Datasets:
GEM
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 8,479 Bytes
b212506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd1a88d
 
b212506
 
 
 
 
 
 
d02a874
b212506
 
 
d02a874
b212506
 
340e117
b212506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import csv
import json
import os
import datasets

_CITATION = """\
@inproceedings{jiang-etal-2020-neural,
    title = "Neural {CRF} Model for Sentence Alignment in Text Simplification",
    author = "Jiang, Chao  and
      Maddela, Mounica  and
      Lan, Wuwei  and
      Zhong, Yang  and
      Xu, Wei",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.709",
    doi = "10.18653/v1/2020.acl-main.709",
    pages = "7943--7960",
}
"""

_DESCRIPTION = """\
WikiAuto provides a set of aligned sentences from English Wikipedia and Simple
English Wikipedia as a resource to train sentence simplification systems.

The authors first crowd-sourced a set of manual alignments between sentences in
a subset of the Simple English Wikipedia and their corresponding versions in
English Wikipedia (this corresponds to the manual config in this version of the
dataset), then trained a neural CRF system to predict these alignments.

The trained alignment prediction model was then applied to the other articles in
Simple English Wikipedia with an English counterpart to create a larger corpus
of aligned sentences (corresponding to the auto and auto_acl configs here).
"""

_URLs = {
    "train": "train.tsv",
    "validation": "valid.tsv",
    "test_turk": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_turk_detokenized.json",
    "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/wiki_auto_asset_turk_train_valid.zip",
}

# Add Asset files.
_URLs[
    "test_asset_orig"
] = "https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.orig"
for i in range(10):
    _URLs[
        f"test_asset_{i}"
    ] = f"https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.simp.{i}"


class WikiAuto(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    DEFAULT_CONFIG_NAME = "wiki_auto_asset_turk"

    def _info(self):
        features = datasets.Features(
            {
                "gem_id": datasets.Value("string"),
                "gem_parent_id": datasets.Value("string"),
                "source": datasets.Value("string"),
                "target": datasets.Value("string"),
                "references": [datasets.Value("string")],
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=datasets.info.SupervisedKeysData(
                input="source", output="target"
            ),
            homepage="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_URLs)
        challenge_sets = [
            (
                "challenge_train_sample",
                "train_wiki_auto_asset_turk_RandomSample500.json",
            ),
            (
                "challenge_validation_sample",
                "validation_wiki_auto_asset_turk_RandomSample500.json",
            ),
            (
                "challenge_test_asset_backtranslation",
                "test_asset_wiki_auto_asset_turk_BackTranslation.json",
            ),
            (
                "challenge_test_asset_bfp02",
                "test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json",
            ),
            (
                "challenge_test_asset_bfp05",
                "test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json",
            ),
            (
                "challenge_test_asset_nopunc",
                "test_asset_wiki_auto_asset_turk_WithoutPunctuation.json",
            ),
            (
                "challenge_test_turk_backtranslation",
                "detok_test_turk_wiki_auto_asset_turk_BackTranslation.json",
            ),
            (
                "challenge_test_turk_bfp02",
                "detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json",
            ),
            (
                "challenge_test_turk_bfp05",
                "detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json",
            ),
            (
                "challenge_test_turk_nopunc",
                "detok_test_turk_wiki_auto_asset_turk_WithoutPunctuation.json",
            ),
        ]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": dl_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": dl_dir["validation"],
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name="test_asset",
                gen_kwargs={
                    "filepath": "",
                    "split": "test_asset",
                    "filepaths": [dl_dir["test_asset_orig"]]
                    + [dl_dir[f"test_asset_{i}"] for i in range(10)],
                },
            ),
            datasets.SplitGenerator(
                name="test_turk",
                gen_kwargs={
                    "filepath": dl_dir["test_turk"],
                    "split": "test_turk",
                },
            ),
        ] + [
            datasets.SplitGenerator(
                name=challenge_split,
                gen_kwargs={
                    "filepath": os.path.join(
                        dl_dir["challenge_set"], "wiki_auto_asset_turk", filename
                    ),
                    "split": challenge_split,
                },
            )
            for challenge_split, filename in challenge_sets
        ]

    def _generate_examples(self, filepath, split, filepaths=None, lang=None):
        """Yields examples."""
        if split in ["train", "validation"]:
            keys = [
                "source",
                "target",
            ]
            with open(filepath, encoding="utf-8") as f:
                for id_, line in enumerate(f):
                    values = line.strip().split("\t")
                    assert (
                        len(values) == 2
                    ), f"Not enough fields in ---- {line} --- {values}"
                    example = dict([(k, val) for k, val in zip(keys, values)])
                    example["gem_id"] = f"wiki_auto_asset_turk-{split}-{id_}"
                    example["gem_parent_id"] = example["gem_id"]
                    example["references"] = (
                        [] if split == "train" else [example["target"]]
                    )
                    yield id_, example
        elif split == "test_turk":
            examples = json.load(open(filepath, encoding="utf-8"))
            for id_, example in enumerate(examples):
                example["gem_parent_id"] = example["gem_id"]
                for k in ["source_id", "target_id"]:
                    if k in example:
                        del example[k]
                yield id_, example
        elif split == "test_asset":
            files = [open(f_name, encoding="utf-8") for f_name in filepaths]
            for id_, lines in enumerate(zip(*files)):
                yield id_, {
                    "gem_id": f"wiki_auto_asset_turk-{split}-{id_}",
                    "gem_parent_id": f"wiki_auto_asset_turk-{split}-{id_}",
                    "target": lines[1].strip(),
                    "source": lines[0].strip(),
                    "references": [line.strip() for line in lines[1:]],
                }
        else:
            exples = json.load(open(filepath, encoding="utf-8"))
            if isinstance(exples, dict):
                assert len(exples) == 1, "multiple entries found"
                exples = list(exples.values())[0]
            for id_, exple in enumerate(exples):
                exple["gem_parent_id"] = exple["gem_id"]
                exple["gem_id"] = f"wiki_auto_asset_turk-{split}-{id_}"
                for k in ["source_id", "target_id"]:
                    if k in exple:
                        del exple[k]
                yield id_, exple