Instruction
stringlengths
33
156
Supporting Information
stringlengths
451
33.9k
Output
stringlengths
73
1.88k
Text
stringlengths
739
34.4k
Does Abaloparatide and Acebutolol interact?
•Drug A: Abaloparatide •Drug B: Acebutolol •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Acebutolol is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): For the management of hypertension and ventricular premature beats in adults. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Acebutolol is a cardioselective, beta-adrenoreceptor blocking agent, which possesses mild intrinsic sympathomimetic activity (ISA) in its therapeutically effective dose range. In general, beta-blockers reduce the work the heart has to do and allow it to beat more regularly. Acebutolol has less antagonistic effects on peripheral vascular ß2-receptors at rest and after epinephrine stimulation than nonselective beta-antagonists. Low doses of acebutolol produce less evidence of bronchoconstriction than nonselective agents like propranolol but more than atenolol. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Acebutolol is a selective β1-receptor antagonist. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Acebutolol blocks these receptors, lowering the heart rate and blood pressure. This drug then has the reverse effect of epinephrine. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Well absorbed from the Gl tract with an absolute bioavailability of approximately 40% for the parent compound. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): 26% •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Subject to extensive first-pass hepatic biotransformation (primarily to diacetolol). •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Elimination via renal excretion is approximately 30% to 40% and by non-renal mechanisms 50% to 60%, which includes excretion into the bile and direct passage through the intestinal wall. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): The plasma elimination half-life is approximately 3 to 4 hours. The half-life of its metabolite, diacetolol, is 8 to 13 hours. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): Symptoms of overdose include extreme bradycardia, advanced atrioventricular block, intraventricular conduction defects, hypotension, severe congestive heart failure, seizures, and in susceptible patients, bronchospasm, and hypoglycemia. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Sectral •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Acebutolol Acebutololum Acetobutolol •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Acebutolol is a selective β1-receptor antagonist used for the management of hypertension and ventricular premature beats in adults.
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Question: Does Abaloparatide and Acebutolol interact? Information: •Drug A: Abaloparatide •Drug B: Acebutolol •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Acebutolol is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): For the management of hypertension and ventricular premature beats in adults. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Acebutolol is a cardioselective, beta-adrenoreceptor blocking agent, which possesses mild intrinsic sympathomimetic activity (ISA) in its therapeutically effective dose range. In general, beta-blockers reduce the work the heart has to do and allow it to beat more regularly. Acebutolol has less antagonistic effects on peripheral vascular ß2-receptors at rest and after epinephrine stimulation than nonselective beta-antagonists. Low doses of acebutolol produce less evidence of bronchoconstriction than nonselective agents like propranolol but more than atenolol. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Acebutolol is a selective β1-receptor antagonist. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Acebutolol blocks these receptors, lowering the heart rate and blood pressure. This drug then has the reverse effect of epinephrine. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Well absorbed from the Gl tract with an absolute bioavailability of approximately 40% for the parent compound. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): 26% •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Subject to extensive first-pass hepatic biotransformation (primarily to diacetolol). •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Elimination via renal excretion is approximately 30% to 40% and by non-renal mechanisms 50% to 60%, which includes excretion into the bile and direct passage through the intestinal wall. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): The plasma elimination half-life is approximately 3 to 4 hours. The half-life of its metabolite, diacetolol, is 8 to 13 hours. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): Symptoms of overdose include extreme bradycardia, advanced atrioventricular block, intraventricular conduction defects, hypotension, severe congestive heart failure, seizures, and in susceptible patients, bronchospasm, and hypoglycemia. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Sectral •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Acebutolol Acebutololum Acetobutolol •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Acebutolol is a selective β1-receptor antagonist used for the management of hypertension and ventricular premature beats in adults. Output: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Does Abaloparatide and Aldesleukin interact?
•Drug A: Abaloparatide •Drug B: Aldesleukin •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aldesleukin is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): For treatment of adults with metastatic renal cell carcinoma. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Used to treat renal cell carcinoma, Aldesleukin induces the enhancement of lymphocyte mitogenesis and stimulation of long-term growth of human interleukin-2 dependent cell lines, the enhancement of lymphocyte cytotoxicity, the induction of killer cell (lymphokine-activated (LAK) and natural (NK)) activity; and the induction of interferon-gamma production. IL-2 is normally produced by the body, secreted by T cells, and stimulates growth and differentiation of T cell response. It can be used in immunotherapy to treat cancer. It enhances the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Aldesleukin binds to the IL-2 receptor which leads to heterodimerization of the cytoplasmic domains of the IL-2R beta and gamma(c) chains, activation of the tyrosine kinase Jak3, and phosphorylation of tyrosine residues on the IL-2R beta chain. These events led to the creation of an activated receptor complex, to which various cytoplasmic signaling molecules are recruited and become substrates for regulatory enzymes (especially tyrosine kinases) that are associated with the receptor. These events stimulate growth and differentiation of T cells. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): 0.18 l/kg •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): The pharmacokinetic profile of Proleukin is characterized by high plasma concentrations following a short IV infusion, rapid distribution into the extravascular space and elimination from the body by metabolism in the kidneys with little or no bioactive protein excreted in the urine. Following the initial rapid organ distribution, the primary route of clearance of circulating proleukin is the kidney. Greater than 80% of the amount of Proleukin distributed to plasma, cleared from the circulation and presented to the kidney is metabolized to amino acids in the cells lining the proximal convoluted tubules. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): 13 min-85 min •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Proleukin •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Aldesleukin is a recombinant analog of interleukin-2 used to induce an adaptive immune response in the treatment of renal cell carcinoma.
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Question: Does Abaloparatide and Aldesleukin interact? Information: •Drug A: Abaloparatide •Drug B: Aldesleukin •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aldesleukin is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): For treatment of adults with metastatic renal cell carcinoma. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Used to treat renal cell carcinoma, Aldesleukin induces the enhancement of lymphocyte mitogenesis and stimulation of long-term growth of human interleukin-2 dependent cell lines, the enhancement of lymphocyte cytotoxicity, the induction of killer cell (lymphokine-activated (LAK) and natural (NK)) activity; and the induction of interferon-gamma production. IL-2 is normally produced by the body, secreted by T cells, and stimulates growth and differentiation of T cell response. It can be used in immunotherapy to treat cancer. It enhances the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Aldesleukin binds to the IL-2 receptor which leads to heterodimerization of the cytoplasmic domains of the IL-2R beta and gamma(c) chains, activation of the tyrosine kinase Jak3, and phosphorylation of tyrosine residues on the IL-2R beta chain. These events led to the creation of an activated receptor complex, to which various cytoplasmic signaling molecules are recruited and become substrates for regulatory enzymes (especially tyrosine kinases) that are associated with the receptor. These events stimulate growth and differentiation of T cells. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): 0.18 l/kg •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): The pharmacokinetic profile of Proleukin is characterized by high plasma concentrations following a short IV infusion, rapid distribution into the extravascular space and elimination from the body by metabolism in the kidneys with little or no bioactive protein excreted in the urine. Following the initial rapid organ distribution, the primary route of clearance of circulating proleukin is the kidney. Greater than 80% of the amount of Proleukin distributed to plasma, cleared from the circulation and presented to the kidney is metabolized to amino acids in the cells lining the proximal convoluted tubules. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): 13 min-85 min •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Proleukin •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Aldesleukin is a recombinant analog of interleukin-2 used to induce an adaptive immune response in the treatment of renal cell carcinoma. Output: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Does Abaloparatide and Aliskiren interact?
•Drug A: Abaloparatide •Drug B: Aliskiren •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Abaloparatide is combined with Aliskiren. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): Aliskiren is used for the treatment of hypertension in children above 6 years and adults. This drug may also be used in conjunction with antihypertensives such as calcium channel blockers and thiazides in products form to provide additional blood pressure control. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Aliskiren reduces blood pressure by inhibiting renin. This leads to a cascade of events that decreases blood pressure, lowering the risk of fatal and nonfatal cardiovascular events including stroke and myocardial infarction. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Aliskiren is a renin inhibitor. Renin is secreted by the kidneys when blood volume and renal perfusion decrease. It normally cleaves the protein angiotensinogen to form angiotensin I. Angiotensin I is then converted to angiotensin II, an active protein. Angiotensin II is a potent vasoconstrictor that causes the release of catecholamines into the circulation. It also promotes the secretion of aldosterone in addition to sodium reabsorption, increasing blood pressure. Additionally, angiotensin II acts on the adrenal cortex where it stimulates aldosterone release. Aldosterone increases sodium reabsorption and potassium excretion in the nephron. Aliskiren prevents the above process via binding to renin at its active site, stopping the cleavage of angiotensin, in turn inhibiting the formation of angiotensin I. This ends the cascade of angiotensin II mediated mechanisms that normally increase blood pressure. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Aliskiren is absorbed in the gastrointestinal tract and is poorly absorbed with a bioavailability between 2.0 and 2.5%. Peak plasma concentrations of aliskiren are achieved between 1 to 3 hours after administration. Steady-state concentrations of aliskiren are achieved within 7-8 days of regular administration. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): Unchanged aliskiren accounts for about 80% of the drug found in the plasma. •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): The plasma protein binding of aliskiren ranges from 47-51%. •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): About 80% of the drug in plasma following oral administration is unchanged. Two major metabolites account for about 1-3% of aliskiren in the plasma. One metabolite is an O-demethylated alcohol derivative and the other is a carboxylic acid derivative. Minor oxidized and hydrolyzed metabolites may also be found in the plasma. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Aliskiren is mainly excreted via the hepatobiliary route and by oxidative metabolism by hepatic cytochrome enzymes. Approximately one-quarter of the absorbed dose appears in the urine as unchanged parent drug. One pharmacokinetic study of radiolabeled aliskiren detected 0.6% radioactivity in the urine and more than 80% in the feces, suggesting that aliskiren is mainly eliminated by the fecal route. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): Plasma half-life for aliskiren can range from 30 to 40 hours with an accumulation half-life of about 24 hours. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): Aliskiren is partially cleared in the kidneys, and safety data have not been established for patients with a creatinine clearance of less than 30 mL/min. One pharmacokinetic study revealed an average renal clearance of 1280 +/- 500 mL/hour in healthy volunteers. •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): The oral LD50 of aliskiren in rats is >2000 mg/kg. Overdose information is limited in the literature, however, an overdose with aliskiren is likely to result in hypotension. Supportive treatment should be initiated in the case of an overdose. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Rasilez, Tekturna, Tekturna Hct •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Aliskiren is a direct renin inhibitor used to manage hypertension.
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Question: Does Abaloparatide and Aliskiren interact? Information: •Drug A: Abaloparatide •Drug B: Aliskiren •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Abaloparatide is combined with Aliskiren. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): Aliskiren is used for the treatment of hypertension in children above 6 years and adults. This drug may also be used in conjunction with antihypertensives such as calcium channel blockers and thiazides in products form to provide additional blood pressure control. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Aliskiren reduces blood pressure by inhibiting renin. This leads to a cascade of events that decreases blood pressure, lowering the risk of fatal and nonfatal cardiovascular events including stroke and myocardial infarction. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Aliskiren is a renin inhibitor. Renin is secreted by the kidneys when blood volume and renal perfusion decrease. It normally cleaves the protein angiotensinogen to form angiotensin I. Angiotensin I is then converted to angiotensin II, an active protein. Angiotensin II is a potent vasoconstrictor that causes the release of catecholamines into the circulation. It also promotes the secretion of aldosterone in addition to sodium reabsorption, increasing blood pressure. Additionally, angiotensin II acts on the adrenal cortex where it stimulates aldosterone release. Aldosterone increases sodium reabsorption and potassium excretion in the nephron. Aliskiren prevents the above process via binding to renin at its active site, stopping the cleavage of angiotensin, in turn inhibiting the formation of angiotensin I. This ends the cascade of angiotensin II mediated mechanisms that normally increase blood pressure. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Aliskiren is absorbed in the gastrointestinal tract and is poorly absorbed with a bioavailability between 2.0 and 2.5%. Peak plasma concentrations of aliskiren are achieved between 1 to 3 hours after administration. Steady-state concentrations of aliskiren are achieved within 7-8 days of regular administration. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): Unchanged aliskiren accounts for about 80% of the drug found in the plasma. •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): The plasma protein binding of aliskiren ranges from 47-51%. •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): About 80% of the drug in plasma following oral administration is unchanged. Two major metabolites account for about 1-3% of aliskiren in the plasma. One metabolite is an O-demethylated alcohol derivative and the other is a carboxylic acid derivative. Minor oxidized and hydrolyzed metabolites may also be found in the plasma. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Aliskiren is mainly excreted via the hepatobiliary route and by oxidative metabolism by hepatic cytochrome enzymes. Approximately one-quarter of the absorbed dose appears in the urine as unchanged parent drug. One pharmacokinetic study of radiolabeled aliskiren detected 0.6% radioactivity in the urine and more than 80% in the feces, suggesting that aliskiren is mainly eliminated by the fecal route. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): Plasma half-life for aliskiren can range from 30 to 40 hours with an accumulation half-life of about 24 hours. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): Aliskiren is partially cleared in the kidneys, and safety data have not been established for patients with a creatinine clearance of less than 30 mL/min. One pharmacokinetic study revealed an average renal clearance of 1280 +/- 500 mL/hour in healthy volunteers. •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): The oral LD50 of aliskiren in rats is >2000 mg/kg. Overdose information is limited in the literature, however, an overdose with aliskiren is likely to result in hypotension. Supportive treatment should be initiated in the case of an overdose. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Rasilez, Tekturna, Tekturna Hct •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Aliskiren is a direct renin inhibitor used to manage hypertension. Output: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Does Abaloparatide and Ambrisentan interact?
•Drug A: Abaloparatide •Drug B: Ambrisentan •Severity: MINOR •Description: Abaloparatide may increase the hypotensive activities of Ambrisentan. •Extended Description: The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): Ambrisentan is indicated for treatment of idiopathic (‘primary’) pulmonary arterial hypertension (IPAH) and pulmonary arterial hypertension (PAH) associated with connective tissue disease in patients with WHO functional class II or III symptoms. In the United States of America, ambrisentan is also indicated in combination with tadalafil to reduce the risks of disease progression and hospitalization for worsening PAH, and to improve exercise ability. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Ambrisentan 10 mg daily had no significant effect on the QTc interval, whereas a 40 mg daily dose of ambrisentan increased mean QTc at tmax by 5 ms with an upper 95% confidence limit of 9 ms. Significant QTc prolongation is not expected in patients taking ambrisentan without concomitant metabolic inhibitors. Plasma concentrations of B-type natriuretic peptide (BNP) in patients who received ambrisentan for 12 weeks were significantly decreased. Two Phase III placebo-controlled studies demonstrated a decrease in BNP plasma concentrations by 29% in the 2.5 mg group, 30% in the 5 mg group, and 45% in the 10 mg group (p < 0.001 for each dose group) and an increase by 11% in the placebo group. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Endothelin-1 (ET-1) is an endogenous peptide that acts on the endothelin type A (ETA) and endothelin type B (ETB) receptors in vascular smooth muscle and endothelium. ETA-mediated actions include vasoconstriction and cell proliferation, whereas ETB predominantly mediates vasodilation, anti-proliferation, and ET-1 clearance. In patients with pulmonary arterial hypertension, ET-1 levels are increased and correlate with increased right arterial pressure and severity of disease. Ambrisentan is one of several newly developed vasodilator drugs that selectively target the endothelin type A (ETA) receptor, inhibiting its action and preventing vasoconstriction. Selective inhibition of the ETA receptor prevents phospholipase C-mediated vasoconstriction and protein kinase C-mediated cell proliferation. Endothelin type B (ETB) receptor function is not significantly inhibited, and nitric oxide and prostacyclin production, cyclic GMP- and cyclic AMP-mediated vasodilation, and endothelin-1 (ET-1) clearance is preserved. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Ambrisentan is rapidly absorbed with peak plasma concentrations occuring around 2 hours after oral administration. Cmax and AUC increase proportionally with dose across the therapeutic dosing range. Absolute oral bioavailability of ambrisentan is unknown. Absorption is not affected by food. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): Ambrisentan has a low distribution into red blow cells, with a mean blood:plasma ratio of 0.57 and 0.61 in males and females, respectively. •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): Ambrisentan is 99% plasma protein bound, primarily to albumin (96.5%) and to a lesser degree alpha1-acid glycoprotein. •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Ambrisentan is a metabolized primarily by uridine 5’-diphosphate glucuronosyltransferases (UGTs) 1A9S, 2B7S,1A3S to form ambrisentan glucuronide. Ambrisentan is also metabolized to a lesser extent by CYP3A4, CYP3A5 and CYP2C19 to form 4- hydroxymethyl ambrisentan which is further glucuronidated to 4-hydroxymethyl ambrisentan glucuronide. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Ambrisentan is primarily cleared by non-renal pathways. Along with its metabolites, ambrisentan is primarily found in the feces following hepatic and/or extra-hepatic metabolism. Approximately 22% of the administered dose is recovered in the urine following oral administration with 3.3% being unchanged ambrisentan. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): Ambrisentan has a terminal half-life of 15 hours. It is thought that steady state is achieved after around 4 days of repeat-dosing. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): The mean oral clearance of ambrisentan was found to be 38 mL/min in healthy subjects and 19 mL/min in patients with pulmonary artery hypertension. •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): Ambrisentan is teratogenic and has a high risk of embryo-fetal toxicity. LD50 was found to be greater than or equal to 3160 mg/kg when studied in rats. There was no evidence of carcinogenic potential in 2 year oral daily dosing studies in rats and mice. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Letairis •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Ambrisentan •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Ambrisentan is a selective type A endothelin receptor antagonist used to treat primary pulmonary arterial hypertension and pulmonary arterial hypertension based on diagnostic classifications.
The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect. The severity of the interaction is minor.
Question: Does Abaloparatide and Ambrisentan interact? Information: •Drug A: Abaloparatide •Drug B: Ambrisentan •Severity: MINOR •Description: Abaloparatide may increase the hypotensive activities of Ambrisentan. •Extended Description: The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): Ambrisentan is indicated for treatment of idiopathic (‘primary’) pulmonary arterial hypertension (IPAH) and pulmonary arterial hypertension (PAH) associated with connective tissue disease in patients with WHO functional class II or III symptoms. In the United States of America, ambrisentan is also indicated in combination with tadalafil to reduce the risks of disease progression and hospitalization for worsening PAH, and to improve exercise ability. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Ambrisentan 10 mg daily had no significant effect on the QTc interval, whereas a 40 mg daily dose of ambrisentan increased mean QTc at tmax by 5 ms with an upper 95% confidence limit of 9 ms. Significant QTc prolongation is not expected in patients taking ambrisentan without concomitant metabolic inhibitors. Plasma concentrations of B-type natriuretic peptide (BNP) in patients who received ambrisentan for 12 weeks were significantly decreased. Two Phase III placebo-controlled studies demonstrated a decrease in BNP plasma concentrations by 29% in the 2.5 mg group, 30% in the 5 mg group, and 45% in the 10 mg group (p < 0.001 for each dose group) and an increase by 11% in the placebo group. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Endothelin-1 (ET-1) is an endogenous peptide that acts on the endothelin type A (ETA) and endothelin type B (ETB) receptors in vascular smooth muscle and endothelium. ETA-mediated actions include vasoconstriction and cell proliferation, whereas ETB predominantly mediates vasodilation, anti-proliferation, and ET-1 clearance. In patients with pulmonary arterial hypertension, ET-1 levels are increased and correlate with increased right arterial pressure and severity of disease. Ambrisentan is one of several newly developed vasodilator drugs that selectively target the endothelin type A (ETA) receptor, inhibiting its action and preventing vasoconstriction. Selective inhibition of the ETA receptor prevents phospholipase C-mediated vasoconstriction and protein kinase C-mediated cell proliferation. Endothelin type B (ETB) receptor function is not significantly inhibited, and nitric oxide and prostacyclin production, cyclic GMP- and cyclic AMP-mediated vasodilation, and endothelin-1 (ET-1) clearance is preserved. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Ambrisentan is rapidly absorbed with peak plasma concentrations occuring around 2 hours after oral administration. Cmax and AUC increase proportionally with dose across the therapeutic dosing range. Absolute oral bioavailability of ambrisentan is unknown. Absorption is not affected by food. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): Ambrisentan has a low distribution into red blow cells, with a mean blood:plasma ratio of 0.57 and 0.61 in males and females, respectively. •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): Ambrisentan is 99% plasma protein bound, primarily to albumin (96.5%) and to a lesser degree alpha1-acid glycoprotein. •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Ambrisentan is a metabolized primarily by uridine 5’-diphosphate glucuronosyltransferases (UGTs) 1A9S, 2B7S,1A3S to form ambrisentan glucuronide. Ambrisentan is also metabolized to a lesser extent by CYP3A4, CYP3A5 and CYP2C19 to form 4- hydroxymethyl ambrisentan which is further glucuronidated to 4-hydroxymethyl ambrisentan glucuronide. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Ambrisentan is primarily cleared by non-renal pathways. Along with its metabolites, ambrisentan is primarily found in the feces following hepatic and/or extra-hepatic metabolism. Approximately 22% of the administered dose is recovered in the urine following oral administration with 3.3% being unchanged ambrisentan. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): Ambrisentan has a terminal half-life of 15 hours. It is thought that steady state is achieved after around 4 days of repeat-dosing. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): The mean oral clearance of ambrisentan was found to be 38 mL/min in healthy subjects and 19 mL/min in patients with pulmonary artery hypertension. •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): Ambrisentan is teratogenic and has a high risk of embryo-fetal toxicity. LD50 was found to be greater than or equal to 3160 mg/kg when studied in rats. There was no evidence of carcinogenic potential in 2 year oral daily dosing studies in rats and mice. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Letairis •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Ambrisentan •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Ambrisentan is a selective type A endothelin receptor antagonist used to treat primary pulmonary arterial hypertension and pulmonary arterial hypertension based on diagnostic classifications. Output: The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect. The severity of the interaction is minor.
Does Abaloparatide and Amifostine interact?
•Drug A: Abaloparatide •Drug B: Amifostine •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Amifostine is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): For reduction in the cumulative renal toxicity in patients with ovarian cancer (using cisplatin) and moderate to severe xerostomia in patients undergoing post-operative radiation treatment for head and neck cancer. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Amifostine is an organic thiophosphate cytoprotective agent indicated to reduce the cumulative renal toxicity associated with repeated administration of cisplatin in patients with advanced ovarian cancer or non-small cell lung cancer and also to reduce the incidence of moderate to severe xerostomia in patients undergoing post-operative radiation treatment for head and neck cancer. Amifostine is a prodrug that is dephosphorylated by alkaline phosphatase in tissues to a pharmacologically active free thiol metabolite, believed to be responsible for the reduction of the cumulative renal toxicity of cisplatin and for the reduction of the toxic effects of radiation on normal oral tissues. Healthy cells are preferentially protected because amifostine and metabolites are present in healthy cells at 100-fold greater concentrations than in tumour cells. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): The thiol metabolite is responsible for most of the cytoprotective and radioprotective properties of amifostine. It is readily taken up by cells where it binds to and detoxifies reactive metabolites of platinum and alkylating agents as well as scavenges free radicals. Other possible effects include inhibition of apoptosis, alteration of gene expression and modification of enzyme activity. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Amifostine is rapidly dephosphorylated by alkaline phosphatase in tissues primarily to the active free thiol metabolite and, subsequently, to a less active disulfide metabolite. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): After a 10-second bolus dose of 150 mg/m2 of ETHYOL, renal excretion of the parent drug and its two metabolites was low during the hour following drug administration, averaging 0.69%, 2.64% and 2.22% of the administered dose for the parent, thiol and disulfide, respectively. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): 8 minutes •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): Rat LD 50: 826 mg/kg •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Ethyol •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amifostina Amifostine Amifostinum Aminopropylaminoethyl thiophosphate Ethiofos •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amifostine is a cytoprotective adjuvant used for reduction in the cumulative renal toxicity in patients with ovarian cancer and moderate to severe xerostomia in patients undergoing post-operative radiation treatment for head and neck cancer.
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Question: Does Abaloparatide and Amifostine interact? Information: •Drug A: Abaloparatide •Drug B: Amifostine •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Amifostine is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): For reduction in the cumulative renal toxicity in patients with ovarian cancer (using cisplatin) and moderate to severe xerostomia in patients undergoing post-operative radiation treatment for head and neck cancer. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Amifostine is an organic thiophosphate cytoprotective agent indicated to reduce the cumulative renal toxicity associated with repeated administration of cisplatin in patients with advanced ovarian cancer or non-small cell lung cancer and also to reduce the incidence of moderate to severe xerostomia in patients undergoing post-operative radiation treatment for head and neck cancer. Amifostine is a prodrug that is dephosphorylated by alkaline phosphatase in tissues to a pharmacologically active free thiol metabolite, believed to be responsible for the reduction of the cumulative renal toxicity of cisplatin and for the reduction of the toxic effects of radiation on normal oral tissues. Healthy cells are preferentially protected because amifostine and metabolites are present in healthy cells at 100-fold greater concentrations than in tumour cells. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): The thiol metabolite is responsible for most of the cytoprotective and radioprotective properties of amifostine. It is readily taken up by cells where it binds to and detoxifies reactive metabolites of platinum and alkylating agents as well as scavenges free radicals. Other possible effects include inhibition of apoptosis, alteration of gene expression and modification of enzyme activity. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Amifostine is rapidly dephosphorylated by alkaline phosphatase in tissues primarily to the active free thiol metabolite and, subsequently, to a less active disulfide metabolite. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): After a 10-second bolus dose of 150 mg/m2 of ETHYOL, renal excretion of the parent drug and its two metabolites was low during the hour following drug administration, averaging 0.69%, 2.64% and 2.22% of the administered dose for the parent, thiol and disulfide, respectively. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): 8 minutes •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): Rat LD 50: 826 mg/kg •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Ethyol •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amifostina Amifostine Amifostinum Aminopropylaminoethyl thiophosphate Ethiofos •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amifostine is a cytoprotective adjuvant used for reduction in the cumulative renal toxicity in patients with ovarian cancer and moderate to severe xerostomia in patients undergoing post-operative radiation treatment for head and neck cancer. Output: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Does Abaloparatide and Amiloride interact?
•Drug A: Abaloparatide •Drug B: Amiloride •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Amiloride is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): For use as adjunctive treatment with thiazide diuretics or other kaliuretic-diuretic agents in congestive heart failure or hypertension. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Amiloride, an antikaliuretic-diuretic agent, is a pyrazine-carbonyl-guanidine that is unrelated chemically to other known antikaliuretic or diuretic agents. It is an antihypertensive, potassium-sparing diuretic that was first approved for use in 1967 and helps to treat hypertension and congestive heart failure. The drug is often used in conjunction with thiazide or loop diuretics. Due to its potassium-sparing capacities, hyperkalemia (high blood potassium levels) are occasionally observed in patients taking amiloride. The risk is high in concurrent use of ACE inhibitors or spironolactone. Patients are also advised not to use potassium-containing salt replacements. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Amiloride works by inhibiting sodium reabsorption in the distal convoluted tubules and collecting ducts in the kidneys by binding to the amiloride-sensitive sodium channels. This promotes the loss of sodium and water from the body, but without depleting potassium. Amiloride exerts its potassium sparing effect through the inhibition of sodium reabsorption at the distal convoluted tubule, cortical collecting tubule and collecting duct; this decreases the net negative potential of the tubular lumen and reduces both potassium and hydrogen secretion and their subsequent excretion. Amiloride is not an aldosterone antagonist and its effects are seen even in the absence of aldosterone. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Readily absorbed following oral administration. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Amiloride is not metabolized by the liver but is excreted unchanged by the kidneys. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Amiloride HCl is not metabolized by the liver but is excreted unchanged by the kidneys. About 50 percent of a 20 mg dose of amiloride HCl is excreted in the urine and 40 percent in the stool within 72 hours. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): Plasma half-life varies from 6 to 9 hours. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): No data are available in regard to overdosage in humans. The oral LD 50 of amiloride hydrochloride (calculated as the base) is 56 mg/kg in mice and 36 to 85 mg/kg in rats, depending on the strain. The most likely signs and symptoms to be expected with overdosage are dehydration and electrolyte imbalance. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Midamor •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amilorid Amilorida Amiloride Amiloridum Amipramidin Amipramidine Amyloride •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amiloride is a pyrizine compound used to treat hypertension and congestive heart failure.
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Question: Does Abaloparatide and Amiloride interact? Information: •Drug A: Abaloparatide •Drug B: Amiloride •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Amiloride is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): For use as adjunctive treatment with thiazide diuretics or other kaliuretic-diuretic agents in congestive heart failure or hypertension. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): Amiloride, an antikaliuretic-diuretic agent, is a pyrazine-carbonyl-guanidine that is unrelated chemically to other known antikaliuretic or diuretic agents. It is an antihypertensive, potassium-sparing diuretic that was first approved for use in 1967 and helps to treat hypertension and congestive heart failure. The drug is often used in conjunction with thiazide or loop diuretics. Due to its potassium-sparing capacities, hyperkalemia (high blood potassium levels) are occasionally observed in patients taking amiloride. The risk is high in concurrent use of ACE inhibitors or spironolactone. Patients are also advised not to use potassium-containing salt replacements. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Amiloride works by inhibiting sodium reabsorption in the distal convoluted tubules and collecting ducts in the kidneys by binding to the amiloride-sensitive sodium channels. This promotes the loss of sodium and water from the body, but without depleting potassium. Amiloride exerts its potassium sparing effect through the inhibition of sodium reabsorption at the distal convoluted tubule, cortical collecting tubule and collecting duct; this decreases the net negative potential of the tubular lumen and reduces both potassium and hydrogen secretion and their subsequent excretion. Amiloride is not an aldosterone antagonist and its effects are seen even in the absence of aldosterone. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Readily absorbed following oral administration. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Amiloride is not metabolized by the liver but is excreted unchanged by the kidneys. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Amiloride HCl is not metabolized by the liver but is excreted unchanged by the kidneys. About 50 percent of a 20 mg dose of amiloride HCl is excreted in the urine and 40 percent in the stool within 72 hours. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): Plasma half-life varies from 6 to 9 hours. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): No data are available in regard to overdosage in humans. The oral LD 50 of amiloride hydrochloride (calculated as the base) is 56 mg/kg in mice and 36 to 85 mg/kg in rats, depending on the strain. The most likely signs and symptoms to be expected with overdosage are dehydration and electrolyte imbalance. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Midamor •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amilorid Amilorida Amiloride Amiloridum Amipramidin Amipramidine Amyloride •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amiloride is a pyrizine compound used to treat hypertension and congestive heart failure. Output: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Does Abaloparatide and Amiodarone interact?
•Drug A: Abaloparatide •Drug B: Amiodarone •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Amiodarone is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): The FDA approved indications for amiodarone are recurrent ventricular fibrillation (VF) and recurrent hemodynamically unstable ventricular tachycardia (VT). The FDA emphasizes that this drug should only be given in these conditions when they are clinically documented and have not responded to normal therapeutic doses of other antiarrhythmic agents, or when other drugs are not tolerated by the patient. Off-label indications include atrial fibrillation and supraventricular tachycardia. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): After intravenous administration, amiodarone acts to relax smooth muscles that line vascular walls, decreases peripheral vascular resistance (afterload), and increases the cardiac index by a small amount. Administration by this route also decreases cardiac conduction, preventing and treating arrhythmias. When it is given orally, however, amiodarone does not lead to significant changes in the left ventricular ejection fraction. Similar to other anti-arrhythmic agents, controlled clinical trials do not confirm that oral amiodarone increases survival. Amiodarone prolongs the QRS duration and QT interval. In addition, a decreased SA (sinoatrial) node automaticity occurs with a decrease in AV node conduction velocity. Ectopic pacemaker automaticity is also inhibited. Thyrotoxicosis or hypothyroidism may also result from the administration of amiodarone, which contains high levels of iodine, and interferes with normal thyroid function. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Amiodarone is considered a class III anti-arrhythmic drug. It blocks potassium currents that cause repolarization of the heart muscle during the third phase of the cardiac action potential. As a result amiodarone increases the duration of the action potential as well as the effective refractory period for cardiac cells (myocytes). Therefore, cardiac muscle cell excitability is reduced, preventing and treating abnormal heart rhythms. Unique from other members of the class III anti-arrhythmic drug class, amiodarone also interferes with the functioning of beta-adrenergic receptors, sodium channels, and calcium channels channels. These actions, at times, can lead to undesirable effects, such as hypotension, bradycardia, and Torsades de pointes (TdP). In addition to the above, amiodarone may increase activity of peroxisome proliferator-activated receptors, leading to steatogenic changes in the liver or other organs. Finally, amiodarone has been found to bind to the thyroid receptor due to its iodine content, potentially leading to amiodarone induced hypothyroidism or thyrotoxicosis. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): The Cmax of amiodarone in the plasma is achieved about 3 to 7 hours after administration. The general time to onset of action of amiodarone after one dose given by the intravenous route is between 1 and 30 minutes, with therapeutic effects lasting from 1-3 hours. Steady-state concentrations of amiodarone in the plasma ranges between 0.4 to 11.99 μg/ml; it is advisable that steady-state levels are generally maintained between 1.0 and 2.5 μg/ml in patients with arrhythmias. Interestingly, its onset of action may sometimes begin after 2 to 3 days, but frequently takes 1 to 3 weeks, despite the administration of higher loading doses. The bioavailability of amiodarone varies in clinical studies, averaging between 35 and 65%. Effect of food In healthy subjects who were given a single 600-mg dose immediately after consuming a meal high in fat, the AUC of amiodarone increased by 2.3 and the Cmax by 3.8 times. Food also enhances absorption, reducing the Tmax by about 37%. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): In a pharmacokinetic study of 3 healthy individuals and 3 patients diagnosed with supraventricular tachycardia (SVT), the volume of distribution was found to be 9.26-17.17 L/kg in healthy volunteers and 6.88-21.05 L/kg in the SVT patients. Prescribing information mentions that the volume of distribution of amiodarone varies greatly, with a mean distribution of approximately 60 L/kg. It accumulates throughout the body, especially in adipose tissue and highly vascular organs including the lung, liver, and spleen. One major metabolite of amiodarone, desethylamiodarone (DEA), is found in even higher proportions in the same tissues as amiodarone. •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): The protein binding of amiodarone is about 96%. •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): This drug is metabolized to the main metabolite desethylamiodarone (DEA) by the CYP3A4 and CYP2C8 enzymes. The CYP3A4 enzyme is found in the liver and intestines. A hydroxyl metabolite of DEA has been identified in mammals, but its clinical significance is unknown. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Amiodarone is eliminated primarily by hepatic metabolism and biliary excretion. A small amount of desethylamiodarone (DEA) is found in the urine. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): The terminal half-life of amiodarone varies according to the patient, but is long nonetheless, and ranges from about 9-100 days. The half-life duration varies according to different sources. According to the prescribing information for amiodarone, the average apparent plasma terminal elimination half-life of amiodarone is of 58 days (ranging from 15 to 142 days). The terminal half-life range was between 14 to 75 days for the active metabolite, (DEA). The plasma half-life of amiodarone after one dose ranges from 3.2 to 79.7 hours, according to one source. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): The clearance of amiodarone after intravenous administration in patients with ventricular fibrillation and ventricular tachycardia ranged from 220 to 440 ml/hr/kg in one clinically study. Another study determined that the total body clearance of amiodarone varies from 0.10 to 0.77 L/min after one intravenous dose. Renal impairment does not appear to affect the clearance of amiodarone, but hepatic impairment may reduce clearance. Patients with liver cirrhosis exhibited significantly lower Cmax and mean amiodarone concentration for DEA, but not for amiodarone. Severe left ventricular dysfunction prolongs the half-life of DEA. A note on monitoring No guidelines have been developed for adjusting the dose of amiodarone in renal, hepatic, or cardiac abnormalities. In patients on chronic amiodarone treatment, close clinical monitoring is advisable, especially for elderly patients and those with severe left ventricular dysfunction. •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): The LD50 of oral amiodarone in mice and rats exceeds 3,000 mg/kg. An overdose with amiodarone can have a fatal outcome due to its potential to cause arrhythmia. Signs or symptoms of an overdose may include, hypotension, shock, bradycardia, AV block, and liver toxicity. In cases of an overdose, initiate supportive treatment and, if needed, use fluids, vasopressors, or positive inotropic agents. Temporary pacing may be required for heart block. Ensure to monitor liver function regularly. Amiodarone and its main metabolite, DEA, are not removable by dialysis. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Nexterone, Pacerone •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amiodarona Amiodarone Amiodaronum •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amiodarone is a class III antiarrhythmic indicated for the treatment of recurrent hemodynamically unstable ventricular tachycardia and recurrent ventricular fibrillation.
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Question: Does Abaloparatide and Amiodarone interact? Information: •Drug A: Abaloparatide •Drug B: Amiodarone •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Amiodarone is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): The FDA approved indications for amiodarone are recurrent ventricular fibrillation (VF) and recurrent hemodynamically unstable ventricular tachycardia (VT). The FDA emphasizes that this drug should only be given in these conditions when they are clinically documented and have not responded to normal therapeutic doses of other antiarrhythmic agents, or when other drugs are not tolerated by the patient. Off-label indications include atrial fibrillation and supraventricular tachycardia. •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): After intravenous administration, amiodarone acts to relax smooth muscles that line vascular walls, decreases peripheral vascular resistance (afterload), and increases the cardiac index by a small amount. Administration by this route also decreases cardiac conduction, preventing and treating arrhythmias. When it is given orally, however, amiodarone does not lead to significant changes in the left ventricular ejection fraction. Similar to other anti-arrhythmic agents, controlled clinical trials do not confirm that oral amiodarone increases survival. Amiodarone prolongs the QRS duration and QT interval. In addition, a decreased SA (sinoatrial) node automaticity occurs with a decrease in AV node conduction velocity. Ectopic pacemaker automaticity is also inhibited. Thyrotoxicosis or hypothyroidism may also result from the administration of amiodarone, which contains high levels of iodine, and interferes with normal thyroid function. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Amiodarone is considered a class III anti-arrhythmic drug. It blocks potassium currents that cause repolarization of the heart muscle during the third phase of the cardiac action potential. As a result amiodarone increases the duration of the action potential as well as the effective refractory period for cardiac cells (myocytes). Therefore, cardiac muscle cell excitability is reduced, preventing and treating abnormal heart rhythms. Unique from other members of the class III anti-arrhythmic drug class, amiodarone also interferes with the functioning of beta-adrenergic receptors, sodium channels, and calcium channels channels. These actions, at times, can lead to undesirable effects, such as hypotension, bradycardia, and Torsades de pointes (TdP). In addition to the above, amiodarone may increase activity of peroxisome proliferator-activated receptors, leading to steatogenic changes in the liver or other organs. Finally, amiodarone has been found to bind to the thyroid receptor due to its iodine content, potentially leading to amiodarone induced hypothyroidism or thyrotoxicosis. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): The Cmax of amiodarone in the plasma is achieved about 3 to 7 hours after administration. The general time to onset of action of amiodarone after one dose given by the intravenous route is between 1 and 30 minutes, with therapeutic effects lasting from 1-3 hours. Steady-state concentrations of amiodarone in the plasma ranges between 0.4 to 11.99 μg/ml; it is advisable that steady-state levels are generally maintained between 1.0 and 2.5 μg/ml in patients with arrhythmias. Interestingly, its onset of action may sometimes begin after 2 to 3 days, but frequently takes 1 to 3 weeks, despite the administration of higher loading doses. The bioavailability of amiodarone varies in clinical studies, averaging between 35 and 65%. Effect of food In healthy subjects who were given a single 600-mg dose immediately after consuming a meal high in fat, the AUC of amiodarone increased by 2.3 and the Cmax by 3.8 times. Food also enhances absorption, reducing the Tmax by about 37%. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): In a pharmacokinetic study of 3 healthy individuals and 3 patients diagnosed with supraventricular tachycardia (SVT), the volume of distribution was found to be 9.26-17.17 L/kg in healthy volunteers and 6.88-21.05 L/kg in the SVT patients. Prescribing information mentions that the volume of distribution of amiodarone varies greatly, with a mean distribution of approximately 60 L/kg. It accumulates throughout the body, especially in adipose tissue and highly vascular organs including the lung, liver, and spleen. One major metabolite of amiodarone, desethylamiodarone (DEA), is found in even higher proportions in the same tissues as amiodarone. •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): The protein binding of amiodarone is about 96%. •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): This drug is metabolized to the main metabolite desethylamiodarone (DEA) by the CYP3A4 and CYP2C8 enzymes. The CYP3A4 enzyme is found in the liver and intestines. A hydroxyl metabolite of DEA has been identified in mammals, but its clinical significance is unknown. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Amiodarone is eliminated primarily by hepatic metabolism and biliary excretion. A small amount of desethylamiodarone (DEA) is found in the urine. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): The terminal half-life of amiodarone varies according to the patient, but is long nonetheless, and ranges from about 9-100 days. The half-life duration varies according to different sources. According to the prescribing information for amiodarone, the average apparent plasma terminal elimination half-life of amiodarone is of 58 days (ranging from 15 to 142 days). The terminal half-life range was between 14 to 75 days for the active metabolite, (DEA). The plasma half-life of amiodarone after one dose ranges from 3.2 to 79.7 hours, according to one source. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): The clearance of amiodarone after intravenous administration in patients with ventricular fibrillation and ventricular tachycardia ranged from 220 to 440 ml/hr/kg in one clinically study. Another study determined that the total body clearance of amiodarone varies from 0.10 to 0.77 L/min after one intravenous dose. Renal impairment does not appear to affect the clearance of amiodarone, but hepatic impairment may reduce clearance. Patients with liver cirrhosis exhibited significantly lower Cmax and mean amiodarone concentration for DEA, but not for amiodarone. Severe left ventricular dysfunction prolongs the half-life of DEA. A note on monitoring No guidelines have been developed for adjusting the dose of amiodarone in renal, hepatic, or cardiac abnormalities. In patients on chronic amiodarone treatment, close clinical monitoring is advisable, especially for elderly patients and those with severe left ventricular dysfunction. •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): The LD50 of oral amiodarone in mice and rats exceeds 3,000 mg/kg. An overdose with amiodarone can have a fatal outcome due to its potential to cause arrhythmia. Signs or symptoms of an overdose may include, hypotension, shock, bradycardia, AV block, and liver toxicity. In cases of an overdose, initiate supportive treatment and, if needed, use fluids, vasopressors, or positive inotropic agents. Temporary pacing may be required for heart block. Ensure to monitor liver function regularly. Amiodarone and its main metabolite, DEA, are not removable by dialysis. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Nexterone, Pacerone •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amiodarona Amiodarone Amiodaronum •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amiodarone is a class III antiarrhythmic indicated for the treatment of recurrent hemodynamically unstable ventricular tachycardia and recurrent ventricular fibrillation. Output: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Does Abaloparatide and Amlodipine interact?
•Drug A: Abaloparatide •Drug B: Amlodipine •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Amlodipine is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): Amlodipine may be used alone or in combination with other antihypertensive and antianginal agents for the treatment of the following conditions: • Hypertension • Coronary artery disease • Chronic stable angina • Vasospastic angina (Prinzmetal’s or Variant angina) • Angiographically documented coronary artery disease in patients without heart failure or an ejection fraction < 40% •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): General pharmacodynamic effects Amlodipine has a strong affinity for cell membranes, modulating calcium influx by inhibiting selected membrane calcium channels. This drug's unique binding properties allow for its long-acting action and less frequent dosing regimen,. Hemodynamic effects After the administration of therapeutic doses of amlodipine to patients diagnosed with hypertension, amlodipine causes vasodilation, which results in a reduction of supine and standing blood pressure. During these blood pressure reductions, there are no clinically significant changes in heart rate or plasma catecholamine levels with long-term use. Acute intravenous administration of amlodipine reduces arterial blood pressure and increases heart rate in patients with chronic stable angina, however, chronic oral administration of amlodipine in clinical studies did not cause clinically significant alterations in heart rate or blood pressures in patients diagnosed with angina and normal blood pressure. With long-term, once daily oral administration, antihypertensive effectiveness is maintained for at least 24 hours. Electrophysiologic effects Amlodipine does not change sinoatrial (SA) nodal function or atrioventricular (AV) conduction in animals or humans. In patients who were diagnosed with chronic stable angina, the intravenous administration of 10 mg of amlodipine did not cause clinically significant alterations A-H and H-V conduction and sinus node recovery time after cardiac pacing. Patients administered amlodipine with concomitant beta-blockers produced similar results. In clinical trials in which amlodipine was given in combination with beta-blockers to patients diagnosed with hypertension or angina, no adverse effects on electrocardiographic parameters were noted. In clinical studies comprised of angina patients alone, amlodipine did not change electrocardiographic intervals or produce high degrees of AV block. Effects on angina Amlodipine relieves the symptoms of chest pain associated with angina. In patients diagnosed with angina, daily administration of a single amlodipine dose increases total exercise time, the time to angina onset, and the time to 1 mm ST-segment depression on ECG studies, decreases anginal attack frequency, and decreases the requirement for nitroglycerin tablets. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Mechanism of action on blood pressure Amlodipine is considered a peripheral arterial vasodilator that exerts its action directly on vascular smooth muscle to lead to a reduction in peripheral vascular resistance, causing a decrease in blood pressure. Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the influx of calcium ions into both vascular smooth muscle and cardiac muscle. Experimental studies imply that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites, located on cell membranes. The contraction of cardiac muscle and vascular smooth muscle are dependent on the movement of extracellular calcium ions into these cells by specific ion channels. Amlodipine blocks calcium ion influx across cell membranes with selectivity. A stronger effect of amlodipine is exerted on vascular smooth muscle cells than on cardiac muscle cells. Direct actions of amlodipine on vascular smooth muscle result in reduced blood pressure. Mechanism of action in angina The exact mechanism by which amlodipine relieves the symptoms of angina have not been fully elucidated to this date, however, the mechanism of action is likely twofold: Amlodipine has a dilating effect on peripheral arterioles, reducing the total peripheral resistance (afterload) against which the cardiac muscle functions. Since the heart rate remains stable during amlodipine administration, the reduced work of the heart reduces both myocardial energy use and oxygen requirements. Dilatation of the main coronary arteries and coronary arterioles, both in healthy and ischemic areas, is another possible mechanism of amlodipine reduction of blood pressure. The dilatation causes an increase in myocardial oxygen delivery in patients experiencing coronary artery spasm (Prinzmetal's or variant angina) and reduces coronary vasoconstriction caused by smoking. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Amlodipine absorbed slowly and almost completely from the gastrointestinal tract. Peak plasma concentrations are achieved 6-12 hours after oral administration. The estimated bioavailability of amlodipine is 64-90%. Steady-state plasma amlodipine levels are achieved after 7-8 days of consecutive daily dosing. Absorption is not affected by food. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): 21 L/kg,. •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): About 98%,. •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Amlodipine is heavily (approximately 90%) converted to inactive metabolites via hepatic breakdown with 10% of the parent compound and 60% of the metabolites found excreted in the urine. Ex vivo studies have shown that about 93% of the circulating drug is bound to plasma proteins in hypertensive patients. Characteristics that add to amlodipine's unique pharmacologic profile include nearly complete absorption, late-peak plasma concentrations, high bioavailability, and slow hepatic breakdown. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Elimination from the plasma occurs in a biphasic with a terminal elimination half-life of about 30–50 hours. Steady-state plasma levels of amlodipine are reached after 7-8 days of consecutive daily dosing. Amlodipine is 10% excreted as unchanged drug in the urine. Amlodipine can be initiated at normal doses in patients diagnosed with renal failure,. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): The terminal elimination half-life of about 30–50 hours. Plasma elimination half-life is 56 hours in patients with impaired hepatic function, titrate slowly when administering this drug to patients with severe hepatic impairment. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): Total body clearance (CL) has been calculated as 7 ± 1.3 ml/min/kg (0.42 ± 0.078 L/ h/kg) in healthy volunteers,. Elderly patients show a reduced clearance of amlodipine with an AUC (area under the curve) increase of about 40–60%, and a lower initial dose may be required. •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): Acute oral toxicity (LD50): 37 mg/kg (mouse). Overdose An overdose of amlodipine could result in a high degree of peripheral vasodilatation with a possibility of reflex tachycardia. Significant and prolonged hypotension leading to shock and fatal outcomes have been reported. Carcinogenesis, mutagenesis, impairment of fertility Rats and mice treated with amlodipine maleate in the diet on a long-term basis for up to 2 years demonstrated no evidence of a carcinogenic effect of the drug. For the mouse, the highest dose was comparable to the maximum recommended human dose of 10 mg amlodipine per day. For the rat, the highest dose was measured to be about twice the maximum recommended human dose. Mutagenicity studies using amlodipine maleate showed no drug-related gene or chromosomal effects. There was no impact on the fertility of rats given oral amlodipine maleate (males for 64 days and females for 14 days before mating) at doses up to 10 mg amlodipine/kg/day (8 times the maximum recommended human dose). Use in pregnancy The safety of amlodipine in human pregnancy or lactation has not been proven. Amlodipine is therefore considered a pregnancy category C drug. Use amlodipine only if the potential benefit justifies the potential risk. Use in nursing Discontinue when administering amlodipine. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Amlobenz, Azor, Caduet, Dafiro, Exforge, Exforge Hct, Katerzia, Lotrel, Norliqva, Norvasc, Prestalia, Tribenzor, Twynsta, Viacoram •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amlodipine Amlodipino Amlodipinum •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amlodipine is a calcium channel blocker used to treat hypertension and angina.
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Question: Does Abaloparatide and Amlodipine interact? Information: •Drug A: Abaloparatide •Drug B: Amlodipine •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Amlodipine is combined with Abaloparatide. •Extended Description: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): Amlodipine may be used alone or in combination with other antihypertensive and antianginal agents for the treatment of the following conditions: • Hypertension • Coronary artery disease • Chronic stable angina • Vasospastic angina (Prinzmetal’s or Variant angina) • Angiographically documented coronary artery disease in patients without heart failure or an ejection fraction < 40% •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): General pharmacodynamic effects Amlodipine has a strong affinity for cell membranes, modulating calcium influx by inhibiting selected membrane calcium channels. This drug's unique binding properties allow for its long-acting action and less frequent dosing regimen,. Hemodynamic effects After the administration of therapeutic doses of amlodipine to patients diagnosed with hypertension, amlodipine causes vasodilation, which results in a reduction of supine and standing blood pressure. During these blood pressure reductions, there are no clinically significant changes in heart rate or plasma catecholamine levels with long-term use. Acute intravenous administration of amlodipine reduces arterial blood pressure and increases heart rate in patients with chronic stable angina, however, chronic oral administration of amlodipine in clinical studies did not cause clinically significant alterations in heart rate or blood pressures in patients diagnosed with angina and normal blood pressure. With long-term, once daily oral administration, antihypertensive effectiveness is maintained for at least 24 hours. Electrophysiologic effects Amlodipine does not change sinoatrial (SA) nodal function or atrioventricular (AV) conduction in animals or humans. In patients who were diagnosed with chronic stable angina, the intravenous administration of 10 mg of amlodipine did not cause clinically significant alterations A-H and H-V conduction and sinus node recovery time after cardiac pacing. Patients administered amlodipine with concomitant beta-blockers produced similar results. In clinical trials in which amlodipine was given in combination with beta-blockers to patients diagnosed with hypertension or angina, no adverse effects on electrocardiographic parameters were noted. In clinical studies comprised of angina patients alone, amlodipine did not change electrocardiographic intervals or produce high degrees of AV block. Effects on angina Amlodipine relieves the symptoms of chest pain associated with angina. In patients diagnosed with angina, daily administration of a single amlodipine dose increases total exercise time, the time to angina onset, and the time to 1 mm ST-segment depression on ECG studies, decreases anginal attack frequency, and decreases the requirement for nitroglycerin tablets. •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Mechanism of action on blood pressure Amlodipine is considered a peripheral arterial vasodilator that exerts its action directly on vascular smooth muscle to lead to a reduction in peripheral vascular resistance, causing a decrease in blood pressure. Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the influx of calcium ions into both vascular smooth muscle and cardiac muscle. Experimental studies imply that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites, located on cell membranes. The contraction of cardiac muscle and vascular smooth muscle are dependent on the movement of extracellular calcium ions into these cells by specific ion channels. Amlodipine blocks calcium ion influx across cell membranes with selectivity. A stronger effect of amlodipine is exerted on vascular smooth muscle cells than on cardiac muscle cells. Direct actions of amlodipine on vascular smooth muscle result in reduced blood pressure. Mechanism of action in angina The exact mechanism by which amlodipine relieves the symptoms of angina have not been fully elucidated to this date, however, the mechanism of action is likely twofold: Amlodipine has a dilating effect on peripheral arterioles, reducing the total peripheral resistance (afterload) against which the cardiac muscle functions. Since the heart rate remains stable during amlodipine administration, the reduced work of the heart reduces both myocardial energy use and oxygen requirements. Dilatation of the main coronary arteries and coronary arterioles, both in healthy and ischemic areas, is another possible mechanism of amlodipine reduction of blood pressure. The dilatation causes an increase in myocardial oxygen delivery in patients experiencing coronary artery spasm (Prinzmetal's or variant angina) and reduces coronary vasoconstriction caused by smoking. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): Amlodipine absorbed slowly and almost completely from the gastrointestinal tract. Peak plasma concentrations are achieved 6-12 hours after oral administration. The estimated bioavailability of amlodipine is 64-90%. Steady-state plasma amlodipine levels are achieved after 7-8 days of consecutive daily dosing. Absorption is not affected by food. •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): 21 L/kg,. •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): About 98%,. •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): Amlodipine is heavily (approximately 90%) converted to inactive metabolites via hepatic breakdown with 10% of the parent compound and 60% of the metabolites found excreted in the urine. Ex vivo studies have shown that about 93% of the circulating drug is bound to plasma proteins in hypertensive patients. Characteristics that add to amlodipine's unique pharmacologic profile include nearly complete absorption, late-peak plasma concentrations, high bioavailability, and slow hepatic breakdown. •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): Elimination from the plasma occurs in a biphasic with a terminal elimination half-life of about 30–50 hours. Steady-state plasma levels of amlodipine are reached after 7-8 days of consecutive daily dosing. Amlodipine is 10% excreted as unchanged drug in the urine. Amlodipine can be initiated at normal doses in patients diagnosed with renal failure,. •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): The terminal elimination half-life of about 30–50 hours. Plasma elimination half-life is 56 hours in patients with impaired hepatic function, titrate slowly when administering this drug to patients with severe hepatic impairment. •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): Total body clearance (CL) has been calculated as 7 ± 1.3 ml/min/kg (0.42 ± 0.078 L/ h/kg) in healthy volunteers,. Elderly patients show a reduced clearance of amlodipine with an AUC (area under the curve) increase of about 40–60%, and a lower initial dose may be required. •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): Acute oral toxicity (LD50): 37 mg/kg (mouse). Overdose An overdose of amlodipine could result in a high degree of peripheral vasodilatation with a possibility of reflex tachycardia. Significant and prolonged hypotension leading to shock and fatal outcomes have been reported. Carcinogenesis, mutagenesis, impairment of fertility Rats and mice treated with amlodipine maleate in the diet on a long-term basis for up to 2 years demonstrated no evidence of a carcinogenic effect of the drug. For the mouse, the highest dose was comparable to the maximum recommended human dose of 10 mg amlodipine per day. For the rat, the highest dose was measured to be about twice the maximum recommended human dose. Mutagenicity studies using amlodipine maleate showed no drug-related gene or chromosomal effects. There was no impact on the fertility of rats given oral amlodipine maleate (males for 64 days and females for 14 days before mating) at doses up to 10 mg amlodipine/kg/day (8 times the maximum recommended human dose). Use in pregnancy The safety of amlodipine in human pregnancy or lactation has not been proven. Amlodipine is therefore considered a pregnancy category C drug. Use amlodipine only if the potential benefit justifies the potential risk. Use in nursing Discontinue when administering amlodipine. •Brand Names (Drug A): Tymlos •Brand Names (Drug B): Amlobenz, Azor, Caduet, Dafiro, Exforge, Exforge Hct, Katerzia, Lotrel, Norliqva, Norvasc, Prestalia, Tribenzor, Twynsta, Viacoram •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amlodipine Amlodipino Amlodipinum •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amlodipine is a calcium channel blocker used to treat hypertension and angina. Output: Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects. The severity of the interaction is minor.
Does Abaloparatide and Amobarbital interact?
•Drug A: Abaloparatide •Drug B: Amobarbital •Severity: MODERATE •Description: Amobarbital may increase the hypotensive activities of Abaloparatide. •Extended Description: The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): No indication available •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Amobarbital (like all barbiturates) works by binding to the GABAA receptor at either the alpha or the beta sub unit. These are binding sites that are distinct from GABA itself and also distinct from the benzodiazepine binding site. Like benzodiazepines, barbiturates potentiate the effect of GABA at this receptor. This GABAA receptor binding decreases input resistance, depresses burst and tonic firing, especially in ventrobasal and intralaminar neurons, while at the same time increasing burst duration and mean conductance at individual chloride channels; this increases both the amplitude and decay time of inhibitory postsynaptic currents. In addition to this GABA-ergic effect, barbiturates also block the AMPA receptor, a subtype of glutamate receptor. Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. Amobarbital also appears to bind neuronal nicotinic acetylcholine receptors. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): No half-life available •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Tymlos •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amobarbital Amobarbitale Amylobarbitone Barbamil Barbamyl •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amobarbital is a barbiturate derivative used for the induction of sedation during procedures, short-term management of insomnia, and acute management of refractory tonic-clonic seizures.
The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects. The severity of the interaction is moderate.
Question: Does Abaloparatide and Amobarbital interact? Information: •Drug A: Abaloparatide •Drug B: Amobarbital •Severity: MODERATE •Description: Amobarbital may increase the hypotensive activities of Abaloparatide. •Extended Description: The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects. •Indication (Drug A): Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. •Indication (Drug B): No indication available •Pharmacodynamics (Drug A): Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Abaloparatide is an agonist at the PTH1 receptor (PTH1R), a G-protein-coupled receptor (GPCR) that regulates bone formation and bone turnover, as well as mineral ion homeostasis. The PTH1R couples to G s and G q, which stimulates adenylyl cyclase (AC), which activates the cAMP/PKA signalling cascade, and phospholipase C (PLC), which activates the IP/PKC signalling cascade. Abaloparatide binds to the PTH1R in target cells to activate the G s -protein-mediated cAMP signalling pathway, thereby stimulating osteoblastic activity. Abaloparatide also activates G q and β-arrestin-1 pathway downstream of PTH1R as off-targets in target cells such as the testis and epididymis, which have been associated with anti-inflammatory effects and alleviation of epididymitis and orchitis symptoms. The PTH1R has two conformations with distinct ligand binding profiles. The R conformation is a G protein–independent high-affinity conformation, and upon binding, the ligand induces a longer-lasting signalling response that gradually increases cAMP. Due to the prolonged signalling response, ligands selectively binding to the R conformation are associated with a risk for increased calcium mobilization and hypercalcemia. Conversely, the RG conformation is G-protein–dependent (GTPγS-sensitive) with a shorter signalling response. Abaloparatide binds to the RG conformation with greater selectivity: it induces more transient signalling responses and favours net bone formation over bone resorption. The drug's relatively low risk for hypercalcemia and osteoclast resorption compared to teriparatide is attributed to the preferential binding of abaloparatide to the RG conformation. •Mechanism of action (Drug B): Amobarbital (like all barbiturates) works by binding to the GABAA receptor at either the alpha or the beta sub unit. These are binding sites that are distinct from GABA itself and also distinct from the benzodiazepine binding site. Like benzodiazepines, barbiturates potentiate the effect of GABA at this receptor. This GABAA receptor binding decreases input resistance, depresses burst and tonic firing, especially in ventrobasal and intralaminar neurons, while at the same time increasing burst duration and mean conductance at individual chloride channels; this increases both the amplitude and decay time of inhibitory postsynaptic currents. In addition to this GABA-ergic effect, barbiturates also block the AMPA receptor, a subtype of glutamate receptor. Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. Amobarbital also appears to bind neuronal nicotinic acetylcholine receptors. •Absorption (Drug A): The absolute bioavailability of abaloparatide in healthy women after subcutaneous administration of an 80 mcg dose was 36%. Following subcutaneous administration of 80 mcg abaloparatide in postmenopausal women with osteoporosis for seven days, the mean (SD) C max was 812 (118) pg/mL and the AUC 0-24 was 1622 (641) pgxhr/mL. The median T max was 0.51 hours, with a range from 0.25 to 0.52 hours. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution was approximately 50 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): In vitro, abaloparatide was approximately 70% bound to plasma proteins. •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Abaloparatide is metabolized into smaller peptide fragments via non-specific proteolytic degradation. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): The peptide fragments of abaloparatide are primarily eliminated through renal excretion. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The mean half-life of abaloparatide is approximately one hour. •Half-life (Drug B): No half-life available •Clearance (Drug A): The mean apparent total plasma clearance for subcutaneous administration is 168 L/h in healthy subjects. •Clearance (Drug B): No clearance available •Toxicity (Drug A): The LD 50 in rats and mice following intravenous or subcutaneous administration was 42 mg/kg. One clinical study reported an accidental overdose in a patient who received 400 mcg in one day, which is five times the recommended clinical dose. This patient experienced asthenia, headache, nausea, and vertigo. Serum calcium was not assessed on the day of the overdose, but on the following day, the patient’s serum calcium was within the normal range. Other symptoms of overdose may include hypercalcemia, nausea, vomiting, dizziness, tachycardia, orthostatic hypotension, and headache. Since there is no specific antidote for abaloparatide overdose, it is recommended that overdose is managed with drug discontinuation, monitoring of serum calcium and phosphorus, and implementation of appropriate supportive measures, such as hydration. Based on the molecular weight, plasma protein binding and volume of distribution, abaloparatide is not expected to be dialyzable. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Tymlos •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Amobarbital Amobarbitale Amylobarbitone Barbamil Barbamyl •Summary (Drug A): Abaloparatide is a parathyroid hormone-related protein (PTHrP) analog used for the treatment of osteoporosis in patients with a high risk of fracture. •Summary (Drug B): Amobarbital is a barbiturate derivative used for the induction of sedation during procedures, short-term management of insomnia, and acute management of refractory tonic-clonic seizures. Output: The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects. The severity of the interaction is moderate.
Does Abaloparatide and Amphotericin B interact?
"•Drug A: Abaloparatide\n•Drug B: Amphotericin B\n•Severity: MINOR\n•Description: The risk o(...TRUNCATED)
"Co-administration of agents that are both associated with a risk for developing hypotension, includ(...TRUNCATED)
"Question: Does Abaloparatide and Amphotericin B interact?\nInformation: \n•Drug A: Abaloparatide\(...TRUNCATED)

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
0
Add dataset card