Datasets:
File size: 2,989 Bytes
e7f4d40 6f97334 e7f4d40 6f97334 95536b0 6f97334 95536b0 6f97334 95536b0 6f97334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
dataset_info:
features:
- name: id
dtype: int32
- name: score
dtype: float32
- name: translation
dtype:
translation:
languages:
- en
- ja
splits:
- name: train
num_bytes: 6415875645
num_examples: 40883733
download_size: 4563432887
dataset_size: 6415875645
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: unknown
task_categories:
- translation
- text2text-generation
language:
- en
- ja
---
# Dataset Card for CCMatrix-en-ja
### Dataset Summary
This corpus is extracted from **[yhavinga/ccmatrix](https://huggingface.co/datasets/yhavinga/ccmatrix)**, with Japanese and English pairs.
### How to use
It is used in much the same way as **[yhavinga/ccmatrix](https://huggingface.co/datasets/yhavinga/ccmatrix)**. The only difference is that you do not have to specify the language.
```
from datasets import load_dataset
dataset = load_dataset("yhavinga/ccmatrix")
```
If data loading times are too long and boring, use Streaming.
```
from datasets import load_dataset
dataset = load_dataset("yhavinga/ccmatrix", streaming=True)
```
## Dataset Structure
### Data Instances
For example:
```json
{
'id': 0,
'score': 1.2499920129776,
'translation': {
'en': 'Such is God’s forgiveness.',
'ja': 'それは神の赦しの故だ。'
}
}
```
### Data Fields
Each example contains an integer id starting with 0, a score, and a translation dictionary with the language 1 and
language 2 texts.
### Data Splits
Only a `train` split is provided.
### Citation Information
Follow the instructions described in the **[yhavinga/ccmatrix](https://huggingface.co/datasets/yhavinga/ccmatrix)** readme.
The following is taken from **[yhavinga/ccmatrix](https://huggingface.co/datasets/yhavinga/ccmatrix)**:
IMPORTANT: Please cite reference [2][3] if you use this data.
1. **[CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data](https://arxiv.org/abs/1911.00359)**
by *Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Jouli
and Edouard Grave*.
2. **[CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB](https://arxiv.org/abs/1911.04944)** by *Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin*.
3. **[Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125)** by *Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines,
Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky,
Sergey Edunov, Edouard Grave, Michael Auli, and Armand Joulin.*
This HuggingFace CCMatrix dataset is a wrapper around the service and files prepared and hosted by OPUS:
* **[Parallel Data, Tools and Interfaces in OPUS](https://www.aclweb.org/anthology/L12-1246/)** by *Jörg Tiedemann*.
|