
  data_files:
  - split: train
    path: geomverse/train-*
- config_name: hateful_memes
  data_files:
  - split: train
    path: hateful_memes/train-*
- config_name: hitab
  data_files:
  - split: train
    path: hitab/train-*
- config_name: iam
  data_files:
  - split: train
    path: iam/train-*
- config_name: iconqa
  data_files:
  - split: train
    path: iconqa/train-*
- config_name: infographic_vqa
  data_files:
  - split: train
    path: infographic_vqa/train-*
- config_name: intergps
  data_files:
  - split: train
    path: intergps/train-*
- config_name: localized_narratives
  data_files:
  - split: train
    path: localized_narratives/train-*
- config_name: mapqa
  data_files:
  - split: train
    path: mapqa/train-*
- config_name: mimic_cgd
  data_files:
  - split: train
    path: mimic_cgd/train-*
- config_name: multihiertt
  data_files:
  - split: train
    path: multihiertt/train-*
- config_name: nlvr2
  data_files:
  - split: train
    path: nlvr2/train-*
- config_name: ocrvqa
  data_files:
  - split: train
    path: ocrvqa/train-*
- config_name: plotqa
  data_files:
  - split: train
    path: plotqa/train-*
- config_name: raven
  data_files:
  - split: train
    path: raven/train-*
- config_name: robut_sqa
  data_files:
  - split: train
    path: robut_sqa/train-*
- config_name: robut_wikisql
  data_files:
  - split: train
    path: robut_wikisql/train-*
- config_name: robut_wtq
  data_files:
  - split: train
    path: robut_wtq/train-*
- config_name: scienceqa
  data_files:
  - split: train
    path: scienceqa/train-*
- config_name: screen2words
  data_files:
  - split: train
    path: screen2words/train-*
- config_name: spot_the_diff
  data_files:
  - split: train
    path: spot_the_diff/train-*
- config_name: st_vqa
  data_files:
  - split: train
    path: st_vqa/train-*
- config_name: tabmwp
  data_files:
  - split: train
    path: tabmwp/train-*
- config_name: tallyqa
  data_files:
  - split: train
    path: tallyqa/train-*
- config_name: tat_qa
  data_files:
  - split: train
    path: tat_qa/train-*
- config_name: textcaps
  data_files:
  - split: train
    path: textcaps/train-*
- config_name: textvqa
  data_files:
  - split: train
    path: textvqa/train-*
- config_name: tqa
  data_files:
  - split: train
    path: tqa/train-*
- config_name: vistext
  data_files:
  - split: train
    path: vistext/train-*
- config_name: visual7w
  data_files:
  - split: train
    path: visual7w/train-*
- config_name: visualmrc
  data_files:
  - split: train
    path: visualmrc/train-*
- config_name: vqarad
  data_files:
  - split: train
    path: vqarad/train-*
- config_name: vqav2
  data_files:
  - split: train
    path: vqav2/train-*
- config_name: vsr
  data_files:
  - split: train
    path: vsr/train-*
---
# Dataset Card for The Cauldron

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6177322d37f32ecb1e2d4cdf/3q8wnTYvCWyFiCGn2q1OX.png)

## Dataset description

The Cauldron is part of the Idefics2 release.

It is a massive collection of 50 vision-language datasets (training sets only) that were used for the fine-tuning of the vision-language model Idefics2.

## Load the dataset

To load the dataset, install the library `datasets` with `pip install datasets`. Then,
```
from datasets import load_dataset
ds = load_dataset("HuggingFaceM4/the_cauldron", "ai2d")
```
to download and load the config `ai2d` for example.

## Data fields

An example of a sample looks as follows:
```
{
    "images" = [PIL.Image]
    "texts" = [
        {
            "user": "Question: How many actions are depicted in the diagram?\nChoices:\nA. 6.\nB. 4.\nC. 8.\nD. 7.\nAnswer with the letter.",
            "assistant": "Answer: D",
            "source": "TQA"
        }
    ]
}
```

In `images`, there is a list of images, to be placed before the text.
In `texts`, there is a conversation between a user and an assistant about the images that is represented by a list of turns.

## Stats about the datasets in The Cauldron

| Dataset              | # images | # Q/A pairs | # tokens   |
|----------------------|----------|-------------|------------|
| *General visual question answering*                        |
| VQAv2                | 82,772   | 443,757     | 1,595,929  |
| COCO-QA              | 46,287   | 78,736      | 286,982    |
| Visual7W             | 14,366   | 69,817      | 279,268    |
| A-OKVQA              | 16,539   | 17,056      | 236,492    |
| TallyQA              | 98,680   | 183,986     | 738,254    |
| OK-VQA               | 8,998    | 9,009       | 38,853     |
| HatefulMemes         | 8,500    | 8,500       | 25,500     |
| VQA-RAD              | 313      | 1,793       | 8,418      |
| Captioning                                                 |
| LNarratives          | 507,444  | 507,444     | 21,328,731 |
| Screen2Words         | 15,730   | 15,743      | 143,103    |
| VSR                  | 2,157    | 3,354       | 10,062     |
| *OCR, document understanding, text transcription*          |
| RenderedText         | 999,000  | 999,000     | 27,207,774 |
| DocVQA               | 10,189   | 39,463      | 337,829    |
| TextCaps             | 21,953   | 21,953      | 389,658    |
| TextVQA              | 21,953   | 34,602      | 181,918    |
| ST-VQA               | 17,247   | 23,121      | 127,846    |
| OCR-VQA              | 165,746  | 801,579     | 6,073,824  |
| VisualMRC            | 3,027    | 11,988      | 168,828    |
| IAM                  | 5,663    | 5,663       | 144,216    |
| InfoVQA              | 2,118    | 10,074      | 61,048     |
| Diagram image-to-text| 300      | 300         | 22,196     |
| *Chart/figure understanding*                               |
| Chart2Text           | 26,985   | 30,242      | 2,852,827  |
| DVQA                 | 200,000  | 2,325,316   | 8,346,234  |
| VisText              | 7,057    | 9,969       | 1,245,485  |
| ChartQA              | 18,271   | 28,299      | 185,835    |
| PlotQA               | 157,070  | 20,249,479  | 8478299.278|
| FigureQA             | 100,000  | 1,327,368   | 3,982,104  |
| MapQA                | 37,417   | 483,416     | 6,470,485  |
| *Table understanding*                                      |
| TabMWP               | 22,729   | 23,059      | 1,948,166  |
| TAT-QA               | 2,199    | 13,215      | 283,776    |
| HiTab                | 2,500    | 7,782       | 351,299    |
| MultiHiertt          | 7,619    | 7,830       | 267,615    |
| FinQA                | 5,276    | 6,251       | 242,561    |
| WikiSQL              | 74,989   | 86,202      | 9,680,673  |
| SQA                  | 8,514    | 34,141      | 1,894,824  |
| WTQ                  | 38,246   | 44,096      | 6,677,013  |
| *Reasoning, logic, maths*                                  |
| GeomVerse            | 9,303    | 9,339       | 2,489,459  |
| CLEVR-Math           | 70,000   | 788,650     | 3,184,656  |
| CLEVR                | 70,000   | 699,989     | 2,396,781  |
| IconQA               | 27,315   | 29,859      | 112,969    |
| RAVEN                | 42,000   | 42,000      | 105,081    |
| Inter-GPs            | 1,451    | 2,101       | 8,404      |
| *Textbook/academic questions*                              |
| AI2D                 | 3,099    | 9,708       | 38,832     |
| TQA                  | 1,496    | 6,501       | 26,004     |
| ScienceQA            | 4,985    | 6,218       | 24,872     |
| *Differences between 2 images*                             |
| NLVR2                | 50,426   | 86,373      | 259,119    |
| GSD                  | 70,939   | 141,869     | 4,637,229  |
| Spot the diff        | 8,566    | 9,524       | 221,477    |
| *Screenshot to code*                                       |
| WebSight             | 500,000  | 500,000     | 276,743,299|
| DaTikz               | 47,974   | 48,296      | 59,556,252 |

## Decontamination

The Cauldron contains only the train split of each sub-datasets.
On top of that, we removed the few examples containing an image also present in the test splits of MMMU, MathVista or MMBench.

## References to the original datasets

<details>
  <summary>References to the original datasets</summary>

@misc{AI2D,
      title={A Diagram Is Worth A Dozen Images}, 
      author={Aniruddha Kembhavi and Mike Salvato and Eric Kolve and Minjoon Seo and Hannaneh Hajishirzi and Ali Farhadi},
      year={2016},
      eprint={1603.07396},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{A-OKVQA,
      title={A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge}, 
      author={Dustin Schwenk and Apoorv Khandelwal and Christopher Clark and Kenneth Marino and Roozbeh Mottaghi},
      year={2022},
      eprint={2206.01718},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{Chart2Text,
    title = "Chart-to-Text: Generating Natural Language Descriptions for Charts by Adapting the Transformer Model",
    author = "Obeid, Jason  and
      Hoque, Enamul",
    editor = "Davis, Brian  and
      Graham, Yvette  and
      Kelleher, John  and
      Sripada, Yaji",
    booktitle = "Proceedings of the 13th International Conference on Natural Language Generation",
    month = dec,
    year = "2020",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.inlg-1.20",
    doi = "10.18653/v1/2020.inlg-1.20",
    pages = "138--147",
}

@inproceedings{ChartQA,
    title = "{C}hart{QA}: A Benchmark for Question Answering about Charts with Visual and Logical Reasoning",
    author = "Masry, Ahmed  and
      Long, Do  and
      Tan, Jia Qing  and
      Joty, Shafiq  and
      Hoque, Enamul",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.findings-acl.177",
    doi = "10.18653/v1/2022.findings-acl.177",
    pages = "2263--2279",
}

@misc{CLEVR-Math,
  doi = {10.48550/ARXIV.2208.05358},
  url = {https://arxiv.org/abs/2208.05358},
  author = {Lindström, Adam Dahlgren},
  keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7; I.2.10; I.2.6; I.4.8; I.1.4},
  title = {CLEVR-Math: A Dataset for Compositional Language, Visual, and Mathematical Reasoning},
  publisher = {arXiv},
  year = {2022},
  copyright = {Creative Commons Attribution Share Alike 4.0 International}
}

@misc{CLEVR,
      title={CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning}, 
      author={Justin Johnson and Bharath Hariharan and Laurens van der Maaten and Li Fei-Fei and C. Lawrence Zitnick and Ross Girshick},
      year={2016},
      eprint={1612.06890},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{CocoQA,
 author = {Ren, Mengye and Kiros, Ryan and Zemel, Richard},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {C. Cortes and N. Lawrence and D. Lee and M. Sugiyama and R. Garnett},
 pages = {},
 publisher = {Curran Associates, Inc.},
 title = {Exploring Models and Data for Image Question Answering},
 url = {https://proceedings.neurips.cc/paper_files/paper/2015/file/831c2f88a604a07ca94314b56a4921b8-Paper.pdf},
 volume = {28},
 year = {2015}
}

@misc{DaTikz,
      title={AutomaTikZ: Text-Guided Synthesis of Scientific Vector Graphics with TikZ}, 
      author={Jonas Belouadi and Anne Lauscher and Steffen Eger},
      year={2024},
      eprint={2310.00367},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Diagram image to text: https://huggingface.co/datasets/Kamizuru00/diagram_image_to_text by @Kamizuru00

@INPROCEEDINGS{DocVQA,
  author={Mathew, Minesh and Karatzas, Dimosthenis and Jawahar, C. V.},
  booktitle={2021 IEEE Winter Conference on Applications of Computer Vision (WACV)}, 
  title={DocVQA: A Dataset for VQA on Document Images}, 
  year={2021},
  volume={},
  number={},
  pages={2199-2208},
  keywords={Visualization;Computer vision;Text analysis;Image recognition;Image analysis;Conferences;Layout},
  doi={10.1109/WACV48630.2021.00225}}

@inproceedings{DVQA,
  title={DVQA: Understanding Data Visualizations via Question Answering},
  author={Kafle, Kushal and Cohen, Scott and Price, Brian and Kanan, Christopher},
  booktitle={CVPR},
  year={2018}
}

@misc{FigureQA,
      title={FigureQA: An Annotated Figure Dataset for Visual Reasoning}, 
      author={Samira Ebrahimi Kahou and Vincent Michalski and Adam Atkinson and Akos Kadar and Adam Trischler and Yoshua Bengio},
      year={2018},
      eprint={1710.07300},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{FinQA,
    title = "{F}in{QA}: A Dataset of Numerical Reasoning over Financial Data",
    author = "Chen, Zhiyu  and
      Chen, Wenhu  and
      Smiley, Charese  and
      Shah, Sameena  and
      Borova, Iana  and
      Langdon, Dylan  and
      Moussa, Reema  and
      Beane, Matt  and
      Huang, Ting-Hao  and
      Routledge, Bryan  and
      Wang, William Yang",
    editor = "Moens, Marie-Francine  and
      Huang, Xuanjing  and
      Specia, Lucia  and
      Yih, Scott Wen-tau",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.300",
    doi = "10.18653/v1/2021.emnlp-main.300",
    pages = "3697--3711",
}

@misc{GeomVerse,
      title={GeomVerse: A Systematic Evaluation of Large Models for Geometric Reasoning}, 
      author={Mehran Kazemi and Hamidreza Alvari and Ankit Anand and Jialin Wu and Xi Chen and Radu Soricut},
      year={2023},
      eprint={2312.12241},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{hatefulmeme,
 author = {Kiela, Douwe and Firooz, Hamed and Mohan, Aravind and Goswami, Vedanuj and Singh, Amanpreet and Ringshia, Pratik and Testuggine, Davide},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M.F. Balcan and H. Lin},
 pages = {2611--2624},
 publisher = {Curran Associates, Inc.},
 title = {The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes},
 url = {https://proceedings.neurips.cc/paper_files/paper/2020/file/1b84c4cee2b8b3d823b30e2d604b1878-Paper.pdf},
 volume = {33},
 year = {2020}
}

@inproceedings{Hitab,
    title = "{H}i{T}ab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation",
    author = "Cheng, Zhoujun  and
      Dong, Haoyu  and
      Wang, Zhiruo  and
      Jia, Ran  and
      Guo, Jiaqi  and
      Gao, Yan  and
      Han, Shi  and
      Lou, Jian-Guang  and
      Zhang, Dongmei",
    editor = "Muresan, Smaranda  and
      Nakov, Preslav  and
      Villavicencio, Aline",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.acl-long.78",
    doi = "10.18653/v1/2022.acl-long.78",
    pages = "1094--1110",
}

@article{IAM,
author = {Marti, Urs-Viktor and Bunke, H.},
year = {2002},
month = {11},
pages = {39-46},
title = {The IAM-database: An English sentence database for offline handwriting recognition},
volume = {5},
journal = {International Journal on Document Analysis and Recognition},
doi = {10.1007/s100320200071}
}

@inproceedings{IconQA,
    title = {IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning},
    author = {Lu, Pan and Qiu, Liang and Chen, Jiaqi and Xia, Tony and Zhao, Yizhou and Zhang, Wei and Yu, Zhou and Liang, Xiaodan and Zhu, Song-Chun},
    booktitle = {The 35th Conference on Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks},
    year = {2021}
}

@INPROCEEDINGS{InfographicVQA,
  author={Mathew, Minesh and Bagal, Viraj and Tito, Rubèn and Karatzas, Dimosthenis and Valveny, Ernest and Jawahar, C. V.},
  booktitle={2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, 
  title={InfographicVQA}, 
  year={2022},
  volume={},
  number={},
  pages={2582-2591},
  keywords={Visualization;Computer vision;Computational modeling;Layout;Data visualization;Benchmark testing;Brain modeling;Document Analysis Datasets;Evaluation and Comparison of Vision Algorithms;Vision and Languages},
  doi={10.1109/WACV51458.2022.00264}
}

@inproceedings{Inter-GPS,
 title = {Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning},
 author = {Lu, Pan and Gong, Ran and Jiang, Shibiao and Qiu, Liang and Huang, Siyuan and Liang, Xiaodan and Zhu, Song-Chun},
 booktitle = {The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)},
 year = {2021}
}

@misc{LocalizedNarratives,
      title={Connecting Vision and Language with Localized Narratives}, 
      author={Jordi Pont-Tuset and Jasper Uijlings and Soravit Changpinyo and Radu Soricut and Vittorio Ferrari},
      year={2020},
      eprint={1912.03098},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{MapQA,
      title={MapQA: A Dataset for Question Answering on Choropleth Maps}, 
      author={Shuaichen Chang and David Palzer and Jialin Li and Eric Fosler-Lussier and Ningchuan Xiao},
      year={2022},
      eprint={2211.08545},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{MIMIC-IT-General-Scene-Difference,
      title={MIMIC-IT: Multi-Modal In-Context Instruction Tuning}, 
      author={Bo Li and Yuanhan Zhang and Liangyu Chen and Jinghao Wang and Fanyi Pu and Jingkang Yang and Chunyuan Li and Ziwei Liu},
      year={2023},
      eprint={2306.05425},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{Multihiertt,
    title = "{M}ulti{H}iertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data",
    author = "Zhao, Yilun  and
      Li, Yunxiang  and
      Li, Chenying  and
      Zhang, Rui",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.acl-long.454",
    pages = "6588--6600",
}

@inproceedings{NLVR2,
    title = "A Corpus for Reasoning about Natural Language Grounded in Photographs",
    author = "Suhr, Alane  and
      Zhou, Stephanie  and
      Zhang, Ally  and
      Zhang, Iris  and
      Bai, Huajun  and
      Artzi, Yoav",
    editor = "Korhonen, Anna  and
      Traum, David  and
      M{\`a}rquez, Llu{\'\i}s",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P19-1644",
    doi = "10.18653/v1/P19-1644",
    pages = "6418--6428",
}

@INPROCEEDINGS{OCR-VQA,
  author={Mishra, Anand and Shekhar, Shashank and Singh, Ajeet Kumar and Chakraborty, Anirban},
  booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)}, 
  title={OCR-VQA: Visual Question Answering by Reading Text in Images}, 
  year={2019},
  volume={},
  number={},
  pages={947-952},
  keywords={Optical character recognition software;Visualization;Task analysis;Knowledge discovery;Text analysis;Text recognition;Character recognition;Optical Character Recognition (OCR), Visual Question Answering (VQA), Document image analysis, textVQA},
  doi={10.1109/ICDAR.2019.00156}
}

@InProceedings{okvqa,
author = {Kenneth Marino and Mohammad Rastegari and Ali Farhadi and Roozbeh Mottaghi},
title = {OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge},
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019},
}

@InProceedings{PlotQA,
author = {Methani, Nitesh and Ganguly, Pritha and Khapra, Mitesh M. and Kumar, Pratyush},
title = {PlotQA: Reasoning over Scientific Plots},
booktitle = {The IEEE Winter Conference on Applications of Computer Vision (WACV)},
month = {March},
year = {2020}
} 

@inproceedings{RAVEN, 
    title={RAVEN: A Dataset for Relational and Analogical Visual rEasoNing}, 
    author={Zhang, Chi and Gao, Feng and Jia, Baoxiong and Zhu, Yixin and Zhu, Song-Chun}, 
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year={2019}
}

RenderedText: https://huggingface.co/datasets/wendlerc/RenderedText by @wendlerc

@inproceedings{Robut,
    title = "{R}obu{T}: A Systematic Study of Table {QA} Robustness Against Human-Annotated Adversarial Perturbations",
    author = "Zhao, Yilun  and
      Zhao, Chen  and
      Nan, Linyong  and
      Qi, Zhenting  and
      Zhang, Wenlin  and
      Tang, Xiangru  and
      Mi, Boyu  and
      Radev, Dragomir",
    editor = "Rogers, Anna  and
      Boyd-Graber, Jordan  and
      Okazaki, Naoaki",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.334",
    doi = "10.18653/v1/2023.acl-long.334",
    pages = "6064--6081",
}

@inproceedings{SQA,
    title = "Search-based Neural Structured Learning for Sequential Question Answering",
    author = "Iyyer, Mohit  and
      Yih, Wen-tau  and
      Chang, Ming-Wei",
    editor = "Barzilay, Regina  and
      Kan, Min-Yen",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P17-1167",
    doi = "10.18653/v1/P17-1167",
    pages = "1821--1831",
}

@misc{WikiSQL,
      title={Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning}, 
      author={Victor Zhong and Caiming Xiong and Richard Socher},
      year={2017},
      eprint={1709.00103},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

@inproceedings{WTQ,
    title = "Compositional Semantic Parsing on Semi-Structured Tables",
    author = "Pasupat, Panupong  and
      Liang, Percy",
    editor = "Zong, Chengqing  and
      Strube, Michael",
    booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = jul,
    year = "2015",
    address = "Beijing, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P15-1142",
    doi = "10.3115/v1/P15-1142",
    pages = "1470--1480",
}

@inproceedings{ScienceQA,
 author = {Lu, Pan and Mishra, Swaroop and Xia, Tanglin and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Kalyan, Ashwin},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh},
 pages = {2507--2521},
 publisher = {Curran Associates, Inc.},
 title = {Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering},
 url = {https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf},
 volume = {35},
 year = {2022}
}

@inproceedings{screen2words,
author = {Wang, Bryan and Li, Gang and Zhou, Xin and Chen, Zhourong and Grossman, Tovi and Li, Yang},
title = {Screen2Words: Automatic Mobile UI Summarization with Multimodal Learning},
year = {2021},
isbn = {9781450386357},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3472749.3474765},
doi = {10.1145/3472749.3474765},
booktitle = {The 34th Annual ACM Symposium on User Interface Software and Technology},
pages = {498–510},
numpages = {13},
keywords = {Mobile UI summarization, dataset., deep learning, language-based UI, screen understanding},
location = {Virtual Event, USA},
series = {UIST '21}
}

@inproceedings{SpotTheDiff,
    title = "Learning to Describe Differences Between Pairs of Similar Images",
    author = "Jhamtani, Harsh  and
      others",
    editor = "Riloff, Ellen  and
      Chiang, David  and
      Hockenmaier, Julia  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D18-1436",
    doi = "10.18653/v1/D18-1436",
    pages = "4024--4034",
}

@INPROCEEDINGS{STVQA,
  author={Biten, Ali Furkan and Tito, Rubèn and Mafla, Andrés and Gomez, Lluis and Rusiñol, Marçal and Jawahar, C.V. and Valveny, Ernest and Karatzas, Dimosthenis},
  booktitle={2019 IEEE/CVF International Conference on Computer Vision (ICCV)}, 
  title={Scene Text Visual Question Answering}, 
  year={2019},
  volume={},
  number={},
  pages={4290-4300},
  keywords={Visualization;Task analysis;Knowledge discovery;Text recognition;Cognition;Computer vision;Semantics},
  doi={10.1109/ICCV.2019.00439}
}

@inproceedings{TabMWP,
  title={Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning},
  author={Lu, Pan and Qiu, Liang and Chang, Kai-Wei and Wu, Ying Nian and Zhu, Song-Chun and Rajpurohit, Tanmay and Clark, Peter and Kalyan, Ashwin},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2023}
}

@inproceedings{TallyQA,
  title={TallyQA: Answering Complex Counting Questions},
  author={Acharya, Manoj and Kafle, Kushal and Kanan, Christopher},
  booktitle={AAAI},
  year={2019}
}

@inproceedings{TAT-QA,
    title = "{TAT}-{QA}: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance",
    author = "Zhu, Fengbin  and
      Lei, Wenqiang  and
      Huang, Youcheng  and
      Wang, Chao  and
      Zhang, Shuo  and
      Lv, Jiancheng  and
      Feng, Fuli  and
      Chua, Tat-Seng",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.254",
    doi = "10.18653/v1/2021.acl-long.254",
    pages = "3277--3287"
}

@misc{textcaps,
      title={TextCaps: a Dataset for Image Captioning with Reading Comprehension}, 
      author={Oleksii Sidorov and Ronghang Hu and Marcus Rohrbach and Amanpreet Singh},
      year={2020},
      eprint={2003.12462},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{textvqa,
    title={Towards VQA Models That Can Read},
    author={Singh, Amanpreet and Natarjan, Vivek and Shah, Meet and Jiang, Yu and Chen, Xinlei and Parikh, Devi and Rohrbach, Marcus},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    pages={8317-8326},
    year={2019}
}

@INPROCEEDINGS{TQA,
  author={Kembhavi, Aniruddha and Seo, Minjoon and Schwenk, Dustin and Choi, Jonghyun and Farhadi, Ali and Hajishirzi, Hannaneh},
  booktitle={2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
  title={Are You Smarter Than a Sixth Grader? Textbook Question Answering for Multimodal Machine Comprehension}, 
  year={2017},
  volume={},
  number={},
  pages={5376-5384},
  keywords={Knowledge discovery;Visualization;Cognition;Training;Natural languages;Computer vision},
  doi={10.1109/CVPR.2017.571}
}

@inproceedings{VisText,
  title = {{VisText: A Benchmark for Semantically Rich Chart Captioning}},
  author = {Benny J. Tang AND Angie Boggust AND Arvind Satyanarayan},
  booktitle = {The Annual Meeting of the Association for Computational Linguistics (ACL)},
  year = {2023},
  url = {http://vis.csail.mit.edu/pubs/vistext}
}

@InProceedings{Visual7w,
  title = {{Visual7W: Grounded Question Answering in Images}},
  author = {Yuke Zhu and Oliver Groth and Michael Bernstein and Li Fei-Fei},
  booktitle = {{IEEE Conference on Computer Vision and Pattern Recognition}},
  year = 2016,
}

@inproceedings{VisualMRC,
  author    = {Ryota Tanaka and
               Kyosuke Nishida and
               Sen Yoshida},
  title     = {VisualMRC: Machine Reading Comprehension on Document Images},
  booktitle = {AAAI},
  year      = {2021}
}

@article{VQA-RAD,
author = {Lau, Jason and Gayen, Soumya and Ben Abacha, Asma and Demner-Fushman, Dina},
year = {2018},
month = {11},
pages = {180251},
title = {A dataset of clinically generated visual questions and answers about radiology images},
volume = {5},
journal = {Scientific Data},
doi = {10.1038/sdata.2018.251}
}

@misc{VQAv2,
      title={Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering}, 
      author={Yash Goyal and Tejas Khot and Douglas Summers-Stay and Dhruv Batra and Devi Parikh},
      year={2017},
      eprint={1612.00837},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{VSR,
      title={Visual Spatial Reasoning}, 
      author={Fangyu Liu and Guy Emerson and Nigel Collier},
      year={2023},
      eprint={2205.00363},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

@misc{WebSight,
      title={Unlocking the conversion of Web Screenshots into HTML Code with the WebSight Dataset}, 
      author={Hugo Laurençon and Léo Tronchon and Victor Sanh},
      year={2024},
      eprint={2403.09029},
      archivePrefix={arXiv},
      primaryClass={cs.HC}
}
</details>
  
## Terms of Use

By using the dataset The Cauldron, you agree to comply with the original licenses of the sub-datasets it contains, as well as the dataset license (CC-BY-4.0). Additionally, if you use this dataset to train a Machine Learning model, you agree to disclose your use of the dataset when releasing the model or an ML application using the model.

## Licensing Information

License CC-BY-4.0.