Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
File size: 5,418 Bytes
85cc7a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282d5f7
 
 
 
 
 
85cc7a3
282d5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85cc7a3
282d5f7
85cc7a3
 
 
 
 
 
282d5f7
85cc7a3
 
 
282d5f7
85cc7a3
 
282d5f7
85cc7a3
282d5f7
85cc7a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282d5f7
85cc7a3
 
 
 
 
 
 
 
 
 
 
 
 
 
282d5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
import os

import datasets


_DESCRIPTION = """\
Parallel corpora from Web Crawls collected in the ParaCrawl project.

42 languages, 43 bitexts
total number of files: 59,996
total number of tokens: 56.11G
total number of sentence fragments: 3.13G
"""
_HOMEPAGE = "http://opus.nlpl.eu/ParaCrawl.php"
_CITATION = r"""\
@inproceedings{banon-etal-2020-paracrawl,
    title = "{P}ara{C}rawl: Web-Scale Acquisition of Parallel Corpora",
    author = "Ba{\~n}{\'o}n, Marta  and
      Chen, Pinzhen  and
      Haddow, Barry  and
      Heafield, Kenneth  and
      Hoang, Hieu  and
      Espl{\`a}-Gomis, Miquel  and
      Forcada, Mikel L.  and
      Kamran, Amir  and
      Kirefu, Faheem  and
      Koehn, Philipp  and
      Ortiz Rojas, Sergio  and
      Pla Sempere, Leopoldo  and
      Ram{\'\i}rez-S{\'a}nchez, Gema  and
      Sarr{\'\i}as, Elsa  and
      Strelec, Marek  and
      Thompson, Brian  and
      Waites, William  and
      Wiggins, Dion  and
      Zaragoza, Jaume",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.acl-main.417",
    doi = "10.18653/v1/2020.acl-main.417",
    pages = "4555--4567",
}
@InProceedings{TIEDEMANN12.463,
  author = {Jörg Tiedemann},
  title = {Parallel Data, Tools and Interfaces in OPUS},
  booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
  year = {2012},
  month = {may},
  date = {23-25},
  address = {Istanbul, Turkey},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Uğur Doğan and Bente Maegaard and Joseph Mariani and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-7-7},
  language = {english}
}
"""

_VERSION = "9.0.0"
_BASE_NAME = "ParaCrawl.{}.{}"
_BASE_URL = "https://object.pouta.csc.fi/OPUS-ParaCrawl/v9/moses/{}-{}.txt.zip"
# Please note that only few pairs are shown here. You can use config to generate data for all language pairs
_LANGUAGE_PAIRS = [
    ("el", "en"),
    ("en", "km"),
    ("en", "so"),
    ("de", "pl"),
    ("fr", "nl"),
    ("en", "sw"),
    ("en", "tl"),
    ("es", "gl"),
]


class ParaCrawlConfig(datasets.BuilderConfig):
    def __init__(self, *args, lang1=None, lang2=None, **kwargs):
        super().__init__(
            *args,
            name=f"{lang1}-{lang2}",
            **kwargs,
        )
        assert lang1 != lang2, "'language 1' & 'language 2' should be different from each other"
        self.lang1 = lang1
        self.lang2 = lang2


class OpusParaCrawl(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        ParaCrawlConfig(
            lang1=lang1,
            lang2=lang2,
            description=f"Translating {lang1} to {lang2} or vice versa",
            version=datasets.Version(_VERSION),
        )
        for lang1, lang2 in _LANGUAGE_PAIRS
    ]
    BUILDER_CONFIG_CLASS = ParaCrawlConfig

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        download_url = _BASE_URL.format(self.config.lang1, self.config.lang2)
        path = dl_manager.download_and_extract(download_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"datapath": path},
            )
        ]

    def _generate_examples(self, datapath):
        lang1, lang2 = self.config.lang1, self.config.lang2
        folder = lang1 + "-" + lang2
        lang1_filename = _BASE_NAME.format(folder, lang1)
        lang2_filename = _BASE_NAME.format(folder, lang2)
        lang1_path = os.path.join(datapath, lang1_filename)
        lang2_path = os.path.join(datapath, lang2_filename)
        with open(lang1_path, encoding="utf-8") as f1, open(lang2_path, encoding="utf-8") as f2:
            for id_, (lang1_sentence, lang2_sentence) in enumerate(zip(f1, f2)):
                lang1_sentence = lang1_sentence.strip()
                lang2_sentence = lang2_sentence.strip()
                yield id_, {
                    "id": str(id_),
                    "translation": {lang1: lang1_sentence, lang2: lang2_sentence},
                }