Datasets:

Languages: English
Multilinguality: monolingual
Size Categories: 1K<n<10K
Language Creators: found
Annotations Creators: crowdsourced
Source Datasets: original
Tags: rf100
License: cc
Dataset Preview
6.52 MB
Viewer
image_id (int64)image (image)width (int32)height (int32)objects (sequence)
0
640
640
{ "id": [ 0 ], "area": [ 162560 ], "bbox": [ [ 0, 77, 640, 254 ] ], "category": [ 2 ] }
7
640
640
{ "id": [ 14, 15 ], "area": [ 276160, 21479 ], "bbox": [ [ 0, 126, 640, 431.5 ], [ 126, 162, 457, 47 ] ], "category": [ 2, 1 ] }
20
640
640
{ "id": [ 42, 43 ], "area": [ 125120, 1402 ], "bbox": [ [ 0, 154, 640, 195.5 ], [ 129, 201, 93.5, 15 ] ], "category": [ 2, 1 ] }
17
640
640
{ "id": [ 33, 34 ], "area": [ 225280, 12510 ], "bbox": [ [ 0, 116, 640, 352 ], [ 127, 492, 417, 30 ] ], "category": [ 2, 1 ] }
6
640
640
{ "id": [], "area": [], "bbox": [], "category": [] }
1
640
640
{ "id": [ 1, 2 ], "area": [ 118720, 111672 ], "bbox": [ [ 0, 113, 640, 185.5 ], [ 0, 290, 634.5, 176 ] ], "category": [ 2, 2 ] }
16
640
640
{ "id": [ 31, 32 ], "area": [ 296000, 90952 ], "bbox": [ [ 0, 84, 640, 462.5 ], [ 126, 114, 452.5, 201 ] ], "category": [ 2, 1 ] }
13
640
640
{ "id": [ 26, 27 ], "area": [ 180800, 21643 ], "bbox": [ [ 0, 169, 640, 282.5 ], [ 127, 227, 470.5, 46 ] ], "category": [ 2, 1 ] }
2
640
640
{ "id": [ 3, 4, 5, 6 ], "area": [ 113600, 213120, 31992, 20410 ], "bbox": [ [ 0, 76, 640, 177.5 ], [ 0, 246, 640, 333 ], [ 125, 304, 477.5, 67 ], [ 121, 135, 392.5, 52 ] ], "category": [ 2, 2, 1, 1 ] }
12
640
640
{ "id": [ 24, 25 ], "area": [ 198720, 33784 ], "bbox": [ [ 0, 158, 640, 310.5 ], [ 126, 191, 303, 111.5 ] ], "category": [ 2, 1 ] }
18
640
640
{ "id": [ 35, 36, 37, 38 ], "area": [ 81600, 222720, 14625, 3912 ], "bbox": [ [ 0, 104, 640, 127.5 ], [ 0, 223, 640, 348 ], [ 128, 161, 450, 32.5 ], [ 129, 282, 244.5, 16 ] ], "category": [ 2, 2, 1, 1 ] }
14
640
640
{ "id": [ 28 ], "area": [ 288320 ], "bbox": [ [ 0, 126, 640, 450.5 ] ], "category": [ 2 ] }
9
640
640
{ "id": [ 18, 19 ], "area": [ 224000, 36869 ], "bbox": [ [ 0, 161, 640, 350 ], [ 125, 220, 458, 80.5 ] ], "category": [ 2, 1 ] }
5
640
640
{ "id": [ 12, 13 ], "area": [ 235200, 49324 ], "bbox": [ [ 0, 184, 640, 367.5 ], [ 126, 241, 436.5, 113 ] ], "category": [ 2, 1 ] }
8
640
640
{ "id": [ 16, 17 ], "area": [ 142400, 60192 ], "bbox": [ [ 0, 328, 640, 222.5 ], [ 127, 361, 456, 132 ] ], "category": [ 2, 1 ] }
15
640
640
{ "id": [ 29, 30 ], "area": [ 294400, 21232 ], "bbox": [ [ 0, 124, 640, 460 ], [ 128, 166, 305.5, 69.5 ] ], "category": [ 2, 1 ] }
19
640
640
{ "id": [ 39, 40, 41 ], "area": [ 162880, 175680, 28329 ], "bbox": [ [ 0, 72, 640, 254.5 ], [ 0, 319, 640, 274.5 ], [ 127, 353, 426, 66.5 ] ], "category": [ 2, 2, 1 ] }
11
640
640
{ "id": [ 21, 22, 23 ], "area": [ 154240, 12928, 19718 ], "bbox": [ [ 0, 179, 640, 241 ], [ 127, 446, 404, 32 ], [ 128, 238, 174.5, 113 ] ], "category": [ 2, 1, 1 ] }
3
640
640
{ "id": [ 7, 8, 9 ], "area": [ 85440, 63180, 9932 ], "bbox": [ [ 0, 63, 640, 133.5 ], [ 125, 220, 486, 130 ], [ 126, 106, 484.5, 20.5 ] ], "category": [ 2, 1, 1 ] }
4
640
640
{ "id": [ 10, 11 ], "area": [ 188800, 3791 ], "bbox": [ [ 0, 134, 640, 295 ], [ 127, 166, 223, 17 ] ], "category": [ 2, 1 ] }
10
640
640
{ "id": [ 20 ], "area": [ 269760 ], "bbox": [ [ 0, 165, 640, 421.5 ] ], "category": [ 2 ] }

Dataset Card for tweeter-posts

** The original COCO dataset is stored at dataset.tar.gz**

Dataset Summary

tweeter-posts

Supported Tasks and Leaderboards

  • object-detection: The dataset can be used to train a model for Object Detection.

Languages

English

Dataset Structure

Data Instances

A data point comprises an image and its object annotations.

{
  'image_id': 15,
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
  'width': 964043,
  'height': 640,
  'objects': {
    'id': [114, 115, 116, 117], 
    'area': [3796, 1596, 152768, 81002],
    'bbox': [
      [302.0, 109.0, 73.0, 52.0],
      [810.0, 100.0, 57.0, 28.0],
      [160.0, 31.0, 248.0, 616.0],
      [741.0, 68.0, 202.0, 401.0]
    ], 
    'category': [4, 4, 0, 0]
  }
}

Data Fields

  • image: the image id
  • image: PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0]
  • width: the image width
  • height: the image height
  • objects: a dictionary containing bounding box metadata for the objects present on the image
    • id: the annotation id
    • area: the area of the bounding box
    • bbox: the object's bounding box (in the coco format)
    • category: the object's category.

Who are the annotators?

Annotators are Roboflow users

Additional Information

Licensing Information

See original homepage https://universe.roboflow.com/object-detection/tweeter-posts

Citation Information

@misc{ tweeter-posts,
    title = { tweeter posts Dataset },
    type = { Open Source Dataset },
    author = { Roboflow 100 },
    howpublished = { \url{ https://universe.roboflow.com/object-detection/tweeter-posts } },
    url = { https://universe.roboflow.com/object-detection/tweeter-posts },
    journal = { Roboflow Universe },
    publisher = { Roboflow },
    year = { 2022 },
    month = { nov },
    note = { visited on 2023-03-29 },
}"

Contributions

Thanks to @mariosasko for adding this dataset.

Downloads last month
0