Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
json
Languages:
Chinese
Size:
10M - 100M
ArXiv:
Tags:
medical
License:
File size: 1,599 Bytes
f55a5f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from datasets import DatasetInfo, Features, Split, SplitGenerator, GeneratorBasedBuilder, Value, Sequence
import json
class MyDataset(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
features=Features({
"questions": Sequence(Value("string")),
"answers": Sequence(Value("string"))
}),
supervised_keys=("questions", "answers"),
homepage="https://github.com/FreedomIntelligence/HuatuoGPT",
citation="...",
)
def _split_generators(self, dl_manager):
train_path = "train_datasets.jsonl"
validation_path = "validation_datasets.jsonl"
test_path = "test_datasets.jsonl"
return [
SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepath": train_path}),
SplitGenerator(name=Split.VALIDATION, gen_kwargs={"filepath": validation_path}),
SplitGenerator(name=Split.TEST, gen_kwargs={"filepath": test_path}),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
# Process your data here and create a dictionary with the features.
# For example, if your data is in JSON format:
data = json.loads(row)
yield id_, {
"questions": data["questions"],
"answers": data["answers"],
}
if __name__ == '__main__':
from datasets import load_dataset
dataset = load_dataset("my_dataset.py")
print() |