idx
stringlengths 9
13
| ground_depth
imagewidth (px) 512
512
| ground_semantics
imagewidth (px) 512
512
| ground_rgb
imagewidth (px) 512
512
| satellite_rgb
imagewidth (px) 512
512
| satellite_semantics
imagewidth (px) 512
512
| gt
imagewidth (px) 512
512
|
---|---|---|---|---|---|---|
JAX_260 80 | ||||||
JAX_260 81 | ||||||
JAX_260 82 | ||||||
JAX_260 83 | ||||||
JAX_260 85 | ||||||
JAX_260 86 | ||||||
JAX_260 87 | ||||||
JAX_260 88 | ||||||
JAX_260 91 | ||||||
JAX_260 93 | ||||||
JAX_260 100 | ||||||
JAX_260_2 0 | ||||||
JAX_260_2 1 | ||||||
JAX_260_2 2 | ||||||
JAX_260_2 3 | ||||||
JAX_260_2 4 | ||||||
JAX_260_2 5 | ||||||
JAX_260_2 6 | ||||||
JAX_260_2 7 | ||||||
JAX_260_2 8 | ||||||
JAX_260_2 9 | ||||||
JAX_260_2 10 | ||||||
JAX_260_2 11 | ||||||
JAX_260_2 12 | ||||||
JAX_260_2 13 | ||||||
JAX_260_2 14 | ||||||
JAX_260_2 15 | ||||||
JAX_260_2 16 | ||||||
JAX_260_2 17 | ||||||
JAX_260_2 18 | ||||||
JAX_260_2 19 | ||||||
JAX_260_2 20 | ||||||
JAX_260_2 21 | ||||||
JAX_260_2 22 | ||||||
JAX_260_2 23 | ||||||
JAX_260_2 24 | ||||||
JAX_260_2 25 | ||||||
JAX_260_2 26 | ||||||
JAX_260_2 27 | ||||||
JAX_260_2 28 | ||||||
JAX_260_2 29 | ||||||
JAX_260_2 30 | ||||||
JAX_260_2 31 | ||||||
JAX_260_2 32 | ||||||
JAX_260_2 33 | ||||||
JAX_260_2 34 | ||||||
JAX_260_2 35 | ||||||
JAX_260_2 36 | ||||||
JAX_260_2 37 | ||||||
JAX_260_2 38 | ||||||
JAX_260_2 39 | ||||||
JAX_260_2 40 | ||||||
JAX_260_2 41 | ||||||
JAX_260_2 42 | ||||||
JAX_260_2 43 | ||||||
JAX_260_2 44 | ||||||
JAX_260_2 45 | ||||||
JAX_260_2 46 | ||||||
JAX_260_2 47 | ||||||
JAX_260_2 48 | ||||||
JAX_260_2 49 | ||||||
JAX_260_2 50 | ||||||
JAX_260_2 52 | ||||||
JAX_260_2 53 | ||||||
JAX_260_2 58 | ||||||
JAX_260_2 59 | ||||||
JAX_260_2 61 | ||||||
JAX_260_2 62 | ||||||
JAX_260_2 63 | ||||||
JAX_260_2 64 | ||||||
JAX_260_2 65 | ||||||
JAX_260_2 66 | ||||||
JAX_260_2 67 | ||||||
JAX_260_2 68 | ||||||
JAX_260_2 69 | ||||||
JAX_260_2 70 | ||||||
JAX_260_2 71 | ||||||
JAX_260_2 72 | ||||||
JAX_260_2 73 | ||||||
JAX_260_2 75 | ||||||
JAX_260_2 76 | ||||||
JAX_260_2 77 | ||||||
JAX_260_2 79 | ||||||
JAX_260_2 80 | ||||||
JAX_260_2 81 | ||||||
JAX_260_2 82 | ||||||
JAX_260_2 83 | ||||||
JAX_260_2 84 | ||||||
JAX_260_2 85 | ||||||
JAX_260_2 86 | ||||||
JAX_260_2 87 | ||||||
JAX_260_2 88 | ||||||
JAX_260_2 89 | ||||||
JAX_260_2 90 | ||||||
JAX_260_2 91 | ||||||
JAX_260_2 92 | ||||||
JAX_260_2 93 | ||||||
JAX_260_2 94 | ||||||
JAX_260_2 95 | ||||||
JAX_260_2 96 |
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
Introduction
Predicting realistic ground views from satellite imagery in urban scenes is a challenging task due to the significant view gaps between satellite and ground-view images. We propose a novel pipeline to tackle this challenge, by generating geospecifc views that maximally respect the weak geometry and texture from multi-view satellite images. Different from existing approaches that hallucinate images from cues such as partial semantics or geometry from overhead satellite images, our method directly predicts ground-view images at geolocation by using a comprehensive set of information from the satellite image, resulting in ground-level images with a resolution boost at a factor of ten or more. We leverage a novel building refinement method to reduce geometric distortions in satellite data at ground level, which ensures the creation of accurate conditions for view synthesis using diffusion networks. Moreover, we proposed a novel geospecific prior, which prompts distribution learning of diffusion models to respect image samples that are closer to the geolocation of the predicted images. We demonstrate our pipeline is the first to generate close-to-real and geospecific ground views merely based on satellite images.
Description
The GeoContext-v1 contains 4463 pairs of satellite-ground data. Including:
- satellite_rgb: [512x512x3] satellite rgb texture, generated by orthophoto projection from satellite textured mesh.
- satellite_semantics: [512,512,3] satellite semantics containing two class, where "ground" as [120,120,70], "building" as [180,120,120]
- ground_rgb: [256x512x3] ground-view satellite rgb texture, generated by panoramic projection from satellite textured mesh in Blender.
- ground_semantics: [256x512x3] ground-view satellite semantics containing three class, where "ground" "building" same as "satellite_semantics" and "sky" as [6,230,230]
- ground_depth: [256x512x1] ground-view satellite depth, generated in same way as "ground_rgb"
- gt: [256x512x3] ground truth ground-view rgb, downloaded from google street 360.
Citation
BibTex:
@misc{xu2024geospecificviewgeneration,
title={Geospecific View Generation -- Geometry-Context Aware High-resolution Ground View Inference from Satellite Views},
author={Ningli Xu and Rongjun Qin},
year={2024},
eprint={2407.08061},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.08061},
}
- Downloads last month
- 67