Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Tags:
evaluation
License:
metadata
license: apache-2.0
To create the dataset, we do the following for our internal tooling.
- rename
turns
toprompts
, - add empty
reference
to remaining prompts (for HF Datasets), - Use the following code to load and save as a dataset
from datasets import load_dataset
import hashlib
data = load_dataset("json", data_files="https://huggingface.co/datasets/HuggingFaceH4/mt_bench_prompts/raw/main/raw/question.jsonl", split="train")
# %% create_dataset.ipynb 11
def format_example(example):
return {
"prompt": example["prompt"],
"prompt_id": int(hashlib.sha256(''.join(example["prompt"]).encode("utf-8")).hexdigest(), 16) % (10 ** 8),
"category": example["category"],
"reference": example["reference"],
}
formatted_ds = data.map(format_example, num_proc=6, remove_columns=data.column_names)
#
formatted_ds.push_to_hub("HuggingFaceH4/mt_bench_prompts", split="train")