Datasets:
Search is not available for this dataset
image
imagewidth (px) 64
64
| label
class label 10
classes |
---|---|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
|
0AnnualCrop
|
End of preview. Expand
in Data Studio
Dataset Card for EuroSat
How to Use
- Install datasets:
pip install datasets
- How to use in Python
from datasets import load_dataset
train_data = load_dataset("Honaker/eurosat_dataset", split="train")
Dataset Summary
EuroSat is an image classification dataset with 10 different classes on satellite imagery. There is over 27,000 labeled images.
Dataset Structure
The dataset is structured as follows:
DatasetDict({
train: Dataset({
features: ['image', 'labels'],
num_rows: 21600
})
validation: Dataset({
features: ['image', 'labels'],
num_rows: 2700
})
test: Dataset({
features: ['image', 'labels'],
num_rows: 2700
})
})
Data Instances
An example of the data for one image is:
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=64x64>,
'labels': 0
}
With the type of each field being defined as:
{
'image': <PIL.JpegImagePlugin.JpegImageFile>,
'labels': Integer
Data Fields
The dataset has the following fields:
- 'image': Satellite image that is of type <PIL.TiffImagePlugin.TiffImageFile image>
- 'labels': the label of the Satellite image as an integer
Data Splits
Train | Validation | Test | |
---|---|---|---|
Images | 21600 | 2700 | 2700 |
Additional Information
Licensing Information
EuroSat is licensed under a MIT
- Downloads last month
- 3,093